
MIC/MAEB 2017 80–1

An Enhanced Iterated Greedy Metaheuristic for the
Particle Therapy Patient Scheduling Problem1

Johannes Maschler, Thomas Hackl, Martin Riedler, Günther R. Raidl

Institute of Computer Graphics and Algorithms, TU Wien
Favoritenstraße 9-11, 1040 Vienna, Austria

{maschler|riedler|raidl}@ac.tuwien.ac.at, t9.hackl@gmail.com

Abstract

The Particle Therapy Patient Scheduling Problem (PTPSP) arises in modern cancer treatment
facilities that provide particle therapy and consists of scheduling a set of therapies within a planning
horizon of several months. A particularity of PTPSP compared to classical radiotherapy scheduling
is that therapies need not only be assigned to days but also scheduled within each day to account
for the more complicated operational scenario. In an earlier work we introduced this novel problem
setting and provided first algorithms including an Iterated Greedy (IG) metaheuristic. In this work
we build upon this IG and exchange two main components: the construction phase and the local
search algorithm. The resulting metaheuristic enhances the existing approach and yields in most of
the considered benchmark instances substantially better results.

1 Introduction

Particle therapy is a relatively novel and highly promising option to provide cancer treatments. A proton
or carbon beam is produced by either a cyclotron or a synchrotron and is directed into one of up to five
treatment rooms, where patients are irradiated. Since several tasks have to be completed in a treatment
room before and after an actual irradiation, the usually single available beam is switched between the
available treatment rooms to maximize the throughput of the facility. Consequently, the main challenge
is to arrange the individual treatments in such a way that idle times on the particle beam are minimized.
We consider here the particle therapy treatment center MedAustron in Wiener Neustadt, Austria, which
offers three treatment rooms.

The Particle Therapy Patient Scheduling Problem (PTPSP) addresses the midterm planning part of
such a particle therapy treatment center and has been first introduced in our recent work [8]. In the
PTPSP an effective plan has to be found for performing a larger number of therapies, each consisting
of daily treatments (DTs) provided on 8 to 35 subsequent days. Therapies have to start on Mondays or
Tuesdays between an earliest and a latest allowed starting day. After a therapy is started, the number
of DTs that are provided each week has to stay between a lower and an upper bound. Moreover, there
is a minimal and a maximal number of days that are allowed to pass between two subsequent DTs,
and there has to be a break from the treatment of at least two consecutive days each week. The DTs
have resource requirements that vary with time, but each specific resource is required at most once for
a consecutive time period. These varying requirements originate from the different tasks involved in
providing the treatments. Each resource can only be used by one DT at a time. Amongst others the
considered resources involve the particle beam, treatment rooms, radio oncologists, and an anesthetist.
In terms of the resource-constrained project scheduling literature (see for example [3]) DTs would be
called activities with resource requests varying with time. Resources have for each working day (usually
Mondays to Fridays) a regular availability period followed by an extended availability period in which
they can be used, where the use of the latter induces (additional) costs. Furthermore, the availability
of resources can be interrupted by so-called unavailability periods. The aim of PTPSP is to schedule
a given set of therapies by determining days and times for all corresponding DTs while considering all
operational constraints. The objective is to minimize the use of extended availability periods, while the
therapies have to be completed as early as possible.

1We thank EBG MedAustron GmbH, Wiener Neustadt, Austria, for the collaboration on particle therapy patient scheduling
and partially funding this work.

Barcelona, July 4-7, 2017

80–2 MIC/MAEB 2017

Midterm planning for classical radiotherapy has attracted the focus of the scheduling community
starting with the works from Kapamara et al. [6] and Petrovic et al. [13]. Several further heuristic as well
as exact approaches followed. Heuristic techniques range from a Greedy Randomized Adaptive Search
Procedure (GRASP) [12] and steepest hill climbing methods [5, 14] to more advanced techniques using
Genetic Algorithms (GAs) [10, 11]. Exact methods are based on Mixed Integer Linear Programming
(MILP) models and consider different levels of granularity [1, 2]. All these works have in common that
they assign treatments only to days, but do not sequence the treatments within a day. The reason is that
in the considered scenarios linear accelerators are used which serve single treatment rooms exclusively.
Hence, only a sequential processing of treatments is possible. This stands in contrast to PTPSP where
the particle beam is shared between multiple treatment rooms and a finer-grained scheduling is necessary
to maximize the throughput of the facility.

In our previous work [8] we formalized PTPSP as a MILP model. However, even solving a strongly
reduced version of the model turned out to be practically intractable. Therefore, we proposed the therapy-
wise construction heuristic (TWCH), which acts in two phases by assigning first all DTs to days (day
assignment) and then scheduling the DTs on each day (time assignment). Moreover, a GRASP and an
Iterated Greedy (IG) metaheuristic that are based on this construction heuristic were developed. Exper-
iments indicated that the IG yields superior results in comparison to the GRASP. This is mainly due to
the fact that the IG preserves substantial parts of the solution from one iteration to the next, and conse-
quently, poor decisions made especially in the first phase of TWCH can be corrected in the course of
the iterations. However, the IG proposed in [8] does not exhaust its full potential: Moving DTs between
days might require to reevaluate the start times of all DTs, and this is done by simply dropping all start
times of the considered days. In addition, we used a local improvement operator within the IG that is
based on applying a randomized version of the time assignment phase of TWCH iteratively many times.
Even though this local improvement operator is able to enhance solutions rather quickly this approach
has the drawback that partly redundant work is repeatedly done, still yielding relatively similar solutions
for the time assignments.

The aim of this work is to study improved variants of the IG metaheuristic from [8]. We propose novel
destruction and construction methods that are able to keep relative timing characteristics of untouched
DTs to a larger extent. Furthermore, we replace the so far rather simple local improvement operator by a
local search method that considers a restricted DT exchange neighborhood. The new IG is compared to
the IG from [8] and a variant of IG that uses the destruction and construction phase from [8] combined
with the new local search method. Our experiments clearly indicate that the IG with the new destruction
and construction methods as well as the new local search yields substantially better results than the other
two variants.

The remainder of this work is structured as follows: After giving a formal problem definition in the
next section, we present the enhanced IG metaheuristic in Section 3. The conducted experiments are
then discussed in Section 4. Finally, Section 5 concludes this work with an outlook on future work.

2 Problem Definition

In the PTPSP a set of therapies T = {1, . . . , nT } has to be scheduled on consecutive days D =
{1, . . . , nD} considering a set of renewable resources R = {1, . . . , nR}.

Each therapy t ∈ T consists of a set of DTs Ut = {1, . . . , τt}. In the course of a therapy, the number
of DTs applied per week has to be in the range from ntwmin

t to ntwmax
t and DTs have to be performed

at least every δmin
t ≥ 1 and at most every δmax

t ≥ δmin
t days. In addition, between two weeks there

have to be at least two days where no DT is performed. The set of possible start days for each DT
u ∈ Ut is given by the subset {dmin

t,u , . . . , d
max
t,u } ⊆ D of days. For each DT u ∈ Ut we are given a

processing time pt,u ≥ 0 and a set of required resources Qt,u ⊆ R. In the execution of a DT each
resource r ∈ Qt,u is in general required during a part of the whole processing time specified by the time
interval Pt,u,r = [P start

t,u,r , P
end
t,u,r) ⊆ [0, pt,u).

The planning horizon is structured into a subset D′ ⊆ D of working days on which the treatment

Barcelona, July 4-7, 2017

MIC/MAEB 2017 80–3

center is actually open and DTs can be scheduled on. Moreover, let
⋃
v∈{1,...,nV }D

′
v be the partitioning

of D′ into nV subsets corresponding to the weeks. For each working day d ∈ D′ we have a fundamental
opening time W̃d = [W̃ start

d , W̃ end
d) that limits the availability of all resources on the considered day.

Each resource r ∈ R is available on a subset Dres
r ⊆ D′ of the working days. On such days the

availability of each resource is defined by a regular service time window Wr,d = [W start
r,d ,W end

r,d) ⊆ W̃d

that is immediately followed by an extended service window Ŵr,d = [W end
r,d , W̃d] ⊆ W̃d. Moreover, for

each resource r ∈ R and each day d ∈ Dres
r , the availability of resource r may be interrupted by a set of

unavailability intervals W r,d =
⋃
w=1,...,ωr,d

W r,d,w with W r,d,w = [W
start
r,d,w,W

end
r,d,w] ⊂Wr,d ∪ Ŵr,d.

We represent a solution for the PTPSP as tuple (Z, S), where Z = {Zt,u ∈ D : t ∈ T, u ∈ Ut}
denotes the days at which the DTs are planned and S = {St,u ≥ 0 : t ∈ T, u ∈ Ut} are the start times of
the DTs on the respective days. A solution is feasible if all resource availabilities, precedence relations,
and the remaining operational constraints are respected. The objective is to minimize the use of extended
time over all resources R while finishing each treatment as early as possible. More formally, we aim at
minimizing

γext
∑
r∈R

∑
d∈Dres

r

max

0, max
t∈T,u∈Ut:

r∈Qt,u, Zt,u=d

(St,u + P end
t,u,r)−W end

r,d

+ γfinish
∑
t∈T

(
Zt,τt − Zearliest

t,τt

)
, (1)

where γext and γfinish are scalar weights and Zearliest
t,τt is a lower bound on the earliest possible finishing

day for the last DT of therapy t (see [8]).
Note that the definition of DTs stated here differs from the one given in [8], where DTs are composed

of consecutively executed activities that are associated with minimum and maximum time lags. The
simplification here is motivated by the fact that in practice the possibility to have different minimum
and maximum time lags between two activities is not expected to be exploited in midterm planning.
Consequently, time lags may either be replaced by “dummy” activities of fixed length or, as we do here,
the subdivision of DTs into activities can be replaced by the time intervals Pt,u,r specifying at which
times which resources are needed.

3 Iterated Greedy Approach

An IG [4] algorithm starts with an initial solution and then repeatedly applies a destruction phase dis-
solving part of the solution, followed by a construction phase that completes the solution again, until
a termination criterion is reached. The initial solution is usually obtained by applying a construction
heuristic. The destruction phase removes randomly selected components from the incumbent solution,
that are then reinserted by a greedy reconstruction method in the construction phase. Afterwards, an ac-
ceptance criterion is evaluated to determine whether the newly generated solution replaces the incumbent
solution. Frequently, a local search algorithm is applied to the initial solution and after the construction
phase to further boost the performance. In the following sections we discuss the components of the
proposed IG.

3.1 Initial Solution

The initial solution is computed using TWCH from [8]. This construction heuristic acts in two phases,
first assigning all DTs to days (day assignment) and afterwards determining the actual starting times of
the DTs (time assignment).

In the day assignment phase therapies are processed in the order of the latest possible starting day
of their first DT. For each selected therapy the corresponding DTs are then allocated sequentially to
days, starting with the first DT. For each considered DT, all feasible days between the earliest and
latest starting day w.r.t. the constraints imposed by the DT’s predecessors are evaluated. The DT is then
assigned to the candidate day minimizing on the one hand the expected use of extended service windows
for the current and all subsequent DTs and on the other hand the finishing day of the last DT.

Barcelona, July 4-7, 2017

80–4 MIC/MAEB 2017

Input: A day d and a permutation π of set Gd of DTs
1 Cr ←W start

r,d ∀r ∈ R, d ∈ Dres
r ;

2 for (t, u)← π(1), . . . , π(|Gd|) do
3 St,u ← maxr∈Qt,u(Cr − P start

t,u,r);
4 while ∃r ∈ Qt,u ∧ ∃W r,d,w ∈W r,d : [St,u + P start

t,u,r , St,u + P end
t,u,r) ∩W r,d,w 6= ∅ do

5 St,u :=W
end
r,d,w − P start

t,u,r ;
6 end
7 Cr ← St,u + P end

t,u,r ∀r ∈ Qt,u;
8 end

Algorithm 1: Time assignment of a given permutation of DTs.

In the time assignment phase the scheduling of the DTs is done for each working day independently.
For a particular working day always the DT with the highest priority is planned as early as possible until
all DTs have been considered. The priority of the DTs is determined by a lexicographic combination of
three criteria that consider the idle time that emerges on the beam resource, the earliest end of a regular
service window from a required resource, and the ratio between the time the beam is required and the
total processing time of the respective DT.

3.2 Local Search

The design of the neighborhood used within the IG’s local search component depends on several factors.
As real world instances are expected to be quite large, the main challenge is to find neighborhoods that
can be searched rather fast, still allowing to complete a reasonable number of iterations of the IG, while
improving the solution significantly in most cases. To achieve this, we restrict ourselves to a local search
method that is only able to modify the starting times of DTs, i.e., the day assignment is considered to
be fixed. Hence, we are only able to improve on the objective function term that considers the use of
extended service windows. A further consequence of this restriction is that the working days become
independent, which allows us to define the neighborhood and perform the local search for each day in a
separate fashion.

In our scenario the DTs are heterogeneous regarding their time and resource requirements. Thus,
moving DTs or exchanging the starting times of two DTs in a tightly scheduled day will lead in most
cases to an infeasible solution. However, we can exploit the fact that each DT requires the beam resource
exactly once to define a unique sequence of the DTs scheduled on a particular day. Let Gd = {(t, u) |
t ∈ T, u ∈ Ut, Zt,u = d} be the set of DTs assigned to day d ∈ D′. We use as solution encoding the
permutation π of Gd that is defined by sorting the DTs (t, u) ∈ Gd in ascending order of the times from
which on they use the beam B, i.e., according to St,u+P start

t,u,B. On such permutations we are able to apply
classical moves. To evaluate the objective function we have to decode a permutation of DTs to obtain an
actual time assignment. Algorithm 1 shows this decoding for a given set of DTs Gd and a corresponding
permutation π for a working day d ∈ D′. The procedure starts by initializing the time marker Cr to the
earliest time a resource r becomes available. In the main loop each DT in Gd is assigned in the order of
π to the earliest possible start time at which all resources are available. First, at Line 3 the start time St,u
is set to the earliest time at which no required resource is used before the corresponding time marker. At
this time, the considered DT might still overlap with unavailability periods. If this is the case, the DT
is delayed in the inner while loop until all required resources become available. At Line 7 the Cr time
markers are set to the times when the corresponding resources become free after the just scheduled DT.

The DT exchange neighborhood is defined for a day d on a permutation π of DTs by considering all
pairs of DTs π(i) and π(j), where i, j ∈ {1, . . . , |Gd|} and i < j. A move in this neighborhood results
in a new permutation π(1), . . . , π(i− 1), π(j), π(i+ 1), . . . , π(j − 1), π(i), π(j + 1), . . . , π(|Gd|) and
is accepted if the decoded time assignment has a better objective value.

To accelerate the local search procedure we restrict the DT exchange neighborhood to the most

Barcelona, July 4-7, 2017

MIC/MAEB 2017 80–5

Input: A solution (Z, S)
1 select a set T ′ of βig-dest · nT random therapies and remove their day and time assignments;
2 apply TWCH’s day assignment for the set of removed therapies;
3 foreach d ∈ D do
4 Gd ← {(t, u) | t ∈ T \ T ′, u ∈ Ut, Zt,u = d};
5 G′

d ← {(t, u) | t ∈ T ′, u ∈ Ut, Zt,u = d};
6 foreach (t, u) ∈ G′

d do
7 let π be the permutation of Gd resulting by sorting the elements according to St,u+P start

t,u,B;
8 best obj←∞; best MS←∞; π′best ← ();
9 for i← 1 to |Gd|+ 1 do

10 π′ ← (π(1), . . . , π(i− 1), (t, u), π(i), . . . , π(|Gd|));
11 schedule π′ with Algorithm 1;
12 obj← objective value of the current partial solution;
13 MS← makespan of current day d;
14 if obj < best obj ∨ (obj = best obj ∧MS < best MS) then
15 best obj← obj; best MS← MS; π′best ← π′;
16 end
17 end
18 schedule π′best with Algorithm 1;
19 Gd ← Gd ∪ {(t, u)};
20 end
21 end

Algorithm 2: Destruction and construction phases.

promising moves. That is, a move is only evaluated if both considered DTs are either adjacent in se-
quence π or it is likely that an exchange produces a tighter scheduled day. The latter criterion is based
on the observation that scheduling two DTs requiring the same treatment room consecutively induces
substantial idle time on the beam resource. Hence, we count how many adjacent DTs of π(i) and π(j)
are requiring the same room as π(i) and π(j), respectively. A move is only considered further if this
number does not increase with the exchange.

3.3 Destruction and Construction

The destruction and construction phase of the IG from Maschler et al. [8] consists of removing the DTs
of randomly selected therapies from the schedule, followed by applying TWCH’s day assignment for the
removed therapies and solving TWCH’s time assignment from scratch. However, w.r.t. the local search
algorithm from Section 3.2 discarding the whole time assignment during destruction and construction
is disadvantageous since no parts of the old time assignment of an affected day are transferred to the
new one. We overcome this drawback by replacing TWCH’s day assignment with an insertion heuristic
which preserves the sequence of unchanged DTs and inserts the removed ones in a greedy fashion. Note
that this insertion heuristic is conceptually similar to the NEH algorithm of Nawaz et al. [9].

Algorithm 2 shows the used destruction and construction phase in detail. It starts by invalidating
the day and time assignment of βig-dest · nT randomly selected therapies, where βig-dest ∈ (0, 1] is the
destruction rate. Afterwards, TWCH’s day assignment is applied to reassign the DTs from the removed
therapies to potentially new days. The insertion heuristic for the time assignment is defined in the foreach
loop at Line 3 and is applied for each working day. The heuristic starts by initializing Gd to the set
of DTs that have been assigned to day d and which have not been removed by the destruction phase.
Analogously, G′

d is defined as the set containing all DTs assigned to day d that have been removed and
for which a new starting time has to be found. Since all DTs in Gd have valid start times, we can define
a unique permutation π by sorting the DTs according to the time they first require the beam resource. In
each step a not yet considered random DT fromG′

d is inserted at all possible positions of the permutation

Barcelona, July 4-7, 2017

80–6 MIC/MAEB 2017

π and scheduled using Algorithm 1. All of these |Gd| + 1 partial time assignments are compared and
finally the best one is kept. To this end a permutation is considered better if the objective value is smaller
(i.e., the permutation uses less extended time). In case of a tie we prefer the option with the smaller
makespan. The rationale behind the latter criterion is that in particular after destruction many insertion
points allow scheduling the sequence without use of extended service windows. Preferring a smaller
makespan typically results in a tighter packed schedule and hopefully retains better options for the still
to be inserted DTs.

4 Computational Study

We perform in this section an experimental evaluation and comparison of the proposed enhanced IG
approach, which we call from here on EIG, with the IG from Maschler et al. [8], denoted as IG-LI, and
IG-LS, the variant that uses the destruction and construction phase from [8] combined with the local
search method from Section 3.2, on a set of new benchmark instances. Note that there is an additional
variant in which the used local search method of EIG is replaced with the local improvement operator
from [8]. We exclude this variant from further considerations because the local improvement operator
ignores the time assignment provided by the construction phase and, hence, it is in practice equivalent to
IG-LI.

The used artificial benchmark instances are related to the expected situation at MedAustron and
are available at http://www.ac.tuwien.ac.at/research/problem-instances. The in-
stances’ main characteristic is the number of therapies nT . From this number we derive the length of
the planning horizon and generate therapies that have to start in a window of 14 days. The instances are
designed in such a way that after a ramp-up phase of a few weeks the facility is used at full capacity
followed by a wind-down phase near the end of the planning horizon. For more details on the instance
generation see [8]. We consider instances with 50, 70, 100, 150, 200, and 300 therapies. The used
naming schema encodes first the number of therapies followed by a consecutive number. Note that we
generated new instances for the experiments discussed here for two reasons. On the one hand, [8] consid-
ered DTs composed of activities associated with minimum and maximum time lags. However, as already
mentioned this feature is not really considered relevant in our real world midterm planning application.
On the other hand, many of the instances from [8] had rather unrealistically strict constraints concerning
the starting days of therapies, which made an extensive amount of extended time unavoidable.

All algorithms have been implemented in C++11 and compiled with G++ 4.8.4, and all experiments
were carried out using a single core of an Intel Xeon E5540 processor with 2.53 GHz. In a preliminary
study we observed for the local search method that a next improvement strategy converges, in general,
significantly faster than a best improvement strategy, while yielding similarly good solutions. Moreover,
we tested the impact of randomizing the order in which the local search examines the neighboring solu-
tions. It turned out that this randomization yields small improvements on almost all instances that are,
however, still in the magnitude of the standard deviation. From a theoretical point of view, the random-
ization of the order of the considered moves removes a bias towards exchanges at the beginning of days.
Therefore, we applied this randomization in the following experiments. Moreover, empirical investiga-
tions have shown that the restrictions of the neighborhood exclude promising moves only in rare cases.
We adopt the acceptance criterion and the termination condition from [8]: The incumbent solution is
replaced by a current new solution iff the latter has a smaller objective value, and the total CPU-time is
limited to 20 minutes, respectively.

The metaheuristics’ strategy parameters were tuned using the automatic parameter configuration tool
irace [7] in version 2.1. In detail, irace was applied separately on each instance size to tune βig-dest

for EIG and IG-LS and the parameters βig-dest, nrta-noimp, and krta-rand for IG-LI. On this account, we
generated for each instance size five independent instances for tuning. Moreover, each irace run had a
computational budget of 1000 experiments. The resulting parameter configurations are shown in Table 1.

Table 2 depicts for IG-LI, IG-LS, and EIG averages of the final objective values obj and the cor-
responding standard deviation σ(obj) over 30 runs for each of the 30 benchmark instances. We start

Barcelona, July 4-7, 2017

http://www.ac.tuwien.ac.at/research/problem-instances

MIC/MAEB 2017 80–7

Instance size IG-LI IG-LS EIG

nT βig-dest nrta-noimp krta-rand βig-dest βig-dest

50 0.2 b2.25 · |Gd|c 2 0.092 0.068
70 0.08 b1.50 · |Gd|c 2 0.15 0.05
100 0.055 b1.86 · |Gd|c 2 0.06 0.039
150 0.08 b1.70 · |Gd|c 2 0.106 0.026
200 0.069 b1.34 · |Gd|c 2 0.056 0.022
300 0.149 b2.43 · |Gd|c 2 0.189 0.023

Table 1: Parameter settings for IG-LI, IG-LS, and EIG determined by irace.

Instance IG-LI IG-LS EIG

obj σ(obj) obj σ(obj) obj σ(obj)

050-01 7.512 1.179 8.945 1.953 4.432 1.338
050-02 43.618 2.297 50.768 4.082 40.609 4.003
050-03 47.355 3.373 49.522 6.438 40.100 4.523
050-04 22.263 1.520 21.224 1.828 22.536 3.136
050-05 46.567 2.978 45.528 2.631 50.105 5.589
070-01 26.563 3.814 33.289 2.998 19.442 3.187
070-02 38.545 3.958 40.184 3.390 36.304 5.476
070-03 58.569 3.720 63.721 2.517 66.849 3.316
070-04 10.615 2.566 12.764 2.655 9.144 2.042
070-05 44.101 2.815 46.606 2.236 42.100 4.075
100-01 20.210 1.477 17.861 1.328 10.840 0.858
100-02 36.819 3.368 30.992 3.035 14.282 1.993
100-03 12.045 1.321 10.363 1.039 8.143 0.376
100-04 21.236 2.374 19.848 2.308 12.512 1.333
100-05 33.870 2.126 27.253 1.924 11.746 1.610
150-01 25.287 2.038 27.731 2.306 18.188 1.662
150-02 102.486 3.085 77.613 4.166 46.879 3.156
150-03 36.246 2.972 41.840 3.398 29.723 2.955
150-04 25.392 2.803 26.329 2.994 17.656 1.864
150-05 34.176 2.026 34.139 2.752 22.096 3.504
200-01 62.931 4.031 54.072 5.134 46.174 4.046
200-02 62.335 4.685 60.310 3.283 34.189 2.393
200-03 35.798 3.109 36.137 3.163 28.734 2.829
200-04 51.805 3.876 49.700 3.302 28.990 2.581
200-05 40.434 2.669 40.231 3.207 28.621 2.161
300-01 23.368 1.905 26.646 2.240 23.312 2.965
300-02 93.680 3.613 99.561 4.988 56.730 4.381
300-03 36.127 3.920 40.530 3.472 39.223 4.111
300-04 106.270 4.870 114.920 5.685 103.399 6.813
300-05 20.208 1.460 21.607 1.319 17.484 1.750

Table 2: Average objective values obj of 30 runs and corresponding standard deviations σ(obj) for IG-LI,
IG-LS, and EIG.

Barcelona, July 4-7, 2017

80–8 MIC/MAEB 2017

by comparing IG-LI with IG-LS. The average objective values of IG-LI are on 17 benchmark instances
smaller compared to IG-LS. On most instances the absolute differences between the objective values are
still in the range of the standard deviation. For this reason we applied a Wilcoxon rank sum test with
a significance level of 95% for each instance. It turned out that IG-LI performed significantly better
compared to IG-LS on all instances with 70 and 300 therapies and on two instances with 50 and 150
therapies, respectively. IG-LS has significantly better results on all instances with 100 therapies, on one
with 50 and 150 therapies, respectively, and on two instances with 200 therapies. Thus, although IG-LI
shows better results than IG-LS on slightly more instances, no significant overall performance difference
can be observed among these two approaches. This indicates that exchanging just the local improve-
ment operator of the IG-LI with the local search component described in Section 3.2 does not yield a
substantial improvement.

Most importantly, however, Table 2 clearly shows that EIG dominates the two other metaheuristics,
and provides the best average objective values on 26 out of 30 benchmark instances. According to a
Wilcoxon rank sum tests with a significance level of 95%, EIG is better than IG-LI on 25 instances
and better than IG-LS on 26 instances. Moreover, on 16 instances the average objective values of EIG
are 25% smaller compared to those of IG-LI, and on three instances the average objective values are
halved compared to the ones from IG-LI. The main reason for this performance improvement is the
interplay between EIG’s construction phase and local search procedure. On the one hand, the local
search operator is, in general, able to provide better results than IG-LI’s local improvement operator.
However, encoding, decoding, and evaluating the solution is computationally demanding and, hence,
converging to a local optimum is time consuming, especially on strongly perturbed solutions. On the
other hand, EIG’s construction phase is designed in such a way that large parts of the sequence of the
DTs are preserved while introducing the removed DTs in a sensible but randomized way. Starting with
a solution close to a local optimum w.r.t. the DT exchange neighborhood allows to reduce the time spent
in the local search procedure and, consequently, increases the total number of iterations.

The impact of EIG’s construction phase is also implicitly reflected in the parameter configurations
determined by irace. IG-LS’ local search starts each iteration with a new time assignment produced
by TWCH’s time assignment from scratch. Due to the many steps required to reach a locally optimal
solution it makes sense to use a rater high destruction rate to cover a larger part of the search space within
the time limit. With the new destruction and construction phase, however, the situation changes, because
now there is an immediate correspondence between the destruction rate and the time required to reach a
locally optimal solution and with it the number of total iterations. Here, the destruction is able to either
focus or broaden the exploration of the search space.

5 Conclusion

In this paper, we presented an IG metaheuristic for the PTPSP that enhances the IG from our previous
work [8]. In contrast to the latter, the presented approach aims at preserving the order of the not removed
DTs on the individual days. The resulting advantage is that more information from the incumbent solu-
tion is maintained. Compared to our previous IG and a variant of the previous IG that uses the presented
local search procedure our new IG metaheuristic provides significantly better results on 25 and 26 out of
30 benchmark instances, respectively. The superiority of the enhanced approach over the other two can
be explained by the interplay between its construction phase and the applied local search technique: The
local search method yields, in general, better results than applying TWCH’s time assignment randomized
for many times. However, due to the required encoding and decoding steps, evaluating neighbors is time
consuming. Hence, to ensure that the metaheuristic is able to perform sufficiently many iterations it is
required that the neighborhood requires on average only a few steps until it reaches a local optimum. To
this end, we apply in the construction phase an insertion heuristic that iteratively places the removed DTs
into the permutation resulting from sorting the DTs according to the times at which they use the beam.

PTPSP, as described here, is only a simplified variant of the midterm planning part arising in practice.
In particular, therapies are restricted here to consist only of DTs. In the general case, however, there is a

Barcelona, July 4-7, 2017

MIC/MAEB 2017 80–9

treatment planning phase preceding all DTs in which the DTs are prepared. Since other constraints have
to be enforced for these tasks, they cannot be modeled as DTs. Moreover, there are control examinations
that have to be provided once a week before or after one of the DTs. In addition, the DTs of a therapy
should be planned roughly at the same time on each treatment day to provide a consistent experience for
the patients. This soft constraint has several implications: The working days considered during the time
assignment are not independent anymore. Furthermore, the strategy applied here to schedule the DTs
as early as possible might lead to suboptimal solutions. The reason for this is that delaying a DT can
improve the objective value, especially if there is still unused time in the regular service windows left.

We use in this work an acceptance criterion that accepts a current solution if it has a better objec-
tive value. An obvious next step is to also consider acceptance criteria that allow to select suboptimal
solutions, e.g., in an simulated annealing like fashion (see [15]). Moreover, the proposed local search
procedure exchanges the DTs only within days. Neighborhoods that can alter the days on which a ther-
apy is applied seem promising. The main challenge here is to design and restrict the neighborhoods s.t.
the resulting local search method is still fast enough to allow a sufficiently large number of IG iterations.

References

[1] E. K. Burke, P. L. Rocha, and S. Petrovic. An integer linear programming model for the radiother-
apy treatment scheduling problem. CoRR, abs/1103.3391, 2011.

[2] D. Conforti, F. Guerriero, and R. Guido. Optimization models for radiotherapy patient scheduling.
4OR, 6(3):263–278, 2008.

[3] S. Hartmann and D. Briskorn. A survey of variants and extensions of the resource-constrained
project scheduling problem. European Journal of Operational Research, 207(1):1 – 14, 2010.

[4] L. W. Jacobs and M. J. Brusco. A local-search heuristic for large set-covering problems. Naval
Research Logistics, 42(7):1129–1140, 1995.

[5] T. Kapamara and D. Petrovic. A heuristics and steepest hill climbing method to scheduling radio-
therapy patients. In Proceedings of the International Conference on Operational Research Applied
to Health Services (ORAHS), Leuven, Belgium, 2009. Catholic University of Leuven.

[6] T. Kapamara, K. Sheibani, O. Haas, D. Petrovic, and C. Reeves. A review of scheduling problems in
radiotherapy. In Proceedings of the International Control Systems Engineering Conference (ICSE),
pages 207–211, Coventry, UK, 2006. Coventry University Publishing.

[7] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and T. Stützle. The irace package:
Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 3:43–58,
2016.

[8] J. Maschler, M. Riedler, M. Stock, and G. R. Raidl. Particle therapy patient scheduling: First
heuristic approaches. In Proceedings of the 11th International Conference on the Practice and
Theory of Automated Timetabling, pages 223–244, Udine, Italy, 2016.

[9] M. Nawaz, E. E. Enscore, and I. Ham. A heuristic algorithm for the m-machine, n-job flow-shop
sequencing problem. Omega, 11(1):91–95, 1983.

[10] D. Petrovic, M. Morshed, and S. Petrovic. Genetic algorithm based scheduling of radiotherapy
treatments for cancer patients. Proceedings of the Conference on Artificial Intelligence in Medicine
(AIME), 5651:101–105, 2009.

[11] D. Petrovic, M. Morshed, and S. Petrovic. Multi-objective genetic algorithms for scheduling
of radiotherapy treatments for categorised cancer patients. Expert Systems with Applications,
38(6):6994–7002, 2011.

Barcelona, July 4-7, 2017

80–10 MIC/MAEB 2017

[12] S. Petrovic and P. Leite-Rocha. Constructive and GRASP approaches to radiotherapy treatment
scheduling. In Advances in Electrical and Electronics Engineering - IAENG Special Edition of the
World Congress on Engineering and Computer Science 2008, pages 192–200. IEEE, 2008.

[13] S. Petrovic, W. Leung, X. Song, and S. Sundar. Algorithms for radiotherapy treatment booking.
In 25th Workshop of the UK Planning and Scheduling Special Interest Group, pages 105–112,
Nottingham, UK, 2006.

[14] M.-C. Riff, J. P. Cares, and B. Neveu. Rason: A new approach to the scheduling radiotherapy
problem that considers the current waiting times. Expert Systems with Applications, 64:287–295,
2016.

[15] R. Ruiz and T. Stützle. A simple and effective iterated greedy algorithm for the permutation flow-
shop scheduling problem. European Journal of Operational Research, 177(3):2033–2049, 2007.

Barcelona, July 4-7, 2017

	Introduction
	Problem Definition
	Iterated Greedy Approach
	Initial Solution
	Local Search
	Destruction and Construction

	Computational Study
	Conclusion

