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Abstract The Particle Therapy Patient Scheduling Problem arises in radio-
therapy used for cancer treatment. Previous contributions in the existing lit-
erature primarily dealt with photon and electron therapy with a one-to-one
correspondence of treatment rooms and accelerators. In particle therapy, how-
ever, a single accelerator serves multiple rooms in an interleaved way. This
leads to a novel scenario in which the main challenge is to utilize the particle
beam as well as possible. Switching between rooms allows to reduce idle time
of the beam that emerges as a consequence of preparation steps.

In this work we present first algorithms for solving this problem. In partic-
ular, we address the midterm planning variant which involves a time horizon
of a few months but also requires detailed scheduling within each day. We
formalize the problem via a mixed integer linear programming model, which,
however, turns out to be intractable in practice. Consequently, we start with
a construction heuristic featuring a forward-looking mechanism. Based upon
this fast method we further study a Greedy Randomized Adaptive Search
Procedure as well as an Iterated Greedy metaheuristic. A computational com-
parison of these algorithms is performed on benchmark instances created in a
way to reflect the most important aspects of a real-world scenario.
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1 Introduction

The number of new cancer cases in 2012 amounted to about 14.1 Million
worldwide (not including skin cancer other than melanoma). In the same year
cancer caused about 14.6% of all human deaths [21], making it one of the ten
most common causes of death [22]. Accordingly, a serious amount of research
and investments has been contributed to provide and develop treatments. In
2010 the costs of cancer have been estimated at around USD 1.16 trillion per
year [21]. A widely applied treatment option is radiotherapy. Usually linear
accelerators (LINACs) are used to provide treatment in conventional external
beam therapy (electron or photon therapy). More recently the option to treat
with particle beams (like protons or carbons) has shown promising results
and the number of patients treated worldwide increases rapidly. Nevertheless,
the investment costs of such centers is high compared to conventional centers.
It is therefore especially important to utilize available resources for particle
therapy centers as efficiently as possible and to maximize the number of treated
patients over time.

In typical photon and electron radiotherapy it is common that a single
LINAC serves a dedicated room exclusively. In contrast to LINACs, particle
beams are produced by either cyclotrons or synchrotrons which can serve two
to five treatment rooms sequentially. Therefore, in particle therapy the beam
can be considered as the bottleneck. Due to the time required to prepare pa-
tients in one room until their irradiation starts and the time needed until other
patients exit the room after irradiations, undesirable idle times on the beam
emerge. We consider here more specifically the radiotherapy treatment cen-
ter MedAustron1 located in Wiener Neustadt, Austria. This emerging facility
is currently one of the most modern of its kind. In Wiener Neustadt proton
and carbon beams are being produced by a synchrotron serving four different
rooms, three of which are used for treatment. For every treatment preparation
of the patient is necessary. To avoid undesirable idle times this preparation is
performed in parallel in all available rooms. This helps to increase the treat-
ment throughput. However, accomplishing this goal is far from trivial and
requires elaborate scheduling techniques. The tasks executed in the context of
irradiation need to be arranged in the most efficient manner while respecting
several particular side-constraints and resource dependencies.

We consider here a first, simplified problem formulation for addressing
the midterm planning part of the Particle Therapy Patient Scheduling Prob-
lem (PTPSP), in which an effective plan has to be found for performing a
larger number of therapies over the next few months. A particle therapy at
MedAustron will typically involve from 8 up to 35 treatments provided on
subsequent days. We refer to them as daily treatments (DTs). Each therapy is
specified by an earliest as well as a latest day at which it can be started. The
number of DTs provided each week needs to stay within a lower and an up-
per bound. Similarly, the number of days that passes between two consecutive

1 http://www.medaustron.at/

http://www.medaustron.at/
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treatments is also restricted. Between two weeks each patient requires a break
of at least two days. Each DT involves several steps such as the preparation,
the actual irradiation, and the follow-up. We refer to these individual steps as
activities. A DT consists of either five or seven activities depending on whether
sedation of the patient is required. All activities belonging to the same DT are
executed consecutively. Activities have associated (expected) processing times.
Additionally, lower and upper time limits on the duration from the end of an
activity to the start of some following activities may be given. Moreover, ac-
tivities require for their execution several resources (e.g., particle beam, room,
oncologist, anesthetist). Each resource has a regular availability period on each
day it can be used. Beyond each regular availability period, a resource can be
used for a not further restricted extended time at additional costs. Generally,
all resources might be unavailable for smaller time intervals specified by a list
of unavailability periods.

The objective we consider in this work is to schedule a given set of therapies
s.t. all operational constraints are fulfilled, costs for used extended times of
resources are minimized, and all treatments are finished as soon as possible.

1.1 Our contribution

After giving an overview on related work in the next section, we formally
define the problem in Section 3 by means of a Mixed Integer Linear Pro-
gramming (MILP) model. This model, however, is intractable in practice, and
consequently we consider heuristics. Section 4 proposes a therapy-wise con-
struction heuristic based on greedy principles and featuring a forward-looking
mechanism to avoid too naive decisions. In Section 5 we further build upon
this construction heuristic, proposing a Greedy Randomized Adaptive Search
Procedure (GRASP) and an Iterated Greedy (IG) metaheuristic. Computa-
tional results are presented in Section 6. While the construction heuristic on
its own already produces reasonable solutions, the IG method yields substan-
tially better results, also outperforms GRASP, and scales well to instances of
practically relevant size. Section 7 concludes this work with remarks on future
work.

2 Related Work

Compared to other scheduling problems there is not much material available
on radiotherapy scheduling. A first attempt at automating this task has been
made in 1993 by Larsson [9]. Then, for more than a decade no further contribu-
tions appeared. In 2006 interest in the topic grew again starting with the works
of Kapamara et al. [8] and Petrovic et al. [17]. Afterwards, several heuristic
as well as exact approaches followed. Heuristic techniques reach from GRASP
[16] and steepest hill climbing methods [7] to more advanced techniques using
Genetic Algorithms (GAs) [14,15]. Exact approaches consider different levels
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of granularity and rely on MILP models [3,4,5,2]. Additionally, there are two
theses available dealing with the topic [13,11].

The latest contributions focus on dynamic scenarios. Sauré et al. [20] con-
sider a discounted infinite-horizon Markov decision process and solve it via
Linear Programming with Column Generation to identify good policies for
allocating available treatment capacity to incoming demand. Legrain et al.
[10] introduce a hybrid method combining stochastic optimization and online
optimization to determine better planning strategies. They also consider in-
formation on the future arrivals of patients to better estimate the expected
resource utilization.

All the references mentioned above consider a coarse scheduling scenario,
i.e., they only assign treatments to days, but do not deal with sequencing
within a day. This is due to the fact that the addressed practical applications
feature radiotherapy with photons or electrons2. In these scenarios multiple
LINACs are available, but for each of them only sequential processing is pos-
sible. Thus, the main issue is to assign treatments to appropriate machines.
Therefore, there is no immediate need for fine grained scheduling in these sce-
narios. The application we consider substantially differs in this respect since
the availability of just a single accelerator whose beam can be directed to only
one room at a time demands much more detailed planning to reach maximum
throughput. Moreover, in the more widely applied photon and electron ra-
diotherapy it is common to have long waiting lists associated with priorities
determined by oncologists and algorithms need to select from that list when
inserting new patients. In our scenario this is not required since the accepted
patients must always be determined by physicians.

The Resource-Constrained Project Scheduling Problem (RCPSP) is a vast
research area with many variants [6]. In principle the PTPSP can be viewed as
highly specialized case of an RCPSP. To consider all our requirements we need
– in project scheduling terminology – release times and deadlines, minimum
and maximum time lags, disjunctive resources with availability varying over
time, and overflow periods; for an explanation of these aspects see [1]. Although
each of these facets has been addressed in the literature, to our best knowledge
no work exists considering all of them together. Moreover, project scheduling
focuses primarily on activities, i.e., there is no further level of granularity
comparable to DTs. Of course, our objective also differs significantly due to
the different domain. Research on the RCPSP can provide ideas for dealing
with certain aspects in radiotherapy patient scheduling, but unfortunately
none of the existing RCPSP variants is close enough to directly build upon it.

2 Men [13] considers proton therapy with a single particle beam and several rooms but
also schedules only on the coarse level, i.e., entire DTs and not individual activities.
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3 Problem Formalization

In the PTPSP a set of therapies T = {1, . . . , nT } needs to be scheduled on
consecutive days D = {1, . . . , nD} considering a set of renewable resources R =
{1, . . . , nR}.

Each therapy t ∈ T is associated with a set of DTs Ut = {1, . . . , τt},
and each DT u ∈ Ut is associated with a set of sequential activities At,u =
{1, . . . , αt,u}. For each therapy t ∈ T we are given a minimal number ntwmin

t

and a maximal number ntwmax
t of DTs that need to be performed per week,

as well as a minimal number δmin
t ≥ 1 and a maximal number δmax

t ≥ δmin
t

of days that must separate two consecutive DTs. For each DT u ∈ Ut, we are
further given earliest and latest starting days dmin

t,u , d
max
t,u ∈ D, respectively.

Each activity a ∈ At,u is associated with a processing time pt,u,a ≥ 0 and
requires a set of resources Qt,u,a ⊆ R for its execution. Note that for each DT,
its activities must be scheduled strictly sequentially in the given order, but not
necessarily without breaks in-between consecutive activities. Each activity is
non-preemptive. Moreover, a set of end-to-start (EtS) precedence constraints
Pmin
t,u ⊆ At,u ×At,u among activities of DTs u ∈ Ut with associated minimum

time lags Lmin
t,u,a,a′ ≥ 0 is given for each DT. One such constraint enforces that

activity a fully precedes activity a′ and the starting time of activity a′ and the
ending time of activity a differ at least by Lmin

t,u,a,a′ . Correspondingly, there is
also a set Pmax

t,u ⊆ At,u ×At,u among activities of DTs u ∈ Ut with associated
maximum time lags Lmax

t,u,a,a′ ≥ 0 given for each DT.
Let D′ ⊆ D denote the subset of working days on which the treatment

center is actually open and DTs can be scheduled on. By V = {1, . . . , nV }
we refer to the set of weeks w.r.t. the considered planning horizon, and let⋃
v∈V D

′
v be the partitioning of D′ into nV subsets corresponding to the nV

weeks. For d ∈ D′, let W̃d = [W̃ start
d , W̃ end

d ) be the fundamental opening time,
i.e., the time window in which any activity must be scheduled – including
enough practically unrestricted extended time outside of the regular business
hours.

Each resource r ∈ R is available on a subset Dres
r ⊆ D′ of the working days.

On each of these days a resource is associated with a single regular service
window (time interval) Wr,d = [W start

r,d ,W end
r,d ] ⊆ W̃d where W start

r,d ≤W end
r,d are

the start and end times, respectively, and an immediately following extended
service window Ŵr,d = [W end

r,d , W̃d] ⊆ W̃d running until the end of the day’s
fundamental opening time. Furthermore, for each resource r ∈ R and each
day d ∈ Dres

r , we are given unavailability periods W r,d =
⋃
w=1,...,ωr,d

W r,d,w

with W r,d,w = [W
start

r,d,w,W
end

r,d,w] ⊂ Wr,d ∪ Ŵr,d, w = 1, . . . , ωr,d, where W
start

r,d,w

and W
end

r,d,w denote the start and end times of the w-th unavailability period.
All these periods are assumed to be non-overlapping, and sorted according to
increasing time.

A solution to the PTPSP is a tuple (Z, S), with Z = {Zt,u ∈ D :
t ∈ T, u ∈ Ut} denoting the days at which the DTs are scheduled and
S = {St,u,a ≥ 0 : t ∈ T, u ∈ Ut, a ∈ At,u} denoting the starting times
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of the DT’s individual activities at the respective days. Such a solution is fea-
sible if all domain restrictions, resource availabilities, precedence relations, lag
constraints, and the remaining operational constraints are respected.

A fundamental assumption is that it is in practice not difficult to find any
feasible solution – we expect “enough” extended time of all the resources to be
available. The background here is that once a patient is accepted for treatment
it is ensured by all possible means that his or her treatment will take place
according to all the defined requirements. What we aim for is to minimize the
required extended time over all resources R while finishing each treatment as
early as possible. These two goals are considered in a single objective function
by linearly combining corresponding terms using scalar weights γext and γfinish,
respectively.

In the following we give a formal definition of the PTPSP by providing
a MILP model. To this end, we first focus on the upper level of assigning
DTs to days, and only afterwards consider the assignment of times to the
individual activities by an extension. Note, however, that these two levels are
not independent.

3.1 Day Assignment

The MILP model for the day assignment uses binary variables xt,u,d that are
one if DT u of therapy t is to be performed on day d, i.e., Zt,u = d, and
zero otherwise, binary variables yt,v that are one if at least one of the DTs
of therapy t is provided in week v and zero otherwise, and variables ηr,d that
give the amount of extended time used from resource r on day d. The latter
clearly depends on the solution of the timing subproblems.

Here, at the day assignment level, we relax the specificities of the activity
timings and consider only aggregated resource consumptions for each DT as
well as the total resource availabilities on each day (both per resource). We
denote by qt,u,r =

∑
a∈{At,u:r∈Qt,u,a} pt,u,a the total time that DT u of therapy

t requires resource r. Let hr,d denote the aggregated regular availability of

resource r on day d and ĥr,d the available extended time, i.e., the total time

available on that day is hr,d + ĥr,d.

min γext
∑
r∈R

∑
d∈Dres

r

ηr,d +

γfinish
∑
t∈T

∑
d∈D′

dxt,τt,d − Z
earliest
t,τt

 (1)

s.t.
∑
d∈D′

dxt,u+1,d −
∑
d∈D′

dxt,u,d ≥ δmin
t ∀t ∈ T, ∀u ∈ Ut \ {τt} (2)

∑
d∈D′

dxt,u+1,d −
∑
d∈D′

dxt,u,d ≤ δmax
t ∀t ∈ T, ∀u ∈ Ut \ {τt} (3)

∑
d∈D′

v

∑
u∈Ut

xt,u,d ≥ min(ntwmin
t , |D′v |) ·

(yt,v + yt,v+1 − 1)

∀t ∈ T, ∀v ∈ V \ {nV } (4)
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∑
d∈D′

v

∑
u∈Ut

xt,u,d ≤ ntwmax
t yt,v ∀t ∈ T, ∀v ∈ V (5)

xt,u,d + xt,u,d′ ≤ 1 ∀t ∈ T, ∀v ∈ V \ {nV },
∀d, d′ ∈ D′ : d ∈ max{D′v},
d′ ∈ min{D′v+1}, d′ − d = 2

(6)

∑
t∈T

∑
u∈Ut

qt,u,rxt,u,d ≤ hr,d + ηr,d ∀r ∈ R, ∀d ∈ Dres
r (7)

∑
d∈D′

xt,u,d = 1 ∀t ∈ T, ∀u ∈ Ut (8)

xt,u,d ≤ yt,v ∀t ∈ T, ∀u ∈ Ut,
∀v ∈ V, ∀d ∈ D′v

(9)

xt,u,d = 0 ∀t ∈ T, ∀u ∈ Ut,

∀d ∈ D′ : d /∈ [dmin
t,u , d

max
t,u ]

(10)

0 ≤ ηr,d ≤ ĥr,d ∀r ∈ R, ∀d ∈ Dres
r (11)

xt,u,d ∈ {0, 1} ∀t ∈ T, ∀u ∈ Ut, ∀d ∈ D′ (12)

yt,v ∈ {0, 1} ∀t ∈ T, ∀v ∈ V (13)

Objective function (1) minimizes the use of extended time and prioritizes
early finishing days. The formula involves a bound on the earliest possible
finishing day:

Zearliest
t,τt

=

dmin
t,1 +

(⌈
τt

ntwmax
t

⌉
− 1
)

(7− ntwmax
t ) + (τt − 1) if δmin

t = 1

dmin
t,1 + (τt − 1)δmin

t otherwise.
(14)

We then only consider the number of days a treatment is finished later than
Zearliest
t,τt . Inequalities (2) enforce that all the DTs of a therapy t are scheduled in

the correct order and that the minimal number of required days δmin
t between

two consecutive DTs is adhered. Similarly, inequalities (3) take care that the
consecutive DTs of a therapy are scheduled no more than δmax

t days apart.
The following two sets of constraints ensure for each therapy that the number
of planned DTs stays within ntwmin

t and ntwmax
t per week, except for the last

week where the number might be lower. Inequalities (6) require that if on a
Saturday and on the following Monday DTs can be scheduled then treatments
of the same therapy may be scheduled on at most one of these days. This
guarantees the required break of at least two days between weeks3. Subsequent
inequalities (7) enforce that the amount of consumed resources does not exceed
the amount of available resources on any day. Equations (8) assure that each
DT is performed exactly once. Inequalities (9) link the x variables with the y
variables. The domains of the DTs’ days are restricted by (10), simply fixing
invalid assignments to zero. Inequalities (11) restrict the extended time that
might be used. (12) specifies the domain of the x variables and (13) that of
the y variables.

3 The facility is assumed to be always closed on Sundays.
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Again, be reminded that we relaxed all activity timing aspects in the above
model and so far only considered aggregated resource consumptions and avail-
abilities. Thus, this model on its own only provides a lower bound for the
optimal solution value for the whole PTPSP and day assignments that might
be useful in a heuristic context.

3.2 Time Assignment

Let us now extend the above model by exactly modeling also the time assign-
ments for the DT’s activities and calculating ηr,d respectively. We formulate
an individual set of additional constraints for each working day d ∈ D′. To
ease the notation, let U ′d = {(t, u) : t ∈ T, u ∈ Ut, xt,u,d = 1} be the set of
DTs and A′d = {(t, u, a) : (t, u) ∈ U ′d, a ∈ At,u} the set of activities that have
been assigned to day d. Moreover, we define SD

t,u,a,d to be the set of all (in-
tegral) feasible starting times on day d allowing the corresponding activity to
be executed without overlapping with one of the unavailability periods of its
required resources.

The extension is stated in terms of binary variables xt,u,a,k ∈ SDt,u,a,d that
are one if activity a ∈ At,u starts at time point k, i.e., St,u,a = k, and zero
otherwise.

For all d ∈ D′:∑
k∈SDt,u,a,d

xt,u,a,k = 1 ∀(t, u, a) ∈ A′d (15)

∑
k∈SDt,u,a,d

kxt,u,a,k + pt,u,a ≤
∑

k∈SDt,u,a+1,d

kxt,u,a+1,k′ ∀(t, u) ∈ U ′d, ∀a ∈ At,u \ {αt,u} (16)

∑
k∈SDt,u,a,d

kxt,u,a,k + pt,u,a + Lmin
t,u,a,a′ ≤

∑
k∈SD

t,u,a′,d

kxt,u,a′,k′ ∀(t, u) ∈ U ′d, ∀(a, a′) ∈ Pmin
t,u (17)

∑
k∈SDt,u,a,d

kxt,u,a,k + pt,u,a + Lmax
t,u,a,a′ ≥

∑
k∈SD

t,u,a′,d

kxt,u,a′,k′ ∀(t, u) ∈ U ′d, ∀(a, a′) ∈ Pmax
t,u (18)

∑
(t,u,a)∈A′

d:r∈Qt,u,a

∑
k∈[b−pt,u,a,b]
∩SDt,u,a,d

xt,u,a,k ≤ 1 ∀r ∈ R,

∀b ∈ (Wr,d ∪ Ŵr,d \W r,d) ∩ Z≥0

(19)

ηr,d ≥
∑

k∈SDt,u,a,d

(k xt,u,a,k + pt,u,a)−W end
r,d ∀r ∈ R, ∀(t, u, a) ∈ A′d : r ∈ Qt,u,a (20)

xt,u,a,k ∈ {0, 1} ∀(t, u, a) ∈ A′d, ∀k ∈ SDt,u,a,d (21)

Inequalities (15) ensure that each activity is scheduled at exactly one point
in time. Inequalities (16) guarantee that activities belonging to the same DT
are scheduled in the correct order. The next two sets of inequalities enforce the
minimum and maximum EtS time lags. Constraints (19) take care that the
amounts of consumed resources never exceed the amount of available resources.
Finally, inequalities (20) are used to calculate ηr,d, the required extended times
of each resource r ∈ R, from the latest time it is in use by any activity.
Remember that the sum over all ηr,d appears in the objective function (1) and
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is to be minimized. The domains of the starting times xt,u,a,k of the activities
are given in (21).

While we will see practical results for the MILP model of the day assign-
ment relaxation (1)–(13), the time assignment extension was provided here
only to specify the PTPSP in an exact way. Experiments very soon indicated
that already solving the day assignment relaxation is computationally chal-
lenging. Solving the whole MILP model including the time assignments is
clearly out of reach for the instances of practically relevant size. This would
even hold already for a very crude time discretization. We will therefore focus
on heuristic methods in this work.

4 Therapy-Wise Construction Heuristic

As a first, rather fast method to obtain a heuristic solution for PTPSP, we
propose the Therapy-Wise Construction Heuristic (TWCH) in the following.
It acts in two phases, first assigning all DTs to days and afterwards scheduling
the activities on each day. The heuristic follows simple greedy principles but
also uses a forward-looking mechanism to avoid getting trapped by making
obviously poor decisions.

4.1 Day Assignment Phase

The heuristic iteratively selects one yet unconsidered therapy and assigns days
to its DTs in a sequential manner. For each DT, all days are considered that
allow a feasible allocation of the DT’s activities w.r.t. aggregated resource
demands and still available capacities and also admit the scheduling of the
subsequent DTs at later days. A DT is then always assigned to the day with
the lowest estimated cost increase w.r.t. the objective function (1).

Algorithm 1 shows this procedure in detail. It starts with a set of therapies
T ′ to be scheduled, which initially corresponds to T , and an empty setGd, ∀d ∈
D′, which contains the DTs scheduled on each day d. In each iteration of the
while-loop a therapy t is selected and removed from T ′ according to a priority
value determined by function therapy priority. We will consider the calculation
of this priority value later. The DTs u ∈ Ut of the selected therapy t are then
processed sequentially in the for-loop from line 6 on.

For each DT a range of feasible days {dearliest, . . . , dlatest} is determined
first. This range is for all DTs at most {dmin

t,u , . . . , d
max
t,u }. For all DTs for which

the predecessor has been already assigned, i.e., all DTs except the first, the
range of possible days can be restricted further. Line 10 and line 12 exclude
days from the range that are either to close or too far from the predecessor.
Lines 11 and 13 exclude days staying in conflict with the requirement that
at least ntwmin

t and at most ntwmax
t DTs need to be provided per week. Each

working day in this range is then further evaluated in the inner for-loop from
line 15 on. Days at which at least one resource required by the DT is not
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1 Gd := ∅ ∀d ∈ D′;
2 while T ′ 6= ∅ do
3 t := arg maxt∈T ′ therapy priority(t); ties are broken randomly;
4 T ′ := T ′\{t};
5 dlast := −1; vlast := −1; ntw := 0;
6 for u := 1 to τt do
7 dbest := −1; bestCost :=∞;

8 dearliest := dmin
t,u ; dlatest := dmax

t,u ;

9 if u > 0 then
10 dearliest := max{dearliest, dlast + δmin

t };
11 if ntw = ntwmax

t then dearliest := max(dearliest,max{D′
vlast
}+ 1);

12 dlatest := min(dlatest, dlast + δmax
t );

13 if ntw < min(ntwmin
t , |D′

vlast
|) then

dlatest := min(dlatest,max{D′
vlast
});

14 end

15 foreach d ∈ {dearliest, . . . , dlatest} ∩D′ do
16 if ∃r ∈ R : qt,u,r +

∑
(t′,u′)∈Gd qt′,u′,r > hr,d + ĥr,d then continue;

17 lookaheadCost := lookahead(); continue if infeasible;
18 extCost :=

∑
r∈Qt,u,1∪···∪Qt,u,αt,u

(γext · (max(qt,u,r +∑
(t′,u′)∈Gd qt′,u′,r − hr,d, 0))−max(

∑
(t′,u′)∈Gd qt′,u′,r − hr,d, 0)));

19 finishCost := γfinish · (d− dearliest);
20 if lookaheadCost + extCost + finishCost < bestCost then
21 dbest := d;
22 bestCost := lookaheadCost + extCost + finishCost;

23 end

24 end

25 if dbest = −1 then infeasible;
26 let v ∈ V be the week index s.t. d ∈ D′v ;

27 if vlast = v then ntw := ntw + 1 ;

28 else vlast := v; ntw := 1 ;

29 dlast := dbest;
30 Gdbest := Gdbest ∪ {(t, u)};
31 end

32 end

Algorithm 1: TWCH DayAssignment(T ′)

available in enough quantity anymore are skipped by line 16. Variables hr,d
and ĥr,d denote here again the total available regular and extended time of
resource r on day d.

For each remaining day the cost of assigning u ∈ Ut to d are then esti-
mated by calculating the sum of the costs arising from using extended service
windows, a penalty cost for using later days and an estimation of the costs
for assigning all successive DTs u + 1, . . . , τt. The cost that originates from
a single DT w.r.t. resource availabilities is the time the DT’s activities use
from extended service windows as calculated at line 18. Line 19 computes how
much selecting a specific day delays the whole therapy in relation to the second
term of objective function (1). Line 30 finally assigns DT u to the day with
the lowest estimated cost, which is recorded in dbest.
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To estimate the costs for assigning the successive DTs u + 1, . . . , τt we
use a forward-looking mechanism that works almost analogously to the main
algorithm’s part from line 6 to line 29. The essential difference to Algorithm 1
is that in the lookahead we use for u + 1, . . . , τt the costs only from the first
feasible day instead of considering the costs of all feasible days. This can be
accomplished by omitting line 17 and terminating the for-loop from line 15 if
line 22 is reached. The lookahead returns either the cost of assigning the DTs
u+ 1, . . . , τt to their first possible days, respectively, or the result that for at
least one of the DTs no feasible day could be found. In the latter case we can
remove the considered day from further consideration.

The performance of Algorithm 1 depends to a large extent on the function
therapy priority. In preliminary tests we considered as this priority (a) the
number of DTs τt, (b) the latest starting day for the first DT −dmax

t,1 (with
negative sign to give a DT with an earlier day higher priority), and (c) the first
DT’s total time required over all resources

∑
a∈At,1 pt,u,a · |Qt,u,a|, breaking

ties randomly. With respect to our benchmark instances, see Section 6, our
experiments clearly show that (b), the latest starting day for the first DT
−dmax

t,1 , provides the best guidance for the heuristic. It appears reasonable that
therapies having less flexibility w.r.t. their start should be given higher priority.
Consequently, we will use this function in all our further investigations.

4.2 Time Assignment Phase

In the time assignment phase the planning for each working day is done in-
dependently. For a considered day d ∈ D′, the heuristic selects a not yet
scheduled DT from Gd and sets the start times of its corresponding activities
as early as possible respecting their sequential order, the availabilities of all
required resources, and the minimum and maximum time lags.

Algorithm 2 shows this procedure in detail. The input is the considered
day and its set of DTs Gd as computed by Algorithm 1. For each resource
r available on day d, a time marker Cr is initialized with the start of the
service window. This variable in general refers to the most recent point in time
resource r has been used. All not yet scheduled activities requiring resource r
will be assigned a start time of at least Cr. In each iteration of the while-loop
from line 2 on, a DT u ∈ Ut is selected and removed from Gd according to a
priority function DT priority.

In the for-loop from line 5 on, the start time of each activity a ∈ At,u is set
to the earliest time at which all required resources are available and a place-
ment of the corresponding activity also does not violate any other constraint.
To this end, we first set St,u,a to the minimum time where all required resources
are available, i.e., to maxr∈Qt,u,a Cr. At this point unavailability periods and
the end of extended service window may not allow a placement of activity a
at St,u,a. Hence, we call the function resource availability that checks if from
St,u,a on all resources in Qt,u,a are available for a duration of at least pt,u,a.
If this is the case, St,u,a is returned, otherwise the earliest point in time after
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1 Cr := W start
r,d ∀r ∈ R : d ∈ Dres

r ;

2 while Gd 6= ∅ do
3 Ut,u := arg max(t,u)∈Gd DT priority(t, u); ties are broken randomly;

4 Gd := Gd \ {(t, u)};
5 for a := 1 to αt,u do
6 St,u,a := maxr∈Qt,u,a Cr;

7 St,u,a := resource availability(t, u, a, St,u,a);

8 end
9 a := 1;

10 while a ≤ αt,u do
11 if a > 1 ∧ St,u,a < St,u,a−1 + pt,u,a−1 then
12 St,u,a := St,u,a−1 + pt,u,a−1;
13 St,u,a := resource availability(t, u, a, St,u,a);

14 end

15 for (a′, a) ∈ Pmin
t,u do

16 if St,u,a < St,u,a′ + pt,u,a′ + Lmin
t,u,a′,a then

17 St,u,a := St,u,a′ + pt,u,a′ + Lmin
t,u,a′,a;

18 St,u,a := resource availability(t, u, a, St,u,a);

19 end

20 end

21 amin := a;
22 for (a′, a) ∈ Pmax

t,u do

23 if St,u,a > St,u,a′ + pt,u,a′ + Lmax
t,u,a′,a then

24 St,u,a′ := St,u,a − pt,u,a′ − Lmax
t,u,a′,a;

25 St,u,a′ := resource availability(t, u, a, St,u,a);

26 amin := min(amin, a′);

27 end

28 end

29 if amin = a then a := a+ 1 ;

30 else a := amin ;

31 end
32 Cr := max(Cr, St,u,a + pt,u,a) ∀a = 1, . . . , αt,u, ∀r ∈ Qt,u,a;

33 end

Algorithm 2: TWCH TimeAssignment(d,Gd)

St,u,a allowing a feasible placement, possibly using extended time, is used. Re-
member that we assume that there always exists sufficient extended time for
scheduling any activity, so satisfiability is not a practical issue here.

In the following while-loop from line 10 on we enforce that activities have to
be scheduled strictly sequentially in the given order and that the minimum and
maximum time lags are adhered. After each modification of a start time the
resource availability function is called to ensure that all resources are available
during the whole processing time. First, a is initialized with 1 (line 9), i.e.,
to the first activity of DT u ∈ Ut. The if-statement in line 11 checks whether
activity a starts strictly after a−1 and adjusts St,u,a if necessary. For activity a
lines 15 to 20 enforce that for all minimum time lags (a′, a) ∈ Pmin

t,u inequality

St,u,a ≥ St,u,a′ + pt,u,a′ + Lmin
t,u,a′,a holds. Afterwards amin is initialized to a

and line 22 to line 28 accomplish for all maximum time lags (a′, a) ∈ Pmax
t,u

that St,u,a′ is greater than or equal to St,u,a − pt,u,a′ − Lmax
t,u,a′,a. Moreover,
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amin is set to the activity with the smallest index a′ for which St,u,a′ has been
changed. This change might result in a violation of the sequential order or
the minimum and maximum time lags of the activities amin, . . . , a− 1. Hence,
those activities have to be reconsidered. Consequently, if amin < a then a is
set to amin, otherwise a is increased by one. Finally, at line 32 all activities
of the considered DT have valid start times and all relevant Cr variables are
updated.

The solution quality of Algorithm 2 is influenced to a high degree by the
greedy function DT priority used for selecting the next DT to be considered.
To this end we consider three different criteria, with smaller values always
indicating higher priorities:

(a) The idle time that emerges on the beam resource if DT (t, u) ∈ Gd is
considered next, i.e., the value C ′′r − C ′r − qt,u,r for the beam resource,
where C ′r and C ′′r are the values of the corresponding Cr variable before
and after scheduling u ∈ Ut.

(b) The minimum time a resource required by the considered DT (t, u) ∈ Gd
leaves its regular service window, i.e., minr∈Qt,u,1∪···∪Qt,u,αt,u W

end
r,d .

(c) The ratio between the processing time of the activity requiring the beam
and the total processing time of all activities of a DT (t, u) ∈ Gd, i.e.,

pt,u,b∑
a∈At,u

pt,u,a
, where b ∈ At,u is the activity that requires the beam re-

source.

Preliminary tests indicated that all the above criteria provide reasonable
guidance with criterion (a) tending to yield on average better solutions than
(b) and (c), but no single criterion dominates the others clearly. A problem, at
least with respect to our benchmark instances, is that ties frequently happen,
i.e., different DTs sometimes evaluate to the same priority criterion value. To
counteract these ties, we define our actual DT priority function via a lexico-
graphic combination of all three above criteria: First, the value of criterion
(a) is considered as priority. In case of a tie, criterion (b) is used, and if a tie
happens again, the last criterion (c) is considered. Remaining ties are broken
randomly. Note that the sign of all criteria values are inverted in order to
obtain large priority values for DTs that should be preferred.

TWCH can be implemented in time O(nT · τ2
max · d′ + |D′| · nT · αmax),

where τmax = maxt∈T τt, the maximum number of DTs of any therapy, d′ =
maxt∈T (maxu∈Ut(d

max
t,u − dmin

t,u )), the maximum number of days within which
any DT must start, and αmax = maxt∈T (maxu∈Ut αt,u), the maximum number
of activites a DT has. Hereby, we neglect the number of resources, their non-
availability periods, and the number of time lag constraints.

5 GRASP and Iterated Greedy Metaheuristics

As will be seen in the experimental results TWCH is relatively fast also on
instances of practically relevant size. However, it obviously leaves room for
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improvements regarding solution quality, as some greedy decisions will in gen-
eral not lead to an overall optimal solution. We therefore consider here two
metaheuristic approaches that build upon TWCH: A GRASP and an Iterated
Greedy metaheuristic.

5.1 GRASP

Greedy Randomized Adaptive Search Procedure (GRASP) is a prominent
metaheuristic building upon a construction heuristic and usually a local search
component [18]. The basic idea is to apply a randomized variant of the con-
struction heuristic independently many times, to locally improve each obtained
solution, and to select an overall best solution as final one.

In our context, we randomize TWCH’s DayAssignment by changing the
way the next therapy to be scheduled is selected at line 3 of Algorithm 1 in
a GRASP-typical fashion. Let ptmin and ptmax be the minimal and maximal
priority value received from therapy priority(t), ∀t ∈ T ′, respectively. The
next considered DT is chosen uniformly at random from the subset of T ′ with
therapy priority(t) ≥ ptmax − βgr-rand · (ptmax − ptmin). Parameter βgr-rand ∈
(0, 1) determines the allowed deviation from the highest priority and thus
controls the strength of the randomization.

TWCH’s original TimeAssignment algorithm is then applied to all days to
which DTs are assigned to, determining activity starting times S. Afterwards,
we apply as local improvement the following randomized multi-start heuristic
individually to each day:

TWCH’s TimeAssignment procedure is randomized by modifying line 3
to choose from the krta-rand best DTs uniformly at random, with parameter
krta-rand controlling the strength of the randomization. This randomized con-
struction is iteratively applied until a schedule, not requiring extended times
at the respective day, is found or no improvement has been achieved over the
last nrta-noimp iterations. A starting time configuration inducing the smallest
cost is finally kept.

5.2 Iterated Greedy

In a nutshell, Iterated Greedy (IG) generates a sequence of solutions by iterat-
ing over greedy constructive heuristics using two main phases: destruction and
construction. In the destruction phase some solution components are removed
from a previously constructed complete candidate solution. The construction
procedure then applies a greedy constructive heuristic to reconstruct a com-
plete solution. An acceptance criterion is applied to decide whether or not to
continue with this new solution. IG iterates over these steps until a stopping
criterion is met. IG has many successful applications, in particular also in the
domain of scheduling. See for example [19] where one of the first applications
of IG to a permutation flowshop scheduling problem is described.
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Our IG works as follows. TWCH as described in Section 4 is again used
to create an initial solution. The destruction operator drops for βig-dest · nT
randomly selected therapies the assignment of all their DTs, i.e., removing
them from the sets Gd and invalidating their assigned days Zt,u. Hereby,
βig-dest ∈ (0, 1) is an exogenous parameter, the destruction rate. The construc-
tion step is then performed in a straight-forward way by reapplying TWCH’s
DayAssignment for the set of removed therapies, warm-starting with the cur-
rent sets Gd. Finally, TWCH’s time assignment is applied from scratch to all
working days for which Gd has changed in comparison to the original solution.

In addition, we also try to locally improve the obtained solution at each
iteration by performing the day-wise multi-start randomized TimeAssignment
as described above for the GRASP. Our IG always accepts a new solution as
new incumbent if it improves upon the previously best solution.

6 Computational Study

We start this section by describing the used test instances and the used gener-
ation approach. Afterwards, we give details on the computational experiments
w.r.t. these instances.

6.1 Test Instances

We created artificial benchmark instances related to the expected situation
at MedAustron and real particle treatments. These instances are available
at http://www.ac.tuwien.ac.at/research/problem-instances. The main
characteristic of an instance is its number of therapies nT . We consider 5 in-
stances for 10, 20, 50, 70, 100, 150, 200, and 300 therapies. In the used naming
schema we encode first the number of therapies followed by a consecutive num-
ber. Depending on the number of treatments, we determine regular opening
hours. Below 100 therapies we consider 7 hours per day and above 14 hours
per day. This helps to keep smaller instances challenging. The time horizon
nD (considered days) is then derived from the number of considered therapies.

For each of the therapies the number of DTs is chosen uniformly at random
from the interval {8, . . . , 35}, reflecting the duration of real particle therapies.
The period in which a therapy might start is assumed to have a fixed length
of two weeks. We set for all therapies ntwmin

t = 4, ntwmax
t = 5, δmin

t = 1
and δmax

t = 5. Based on these values we calculate dbuffer = 13 that serves
as an upper bound on the difference (in days) between the fastest and the
slowest completion time of a therapy. Using this bound we determine the
latest day by which the first DT of a therapy t might be provided: dlatest

t,1 :=

nD − dbuffer − dτt/ntwmax
t e · 7 + 1. Therefore, the earliest day by which the

therapy can start is chosen from {1, . . . , dlatest
t,1 − 14}.

Most DTs have exactly five activities. With a probability of 5% a therapy
requires sedation and in that case its DTs consist of seven activities each.

http://www.ac.tuwien.ac.at/research/problem-instances
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Fig. 1: Activity structure of the daily treatments.

Figure 1 shows the two types of daily treatments together with the associated
processing times in minutes. Tuples above the arcs provide minimum and
maximum time lags. The processing times of the beam activities are drawn
uniformly at random from {5, . . . , 20} as shown in the figure. For the processing
times of the other activities we consider a spread of ±20%, i.e., we choose from
{b0.8pc, . . . , b1.2pc} uniformly at random. These choices are made per therapy
and kept the same for all its DTs.

In the following we describe the resources associated with the activities.
The main bottleneck in the considered application scenario is the beam re-
source. Its regular availability corresponds to the regular opening time on each
working day. The availability of the three irradiation rooms is set correspond-
ingly. As mentioned above some treatments require sedation which means that
an anesthetist is needed. The corresponding resource has a regular service win-
dow spanning the first half of the regular working day. Some activities require
the attendance of the oncologist responsible for the associated patient. Radio
oncologists work in two shifts, the first shift spans the first two thirds of the
regular opening time and the second shift spans the last two thirds of the reg-
ular opening time. In each shift five oncologists are available. For each therapy
the associated oncologist is selected uniformly at random from both shifts. The
first treatment of each therapy needs to be provided before noon. To model
this we introduce an additional resource that spans half of the regular opening
time. On each day there is a lunch break in the middle of the day modeled by
unavailability periods. For the instances featuring only seven operating hours
all resources are available during the total regular working day and the lunch
break is placed at the end of the regular opening time.

For all instances the weights γext = 1/60 and γfinish = 1/100 have been
used for the two terms of the objective function. The intuition for the γext

value is that the use of one hour of extended time of a resource corresponds to
one unit in the objective function (1). Weight γfinish has been chosen in such
a way that finishing a therapy earlier by one day by performing a DT entirely
in the extended time is typically not justified.

6.2 Computational Results

All algorithms were implemented in C++11 and compiled with G++ 4.8.4,
GUROBI 6.5 was used for solving the MILP models, and all experiments were



Particle Therapy Patient Scheduling: First Heuristic Approaches 17

Instance TWCH’s DayAssignment Relaxed MILP

da-obj σ(da-obj) time[s] da-obj lb time[s]
ptpsp 010-01 0.220 0.000 0.001 0.220 0.220 3.4
ptpsp 010-02 0.160 0.000 0.001 0.160 0.160 4.6
ptpsp 010-03 0.160 0.000 0.000 0.160 0.160 3.0
ptpsp 010-04 0.180 0.000 0.001 0.180 0.180 4.0
ptpsp 010-05 0.180 0.000 0.001 0.180 0.180 4.2
ptpsp 020-01 0.400 0.000 0.001 0.400 0.400 6.9
ptpsp 020-02 0.450 0.000 0.001 0.450 0.450 7.8
ptpsp 020-03 0.460 0.000 0.001 0.460 0.460 10.4
ptpsp 020-04 0.320 0.000 0.001 0.320 0.320 9.2
ptpsp 020-05 0.320 0.000 0.001 0.320 0.320 7.9
ptpsp 050-01 7.532 0.037 0.003 1.770 1.601 7200.0
ptpsp 050-02 4.005 0.007 0.002 1.480 1.443 7200.0
ptpsp 050-03 11.679 0.582 0.003 2.390 2.258 7200.0
ptpsp 050-04 2.597 0.000 0.003 1.470 1.376 7200.0
ptpsp 050-05 7.325 0.434 0.003 2.317 2.142 7200.0
ptpsp 070-01 37.256 1.804 0.005 10.073 8.362 7200.0
ptpsp 070-02 43.895 0.258 0.004 14.283 13.933 7200.0
ptpsp 070-03 3.665 0.029 0.004 4.963 2.257 7200.0
ptpsp 070-04 12.187 0.481 0.004 NA 3.934 7200.0
ptpsp 070-05 5.165 0.068 0.004 2.780 2.657 7200.0
ptpsp 100-01 5.110 0.000 0.005 3.953 3.117 7200.0
ptpsp 100-02 4.719 0.066 0.005 2.970 2.900 7200.0
ptpsp 100-03 8.083 0.626 0.006 3.710 3.592 7200.0
ptpsp 100-04 9.966 0.190 0.006 4.340 4.189 7200.0
ptpsp 100-05 5.713 0.162 0.006 2.860 2.825 7200.0
ptpsp 150-01 46.317 0.733 0.010 NA 11.528 7200.0
ptpsp 150-02 30.367 0.233 0.010 NA 7.639 7200.0
ptpsp 150-03 13.787 0.171 0.008 NA 7.176 7200.0
ptpsp 150-04 10.541 0.347 0.008 5.950 5.811 7200.0
ptpsp 150-05 26.764 0.499 0.009 9.067 8.858 7200.0
ptpsp 200-01 17.611 0.711 0.012 12.167 7.500 7200.0
ptpsp 200-02 53.440 0.649 0.012 NA 11.068 7200.0
ptpsp 200-03 70.021 1.166 0.013 13.940 13.640 7200.0
ptpsp 200-04 89.349 2.343 0.014 NA 13.035 7200.0
ptpsp 200-05 27.785 0.166 0.013 11.253 10.883 7200.0
ptpsp 300-01 56.725 1.122 0.020 NA 0.000 7200.0
ptpsp 300-02 68.653 1.221 0.020 NA 17.455 7200.0
ptpsp 300-03 60.787 0.646 0.019 NA 19.660 7200.0
ptpsp 300-04 10.645 0.127 0.018 8.717 7.631 7200.0
ptpsp 300-05 69.533 0.606 0.020 NA 16.850 7200.0

Table 1: Results of TWCH’s DayAssignment and the relaxed MILP, which
also considers only day assignments.

carried out on a single core of an Intel Xeon E5-2630v2 processor with 2.6 GHz
and about 4 GB RAM per core.

In the first series of conducted experiments we focus on the day assignment
level only and assess the performance of TWCH’s DayAssignment in compar-
ison to the relaxed MILP model (1) to (13) from Section 3.1. Thus, resource
consumptions are only considered at the aggregated level and no detailed time
planning is done. For each of our benchmark instances, the MILP was solved
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Instance size GRASP IG
nT βgr-rand nrta-noimp krta-rand βig-dest nrta-noimp krta-rand

10, 20, 50, 70 0.310 b1.25 · |Gd|c 2 0.095 b1.85 · |Gd|c 2
100, 150 0.155 b1.19 · |Gd|c 2 0.090 b1.50 · |Gd|c 2
200, 300 0.090 b1.28 · |Gd|c 2 0.110 b1.60 · |Gd|c 2

Table 2: Parameter settings for GRASP and IG.

using a CPU-time limit of 2 hours, while TWCH’s DayAssignment was ap-
plied 30 times because of its stochastic nature. Table 1 shows the obtained
results for each instance. For TWCH average objective values da-obj are listed
together with the corresponding standard deviations σ(da-obj) and the me-
dian computation times time. For the MILP approach, da-obj indicates the
objective value of the best feasible solution, lb the final lower bound, and time
the CPU-time when the algorithm terminated, either with proven optimality
or when the time limit had been reached.

TWCH yielded reasonable solutions for each test instance quickly, but im-
provement potential can also clearly be seen. The MILP approach could not
find a provably optimal solution for any instance with nT ≥ 50. Only in-
stances that allowed solutions with none or very little extended time could be
reasonably solved via the MILP. A reason for the rather poor performance of
the MILP seem to be substantial symmetries in the model. Due to the poor
performance of the MILP for the day assignment only, we can conclude that
solving the full MILP including the detailed time planning unfortunately is in
practice impossible for any instance of realistic size.

In the next series of experiments we consider the complete TWCH as well
as GRASP and IG. In a preliminary study we determined 20 CPU-minutes to
be a reasonable time limit for the metaheuristics after which only minor further
improvements can be expected also on the largest instances with 300 thera-
pies. We therefore used this time limit as termination criterion in all following
metaheuristic runs. The automatic parameter configuration tool irace [12] was
applied for tuning IG’s and GRASP’s strategy parameters on three instance
sets with a budget of 2000 runs. The instance sets used for tuning consisted of
six new training instances with 50 and 70, 100 and 150, 200 and 300 therapies.
The tuned parameter settings are depicted in Table 2. Note that we apply the
settings for instances with 50 and 70 therapies also on the instances with 10
and 20 therapies.

Table 3 shows for each of the approaches and each of the benchmark in-
stances the average final objective values obj and corresponding standard de-
viations σ(obj) over 30 runs. For TWCH median runtimes are also listed. For
the benchmark instances with 10 and 20 therapies all three approaches always
yielded the same objective values, which also coincide with the objective val-
ues from Table 1. This implies that in these cases the time assignment can
be done without additional extended time, the instances are thus relatively
easy. Since the MILP has shown that these objectives are optimal for the day
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Instance TWCH GRASP IG
obj σ(obj) time[s] obj σ(obj) obj σ(obj)

ptpsp 010-01 0.220 0.000 0.001 0.220 0.000 0.220 0.000
ptpsp 010-02 0.160 0.000 0.001 0.160 0.000 0.160 0.000
ptpsp 010-03 0.160 0.000 0.001 0.160 0.000 0.160 0.000
ptpsp 010-04 0.180 0.000 0.001 0.180 0.000 0.180 0.000
ptpsp 010-05 0.180 0.000 0.001 0.180 0.000 0.180 0.000
ptpsp 020-01 0.400 0.000 0.002 0.400 0.000 0.400 0.000
ptpsp 020-02 0.450 0.000 0.002 0.450 0.000 0.450 0.000
ptpsp 020-03 0.460 0.000 0.003 0.460 0.000 0.460 0.000
ptpsp 020-04 0.320 0.000 0.002 0.320 0.000 0.320 0.000
ptpsp 020-05 0.320 0.000 0.002 0.320 0.000 0.320 0.000
ptpsp 050-01 159.842 0.248 0.009 120.234 0.966 105.837 4.452
ptpsp 050-02 128.793 0.320 0.007 88.034 0.921 80.724 1.908
ptpsp 050-03 161.722 2.831 0.010 117.866 1.380 93.362 3.907
ptpsp 050-04 161.795 0.221 0.008 114.689 1.421 122.618 2.596
ptpsp 050-05 177.635 0.748 0.009 131.223 0.874 113.455 6.263
ptpsp 070-01 304.241 4.370 0.012 232.000 2.282 192.295 3.092
ptpsp 070-02 278.451 2.322 0.012 211.597 2.993 169.409 5.157
ptpsp 070-03 165.936 3.618 0.011 118.942 1.941 121.089 4.439
ptpsp 070-04 194.032 3.012 0.011 148.013 1.470 116.831 3.644
ptpsp 070-05 162.713 4.288 0.010 118.022 1.985 107.238 4.433
ptpsp 100-01 183.740 1.799 0.025 138.086 2.319 149.066 3.388
ptpsp 100-02 136.303 3.488 0.028 105.593 0.910 106.684 2.306
ptpsp 100-03 245.927 4.125 0.030 185.778 1.452 185.629 4.320
ptpsp 100-04 162.602 1.583 0.030 133.788 1.505 122.859 2.448
ptpsp 100-05 247.242 4.015 0.028 179.523 2.051 177.468 3.556
ptpsp 150-01 320.521 5.625 0.049 265.495 1.779 186.702 3.610
ptpsp 150-02 372.983 4.612 0.047 300.542 2.412 252.423 5.615
ptpsp 150-03 273.096 6.973 0.041 207.086 2.536 195.565 4.880
ptpsp 150-04 182.204 4.230 0.040 131.184 2.602 126.098 4.576
ptpsp 150-05 263.687 5.103 0.045 210.231 2.104 168.895 3.903
ptpsp 200-01 340.069 7.659 0.057 255.235 2.926 233.247 5.986
ptpsp 200-02 439.731 5.956 0.058 350.984 3.355 292.811 6.179
ptpsp 200-03 487.131 4.096 0.066 409.564 1.389 335.429 4.576
ptpsp 200-04 548.790 6.364 0.066 457.902 3.994 352.461 8.034
ptpsp 200-05 317.170 2.407 0.060 263.558 1.708 230.248 3.667
ptpsp 300-01 708.705 11.009 0.098 565.907 3.573 512.875 4.269
ptpsp 300-02 727.669 13.390 0.099 579.483 3.602 519.220 6.955
ptpsp 300-03 706.027 10.762 0.098 539.983 3.464 521.847 6.672
ptpsp 300-04 527.563 7.071 0.096 370.891 2.556 375.673 4.558
ptpsp 300-05 689.882 10.095 0.099 566.615 5.095 509.551 4.808

Table 3: Average results of TWCH, GRASP and IG over 30 runs.

assignment, it allows to conclude that these instances could also be solved
optimally when additionally considering the time assignment. For all other
instances, this observation does not hold anymore. It can clearly be seen that
the detailed consideration of scheduling the activities within the working days
imposed significant additional costs. Both, GRASP as well as IG, could find
substantially better solutions than TWCH in all those cases. The clear winner,
however, is IG, which performed best on most instances. The major reason for
its superiority seems to be the fact that on the one hand its iterations are less
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costly as only parts of a solution are affected by destruction and construction,
and on the other hand information is in this way also kept over the iterations
and further fine-tuned.

7 Conclusion

We have seen that the midterm patient scheduling problem arising in modern
cancer treatment centers applying particle therapy is particularly challenging
as it involves a planning at day level as well as a depending detailed scheduling
of activities at each day. We presented a MILP model for the whole problem,
but it became clear that already solving just the day planning part is practi-
cally intractable for most instances of realistic size. Therefore, we considered
a therapy-wise construction heuristic based on greedy principles featuring a
forward-looking mechanism to avoid too naive decisions. This heuristic is fast
and provides already reasonable solutions. We further built upon this construc-
tion heuristic, proposing a GRASP and an IG metaheuristic. In our experi-
ments on newly created benchmark instances based on properties of realistic
scenarios, IG yielded the best results. Its superiority over GRASP can be ex-
plained by the computationally more efficient destruction and construction:
Only parts of each solution are reconsidered from scratch, and substantial in-
formation survives from one iteration to the next and is further fine-tuned. All
proposed metaheuristics scale well to instances of practically relevant size.

Nevertheless, the problem formulation considered here captures only a re-
stricted variant of the challenges arising in practice. In real world applica-
tions further considerations need to be taken into account. To provide a well-
structured treatment process for the patients, it is desirable to ensure that
DTs are provided at roughly the same time on each day within a week. The
variations between weeks can typically be larger but should also be kept rea-
sonably small. For the staff it is preferable to avoid gaps within the workday.
This can be accomplished by minimizing the time a resource stays idle between
subsequent uses.

Currently, we are only dealing with the core treatment phase providing the
actual irradiation sessions. In general, a particle therapy also involves a so-
called pre-treatment or treatment planning phase. In this stage personalized
equipment needed for irradiation is produced. Moreover, a substantial amount
of planning has to be done to determine the detailed treatment strategy. This
requires the work of professionals and the use of specialized equipment needed
for examinations of the patients (such as CT, MR). Since the resources needed
in this phase are limited (although not being as scarce as the beam) we plan
on including this stage into the scheduling process.

Concerning more advanced algorithms, an obvious next step is to consider
various kinds of local search neighborhoods, such as moving a single DT by
one day or locally rearranging a small number of activities within one day, and
to embed corresponding local search procedures within IG and/or GRASP.
Furthermore, MILP-based large neighborhood search techniques appear par-
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ticularly promising in the context of this problem: Despite that the MILP
model turned out to not scale well enough to be directly applied to the whole
problem, even not at the day assignment level alone, it can be used within
a destroy-and-repair approach to reassign a larger number of treatments (or
activities) in a locally optimal way.
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