
A Logic-based Benders Decomposition
Approach for the 3-Staged Strip Packing
Problem

Johannes Maschler and Günther R. Raidl ∗

Abstract We consider the 3-staged Strip Packing Problem, in which rectangular
items have to be arranged onto a rectangular strip of fixed width, such that the items
can be obtained by three stages of guillotine cuts while the required strip height is
to be minimized. We propose a new logic-based Benders decomposition with two
kinds of Benders cuts and compare it with a compact integer linear programming
formulation.

1 Introduction

In the 3-staged Strip Packing Problem (3SPP) we are given n rectangular items and
a rectangular strip of width WS and unlimited height. The aim is to pack the items
into the strip using minimal height, s.t. all items can be received by at most three
stages of guillotine cuts. In the first stage the strip is cut horizontally from one border
to the opposite one and yields up to n levels. In the second stage the levels are cut
vertically and at most n stacks are received. In the third stage the stacks are cut again
horizontally and the resulting rectangles of the three consecutive stages of guillotine
cuts correspond to the n items and the waste.

The general Strip Packing Problem (SPP) was proposed by Baker et al. [1] and
has received a large amount of attention: on the one hand many real-world applica-
tions, such as glass, paper and steel cutting, can be modeled as SPPs; on the other
hand it is strongly-NP hard and has turned out to be a demanding combinatorial
problem. We study the special case of the SPP, where only guillotine cuts are al-

Johannes Maschler · Günther R. Raidl
Institute of Computer Graphics and Algorithms, TU Wien, Favoritenstraße 9–11, Vienna, Austria,
e-mail: {maschler|raidl}@ac.tuwien.ac.at

∗ The authors thank Christina Büsing from TU Wien for her support on this paper.

1

2 Johannes Maschler and Günther R. Raidl

lowed as already considered by Hifi [4] and Lodi et al. [6]. We restrict ourselves to
three stages of guillotine cuts. This can be motivated from glass cutting [8].

One of the leading exact approaches for the SPP proposed by Côté et al. [2] is
based on a Benders decomposition using combinatorial Benders cuts, which can
be seen as an implementation of the logic-based Benders decomposition (LBBD)
introduced by Hooker and Ottosson [5]. Their master problem cuts items into unit-
width slices and solves a parallel processor problem that requires all slices belonging
to the same item have to be packed next to each other. The subproblem consists of
transforming a solution of the master problem into a solution of the SPP. However,
this algorithm cannot be trivially extended to solve the 3SPP.

In this work we suggest a different form of LBBD specifically for the 3SPP,
compare it to a compact integer linear programming (ILP) formulation and show
that its performance is competitive. The proposed master problem assigns items to
levels and defines the number of stacks in which the items can appear. The resulting
subproblems pack items of the same width assigned to the same level into the given
number of stacks. Two kinds of Benders cuts are provided, from which the first one
are rather straightforward, while the second one are more general.

2 A Logic-based Benders Decomposition for 3SPP

The proposed LBBD consists of a master problem which is a relaxation of the 3SPP.
From an optimal solution of the master problem subproblems are derived that yield
a complete solution for the 3SPP. If this solution is not yet optimal we improve the
master problem with Benders optimality cuts and resolve the master problem.

2.1 Master Problem

The master problem considers n levels and aims to pack the items into these levels.
For symmetry breaking item i is only allowed to be packed into level j if i ≥ j
and only if item j is also packed into level j. This way of symmetry breaking has
been already used by Puchinger and Raidl [7]. To better exploit scenarios where
many items have the same widths and/or lengths, let us more precisely define the
set of all appearing widths as W = {w1, . . . ,wp}, the set of all appearing heights as
H = {h1, . . . ,hq}, and the dimensions of item i ∈ I = {1, . . . ,n} as wωi and hλi with
ω ∈ {1, . . . , p}n and λ ∈ {1, . . . ,q}n. We further assume w.l.o.g. that the items and
the widths in W are given in a non-decreasing order.

We consider in the master problem different variants of each item, in which de-
pending on a parameter e ∈ {1,2, . . .} its width is increased by wωi ∗ e while its
height is decreased by hλi/e. We denote the modified width of an item i by the pa-
rameter e with wωie, and analogously, the modified height with hλie. We require that
for each level all packed items of the same width have to be reshaped by the same

A LBBD Approach for the 3SPP 3

factor e. The variant of the items models on how many stacks the items meant to be
placed. The total height of the packed variant of items with the same width repre-
sents the height if the items can be partitioned between the stacks ideally. Therefore,
the master problem is indeed a relaxation of the original problem since it models the
first two stages but not the third.

The next consideration concerns the maximal number of variants that has to be
provided for each item. For a given item, the parameter e can be restricted on the
one hand by the width of the strip and on the other hand by the total number of items
of that width that can be packed into the considered level. The maximal number of
different variants for a level j and a width wg is

emax(j,g) = min
(⌊

WS−wω j

wg

⌋
+

{
1 ω j = g
0 otherwise ,

|{i = j, . . . ,n |ωi = g}|
)
.

The first term of the minimum calculates the maximum number of items of width
wg that can be placed next to each other without exceeding WS. The second term
yields the number of items of width wg that can be packed into level j.

The master problem is modeled by using three sets of variables: Binary variables
x jie which are set to 1 iff item i in variant e is assigned to level j. Binary variables
y jge which are set to 1 iff an item in variant e with original width wg is assigned to
level j. Integral variables z j which are set to the height of the corresponding level
j. To ease the upcoming notation we denote with [i,n] the set {i, . . . ,n} and with
E(j,g) the set {1, . . . ,emax(j,g)}. The master problem is defined as follows:

min ∑
j∈[1,n]

z j (1)

s.t. ∑
j∈[1,i]

∑
e∈E(j,ωi)

x jie = 1 ∀i ∈ [1,n] (2)

x jie ≤ y jωie ∀ j ∈ [1,n], ∀i ∈ [j,n], ∀e ∈ E(j,ωi) (3)

∑
e∈E(j,g)

y jge ≤ 1 ∀ j ∈ [1,n], ∀g ∈ [ω j, p] (4)

∑
i∈[j,n] |ωi=g

x jie ≥ ey jge ∀ j ∈ [1,n], ∀g ∈ [ω j, p], ∀e ∈ E(j,g) (5)

∑
e1∈E(j,ω j)

x j je1 ≥ x jie2 ∀ j ∈ [1,n−1], ∀i ∈ [j+1,n], ∀e2 ∈ E(j,ωi) (6)

∑
g∈[ω j ,p]

∑
e∈E(j,g)

wge y jge ≤WS ∀ j ∈ [1,n] (7)

hλi x jie ≤ z j ∀ j ∈ [1,n], ∀i ∈ [j,n], ∀e ∈ E(j,ωi) (8)

∑
i∈[j,n] |ωi=g

hλie x jie ≤ z j ∀ j ∈ [1,n], ∀g ∈ [ω j, p], ∀e ∈ E(j,g) (9)

Inequalities (2) force that each item has to be packed in a single variant exactly
once. Equations (3) link the variables x jie and y jωie. The restriction that items of the
same width have to be packed in the same variant is guaranteed by (4). Inequalities

4 Johannes Maschler and Günther R. Raidl

(5) ensure that items are not meant to be placed on more stacks than the number of
items. Constraints (6) impose that items can only be packed into a level j iff also
item j is packed into level j. Constraints (7) disallows that the total width of the
packed item variants exceed the strip width WS. Constraints (8) and (9) ensure that
the level is at least as high as every single item in it and at least as high as the total
height of all packed items of the same width in their corresponding variant.

2.2 Subproblem

The master problem is a relaxation of the 3SPP, since it assumes that items of the
same width can be partitioned, s.t. the resulting stacks are of equal height. The
subproblems determine the actual packing of the items and with it the actual level
height. The resulting subproblems consist of assigning items, of the same width
packed by the master into the same level, into the number of stacks determined by
their item variant. The aim is the minimize the height of the highest stack. This prob-
lem corresponds to the P||Cmax problem [3]. We use for the subproblem a straight-
forward ILP formulation which was solved in less than a second in all considered
instances.

2.3 Benders Cuts

The aim of Benders cuts is to incorporate the knowledge obtained in the subprob-
lems back into the master problem. In the simple case a Benders cut states that if a
set of items is packed in a certain variant, then the height of the level is at least as
high as the result of the corresponding subproblem.

Let Ī and ē be the set of items and their variant that have defined a subproblem
and let z̄ be the objective value of a corresponding optimal solution. Moreover, the
set J′ contains those levels that allow an assignment of items, s.t. the Benders cut
can get activated. The simple version of our Benders cuts is(

∑
i∈Ī

x jiē−|Ī|+1

)
z̄≤ z j ∀ j ∈ J′. (10)

These Benders cuts have the disadvantage that they do not affect item assignments
differing from I′ only in that items are exchanged by congruent items, i.e., items
having the same width and height. The extended Benders cuts aim to overcome this
drawback. Let H̄ ⊆ H be the set of heights of the items from a subproblem defined
by Ī and ē. We introduce for each height h ∈ H̄ a binary variable uh which is set to
true iff at least as many items of the same width, height and variant are packed into
a level as it has been packed in the considered subproblem. The set I′ ⊆ I contains
all items having the corresponding width and height. The constraints that set the uh

A LBBD Approach for the 3SPP 5

variables are given by

∑
i∈I′

x jiē−|Ī|+1≤ uh(|I′|− |Ī|+1) ∀h ∈ H̄, ∀ j ∈ J′. (11)

The extended Benders cuts impose that the height of a level is at least as high as in
the subproblem if all corresponding uh variables are set to 1 and is defined as(

∑
h∈H̄

uh−|H̄|+1
)

z̄≤ z j ∀ j ∈ J′. (12)

Moreover, we iteratively exclude the smallest item of Ī and resolve the subprob-
lem as long as the objective of the optimal solution does not change. The resulting
Benders cuts are in general stronger and reduce the number of master iterations.

3 Compact Formulation

The used compact formulation is straightforward, hence we omit an exact specifica-
tion. The main idea is to pack items first into stacks and then pack stacks into levels.
To model this, we use binary variables vki that are set to one if item i is packed into
strip k and binary variables u jk to express that stack k resides in level j. Each item
has to be packed exactly once and each stack containing items is allowed to appear
in exactly one level. Moreover, we have to ensure that the total width of all stacks
belonging to the same level does not exceed WS. For each of the potentially n levels
an integer variable is used which has to be at least as high as the highest residing
stack. Furthermore, we applied the symmetry breaking described in Section 2.1.

4 Computational Results

The algorithms have been implemented in C++ and tested on an Intel Xeon E5-2630
v2, 2.60 GHz using Ubuntu 14.04. The ILP formulations have been solved with IBM
Ilog Cplex 12.6.2 using the same parameter setting as in [2]. All algorithms had a
time limit of 7200 seconds. For the benchmark we use the instance sets beng, cgcut,
gcut, ht and ngcut from [2].

We compare the compact formulation against our LBBD with simple Benders
cuts and with extended Benders cuts. The compact model could solve 31 out of 47
test instances to optimality, which is only marginally outperformed with 32 opti-
mally solved test instances by the LBBD using either simple or extended Benders
cuts. However, the LBBD can solve some instances considerably faster as Figure 1
shows. For instance, after 10 seconds the LBBD with simple and with extended
Benders cuts could solve 22 test instances to optimality, while the compact model
could optimally solve 17 test instances.

6 Johannes Maschler and Günther R. Raidl

Fig. 1 Performance profile of
the first 100 seconds for the
compact formulation (CM)
and for the presented LBBD
with simple Benders cuts
(SBC) and extended Benders
cuts (EBC) on the instance
sets beng, cgcut, gcut, ht and
ngcut from [2].

5 Conclusion

We proposed a novel LBBD for the 3SPP and compared it with a compact formula-
tion. The master problem relaxes the 3SPP s.t. only the first two stages of guillotine
cuts are determined. The resulting subproblems are iteratively resolved to strengthen
the generated Benders cuts. In addition, we proposed two kinds of Benders cuts. The
experimental results have shown that the presented LBBD can solve substantially
more test instances in the first 100 seconds. The LBBD can solve one test instance
more than the compact model within the time limit. More testing is necessary to see
under which conditions the proposed approach works especially well.

References

1. Baker, B.S., Coffman Jr, E.G., Rivest, R.L.: Orthogonal packings in two dimensions. SIAM
Journal on Computing 9(4), 846–855 (1980)

2. Côté, J.F., Dell’Amico, M., Iori, M.: Combinatorial benders’ cuts for the strip packing problem.
Operations Research 62(3), 643–661 (2014)

3. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.R.: Optimization and approximation in de-
terministic sequencing and scheduling: a survey. Annals of discrete mathematics 5, 287–326
(1979)

4. Hifi, M.: Exact algorithms for the guillotine strip cutting/packing problem. Computers & Op-
erations Research 25(11), 925–940 (1998)

5. Hooker, J.N., Ottosson, G.: Logic-based benders decomposition. Mathematical Programming
96(1), 33–60 (2003)

6. Lodi, A., Martello, S., Vigo, D.: Models and bounds for two-dimensional level packing prob-
lems. Journal of Combinatorial Optimization 8(3), 363–379 (2004)

7. Puchinger, J., Raidl, G.R.: Models and algorithms for three-stage two-dimensional bin packing.
European Journal of Operational Research 183(3), 1304–1327 (2007)

8. Puchinger, J., Raidl, G.R., Koller, G.: Solving a real-world glass cutting problem. In: Evolu-
tionary Computation in Combinatorial Optimization 2004, pp. 162–173. Springer (2004)

