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Abstract

This thesis focuses on two combinatorial optimization problems (COPs) that belong to the
class of NP-hard network design problems: The first one, vertex biconnectivity augmentation
(V2AUG), appears in the design of survivable communication or electricity networks. In this
problem we search for the set of connections of minimal total cost which, when added to an
existing network, makes it survivable against failures of any single node. The second problem,
the prize-collecting Steiner tree problem (PCST), describes a natural trade-off between maxi-
mizing the sum of profits over all selected customers and minimizing the implementation costs,
e.g. when designing a fiber optic or a district heating network.

The available techniques for COPs can roughly be classified into two main categories: exact
and heuristic algorithms. Exact algorithms are guaranteed to find an optimal solution and to
prove its optimality for every instance of a COP. Due to sometimes exponential running times
or memory requirements of exact algorithms we sometimes sacrifice the guarantee of finding
optimal solutions for the sake of getting good solutions in a limited time and therefore use
heuristic algorithms. This thesis provides tools that can solve given network design problems of
respectable size to provable optimality. For fairly large instances, these tools obtain suboptimal,
high quality solutions of practical relevance and provide optimality gaps as a measure of their
quality.

As a heuristic tool, we choose memetic algorithms (MAs), a symbiosis of evolutionary and
neighborhood search algorithms. Over the last few years, memetic algorithms have shown their
great capabilities in finding high quality solutions to difficult global optimization tasks. The
exact approaches considered in the scope of this thesis are branch-and-cut (BC) and branch-
and-cut-and-price (BCP) algorithms. Nowadays these methods are the most effective exact
algorithms for plenty of integer and mixed-integer programming problems.

The memetic algorithms that we propose for V2AUG and the PCST, comprise new solution
representation techniques, search operators, constraint handling techniques, local-improvement
strategies, and heuristic biasing methods. Our exact algorithms are based on the state-of-the-
art in polyhedral combinatorics. They rely on sophisticated separation algorithms or advanced
column generation methods. In this thesis, we also investigate some possibilities of combining
promising variants of exact algorithms and MAs, like incorporating exact algorithms that solve
some special cases within MAs, biasing primal heuristics or guiding column generation using
MA results.

For solving V2AUG, we first propose running a deterministic preprocessing algorithm that
reduces the search space. Based on the generation of the so-called block-cut graph data struc-
ture, we provide new tests for reducing the instance size. We then propose a memetic algorithm
in which all candidate solutions are locally optimal with respect to their number of augmenta-
tion edges. Locality, heritability and biasing of variation operators play very important roles
in the design of our MA. Empirical results show that the approach scales well to instances of
large size. Our results are significantly better than those obtained by three previously pub-
lished heuristics. To be able to estimate the quality of obtained MA solutions, we develop a
branch-and-cut algorithm that relies on a connectivity-based ILP formulation with the sepa-
ration procedure that runs in polynomial time. Our computational experiments show that the
branch-and-cut algorithm is an efficient tool for solving small and randomly generated instances
to optimality. For solving larger benchmark instances we extended the proposed branch-and-



cut algorithm with a column generation procedure (also called pricing). Our results indicate
that the incorporation of pricing represents the only practical way to solve very large instances
to proven optimality. For the largest instances we tested, we initialize upper bounds with the
best MA solutions, in order to improve the overall performance of the BCP algorithm and in
order to reduce the optimality gaps.

In the second part of the thesis, we concentrate on the prize-collecting Steiner tree problem.
After running a preprocessing procedure for PCST, we propose running a memetic algorithm
in which all individuals of the population represent local optima with respect to their subtrees.
This is ensured by applying a linear-time local improvement algorithm that solves the PCST
on trees to optimality. A clustering procedure that groups the subsets of vertices enhances our
problem-dependent variation operators. Extensive experiments on benchmark instances from
the literature show that the MA compares favorably to previously published results. While
the solution values are almost always the same as in previously published results, substantial
reductions of running times are achieved.

Our next contribution is the formulation of an integer linear program on a directed graph
model based on connectivity inequalities. As for V2AUG, the main advantage of this model is
the efficient separation of violated inequalities by a polynomial time algorithm. Moreover, we
introduce new asymmetry constraints that reject multiple consideration of the same solution.
Our new approach manages to solve all benchmark instances from the literature to optimal-
ity, including eight for which the optimum has not been known previously. Compared to a
recent exact algorithm our new method is faster by more than two orders of magnitude. For
these instances, the ILP approach is also significantly faster than the memetic algorithm itself.
Furthermore, we introduce a new class of larger randomly generated instances and reach opti-
mal results for all of them. We test modified real-world instances obtained from the German
company NetCologne (used for the augmentation of existing fiber optic networks). Even these
large scale instances are successfully solved to provable optimality in less than 12 hours, which
is still considered to be a reasonable running time for off-line network design problems.
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Chapter 1

Introduction

The genes are the master programmers, and they
are programming for their lives. They are judged
according to the success of their programs in copying
with all the hazards that life throws at their survival
machines, and the judge is the ruthless judge of the
court of survival.

Richard Dawkins, ”The Selfish Gene”

Network design problems occur frequently in various practical areas like e.g. in the design
of communication networks, in the development of electronic circuits, in the design of fiber
optic networks or in the development of district heating or water supply systems. One of
the well-known network design problems is the minimum spanning tree problem (MST), in
which all vertices of the network need to be connected at minimum cost. Other well-known
examples for network design problems are the traveling salesman problem (TSP, finding a
shortest tour visiting all vertices of a given network exactly once), or the minimum Steiner
tree problem (connecting a given subset of vertices at minimum cost). All these problems
are combinatorial optimization problems (COPs) – they search for values of discrete variables
such that an optimal solution with respect to a given objective function is identified subject to
some specific constraints emanating from a combinatorial structure. Although for some of the
problems, like finding the MST, efficient algorithms are known, most of the COPs of practical
interest are known to be NP-hard [63]1. But also simple problems for which efficient polynomial
algorithms are known, often become hard after adding new constraints. For example, the
minimum spanning tree problem becomes NP-hard if only a limited number of edges may
enter/leave each vertex [21].

The available techniques for COPs can roughly be classified into two main categories: exact
and heuristic algorithms. Exact algorithms are guaranteed to find an optimal solution and to
prove its optimality for every instance of a COP. Due to sometimes exponential running times
or memory requirements of exact algorithms, we are forced to use heuristic algorithms when

1No algorithm with a worst-case running time bounded by a polynomial in the size of the input is known for

any NP-hard problem, and it is strongly believed that no such algorithm exists.

1



2 CHAPTER 1. INTRODUCTION

instance size exceeds a certain threshold value. Heuristics sacrifice the guarantee of finding
optimal solutions for the sake of getting good solutions in a limited time.

Some well known exact methods are branch-and-bound [17, pp. 485–490], [1], dynamic pro-
gramming [32, pp. 323–356], Lagrangian relaxation based methods [129, pp. 323–337], and
cutting-plane techniques based on linear programming [17, pp. 480–484]. In recent years enor-
mous progress has been made in solving NP-hard problems with integer (linear) programming
(ILP). Remarkable improvements have been reported for solving particular problems, like the
traveling salesman problem [7], by ILP methods.

The ILP approaches considered in the scope of this thesis are branch-and-cut (BC) [114] and
branch-and-cut-and-price (BCP) [92, 103] algorithms. These methods have been implemented
in many mixed-integer optimizers such as ILOG CPLEX, XPRESS-MP, ABACUS, COIN, and
nowadays they are the most effective exact algorithms for plenty of integer and mixed-integer
programming problems (see, for example, [29, 146, 19, 96]).

In general, for problem instances of moderate size, ILP techniques are often able to yield
provably optimal solutions. However, due to the NP-hard nature of the considered problems,
computation time and memory requirements may increase exponentially with instance size.
Hence, the ILP optimization often need to be be stopped prematurely. Since linear program-
ming variables can take fractional values and the problems discussed above involve discrete
quantities, making a decision halfway between yes and no does not make sense in a real-world
decision context. Thus, prematurely terminated ILP techniques often yield only to fractional
bounds without finding any feasible (for practice relevant) solution.

For large instances of NP-hard problems, the only possible way to get feasible solutions is
to trade optimality for the running time and to tackle these instances with a heuristic which
gives no guarantee of finding an optimum solution. Consequently, an enormous effort has been
made in developing algorithms that find nearly optimal solutions in a reasonable amount of
computing time [8]. These heuristics for combinatorial optimization problems can be sepa-
rated into problem-specific algorithms and more or less problem-independent methodologies.
Examples of modern problem-independent techniques are neighborhood search algorithms such
as local search, variable-neighborhood search [75], tabu search [77], or simulated annealing [3],
and biologically inspired methods like evolutionary algorithms (EAs) [120], scatter search [104],
ant colony optimization [39], and artificial neural networks [133].

This thesis is focused on a particular class of metaheuristics: memetic algorithms [124].
The first use of the term memetic algorithms in the computing literature has appeared in 1989
in P. Moscato’s paper [123]. While evolutionary algorithms are based on a crude simplification
of natural evolution, memetic algorithm rely on the rules of socio-cultural evolution. About
relationships between genes and memes, Cliff Joslyn and Valentin Turchin wrote2:

In biological evolution survival means essentially survival of the genes, not so much
survival of the individuals. With the exception of species extinction, we may say
that genes are effectively immortal: it does not matter that an individual dies, as
long as his genes persist in its offspring.

2Principia Cybernetica Web, http://pespmc1.vub.ac.be/
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In socio-cultural evolution, the role of genes is played by memes, embodied in indi-
vidual brains or social organizations, or stored in books, computers and other knowl-
edge media. Thus the creative core of human individual is the engine of memetic
evolution. In memetic evolution, memes must be immortal. While the mortality of
multicellular organisms is necessary for biological evolution, it is no longer neces-
sary for memetic evolution.

From the computer science point of view, memetic algorithms incorporate some kind of
domain knowledge into EAs to make them competitive to other problem specific optimization
techniques. Mostly seen as hybrids of neighborhood search algorithms with evolutionary algo-
rithms, memetic algorithms exploit the symbiotic effects of this combination. Neighborhood
search algorithms are well-suited for the exploitation of the search space, while the evolutionary
framework enables effective diversification (exploration). Over the last few years, memetic al-
gorithms have shown their great capabilities in finding high quality solutions to difficult global
optimization tasks [34, 20, 6].

Summary of Obtained Results

Specific advantages of metaheuristics are that they can examine a large number of possi-
ble solutions in relatively short computation time and in many cases they are found to be
the best performing algorithms for large practical problems [153, 35]. On the other hand,
(meta)heuristics cannot prove optimality and they do not give tight quality guarantees for ap-
proximate solutions. The purpose of this thesis is to provide tools that can solve given network
design problems to provable optimality, or, if this is not possible, to obtain suboptimal, high
quality solutions and to provide optimality gaps as a measure of their quality.

We concentrate on two NP-hard network-design problems that can be modeled using integer
linear programming: minimum vertex-biconnectivity augmentation (V2AUG) and the prize-
collecting Steiner tree problem (PCST). For V2AUG and PCST we develop and investigate
memetic algorithms and branch-and-cut methods, but we also explore some synergetic effects
of their combination.

The memetic algorithms (MAs) that we propose for V2AUG and the PCST comprise new
solution representation techniques, search operators, constraint handling techniques, local-
improvement strategies, and heuristic biasing methods. Our exact algorithms are based on
the state-of-the-art in polyhedral combinatorics. They rely on sophisticated separation al-
gorithms or advanced column generation methods. In this thesis, we also investigate some
possibilities of combining promising variants of exact algorithms and MAs, like incorporating
exact algorithms that solve some special cases within MAs, biasing primal heuristics or guiding
column generation using MA results.

The main results of this thesis related to V2AUG are published in [108]. Preliminary results
appeared in [93]. We also developed a memetic algorithm for edge biconnectivity augmentation
and published our results in [144]. Preliminary results appeared in [107].
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Figure 1.1: Vertex biconnectivity augmentation example: (a) An instance of the vertex bicon-
nectivity augmentation problem – bold lines belong to the existing network (E0), while dashed
lines represent possible augmentation edges (E \{E0}). Shaded vertices are articulation points
of the existing network; (b) A feasible solution of the problem, with augmentation costs 40.

In [97, 109] we published our most important results related to the prize-collecting Steiner
tree problem. In [98] we consider a related problem, the so-called fractional prize-collecting
Steiner tree problem.

Vertex Biconnectivity Augmentation

After some recent electrical power blackouts in the USA and in some European countries, it
has become obvious that the survivability of networks plays an important role in the design
of electrical power supplies. Redundant connections need to be established in the network to
provide alternative routes in case of a temporary break down of one or more vertices. The
simplest break down form appears when a failure of a single vertex disconnects the network.
Such a vertex is called articulation point, and a network without articulation points is said to
be biconnected. For every pair of vertices of a biconnected network, there exist at least two
vertex-disjoint paths between them. The minimum-cost vertex biconnectivity augmentation
problem consists of augmenting an already existing network G0 = (V, E0) with edges from
A ⊂ E \ {E0} of minimal total cost such that the network GA = (V,E0 ∪ A) is biconnected.
This problem, which also arises in the design of communication and transportation networks,
has been introduced by Eswaran and Tarjan [46] who have shown that it is NP-hard. Figure 1.1
illustrates an example.

Within this thesis, we first propose a deterministic preprocessing algorithm for reducing
the search space. The algorithm follows the idea already given in [46] of generating a block-cut
graph. We propose new preprocessing tests that shrink, fix or discard certain augmentation-
or tree-edges. One of these tests, the so-called edge elimination represents an extension of a
dynamic programming algorithm given by Frederickson and Jájá [56]. Although a theoretical
upper bound for the computational costs of preprocessing is relatively high (O(|V |2|E|)), our
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computational results indicate that the algorithm is in practice very fast, even if large problem
instances are considered.

We then propose a memetic algorithm for V2AUG with the following features: Our local
improvement procedure guarantees local optimality with respect to the number of augmenta-
tion edges of any candidate solution. The proposed recombination, respectively mutation are
specially designed to provide strong heritability and locality. We use biasing of initialization
and recombination to make the inclusion of the low-cost edges more likely. Finally, we bias the
mutation operator to remove more expensive edges with higher probability.

We also propose supporting data structures established during preprocessing that allow
efficient implementations of initialization, recombination, mutation, and local improvement.
Empirical results show that the approach scales well to instances of large size and calculates
solutions that are usually significantly better than those of the other three heuristics known
from the literature [95, 161, 106]. However, at this stage, we still do not know how far away
they are from the optimal ones.

To be able to estimate the quality of obtained MA solutions, we develop a branch-and-cut
algorithm that provides optimal values or, in case of exhausted computational resources, lower
bounds that can be used to determine optimality gaps for MA solutions. The branch-and-
cut algorithm relies on an integer programming formulation for the survivable network design
problem (a generalization of V2AUG) given by Stoer [152]. Biconnectivity of a network is
described through degree-constraints and an exponential number of biconnectivity-constraints.
We initialize the root vertex of the branch-and-bound tree with simple degree constraints.
Separation of violated vertex-biconnectivity constraints can be done exactly by applying the
polynomial-time algorithm for finding the minimum-weight cut of a graph. Small and randomly
generated problem instances can be solved exactly by using only the branch-and-cut method.
For these instances, the exact approach is even faster than the proposed MA.

For solving larger instances to optimality, we investigate the incorporation of column gen-
eration into the branch-and-cut algorithm. For detection of inactive variables that should be
priced in, we use the reserve graph technique proposed by Jünger et al. [89]. We also use special
data structures for the fast calculation of reduced costs. We also show that the well-designed
primal heuristics based on MA’s initialization operator and biased by the last LP solution can
further improve the quality of our algorithm. Our BCP algorithm relies on the MA, since
it uses its high-quality solutions as starting solutions and initial bounds. Our computational
results indicate that, using pricing, we can significantly improve the algorithm’s performance.
For instances of small and moderate size, finding high-quality upper bounds by means of the
MA can slightly slow down the optimization. However, for large instances, it is advantageous
to combine both approaches, in order to obtain small optimality gaps. Using a sophisticated
separation procedure and a local improvement method as primal heuristics, we found optimal
solutions for some complete graphs with more than 400 vertices.

Finally, we investigate the performance of the BCP algorithm if, instead of nearest neighbor
graphs, MA solutions are used within pricing based on the reserve graph technique. The
obtained results show that both approaches have similar performance and that none of them
is significantly better than the other one in terms of running time. Our attempt to combine
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memetic (or evolutionary, in general) with exact algorithms is part of pioneering work in
this direction (see also [36, 105, 113, 151, 141, 49, 58], to mention some of them). They
all together lead us to a better understanding of both, evolutionary and exact approaches.
Finally, the pioneering work should help us to instantiate better interactions between these, so
far independent, heterogenous streams.

The Prize-Collecting Steiner Tree Problem

The recent deregulation of public utilities such as electricity and gas in Austria has shaken up
the classical business model of energy companies and opened up the way towards new oppor-
tunities. Of particular interest in this field is the planning and expansion of district heating
networks. This area of energy distribution is characterized by extremely high investment costs
but also by an unusually loyal customer base and limited competition. Moreover, the required
reduction of greenhouse emissions forces many energy companies to seek ways of improving
their ecological balance sheet. A very attractive possibility to meet this goal is the use of
biomass for heat generation. The combination of these two factors has made the planning of
heating networks one of the major challenges for companies in this field [74].

In a typical planning scenario the input is a set of potential customers with known or
estimated heat demands (represented by discounted future profits), and a potential network
for laying the pipelines (which is usually identical to the street network of the district or town).
Costs of the network are dominated by labor and right-of-way charges for laying the pipes and
the costs for building the heating plant.

A similar problem appears in the design or augmentation of fiber optic networks: The
wide expansion of fiber optic access networks (last mile) requires enormous financial resources.
The according costs are mainly determined by the underground work (cable laying). Based on
this fact, information about the relation between the investment volume and the correspond-
ing return on investment represents a crucial competitive factor for new network or network-
augmentation projects. The main research topic in this area is the optimization of cable laying
routes for networks or network augmentation projects within urban areas.

Typically, a set of new households with estimated profits needs to be attached to an existing
fiber optic network. The fiber may be laid down through the streets – in this case the costs of
lying the fiber directly correspond to streets’ length, but may vary depending on the importance
or function of each particular street. The fiber can also be laid through public properties, in
which case special costs need to be considered.

Essentially, in both network design problems mentioned above, the decision process faced
by a profit oriented company consists of two parts: First, a subset of particular profitable
customers has to be selected from a total set of all potential customers. Secondly, a network
has to be designed to connect all selected customers in a feasible way – Figure 1.2 illustrates
an example. The natural trade-off between maximizing the sum of profits over all selected
customers and minimizing the cost of the network leads to a prize-collecting objective function.
Given a network with prizes associated with its vertices and weights associated with its edges,
the prize-collecting Steiner tree problem consists of finding a subtree of this network which
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Figure 1.2: The prize-collecting Steiner tree problem: (a) A network with customer and non-
customer vertices (hollowed and bold circles, respectively). We suppose that all connections
have a cost of 20; (b) A feasible solution of the problem.

minimizes the sum of the weights of its edges plus the prizes of the vertices not spanned by
that tree. If there is a vertex that must be contained in the solution, we speak of rooted PCST.

Before applying optimization algorithms to PCST, we propose running a preprocessing
procedure which is adopted from the work of Duin and Volgenant [41] for the related node
weighted Steiner tree problem. The procedure requires O(|E|2|V |+ |E||V |2 log |V |) time in the
worst case, in which the input graph could be reduced to a single vertex. However, in practice,
the running time is much lower which is documented in our results on benchmark instances
from the literature.

We develop an efficient memetic approach based on a dynamic programming subroutine for
the problem on trees that runs in linear time (see also [160, 84]). Furthermore, the algorithm
uses efficient edge-set encoding and comprises efficient problem-dependent variation operators
that all run in O(|V | log |V |+|E|) time. In the design of district heating or fiber optic networks,
it is often the case that in small settlements the customers are grouped together, and that it
either pays off to take all of them at once, or not to take any of them. By employing clustering
as a grouping procedure within variation operators, we group subsets of vertices together and
insert or delete them at once. For this purpose we use an algorithm proposed by Mehlhorn [115].

Our computational results document that the MA is competitive against the heuristic
approach proposed by Canuto et al. [23] in terms of running time and quality of solutions. The
average gap and its standard deviation indicate a stable performance and the reliability of our
memetic algorithm.

To solve PCST instances to optimality within reasonable running times we choose a branch-
and-cut approach. For the unrooted PCST, we insert an artificial root vertex and connect it
to all customers. We propose the transformation of the original PCST problem into the so-
called Steiner arborescence problem. We extend the ILP formulation given by Fischetti [51]
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with new asymmetry constraints, and also with the flow-balance constraints proposed by Koch
and Martin in [99]. The formulation is based on connectivity constraints that are separated
by finding minimum-weight cuts between the root and every selected customer vertex. This
separation algorithm runs in polynomial time. While the choice of the ILP model is essential for
the success of our method, it should also be pointed out that solving the basic ILP model by a
default algorithm is by no means sufficient to reach reasonable results. Indeed, our experiments
show that a satisfying performance can be achieved only by appropriate initialization and
strengthening of the original ILP formulation and in particular by a careful analysis of the
separation procedure.

Using our ILP approach, we manage to solve to optimality (even without the usual pre-
processing) all instances from the literature in a few seconds thereby deriving new optimal
solution values and new certificates of optimality for a number of previously addressed problem
instances. For these instances, the ILP approach is also significantly faster than the memetic
algorithm itself.

We also tested real-world instances arising in the design of fiber optic networks and we
created a number of new large instances constructed from Steiner tree instances. For solving
all of them within reasonable running time, the preprocessing proves to be an indispensable
tool which allowed us to find the optimum.

Finally, we propose a column generation algorithm as a lower bounding procedure to solve
the multi-commodity flow (MCF) formulation of the PCST. As for V2AUG, we proposed to
use best MA results within pricing in order to improve the algorithm’s performance. Our
comparison against two other pricing strategies shows that our new algorithm represents an
advantageous approach.

Guide to the Thesis

Chapter 2 provides some basic terms and definitions from the areas of graph theory, memetic
algorithms and exact ILP approaches. Moreover, we present generic evolutionary and branch-
and-bound algorithms to solve combinatorial optimization problems.

We study vertex biconnectivity augmentation in Chapter 3. An overview on former ap-
proaches to V2AUG and related problems is given in Section 3.1. Within Section 3.2 we
describe an efficient preprocessing procedure based on the derivation of a more compact block-
cut graph from the problem’s original graph. Section 3.3 is devoted to a memetic algorithm
which searches for a low-cost solution on the reduced block-cut graph. The best solution found
is finally mapped back to a solution for the original V2AUG instance. We provide an exhaus-
tive experimental comparison of the new approach against other algorithms for V2AUG. In
Section 3.4, we propose a branch-and-cut-and-price (BCP) algorithm that searches for opti-
mum solutions on the block-cut graph. We first describe a simple branch-and-cut algorithm
based on the minimum-cut ILP formulation of the problem. To enhance its performance, we
propose the incorporation of the column generation method based on the sparse and reserve
graph technique. In Section 3.5, we investigate possible ways how to use the knowledge about
the problem obtained from running the MA, to improve the performance of the branch-and-
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cut-and-price approach. We consider setting upper bounds by MA, biasing primal heuristic
and guiding column generation using MA results. Conclusions are drawn in Section 3.6.

In Chapter 4, the problem of choosing a subset of potential customers and connecting them
within a sub-network in order to maximize the profit is modeled as the prize-collecting Steiner
tree problem. In Section 4.1 we give a short overview of previous work on PCST and some of
its relatives. Preprocessing, which helps to significantly reduce the size of many instances, is
treated in Section 4.2. In Section 4.3, we propose a MA used for finding approximate solutions
for the prize-collecting Steiner tree problem. Extensive computational results are also provided.
Different ILP models for PCST are presented and discussed in Section 4.4. In Section 4.4.3
we introduce our cut-based ILP model. In Section 4.5 we describe how to solve the cut-based
ILP model in an efficient branch-and-cut framework. Extensive computational experiments
are reported in Section 4.5.4. They include results on the cut-based formulation, but also
some results obtained for the column generation approach applied to the multi-commodity
flow formulation described in Section 4.4. We conclude this chapter with Section 4.6 where we
discuss our results.

Finally, in Chapter 5 we draw some conclusions and present a few ideas for future research.
We also provide definitions of some new problems arising in the design of fiber optic or district
heating networks that represent natural extensions of V2AUG and PCST.
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Chapter 2

Preliminaries

In this chapter we provide basic terms and definitions of graph theory needed to introduce two
network design problems we are dealing with. Furthermore, principal concepts of evolutionary
computation and memetic algorithms are introduced; for a comprehensive introduction to
these fields, we refer to [120, 52, 11, 12]. Finally, we describe some basic ideas of integer
linear programming, such as cutting planes, column generation and their incorporation within
a branch-and-bound framework [160, 17].

2.1 Notation and Definitions

Given a finite set I of feasible solutions and a function c : I 7→ R (the objective function), a
combinatorial optimization problem (COP) consists of finding an element I∗ with

c(I∗) = min{c(I) | I ∈ I} .

Throughout this thesis, without loss of generality, we concentrate on minimization problems,
since each maximization problem max{c(I) | I ∈ I} can be trivially transformed into it.

The two combinatorial optimization problems we are concentrating on in the framework of
this thesis, belong to the class of subset selection problems which are defined as follows:

Definition 1. [Subset Selection Problem]
Given are a finite set E, a set I ⊆ 2E of subsets of E (the feasible solutions) and a function
c : E 7→ R. For each set F ⊆ E let c(F ) =

∑
e∈F c(e). A subset selection problem (E, I, c)

consists of finding a subset I∗ ⊆ E with

c(I∗) = min{c(I) | I ∈ I} .

Most subset selection problems can also be modeled as integer linear optimization problems.

2.1.1 Linear Optimization

The goal of an integer linear programming (ILP) is to find an integer solution vector x∗ ∈ Zn

such that:
cT x∗ = min{cT x | Ax ≥ b, x ∈ Zn} , (2.1)

11
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where a matrix A ∈ R(m,n) and vectors b ∈ Rm and c ∈ Rn are given. If all variables xi, 1 ≤
i ≤ n are from the set {0, 1} only, we speak of the zero-one linear programming (0–1-ILP)1.

The variables x1, . . . , xn are called decision variables, and a vector x satisfying all the
constraints

aT
i x ≥ bi, i = 1, . . . , m

expressed compactly in the form Ax ≥ b, is called a feasible solution or feasible vector. The
set of all feasible solutions is called the feasible set or the feasible region. A feasible solution
x∗ that minimizes the objective function (that is cT x∗ ≤ cT x, for all feasible x) is called an
optimal solution, and the value cT x∗ is called the optimal cost.

Many important graph problems can be stated as 0–1-ILP problems [126, 1, 2, 96]. In
general, the ILP and also the 0–1-ILP are known to be NP-hard [63]. The computational
difficulty arises mainly due to the integrality constraints xi ∈ Z (respectively xi ∈ {0, 1}). If
we relax these constraints to xi ∈ R (respectively 0 ≤ xi ≤ 1), a linear program (LP) called
the LP-relaxation of the ILP is obtained. This LP can usually be solved efficiently by means
of e.g. the simplex algorithm. Although in general the solution of the LP-relaxation does not
directly allow for deriving the solution of the ILP, it may significantly help in finding it.

In this thesis, we will also consider the dual of an LP. With every linear program (P) (primal
linear program) of the form

cT x∗ = min{cT x | Ax ≥ b, x ≥ 0} , (2.2)

we associate a dual linear program (D) which consists of finding a vector y∗ ∈ Rn such that:

bT y∗ = max{bT y | AT y ≤ c, y ≥ 0} . (2.3)

An important relation between the primal and the dual linear program is given by the following
two theorems.

Theorem 1. [Weak Duality]
If x is a feasible solution to the primal problem (P) and y is a feasible solution to the dual
problem (D), then

bT y ≤ cT x .

The weak duality theorem gives rise to the following corollaries:

• If the optimal costs of P are −∞, then the dual problem is infeasible.

• If the optimal costs of D are +∞, then the primal problem is infeasible.

1In the mixed integer linear programming (MIP) , we consider not only integer but also real-valued variables.

Our goal is to find a vector (x∗, z∗) ∈ Zn−k × Rk such that

cT
x x∗ + cT

z z∗ = min{cT
x x + cT

z z | Axx + Azz ≥ b, x ∈ Zn−k, z ∈ Rk} .
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Theorem 2. [Strong Duality]
If a linear programming problem has an optimal solution, so does its dual, and the respective
optimal costs are equal.

The complementary slackness conditions further describe the relation between primal and
dual optimal solutions. They are presented within the next theorem.

Theorem 3. [Complementary Slackness]
Let x and y be feasible solutions to the primal and the dual problem, respectively. The vectors
x and y are optimal solutions for the two respective problems if and only if:

yi(aT
i x− bi) = 0, ∀i ,

(cj − yT Aj)xj = 0, ∀j ,

where Aj denotes the j-th column of the matrix A.

For a feasible solution x of a primal problem (P), a constraint aT
i x ≥ bi is called active at x

if aT
i x = bi. The first complementary slackness condition asserts that the corresponding dual

variable yi is zero unless the constraint is active.

2.1.2 Linear Programming vs. Integer Combinatorial Optimization

In what follows, we describe the polyhedral ties between linear programming and integer com-
binatorial optimization. For d1, d2, . . . , dk ∈ Rn and a vector λ ∈ Rk, the sum

d =
k∑

i=1

λidi

is called the linear combination of points d1, d2, . . . , dk. Additionally, if:

• λi ≥ 0, ∀i, we speak of conic combination, and

• ∑k
i=1 λi = 1, we speak of affine combination, and

• ∑k
i=1 λi = 1, λi ≥ 0, ∀i, we are dealing with a convex combination of points d1, d2, . . . , dn.

Given a finite set of points S ⊂ Rn, S 6= ∅, a convex (affine, conic) hull of S, notated as
conv(S) (aff(S), cone(S)), is defined as the set of all points in Rn which can be represented as
a convex (affine, conic) combination of points from S.

S ⊂ Rn is an affine subspace of Rn if and only if there exists a matrix A ∈ Rm×n, a vector
b ∈ Rm, such that S = {x ∈ Rn | Ax = b}.

Hyperplanes and half-spaces play an important role in linear programming. Let a be a
non-zero vector in Rn, and let b be a scalar. The set

{x ∈ Rn | aT x = b}

is called a hyperplane, while the set

{x ∈ Rn | aT x ≥ b}
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is called a half-space.
A set of vectors S = {x1, x2, . . . , xk} ⊂ Rn is called affine independent if

k∑

i=1

λixi = 0 ∧
k∑

i=1

λi = 0⇒ λi = 0, ∀i = 1, . . . , k .

The affine rank of a set S ⊂ Rn is defined as follows:

affrank(S) = max{|T | | T ⊂ S is affine independent} .

The dimension of a set S ⊂ Rn is then

dim(S) = affrank(S)− 1 .

Definition 2. [Polyhedron]
A polyhedron is a set that can be described in the form P = {x ∈ Rn | Ax ≥ b}, where A is
a matrix from Rm×n, and b is a vector from Rm. The polyhedron P is bounded, if there exists
w ∈ R such that P ⊂ {x ∈ Rn | −w ≤ xi ≤ w, ∀i = 1, . . . , n}. A bounded polyhedron is called a
polytope.

A classical result in polyhedral theory is the theorem of Minkowski and Weyl (see, for
example, [148]), saying that each polyhedron P ∈ Rn can be written as P = conv(X)+cone(Y ),
where X ⊂ Rn and Y ⊂ Rn are finite sets of points. In other words, polyhedra are sums of
convex and conic hulls of finite subsets in Rn. Thus, there always exist two representations of
a polyhedron:

P = {x ∈ Rn | Ax ≥ b} = conv(X) + cone(Y ) .

Being a bounded polyhedron, each polytope can be presented as a convex hull of a finite subset
of points X ⊂ Rn:

P = conv(X) .

Consider now a subset selection problem (E, I, c) with associated linear objective function
c. Given a finite set E and a subset I ⊂ E, the incidence vector hI ∈ RE is given by:

hI(e) =

{
1, if e ∈ I

0, otherwise .

With (E, I, c), we associate the polytope

PI = conv{hI | I ∈ I} ,

i.e. the convex hull of the incidence vectors of all feasible sets I ∈ I. Note that polytope P
does not depend on the cost function c : E 7→ R, but if we associate a vector c ∈ RE to it, we
can solve the original problem (E, I, c) by solving

min{cT x | x ∈ PI} .
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Using a finite set of inequalities, a so-called linear description of the polytope P [148]:

PI = {x ∈ RE | Ax ≥ b} ,

we transform the starting combinatorial optimization problem into the linear program given
by:

min{cT x | x ∈ RE , Ax ≥ b} .

In order to solve (E, I, c) over a polytope, we need a formulation which may involve large
numbers of variables or constraints (size of matrix A and vector b) increasing exponentially
with the problem’s size. For NP-hard optimization problems, complete linear description of
the underlying polytope can not be found. In practice however, by using methods of polyhedral
combinatorics (see Section 2.6), we are able to solve some of the COP instances even when
dealing only with a small subset of these inequalities. The most important role play the facet
defining inequalities, defined as follows.

Definition 3. [Valid Inequalities]
Given a polytope PI = {x ∈ Rn | Ax ≤ b}, an inequality fT x ≤ f0 is called valid for PI , if
fT x ≤ f0 holds for all x ∈ {x ∈ Rn | Ax ≤ b}.

Definition 4. [Facet Defining Inequality]
If fT x ≤ f0 is a valid inequality with respect to the polytope PI ⊂ Rn and the intersection of
the (n − 1)-dimensional affine subspace H = {x | fT x = f0} with PI is neither empty nor
equals PI , then F = PI ∩H is called a face of PI defined by the valid inequality fT x ≤ f0. Let
s = dim(PI) be dimension of the polytope PI . The (s− 1)-dimensional faces are called facets
of PI . If F = PI ∩ {x | fT x = f0} is a facet of PI , the inequality fT x ≤ f0 is called facet
defining inequality for PI .

2.1.3 Cuts and Flows

Throughout this work, we concentrate on simple graphs, i.e. on graphs without parallel edges or
self-loops. If there exists an edge e = {i, j} (denoted also with e = (i, j)) between two vertices
i and j, these two vertices are called adjacent, and e is incident to i and j. With n = |V | and
m = |E| we will denote the number of vertices and edges of G, respectively. In a directed graph
G = (V, A), we have directed edges, called arcs; (i, j) describes an edge leading from vertex i

(the so-called source) to vertex j (the so-called target).
In a weighted graph G = (V, E, c), an edge-weight function c : E 7→ R is associated to the set

of edges. Sometimes we write c(i, j) also for undirected graphs, when it is clear from context
that we are dealing with the cost of an undirected edge c({i, j}).

Given the undirected graph G = (V, E) and a subset W ⊂ V , the edge set

δ(W ) = {{i, j} ∈ E | i ∈W, j ∈ V \W}

is called the undirected cut induced by W . We write δG(W ) to make clear – in case of possible
ambiguities – with respect to which graph the cut induced by W is considered.
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Similarly, in a directed graph, we denote with

δ−(W ) = {(j, i) ∈ A | i ∈W, j ∈ V \W}
and

δ+(W ) = {(i, j) ∈ A | i ∈W, j ∈ V \W}
the ingoing and outgoing cuts induced by W , respectively.

The degree of a vertex v, in notation deg(v), is the cardinality of δ(v) = δ({v}). Similarly,
we define the ingoing and outgoing degrees degin(v) and degout(v) of v as the cardinalities of
δ−(v) and δ+(v), respectively. We denote by V − v = V \ {v} and E − e = E \ {e} the subsets
obtained by removing one vertex or one edge from the set of vertices or edges. G− v denotes
the graph (V −v,E− δ(v)) and (V −v,E− δ+(v)− δ−(v)) in the undirected and directed case,
respectively.

The most interesting value about a cut is its weight (or capacity): the total capacity of all
the edges in the cut. We denote it as

c(δ(W )) =
∑

e∈δ(W )

c(e) .

A flow is a mathematical formulation of how fluids, or electrical circuits can move from
special selected vertices, called sources, to so-called targets (or sinks), without violating capacity
constraints. Here, the entity we are most interested in, is the value of the flow, i.e. the total
amount of flow that reaches the sinks. Without loss of generality, throughout this thesis we
are going to concentrate on the single source-single target flow values.

One of the fundamental results in combinatorial optimization is the duality between the
flow value and the cut capacity in networks.

Theorem 4. Min-cut Max-flow [Ford & Fulkerson [54]]
The value of the maximum flow in the undirected weighted graph G = (V,E, c) is equal to its
minimum cut capacity.

A straightforward algorithm for finding the minimum weight cut of a graph G = (V, E, c)
with n vertices and m edges is the computation of the minimum s-t-cuts between an arbitrarily
fixed vertex s and each other vertex t ∈ V \ {s}. From these n − 1 cuts, one with minimum
weight represents the global minimum cut. Gomory and Hu proposed a more elaborate algo-
rithm which employs a vertex shrinking operation so that the n − 1 minimum s-t-cuts have
to be computed in smaller graphs. The worst-case running time of their algorithm is O(n2m).
Nagamochi and Ibaraki [128] showed how to find a minimum cut without using maximum flow
calculations. The algorithm runs in O(nm + n2 log n) time. Hao and Orlin [76] used the flow
approach by showing that a clever modification of the Gomory-Hu algorithm implemented with
a push-relabel maximum flow algorithm runs in time asymptotically equal to the time needed
to compute one s-t-flow: O(nm log(n2

m )). Jünger et al. [90] provided a brief overview of the most
important algorithms for the minimum capacity cut problem. They compared these methods
both with problem instances from the literature and with problem instances originating from
the solution of the traveling salesman problem by branch-and-cut.
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2.1.4 Graph Connectivity

We will use the following definitions arising from graph connectivity theory. For any pair of
distinct vertices s, t ∈ V , an undirected (directed) [s, t]-path P is a sequence of vertices and
edges (arcs) (v0, e1, v1, e1, . . . , vl−1, el, vl), ((v0, a1, v1, a1, . . . , vl−1, al, vl)), where each edge (arc)
ei (ai) is incident to the vertices vi−1 and vi (i = 1, . . . , l), where v0 = s and vl = t, and where
no edge or vertex appears more than once in P . We call the vertices vi, i = 1, . . . , l − 1 inner
vertices of the path P , while v0 and vl are its end vertices.

If for any two vertices i, j ∈ V of a graph G = (V,E) an [i, j]-path exists, the graph is
said to be connected, otherwise it is disconnected. A maximal connected subgraph of G is a
component of G.

If G is connected, and G−W is disconnected, where W is a set of vertices or a set of edges,
than we say that W separates G.

Definition 5. [k-Connectivity]
A graph G is vertex (edge) k-connected (k ≥ 2), if it has at least k + 2 vertices and no set of
k − 1 vertices (edges) separates it. The maximal value of k for which a connected graph G is
k-connected is the connectivity of G. For k = 2, graph G is called biconnected.

If G − e has more connected components than G, we call edge e a bridge. Similarly, if
W is a vertex set such that G \W has more connected components than G, set W is called
articulation set. If W = {v}, the vertex v is called articulation or cut vertex.

By G[W ], we denote a subgraph of G induced by W , i.e. G[W ] = (W,E[W ]), where
E[W ] = {{i, j} ∈ E | i, j ∈W}.

A collection P1, P2, . . . , Pk of [s, t]-paths is called edge-disjoint if no edge appears in more
than one path and is called vertex-disjoint if no vertex (other than s and t) appears in more
than one path. A cycle is the union of two vertex-disjoint [s, t]-paths.

The following theorem represents a fundamental result in the theory of graph connectivity:

Theorem 5. [Menger’s theorem]
A graph G = (V, E) is k-edge-connected (k-vertex-connected) if, for each pair s, t of distinct
vertices, G contains at least k edge-disjoint (vertex-disjoint) [s, t]-paths.

Note: While vertex k-connectivity implies edge k-connectivity, the reverse does not hold
in general. We always assume vertex-connectivity, when others is not specified.

In what follows, we provide some further definitions we need.
A forest is an undirected cycle-free graph. A tree is a connected forest. An arborescence

is a directed tree in which no two arcs are directed into the same vertex. The root of an
arborescence is the unique vertex that has no arcs directed into it. A branching is defined as a
directed forest in which each tree is an arborescence. A spanning tree (spanning arborescence)
is a tree (arborescence) that includes every vertex in the graph.

A minimum outgoing spanning arborescence (MOSA) of a weighted directed graph G =
(V, E, c), (c : E 7→ R+) with a fixed root r ∈ V is a spanning arborescence T = (V, ET ) of G

that minimizes c(T ) =
∑

a∈ET
c(a).
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Figure 2.1: (a) A connected, but not vertex-biconnected graph G = (V, E) and (b) the corre-
sponding block-cut tree T = (VT , ET ).

Using the algorithm described in [60], the MOSA of a connected graph G can be found
efficiently in O(|V | log |V |) time.

Definition 6. [Least Common Ancestor]
Given an arborescence T = (V, ET ) with the root r, the least common ancestor of a pair of
vertices u, v ∈ V , u, v 6= r in notation lca(u, v) is the first vertex that [u, r]- and [v, r]-paths
have in common.

2.1.5 The Block-Cut Graph

All maximal subgraphs of a graph G that are vertex-biconnected, i.e. the vertex-biconnected
components, are referred to as blocks. If graph G is vertex-biconnected, the whole graph
represents one block. Otherwise, any two blocks of G share at most a single vertex, and this
vertex is a cut-point; its removal would disconnect G into at least two components.

A block-cut tree T = (VT , ET ) with vertex set VT and edge set ET is an undirected tree
that reflects the relations between blocks and cut-points of graph G in a simpler way [46].
Figure 2.1b illustrates this. Two types of vertices form VT : cut-vertices and block-vertices.
Each cut-point in G is represented by a corresponding cut-vertex in VT , each maximal vertex-
biconnected block in G by a unique block-vertex in VT .

A cut-vertex vc ∈ VT and a block-vertex vb ∈ VT are connected by an undirected edge (vc, vb)
in ET if and only if the cut-point corresponding to vc in G is part of the block represented by
vb. Thus, cut-vertices and block-vertices always alternate along any path in T . The resulting
structure is always a tree, since a cycle would form a larger vertex-biconnected component, and
thus, the block-vertices would not represent maximal biconnected components.

A block-vertex is associated with all vertices of the represented block in G excluding cut-
points. If the represented block consists of cut-points only, the block-vertex is not associated
with any vertex from V . Thus, each vertex from V is associated with exactly one vertex from
VT , but not vice-versa.
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In contrast to the previous definition of the block-cut tree according to [46], we apply here
the following simplification: Block-vertices representing blocks that consist of exactly two cut-
points are redundant in our approach and are therefore removed; a new edge directly connecting
the two adjacent cut-vertices is included instead. In Figure 2.1b, the block-vertex labeled “{}”
is an example.

The computational effort for deriving the block-cut graph is linear in the number of edges
and the number of vertices of the original graph G. Indeed, for a connected graph G, when
using a modified depth-first search algorithm (see, for example, [32, pp. 552–557]), all maximal
biconnected subgraphs can be found in O(|E|) time since each edge needs to be considered
only once.

2.2 Evolutionary Algorithms

t← 0;
Initialization(P (0));
Evaluation(P (0));
while not termination criterion do

P ′ ← Selection(P (t));
Recombination(P ′);
Mutation(P ′);
Evaluation(P ′);
P (t + 1) ← Replacement(P (t), P ′);
t← t + 1;

end

Algorithm 1: Generic evolutionary algorithm.

Natural evolution, from the information science point of view, can be regarded as a huge
information processing system. Each organism carries its genetic information referred to as
the genotype, which can be thought of as the construction plan of an organism. The organ-
ism’s traits, which are developed while the organism grows up, constitute the phenotype. If the
organism reproduces before it dies, the genetic information will be passed on to the next gener-
ation. Thus, the organisms can be regarded as the “mortal survival machines of the potentially
immortal genetic information” [116]. Natural evolution implicitly causes the adaptation of life
forms to their environment since only the fittest have a chance to reproduce (“survival of the
fittest”).

Since the early 60’s, several computer scientists independently studied new algorithms based
on the idea of solving engineering problems by simulating natural evolution processes. Although
these imitations represent crude simplifications of biological reality, these mimicked search pro-
cesses of natural evolution yielded robust optimization algorithms. In the ’90s, an increasing
interaction among the researchers of genetic algorithms [79], genetic programming [101], clas-
sifier systems and evolutionary strategies took place. The boundaries between these methods
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were broken down to some extent and evolutionary algorithms (EAs) have been developed that
combine advantages of all these approaches.

A general template of an EA is shown in Algorithm 1. Evolutionary algorithms are based
on the collective learning process within a population of individuals, each of which represents a
search point I in the space I of potential solutions to a given problem. Within the population,
several copies of the same individual may appear. We assume that the current population
contains µ individuals, i.e. P (t) = {I1, . . . , Iµ}. Generations are indexed by t ∈ N, i.e. P (t)
denotes the t-th generation. The initialization procedure generates, usually at random, the
population P (0), the origin of the evolutionary search.

The following four consecutive steps make an iteration of the evolutionary search: the
evaluation of the offspring (through its fitness), the parent selection, the variation, and the
generational replacement. An objective function evaluates search points, and the selection
process favors those individuals with better objective values to reproduce more often than worse
individuals. The variation mechanism allows the mixing of parental information (crossover or
recombination) and introduction of innovation into the population (mutation). In the sequel,
we shortly describe basic concepts of these steps. For a general introduction into evolutionary
algorithms we refer to [12, 120, 52, 11].

The process is stopped when some termination criterion is met, e.g.: the algorithm could
not improve on the overall best solution during a certain number of generations; a given time
limit is reached; or a satisfactory solution is found.

2.2.1 Encoding

The first step in designing an EA for a particular problem is to devise a suitable representation
scheme, i.e. the encoding. By means of an encoding technique, we map the candidate solutions
from the so-called phenotype space, into the so-called genotype space.

Each point in the search space (i.e. candidate solution) is represented by a chromosome
where all parameters that describe the solution are stored in the encoded form. The chromo-
somes consist of genes: each gene takes its value from a finite set of possible values.

The most traditional encoding in genetic algorithms is binary encoding, in which a solution is
represented as a binary string. In case of subset selection problems, this string may correspond
to the characteristic vector of a solution.

There also exists a spectrum of enhanced problem-dependent encoding techniques, like the
ordinal representation (proposed for the traveling salesman problem in [69]), the permutation
based encoding (proposed for the knapsack problem in [78]), or the relatively general weight-
coding [139]. Raidl and Julstrom [143] proposed representing spanning trees in EAs for network
design problems directly as sets of their edges, the so-called edge-set encoding.

2.2.2 Fitness Evaluation

Evolutionary algorithms can be seen as optimization algorithms trying to maximize a fitness
function defined on the search space. The fitness function is usually given by the objective
function of the underlying problem, thus, for each problem, the fitness function needs to be
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defined individually. For combinatorial optimization problems variation operators may not
always produce feasible solutions. It is then necessary to run a repair algorithm [120] before
the fitness of a solution is evaluated. An alternative approach for handling infeasible solutions
is penalization [12], where the fitness function is modified by adding a penalty term to the
objective function.

2.2.3 Selection

If the selection pressure of an EA is to high, good individuals are selected too often for mating
(the so-called super-individuals), the diversity of population decreases and the EA usually
converges to a local optimum. If the selection pressure is too low, good individuals are almost
never favored, the whole approach degenerates to a random search and the EA converges very
slow or does not converge at all.

There are two options in EAs to control selection pressure: parent selection and replacement
scheme. In the parent selection, a set P ′ of parent individuals is selected from the current
generation P (t). The role of the parent selection is to favor individuals with high fitness in
order to focus the evolutionary search on the promising parts of the search space.

The fitness-proportional selection is related to traditional genetic algorithms [79, 67]. The
probability of selecting an individual Ii from the population P (t) is given by:

p(Ii) =
f(Ii)∑

Ij∈P (t) f(Ij)
,

where f(Ij) denotes the fitness of the solution Ij . Realization of this selection is usually done
by roulette wheel sampling [67]: the selection can be seen as spinning a roulette wheel, on which
each solution has a slot sized in proportion to its fitness.

In k-tournament selection (k ≥ 3), independent k-tournaments are performed in the fol-
lowing way: k individuals are randomly drawn from P (t) and the best drawn individual deter-
ministically wins the tournament. The tournament selection can be performed with or without
replacement, i.e. drawn individuals can be returned back into the selection pool of potential
parents, or can be selected at most once, respectively.

2.2.4 Replacement

The second possibility to induce selection pressure is by using the replacement scheme.
Generational replacement [79, 67] represents the simplest scheme, which has been commonly

used in traditional genetic algorithms together with fitness-proportional selection. According
to this scheme, the whole population P (t) is replaced by the offspring population P ′. This
simplest technique does not consider fitness, and therefore does not induce selection pressure.

Steady-state replacement [155] tries to overcome the drawback of the generational replace-
ment. The number of children produced by variation is smaller than the number of parents,
thus, additional strategy is needed which decides about the parents to be replaced. By using
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elitism strategy, the best individuals always survive to the next generation. Duplicate elim-
ination method assures that the children identical to a parent are not included in the new
generation.

2.2.5 Variation

While parent selection and replacement can be defined without knowledge of the underlying
problem, mutation and recombination strongly depend on the encoding of the candidate so-
lutions. For different kind of problems and representations, different variation operators have
been proposed. A survey on the most successful variation operators can be found in [12]. In
the following, classical operators for binary encodings usually used in genetic algorithms will
be described.

Crossover A crossover operator should be designed with the aim to provide highest possible
heritability, i.e. an offspring should have as many common properties to its parents as possible.

The traditional one-point crossover operator [79] works by cutting two parental bit strings
at a randomly selected cutting point p. The head of the first (second) is then connected to the
tail of the second (first) chromosome. There are also generalizations of the one-point crossover:
two-point and multi-point crossover proposed by Goldberg [67] and uniform crossover proposed
by Syswerda [154].

For the advanced evolutionary algorithms, when problem knowledge is incorporated into
the crossover operator, we rather call it recombination to stress the difference between advanced
and standard crossover operators which are usually related to binary encoding.

Mutation Mutation is typically applied to an offspring generated by crossover before the
evaluation of the fitness. However, in genetic algorithms, mutation operators are often used as
“background operators” to add a source of diversity aimed to prevent a premature convergence.

The standard bit-flip mutation, employed in classical genetic algorithms [79, 67], flips inde-
pendently all bits of a string I with a certain small probability pmut. The parameter choice
pmut = 1/|I| (|I| is the length of the bit string I) is frequently used [11].

2.2.6 Hybrid Evolutionary Algorithms

For many combinatorial optimization tasks, it has been shown that it is essential to incorpo-
rate some form of domain knowledge into EAs to yield effective optimization tools. Hybrid
evolutionary algorithms usually represent an incorporation of local-search or greedy heuris-
tic or repair heuristic (when variation operators produce infeasible solution), into traditional
evolutionary algorithms. They can be divided into two groups [12]:

• Algorithms that exploit the Baldwin effect are based on the following idea: Before the
fitness of a solution is evaluated, the heuristic is applied. The fitness is evaluated after
the improvement/reparation, but the changes made by the heuristic are not saved in the
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individual. That way, learned traits during lifetime of the parents are not inherited by
their offspring.

• Opposite to the former algorithms, in algorithms based on Lamarckian evolution, the ac-
quired traits of an organism influence its genetic code. Although the theory of Lamarck
(1809) has been shown wrong in biology with the publication of Darwin’s work, Lamar-
ckian approach has its advantages in optimization: in most hybrid algorithms, the indi-
viduals are altered by the variation operators using improvement/repair heuristics.

2.3 Local Search

Data : A feasible solution I of the problem (I, c).
Result: A locally optimal solution I with respect to neighborhood N .
repeat

generate neighboring solution I ′ ∈ N (I);
if c(I ′) < c(I) then

I ← I ′;
end

until ∀I ′ ∈ N (I) c(I) ≤ c(I ′);

Algorithm 2: Generic local-search algorithm.

Local search (LS) is the basis of many improvement heuristics for combinatorial optimiza-
tion problems. It is a simple iterative method for searching a neighborhood of a current solution
I. Algorithm 2 shows an example of a generic local search algorithm. Suppose that a prob-
lem instance is defined by the pair (I, c), where I denotes the discrete search space, and c

represents the objective function. A neighborhood N for the problem instance (I, c) is given
by a mapping N : I 7→ 2I . N (I) contains all the solutions that can be reached from I by a
single move. A move here is an operator which transforms one solution into another with small
modifications. A solution I∗ is called a local minimum of c with respect to the neighborhood
N iff:

c(I∗) ≤ c(I), ∀I ∈ N (I∗) .

Thus, local search represents a procedure that minimizes the objective function c in a
number of successive steps in each of which the current solution I is being replaced by a
solution I ′ such that: c(I ′) < c(I), I ′ ∈ N (I).

There are different ways to conduct local search [158, 83, 75]. For example, best improvement
performs in a greedy way: the current solution is always replaced with the best solution in the
whole neighborhood. On the other side, first improvement accepts a better solution whenever
it is found.

The time complexity of a certain local improvement procedure strongly depends on the size
of the neighborhood and on the complexity of a single move. The larger the neighborhood, the
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longer it takes to search it; however better local optima will be reached. The disadvantages of
local search are obvious. As a neighborhood search based algorithm, it highly depends on the
starting solution. Furthermore, the resulting solution is only locally optimal.

An unfavorable starting solution may lead to a local optimum with high objective value
and thus high distance to the optimum with respect to both: the objective function and
the neighborhood distance (i.e. the number of moves needed to reach the optimal solution).
Population-based algorithms, like EAs, may overcome this drawback, if a large number of
starting solutions is well distributed over the whole search space. The search is then focused
in parallel on several promising regions of the search space.

The most-popular metaheuristic methods based on the local search are: multi-start local
search, iterated local search [110], variable neighborhood search [75], simulated annealing [3],
tabu search [77], and GRASP [150].

2.4 Memetic Algorithms

Memetic algorithms (MAs) can be seen as “evolutionary algorithms which intend to exploit all
available knowledge of the underlying problem” [124] available in the form of greedy heuristics,
approximation algorithms, local search, specialized recombination operators, or some other
ways. Note that this incorporation of the domain knowledge is not an option – it represents a
fundamental feature of MAs. In the following, the combination of EAs with local improvement
or local search will be addressed, since this symbiosis has been shown to be very successful ([117,
102, 80]). That way, the exploration abilities of the evolutionary algorithm are complemented
with the exploitation capabilities of local search procedures.

The similarities and the differences between hybrid evolutionary algorithms and MAs can
be found argued in [124].

The memetic algorithm’s basic structure used throughout this thesis is shown in Algo-
rithm 3. In this scheme, all candidate solutions in the population always represent local
optima, which is ensured by applying local improvement after a solution’s creation and af-
ter application of the evolutionary variation operators. In each generation, with probability
pcross, one offspring is generated by applying a recombination operator on a pair of selected
parents. Mutation is applied with probability pmut. In the general case, unlike in standard
EAs, recombination and mutation operators can be performed independently of each other.
In our implementation, the population typically contains only different solutions and a newly
created one replaces the worst from the population [142].

The following important aspects, among others, must be considered when designing MAs:

• Since local improvement is iteratively applied, it must be fast; the neighborhood must
be chosen carefully – a neighborhood of a size larger than O(n2) (if n is the input size)
is often too time-consuming.

• Problem specific heuristics that are used to create the initial population, but also the vari-
ation operators and local improvement, have to provide enough diversity, i.e. in general
the created solutions should not be identical or too similar.
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t← 0;
Initialization(P (0));
for solution I ∈ P (0) do

Local-Improvement(I);
end
repeat

select two parents I1, I2 ∈ P (t);
if random > pcross then

I ←Recombination(I1, I2);
Local-Improvement(I);

end
if random > pmut then

Mutation(I);
Local-Improvement(I);

end
if I 6∈ P (t) then

replace a solution in P (t) with I;
t← t + 1;

end
until no new best solution found in the last Ω iterations;

Algorithm 3: A memetic algorithm representing a symbiosis of a steady-state evolutionary
algorithm (with duplicate elimination) with a local improvement method.
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• Recombination and mutation operators must be efficient and should be able to create
only feasible solutions complying with the constraints of the target problem.

• Suitable balance between exploration and exploitation must exist: The search should
on one side cover the whole search space, but on the other side should focus on the
surroundings of already identified high quality solutions.

2.5 Fitness Landscapes

Fitness landscapes have been shown to be an important concept not only in the development of
theory of evolution, but also in understanding and predicting the performance of evolutionary
algorithms for particular combinatorial optimization problems [116, 119, 50].

A fitness landscape is defined by:

• the set of all possible solutions I,

• an objective function that assigns to each I ∈ I a fitness value f(I), and

• a distance measure d(I, I ′) which is usually defined in correspondence to the used neigh-
borhood as the minimum number of moves needed to transform I into I ′.

Hence, the search space of an optimization problem can be viewed as a fitness landscape
in which each point represents a candidate solution and where the height of the point in the
landscape is determined by its solution quality (the fitness of the solution). Intuitively, the
fitness landscape can be imagined as a mountain region with peaks, craters, valleys and hills.
In that context, a local-search based algorithm can be thought of as navigating through the
fitness landscape in order to find its highest peak.

The effectiveness of any local-search based method or memetic algorithm highly depends
on the structure of the corresponding fitness landscape. The important global properties of
the fitness landscape are: the ruggedness of the landscape, the distribution of valleys and local
optima in the search space, the overall number of local optima and the topologies of the basins
of attraction [50]. Analyzing these parameters, we can predict the efficiency of an optimization
to some extent.

Fitness distance correlation has been proposed by Jones and Forrest [85] as a useful tool
for analyzing the corelation between solution fitness and the distance between solutions to
the nearest globally optimal solution. Given a set of candidate solutions with fitness values
F ={f1, f2, . . . , fµ} and the corresponding distances D ={d1, d2, . . . , dµ} to the closest global
optimum, the fitness-distance correlation coefficient is given as:

ρ(F ,D) =
fFD

σF · σD ,

where fFD is the covariance:

fFD =
1
µ

µ∑

i=1

(fi − f)(di − d) .
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d and f represent the average distance and the average fitness, respectively, and σD (σF ) are
the corresponding variances.

If fitness increases when the distance to the optimum becomes smaller, then search is
expected to be easy for local-search based algorithms. A value of ρ = 1.0 (ρ = −1, for
maximization problems) indicates that there is a strong correlation between the objective
values of MA solutions and their distance to the nearest optimum, i.e. the search should be
”easy”. On the other side, a value of ρ = −1.0 (ρ = 1, maximization) indicates that the random
search may be more efficient then a local-search based method.

2.6 Exact Optimization Methods Based on Linear Program-

ming

In the following, we briefly review existing approaches to solve ILPs with the aid of linear
programming. For an exhaustive introduction to the theory of linear and integer programming
we refer to [148, 129, 1].

2.6.1 Cutting Plane Algorithm

The cutting plane approach has been proposed in 1954 by Dantzig, Fulkerson, and John-
son [37], and since then, many of successful applications for COPs have been reported. A nice
bibliography on cutting plane methods can be found in [89].

As an example for the cutting plane approach, within this section we consider the symmetric
traveling salesperson problem (TSP) and its ILP formulation.

Given a weighted undirected graph G = (V, E, c) with n vertices and m edges, the symmetric
TSP is to find a tour visiting each vertex exactly once and having minimum total cost. The
problem can be modeled in the following way:

min cT x

s.t. x(δ(v)) = 2 for all v ∈ V

x(δ(W )) ≥ 2 for all W ⊂ V, W 6= ∅, V
0 ≤ x ≤ 1

x integer

Here, x(F ) =
∑

e∈F x(e) for F ⊂ E, while δ(W ) represents the undirected cut induced
by W ⊂ V . For each edge e ∈ E, value xe is set to one if the edge belongs to the solution,
otherwise it is set to zero. The first group of equations, the so-called degree constraints, force
the degree of each vertex in V to be exactly two. What follows, are the inequalities that
forbid subtours, the so-called subtour elimination constraints (SECs). This ILP formulation
represents a typical example in which the number of constraints is, in general, too large to be
explicitly represented on a computer. In the cutting plane approach [1, 2, 73], the integrality
constraints for x are relaxed to 0 ≤ x ≤ 1 (or to x ∈ Rm, in general case) and only a small
initial subset of constraints is chosen. This linear program is then solved, and the cutting
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plane algorithm tries to find constraints that are not satisfied by the obtained solution (and
are therefore not already included in the LP) but are valid for the problem. These violated
constraints are called cuts or cutting planes.

If there exist such valid inequalities that can cut off the current LP-solution (the, so-called,
violated inequalities), one or more of them are added to the LP and it is resolved. If cutting
plane algorithm does not find violated constraints anymore, and if the obtained solution is
feasible and integer, then it is also optimal. However, the solution of the final LP need not
to be feasible for the starting ILP, in which case its objective value represents a lower bound
of the original ILP. Algorithm 4 shows a generic cutting plane algorithm for a 0-1 integer
linear program. Such lower bound can be used to measure the quality of a known feasible
solution (obtained by means of a heuristic). To get an optimal solution, we can then switch to
a branch-and-bound approach (see the next Section).

However, the problem of finding violated constraints (the so-called separation problem) is
not always solvable in a polynomial time. In this case, heuristic separation algorithms can be
used. Then, if no violated constraints can be found anymore, there is no guarantee that the
solution found so far is optimal or feasible for the original problem. Nevertheless, this solution
can provide valuable lower bounds for the actual ILP optimum [92].

initialize the constraint system (A′, b′) with a small subset of (A, b);
repeat

find optimum solution of cT x = min{cT x | A′x ≤ b′, 0 ≤ x ≤ 1};
if x is not feasible for the starting LP then

generate a cutting plane (f, f0), f ∈ Rn, f0 ∈ R with
fT x > f0, and
fT x ≤ f0, ∀x such that Ax ≤ b, xi ∈ {0, 1},∀i;

add the inequality fT x ≤ f0 to the system (A′, b′);
end

until x is feasible for the starting LP ;

Algorithm 4: Generic cutting plane algorithm for a 0-1 ILP.

There exist general cutting plane algorithms (like those based on Gomory cuts [129, pp. 367–
371]), but for larger instances of COPs their applicability seems to be limited. Thus, cutting
planes designed for a particular problem need to be taken into consideration. A closer inves-
tigation of the polytope PI associated to a COP (E, I, c) (see Section 2.1.2) usually provides
useful informations.

Facet defining inequalities are not dominated by any other valid inequalities, and thus, they
represent the best cuts. However, finding facet defining inequalities for a particular COP is,
in general, not an easy task, and often the corresponding separation problems are NP-hard
themselves.
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2.6.2 LP-based Branch-and-Bound

When applying a cutting plane algorithm in general we end up in the situation where the current
solution x∗ is not feasible for the original integer linear program, but we are unable to identify
further inequalities violated by x∗. At that point we can employ another basic technique for
solving hard ILPs: branch-and-bound. This is a divide-and-conquer approach that solves an ILP
by splitting it recursively into smaller subproblems until a subproblem can be trivially solved
or discarded. The algorithm maintains a global upper bound, UBg (the objective value of the
best solution known so far; usually initialized by some heuristic), and for every (sub)problem, a
local lower bound, LB . The latter is computed by solving the LP-relaxation of the subproblem.
We distinguish the following cases:

• If the solution of the relaxation happens to be feasible for the original problem and its
objective function is lower than the current upper bound, the algorithm updates the
upper bound and memorizes the solution. Additionally, the current vertex is fathomed,
since no optimal solution of subproblems corresponding to descendants of that vertex can
be better than the current solution.

• In case the local lower bound is greater than or equal to the global upper bound, the
algorithm fathoms the current vertex for the same reasons as above.

• If the local lower bound is lower than the global upper bound and the optimal solution
of the LP-relaxation is not feasible for the original problem, the algorithm selects one of
the fractional variables xi and branches over it by creating two new subproblems. The
simplest branching strategy in a 0-1 ILP splits the current problem into two subproblems
with xi permanently set to 0 and 1, respectively2.

Algorithm 5 summarizes the steps of the generic branch-and-bound algorithm. For more
details we refer to e.g. [17]. Unfortunately, for most of the NP-hard problems, LP-relaxations
do not provide local lower bounds that are strong enough for pruning the search tree sufficiently
enough in order to solve large instances. To enhance the performance of branch-and-bound,
we incorporate the cutting plane or column generation algorithm into it.

2.6.3 Branch-and-Cut

The branch-and-cut algorithm extends LP-based branch-and-bound by combining it with the
cutting plane algorithm. At every vertex of the branch-and-bound tree, the algorithm searches
for cutting planes, trying to improve the bound of the LP-relaxation. For many ILPs, much
better local lower bounds can be derived in this way, resulting in substantially smaller numbers
of necessary subproblems in the branch-and-bound trees.

In practice, branch-and-cut has been highly successful on various, sometimes even large
NP-hard combinatorial optimization problems [131, 86, 87, 127, 125, 29].

2If we are dealing with a general ILP, the branching is usually done by splitting the constraint l ≤ xi ≤ u

into two l ≤ xi < m and m ≤ xi ≤ u and resolving the corresponding subproblems.
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Data : Integer linear program:
ILP = min{cT x | Ax ≤ b, x ∈ {0, 1}n}

Result: Optimal solution for ILP.

yes

no

yes

yes

no

no

stop

output

list empty

initialize

start

LB < UBg feasible

branch

select

fathom

compute

global up-

per bound

UBg and

local lower

bound LB

Algorithm 5: Generic branch-and-bound algorithm.

2.6.4 Column Generation

If the starting LP – the so-called master problem – contains too many (e.g. exponentially many)
variables so that it cannot be solved explicitly, one may start with a small subset of variables.
Suppose that the indices of these variables are stored in J , J ⊂ {1, 2, . . . , n} (J is also called
the set of active, or basic, variables). We first compute an optimal solution of the so-called
restricted master problem:

min{cT
J xJ | AJxJ ≤ bJ , xJ ∈ R|J |+ } ,

Note that if a column i is not present in the matrix AJ , the variable xi is automatically set
to zero. We then need to check if the addition of an inactive variable might improve the
objective value. This can be done by computing the reduced costs of inactive variables. These
reduced costs of a non-basic variable j with associated column aj ∈ Rm and objective function
coefficient cj ∈ R, are defined as:

rj = cj − yT aj ,

where y represents the solution of the corresponding basic dual LP problem. If all non-basic
variables “price out correctly”, i.e. if there is no variable with negative reduced costs (as far as
minimization is concerned), the optimal solution of the restricted problem is also optimal for
the corresponding master problem. If there is a variable with negative reduced costs, we add
it to the restricted problem, re-optimize and iterate. This process of dynamically identifying
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variables with negative reduced costs can be also thought of as a process of generating con-
straints for the dual of the LP-relaxation. Algorithm 6 shows the generic column generation
algorithm.

Select a small subset J of the variables {1, . . . , n};
repeat

Obtain an optimum basic solution xJ of the LP:
cT
J xJ = min{cT

J xJ | AJxJ ≤ b, xJ ∈ R|J |};
Determine the values of the dual variables y;
if ∃i, i ∈ {1, . . . , n} \ J such that ri = ci − yT ai < 0 then

Add column i into J ;
end

until ri = ci − yT ai ≥ 0, ∀i ∈ {1, . . . , n} \ J ;

Algorithm 6: Generic column generation algorithm.

The problem of finding a non-basic variable that does not price out correctly, or proving
that there are no such variables, is also called pricing. Usually, when the LP relaxation of
an NP-hard problem contains an exponential number of variables, the corresponding pricing
problem which searches for a column with minimal reduced costs, can be NP-hard as well. In
that case, a heuristic pricing algorithm may find a variable with negative reduced costs; if it
does not, however, there is no guarantee that all non-basic variables price out correctly. For a
thorough review of the column generation approach, we refer to [17, 157], for example.

Sparse and Reserve Graph Pricing The pricing algorithm shown in Algorithm 6 inserts
one non-basic variable per iteration. However, it is also possible to add a subset of non-basic
variables with negative reduced costs at once.

Suppose we are dealing with a group of graph problems with one-to-one correspondence
between the integer variables in the ILP formulation of the problem and the edges of the
original graph. Examples of such problems are the traveling salesman problem (TSP), the
Steiner problem in graphs, and also the prize-collecting Steiner tree problem. The size of
feasible solutions in such problems is usually bounded by n (the number of vertices), while
the number of variables can be

(
n
2

)
in the worst case, when the graph is complete. In that

case, the computation can be accelerated significantly if only a suitable, promising subset of
edges is initially selected and appropriately augmented during the column generation phase.
This small set of active variables corresponds to a subgraph of the original graph (the so-called
sparse graph), and the whole technique is called the sparse graph technique [70].

The question of how to initialize a sparse graph plays an important role in the design of a
column generation algorithm. For some problems, e.g. the traveling salesman problem, a good
choice for a sparse graph is the k-nearest neighbor graph [70]. If there is no guarantee that the
sparse graph contains a feasible solution, it should be augmented by the edges of a solution
computed by a heuristic. Padberg and Rinaldi [131] suggested to create heuristically a series of
feasible solutions and initialize the sparse graph with all involved edges. Reinelt [145] proposed
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to use a Delaunay graph to initialize the sparse graph.
In addition to the sparse graph, Jünger et al. [89] proposed to use the so-called reserve

graph. Edges of the reserve graph represent a set of additional promising edges, which do
not belong to the sparse graph and should be considered for inclusion in the LP before any
other edges. For example, if the 5-nearest neighbor graph is chosen as sparse graph, then the
difference to the 10-nearest neighbor graph can be a suitable reserve graph. In the pricing
phase, edges from the reserve graph are checked with higher priority than the other edges, thus
the running time of the algorithm can be improved, if the reserve graph contains well-chosen
edges. In one pricing iteration, all edges from the reserve graph with negative reduced costs
are added to the restricted problem and the LP is resolved. If all edges from the reserve graph
price out correctly, complete pricing is performed: from the set of all inactive edges, those with
negative reduced costs are determined and added to the LP at once.

Branch-and-Price The branch-and-price algorithm is an LP-based branch-and-bound algo-
rithm in which the variables are dynamically generated. Instead of solving a separation problem
at each vertex of the enumeration tree as in branch-and-cut, we need to solve the problem of
finding a column, i.e., a feasible non-active variable that can improve the objective value of the
current solution. In [15] a thorough review of this method is provided.

2.6.5 Branch-and-Cut-and-Price

When both variables and constraints are generated dynamically during an LP-based branch-
and-bound algorithm, the technique is called branch-and-cut-and-price (BCP). In such a scheme,
there is a pleasing symmetry between the treatment of constraints and that of variables. How-
ever, the difficulty of this combination is that the pricing problem is modified by the addition
of cutting planes. The coefficient of a new column in a row added to the original problem has
to be considered in the pricing problem.

In addition to the standard branch-and-cut steps, pricing must be performed before the
search tree is pruned at some subproblem. Its purpose is to check if the LP-solution computed
in the sparse graph is valid on the complete graph, i.e. if all inactive variables “price out”
correctly. If this is not the case, inactive variables with negative reduced costs are added to
the sparse graph and the new LP is solved. Otherwise, the local lower bound, and probably
the global lower bound can be updated.

The combination of constraint and column generation has been successfully applied to
combinatorial optimization problems that involve a large number of variables, yet for which
the number of variables in feasible solutions is relatively small [103].
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There are two main aspects for robust communication networks: reliability and surviv-
ability. Reliability is the probability that a network functions according to a specification.
Survivability is the ability of a network to perform according to a specification after some
failure. After the recent electrical power blackouts in the USA and some European countries,
it has become clear that the survivability of networks play an important role in the design of
electrical power supply. In many other applications it is also not acceptable that the failure
of a single service vertex—be it a computer, router, or other device—leads to a disconnection
of other vertices. Survivability is thus extremely important in modern telecommunication net-
works, in particular in backbones. Redundant connections need to be established to provide
alternative routes in case of a temporary break of any one vertex.

This kind of robustness of a network is described in graph theory by means of vertex con-
nectivity. A k-connected network, k ≥ 2, is said to be survivable. With today’s technology the
probability of a failure can typically be kept small, but dropouts are still potentially harmful.
The probability of a second failure before a first one is repaired is often neglected; k-connected
networks with k ≥ 3 are usually considered not worth the additional costs. Therefore, through-
out this thesis we focus on the most common case of reliable networks which are 2-connected
networks.

In the weighted vertex biconnectivity augmentation problem for graphs (V2AUG), a con-
nected but not vertex biconnected network is given. Thus, the removal of cut-points separates
the network into unconnected components. We say that we cover a cut-point when we add
some links to ensure that the removal of this vertex no longer disconnects the network. The
global aim is to identify a set of additional links with minimum total costs in order to cover
all cut-points. Besides designing survivable networks, vertex biconnectivity augmentation has
important applications in the development of reliable database systems [45] and in improving
statistical data security [72].

Formally, the problem is defined as follows.

Definition 7. [Weighted Vertex-Biconnectivity Augmentation, V2AUG]
Let G = (V, E, c) be a vertex biconnected, undirected graph with vertex set V and edge set
E representing all possible connections. Each edge e ∈ E has associated costs c(e) > 0. A
connected, spanning, but not vertex biconnected subgraph G0 = (V, E0), with E0 ⊂ E represents
an existing network, and Ea = E \ E0 is the set of edges that may be used for augmentation.
The objective is to determine a subset of these candidate edges Es ⊆ Ea so that the augmented
graph Gs = (V, E0 ∪ Es) is vertex biconnected and

c(Es) =
∑

e∈Es

c(e) (3.1)

is minimal.

Figure 3.3a shows an example of a graph G with its set of given edges E0 and possible aug-
mentation edges Ea. In the sequel we will refer to this problem briefly as vertex biconnectivity
augmentation. If in Definition 7 it is requested that the augmented graph Gs = (V, E0 ∪ Es)
is edge biconnected (instead of vertex biconnected), we speak of weighted edge biconnectivity
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augmentation (E2AUG), or shortly edge biconnectivity augmentation. In the sequel, we will
also sometimes refer to weighted graphs as G = (V, E), when it is clear from context which
edge-cost function is involved.

This chapter is organized as follows: An overview on former approaches to V2AUG and
related problems is given in Section 3.1. Within Section 3.2 we describe an efficient preprocess-
ing based on the derivation of a more compact block-cut graph GA from the problem’s original
graph. Techniques are introduced, which may shrink the block-cut graph substantially by fixing
or discarding certain augmentation edges in safe ways. Furthermore, additional preprocessing
steps that remove some block-vertices, and compress paths are proposed. Finally, we describe
some further data structures created during preprocessing that allow the following optimization
to be implemented in a more efficient way. Section 3.3 is devoted to a memetic algorithm which
searches for a low-cost solution on the reduced block-cut graph. The best solution found is
finally mapped back to a solution of the original V2AUG instance. We provide an exhaustive
experimental comparison of the new approach against other algorithms for V2AUG.

In Section 3.4, we propose a branch-and-cut-and-price (BCP) algorithm which searches for
optimum solutions on the block-cut graph. We first describe a simple branch-and-cut algorithm
based on the minimum-cut ILP formulation of the problem. To enhance its performance, we
propose the incorporation of the column generation method based on the sparse and reserve
graph techniques. We also propose the insertion of multiple violated cuts within the separation
phase, and a local improvement procedure as primal heuristics. Using the latest approach, we
found optimal solutions for some complete graphs with more than 400 vertices.

In Section 3.5, we investigate possible ways to use the knowledge about the problem ob-
tained after running the MA, to improve the performance of the branch-and-cut-and-price
approach. We consider setting lower bounds by MA, biasing primal heuristic and guiding
column generation using MA results. Conclusions are drawn in Section 3.6.

The main results of this chapter related to the memetic algorithm are published in [108].
Preliminary results appeared also in [93]. We also developed a memetic algorithm for edge
biconnectivity augmentation and published our results in [144]. Preliminary results appeared
in [107].

3.1 Previous Work

Eswaran and Tarjan [46] were the first to investigate V2AUG. Using a reduction from the
Hamiltonian circuit problem, they proved that the decision problem associated with V2AUG
is NP-complete. In [159], Watanabe and Nakamura proved that minimum-cost augmentation
for edge or vertex k-connectivity is NP-hard, for any k ≥ 2.

Special Cases Solvable in Polynomial Time

Regarding V2AUG, an exact polynomial-time algorithm could be found for the special case
when G has unit edge costs [81]. The algorithm runs in O(|V |) time. It is also based on the



36 CHAPTER 3. VERTEX BICONNECTIVITY AUGMENTATION

construction of the block-cut tree. A parallel implementation runs in O(log |V |) time using
O(|V |+ |E|) processors on an EREW PRAM.

Optimal edge biconnectivity augmentation of a Hamiltonian path is possible in O(|V | log |V |)
time [61]. If the graph G0 = (V, E0) represents a depth-first search tree1 of G, optimal edge
biconnectivity augmentation can be done in O(M ·α(M,n)) where α is the inverse Ackermann
function and M = |E| · α(|E|, |V |) [62]. Provan and Burk [136] showed that it is possible to
optimally augment any subtree T = (VT , ET ) of G in O(n2k2) time, if the graph G is planar,
and |VT | = k.

Approximation Algorithms

Frederickson and Jàjà [56] described an approximation algorithm for undirected graphs to
achieve vertex biconnectivity. The algorithm runs in O(|V |2) time and for the general case
finds a solution within a factor 2 of the optimum2, with the assumption that the graph G0 is
connected. If G0 is not necessarily connected, the approximation factor increases to 3, however,
we do not consider this case here. The algorithm includes a preprocessing step that transforms
the fixed graph G0 into the corresponding block-cut tree, superimposes the augmentation edges,
and performs the basic reductions (see Section 3.2). The augmented block-cut graph is further
extended to a complete graph such that there is an augmentation edge for each pair of vertices
{u, v} 6∈ ET . All these augmentation edges get new “reduced” costs according to the following
definition and maintain back-references to the original augmentation edges where the costs
come from:

c′(u, v) = min
{x,y}∈EA

({c(x, y) | u, v are on the {x, y}-path in T} ∪ {∞}) . (3.2)

In the main part of the algorithm, the block-cut tree T is directed toward an arbitrarily
chosen leaf r, the root vertex, yielding an ingoing arborescence. Each directed tree-edge is
assigned zero costs. Each cut-vertex is substituted by a star-shaped structure including new
dummy-vertices in order to guarantee that strongly connecting the block-cut tree implies vertex
biconnectivity of the underlying fixed graph G0. Two different types of augmentation edges
are distinguished: A back-edge connects a vertex with one of its descendants in the directed
block-cut tree; all other augmentation edges are called cross-edges. Back-edges are directed
from the vertex nearer to the root toward the vertex farther away; cross-edges are replaced by
pairs of reversely directed edges. Finally, on this directed block-cut graph a minimum outgoing
spanning arborescence is derived and the solution’s edge-set Es is obtained.

The approximation algorithm described above has been improved by Khuller and Thurimella
[95]. The main difference and the advantage of their algorithm is that the extension of the
block-cut graph to a complete graph is omitted. Instead, each cross-edge (u, v) is replaced

1A rooted spanning tree T of a graph G is a depth-first search tree if for each non-tree edge (u, v) either u is

an ancestor of v in T , or v is an ancestor of u in T .
2Let P be a minimization problem, and let A be an algorithm that, for any instance s of P , returns a feasible

solution A(s). A is a k-approximation algorithm for P if, for any instance s, A(s) ≤ k ·OPT(s), where OPT(s)

denotes the optimal solution for s.
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by two reversely directed cross-edges (u, v) and (v, u) and two back-edges (lca(u, v), u) and
(lca(u, v), v), i.e. back edges from the least common ancestor of u and v, to u, respectively v.
Further, no dummy vertices are included, but each augmentation edge (vc, v) going out of some
cut-point vc is replaced by an edge (vb, v), where vb is the vertex adjacent to vc on the undirected
path from vc to v in T . The algorithm exhibits a time complexity of only O(|E|+ |V | log |V |),
but has still the approximation factor 2. Empirical results of this algorithm can be found in
Section 3.3.6.

An iterative approach based on Khuller and Thurimella’s algorithm has been proposed by
Zhu et al. in [162]; for more details, see also [161]. In each step, a drop-heuristic measures the
gain of each augmentation edge as if it would be included into a final solution. This is achieved
by calling the minimum outgoing spanning arborescence algorithm for each edge once with
its cost set to zero and once with its original cost. We choose an edge with the highest gain
and set its cost permanently to zero. The process is repeated until the obtained arborescence
has zero total costs. Furthermore, the whole algorithm is applied with each leaf of the block-
cut tree becoming once the root, and the overall cheapest solution is the final one. Although
the theoretical approximation factor remains 2, practical results are usually much better than
those obtained by applying Khuller and Thurimella’s algorithm; our empirical comparison in
Section 3.3.6 also supports this. However, time requirements are raised substantially.

Let Gs = (V,E0 ∪ Es) be a feasible solution. An edge e ∈ Es is said to be redundant if
its removal does not violate the biconnectivity-property of Gs. Figure 3.1 shows that due to
the computation of the minimum outgoing spanning arborescence, Khuller and Thurimella’s
algorithm produces redundant edges. Although the transformations in Frederickson and Jàjà’s
algorithm are different, the same behavior can be observed. Due to the computation of drop-
values within the algorithm of Zhu et al., such redundant edges can be avoided.

Recently, Kortsarz et al. [100] proved that it is APX-hard3 to solve V2AUG even in the case
where every pair of vertices forms an augmenting edge of cost 1 or 2. Furthermore, the authors
showed that minimum-cost vertex connectivity augmentation from k to k +1 is APX-hard, for
any k ≥ 2, even for graphs with uniform costs.

Metaheuristics

A straight-forward genetic algorithm for V2AUG has been proposed in [106]. This algorithm is
based on a binary encoding in which each bit corresponds to an edge in Ea. Standard uniform
crossover and bit-flip mutation are applied. Infeasible solutions are repaired in Lamarckian
way by a greedy algorithm which temporarily removes cut-points one by one and searches
for the cheapest augmentation edges that reconnect the separated components. The major
disadvantage of this genetic algorithm is its high computational effort, which mainly comes
from the repair strategy having a worst-case running time of O(|V | |Ea| log |V |) per candidate
solution.

3A problem P is APX-hard, if there exists some fixed ε > 0 such that it is NP-hard to approximate the

problem within ratio 1 + ε.
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Figure 3.1: Due to the application of the minimum outgoing spanning arborescence algorithm
at the end of Khuller and Thurimella’s algorithm, the final solution may contain obviously
redundant edges. (a) Given graph G = (V,E0 ∪ Ea). Solid edges represent graph G0 =
(V, E0), dashed edges represent Ea. (b) Directed block-cut graph with a randomly chosen root
r, obtained after the transformations of Khuller and Thurimella’s algorithm. (c) Minimum
outgoing spanning arborescence. Its weight is 26; the corresponding V2AUG solution’s costs
are 26. The optimal solution’s costs are 15, while the corresponding arborescence costs are 30.

Related Work

Eswaran and Tarjan [46] proved that for strong connectivity augmentation on a directed graph
as well as for edge biconnectivity augmentation on an undirected graph, minimum-cost augmen-
tation is NP-hard. The problems remain NP-hard even if graph G0 is connected. Frederickson
and Jàjà [56] have shown that the problem of strongly connecting a weakly connected directed
graph remains NP-hard. In their proof, they made a reduction from the 3-dimensional matching
problem.

Some relations between V2AUG and the traveling salesman problem are pointed out in [57].
In [56, 95, 161], the approximation algorithms described above address edge biconnectivity
augmentation as well as strong connectivity augmentation. In [144], an effective evolutionary
algorithm for E2AUG is given, which scales well to large problem instances and outperforms
several previous heuristics. A compact edge-set encoding and special initialization and variation
operators that include a local improvement heuristic are applied.

Based on this algorithm for E2AUG, a memetic algorithm for V2AUG, presented in the
sequel, has been developed. Major differences to the evolutionary algorithm for E2AUG lie in
the underlying data structures (e.g., the now necessary block-cut graph), in the preprocessing,
in the recombination and mutation operators, in the local improvement algorithm, and in
the way how this local improvement is integrated in the evolutionary algorithm. While it
is relatively easy to check and eventually establish the cover of a single fixed edge, this is
significantly harder to achieve for a cut-vertex, especially in an efficient way: A critical fixed
edge can always be covered by a single augmentation edge, and it is obvious which augmentation
edges are able to cover the critical edge. On the other side, in general, a combination of multiple
augmentation edges is necessary to completely cover a cut-vertex.
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“Augmenting Empty Graphs”. The problems of finding the minimum-cost edge- or vertex-
k-connected spanning subgraph, k ≥ 2, of a graph (k-ECSS, or k-VCSS, respectively) are also
known to be NP-hard. The first approximation algorithm with an approximation factor of
2 + 2(k − 1)/n, for any k ≥ 2, has been provided in [94]. However, this algorithm works only
on complete weighted graphs where the triangle inequality is satisfied. Cheriyan et al. [25]
developed an improved approximation algorithm for the vertex k-connectivity case and gave a
survey on former approaches. To our knowledge, meta-heuristics have not yet been applied to
this problem.

In [31], a so-called bootstrap heuristic for the construction of a minimum-weight edge bi-
connected subgraph has been developed. Solutions are obtained by means of bootstrapping a
lower bounding procedure based on linear programming relaxations of the problem.

Smallest Augmentation. Khuller and Raghavachari [94] provided an 1.85-approximation
algorithm for finding the smallest k-ECSS with respect to the number of edges. The algorithm
has been improved in Cheriyan and Thurimella [24], where an approximation algorithm with
factor 1+2/(k +1) has been proposed. Regarding k-VCSS, the same paper provides a 1+1/k-
approximation algorithm.

Planar Augmentation The planar augmentation problem is the problem of adding a min-
imum number of edges to a given planar graph such that the resulting graph is biconnected
and still planar. In the context of graph drawing, Fialko and Mutzel [48] developed a fac-
tor 5

3 approximation algorithm for planar augmentation. A polyhedral approach to planar
augmentation and related problems is proposed in [126].

Augmenting Multi-Graphs. Another class of related problems is the augmentation of
multi-graphs with the smallest number of unweighted edges so that the resulting graph becomes
edge- or vertex-k-connected. In particular the edge k-connectivity case turned out to be an
easier problem: Watanabe and Nakamura [159] described a polynomial time algorithm which
solves the general edge k-connectivity problem to optimality. Gabow [59] improved the running
time of this algorithm to O(m + k2n log n). In case of vertex k-connectivity, exact polynomial
time algorithms are known for k ∈ {2, 3, 4}; it is still an open question whether the problem is
NP-hard for k ≥ 5. A recent study on this topic can be found in [82].

Survivable Network Design Problem. The more general problem of designing a minimum-
cost network with individually specified connectivity requirements for each vertex—the so-
called survivable network design problem—has been attacked by Stoer in [152], using a polyhe-
dral approach. By means of cutting-plane techniques the algorithm is able to find optimal or
near-optimal solutions for instances of small and moderate size. Monma and Shallcross [122]
considered a variant of this problem in which the connectivity requirements of each vertex
are limited to {0, 1, 2} and suggested heuristics for constructing feasible solutions and locally
improving them. Note that V2AUG and E2AUG represent special cases of this problem.
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Recently, Fortz [55] studied a new kind of survivable network design problem with bounded
rings. It includes an additional constraint limiting the maximum length of cycles for which no
shortcuts exist. The author provided a study of the underlying polyhedron and proposed several
classes of facet-defining inequalities used in a branch-and-cut algorithm. Several heuristics are
also proposed in order to solve real-world instances of larger size.

3.2 Preprocessing

To attack problems of larger size and to allow an efficient optimization, we propose a general
optimization framework whose outline is given in Figure 3.2.

Out of the original graph G, a more compact block-cut graph GA is deterministically
derived. Then, a new enhanced preprocessing is applied, which may shrink the block-cut graph
substantially by fixing or discarding certain augmentation- or tree-edges in safe ways. Some
further data structures allowing the following optimization to be implemented in a more efficient
way are also created during preprocessing. The core of the whole system are the following two
algorithms, both described in detail in the sequel:

• a new memetic algorithm (MA) that uses problem specific variation operators and strongly
interacts with a local improvement procedure, and

• a branch-and-cut-and-price (BCP) algorithm that searches for good lower bounds and, if
possible, for optimal solutions.

Both algorithms search for the solutions on the reduced block-cut graph. These solutions are
finally mapped back to the corresponding solutions of the original V2AUG instance.

The following subsections describe the preprocessing mechanisms in detail.

3.2.1 Superimposing Edges

After the block-cut tree T has been derived from graph G0, all augmentation edges in Ea are
superimposed on T forming a new edge-set EA: For each edge (u, v) ∈ Ea, a corresponding edge
(u′, v′) is created with u′, v′ ∈ VT being the vertices that are associated with u, respectively
v; edge costs are adopted, i.e. c(u′, v′) = c(u, v). The so-called (augmented) block-cut graph
GA = (VT , ET ∪ EA) may be a multi-graph containing self-loops and multiple edges between
two vertices. However, applying the following safe reductions yields a simple graph:

1. Self-loops (u, u) ∈ EA, as, e.g., edge e′1 in Figure 3.3b, are discarded. They can never
help in establishing biconnectivity.

2. Each augmentation edge that connects the same vertices as an edge from ET is discarded,
since such an edge can also never help in establishing biconnectivity. See edge e′2 in
Figure 3.3b.

3. Augmentation edges connecting two cut-vertices that are adjacent to the same block-
vertex in T are also discarded because of the same reason; see edge e′3 in Figure 3.3b.
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Map solution S back to a solution Es ⊆ E
of the original problem

– create supporting data structures
– apply deterministic reduction rules to GA

Enhanced preprocessing:

V2AUG problem instance consisting of
Input:

– spanning connected subgraph G0 = (V, E0) (= existing network)
– weighted graph G = (V, E), (= all possible connections)

Output:
– augmented graph Gs = (V,E0 ∪ Es),

Apply either:
– a memetic algorithm, or
– branch-and-cut-and-price
to obtain a solution S on GA.

Derive block-cut graph GA = (VT , ET ∪ EA)

Figure 3.2: Basic structure of the proposed approach.
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Figure 3.3: (a) A base graph G = (V, E0 ∪ Ea) with its fixed edges E0 and optional augmen-
tation edges Ea and (b) the corresponding block-cut tree T = (VT , ET ) with the superimposed
augmentation edges EA, generating the block-cut graph GA = (VT , ET ∪ EA).
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4 of a cut-vertex vc. Dashed edges form
edge-set Γ(vc). Dotted augmentation edges do not contribute in covering vc.

4. From multiple augmentation edges connecting the same vertices from VT , only one with
minimum weight is retained; see edge e′4 in Figure 3.3b when assuming c(e′4) < c(e′5).
The more expensive edges may never appear in an optimum solution.

In order to be finally able to derive the original edges Es ⊆ Ea corresponding to a solution
S ⊆ EA identified on the block-cut graph, it is necessary to maintain a back-mapping from EA

to Ea.

3.2.2 When is a Cut-Vertex Covered?

A block-cut tree’s edge e ∈ ET is said to be covered by an augmentation edge eA = (u, v) ∈ EA

if and only if e is part of the tree path connecting u with v. In order to completely cover a
cut-vertex vc ∈ VT , all its incident tree-edges need to be covered, but this is in general not
sufficient.

If vc and its incident edges are removed from T , the tree falls apart into l connected
components Cvc

1 , . . . , Cvc
l , where l is the degree of vc in T ; we call them cut-components of vc;

Figure 3.4 illustrates this. To completely cover vc, at least l−1 augmentation edges are needed
such that all cut-components Cvc

1 , . . . , Cvc
l are united into one connected graph.

We say that an augmentation edge eA = (u, v) ∈ EA contributes in covering the cut-vertex
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vc, if it connects two cut-components Cvc
i and Cvc

j . Note that two tree-edges incident to vc are
covered by eA.

For any cut-vertex vc ∈ VT , let Γ(vc) ⊆ EA be the set of augmentation edges that contribute
in covering vc. Furthermore, for each eA ∈ EA, let Ψ(eA) ⊆ VT be the set of cut-vertices to
whose covering eA contributes, i.e., Ψ(eA) = {vc ∈ VT | eA ∈ Γ(vc)}. Preprocessing explicitly
computes and stores the sets Γ(vc) for all cut-vertices and the sets Ψ(eA) for all augmentation
edges as supporting data structures. This is done by first performing a depth-first search on T

and storing for each vertex its depth and a reference to its parent vertex, in order to be able
to efficiently determine the tree-path between any pair of vertices. Then, the computation of
all sets Γ(vc) and Ψ(eA) can be performed in O(|EA| |VT |) time. The space required for these
data structures is bounded above by O(|EA| |VT |).

Let us consider the following special case in which the graph G is complete, and the fixed
graph G0 represents a balanced binary tree:

Definition 8. [Perfect Binary Tree]
A perfect binary tree of height h ≥ 0 is a binary tree T = {r, TL, TR}, with the following
properties:

• If h = 0, then TL = ∅ and TR = ∅,

• If h > 0, then both TL and TR are perfect binary trees of height h− 1.

The vertex r is called the root vertex of the tree.

It follows directly from the definition that a perfect binary tree of height h has exactly
n = 2h+1 − 1 vertices.

Augmenting a Perfect Binary Tree. Suppose we are given a complete graph G = (V,E)
with a fixed perfect binary tree G0 = (V, E0) of height h.

We want to answer the following question: What are the memory complexities of Γ and
Ψ data structures in this special case? After the transformation of G0 into the block-cut tree
T , we obtain a perfect binary block-cut tree with block-vertices representing leaves, while the
rest of the vertices are cut-vertices with one-to-one correspondence to the inner vertices of G0

4.
Thus, the total number of vertices in T is also n = 2h+1 − 1. Let us first compute the average
number of edges that contribute in covering of a certain cut-vertex. The root vertex r has
degree two, i.e. its removal disconnects the graph into two connected components, each having
(n − 1)/2 = 2h − 1 vertices. Hence, the size of Γ(r) is the number of edges representing the
maximal edge-cut between two subtrees:

|Γ(r)| = (2h − 1)2 .

Let the root have depth zero, and let each leaf have depth h. Consider now the removal of
a cut-vertex vk

c in depth k, where 1 ≤ k ≤ h− 1. Each of these cut-vertices has degree three,

4Empty block-vertices can be taken out of consideration. For an explanation, see the next section.
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and the tree T will fall apart into three trees: Two of them are perfect binary subtrees T1 and
T2 of height h− k − 1, i.e:

|V [T1]| = |V [T2]| = 2h−k − 1 .

The total number of vertices in the third three T3 is:

|V [T3]| = |V [T ]| − |V [T1]| − |V [T2]| − |{vk
c }| ,

i.e.
|V [T3]| = 2h+1 − 1− 2 · (2h−k − 1)− 1 = 2h+1 − 2h−k+1 .

The number of edges that contribute in covering of the cut-vertex vk
c is then:

|Γ(vk
c )| = |E[T1 : T2]|+ |E[T2 : T3]|+ |E[T1 : T3]| ,

where E[T1 : T2] = {(u, v) | u, v ∈ VT , u ∈ V [T1], v ∈ V [T2]}.
|Γ(vk

c )| = (2h−k − 1)2 + 2(2h+1 − 2h−k+1)(2h−k − 1) =

= (2h−k − 1)(2h−k − 1 + 2h+2 − 2h−k+2) ≤ (2h−k − 1)2h−k(1 + 2k+2 − 22) .

We can finally say:
|Γ(vk

c )| ≈ 22h−k+2 .

For the cut vertex vc ∈ VT , the average size of Γ(vc) is then:

|Γ(vc)| = 1
2h − 1

(|Γ(r)|+
h−1∑

k=1

2k|Γ(vk
c )|) ≈ (2h − 1)2

2h − 1
+

h−1∑

k=1

2k 22h−k+2

2h − 1
≈

≈ 2h − 1 + (h− 1)2h+2 ≈ h2h .

In other words:
|Γ(vc)| = Θ(n log n) .

Therefore, the memory space needed to store the whole Γ data-structure for this special case
is O(n2 log n).

On the other hand, it is easy to see that the average length of a path in T is:

|Ψ(eA)| = Θ(log n) ,

which implies that the average space needed to store data-structure Ψ is O(n2 log n).

How Much Space do Γ and Ψ Need on Average in the General Case? If we suppose
that the tree structure is not degenerated, i.e. that the tree’s diameter is O(log |VT |), then
the same as above holds, i.e. each augmentation edge eA ∈ EA covers on average O(log |VT |)
vertices. In total, Ψ needs O(|EA| log |VT |) space.

The average space needed to store Γ is O(|EA| log |VT |) as well. One observes that the Γ
and Ψ data-structures are “dual” to each other.

For each entry e ∈ Γ(vc), preprocessing also stores references to the two tree-edges being
incident to vc and covered by e; we denote them by evc

T1
(e) and evc

T2
(e). They directly correspond

to the two cut components edge e can connect.
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Figure 3.5: Reducing the block-cut graph: (a) Assuming c(eA) ≤ c(e′A), edge e′A can be
eliminated. (b) e′′A is the only edge able to connect the cut-components Cvc

1 and Cvc
2 of vc and

is therefore fixed. This introduces a new biconnected component in T (c), which is shrunk into
the single new block-vertex v∗ (d).

Check whether a Cut-Vertex is Covered. In the memetic algorithm, it is necessary
to efficiently check if a certain cut-vertex is covered by a subset of augmentation edges S ⊆
EA. With the precomputed Γ and Ψ and the aid of a temporary union-find data structure
with weight balancing and path compression [5, pp. 183–189], this check can be performed in
O(|S| ·α(|VT |, |S|)) time. In most cases the degree of the cut-vertex vc is less than four. Then,
not even a union-find data structure is needed, since it is sufficient to check whether each of
the tree-edges incident to vc is covered by some augmentation edge being not incident to vc.

3.2.3 Reducing the Block-Cut Graph

In addition to the simple reductions (superimposition) of the block-cut graph described above
and used in the literature so far [56, 95], we apply the following more sophisticated rules which
are partly adopted from the preprocessing for E2AUG we published in [107]. These rules are
safe in the sense that they never prevent the following optimization from finding an optimal
solution.

Edge Elimination

If there are two edges eA, e′A ∈ EA, c(eA) ≤ c(e′A), and eA covers all those tree-edges that are
covered by e′A (in addition to others), e′A is obsolete and can be discarded; see Figure 3.5a.
All such edges can be identified in O(|VT |2) time as a byproduct of a dynamic programming
algorithm for computing the reduced costs given by equality. (3.2) that have been used in the
approximation algorithm proposed in [56].
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Fixing of Edges

An edge eA ∈ EA must be included in any feasible solution to V2AUG if it represents the only
possibility to connect a cut-component Cvc

i of a cut-vertex vc to any other cut-component of vc.
In more detail, we consider for each cut-vertex vc its set Γ(vc) and look for those edges being
the only ones able to cover one of the tree-edges incident to vc. Such augmentation edges are
fixed by moving them from EA to ET ; see edge e′′A in Figures 3.5b and 3.5c. The corresponding
original augmentation edges from Ea are permanently marked to be included in any future
solution. The whole procedure runs in O(|VT | |EA|) time.

Note that the fixing can also be seen in the following way: In the block-cut graph we have
detected that the minimal edge-cut in the block-cut graph is 2. Two edges generate this cut:
one is a tree edge e0 ∈ E0, and the other one is an augmentation edge which has to be fixed,
since it represented the only possibility to connect the two components obtained after removing
e0. The correctness of this test follows due to the fact that the block-cut graph has to be edge
biconnected, i.e. the removal of any tree-edge must not disconnect it.

Shrinking

By fixing an edge, a cycle is introduced in T . This cycle forms a new vertex biconnected
component that can be shrunk into a single new block-vertex v∗ as shown in Figure 3.5d. Let
Z ⊆ VT be the set of vertices forming the cycle. The following rules are applied:

1. Each block-vertex vb ∈ Z is re-mapped to v∗. All tree-edges between vb and a vertex
u 6∈ Z are re-mapped to (v∗, u). Each cut-vertex vc ∈ Z having degree two is now
completely covered and therefore handled in the same way. All the edges connecting
vertices in Z are removed.

2. The remaining cut-vertices vc ∈ Z are not re-mapped to v∗. Instead, their membership
to the new block is expressed via new edges (v∗, vc).

3. All augmentation edges incident to one of the vertices in Z are superimposed anew on
the modified block-cut tree according to the rules of Section 3.2.1.

The running time of this procedure is O(|VT |+ |EA|) due to the fact that each vertex or edge
need to be considered at most once.

Block-Vertex Elimination

Block-vertices vb ∈ VT having degree two in GA and whose adjacent vertices v1 and v2 are
cut-vertices, can be removed from the block-cut tree and replaced with a new edge (v1, v2).

Due to this elimination, the size of Ψ data-structure may be reduced. However, this proce-
dure is usually only efficient on sparse graphs, where non-empty block-vertices exist. Figure 3.6a
shows an example.

This simple procedure runs in O(|VT |) time, since each block-vertex has to be considered
exactly once.
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Path Compression

This procedure reduces the size of the input graph by compressing paths P = {v1, e1, . . . , vl−1,
el−1, vl}, l ≥ 4, of the block-cut tree that satisfy the following properties:

• Vertices vi (i = 2, . . . , l − 1) are not incident to any augmentation edge, and

• v1 and vl are incident to at least one augmentation edge.

Such a path P can be compressed into the path P ′ = {v1, e
′
1, v

∗
c , e

′
2, vl} of length two, where

the newly generated cut vertex v∗c represents all inner vertices of P . An example of this path
compression is shown in Figure 3.6.

Note that each such path P must contain at least one inner cut-vertex. Indeed, due to the
elimination of empty block-vertices or the inner block-vertices of degree two, it often happens
that two cut-vertices are adjacent. On the other side, it may never happen that two block-
vertices become adjacent, since we start with the structure where the block-vertices and the
cut-vertices alternate along any path in T , and we consequently remove only block vertices.

This procedure can be applied iteratively, as long as such paths exist.
Using a modified depth-first search algorithm, the identification of a path that can be com-

pressed can be done in O(|VT |) time. Updating data-structures Ψ and Γ can take O(|EA| · |VT |)
time. Theoretically, the compression might be done O(|VT |) times, which yields O(|VT |2|EA|)
as the total worst-time complexity of this procedure.

The Outline of the Preprocessing Algorithm

Block-vertex elimination and path compression depend on the density of a graph and do not
influence the edge elimination and the fixing of edges. Thus, we can divide the preprocessing
into two phases and apply them independently to each other. In the first phase, the number
of augmentation edges and tree edges is reduced due to edge elimination, fixing of edges, and
shrinking procedures. In the second part, only the tree-structure is changed, due to path
compression and block-vertices elimination procedures.

We propose a preprocessing algorithm whose outline is given in Figure 3.7. We start with
edge elimination, after which possible fixing of edges is done. As soon as some edges are fixed,
the shrinking is applied. After shrinking all cycles in T , the modifications are also reflected to
the supporting data structures Γ and Ψ. Owing to the reductions, more edges may become
available for elimination or fixing. Therefore, these reduction steps are repeated until no further
shrinking is possible.

In the second preprocessing phase, we apply path compression and block-vertices elimina-
tion. Path compression is applied iteratively, as long as there are paths to be compressed. In
each iteration, the corresponding Ψ and Γ data-structures need to be updated. In the final
step, some possible block-vertices are eliminated.

Edge elimination, fixing of edges, and shrinking may theoretically iteratively be applied up
to O(|VT |) times, which gives O(|VT |2|EA|) as upper bound of the first preprocessing phase.
This is at the same time worst-time complexity of the whole preprocessing procedure.
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Figure 3.6: Block-vertex elimination and path compression: (a) The inner block-vertex
{15, 16, 17} has degree two in the block-cut graph, and thus, can be removed. (b) The tree
path between 2 and {18} can be compressed into a path of length two, with a new cut-vertex
in the middle. (c) The tree path between {3} and {14} can be also compressed. (d) Finally, we
obtain the cut-vertex vertex v∗c which maps to the set {4, 5, 6, 8, 9, 10, 11, 12} of original vertices
in the block-cut tree. Thus, starting from a block-cut tree with 9 cut-vertices, we ended with
a block-cut tree having only 2 cut-vertices.
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V2AUG problem instance consisting ofInput:

– block-cut tree T = (VT , ET ) (= existing network)
– weighted block-cut graph GA = (VT , ET ∪ EA), (= all possible connections)

Reduced V2AUG instanceOutput:

∃ a path P to compress?

Compress path.
Rebuild supporting data-structures.

Shrink all existing cycles.
Rebuild supporting data-structures.

Eliminate block-nodes.

Eliminate augmentation edges.

Fix augmentation edges.

Figure 3.7: Basic structure of the proposed deterministic preprocessing.
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Note that the worst case running time may be achieved only in extreme situations, where
the starting graph can be solved to optimality, only by applying the preprocessing procedures.
The expected total effort of preprocessing is lower. This is also documented in the empirical
results of the next section.

3.2.4 Impacts of Preprocessing

Within this section, we show the impacts of the proposed preprocessing procedure. We first
describe the set of instances on which our new memetic algorithm and the branch-and-cut-and-
price approach are tested. Then we present the properties of reduced instances that are taken
as input for testing these two V2AUG algorithms.

Benchmark Instances

To test the memetic algorithm, to compare it with previous approaches, and to test the branch-
and-cut-and-price method, problem instances of different size and structure were used. Since
shrinking can always trivially reduce the problem of augmenting a general connected graph G0

to the problem of augmenting a tree, we consider here only instances in which the fixed graph
G0 is a spanning tree. The used test instances were adopted from the following two sources.

• Random instances created by means of Zhu’s generator5:

Table 3.1 shows the characteristics of 27 instance-groups A1 to R2, each consisting of 30
different instances. We call them random instances, since they were randomly created by
a program from Zhu [161]: Starting from |V | vertices, edges are created between each pair
of vertices u, v ∈ V , u 6= v, with the probabilities listed in column dens, the density of
the graph. If the resulting graph is not biconnected, the creation is restarted. A random
spanning tree is then determined on the graph yielding the set of fixed edges E0. All
other edges form set Ea and get assigned randomly chosen integer costs from the intervals
listed in column cost(e).

Note that instances with the same names A1 to R2 and the same characteristics have
already been used in previous works [162, 106, 144], however with only one representative
instance per group instead of 30. Column |Ea| of Table 3.1 lists the average numbers of
augmentation edges and column CP(G0 ) the average numbers of cut-points.

• Instances derived from Reinelt’s TSP-library (TSPLIB)6:

The larger instances listed in Table 3.2 are adopted from real-world traveling salesman
problems. pr226, lin318, pr439, and pcb442 are of Euclidean type, meaning that ver-
tices represent points in the Euclidean plane, edges exist between any two vertices, and
edge costs are the Euclidean distances of the corresponding points rounded up to the near-
est integer value. The largest instance pa561 is not of Euclidean type; it is a complete
graph with edge costs directly given by a matrix – the triangle inequality is satisfied.

5Available at www.ads.tuwien.ac.at/research/NetworkDesign/Augmentation.
6Available at www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95.
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Table 3.1: Characteristics of instance-groups created with Zhu’s generator and average results
of the preprocessing.

Group |V | dens c(e) ∈ |Ea| CP(G0) |VT | |EA| CP(T ) tpre [s] CP(G0)/CP(T ) |Ea|/|EA|
A1 20 0.16 [1..190] 18 11 8 5 4 <0.1 3.0 3.4
A2 30 0.10 [1..435] 29 16 10 8 5 <0.1 3.2 3.8
A3 40 0.08 [1..780] 37 22 9 6 4 <0.1 4.9 6.0
A4 30 0.12 [1..435] 32 16 10 8 5 <0.1 3.4 4.2
A5 40 0.10 [1..780] 46 23 20 18 10 <0.1 2.2 2.5
B1 60 0.05 [1..1770] 54 35 14 10 7 <0.1 4.7 5.4
B2 20 0.50 [1..190] 81 10 20 44 10 <0.1 1.0 1.8
B3 50 0.06 [1..1225] 45 29 14 11 7 <0.1 4.1 4.1
B4 50 0.08 [1..1225] 61 27 26 26 14 <0.1 2.0 2.3
B5 60 0.07 [1..1770] 74 33 29 29 16 <0.1 2.1 2.6
B6 70 0.06 [1..2415] 96 39 45 48 24 0.1 1.6 2.0
C1 80 0.06 [1..3160] 113 43 50 55 26 0.1 1.6 2.1
C2 90 0.05 [1..4005] 125 50 53 55 29 0.1 1.7 2.3
C3 100 0.05 [1..4950] 153 54 63 73 34 0.1 1.6 2.1
C4 30 0.50 [1..435] 191 15 30 107 15 <0.1 1.0 1.8
D1 70 0.15 [1..2415] 279 37 70 196 37 <0.1 1.0 1.4
D2 40 0.50 [1..780] 349 20 40 187 20 <0.1 1.0 1.9
D3 90 0.15 [1..4005] 507 46 90 366 46 0.1 1.0 1.4
D4 80 0.15 [1..3160] 396 41 80 284 41 0.1 1.0 1.4
D5 100 0.15 [1..4950] 648 52 100 464 52 0.1 1.0 1.4
M1 70 0.15 [10..1000] 284 37 70 207 36 <0.1 1.0 1.4
M2 80 0.15 [10..1000] 388 42 80 278 42 <0.1 1.0 1.4
M3 90 0.15 [10..1000] 492 46 90 352 46 0.1 1.0 1.4
N1 100 0.25 [11..50] 1124 50 100 705 50 0.1 1.0 1.6
N2 110 0.25 [11..50] 1384 56 110 874 56 0.1 1.0 1.6
R1 200 0.50 [1..100] 9734 117 200 3888 117 4.3 1.0 2.5
R2 200 0.50 [5..100] 9744 118 200 3852 118 3.5 1.0 2.5
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Table 3.2: Instances derived from the TSPLIB and results of the preprocessing.

Instance |V | Type |Ea| CP(G0) |VT | |EA| CP(T ) tpre [s] CP(G0)/CP(T ) |Ea|/|EA|
pr226-dt 226 Euclidean 361 192 226 256 192 1.4 1.0 1.4
pr226-sp 226 Euclidean 3987 187 226 2550 187 1.7 1.0 1.6
pr226 226 Euclidean 25200 187 226 7089 187 11.0 1.0 3.6
lin318-dt 318 Euclidean 623 248 318 434 248 9.9 1.0 1.4
lin318-sp 318 Euclidean 5495 246 318 1874 246 12.6 1.0 2.9
lin318 318 Euclidean 50086 246 318 9473 246 95.6 1.0 5.3
pr439-dt 439 Euclidean 859 358 439 490 358 30.1 1.0 1.8
pr439-sp 439 Euclidean 11183 366 439 3026 366 42.7 1.0 3.7
pr439 439 Euclidean 95703 366 439 18700 366 280.2 1.0 5.1
pcb442-dt 442 Euclidean 845 347 374 385 347 148.6 1.2 2.2
pcb442-sp 442 Euclidean 10528 345 442 2557 345 53.7 1.0 4.1
pcb442 442 Euclidean 97020 345 442 19824 345 299.5 1.0 4.9
pa561-sp 561 matrix 18504 406 561 5175 406 157.2 1.0 3.6
pa561 561 matrix 156520 406 561 40601 406 417.6 1.0 3.9

Since all these instances represent complete base graphs G, and incomplete graphs are
of particular interest, too, additional sparse instances pr226-sp, lin318-sp, pr439-sp,
pcb442-sp, and pa561-sp were derived from the original TSPLIB-graphs by considering
for each vertex the edges to its d|V | · 10%e nearest neighbors only, i.e. the 10%-nearest-
neighbor graphs. In case of instance pr226-sp, the 10%-nearest-neighbor graph turned
out to be not biconnected, and the 15%-nearest-neighbor graph was used instead.

For the Euclidean instances we further calculated the Delaunay triangulation yielding
additional sparse instances pr226-dt, lin318-dt, pr439-dt, and pcb442-dt.

In all these cases, minimum spanning trees were chosen as fixed graphs G0.

Impacts of Preprocessing

In their last six columns, Tables 3.1 and 3.2 show the results of the first preprocessing phase:
the numbers of vertices |VT |, augmentation edges |EA|, and cut-vertices CP(T ) of the block-cut-
graphs, the CPU-times tpre for preprocessing (in seconds) and the savings factors CP(G0)/CP(T )
and |Ea|/|EA|. In the case of random instances, these values are average values over the 30
instances per group. All experiments described in this section were performed on a Pentium-
III/800MHz PC.

These results document that the fixing of augmentation edges, which enables a shrinking
of the block-cut-graph and therefore a reduction of cut-vertices, is highly effective in sparser
graphs like those of groups A1 to C3. In these cases, the numbers of cut-vertices could often
be reduced to less than one half. As a consequence, also the numbers of augmentation edges
could be substantially reduced. 16% of the instances from groups A1 to B4 could even be
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Table 3.3: The structure of the block-cut tree for the instance-groups created with Zhu’s
generator.

Group Pathtot #Path Pathavg Path 6=0 [%] Block-vrtx All-vrtx Tree-size

A1 3.8 1.2 3.2 33.3 0.1 2.4 7.7
A2 4.2 1.3 3.3 36.7 0.1 3.2 10.5
A3 5.5 1.6 3.3 36.7 0.0 3.3 9.0
A4 6.0 1.8 3.3 33.3 0.2 2.6 9.6
A5 4.8 1.5 3.2 33.3 0.1 4.0 19.9
B1 5.8 1.8 3.2 36.7 0.0 4.7 13.8
B2 4.2 1.3 3.2 30.0 0.0 1.5 19.9
B3 3.9 1.2 3.3 50.0 0.0 3.8 13.9
B4 5.4 1.7 3.1 46.7 0.1 4.9 26.2
B5 3.9 1.3 3.1 60.0 0.1 5.2 29.3
B6 3.7 1.2 3.2 36.7 0.1 6.6 45.2
C1 5.2 1.7 3.0 56.7 0.1 6.6 49.8
C2 5.3 1.7 3.2 60.0 0.1 8.1 52.6
C3 4.4 1.4 3.1 50.0 0.2 8.3 62.8
C4 3.3 1.0 3.3 20.0 0.0 1.1 30.0
D1 4.7 1.6 3.0 60.0 0.0 2.5 69.7
D2 4.2 1.4 3.0 40.0 0.0 1.8 40.0
D3 3.5 1.1 3.1 26.7 0.0 1.6 90.0
D4 3.7 1.2 3.1 56.7 0.0 2.1 79.8
D5 3.0 1.0 3.0 16.7 0.0 1.3 100.0
M1 4.1 1.3 3.2 33.3 0.0 1.9 69.7
M2 4.0 1.3 3.1 36.7 0.0 1.9 80.0
M3 3.8 1.2 3.1 43.3 0.0 2.1 90.0
N1 3.6 1.2 3.1 43.3 0.0 2.1 100.0
N2 4.2 1.4 3.0 33.3 0.0 1.9 110.0
R1 4.3 1.3 3.3 43.3 0.0 2.8 160.0
R2 4.5 1.3 3.4 40.0 0.0 3.2 166.7
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Table 3.4: The structure of the block-cut tree for the instances derived from the TSPLIB.

Group Pathtot #Path Pathavg All-vrtx Tree-size

pr226-dt 33 5 6.6 41 226
pr226-sp 0 0 0.0 1 226
pr226 0 0 0.0 0 226
lin318-dt 17 5 3.4 36 318
lin318-sp 0 0 0.0 0 318
lin318 0 0 0.0 0 318
pr439-dt 83 20 4.2 82 439
pr439-sp 8 2 4.0 10 439
pr439 0 0 0.0 3 439
pcb442-dt 71 18 3.9 75 374
pcb442-sp 0 0 0.0 6 442
pcb442 0 0 0.0 6 442
pa561-sp 3 1 3.0 9 561
pa561 6 2 3.0 14 561

completely solved by preprocessing since it was able to reduce each block-cut graph to a single
block-vertex.

On denser problem instances, no edges could be fixed, thus, the numbers of cut-vertices in
the block-cut graphs are identical to the numbers of cut-points in the original graphs. However,
edge-elimination was in these cases highly effective. On average over all instances, the number
of augmentation edges that need to be considered for further optimization could be reduced to
about a quarter of the edges in Ea.

After the first phase of the preprocessing has been applied, we study the structure of the
obtained block-cut tree, in order to avoid an ineffective application of the second preprocessing
phase. As an illustration, Tables 3.3 and 3.4 show statistics about the structures of the un-
derlying graphs. We sum up the path lengths and present the following three values: Pathtot

represents the total length of all paths that can be compressed; #Path shows the total num-
ber of such paths in the block-cut tree; Pathavg is the average length of a path that allows
compression (Pathtot/#Path). These values are averaged only over the instances with non
zero path length – the total percentage of such instances is given in Path 6=0 [%] column. We
also provide the total number of non-empty block-vertices without adjacent edges (Block-vrtx)
and the total number of vertices not adjacent to any augmentation edge (All-vrtx). The last
column (Tree-size) shows the size of the underlying block-cut tree after the application of the
first preprocessing phase. On the set of Zhu’s instances, Table 3.3 shows average values over
the 30 instances per group. For each single TSPLIB instance the corresponding values are
presented in Table 3.4.

The analysis of the block-cut tree structure after the first preprocessing phase shows that,
in all benchmark instances obtained from Zhu’s generator, the average length of the paths that
can be compressed is close to 3. In the worst case it does not exceed 3.4. However, Path 6=0 [%]
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values indicate that not all of instances from a group contain such paths, but usually 1/3 of
them. Regarding the instances derived from the TSP-library, with the only exception of the
Delaunay graphs, paths that may be compressed exist in very few cases. Their average length
does not exceed 7. Furthermore, the number of non-empty block-vertices without adjacent
edges (Block-vrtx) is zero for all these instances.

Note that only the paths of length larger than two are of interest, and that each such path
may be substituted by a new one of length two. Thus, the total number of saved vertices during
the path compression can be approximately calculated as:

#Path × (Pathavg − 2) .

This means that in case of Delaunay graphs the total savings on the number of vertices may
be in the best case about 10% (instances pr226-dt and pr439-dt).

Finally, we can conclude that the savings of the relatively time-consuming second prepro-
cessing phase are not high enough to be applied to our benchmark instances. The preprocessed
V2AUG instances provided in the rest of the thesis are therefore treated with the first prepro-
cessing phase only.

3.3 A Memetic Algorithm for V2AUG

We propose a memetic algorithm for V2AUG which is based on a straight-forward steady-state
evolutionary algorithm as shown in the last chapter in Algorithm 3. Within this section, we
describe in detail the core of our MA implementation: solution representation technique, the
local improvement strategy, and initialization, recombination, and mutation procedures.

3.3.1 Representation of Solutions

Many evolutionary algorithms for combinatorial optimization problems represent candidate
solutions by vectors of fixed length and apply classical operators as k-point or uniform crossover
and position-wise mutation. In Ljubić and Kratica [106] this concept has been followed within a
genetic algorithm for V2AUG: solution were represented by a vector of |Ea| Booleans indicating
which augmentation edges are included in the solution.

The main disadvantage of this approach is that created candidate solutions need not to be
feasible; an expensive repair strategy, which also reduces the variation operators’ locality and
heritability is necessary. Furthermore, the memory effort for storing a solution is O(|Ea|).

In our memetic algorithm, a candidate solution is represented by directly storing references
to all the augmentation edges of S ⊆ EA in the form of a hash-table. In this way, only
O(|S|) = O(|V |) space is needed, since |S| < |V | in any solution that is locally optimal with
respect to the number of edges (in fact, |S| ¿ |VT | in most larger instances). Using a hash-table
allows an edge to be added, deleted, or checked for existence in expected constant time7. More
about the advantages of these so-called edge-set encoding can be found in [143].

7We used LEDA library implementation, http://www.algorithmic-solutions.com/enleda.htm, for most of

the underlying data structures.
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Figure 3.8: Worst case example for local improvement.

3.3.2 Local Improvement

A feasible candidate solution S is said to be locally optimal with respect to the number of edges,
if the removal of any edge e ∈ S violates the biconnectivity-property of graph Gs = (V, E0∪Es),
where Es ⊆ Ea is the set of original augmentation edges corresponding to S united with the
edges fixed during preprocessing. The local improvement operator shown in Algorithm 7 and
described in the following makes a given feasible solution locally optimal by removing redundant
edges. Recall that an edge e ∈ S is said to be redundant if its removal does not violate the
biconnectivity property of Gs. Our local improvement operator is specifically designed to
perform efficiently on sparse solutions where |S| ∈ O(|VT |), since the solutions created by
initialization, recombination, and mutation usually do not have many redundant edges.

As first step, the algorithm identifies so-called obviously essential edges that must remain
in S. An edge e ∈ S is obviously essential if it is the only one from S to be able to connect
a certain cut-component Ci

vc
of a cut-vertex vc to any other of vc’s cut-components—compare

the fixing of edges during preprocessing. Such obviously essential edges from S are determined
efficiently by finding each tree-edge eT incident to a cut-vertex vc and covered only once by
an edge e ∈ S that is not incident to vc; e is then obviously essential. The worst-case time
complexity of this part of the algorithm, when implemented as shown in the pseudo-code, is
O(|S| |VT |). However, since |Ψ(e)| is in O(log |VT |) in the expected case, the average running-
time is O(|VT |+ |S| log |VT |).

The remaining not obviously essential edges from S, in the pseudo-code denoted by set
R, are then processed one-by-one in decreasing-costs order. Each edge e ∈ R is temporarily
removed from S, and the cut-vertices in whose covering e contributes, i.e. all vc ∈ Ψ(e), are
checked if they remain covered (see Sect. 3.2.2). If any of them is now uncovered, e is not
redundant and therefore included in S again.

In the worst case, the total computational effort of this local improvement procedure is
O(|S|2 · |VT | · α(|VT |, |S|)) per call. The example in Figure 3.8 illustrates this: Assuming
that each block-vertex in the shown block-cut graph represents a single vertex in the original
graph G0, there are |VT | = (|V | − 2)/3 ∈ O(|V |) cut-vertices having all degree four. No
augmentation edge is obviously essential. O(|S|) = O(|VT |) augmentation edges incident to
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Data : An augmentation set of edges S ⊂ EA representing a feasible solution.
Result: A modified set S, representing a locally optimal solution with respect to the

number of edges.
R← S; // set of edges to be considered for removal;
// look for obviously essential edges:
for eT ∈ ET do

covered [eT ]← ∅;
end
for e ∈ S do

for vc ∈ Ψ(e) do
covered [evc

T1
(e)]← covered [evc

T1
(e)] ∪ {e};

covered [evc
T2

(e)]← covered [evc
T2

(e)] ∪ {e};
end

end
// remove obviously essential edges from R:
for eT ∈ ET do

if |covered [eT ]| = 1 then
R← R \ covered [eT ];

end
end
// check remaining edges in R:
for e ∈ R in decreasing cost-order do

S ← S \ {e};
if ∃vc ∈ Ψ(e): vc is uncovered in Gs then

S ← S ∪ {e};
end

end
return S;

Algorithm 7: The local improvement procedure.
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block-vertices 1 and 2 contribute in the covering of each cut-vertex. On the other side, each of
these augmentation edges contributes in the covering of O(|VT |) cut-vertices. Since the time
for checking whether a single cut-vertex remains covered when a certain augmentation edge
is removed is O(|S| · α(|VT |, |S|)), it takes O(|VT | · |S| · α(|VT |, |S|)) time to completely check
an augmentation edge for redundancy, and the overall effort is O(|S|2 · |VT | · α(|VT |, |S|)) =
O(|VT |3 · α(|VT |, |S|)) per solution.

However, since |Ψ(e)| ∈ O(log |VT |) on average, the average time for checking one edge
from R for redundancy is O(|S| log |VT |), and the average total time for one complete local
improvement is O(|VT | + |S| log |VT | + |R| · |S| log |VT | · α(|VT |, |S|)). In case of the memetic
algorithm’s candidate solutions, usually most edges are obviously essential; thus, |R| is generally
small.

Another possibility for checking an edge e ∈ S for redundancy is to temporarily remove
it and to check whether the augmented graph G′

s = (V, E0 ∪ E′
s), where E′

s ⊂ Ea is the set
of original augmentation edges corresponding to S \ {e}, remains biconnected. Using the al-
gorithm from Tarjan [156], the biconnectivity-check can be performed in time O(|V | + |S|).
However, experimental results have shown that in the memetic algorithm, this alternative
redundancy-check is particularly on larger problem instances significantly slower than the orig-
inally proposed one. The explanation lies in the fact that in locally optimal solutions, |S| is
typically substantially smaller than |VT |, since several cut-points can often be covered by a
single augmentation edge. Since we apply local improvement only to candidate solutions ob-
tained from the initialization, recombination, or mutation procedures, and these solutions do
not usually have many redundant edges, |S| ¿ |VT | also holds in most of our cases. On the
other hand, when considering local improvement without the memetic algorithm framework
and the number of augmentation edges |S| may be large, the redundancy-check using Tarjan’s
algorithm would presumably be more efficient.

3.3.3 Initialization

A solution of the initial population is created by starting with an empty edge-set S. Iteratively,
an edge is randomly selected from EA and included in S if it is not redundant. This process
is repeated until all cut-vertices are completely covered, thus, until the augmented graph Gs

becomes biconnected.
Intuitively, cheaper edges appear in optimum solutions more likely than expensive edges.

Therefore, the selection of edges for inclusion is biased toward cheaper edges according to a
scheme originally proposed in Raidl [140] for the selection of edges to be included by mutation
in candidate solutions to the degree-constrained minimum spanning tree problem: During
preprocessing, the edges in EA are sorted according to their costs. In this way, each edge has
a rank, with ties broken randomly. A rank, thus an edge, is selected by sampling the random
variable

rank = b|N (0, s)| |VT |c mod |EA|+ 1 , (3.3)

where N (0, s) is a normally distributed random variable with zero mean and standard deviation
s, a strategy parameter controlling the strength of the scheme’s bias toward cheap edges.
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The check, whether an edge eA actually helps in covering a cut-vertex—thus, if eA is
not redundant—can be performed efficiently in nearly constant amortized time α(|VT |, |EA|),
when union-find data structures are maintained for all cut-vertices of degree greater than
three. Compare the check whether a set of augmentation edges covers a cut-vertex described
in Sect. 3.2.2. Thus, the running time of the initialization is O(|EA| · |VT | ·α(|VT |, |EA|)) in the
worst-case and O(|EA| · log |VT | ·α(|VT |, |EA|)) on average. A solution created in this way is not
necessarily locally optimal since the inclusion of an edge may make previously included edges
redundant. Therefore, the memetic algorithm applies local improvement also to each initial
solution.

Algorithm 8 shows the pseudo-code of the initialization procedure.

Data : The weighted block-cut graph GA = (VT , ET ∪ EA).
Result: A feasible solution represented by its set of augmentation edges S ⊂ EA.
S ← ∅;
repeat

select e ∈ EA by sampling random rank variable;
if ∃vc ∈ Ψ(e) : edge e helps in covering vc then

S ← S ∪ {e};
end

until all cut-vertices vc ∈ VT are covered ;
return S;

Algorithm 8: Initialization.

3.3.4 Recombination

The recombination operator was designed with the aim to provide highest possible heritability,
i.e. an offspring should consist of edges from its two parental solutions only. In the first step,
edges common in both parents S1 and S2 are always adopted: S ← S1 ∩ S2. Then, while not
all cut-vertices are completely covered, an edge is selected from the set of remaining parental
edges (S1 ∪ S2) \ S and included in the offspring S if it is not redundant. To emphasize the
inclusion of low-cost edges again, they are selected via binary tournaments with replacement.

Algorithm 9 provides the recombination’s pseudo-code. The computational effort of the
whole recombination procedure is O((|S1| + |S2|) · |VT | · α(|VT |, |S1| + |S2|)) in the worst case
and O((|S1|+ |S2|) · log |VT | · α(|VT |, |S1|+ |S2|)) on average.

3.3.5 Edge-Delete Mutation

The aim of mutation is to introduce new edges not appearing in the population into candidate
solutions. Algorithm 10 shows the mutation procedure in pseudo-code. From the candidate
solution S, an edge e is selected and removed. That way, one or more cut-vertices from Ψ(e)
become uncovered. These uncovered cut-vertices are identified and processed in random order:
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Data : Two parental solutions given by their sets of edges S1 and S2.
Result: A new feasible solution represented by its set of augmentation edges S ⊂ EA.
S ← S1 ∩ S2;
R← (S1 ∪ S2) \ S;
repeat

select e ∈ R via binary tournament selection;
R← R \ {e};
if ∃vc ∈ Ψ(e) : edge e helps in covering vc then

// edge e is not redundant
S ← S ∪ {e};

end
until all cut-vertices vc ∈ VT are covered ;
return S;

Algorithm 9: Recombination.

Data : A feasible solution given by its set of augmentation edges S ⊂ EA.
Result: A mutated solution S.
select e ∈ S via binary tournament selection;
S ← S \ {e};
for uncovered vc ∈ Ψ(e) in random order do

F ← Γ(vc);
while vc is uncovered do

pick e′ ∈ F randomly; F ← F \ {e′};
if e′ helps in covering vc then

S ← S ∪ {e′};
end

end
end
return S;

Algorithm 10: Edge-delete mutation.
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For each such cut-vertex vc, the edges from Γ(vc) are considered in random order and included
in S if they help in covering of vc, i.e., if they connect two yet unconnected cut-components of
vc.

The selection of the edge to be removed is biased toward more expensive edges by per-
forming a binary tournament with replacement on S. The new edges to be included in S for
reestablishing biconnectivity are chosen in an unbiased way to not reduce the population’s
diversity too much.

As initialization and recombination, this procedure does not guarantee to yield a locally
optimal solution. Therefore, the memetic algorithm applies local improvement also after mu-
tation. An upper bound for the worst-case computational effort of mutation is O(|VT | · |EA| ·
α(|VT |, |EA|)). However, mutation is substantially faster in practice, and the time needed for
local improvement dominates the time for mutation.

3.3.6 Empirical Results

The following setup was used for the memetic algorithm as it proved to be robust for many
different classes of instances in preliminary tests: Population size |P | = 800; group size for
tournament selection k = 5; parameter for biasing initialization to include cheaper edges s =
2.5; crossover probability pcro = 1; mutation probability pmut = 0.7. Each run was terminated
when no new best solution could be identified during the last Ω = 10 000 iterations. On all
the instances we considered, this criterion allowed the MA to converge so that only minor
improvements in the quality of final solutions can be expected when prolonging the runs.
Thus, the main goal was to find high-quality solutions, and running times were considered only
secondary.

All experiments described in this section were performed on a Pentium-III/800MHz PC.
We compare the memetic algorithm (MA) to the heuristics from Khuller and Thurimella

[95] (KT), [162] Zhu et al.(ZKR), and the genetic algorithm from Ljubić and Kratica [106]
(LK). These previous heuristics were implemented and applied as described in these works.
Thus, the new enhanced preprocessing of the MA was not used by them.

Solutions obtained using KT or ZKR approach directly depend on the choice of the leaf
vertex that becomes a root of the minimum outgoing spanning arborescence (see Section 3.1).
Therefore, for each instance, KT has been run with each leaf-vertex of the block-cut tree
becoming once the root of the arborescence, and the best solution obtained in this way is
regarded as KT’s final solution to the instance.

ZKR could only be applied to the smaller random instances of groups A1 to N2 because of
its high computational effort. (The total CPU-time of a run was limited to 20 000 seconds.)
For instances of groups M1 to N2, only 10% of all leaves were subsequently tried as root of the
block-cut tree, while for the other instances, all leaves were considered.

The setup of LK was the same as described in [106] except of the termination criterion,
which was changed to be similar to that of the MA in order to ensure convergence: A run was
terminated when no new best solution could be identified during the last 100 000 evaluations.
(Note, however, that the number of evaluations of the MA and LK may not directly be compared
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due to the different computational complexities of the algorithms.)
Table 3.5 shows average results of the four approaches on the random instances. Each

heuristic was run once on each of the 30 instances of each group. We were able to solve
all these instances also to guaranteed optimality by the branch-and-cut-and-price approach
described in the next section.

Column |E∗
s | lists average numbers of edges in these optimal solutions. The qualities of the

solutions Es obtained by the algorithms are reported as percentage gaps defined as:

%-gap =
cost(Es)− c(E∗

s )
c(E∗

s )
· 100%. (3.4)

c(E∗
s ) represent optimal or best-known values. Standard deviations of average gaps (σ) are

also presented in the table. For LK and MA, average CPU-times and numbers of evaluated
solutions until the best solutions were found (t, respectively evals), and success rates (sr),
i.e. the percentage of instances for which optimal solutions could be found, are reported in
addition. CPU-times include preprocessing: in case of KT, ZKR, and LK the derivation of
the block-cut graph according to Sect. 2.1.5, in case of MA additionally the more sophisticated
reductions and the creation of supporting data structures—in particular Γ and Ψ—according
to Sect. 3.2.

Results show that MA clearly outperformed the other heuristics in most cases. It could find
optimal solutions to all instances of groups A1 to D4 and M1 to M3. On the remaining random
instances, MA was able to identify high-quality solutions with an average gap of only 0.33%.
KT yielded in all cases the worst results. Among ZKR and LK, ZKR could usually identify
slightly better solutions. Quality differences become most apparent in groups M1 to R2.

Regarding the running times, KT was usually fastest (about 2 to 3 times faster than the
times reported for MA), followed by MA. LK was usually much slower, in particular on the
larger instances. ZKR needed in any case the most time. With over 15 000 seconds CPU-time
for instances of group N2, ZKR is definitely only suitable for small instances.

Table 3.6 shows results for the larger TSPLIB-derived instances. Optimum solutions could
be found by branch-and-cut only up to instance pcb442-sp. Total costs of these optimum
solutions—or if unknown best-known solution values—and the numbers of edges in those solu-
tions are listed in columns c(E∗

s ) and |E∗
s |, respectively.

On these TSPLIB-derived instances, ZKR never terminated within the allowed maximum
time of 20 000 seconds, and LK could obtain meaningful results on the eight sparse Euclidean
instances only. Because of the stochastic nature of LK and MA, these heuristics were performed
30 times on each considered instance and Table 3.6 prints average results for them.

In contrast to ZKR and LK, MA scales well to the larger instances. Its CPU-time increases
only moderately with the problem size due to the relatively low computational complexities
of local improvement, recombination, and mutation. Because of the data structures created
during preprocessing, MA required up to 420MB main memory for the largest instance pa561

with |Ea| = 156 520 augmentation edges. MA’s solutions are of high quality again: On average,
the gap was only 0.65%, and optimum or best-known solutions could be found several times.
KT followed far behind with gaps between 19.6% and 32.6%; LK’s results were even worse: its
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Table 3.5: Results on random instances obtained by the heuristics from Khuller and Thurimella
(KT) and Zhu et al. (ZKR), the genetic algorithm from Ljubić and Kratica (LK), and the
memetic algorithm (MA).

KT ZKR LK MA
Grp. |E∗

s | %-gap σ t [s] %-gap σ t [s] %-gap σ t [s] evals sr [%] %-gap σ t [s] evals sr [%]

A1 6 1.2 2.2 0.1 0.0 0.0 0.8 0.5 1.6 <0.1 623 90.0 0.0 0.0 <0.1 586 100.0
A2 9 4.6 6.0 0.2 0.0 0.0 4.3 0.3 1.8 <0.1 2116 96.7 0.0 0.0 <0.1 666 100.0
A3 12 3.9 4.0 0.2 <0.1 0.1 14.2 0.0 0.0 0.1 4041 100.0 0.0 0.0 <0.1 506 100.0
A4 10 5.1 5.3 0.2 0.2 0.6 5.5 0.1 0.3 0.1 3038 93.3 0.0 0.0 <0.1 453 100.0
A5 12 7.7 6.4 0.2 <0.1 0.2 18.5 0.0 0.0 0.1 2640 100.0 0.0 0.0 <0.1 776 100.0
B1 18 4.4 4.2 0.4 0.1 0.5 73.5 <0.1 0.1 0.4 3788 96.7 0.0 0.0 <0.1 613 100.0
B2 7 4.5 6.7 0.1 0.0 0.0 6.1 <0.1 0.1 0.1 6103 96.7 0.0 0.0 0.1 887 100.0
B3 16 4.9 5.2 0.3 0.0 0.0 33.1 0.0 0.0 0.3 5951 100.0 0.0 0.0 <0.1 696 100.0
B4 16 6.2 5.6 0.3 0.1 0.4 64.4 0.2 0.8 0.4 5035 93.3 0.0 0.0 0.1 776 100.0
B5 19 4.9 4.2 0.4 0.1 0.3 131.9 0.2 0.9 0.7 8178 90.0 0.0 0.0 0.1 875 100.0
B6 22 7.5 4.4 0.7 <0.1 0.1 328.0 0.1 0.5 2.2 20615 86.7 0.0 0.0 0.3 1022 100.0
C1 26 6.8 4.5 0.9 <0.1 0.1 687.2 0.4 0.9 3.5 17681 80.0 0.0 0.0 0.4 1073 100.0
C2 29 7.6 4.2 1.1 0.2 0.6 1121.2 0.9 1.5 4.4 20166 60.0 0.0 0.0 0.5 1176 100.0
C3 32 8.9 5.6 1.6 0.1 0.2 2331.1 0.5 1.0 7.6 25078 53.3 0.0 0.0 0.6 1160 100.0
C4 11 4.6 7.3 0.3 <0.1 0.2 71.3 0.5 1.4 0.7 17303 80.0 0.0 0.0 0.4 1409 100.0
D1 23 7.6 4.5 1.1 0.2 0.5 1805.5 0.9 1.5 6.0 53353 43.3 0.0 0.0 1.7 1915 100.0
D2 14 5.0 5.0 0.6 0.1 0.2 403.0 0.4 1.1 2.4 31420 86.7 0.0 0.0 0.7 1838 100.0
D3 31 6.9 4.0 2.4 0.2 0.4 11046.5 1.1 1.2 15.9 51278 20.0 0.0 0.0 3.9 3016 100.0
D4 27 9.4 5.2 1.8 0.1 0.2 5208.8 1.6 2.0 11.2 49910 36.7 0.0 0.0 2.9 2686 100.0
D5 34 9.7 4.8 3.5 0.1 3.2 21762.5 1.8 2.2 25.5 59190 26.7 <0.1 0.1 5.9 4167 96.7
M1 23 8.5 4.9 1.2 0.4 0.9 237.0 1.7 2.1 6.7 49498 30.0 0.0 0.0 1.7 1984 100.0
M2 27 8.3 3.6 1.7 0.6 0.9 503.7 2.2 1.7 21.9 82105 10.0 0.0 0.0 2.9 2719 100.0
M3 30 9.8 4.5 2.4 0.3 0.6 1178.4 1.4 1.4 33.4 87141 26.7 0.0 0.0 4.3 3354 100.0
N1 27 34.4 6.5 5.2 3.2 1.7 14993.3 13.2 4.3 107.0 147146 0.0 0.2 0.3 9.5 8387 60.0
N2 29 36.5 5.7 7.0 4.1 2.3 16006.1 16.4 4.3 147.5 147030 0.0 0.4 0.5 13.7 11694 43.3
R1 57 16.3 3.8 64.3 – – – 10.7 4.4 4896.1 228723 0.0 0.1 0.2 39.8 9766 63.3
R2 47 31.9 4.2 91.6 – – – 20.2 4.7 5232.4 309073 0.0 0.4 0.4 58.5 21877 13.3
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(a) KT: %-gap = 29.3, |Es| = 69 (b) LK: %-gap = 35.8, |Es| = 58

(c) MA: %-gap = 0.09, |Es| = 45 (d) OPT: |Es| = 46

Figure 3.9: Exemplary solutions to problem instance lin318-sp found by (a) Khuller and
Thurimella’s heuristic, (b) the genetic algorithm from Ljubić and Kratica, (c) the memetic
algorithm and (d) the branch-and-cut algorithm (see next section). Solution edges are shown in
gray. In (a), arrows mark obviously redundant edges. In (b), arrows mark obviously suboptimal
crossing augmentation edges.
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Table 3.6: Results on the TSPLIB-derived instances obtained by the heuristics from Khuller
and Thurimella (KT) and Zhu et al. (ZKR), the genetic algorithm from Ljubić and Kratica
(LK), and the memetic algorithm (MA). Values marked by ’*’ are the best-known feasible
solutions.

KT LK MA
Instance c(E∗

s ) |E∗
s | %-gap t [s] %-gap σ t [s] %-gap σ t [s] evals sr [%]

pr226-dt 25152 25 19.6 1.4 26.6 8.8 47.8 0.0 0.0 3.4 2188 100.0

pr226-sp 22824 24 22.5 11.7 27.3 4.8 640.2 0.1 0.6 17.6 9800 96.7

pr226 22824 24 22.0 138.9 – – – 2.6 1.2 33.2 13073 16.7

lin318-dt 12013 45 28.1 5.0 20.9 2.3 246.7 <0.1 <0.1 21.9 10051 3.3

lin318-sp 11797 46 29.3 33.2 41.1 3.8 2633.7 0.3 0.3 40.8 27130 6.7

lin318 11797 46 29.3 620.4 – – – 1.0 0.5 128.9 23391 0.0

pr439-dt 28310 52 20.6 8.3 25.1 6.0 491.6 0.0 0.0 43.3 7026 100.0

pr439-sp 26800 48 21.2 71.0 40.5 4.3 13471.2 1.1 0.7 79.5 12164 20.0

pr439 26800 48 21.2 1498.5 – – – 2.5 1.1 408.1 22301 0.0

pcb442-dt 10328 60 31.4 12.3 21.4 3.1 320.5 < 0.1 0.1 233.1 8472 83.3

pcb442-sp 10460 60 32.6 106.5 33.8 5.2 18429.2 0.3 0.2 91.9 16902 6.7

pcb442 10460 60 30.7 2030.8 – – – 0.3 0.2 366.3 21493 0.0

pa561-sp 782∗ 101∗ 31.1 303.0 – – – 0.3 0.1 250.0 20868 3.3

pa561 784∗ 101∗ 30.4 5482.7 – – – 0.4 0.4 599.8 34710 13.3

average gaps are all larger than 20.9%.

Statistical t-tests were performed and indicate that the quality differences between MA’s
solutions and those of the other approaches are significant at a 0.1% error-level on each instance.
This also holds for the results on random instances shown in Table 3.5, except in those cases
were also ZKR was able to identify always optimal solutions.

Figure 3.9 shows three exemplary solutions to the Euclidean problem instance lin318-sp

found by KT, LK, and MA. Obviously redundant edges, as they are contained in the solution
of KT, can never appear in a solution of MA due to its local improvement procedure.

The preprocessing proposed in Section 3.2 can also be adapted to work with KT, ZKR, and
LK. Tests we performed indicate that in particular the total running times of these approaches
are reduced significantly in this way. However, the quality of obtained solutions was not
substantially higher. On average over all random and TSPLIB-derived instances where the
individual approaches terminated within the allowed time of 20 000 seconds, the total times
were reduced by the factors 0.62 in case of KT, 0.81 in case of ZKR, and 0.27 in case of LK. The
%-gaps were reduced on average by the factors 0.92 in case of KT, 0.96 in case of ZKR, and 0.91
in case of LK. On several instances of groups A1 to C4, the combinations of our preprocessing
with KT, ZKR, and LK were able to identify optimal solutions as the MA did. Nevertheless,
on the larger and more complicated instances, these approaches were still not competitive with
the MA.
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Table 3.7: Fitness distance correlation coefficient ρ, average distance dopt of locally improved
random solutions to the optimum, average distance dloc between locally improved random so-
lutions, and average probabilities (in percent) PDcross and PDmut that recombination, respec-
tively mutation, followed by local improvement produces a candidate solution being identical
to a parent.

Instance ρ dopt dloc PDcross [%] PDmut [%]

N1 (1. instance) 0.57 53.4 62.7 15.3 14.1
N2 (1. instance) 0.54 58.2 69.4 13.8 14.3
R1 (1. instance) 0.51 107.5 116.9 13.0 3.4
R2 (1. instance) 0.55 99.9 118.2 12.5 4.5
pr226-sp 0.53 66.6 71.5 17.0 12.6
pr226 0.52 66.8 71.0 18.4 2.0
lin318-sp 0.65 97.7 115.2 15.5 14.5
lin318 0.63 95.8 115.8 15.4 2.3
pr439-sp 0.71 113.9 129.5 14.0 10.2
pr439 0.68 119.4 125.8 13.4 1.3

3.3.7 Fitness-Distance Correlation Analysis

To further investigate the difficulty of the problem instances and the effects of local improve-
ment, we performed fitness-distance correlation analysis according to [85] and [119, 116]. For
each problem instance, 10 000 candidate solutions were created randomly and locally improved
as in the initialization of the MA. These solutions were evaluated and their distances to the
optimum solution in the search space were calculated. As distance metric, the size of the sym-
metric difference of the corresponding edge sets was used. Figure 3.10 shows fitness-distance
plots for the first instance of group R2 and instance pr439. The plots for the other instances
have similar structure. Each point in these plots represents one locally optimal solution; the
global optima are located at the lower left corners (point 0/0). In addition, Table 3.7 shows
fitness-distance correlation coefficients ρ for ten of the largest instances with known global
optima.

In all considered instances, the fitness is clearly correlated with the distance to the optimum
(0.51 ≤ ρ ≤ 0.71), which is a general indication that an evolutionary algorithm might work
efficiently on these instances. Furthermore, all local optima are plotted near to each other
and have a relatively large distance to the optimum. This shows that simply creating random
solutions and locally improving them by our method is not effective for its own. It does not
imply that the local optima are also grouped together in the search space and the global optima
are located far away from them. Table 3.7 also shows average distances of locally improved
random solutions to the optima (dopt) and average distances between locally improved random
solutions (dloc). Since dopt is significantly smaller than dloc for each instance, we can argue
that the global optimum lies more or less in the center of the space of all locally optimal
solutions. In [118], problems with such a characteristic are said to have a big valley structure,
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Figure 3.10: Fitness-distance plots for the first instance of group R2 and instance pr439.

and recombination operators preserving properties common to both parents can be expected
to work well.

3.3.8 Performance Analysis of Variation Operators

In the last two columns, Table 3.7 lists average probabilities PDcross and PDmut with which
recombination, respectively mutation, followed by local improvement produces a candidate
solution being identical to (one of) its parent solution(s). These probabilities were measured
over complete runs of the MA. High values would indicate that the investigated variation
operator does not work efficiently and it might be omitted without decreasing the overall
effectiveness of the search significantly. In our case, these probabilities are always smaller
than 18.5%. Thus, the variation operators in combination with local improvement successfully
create new solutions in more than four out of five cases. In particular on dense base graphs
such as the complete Euclidean problem instances, the probability of mutation leading to the
same local optimum is very small: PDmut ≤ 2.3%.

Table 3.8 further illustrates the importance of using both, recombination and mutation, and
that it is not necessary to apply local improvement immediately after each variation operator.
Shown are results for the following three variants of the MA: In MA-CLML, recombination
and mutation are used, and local improvement is performed after each operator. In MA-CL,
new candidate solutions are created only by recombination followed by local improvement.
MA-ML applies always only mutation followed by local improvement. All strategy parameters
were set identical as in the previous experiments with the only exception that in MA-ML, the
probability of applying mutation was pmut = 1. The performance values of these variants can
therefore directly be compared to those of the original MA in Table 3.6.

MA-CL converged fastest, but the obtained solutions were in nearly all cases substantially
poorer than those of the original MA. This points out the particular importance of mutation.
MA-ML, on the other side, generally needed much more evaluations and also more time to
converge. In particular on dense problem instances, MA-ML’s solutions are far worse than
those of the original MA.
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Table 3.8: Performance of different MA-variants: applying local improvement after recombina-
tion and after mutation (MA-CLML), using only recombination followed by local improvement
(MA-CL), and using only mutation followed by local improvement (MA-ML).

MA-CLML MA-CL MA-ML
Grp./Inst.

%-gap σ t [s] evals sr %-gap σ t [s] evals sr %-gap σ t [s] evals sr

N1 0.3 0.3 8.1 8391 46.7 0.6 0.6 7.2 6318 33.3 0.9 0.9 21.9 31825 20
N2 0.5 0.5 11.5 12023 36.7 1.3 1.3 7.1 5561 13.3 1.2 1.2 30 40819 6.7
R1 0.1 0.1 106.4 22558 43.3 0.4 0.4 22.7 4120 30 16 16.3 233.6 106740 0.0
R2 0.7 0.8 76 27587 3.3 1.3 1.4 22.8 5677 0.0 8.8 8.9 148.3 79119 0.0
pr226-dt 0.0 0.0 3.0 1856 100.0 <0.1 <0.1 2.8 1765 96.7 0.0 0.0 6.7 14002 100.0
pr226-sp 0.0 0.0 12.5 11777 100.0 22.9 4.4 13.8 5278 0.0 0.2 0.3 29.0 52534 46.7
pr226 2.4 1.4 30.7 24320 16.7 24.0 3.9 27.6 5367 0.0 8.2 2.7 43.8 56114 0.0
lin318-dt <0.1 <0.1 18.7 8460 0.0 0.3 0.4 15.2 5536 0.0 0.1 0.1 34.6 42332 0.0
lin318-sp 0.3 0.3 41.0 35853 0.0 3.3 1.0 21.3 6771 0.0 1.6 1.1 54.0 73078 0.0
lin318 1.5 0.7 129.9 33955 0.0 3.5 1.6 111.0 6179 0.0 15.4 3.9 156.5 92059 0.0
pr439-dt 0.0 0.0 41.7 7011 100.0 1.0 1.2 37.2 4414 16.7 <0.1 0.1 70.0 45179 40.0
pr439-sp 1.0 0.7 72.3 18073 23.3 5.4 1.8 68.7 5507 0.0 2.3 1.1 130.7 84829 0.0
pr439 2.0 0.8 376.1 44083 0.0 40.9 3.1 383.0 6373 0.0 19.9 5.7 457.0 98467 0.0
pcb442-dt <0.1 0.1 232.4 7702 73.3 0.5 0.4 224.6 3754 0.0 <0.1 0.1 251.8 33994 76.7
pcb442-sp 0.3 0.2 95.2 24473 6.7 1.7 0.8 68.1 4805 0.0 1.6 0.9 187.9 106494 0.0
pcb442 0.7 0.4 365.3 28673 0.0 1.4 0.6 334.8 5120 0.0 33.5 7.5 464.0 106346 0.0
pa561-sp 0.4 0.2 275.4 30987 3.3 3.7 0.5 195.1 5802 0.0 5.9 1.3 462.2 129287 0.0
pa561 2.2 0.5 584.7 31361 0.0 3.8 0.6 493.9 5369 0.0 34.5 5.9 764.8 106649 0.0
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Performance values of MA and MA-CLML are similar for nearly all instances. Only on the
single instance pa561, MA yielded substantially better solutions than MA-CLML. No statisti-
cally significant differences can be observed for MA and MA-CLML in their numbers of needed
evaluations and running times. We conclude that the question whether local improvement
should be applied once per candidate solution or once after each variation operator is of minor
importance.



70 CHAPTER 3. VERTEX BICONNECTIVITY AUGMENTATION

3.4 A Branch-and-Cut-and-Price Algorithm for the V2AUG

In the work of Grötschel et al. [71] and Stoer [152], it turns out that the most effective ILP for-
mulations of two-connected network design problems use an exponential number of constraints.
Hence, the use of the cutting plane framework is a natural approach for solving them.

Within this section we propose an exact algorithm for V2AUG based on an LP-based
branch-and-bound algorithm with incorporated cutting plane and column generation methods.
Our exact algorithm searches for the optimal solution S on the reduced block-cut graph ob-
tained after the preprocessing described is Section 3.2 has been applied. In its last stage, the
algorithm maps the edges from S back to the subset Es of edges of the original graph G.

In the following discussion, we consider a minimum-cut based formulation of the prob-
lem. Section 3.4.2 describes the branch-and-cut algorithm, and highlights the initialization
and separation phases of the algorithm. In Section 3.4.3, we present an enhanced branch-
and-cut-and-price algorithm. The pricing of edges and the application of sparse and reserve
graph techniques are described in detail. Finally, we present our computational results in
Section 3.4.4.

3.4.1 Minimum-Cut Based Problem Formulation

The design of a minimum-cost vertex biconnected network from scratch, using the edges of
a graph G = (V, E, c) (which can be seen as an augmentation of the empty graph), can be
formulated as the following integer linear program [152, 55]:

min
∑

(i,j)∈E

cijxij (3.5)

subject to (3.6)

x(δG(W )) ≥ 2, ∀W ⊂ V, W 6= ∅ (3.7)

x(δG−v(W )) ≥ 1, ∀W ⊂ V \ v, W 6= ∅, ∀v ∈ V (3.8)

0 ≤ xij ≤ 1, ∀(i, j) ∈ E (3.9)

xij integer, ∀(i, j) ∈ E. (3.10)

Vector x is the characteristic vector of a feasible solution given by some subset S ⊂ E.
The cuts (3.7) are called edge-connectivity requirements – they assure that the obtained

solution is edge biconnected. The inequalities (3.8), so-called vertex-connectivity requirements,
assure that the removal of any vertex v, v ∈ V must not disconnect the graph, i.e. they assure
vertex biconnectivity of the optimal solution.

Christofides and Whitlock [30] proposed a branch-and-cut algorithm to solve this formu-
lation exactly. The authors initialized the LP formulation of the problem with degree con-
straints that assure that the degree of each vertex v ∈ V is at least two. Violated edge-
connectivity inequalities are then continuously inserted during the separation phase, after
which the branch-and-cut algorithm is applied. The authors proposed to add possibly violated
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vertex-connectivity requirements, each time an integer solution satisfying all edge-connectivity
constraints is found.

Similarly to the formulation of Christofides and Whitlock, we represent feasible solutions
by incidence vectors (x) of subsets in |EA|. We establish a one-to-one correspondence between
the variables xi and augmentation edges eA ∈ EA.

In the sequel, VC , VC ⊂ VT , will be the set of all cut-vertices in the block-cut tree T =
(VT , ET ). Following the definition of biconnectivity, an edge set S that augments the block-
cut tree T represents a valid vertex biconnected solution, if and only if all cut-vertices in T

are covered. In other words, removal of any cut-vertex v ∈ VC leaves the augmented graph
G − v = (VT \ {v}, ET ∪ S \ δ(v)) connected. This can be described using the following
inequalities:

x(δG−v(W )) ≥ 1,∀W ⊂ VT − v,W 6= ∅,∀v ∈ VC (3.11)

An integer programming formulation of V2AUG is given by

min{
∑

ij∈EA

cijxij | x ∈ R ∩ Z
|EA|
+ }, (3.12)

where R represents a polyhedral region R defined as:

3.4.2 The Branch-and-Cut Algorithm

Within this section we propose a straight-forward branch-and-cut algorithm for the vertex
biconnectivity augmentation of the block-cut tree. The most important steps of the algorithm,
i.e. initialization, separation, branching and enumeration, are described in the sequel. Finally,
we also provide some implementation details.

We use the terms edge and variable of the integer programming formulation interchangeably,
since they are in a one-to-one correspondence in our formulation. We also consider the notions
cutting planes (or cuts) and inequalities (or constraints) as equivalent.

Initialization. The linear programming relaxation of the problem (3.12) is given by:

min{
∑

(i,j)∈EA

cijxij | x ∈ R} (3.13)

Since there are exponentially many connectivity constraints in this formulation, one may ex-
clude some or all of these inequalities in the initial stage of the optimization. This is usually
done by relaxing R into a polyhedral region R1 ⊃ R. An adequate initialization of the set of
constraints is attained, for example, by choosing the so-called degree inequalities that corre-
spond to the requirements (3.15) for |W | = 1. Hence, the corresponding polyhedral region R1

is:
R1 = {xij | (i, j) ∈ EA, x(δ(v)) ≥ 2, ∀v ∈ VT , 0 ≤ xij ≤ 1}.

A valid LP lower bound for (3.12) can be found as:

min{
∑

(i,j)∈EA

cijxij | x ∈ R1}. (3.14)
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For an optimal solution x of (3.14), further connectivity constraints may be introduced
as cutting planes. In this process the following separation problem must be solved: Find a
connectivity constraint that is violated by x, or determine that no such inequality exists. If no
violated connectivity constraints exist, the optimality of (3.13) is verified. Otherwise, violated
constraints are added to R1 and the corresponding LP is resolved until the optimality of (3.13)
is proved.

Separation. Given a solution to the last LP, we perform separation in two stages. The
block-cut graph needs to be edge biconnected, thus, in the first separation stage we impose the
edge-connectivity requirements by adding violated constraints.

Recall, an augmented block-cut graph (VT , ET ∪ S) is edge biconnected if, for each pair of
vertices u and v from VT , there are at least two edge disjoint paths connecting them. In other
words, this graph is edge biconnected, if the maximum flow between u and v is at least two
(where xi values are considered as edge capacities):

x(δ(W )) ≥ 2, ∀W ⊂ VT ,W 6= ∅. (3.15)

The violated edge connectivity inequalities can be found in polynomial time by computing
the minimum weight cut in the support graph Gx = (VT , ET ∪ EA, c′). The edge weights are
defined as:

c′(e) =

{
1, if e ∈ ET

x(e), otherwise
,

where x(e) represents the fractional value of the corresponding variable in the current LP. In
each iteration, we evaluate the minimum weight cut of the support graph and if its value is
less than two, we insert the violated constraint. For the computation of minimum cuts, we
use an efficient algorithm proposed by Padberg and Rinaldi [130] and implemented by Michael
Jünger [90]. The details of this implementation and an exhaustive comparison of a variety of
minimum weight cut algorithms are given in [90]. We suggest resolving the LP, each time a
violated edge-connectivity cut is inserted into the system.

The second separation phase is executed only if the previous stage did not generate any
inequality. Thus, when all edge-connectivity constraints are satisfied, we check if there are some
uncovered cut-vertices. For this purpose, for each cut-vertex v ∈ VC , we reduce the support
graph Gx by eliminating v from it. In other words, we search for the minimum weight cut in
the graph (VT \ {v}, ET ∪EA \ δ(v), c′). If the cut we found is less than one, the corresponding
constraint is inserted into the system.

We consider the following two variants of inserting the violated vertex-connectivity require-
ments into the system:

1. Each time a violated vertex-connectivity constraint is found and inserted into the system,
the LP is resolved. We refer to it later as BC-S, or

2. Only when all violated constraints regarding uncovered cut-vertices are inserted, the LP
is resolved and a new fractional solution x is found. We refer to it as BC-M.
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Branching and Enumeration Rules. We apply the most widespread branching method –
branching on a single variable. Some fractional variable ij with value xij , (i, j) ∈ EA (whose
value must be integer in any feasible solution) is chosen as the branching variable, and two new
branch-and-cut nodes are created. We used the so-called CloseHalfExpensive strategy, also
described in [157]. This strategy works as follows:

Suppose x is the fractional solution of the currently solved linear program. Define L and
H in the following way:

L = min{0.5,max{xij | xij ≤ 0.5, (i, j) ∈ EA},

H = max{0.5, min{xij | xij ≥ 0.5, (i, j) ∈ EA}.
Let finally

C = {(i, j) ∈ EA | 0.75L ≤ xij ≤ H + 0.25(1−H)}
be the set of fractional variables “close” to 0.5. We select from C the variable xij with the
maximum absolute cost, i.e. with the maximum objective value coefficient (note that our edge
weights are positive).

Best First Search strategy has been used as the default enumeration strategy: from the
set of open subproblems the “most promising” one is selected. In our case, the node with the
minimal local lower bound is said to be the most promising one.

Initializing Upper Bounds. Usage of good upper bounds plays an important role in the
design of branch-and-bound based algorithms. The better the upper bound, the more nodes in
the branch-and-bound tree can be fathomed. We used the memetic algorithm proposed above
for the initialization of upper bounds.

Implementation Details. We used the software ABACUS developed by Thienel [157, 91]
as a generic implementation of the branch-and-cut approach. For solving LP relaxations, we
used the commercial package CPLEX (version 7.1).

For the initialization of upper bounds the same MA setting as described in Section 3.3 was
applied. When solving small and medium-size instances we observed that there is a trade-off
between the MA’s running time and the running time needed to prove optimality. Thus, we
used weaker termination criteria and smaller populations: the population size was 100 and the
MA was terminated when no new best solution could be identified during the last Ω = 1 000
generations. The last two parameters are set according to the preliminary tests in which they
proved to be robust in solving different classes of smaller instances with the branch-and-cut
method. Because of MA’s non-deterministic nature, we ran it with a fixed seed value.

In ABACUS, all inequalities and variables are stored in pools. A constraint (variable)
usually belongs to the set of active constraints (variables) of several subproblems that still have
to be processed. The advantage of pools is that in the sets of active constraints (variables)
only the pointers to the corresponding inequalities (variables) need to be stored, while the
constraints (variables) themselves are stored in one central place. For the degree constraints
it is advantageous to stay active in any case, thus, they need to be treated differently from
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the connectivity constraints. Hence, in our implementation we used three pools: one pool
for variables, one pool for the vertex- and edge-connectivity constraints, and one pool for the
degree constraints.

We also used tailing-off strategy [43]: If during the last It = 10 iterations in the bounding
part, lpval did not increase by more than k = 0.0025%, the cutting plane part is aborted and
new subproblems are created.

Solving Zhu’s Instances to Optimality

The pure cutting plane method outlined so far performed only in the root node provides
lower bounds to the optimal solutions. For most of Zhu’s instances these lower bounds were
already optimal. However, for large instances branching was necessary. We started with the
initialization and separation at the root node. When no new violated constraints can be
generated, we applied branching on a binary variable xij following specific branching rules
described above.

Table 3.9 shows the results of our branch-and-cut algorithm, on the set of Zhu’s instances.
The results are averaged over 30 different instances of the same group. Column OPT represents
the averaged optimal values. The next two columns provide results of the memetic algorithm
described in Section 3.3: the average percentage gap (%-gap) and the average running time
in seconds (t [s]). The last four columns are devoted to the branch-and-cut algorithm: the
average running time in seconds (t [s]), the average number of generated subproblems (SP), the
average number of generated levels in the branch-and-cut tree (Levels), and the average number
of solved linear programs (LPs). All experiments were performed on a Pentium-III/800MHz
machine.

The results show that the branch-and-cut algorithm is significantly faster than the MA
when small and easy (randomly generated) instances are considered. Solving of medium-size
and large instances is addressed within next sections. Recall that the MA was the fastest
heuristic approach as far as Zhu’s instances are concerned, and that Zhu’s algorithm itself
didn’t terminate for the R-group within the allowed maximum time of 20 000 seconds. In
the branch-and-cut algorithm, all instances (with the exception of N- and R-group) have been
solved using on average slightly more than one subproblem and generating slightly more than
one level in the branch-and-bound tree. This means that, in most cases, the cutting plane
method performed in the root node solved the underlying problem to optimality.

Solving TSPLIB Instances to Optimality

For each TSPLIB instance described in Section 3.2.4, we generated additional graphs in the
following way: G is the graph containing all vertices of the TSP-instance and edges for each
vertex to k% of its nearest neighbors, where k is the number shown in parentheses in Table 3.10.
Edge costs are always the Euclidean distances rounded to nearest integer values. From G, a
minimum spanning tree of the corresponding “sparse” instance (-sp) is fixed as G0.

For solving instances derived from the TSPLIB, we used a Pentium IV/2.8GHz PC with 2
GB RAM.
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Table 3.9: Branch-and-cut algorithm solved all Zhu’s instances to optimality.

MA Branch-and-Cut
Group OPT %-gap t [s] t [s] SP Levels LPs

A1 511.50 0.00 0.00 0.00 1.17 1.07 1.37
A2 1764.77 0.00 0.00 0.00 1.07 1.03 1.33
A3 4055.47 0.00 0.01 0.01 1.00 1.00 1.10
A4 1948.07 0.00 0.01 0.01 1.27 1.13 1.47
A5 3753.87 0.00 0.02 0.01 1.27 1.13 1.47
B1 13426.03 0.00 0.03 0.02 1.10 1.03 1.37
B2 163.77 0.00 0.12 0.00 1.60 1.30 2.27
B3 8311.93 0.00 0.02 0.02 1.13 1.07 1.30
B4 7131.37 0.00 0.08 0.02 1.53 1.27 2.00
B5 12460.57 0.00 0.12 0.03 1.27 1.13 1.70
B6 19849.73 0.00 0.32 0.05 1.13 1.07 1.47
C1 27085.03 0.00 0.41 0.07 1.27 1.13 1.57
C2 40478.83 0.00 0.49 0.09 1.13 1.07 1.33
C3 52441.30 0.00 0.62 0.12 1.07 1.03 1.33
C4 341.50 0.00 0.38 0.01 1.07 1.03 1.53
D1 7339.93 0.00 1.68 0.37 1.27 1.13 1.50
D2 762.70 0.00 0.75 0.05 1.33 1.17 1.90
D3 12773.33 0.00 3.91 1.64 1.27 1.13 1.57
D4 9886.33 0.00 2.87 1.19 1.27 1.13 1.43
D5 13489.10 0.02 5.90 2.13 1.40 1.20 1.80
M1 3492.33 0.00 1.70 0.46 1.40 1.20 2.00
M2 3266.33 0.00 2.86 1.04 1.27 1.13 1.77
M3 3433.33 0.00 4.31 1.62 1.13 1.07 1.37
N1 389.93 0.17 9.50 2.83 19.07 3.50 18.77
N2 413.63 0.39 13.72 2.95 7.00 2.53 7.63
R1 128.93 0.08 39.78 19.31 2.20 1.50 2.47
R2 331.54 0.42 58.52 16.84 3.60 1.63 3.50
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Table 3.10: Branch-and-cut algorithm applied on instances derived from the TSP-library.

BC-S BC-E0 BC-M
Instance OPT Pr. Bound

t [s] SP LP t [s] SP LP t [s] SP LP
pr226-dt 25152 25152 1.0 5 11 1.1 5 12 1.2 5 9
pr226-sp 22824 23524 3.5 3 33 4.2 3 40 2.4 3 5
pr226 (20) 22824 23524 4.0 3 34 9.5 11 153 2.8 3 4
pr226 (30) 22824 23924 5.5 5 40 6.7 5 59 4.4 5 11
pr226 (40) 22824 23724 6.1 5 40 7.0 5 50 4.8 5 9
pr226 (50) 22824 23429 6.9 5 39 7.9 5 49 5.8 5 11
pr226 (60) 22824 24353 8.6 5 46 9.9 5 56 7.1 5 11
pr226 (70) 22824 23624 9.4 5 40 10.2 5 49 8.3 5 12
pr226 (80) 22824 24853 10.3 7 49 12.1 7 57 8.7 7 12
pr226 (90) 22824 24558 11.0 5 47 12.2 5 57 9.4 5 10
pr226 22824 23524 10.6 5 39 11.0 5 49 9.1 5 10
pr226-avg 7.0 4.8 38.0 8.3 5.5 57.4 5.8 4.8 9.5
lin318-dt 12013 12178 4.0 3 13 5.0 3 21 3.8 3 5
lin318-sp 11797 12397 15.8 73 72 30.1 107 350 15.6 73 53
lin318 (20) 11797 12105 21.4 73 72 38.8 107 350 20.9 73 53
lin318 (30) 11797 12382 28.7 73 77 46.3 107 350 27.7 73 53
lin318 (40) 11797 12139 36.5 73 72 56.3 109 340 34.6 73 53
lin318 (50) 11797 12264 40.7 81 80 62.4 113 344 41.2 81 56
lin318 (60) 11797 12466 52.4 73 75 74.3 107 351 52.6 73 53
lin318 (70) 11797 13099 60.5 73 75 64.9 75 166 60.5 73 53
lin318 (80) 11797 12162 70.1 73 71 101.2 109 339 69.2 73 53
lin318 (90) 11797 12248 78.7 85 85 103.9 113 336 78.3 85 62
lin318 11797 12332 68.7 81 80 91.4 103 360 67.7 81 56
lin318-avg 43.4 69.2 70.2 61.3 95.7 300.6 42.9 69.2 50.0
pr439-dt 28310 28310 13.8 15 34 69.5 23 305 13.6 15 19
pr439-sp 26800 27907 33.3 41 71 45.0 41 100 28.8 41 37
pr439 (20) 26800 27886 46.8 45 73 66.5 45 141 42.9 45 38
pr439 (30) 26800 28439 75.2 45 76 91.9 45 141 71.3 45 41
pr439 (40) 26800 27943 86.3 45 76 104.2 45 141 80.8 45 37
pr439 (50) 26800 30577 108.1 45 80 127.0 45 144 104.9 45 41
pr439 (60) 26800 28620 143.1 45 75 162.1 45 144 138.9 45 39
pr439 (70) 26800 28537 166.7 45 75 184.8 45 142 161.5 45 40
pr439 (80) 26800 29397 183.1 45 75 202.6 45 141 178.7 45 41
pr439 (90) 26800 30130 195.3 45 76 223.8 45 141 189.7 45 40
pr439 26800 30885 164.1 45 76 183.8 45 141 158.1 45 39
pr439-avg 110.5 41.9 71.5 132.8 42.6 152.8 106.3 41.9 37.5
pcb442-dt 10328 10344 78.0 97 104 78.8 97 104 78.2 97 99
pcb442-sp 10460 10766 91.2 253 199 94.5 253 212 96.1 253 195
pcb442 (20) 10460 10871 136.8 253 199 144.3 253 212 141.8 253 195
pcb442 (30) 10460 11240 181.4 253 199 191.2 253 212 187.1 253 195
pcb442 (40) 10460 10601 226.0 253 199 228.1 253 212 231.1 253 195
pcb442 (50) 10460 11633 283.5 253 200 297.4 253 212 287.5 253 191
pcb442 (60) 10460 11062 341.8 253 199 357.1 253 212 349.2 253 195
pcb442 (70) 10460 11242 408.5 253 199 410.2 253 212 414.8 253 195
pcb442 (80) 10460 11742 442.9 253 199 462.4 253 212 448.8 253 195
pcb442 (90) 10460 11336 474.2 253 199 493.0 253 212 481.7 253 195
pcb442 10460 12076 465.3 253 199 456.9 253 212 457.5 253 191
pcb442-avg 284.5 238.8 190.5 292.2 238.8 202.2 288.5 238.8 185.5
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Table 3.10 represents results of three different scenarios for running the branch-and-cut
algorithm. All three scenarios found optimal solutions for the considered instances–their values
are given in OPT column. Upper bounds obtained by the MA are given in the Pr. Bound
column. In BC-S strategy, we used edge-connectivity cuts in the separation phase, but we
inserted only one cut per iteration. In BC-E0 scenario, only vertex-connectivity cuts are
used during the separation. Finally, in BC-M, as in BC-S, we detected both, violated edge-
and vertex-connectivity constraints during the separation phase, but we allowed insertion of
multiple cuts per iteration. For each of these strategies, t [s] represents the running time
in seconds (including the time needed for preprocessing); SP shows the number of generated
subproblems; and LP provides the number of solved LPs.

The results clearly show the importance of edge-connectivity constraints in the separation
phase. We can see that, allowing the insertion of edge-cuts, we can reduce the total number
of inserted cuts by a factor of four (see, for example group lin318 of instances). The results
also indicate that using multiple instead of single cuts, we can reduce the number of solved
LPs by a factor of six (lin318 group). On the other side, the results clearly document the
trade-off between the number of solved LPs and their size. For the pr439 group of instances,
for example, for BC-S we needed to solve almost two times more LPs than for BC-M. On the
other side, BC-S was only 10% slower than BC-M, which means that the corresponding LPs
of BC-M were significantly larger than those of BC-S.

3.4.3 The Branch-and-Cut-and-Price Algorithm

In this section we propose an enhancement of the previous algorithm. This will be achieved
by embedding a column generation method into each node of the branch-and-bound tree, thus
performing the so-called branch-and-cut-and-price method. We also propose a primal heuristic
based on the local improvement method embedded in the MA. In the following, we highlight
computation of upper bounds, initialization and column generation procedures. Finally, we
also consider some important aspects of an efficient implementation.

Initialization. We start the optimization with processing the root node of the enumeration
tree. Besides the initial set of the degree constraints, we also have to select a subset of columns
to set up the restricted master problem. Since we need dual variables to formulate the pricing
problem, the restricted problem must be feasible. As the sparse graph we choose k1-nearest
neighbor graph (k1 ∈ N) of the reduced block-cut graph. The value for k1 is properly chosen
so that the block-cut tree together with the corresponding k1-nearest neighbors of each vertex
represents a feasible problem instance (see next section).

Computation of Upper Bounds. The primal upper bound of the branch-and-cut algorithm
described above can be improved only if the LP-solution is integer feasible. However, it can
be observed that this happens rather rarely. Therefore a sophisticated heuristic (the so-called
primal heuristic) must be applied at each node of the branch-and-bound tree, before a branching
step is applied, in order to generate new, better feasible solutions.
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The fractional LP-solutions occurring in the lower bound computations may give good hints
for the structure of optimum or near optimum feasible solutions [43]. Our heuristic is designed
in the following way: Starting from the fractional solution x of the last LP, we generate a
support block-cut graph using the edges of the block-cut tree T and the edges (i.e. variables)
from the set EprHeur , where

EprHeur = {eij ∈ EA | xij ≥ pprHeur}.

pprHeur ∈ [0, 1] is a fractional parameter which controls the influence of the LP solution on the
generation of feasible solutions.

If the support graph is not biconnected, we first make it feasible by adding an additional
subset of augmentation edges. Iteratively, non-redundant edges are randomly selected from
EA \EprHeur and included in the support graph. This process is repeated until all cut-vertices
are completely covered. The selection of edges for inclusion is biased toward cheaper edges
according to a scheme used within the initialization operator of the MA (see Section 3.3.3).

Finally, from such obtained feasible solution, we eliminate redundant edges by using the
local improvement procedure which has been embedded within the MA, with one exception:
to better exploit the LP-solution, we forbid elimination of those edges with xij = 1.

Column Generation. Column generation is necessary before a branch-and-cut node can
be fathomed. Its purpose is to check whether the LP-solution computed on the sparse graph
is valid for the complete block-cut graph GA. In other words, using this procedure we have
to check whether all inactive variables “price out” correctly. If this is not the case, inactive
variables with negative reduced costs are added to the reduced subproblem and the linear
program is resolved.

Pricing of inactive edges is done using the reserve graph strategy, i.e. only if all the edges
of the reserve graph price out correctly, reduced costs of the rest of inactive variables have to
be checked (the so-called complete pricing is necessary). The reserve graph is chosen as the
difference between the k2-nearest neighbor graph and the sparse graph, where k2 > k1, k2 ∈ N.

Using an idea of Padberg and Rinaldi [131, 157], we also fix some inactive variables by their
reduced costs. If our current branch-and-cut node is the root of the remaining branch-and-cut
tree, we search for inactive variables xi such that:

c(LP) + ri > UBg.

Here c(LP) denotes the last computed lower bound, UBg represents the global upper bound,
and ri represents the reduced costs of the variable xi. Such variables xi can be discarded
forever. The other variables are inserted in a list that maintains possible candidates that can
be priced in later iterations. In the early steps of computation, the number of inactive edges
that cannot be discarded may be longer. Due to a possible memory overconsumption, only a
partial list of these edges is stored (building the so-called candidate graph), together with a
pointer where the systematic enumeration has to be resumed (see also [89]).
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Further Implementation Details. The mechanisms described above are implemented us-
ing the so called EDGERESERVOIR data-structure. The implementation is adopted from
Stefan Thienel [157, pp. 142] where it has been used for solving the traveling salesman prob-
lem. Furthermore, as also suggested in [157, 91], we use the following implementation technique
to enhance the calculation of the reduced costs of an inactive variable: Since all constraints
we are dealing with are given in the form x(δ(W )) ≥ const , a necessary condition that the
coefficient of an edge e is nonzero for this constraint is that exactly one end-node of e is con-
tained in W . Hence, for both ends u and v of edge e, we store a list of constraints where
they are involved. We initialize the reduced costs with the objective function coefficient, and
compare the constraint lists of u and v. Whenever the two lists disagree in a constraint from
the current reduced costs value, we subtract the value of the dual variable multiplied by the
corresponding coefficient. Alternatively, we could calculate the reduced costs in a straightfor-
ward way by multiplying the vector of dual variables with the corresponding column in the
current constraint matrix. However, using these refinements, we can significantly speed up the
total time spent on pricing.

When dealing with a special constraint class, we are faced with the problem of the trade-
off between performance and memory usage [157]. Memory efficient storage of constraints
may become a bottleneck when the coefficients of a variable for several constraints have to be
computed. This usually happens when a variable needs to be added to the LP-solver (during
the pricing phase). Using more memory in these cases we are able to perform these operations
more efficiently.

Therefore, we switch between the compressed format and the expanded format of a con-
straint. Before the variables with negative reduced costs are searched, we generate the expanded
format of all constraints, in order to avoid too many time consuming coefficient computations.
The constraints are afterwards compressed again.

For an inequality of a type x(δ(W )) ≥ const , we always store either the set W itself, or its
complement V \W , whichever is smaller. Without loss of generality, we assume |W | < |V \W |.
The nodes of set W are stored in the compressed format, for example using a simple set data
structure where only O(|W |) space is needed for each constraint. The computation of the
coefficient of an edge (i, j) requires O(|W |) time, since in the worst case all nodes of the set W

need to be passed through. In the expanded format, we use an additional boolean array indexed
by the set of nodes VT , whose element with index v is set to true if and only if v ∈ W . Now,
we can determine the coefficient of an edge in constant time, while the memory requirement of
each constraint has been increased from O(|W |) to O|VT |).

3.4.4 Computational Experiments

In this section, we analyze the performance of the proposed branch-and-cut-and-price approach.
In particular, we investigate impacts of incorporating pricing and primal heuristics and compare
the performance of two different MA settings that are used for the initialization of upper
bounds.

For initialization of the sparse and reserve graph, we used k1 = 5 and k2 = 10, as proposed
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Figure 3.11: Comparing running times of the branch-and-cut algorithm (BC-M) and the
branch-and-cut-and-price algorithm (BCP-noPrHeur). To investigate the role of pricing, no
primal heuristic is used, and the preprocessing times are taken out of consideration. Instances
of (a) pr439 and (b) pcb442 group.

in [89] for solving the traveling salesman problem. To assure the feasibility of the sparse
graph, for the instances of the pr226 group we set k1 = 8, k2 = 12 and for the pr439 group
k1 = 6, k2 = 10. We allowed insertion of multiple node-connectivity cuts during the separation
phase. For the settings, where the primal heuristic is used, we set pprHeur = 0.5. As before, for
all computational experiments presented in this section we used a Pentium IV/2.8GHz with 2
GB RAM. We have used the same tailing-off strategy as in the branch-and-cut algorithm.

The results depicted on Figure 3.11 show the running times of the branch-and-cut algorithm,
with and without pricing, BC-M and BCP-noPrHeur, respectively. To be able to investigate
the role of the pricing in improving the BC-M performance, the primal heuristic was switched
off in both of the settings. Furthermore, we subtracted the preprocessing times, thus compar-
ing only the computational effort of ”pure” exact algorithms. The obtained results show that
the incorporation of pricing into the branch-and-cut framework for the V2AUG problem sig-
nificantly speeds up the computation. For both, pcb442 and pr439 groups, the overall running
time can be on average reduced for about 50%. Furthermore, one observes that the density of
an instance does not substantially influence the running time, if the pricing is used. On the
other hand, without pricing, the overall running time may be up to three times longer (see the
complete graph of group pcb442, for example).

Table 3.11 shows the results of the BC-M, the branch-and-cut algorithm described in the
previous section, and of the proposed branch-and-cut-and-price algorithm with the following
MA settings:

• In BCP-0.5, the population size was 100 and each MA run was terminated when no new
best solution could be identified during the last Ω = 1 000 iterations.

• In BCP-Full-MA, the convergence criteria for the MA was stronger (the same as described
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Figure 3.12: Gap versus time plot for lin318 (70) instance. Due to the application of the
primal heuristic, good feasible solutions can be found earlier. (a) BCP performance without
primal heuristic. BCP performance with (b) pprHeur = 0.0; (c) pprHeur = 0.2; (d) pprHeur = 0.5;
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in Section 3.3.6), thus Ω = 10 000 while the population size was set to 800.

For each of these strategies, in Table 3.11, the running time in seconds (t [s]), the total
number of generated subproblems (SP) and the total number of solved LPs (LP) are given.
Additionally, for BCP-0.5 and BCP-Full-MA, in tbest [s] column, we provide the time when
the optimal solution has been found. Table 3.11 shows that the pricing together with primal
heuristic substantially improves the performance of the branch-and-cut algorithm. Not only
that the overall running time can be on average reduced for about 50% (for the group pcb442,
for example) but also the size of the branch-and-bound tree can be reduced for about 25%.

Figure 3.12 depicts one example which shows the advantage of using a primal heuristic. The
performance of the BCP algorithm is better if only promising variables (i.e. those whose LP-
values xij ≥ 0.5) are used within the upper bounding procedure. If all possible augmentation
edges (i.e. xij ≥ 0) are used within the upper bounding procedure, there is no significant
difference between the performance of the BCP algorithm with or without primal heuristic.

One also observes that there is a certain trade-off between the time needed to run the MA
(in order to initialize upper bounds) and the overall BCP running time. Thus, the results are
much better if the “strong” convergence and diversity of the MA are not requested, i.e. if Ω
is set to 1 000, and the population size to 100. The results also indicate that this trade-off
diminishes when the problem size becomes larger.

Besides graphs derived from pa561 TSPLIB instance, we considered two additional groups
of larger instances: d1291 and d2103, belonging to TSPLIB as well. After applying prepro-
cessing described in Section 3.2, these graphs contain between 5237 and 22707 augmentation
edges (d1291 group), and between 5680 and 33360 augmentation edges (d2103 group). For
all these instances, except for d2103 (2), our branch-and-cut-and-price algorithm terminated
abnormally because of memory overconsumption. Thus, for these instances we did not succeed
in finding provably optimal solutions. Therefore, we measured the following optimality gap:

gapg =
UBg − LBg

LBg
× 100%,

where UBg represents the costs of a known augmentation (obtained either within the MA, or
during the branching), and LBg is a global lower bound. The optimality gapg expresses that
the solution with costs UBg is at most gapg% more expensive than the optimal solution.

In Table 3.12, we consider the following three different settings: BCP-0.5 and BCP-Full-
MA are the settings described above, while BCP-noPrHeur represents the branch-and-cut-
and-price algorithm without primal heuristic. In UB and UB full columns, we show the upper
bounds obtained after running the memetic algorithm with Ω = 1 000, population size 100;
and Ω = 10 000, population size 800, respectively. For each of these settings, we provide the
total running time in seconds (t [s], including preprocessing and MA running time) and the
optimality gap (gapg).

Table 3.12 documents that for large instances it is recommendable to run the MA to obtain
as good solutions as possible (Ω = 10 000) and to keep higher diversity (population size of
800). While for small and medium-size instances the computation of high-quality upper bounds
can slow-down the optimization, for larger instances it helps significantly in reducing the gap
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Table 3.11: Comparing the branch-and-cut algorithm (BC-M) with the branch-and-cut-and-
price algorithm with primal heuristic whose pprHeur = 0.5 (BCP-0.5) and the branch-and-cut-
and-price algorithm where the upper bounds are initialized with the MA whose population size
is 800 and Ω = 10 000 (BCP-Full-MA). The best running times are highlighted.

BC-M BCP-0.5 BCP-Full-MA
Instance

t [s] SP LP t [s] SP LP tbest [s] t [s] SP LP tbest [s]
pr226-dt 1.2 5 9 1.3 5 9 0.0 3.5 5 9 2.0
pr226-sp 2.4 3 5 2.6 5 10 1.0 9.3 5 10 8.0
pr226 (20) 2.8 3 4 2.8 3 9 2.0 9.4 3 9 8.0
pr226 (30) 4.4 5 11 4.6 7 18 3.0 10.8 3 14 9.0
pr226 (40) 4.8 5 9 4.4 5 13 3.0 12.8 5 12 10.0
pr226 (50) 5.8 5 11 4.9 5 14 3.0 13.7 7 14 10.0
pr226 (60) 7.1 5 11 6.5 5 13 4.0 14.1 7 16 11.0
pr226 (70) 8.3 5 12 7.8 5 13 4.0 14.9 5 19 11.0
pr226 (80) 8.7 7 12 7.6 5 10 4.0 14.7 5 13 11.0
pr226 (90) 9.4 5 10 8.1 3 13 5.0 16.1 5 11 12.0
pr226 9.1 5 10 7.8 3 11 5.0 16.6 5 12 13.0
pr226-avg 5.8 4.8 9.5 5.3 4.6 12.1 3.1 12.4 5.0 12.6 9.5
lin318-dt 3.8 3 5 4.0 3 6 1.0 9.7 3 6 7.0
lin318-sp 15.6 73 53 14.4 59 66 10.0 23.0 59 65 19.0
lin318 (20) 20.9 73 53 15.6 59 65 11.0 22.8 59 65 18.0
lin318 (30) 27.7 73 53 19.5 59 66 11.0 29.2 59 65 21.0
lin318 (40) 34.6 73 53 24.1 59 65 12.0 39.7 59 65 28.0
lin318 (50) 41.2 81 56 25.1 59 65 13.0 35.4 59 65 23.0
lin318 (60) 52.6 73 53 36.2 59 66 14.0 48.2 59 65 26.0
lin318 (70) 60.5 73 53 40.9 59 66 15.0 54.1 59 65 28.0
lin318 (80) 69.2 73 53 47.8 59 68 16.0 54.3 59 65 23.0
lin318 (90) 78.3 85 62 50.8 59 68 16.0 60.8 59 65 26.0
lin318 67.7 81 56 41.3 59 68 16.0 51.6 59 65 26.0
lin318-avg 42.9 69.2 50.0 29.1 53.9 60.8 12.3 39.0 53.9 59.6 22.3
pr439-dt 13.6 15 19 13.9 15 19 1.0 22.2 15 19 9.0
pr439-sp 28.8 41 37 24.8 27 31 13.0 35.3 27 31 24.0
pr439 (20) 42.9 45 38 33.3 31 32 17.0 52.9 31 32 37.0
pr439 (30) 71.3 45 41 54.6 31 33 19.0 82.9 31 34 48.0
pr439 (40) 80.8 45 37 57.7 31 32 23.0 86.6 31 34 51.0
pr439 (50) 104.9 45 41 79.3 31 33 27.0 107.4 31 35 55.0
pr439 (60) 138.9 45 39 107.4 31 35 28.0 134.0 31 35 55.0
pr439 (70) 161.5 45 40 122.4 31 34 30.0 150.6 31 32 58.0
pr439 (80) 178.7 45 41 136.1 31 36 33.0 165.6 31 32 63.0
pr439 (90) 189.7 45 40 148.6 31 33 37.0 177.3 31 33 66.0
pr439 158.1 45 39 113.4 31 35 37.0 142.9 31 35 66.0
pr439-avg 106.3 41.9 37.5 81.0 29.2 32.1 24.1 105.2 29.2 32.0 48.4
pcb442-dt 78.2 97 99 78.8 97 101 18.0 89.1 89 100 28.0
pcb442-sp 96.1 253 195 74.1 195 201 58.0 94.0 195 202 78.0
pcb442 (20) 141.8 253 195 104.8 253 198 80.0 100.4 195 201 77.0
pcb442 (30) 187.1 253 195 118.0 195 201 76.0 130.7 195 201 90.0
pcb442 (40) 231.1 253 195 128.2 195 201 82.0 141.4 195 200 96.0
pcb442 (50) 287.5 253 191 142.9 195 200 86.0 158.4 195 199 102.0
pcb442 (60) 349.2 253 195 178.4 195 201 89.0 197.7 195 200 109.0
pcb442 (70) 414.8 253 195 211.8 253 198 107.0 224.7 195 201 121.0
pcb442 (80) 448.8 253 195 206.1 195 201 94.0 221.9 195 201 110.0
pcb442 (90) 481.7 253 195 215.7 199 196 96.0 240.2 195 201 122.0
pcb442 457.5 253 191 182.4 199 196 96.0 199.8 199 196 114.0
pcb442-avg 288.5 238.8 185.5 149.2 197.4 190.4 80.2 163.5 185.7 191.1 95.2
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Table 3.12: Comparing three BCP settings for large instances derived from TSPLIB: BCP algo-
rithm without primal heuristic (BCP-noPrHeur), BCP with primal heuristic whose pprHeur =
0.5 (BCP-0.5), and BCP with pprHeur = 0.5 with upper bounds obtained from running the
MA with Ω = 10 000 and population size 800 (BCP-Full-MA). For BCP-noPrHeur and BCP-
0.5, the MA’s population size was 100, and Ω = 1 000. The best optimality gap values are
highlighted.

BCP-noPrHeur BCP-0.5 BCP-Full-MA
Instance UB

t [s] gapg t [s] gapg
UB full t [s] gapg

pa561-sp 794 580.8 2.7 596.1 1.9 784 593.2 1.4
pa561 (20) 828 682.3 7.1 681.5 1.8 786 694.0 1.6
pa561 (30) 849 750.5 9.8 754.8 3.3 782 763.8 1.1
pa561 (40) 837 934.6 8.2 933.6 3.4 785 774.1 1.5
pa561 (50) 851 1094.4 10.0 1067.1 3.2 785 852.2 1.4
pa561 (60) 805 1018.4 4.1 1208.7 3.2 784 929.0 1.4
pa561 (70) 872 1771.4 12.8 1377.7 3.1 785 938.8 1.6
pa561 (80) 879 2226.3 13.7 1401.5 3.4 788 1031.2 2.0
pa561 (90) 844 2243.6 9.1 1380.0 2.7 785 1042.0 1.6
pa561 878 1754.3 13.5 1690.4 3.4 786 842.6 1.7
d1291 (2) 12298 1443.4 5.4 1450.7 1.5 11788 1493.2 1.0
d1291 (5) 12210 1571.5 4.6 1583.4 1.5 11855 1624.6 1.5
d1291 (10) 12634 1772.0 8.3 1768.2 1.7 11924 1810.7 1.7
d1291 (30) 13357 3499.8 14.7 3305.1 1.9 11997 3385.3 1.9
d2103 (2) 7633 3766.6 0.0 3723.5 0.0 7490 3749.7 0.0
d2103 (5) 7610 4637.4 2.7 4653.9 0.4 7521 4692.1 0.4
d2103 (10) 7691 5478.1 3.9 5468.6 0.7 7503 5529.3 0.7
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Figure 3.13: Comparison of optimality gaps for three different BCP settings: BCP-noPrHeur,
BCP-0.5 and BCP-Full-MA. Instances of (a) d2103, (b) d1291 and (c) pa561 group.
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between the global lower bound and the best-known feasible solution. Figure 3.13 depicts the
optimality gap for BCP-noPrHeur, BCP-0.5 and BCP-Full-MA on the set of largest instances
we tested. One observes that the BCP-Full-MA approach produces optimality gap less than
2%, the gap of the BCP-0.5 approach lies beyond 4%, while the BCP algorithm without primal
heuristic produces the worst solutions, with optimality gaps with up to 14%.

3.5 Pricing with MA Solutions

In the previous section we used a pricing technique based on sparse and reserve graphs, and
initialized with nearest-neighbor graphs, as originally proposed in [89]. In the sequel, we are
going to investigate the performance of the branch-and-cut-and-price algorithm if, instead of
using nearest-neighbor graphs, the MA solutions are used.

We propose the following strategy:

(1) Initialize the restricted master problem with the last MA’s population obtained after no
new best solution could be identified during the last Ω iterations. Thus, we initialize
the master problem with all the edges that belong to at least one solution from this
population.

(2) Initialize the reserve graph with all edges contained in the solutions of the first MA’s
population, which do not belong to the sparse graph already. Note that such initializa-
tion does not include purely random edges, but the edges obtained using the sophisti-
cated problem-dependant initialization and local improvement procedures described in
Section 3.3.

The advantages of this approach are:

• The sparse graph is always feasible;

• The number of edges of the sparse graph is small, which is particularly important for
those instances where the LP-solver represents the bottleneck of the implementation.

• As we have seen in the last section, the best MA’s solution provide excellent upper bounds
for the branch-and-cut-and-price algorithm, especially for larger instances. Thus, there
are no additional computational costs needed for the initialization of sparse and reserve
graphs.

• Edges of the sparse graph belong to the optimal solution with a high probability.

• It can be observed from problems like TSP that the reduced costs of edges not belonging
to the reserve graph are seldom positive if the reserve graph is appropriately chosen.
Since the last MA’s population contains several locally optimal and promising solutions,
the probability that some of the edges from the last population belong to the optimal
solution is high.



3.5. PRICING WITH MA SOLUTIONS 87

Table 3.13: Comparing the BCP algorithm relying on nearest-neighbor pricing (BCP-0.5) and
on pricing with MA solutions (BCP-SR-MA). The best running times are highlighted.

BCP-0.5 BCP-SR-MA
Instance |Sp.| |Res.| 6∈ SR AV LP tbest [s] t [s] |Sp.| |Res.| 6∈ SR AV LP tbest [s] t [s]
pr226dt 255 1 0 0 9 0.0 1.3 36 131 0 18 15 1.0 1.6
pr226m15 1120 428 368 500 10 1.0 2.6 57 782 54 282 17 2.0 2.8
pr226m20 1153 451 383 509 9 2.0 2.8 49 779 55 283 18 2.0 3.1
pr226m30 1162 477 417 541 18 3.0 4.6 61 778 81 340 28 3.0 4.8
pr226m40 1162 494 528 640 13 3.0 4.4 51 751 66 254 20 3.0 4.3
pr226m50 1163 497 662 781 14 3.0 4.9 55 761 44 273 23 4.0 5.7
pr226m60 1157 502 964 1084 13 4.0 6.5 48 766 78 297 18 4.0 6.1
pr226m70 1163 497 1280 1394 13 4.0 7.8 46 795 100 313 23 4.0 7.3
pr226m80 1163 497 1277 1392 10 4.0 7.6 52 767 86 367 22 5.0 7.9
pr226m90 1163 497 1345 1465 13 5.0 8.1 51 780 58 244 21 5.0 8.4
pr226m0 1163 497 1277 1393 11 5.0 7.8 50 777 96 311 19 4.0 7.6
pr226-avg 1074.9 439.8 772.8 881.7 12.1 3.1 5.3 50.5 715.2 65.3 271.1 20.4 3.4 5.4
lin318dt 426 8 0 1 6 1.0 4.0 71 264 0 53 8 1.0 4.2
lin318m10 973 614 5 29 66 11.0 14.4 78 1091 70 267 84 10.0 13.3
lin318m20 1007 791 10 30 65 12.0 15.6 65 1204 43 240 74 12.0 16.1
lin318m30 1018 866 10 30 66 13.0 19.5 82 1192 57 246 74 13.0 19.9
lin318m40 1022 900 10 30 65 13.0 24.1 74 1210 64 277 85 12.0 22.5
lin318m50 1023 925 10 30 65 14.0 25.1 80 1214 64 256 80 14.0 24.7
lin318m60 1022 923 10 30 66 16.0 36.2 69 1201 49 258 74 14.0 34.3
lin318m70 1022 925 10 30 66 16.0 40.9 77 1220 71 255 72 14.0 38.2
lin318m80 1022 930 13 33 68 18.0 47.8 70 1231 68 269 94 17.0 47.5
lin318m90 1022 927 13 33 68 18.0 50.8 70 1203 68 251 84 17.0 49.7
lin318m0 1021 927 13 33 68 18.0 41.3 78 1210 54 302 90 18.0 41.5
lin318-avg 961.6 794.2 9.5 28.1 60.8 13.6 29.1 74.0 1112.7 55.3 243.1 74.5 12.9 28.4
pr439dt 490 0 0 0 19 5.0 13.9 72 262 6 104 36 9.0 17.6
pr439m10 1536 688 22 38 31 14.0 24.8 82 1456 26 250 63 18.0 28.3
pr439m20 1635 901 23 42 32 19.0 33.3 76 1380 108 381 56 20.0 34.3
pr439m30 1663 989 23 44 33 21.0 54.6 75 1379 93 376 75 29.0 61.9
pr439m40 1680 1026 23 42 32 25.0 57.7 73 1389 85 312 54 26.0 58.5
pr439m50 1680 1032 21 42 33 29.0 79.3 78 1355 97 355 63 31.0 81.0
pr439m60 1680 1033 23 43 35 31.0 107.4 77 1380 64 271 64 34.0 110.0
pr439m70 1679 1032 30 50 34 32.0 122.4 67 1398 100 320 60 35.0 124.7
pr439m80 1678 1034 23 42 36 36.0 136.1 70 1377 219 458 61 40.0 140.0
pr439m90 1678 1032 21 42 33 40.0 148.6 71 1401 438 690 70 43.0 151.1
pr439m0 1678 1029 17 36 35 40.0 113.4 80 1400 106 398 73 44.0 117.7
pr439-avg 1552.5 890.5 20.5 38.3 32.1 26.5 81.0 74.6 1288.8 122.0 355.9 61.4 29.9 84.1
pcb442dt 383 2 0 0 101 18.0 78.8 66 200 0 69 128 22.0 83.0
pcb442m10 1324 742 1 22 201 61.0 74.1 76 1554 62 205 232 57.0 69.8
pcb442m20 1437 1163 0 12 198 86.0 104.8 96 1616 0 151 231 60.0 78.8
pcb442m30 1468 1247 1 22 201 83.0 118.0 86 1653 54 216 205 56.0 91.5
pcb442m40 1476 1269 1 22 201 91.0 128.2 99 1639 49 215 295 89.0 126.1
pcb442m50 1477 1278 1 22 200 96.0 142.9 85 1622 0 316 398 133.0 179.8
pcb442m60 1483 1275 1 22 201 99.0 178.4 106 1615 0 226 315 96.0 175.7
pcb442m70 1482 1279 0 12 198 118.0 211.8 79 1645 0 315 503 154.0 247.5
pcb442m80 1483 1276 1 22 201 104.0 206.1 93 1625 0 267 540 152.0 253.6
pcb442m90 1485 1277 0 14 196 107.0 215.7 85 1644 0 243 335 93.0 201.5
pcb442m0 1484 1274 0 14 196 108.0 182.4 78 1672 0 241 328 112.0 186.5
pcb442-avg 1362.0 1098.4 0.5 16.7 190.4 88.3 149.2 86.3 1498.6 15.0 224.0 319.1 93.1 154.0
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Table 3.14: Results on larger instances: Comparing the BCP-Full-MA algorithm (nearest-
neighbor graph pricing), with the BCP-SR-Full-MA (pricing with MA solutions). The best
obtained optimality gaps are highlighted.

BCP-Full-MA BCP-SR-Full-MA
Instance |Sp.| |Res.| 6∈ SR AV t [s] gapg |Sp.| |Res.| 6∈ SR AV t [s] gapg

pa561-sp 1725 1348 41 82 593.2 1.4 167 3316 353 538 542.4 1.4
pa561 (20) 1759 1570 41 82 694.0 1.6 160 3234 23 351 600.8 1.4
pa561 (30) 1768 1593 37 78 763.8 1.1 160 3259 255 438 617.7 1.1
pa561 (40) 1762 1603 37 71 774.1 1.5 154 3275 20 487 685.1 1.5
pa561 (50) 1763 1601 37 79 852.2 1.4 153 3269 21 494 703.8 1.5
pa561 (60) 1764 1597 37 70 929.0 1.4 152 3273 21 395 767.6 1.4
pa561 (70) 1761 1598 33 64 938.8 1.6 143 3275 2 367 850.3 1.4
pa561 (80) 1758 1595 38 70 1031.2 2.0 123 3271 19 427 892.2 1.6
pa561 (90) 1753 1595 35 63 1042.0 1.6 135 3293 26 573 902.8 1.6
pa561 1747 1589 31 62 842.6 1.7 131 3274 1 267 783.8 1.7
d1291 (2) 3446 1551 6 141 1493.2 1.0 182 4209 99 516 1396.7 1.1
d1291 (5) 3940 3387 4 123 1624.6 1.5 167 7480 94 475 1475.1 1.3
d1291 (10) 4022 3758 2 125 1810.7 1.7 172 7505 115 489 1655.1 1.5
d1291 (30) 4070 3906 7 113 3385.3 1.9 169 7460 26 544 3267.7 2.0
d2103 (2) 4430 914 2 20 3749.7 0.0 129 2834 8 101 3701.3 0.0
d2103 (5) 6492 4129 16 58 4692.1 0.4 131 4264 25 157 4545.7 0.7
d2103 (10) 7373 6144 17 57 5529.3 0.7 152 3945 25 150 5372.8 0.8
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Table 3.13 compares the performance of the BCP-0.5 algorithm with settings as given in
section above, and the new BCP algorithm based on pricing with MA solutions (denoted by
BCP-SR-MA). The size of the sparse and reserve graph are given in |Sp.| and |Res.|, respec-
tively. The number of variables that have been priced in, but that did belong neither to sparse
nor reserve graph, is shown in the 6∈ SR column. The total number of added variables (added
from both, reserve and complete pricing) is given in the AV column. The total number of
solved LPs, the time needed to detect the optimal solution, and the total time needed to prove
the optimality are given as LP, tbest [s] and t [s], respectively.

The results show that the sparse graph in BCP-SR-MA case (i.e. the number of edges from
the last MA population) can be on average more than 20 times smaller than the corresponding
k1-nearest-neighbor graph. On the other hand, the BCP-SR-MA reserve graph can be on
average more than 50% larger. The advantage of a small sparse graph is that a single LP-
iteration can be solved very fast. The disadvantage can be seen by comparing values given in
the 6∈ SR and AV columns: (a) The number of edges that need to be priced into the restricted
master problem is significantly larger in the BCP-SR-MA case, (with the only exception of
pr226 group); (b) The total number of solved LPs can be up to 100% larger in the BCP-SR-
MA case. One observes that the average number of edges that are priced in (6∈ SR and AV
columns) for pr226 group significantly deviates from the average values of the other groups,
when BCP-0.5 is considered. This can be explained by the specific geometric structure of this
instance in which the vertices are clustered within small groups distant from each other.

Finally, we investigate pricing with MA solutions on the set of largest instances we have, the
pa561, d1291 and d2103 groups. Table 3.14 compares the BCP algorithm with the straight-
forward nearest-neighbor graph based pricing, BCP-Full-MA, and the BCP algorithm based on
pricing with MA solutions, the so-called BCP-SR-Full-MA. Here, “Full” refers to the MA, where
Ω = 10 000 and population size is set to 800. When comparing the optimality gapg obtained
by running these two methods, we observe similar results to those presented in Table 3.13:
both pricing strategies produce results of almost the same quality. None of these techniques
is significantly better than the other one in terms of running time. As well as BCP-0.5, the
BCP based on pricing with MA solutions did not succeed to prove optimality for any of the
instances from pa561, d1291, d2103, for which the optimum was not already known.

3.6 Summary

Within this chapter we proposed two basic algorithms for solving the vertex biconnectivity
augmentation problem: The memetic algorithm that finds locally optimal solutions, and the
branch-and-cut-and-price algorithm that finds provably optimal solutions. Furthermore, an
effective deterministic preprocessing which substantially reduces the search space in most cases
is given.

The main features of the proposed memetic algorithm are: the local improvement procedure
which guarantees local optimality with respect to the number of augmentation edges of any
candidate solution, and the strong heritability and locality of the proposed recombination,
respectively mutation. Furthermore, the biasing of initialization and recombination to make
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the inclusion of the low-cost edges more likely, respectively the biasing of mutation to remove
more expensive edges with higher probability, play significant roles.

Supporting data structures established during preprocessing allow efficient implementations
of initialization, recombination, mutation, and local improvement. Empirical tests indicate that
the algorithm calculates solutions of high quality, which are optimal in many cases and usually
substantially better than those of the other three heuristics from the literature. Although a
theoretical upper bound for the computational costs of preprocessing is O(|V |2|E|), it is in
practice also very fast, even on large problem instances and the memetic algorithm usually
dominates the total computation time. Within the memetic algorithm, local improvement
dominates the computational costs. The theoretical worst-case time complexity for local im-
provement of a solution is O(|VT |3), however, we have argued that the expected computational
costs are substantially smaller. Empirical results support this and show that the approach
scales well to instances of large size.

For solving V2AUG exactly, we developed the branch-and-cut algorithm that relies on the
minimum-cut formulation with an exponential number of constraints. The root node of the
branch-and-bound tree is initialized with simple degree constraints. Separation of violated
edge- and node-connectivity constraints can be done exactly by applying the polynomial-time
algorithm for finding the minimum-weight cut of a graph.

In our computational experiments, we show that small and randomly generated problem
instances can be solved exactly by using only this straight-forward method. For these instances,
the exact approach is even faster than the proposed MA.

We also investigated the incorporation of the column generation method into the branch-
and-cut algorithm. Our computational results indicate that, using pricing, we can substantially
improve the algorithm’s performance. For the detection of the inactive variables that should be
priced in, we used the reserve graph technique proposed in [89]. For the fast calculation of the
variable’s reduced costs, we used special data structures. Furthermore, the number of inactive
edges that should be checked for pricing is reduced by applying the ideas given in [131]. We
have also shown that the well-designed primal heuristics can further improve the quality of the
algorithm.

The BCP algorithm relies on the MA, since it uses its high-quality solutions as starting
solutions and initial bounds. The obtained results indicate that for small and medium-size
instances, finding high-quality upper bounds by means of the MA can slow down the optimiza-
tion. However, for large instances, it is advantageous to combine both approaches, in order to
reduce optimality gaps. The largest instances we have tested have 561, 1291 and 2103 nodes
and ≈ 150 000, ≈ 300 000 and ≈ 250 000 edges, respectively. For these instances we did not
find optimal solutions, but the obtained optimality gap is less than 1.4% on average.
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The recent deregulation of public utilities such as electricity and gas in Austria has shaken
up the classical business model of energy companies and opened up the way towards new op-
portunities. Of particular interest in this field is the planning and expansion of district heating
networks. This area of energy distribution is characterized by extremely high investment costs
but also by an unusually loyal customer base and limited competition. Moreover, the required
reduction of greenhouse emissions forces many energy companies to seek ways of improving
their ecological balance sheet. A very attractive possibility to meet this goal is the use of
biomass for heat generation. The combination of these two factors has made the planning of
heating networks one of the major challenges for companies in this field [74].

In a typical planning scenario the input is a set of potential customers with known or
estimated heat demands (represented by discounted future profits), and a potential network
for laying the pipelines (which is usually identical to the street network of the district or town).
Costs of the network are dominated by labor and right-of-way charges for laying the pipes and
the costs for building the heating plant.

Recent advances in technology have made fiber optic connections for households econom-
ically feasible. Companies that design augmentation of fiber optic networks are faced with a
similar problem: a set of potential customers with known estimated profits need to be added
to an existing network. The fiber may be laid down through the streets – in this case the
costs of lying the fiber directly correspond to streets’ length, but may vary depending on the
importance or function of each particular street. The fiber can be also laid through public
properties, in which case special costs need to be considered.

Essentially, in both network design problems, the decision process faced by a profit oriented
company consists of two parts: On one hand, a subset of particular profitable customers has
to be selected from a total set of all potential customers. On the other hand, a network
has to be designed to connect all selected customers in a feasible way. The natural trade-off
between maximizing the sum of profits over all selected customers and minimizing the cost of
the network leads to a prize-collecting objective function.

We can formulate this problem as an optimization problem on an undirected graph G =
(V, E, c, p), where the vertices V are associated with profits, p : V → R≥0, and the edges
E with costs, c : E → R+. The graph in our application corresponds to the local street
map, with the edges representing street segments and vertices representing street intersections
and the location of potential customers. The profit p associated with a vertex is an estimate
of the potential gain of revenue caused by that customer if connected to the network and
receives its service. Vertices corresponding to street intersections have profit zero. The cost c

associated with an edge is the cost of establishing the connection, i.e., of laying the pipe on the
corresponding street segment.

The formal definition of the problem can be given as follows

Definition 9 (The Prize-Collecting Steiner Tree Problem, PCST). Let G = (V, E, c, p)
be an undirected weighted graph as defined above. The Linear Prize-Collecting Steiner Tree
problem (PCST) consists of finding a connected subgraph T = (VT , ET ) of G, VT ⊆ V , ET ⊆ E
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Figure 4.1: Example of a PCST instance: (a) Each connection has fixed costs, hollow circles and
filled circles represent customer and non-customer vertices, respectively. Goal: Build a network
that maximizes the profit, defined as the difference between the gains and the expenses. (b) A
feasible, but not optimal solution is given.

that maximizes
profit(T ) =

∑

v∈VT

p(v)−
∑

e∈ET

c(e) . (4.1)

It is easy to see that every optimal solution T will be a tree. Otherwise T would contain
a cycle and removing any edge from the cycle would increase profit(T ) without violating con-
nectivity of T . Throughout this thesis we will distinguish between customer vertices, defined
as

R = {v ∈ V | p(v) > 0} ,

and non-customer vertices, in our application corresponding to street intersections, and we
assume that R 6= ∅. Figure 4.1 illustrates an example of a PCST instance and a feasible
solution for that instance.

The profit function given above is known in the literature as a function describing the
Net Worth Maximization Problem (NW) [84]. In the so-called Goemans and Williamson Min-
imization Problem (GW) [66] the goal is to find a subtree T = (VT , ET ) that minimizes the
following function:

GW (T ) =
∑

v 6∈VT

p(v) +
∑

e∈ET

c(e) . (4.2)

Here, p(v) is interpreted as penalty for not connecting a vertex v. As far as optimization
is concerned, the NW and GW formulations are equivalent, since for all subtrees T of G

GW (T ) + NW (T ) =
∑

v∈V

p(v) = const .
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The objective function given by (4.1) can trivially be replaced by the minimization of the
following difference:

c(T ) =
∑

e∈ET

c(e)−
∑

v∈VT

p(v) . (4.3)

In this formulation the problem can be seen as finding a network connecting a subset of cus-
tomers so that the total costs are minimized. Note that the solutions obtained minimizing
this objective function are usually negative; otherwise, an empty network would represent the
optimal solution.

In this thesis we are going to concentrate on minimizing (4.2) as an objective function, as
it has been considered in the literature before (see [66, 111, 23]).

PCST Variants. In practice, we often face additional side constraints. The planning prob-
lem of the heating network clearly requires that the heating plant is connected to the network.
Fiber optic networks usually need to be augmented by connecting some already existing parts
of the network to new customers. We can model both problems as a PCST by introducing a
special vertex for the plant having a very high profit. In general, the rooted prize-collecting
Steiner tree problem (RPCST), is defined as a variant of PCST with an additional source
vertex vs ∈ V (representing a depot or repository, or an existing network1 which must be a
part of every feasible solution T .

An interesting variant of PCST arises if the energy company in our application chooses not
to maximize the absolute gain of a project but rather the return on investment (RoI). Thus,
we have to maximize the ratio of profits over costs. Formally, the resulting problem is called
fractional prize-collecting Steiner tree problem (FPCST), with the following objective:

max

∑
v∈VT

p(v)
c0 +

∑
e∈ET

c(e)
(4.4)

over all subtrees T of G, where c0 > 0 represents the fixed cost of the project, e.g., the
setup costs of the heating plant in our application. Note that without the inclusion of c0 in
the definition, the empty set, which is a trivial feasible solution, would produce an undefined
objective function value. Again, the rooted version of FPCST is a relevant special case to
consider. Note that it cannot be tackled in an analogous way as above, since a vertex with
artificially high profit would distort the ratio in (4.4).

Obviously, we cannot directly use integer linear programming to solve this problem with
fractional objective. On the other side, since both numerator and denominator are linear
functions, the problem belongs to the broader group of so-called linear fractional combinatorial
optimization problems (LFCOs). In the recent paper [98] we discuss the solution of FPCST by
using Newton’s iterative method (cf. Radzik [138]), provided the corresponding linear rooted
PCST instances can be solved to optimality. In the special case where the given graph G is a

1Note that when considering the existing network as a root, we have to shrink all the vertices of that network,

and from multiple edges leaving the root to keep only the cheapest one (see, for example, Section 3.2.1, where

a similar idea has been applied).
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Figure 4.2: General approach for solving the PCST: the preprocessing procedure transforms the
input graph G = (V,E, c, p) into a reduced, undirected graph G′ = (V ′, E′, c′, p′). The feasible
solution T ′ obtained either by means of a memetic algorithm or by means of a branch-and-cut
approach is finally mapped back into the subtree T of G.

tree, PCST can indeed be solved in O(|V |) time which can be further exploited to construct
an O(|V | log |V |) algorithm for FPCST in this special case.

Outline of this Chapter In the next section we give a short overview of previous work on
PCST and some of its relatives. Preprocessing, which helps to significantly reduce the size of
many instances, is treated in Section 4.2. In Section 4.3, we propose a MA used for finding
approximate solutions for the prize-collecting Steiner tree problem. Extensive computational
results are also provided. Different ILP models for PCST are presented and discussed in
Section 4.4. In Section 4.4.3 we introduce our cut-based ILP model and describe how it can
be solved in an efficient branch-and-cut framework in Section 4.5. Extensive computational
experiments reported in Section 4.5.4 are followed by a concluding section.

The outline of our general approach for solving the prize-collecting Steiner tree problem is
presented in Figure 4.2.
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4.1 Previous Work

In 1987, Segev [149] considered for the first time the so-called Node Weighted Steiner Tree
Problem (NWST) – the Steiner tree problem with node weights in addition to regular edge
weights in which the sum of edge-costs and node-weights is minimized. NWST differs from
PCST in the sense that the former requires a set of terminal vertices to be included in the
solution (as in the classical Steiner tree problem). Segev noted that NWST can be turned into
a directed Steiner tree problem, if the node weights are non-negative and the root of a solution
tree is given.

His contribution concerns a special case of NWST, called the single point weighted Steiner
tree problem (SPWST), where we are given a special vertex to be included in the solution. The
weights on the remaining vertices are non-positive profit values, while non-negative weights on
the edges reflect the costs incurred in obtaining or collecting these profits. Negating the node
weights to make them positive and thus subtracting them from the edge costs in the objective
function, immediately yields the objective function (4.3). Thus, as long as optimization is
concerned, SPWST is equivalent to our definition of RPCST.

Balas [13] introduced the term “prize-collecting” in the context of the traveling salesman
problem. The node weights in his model are non-negative and can be seen as penalties for not
including nodes in a solution. In this way, his objective function resembles (4.2).

4.1.1 Approximation Algorithms

The first approximation algorithm for both the PCST and the prize-collecting traveling sales-
man problem has been proposed by Bienstock et al. [18], with approximation guarantees of 3
and 5/2, respectively.

Goemans and Williamson presented in [66] a purely combinatorial general approximation
technique for a large class of constrained forest problems. Their algorithm is based on a primal-
dual schema, runs in O(n2 log n) time (n := |V |), and yields solutions within a factor of 2− 1

n−1

of optimality for most of the considered problems: the generalized Steiner tree problem, the
T -join problem, the minimum-weight perfect matching problem, etc.

The authors also provided an extension of the basic algorithm and proposed, in particular,
algorithms for the prize-collecting Steiner tree and prize-collecting TSP problems. To solve the
unrooted PCST, the Goemans-Williamson algorithm is performed for each vertex as a possible
root. Thus, the total running time of the algorithm is O(n3 log n).

Recently, Johnson et al. [84] improved the Goemans-Williamson algorithm by enhancing
the second phase, the so-called pruning phase. The new algorithm is slightly faster and provides
solutions that are provably at least as good and in practice significantly better. The authors also
provided a modification to the growth phase to make the algorithm independent of the choice
of the root vertex, thus giving a (2− 1

n−1)–approximation algorithm for the general unrooted
PCST which runs in O(n2 log n) time. In exhaustive tests by Minkoff [121] the performance of
the original Goemans-Williamson algorithm and the proposed improvement are compared on
benchmark instances obtained from county street maps and randomly generated instances.
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Feofiloff et al. [47] present a revised proof for the (2 − 1
n−1)–approximation algorithm by

Johnson et al. and give an example showing that this ratio is tight. The authors also proposed
a modification of the Goemans-Williamson algorithm based on a slightly different linear pro-
gramming formulation. The new algorithm achieves a ratio of 2 − 2

n and runs in O(n2 log n)
time.

4.1.2 Lower Bounds and Polyhedral Studies

Both Section 4.4 and 4.4.3 are devoted to ILP-formulations for PCST. Therefore, we will in
this section only point out references without going into details.

In [149], Segev presented single- and multi-commodity flow formulations for SPWST (cf.
Section 4.4.2). Furthermore, the author developed two bounding procedures based on La-
grangian relaxations of the corresponding flow formulations which were embedded in a branch-
and-bound procedure. In addition, heuristics to compute feasible solutions were also included.
The proposed algorithm was tested on a set of benchmark instances with up to 40 vertices.

Fischetti [51] studied the facial structure of a generalization of the problem, the so-called
Steiner arborescence (or directed Steiner tree) problem and pointed out that the NWST can be
transformed into it. The author considered several classes of valid inequalities and introduced
a new inequality class with arbitrarily large coefficients, showing that all of them define distinct
facets of the underlying polyhedron.

Goemans provided in [65] a theoretical study on the polyhedral structure of the node-
weighted Steiner tree problem NWST and showed that this characterization is complete in the
case that the input graph is series-parallel. There, SPWST, i.e., RPCST appears as the r-tree
problem.

Engevall et al. [44] proposed another ILP formulation for the NWST, based on the shortest
spanning tree problem formulation, introduced originally by Beasley [16] for the Steiner tree
problem. In their formulation, besides the given root vertex r, an artificial root vertex 0
is introduced, and an edge between vertex 0 and r is set. They searched for a tree with
additional constraints: each vertex v connected to vertex 0 must have degree one. The solution
is interpreted in the following way: the vertices adjacent to vertex 0 are not considered as
a part of the final solution. For the description of the tree, the authors use a modification
of the generalized subtour elimination constraints (cf. Section 4.4.1). For finding good lower
bounds, the authors use a Lagrangian heuristic and subgradient procedure based on the shortest
spanning tree formulation. Experimental results presented for instances with up to 100 vertices
indicated that the new approach outperformed Segev’s algorithm.

Lucena and Resende [111] presented a cutting plane algorithm for the PCST based on
generalized subtour elimination constraints (see again Section 4.4.1). Their algorithm contains
basic reduction steps similar to those already given by Duin and Volgenant [41], and was
tested on two groups of benchmark instances: the first group contains instances adopted from
Johnson et al. [84], ranging from 100 vertices and 284 edges to 400 vertices and 1507 edges.
The second group is derived from the Steiner problem instances (series C and D) of the OR-
Library, with sizes ranging from 500 vertices and 625 edges to 1000 vertices and 25000 edges.
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The proposed algorithm solved many of the considered instances to optimality, but not all of
them (cf. Section 4.5.4).

4.1.3 Metaheuristics

Canuto et al. [23] developed a multi-start local-search-based algorithm with perturbations.
Perturbations are done by changing the parameters of the input graph, either by setting profits
of potential customers to zero, or by modifying the profits of non-zero vertices. Feasible solu-
tions are obtained by the Goemans-Williamson algorithm, followed by a local search procedure.
Within local search, the complete 1-flip neighborhood is examined, and the best solution found
so far is selected and inserted in a pool of high-quality elite solutions. Between a randomly
selected solution from the pool, and the solution found in the current iteration, path relinking
is applied, exploring trajectories that connect these two solutions. A variable neighborhood
search method is finally applied as a post-optimization step. The algorithm found optimal
solutions on nearly all test instances for which the optimum is known.

4.2 Preprocessing

In this section, we briefly describe reduction techniques adopted from the work of Duin and
Volgenant [41] for the NWST, which have been partially used also in [111]. From the im-
plementation point of view, we transform the graph G = (V, E, c, p) into a reduced graph
G′ = (V ′, E′, c′, p′) by applying the steps described below and maintain a back-mapping func-
tion to transform each feasible solution T ′ of G′ into a feasible solution T of G.

Least-Cost Test Let dij represent the shortest path length between any two vertices i and j

from V (considering only edge-costs). If ∃e = (i, j) such that dij < cij then edge e can simply
be discarded from G.

Degree-l Test Consider a vertex v 6∈ R of degree l ≥ 3, connected to vertices from Adj (v) =
{v1, v2, . . . , vl}. For any subset K ⊂ V , denote with MSTd(K), the minimum spanning tree of
K with distances dij . If

MSTd(K) ≤
∑

w∈K

cvw, ∀K ⊆ Adj (v), |K| ≥ 3, (4.5)

then v’s degree in an optimal solution must be zero or two. Hence, we can remove v from G

by replacing each pair (vi, v), (v, vj) with (vi, vj) either by adding a new edge e = (vi, vj) of
cost ce = cviv + cvvj − pv or in case e already exists, by defining ce = min{ce, cviv + cvvj − pv}.

It is straightforward to apply a simplified version of this test to all vertices v ∈ V with
l = 1 and l = 2.
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Minimum Adjacency Test This test is also known as V \ K reduction test from [41]. If
there are adjacent vertices i, j ∈ R such that:

min{pi, pj} − cij > 0 and cij = min
it∈E

cit ,

then i and j can be fused into one vertex of weight pi + pj − cij .

Summary of the Preprocessing Procedure We apply the steps described above itera-
tively, as long as any of them changes the input graph (see Fig. 4.2). The total number of
iterations is bounded by the number of edges in G. Each iteration is dominated by the time
complexity of the least-cost test, i.e., by the computation of all-pair shortest paths, which is
O(|E||V |+|V |2 log |V |). Thus, the preprocessing procedure requires O(|E|2|V |+|E||V |2 log |V |)
time in the worst case, in which the input graph would be reduced to a single vertex. How-
ever, in practice, the running time is much lower, as documented in Section 4.2.1. The space
complexity of preprocessing does not exceed O(|E|2).

4.2.1 Impacts of preprocessing

To test our preprocessing algorithm as well as one upper and one lower bounding procedure
for the PCST, we consider the following groups of instances:

• Johnson et al. [84] tested their approximation algorithm on two sets of randomly generated
instances. In the so-called P class, instances are unstructured and designed to have
constant expected degree and profit to weight ratio. The K group comprises random
geometric instances designed to have a structure somewhat similar to street maps. A
detailed description of the generators for these instances can be found in [121]. In our
tests, we considered a part of these instances with up to 400 vertices and 1 576 edges that
have also been used by Lucena and Resende [111] and Canuto et al. [23].

• Canuto et al. [23] generated a set of 80 test problems derived from the Steiner problem
instances of the well-known OR-Library2. For each of the 40 problems from series C and
D, two sets of instances were generated by assigning zero profits to non-terminal vertices
and randomly generated profits in the interval [1,maxprize] to terminal vertices. Here,
maxprize = 10 for problems in set A, and maxprize = 100 for problems in set B. Instances
of group C contain 500 vertices, and between 625 and 12 500 edges, while instances of
group D contain 1 000 vertices and between 1 250 and 25 000 edges.

Following this schema, we generated an additional set of 40 larger benchmark instances
derived from series E of the Steiner problem instances in the OR-Library. These new
instances contain 2 500 vertices and between 3 125 and 62 500 edges.

Instance sets K,P,C and D of instances are available at http://www.research.att.com/

~mgcr/data/index.html. All other problem instances used in this chapter are available in
2OR-library: J. E. Beasley, http://mscmga.ms.ic.ac.uk/info.html
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Table 4.1: Preprocessing results on instances derived by Johnson et al. [84]. Reduced graphs
(VLR, ELR) obtained after preprocessing of Lucena & Resende [111] (LR), our reduced graphs
(V ′, E′) and the running time of the preprocessing.

Instance |V | |E| |VLR| |ELR| |V ′| |E′| |V ′|
|V | [%] |E′|

|E| [%] tprep [s]

P100 100 284 83 221 66 163 66.0 57.4 0.1
P100.1 100 284 91 211 84 196 84.0 69.0 0.1
P100.2 100 297 83 201 75 187 75.0 63.0 0.1
P100.3 100 316 94 243 91 237 91.0 75.0 0.0
P100.4 100 284 83 221 69 186 69.0 65.5 0.1
P200 200 587 172 447 166 438 83.0 74.6 0.2
P400 400 1144 356 972 345 1002 86.2 87.6 2.0
P400.1 400 1212 352 1025 323 983 80.8 81.1 2.5
P400.2 400 1196 364 1040 341 997 85.2 83.4 2.1
P400.3 400 1175 358 1008 334 969 83.5 82.5 2.3
P400.4 400 1144 356 972 344 949 86.0 83.0 1.7
K100 100 319 37 111 45 191 45.0 59.9 0.1
K100.1 100 319 37 111 42 185 42.0 58.0 0.1
K100.2 100 339 33 118 24 83 24.0 24.5 0.1
K100.3 100 407 20 87 26 123 26.0 30.2 0.1
K100.4 100 364 36 132 29 113 29.0 31.0 0.1
K100.5 100 358 38 140 31 120 31.0 33.5 0.1
K100.6 100 307 29 81 22 64 22.0 20.8 0.1
K100.7 100 315 25 71 25 93 25.0 29.5 0.1
K100.8 100 343 49 173 43 144 43.0 42.0 0.1
K100.9 100 333 21 67 22 70 22.0 21.0 0.1
K100.10 100 319 37 111 27 78 27.0 24.5 0.1
K200 200 691 99 361 81 271 40.5 39.2 0.5
K400 400 1507 211 855 231 914 57.8 60.7 3.0
K400.1 400 1507 211 855 217 854 54.2 56.7 2.7
K400.2 400 1527 217 935 228 948 57.0 62.1 3.0
K400.3 400 1492 195 694 210 806 52.5 54.0 3.8
K400.4 400 1426 190 747 197 784 49.2 55.0 2.9
K400.5 400 1456 223 799 220 799 55.0 54.9 2.8
K400.6 400 1576 239 986 241 1035 60.2 65.7 4.0
K400.7 400 1442 225 883 225 867 56.2 60.1 2.2
K400.8 400 1516 245 1036 235 987 58.8 65.1 3.1
K400.9 400 1500 205 803 211 862 52.8 57.5 3.0
K400.10 400 1507 211 855 221 923 55.2 61.2 3.7
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Table 4.2: Preprocessing results on class C of instances derived by Canuto et al. [23]. Reduced
graphs (VLR, ELR) obtained after preprocessing of Lucena & Resende [111] (LR), our reduced
graphs (V ′, E′) and the running time of the preprocessing.

Instance |V | |E| |VLR| |ELR| |V ′| |E′| |V ′|
|V | [%] |E′|

|E| [%] tprep [s]

C1-A 500 625 116 214 116 214 23.2 34.2 1.2
C1-B 500 625 125 226 125 226 25.0 36.2 1.2
C2-A 500 625 110 209 109 207 21.8 33.1 1.1
C2-B 500 625 112 211 111 209 22.2 33.4 1.1
C3-A 500 625 174 293 160 277 32.0 44.3 1.1
C3-B 500 625 204 325 185 304 37.0 48.6 1.3
C4-A 500 625 207 331 178 300 35.6 48.0 1.2
C4-B 500 625 247 371 218 341 43.6 54.6 1.3
C5-A 500 625 254 375 163 274 32.6 43.8 1.2
C5-B 500 625 326 447 199 314 39.8 50.2 1.7
C6-A 500 1000 356 823 355 822 71.0 82.2 2.1
C6-B 500 1000 356 823 356 823 71.2 82.3 2.1
C7-A 500 1000 366 843 365 842 73.0 84.2 2.6
C7-B 500 1000 366 843 365 842 73.0 84.2 2.5
C8-A 500 1000 382 866 367 849 73.4 84.9 2.7
C8-B 500 1000 385 869 369 850 73.8 85.0 3.0
C9-A 500 1000 412 903 387 877 77.4 87.7 2.4
C9-B 500 1000 416 907 389 879 77.8 87.9 2.8
C10-A 500 1000 431 920 359 841 71.8 84.1 3.3
C10-B 500 1000 440 929 323 798 64.6 79.8 3.4
C11-A 500 2500 489 2143 489 2143 97.8 85.7 9.4
C11-B 500 2500 489 2143 489 2143 97.8 85.7 9.5
C12-A 500 2500 485 2189 484 2186 96.8 87.4 6.8
C12-B 500 2500 485 2189 484 2186 96.8 87.4 6.8
C13-A 500 2500 488 2167 472 2113 94.4 84.5 9.8
C13-B 500 2500 488 2167 471 2112 94.2 84.5 9.8
C14-A 500 2500 493 2168 466 2081 93.2 83.2 7.5
C14-B 500 2500 493 2168 459 2048 91.8 81.9 7.5
C15-A 500 2500 496 2153 406 1871 81.2 74.8 6.5
C15-B 500 2500 496 2153 370 1753 74.0 70.1 6.0
C16-A 500 12500 500 12500 500 4740 100.0 37.9 2.4
C16-B 500 12500 500 12500 500 4740 100.0 37.9 2.4
C17-A 500 12500 500 12500 498 4694 99.6 37.6 2.4
C17-B 500 12500 500 12500 498 4694 99.6 37.6 2.3
C18-A 500 12500 500 12500 469 4569 93.8 36.6 2.6
C18-B 500 12500 500 12500 465 4538 93.0 36.3 2.9
C19-A 500 12500 500 12500 430 3982 86.0 31.9 2.9
C19-B 500 12500 500 12500 416 3867 83.2 30.9 2.8
C20-A 500 12500 500 12500 241 1222 48.2 9.8 6.1
C20-B 500 12500 500 12500 133 563 26.6 4.5 5.0
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Table 4.3: Preprocessing results on class D of instances derived by Canuto et al. [23]. Reduced
graphs (VLR, ELR) obtained after preprocessing of Lucena & Resende [111] (LR), our reduced
graphs (V ′, E′) and the running time of the preprocessing.

Instance |V | |E| |VLR| |ELR| |V ′| |E′| |V ′|
|V | [%] |E′|

|E| [%] tprep [s]

D1-A 1000 1250 233 443 231 440 23.1 35.2 4.9
D1-B 1000 1250 233 443 233 443 23.3 35.4 4.9
D2-A 1000 1250 261 485 257 481 25.7 38.5 4.9
D2-B 1000 1250 264 488 264 488 26.4 39.0 4.9
D3-A 1000 1250 340 571 301 529 30.1 42.3 5.5
D3-B 1000 1250 400 634 372 606 37.2 48.5 6.3
D4-A 1000 1250 381 616 311 541 31.1 43.3 5.6
D4-B 1000 1250 458 694 387 621 38.7 49.7 7.2
D5-A 1000 1250 521 768 348 588 34.8 47.0 7.6
D5-B 1000 1250 660 907 411 649 41.1 51.9 11.5
D6-A 1000 2000 741 1709 740 1707 74.0 85.3 14.4
D6-B 1000 2000 741 1709 741 1708 74.1 85.4 14.7
D7-A 1000 2000 735 1706 734 1705 73.4 85.2 11.3
D7-B 1000 2000 736 1707 736 1707 73.6 85.3 11.4
D8-A 1000 2000 794 1772 764 1738 76.4 86.9 11.7
D8-B 1000 2000 800 1780 778 1757 77.8 87.8 12.3
D9-A 1000 2000 791 1758 752 1716 75.2 85.8 17.9
D9-B 1000 2000 800 1767 761 1724 76.1 86.2 20.9
D10-A 1000 2000 844 1825 694 1661 69.4 83.0 14.6
D10-B 1000 2000 860 1842 629 1586 62.9 79.3 18.5
D11-A 1000 5000 986 4658 986 4658 98.6 93.2 27.7
D11-B 1000 5000 986 4658 986 4658 98.6 93.2 23.6
D12-A 1000 5000 992 4641 991 4639 99.1 92.8 23.1
D12-B 1000 5000 992 4641 991 4639 99.1 92.8 22.3
D13-A 1000 5000 990 4614 966 4572 96.6 91.4 27.7
D13-B 1000 5000 990 4614 961 4566 96.1 91.3 28.0
D14-A 1000 5000 991 4621 946 4500 94.6 90.0 35.5
D14-B 1000 5000 991 4621 931 4469 93.1 89.4 37.2
D15-A 1000 5000 993 4622 832 4175 83.2 83.5 47.1
D15-B 1000 5000 993 4622 747 3896 74.7 77.9 49.2
D16-A 1000 25000 1000 25000 1000 10595 100.0 42.4 10.8
D16-B 1000 25000 1000 25000 1000 10595 100.0 42.4 10.8
D17-A 1000 25000 1000 25000 999 10534 99.9 42.1 10.8
D17-B 1000 25000 1000 25000 999 10534 99.9 42.1 10.7
D18-A 1000 25000 1000 25000 944 9949 94.4 39.8 11.7
D18-B 1000 25000 1000 25000 929 9816 92.9 39.3 12.0
D19-A 1000 25000 1000 25000 897 9532 89.7 38.1 12.4
D19-B 1000 25000 1000 25000 862 9131 86.2 36.5 13.1
D20-A 1000 25000 1000 25000 488 2511 48.8 10.0 37.3
D20-B 1000 25000 1000 25000 307 1383 30.7 5.5 32.9
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Table 4.4: Preprocessing results on class E of instances derived from OR-Library. The size of
our reduced graphs (V ′, E′) and the preprocessing’s running time are shown.

Instance |V | |E| |V ′| |E′| |V ′|
|V | [%] |E′|

|E| [%] tprep [s]

E01-A 2500 3125 651 1246 26.0 39.9 21.5
E01-B 2500 3125 655 1250 26.2 40.0 21.8
E02-A 2500 3125 694 1304 27.8 41.7 20.7
E02-B 2500 3125 697 1307 27.9 41.8 20.7
E03-A 2500 3125 813 1414 32.5 45.2 29.4
E03-B 2500 3125 962 1572 38.5 50.3 30.9
E04-A 2500 3125 829 1425 33.2 45.6 24.9
E04-B 2500 3125 980 1588 39.2 50.8 26.2
E05-A 2500 3125 893 1502 35.7 48.1 36.9
E05-B 2500 3125 1029 1644 41.2 52.6 45.0
E06-A 2500 5000 1821 4283 72.8 85.7 37.9
E06-B 2500 5000 1821 4283 72.8 85.7 37.6
E07-A 2500 5000 1863 4339 74.5 86.8 39.3
E07-B 2500 5000 1865 4341 74.6 86.8 39.4
E08-A 2500 5000 1902 4379 76.1 87.6 40.1
E08-B 2500 5000 1911 4387 76.4 87.7 50.4
E09-A 2500 5000 1909 4388 76.4 87.8 50.5
E09-B 2500 5000 1918 4397 76.7 87.9 54.7
E10-A 2500 5000 1716 4181 68.6 83.6 60.6
E10-B 2500 5000 1594 4045 63.8 80.9 84.6
E11-A 2500 12500 2491 12063 99.6 96.5 145.1
E11-B 2500 12500 2491 12063 99.6 96.5 146.2
E12-A 2500 12500 2490 12090 99.6 96.7 82.5
E12-B 2500 12500 2490 12090 99.6 96.7 85.5
E13-A 2500 12500 2430 11949 97.2 95.6 148.2
E13-B 2500 12500 2407 11915 96.3 95.3 146.7
E14-A 2500 12500 2366 11872 94.6 95.0 144.2
E14-B 2500 12500 2311 11737 92.4 93.9 145.7
E15-A 2500 12500 2044 10845 81.8 86.8 207.8
E15-B 2500 12500 1864 10264 74.6 82.1 234.3
E16-A 2500 62500 2500 29332 100.0 46.9 82.2
E16-B 2500 62500 2500 29332 100.0 46.9 81.9
E17-A 2500 62500 2500 29090 100.0 46.5 81.6
E17-B 2500 62500 2500 29090 100.0 46.5 81.8
E18-A 2500 62500 2378 28454 95.1 45.5 85.7
E18-B 2500 62500 2347 28269 93.9 45.2 86.9
E19-A 2500 62500 2156 25011 86.2 40.0 92.2
E19-B 2500 62500 2085 23641 83.4 37.8 94.0
E20-A 2500 62500 1525 12770 61.0 20.4 107.3
E20-B 2500 62500 861 3881 34.4 6.2 231.5
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our online database for PCST instances and solutions at the following URL: http://www.
ads.tuwien.ac.at/pcst. Our computational experiments were performed on a Pentium
IV/2.8GHz PC with 2 GB RAM memory.

We compare our preprocessing results against those obtained by Lucena and Resende in
[111] (to which we refer as LR). The differences between our and LR’s preprocessing are the
following:

1. In [111], degree-one and degree-two tests are applied to the non-customer vertices only.
Note that such changes are safe, in the sense that the objective function value on the
reduced and on the original instance are always the same. In our case, however, the
objective function value of the original instance can only be obtained by means of the
back-mapping function that transforms the reduced instance into the original one.

2. Our degree-n test has been applied for all values 1 ≤ n ≤ 8, while the highest value of n

for LR preprocessing is not published.

3. In [111], minimum adjacency test was not applied at all.

Tables 4.1, 4.2, 4.3 and 4.4 show the results of the proposed preprocessing. The number
of vertices |V | and the number of edges |E| of the original graph are given. In (|VLR|,|ELR|)
and (|V ′|, |E′|), we show the number of vertices and edges of the instances obtained using LR
and our new preprocessing, respectively. We also present savings in percent obtained using the
new reductions ( |V

′|
|V | [%] and |E′|

|E| [%]) as well as the preprocessing’s running time in seconds
(tprep [s]). Figure 4.3(a) illustrates summarized average comparison results for each of the
groups K, P, C, D.

The results indicate that the proposed preprocessing may significantly reduce the size of
input graphs within a short running time. Indeed, the average reductions on the number
of vertices are between 28% (group E) and 57% (group K), while the number of edges can
be reduced on average for between 34% (group E) and 53% (group K). The running time of
preprocessing of Lucena and Resende is not published, thus we only compare the average
reductions. Reductions of the number of vertices after LR preprocessing are between 1%
(group K) and 8.7% (group C) worse than reductions after our preprocessing. Regarding the
reductions on the number of edges, for group K the LR preprocessing is for about 1% better
than our preprocessing. On the other side, for groups C and D, our reductions on the number
of edges are for about 20% better than those of LR.

When considering the largest instances from groups C and D, it is easy to see that the
minimum adjacency test plays the crucial role. Indeed, the LR preprocessing was not able to
reduce these instances at all. On the other side, the minimum adjacency test reduced the size
of these instances as follows: the number of vertices could be reduced by 17% and 15.7% for
groups C and D, respectively. The number of edges is reduced by 70% and 66% for groups C

and D, respectively. Drastic reductions are obtained for instances C20-B and D20-B, where the
number of edges is reduced by a factor of 20(!).

The preprocessing’s average running time indicates that the theoretical upper bound of
O(|E|2|V | + |E||V |2 log |V |) usually does not occur in practical situations and that all the
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Figure 4.3: Summarized preprocessing results: (a) The number of vertices (in %) averaged per
group. (b) The number of edges (in %) averaged per group.

instances we considered could be significantly reduced within a very short running time. Indeed,
in the worst case, our preprocessing algorithm needed 235 seconds (instance E15-B), or 82
seconds on average for the group E.

4.3 A Memetic Algorithm for the PCST

The memetic algorithm we propose in this section has the basic structure shown in Algorithm 3
on page 25. All individuals in the population represent local optima with respect to their sub-
trees, which is ensured by applying a local improvement algorithm after a candidate solution’s
generation and after the application of the evolutionary variation operators recombination and
mutation. After a pair of solutions is selected from the current population, recombination is
always applied, while mutation is applied only with a probability pmut, where 0 ≤ pmut ≤ 1. A
new created candidate solution replaces always the worst solution in the population with one
exception: To guarantee a minimum diversity, a new candidate solution identical to a solution
already contained in the population is discarded [142].

Within this section, we propose problem-dependent variation operators, a clustering proce-
dure used within mutation and a local improvement procedure. Extensive experiments on the
benchmark instances mentioned in Section 4.3.7 show that the MA compares favorably to pre-
viously published results. While the solution values are almost always the same (or just slightly
worse), a significant reduction of running time for medium and large instances is obtained.

4.3.1 Clustering

In the design of district heating or fiber optic networks, it is often the case that in small
settlements the customers are grouped together, and that it either pays off to take all of them



106 CHAPTER 4. THE PRIZE-COLLECTING STEINER TREE PROBLEM

at once, or not to take them at all. By employing clustering as a grouping procedure within
variation operators, we can group the subsets of vertices and insert or delete them at once.

The clustering we implemented, the so-called customer-based clustering, sets up one cluster
for each customer vertex and assigns all non-customer vertices over these clusters.

During the clustering we decompose the set V ′ of all vertices into disjoint cluster sets. As
proposed by Mehlhorn in [115], we can define for each customer vertex z ∈ R′ = {v ∈ V ′ |
p′(v) > 0}, a cluster set N(z):

N(z) := {v ∈ V ′ \R′ | ∀c ∈ R′ : dG′(v, z) ≤ dG′(v, c)} ∪ {z}
where dG′(u, v) denotes the length of the shortest path between two vertices u and v in G′,

i.e. each non-customer vertex is assigned to the cluster set of its nearest customer vertex. For
each vertex v ∈ N(z) we call z the base of v, written base(v) = z. Note that the sets N(z)
correspond to the Voronoi regions in Euclidean plane.

As next step, we construct the so-called cluster graph GN = (VN , EN ). Each vertex of
v ∈ VN corresponds to the cluster of some customer vertex z = base(v) and is assigned the set
of vertices VN (v) = {u ∈ V | base(u) = base(v) = z} which belong to this cluster and the list
of edges EN (v) = {(u,w) ∈ E | base(u) = base(w) = z} which lie fully inside this cluster. Two
cluster vertices uN , vN ∈ VN are adjacent iff there exist two vertices u, v ∈ V ′ assigned to uN

and vN , respectively, that are adjacent in G′.
Runtime complexity for the preprocessing is dominated by the shortest paths calculations.

Using Mehlhorn’s algorithm [115], the clustering can be implemented in O(|V ′| log |V ′|+ |E′|)
time.

4.3.2 Edge-Set Encoding

Each possible PCST solution is a subtree of graph G′. In order to obtain an efficient EA,
the desired tree-encoding should satisfy the following requirements (according to Palmer and
Kershenbaum [132]):

• The encoding must be coverable, i.e. capable of representing all possible phenotypes, in
our case all feasible subtrees of G′.

• The frequency with which each phenotype is represented should be the same (unbiased
encoding).

• The mapping from the phenotype to the genotype space must be injective, i.e. one geno-
type may correspond to at most one phenotype.

• It should be computationally easy to decode a genotype.

• An efficient tree-encoding must provide locality : small changes in the genotype should
correspond to small changes in the phenotype.

Raidl and Julstrom [143] pointed out other important principles of an efficient tree-encoding:
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• Heritability: Offsprings of crossover should represent solutions that combine substruc-
tures of their parental solutions. In our implementation, offsprings should represent trees
consisting mostly of parental edges.

• Constraints: The decoding of chromosomes and the variation operators should be able
to enforce problem-specific constraints.

• Hybrids: The operators should be able to incorporate problem-dependent heuristics.
Here, such a heuristic might favor edges of lower cost, or adjacent edges of vertices
with higher profit.

In the same paper, Raidl and Julstrom [143] proposed a direct representation of spanning
trees as sets of their edges. Traditional initialization and variation operators applied to this
representation rarely generate feasible solutions. Thus, the authors proposed new problem-
dependent operators based on random spanning tree algorithms. In combination with these
operators, the edge-set encoding exhibited significant advantages over the previous encoding of
spanning trees.

Following these results, PCST solutions in our MA are encoded using sets of their edges. The
solution edges are represented in form of a hash-table, requiring only O(|V ′|) space. Insertion
and deletion of edges, but also checking for existence of an edge, can be done in expected
constant time. For this encoding we designed special problem-dependent variation operators
which are described below.

4.3.3 Initialization

For creating initial candidate solutions we used a modified distance network heuristic for the
Steiner tree problem (see, for example, [135, pp. 88–90]). Note that there is a certain cor-
respondence between customer vertices of the graph G′ and so-called terminal vertices of the
Steiner tree problem (STP) in graphs (i.e. the vertices that must be spanned by the final
solution). For each input graph G′ = (V ′, E′, c′, p′) of the PCST, we build a distance network
GD(R′, ED, cD) as follows. The set of vertices R′ corresponds to the customer vertices from
V ′, i.e. R′ = {v ∈ V ′ | p′(v) > 0}. The distance network is a complete graph whose edge costs
are given by:

cD(u, v) = dG′(u, v), for all u, v ∈ R′ ,

where dG′(u, v) denotes a shortest path between the vertices u and v in G′. The simple distance
network heuristic for the Steiner tree problem in graphs represents a 2-approximation algorithm
for the STP, and according to Mehlhorn [115], it can be implemented to run in O(|V ′| log |V ′|+
|E′|) time.

In our initialization procedure, we randomly select a subset V ′
init ⊂ R′ of customer vertices

and apply the distance network heuristic on it. The procedure works as follows:

1. Randomly select a subset V ′
init ⊂ R′ of size dpinit · |R′|e, pinit ∈ (0, 1);

2. Construct the minimum spanning tree (MST) T ′init on the subgraph of GD induced by
V ′

init ;
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(a) (b)

(c) (d)

Figure 4.4: Initialization operator: (a) an input graph in which a subset of customer vertices
V ′

init is selected and treated as terminals (shadowed vertices); (b) distance network and its
minimum spanning tree T ′init shown by bold lines; (c) subgraph G′

r represented with bold lines;
(d) subgraph induced by the vertices of G′

r and its minimum spanning tree represented with
bold lines.
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3. Obtain a reduced subgraph G′
r of G′ by replacing each edge of T ′init by its corresponding

shortest path in G′;

4. Find the MST T ′r on the subgraph induced by the vertices of G′
r;

5. Apply local improvement on T ′r;

Assuming that the computation of the distance network is done once in the preprocessing
phase of the algorithm, and the edge-costs of the distance network are pre-sorted, the running
time of initialization is dominated by the computation of the MST, which can be done in
O(|E′| · α(|E′|, |V ′|)) time.

4.3.4 Recombination

The recombination operator is designed with inheritance in mind; so we try to adopt the
structural properties of two parental solutions. If the two solutions to be combined share at
least one vertex, we just construct the spanning tree over the union of their edge sets. Due to the
deterministic nature of the local improvement procedure and to avoid premature convergence,
we build a random spanning tree on the union of parental edges.

When the parent solutions are disjoint, we randomly choose a customer vertex out of each
solution, lookup the shortest path between these two vertices and add for each vertex np along
the path all edges that belong to the cluster of np (including np itself). Finally, we build a
random spanning tree over all these edges.

Runtime complexity is dominated by the computation of the random spanning tree, thus
O(|E′| · α(|E′|, |V ′|)).

4.3.5 Mutation

The aim of the mutation operator is to make small changes in the current solution which we
achieve by connecting one or more new customers to the solution. We do this by adding clusters
which are adjacent to the candidate solution and contain new customers.

To find an appropriate cluster to add, the algorithm chooses a border vertex nb randomly.
A border vertex is a vertex which is adjacent to at least one vertex outside our current solution.
We incorporate the vertices of the cluster of nb into our solution and employ the cluster graph
to find a neighboring cluster whose customer (base) vertex is preferably not yet element of the
current solution; the vertices contained in this cluster will be added to our solution. Finally
we construct a minimum spanning tree to obtain a valid edge set.

To make the mutation operator more aggressive, this procedure may be iteratively applied
pitermut times. Assuming that the edges are pre-sorted in increasing order with respect to
their costs, the running time is dominated by the calculation of the spanning tree, and is
O(|E′| · α(|E′|, |V ′|)).
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(a) (b)

(c) (d)

Figure 4.5: Mutation operator: (a) an input feasible solution T (bold lines represent the
solution, dashed lines represent the rest of the input graph); (b) first, a border vertex and a
cluster assigned to it are selected; (c) a neighboring cluster is selected; (d) from a subgraph
induced by the vertices of the initial solution together with the vertices of two selected clusters,
the minimum spanning tree (bold lines) is returned.
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4.3.6 Local Improvement

Given a solution of the PCST, a tree T , the neighborhood of T is defined as the set of trees
that can be reached by applying small modifications to T . Local improvement is performed to
yield trees (intermediate and final) that are optimal or near optimal in the local context, i.e.
there are no better trees in the neighborhood.

The local improvement procedure is applied after the recombination and mutation oper-
ators. Solutions obtained by means of the initialization procedure are also locally improved
and then inserted into the population. The method we describe below is based on consecutive
deletion of edges from the tree, in a bottom-up order. The algorithm is based on the “first
improvement” principle.

Edge-Deletion Local Improvement

The algorithm described in this section solves the net worth maximization problem to optimal-
ity, if the input graph is a tree. A closely related dynamic programming algorithm can be found
in [160] (where trees with node-weights only are considered). Note also that this algorithm has
been mentioned by Johnson et al. [84] where it is called strong pruning, and is used within the
second phase of the Goemans-Williamson algorithm.

We first consider the rooted PCST problem, where the maximization of the profit is re-
quested, i.e. the objective function is given by (4.1). If T = (VT , ET ) is a tree with root r, then
the function parent(v) assigns every vertex v ∈ VT \ {r} a unique vertex u which is the vertex
following v on the path from v to r. The subtree rooted at v consists of all vertices and edges
reachable from v without passing vertex parent(v). The set C(v) of children of v is the set
that contains all vertices u with parent(u) = v. A subtree of T is optimal, if there is no other
subtree of T with a higher profit. To every vertex v ∈ VT we assign a label l(v) and a subtree
T (v). The labels l(v) are recursively defined as follows:

l(v) = p(v) +
∑

u∈C(v)

max{0, l(u)− c(u, v)} . (4.6)

Subtree T (v) = (V (v), E(v)) has profit l(v) and is given by:

V (v) = {v} ∪
⋃

u∈C(v)

{V (u) | l(u)− c(u, v) ≥ 0} ,

E(v) =
⋃

u∈C(v)

{(u, v) ∪ E(u) | l(u)− c(u, v) ≥ 0} .

If c(u, v) > l(u) for a vertex u with parent(u) = v it does not pay off to include the subtree
rooted at u via edge (u, v) (the only possible connection towards r), and we decide to cut off
the edge (u, v) together with the corresponding subtree. This decision can be made locally, as
soon as the value l(u) is known. Thus, the algorithm labels the vertices in a bottom-up order,
by starting with the leaves and ending at the root vertex r (see Algorithm 11 for an outline).

It is easy to see that the optimal subtree rooted at v is T (v) with l(v) as its profit (the
correctness of this algorithm follows easily by induction). In the case when l(u) − c(u, v) = 0
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we can decide to include or exclude the edge (u, v) from the solution, depending if our goal is
to obtain the optimal subtree with the maximum or minimum number of vertices and edges.

Data : A tree T = (VT , ET ) with a fixed root r ∈ VT , a profit function p on the vertices
and a costs function c on the edges.

Result: For each v ∈ VT an optimal subtree T (v) = (V (v), E(v)) and a label l(v) =
profit(T (v)).

G∗ = (V ∗, E∗) = T ;
for v ∈ VT do

l(v) = p(v); V (v) = {v}; E(v) = ∅;
end
repeat

L = {v ∈ VT \ {r} |degG∗(v) = 1};
for v ∈ L do

u = parent(v);
l(u) = l(u) + max{0, l(v)− c(u, v)};
if l(v) ≥ c(u, v) then

V (u) = V (u) ∪ V (v);
E(u) = E(u) ∪ {(u, v)} ∪ E(v);

end
end
Remove the vertices of L from G∗;

until V ∗ = {r};
Algorithm 11: Edge-Deletion Local Improvement Algorithm

The edge-deletion local improvement algorithm solves the rooted PCST on trees in O(|VT |)
time. For solving the unrooted PCST, we only need to find the vertex v∗ such that:

v∗ = arg max
v∈VT

l(v) .

The corresponding subtree T (v∗) represents the optimal solution, and can also be found in
linear time.

4.3.7 Computational Results

In this section we provide computational results for the memetic algorithm proposed above on
the set of instances already introduced in Section 4.2.1. We compare results of the memetic
algorithm to those of Canuto et al. (denoted by CRR) obtained using multi-start local search
with perturbations and variable neighborhood search [23].

The following setup was used for the memetic algorithm as it proved to be robust in prelim-
inary tests: Population size |P | = 800; group size for tournament selection k = 5; parameter
for initializing solutions pinit = 0.9; mutation probability pmut = 0.3. Each run was terminated
when no new best solution could be identified during the last Ω = 10 000 iterations.
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Table 4.5: Comparing the performance of Canuto et al. [23] (CRR) against our memetic algo-
rithm (MA) on the set of Johnson et al.’s [84] instances. Running times from Canuto et al. to
be divided by 10 for comparison (cf. SPEC comparison).

CRR MA
Instance OPT

%-gap t [s] %-gap σ t [s] evals sr [%]

P100 803300 0.0 15 0.0 0.0 2.7 826 100.0
P100.1 926238 0.0 14 0.0 0.0 3.3 529 100.0
P100.2 401641 0.0 5 0.0 0.0 2.4 2708 100.0
P100.3 659644 0.0 10 0.0 0.0 2.8 629 100.0
P100.4 827419 0.0 10 0.0 0.0 2.3 560 100.0
P200 1317874 0.0 72 0.0 0.0 7.2 4596 100.0
P400 2459904 0.0 397 0.2 0.2 29.3 20453 23.3
P400.1 2808440 0.0 382 0.0 0.0 19.3 5238 33.3
P400.2 2518577 0.0 396 0.0 0.0 17.8 6208 100.0
P400.3 2951725 0.0 500 0.0 0.0 23.1 12358 0.0
P400.4 2852956 0.0 565 0.5 0.1 21.4 10912 0.0

K100 135511 0.0 2 0.0 0.0 1.7 500 100.0
K100.1 124108 0.0 2 0.0 0.0 1.6 500 100.0
K100.2 200262 0.0 3 0.0 0.0 1.6 500 100.0
K100.3 115953 0.0 3 0.0 0.0 1.5 500 100.0
K100.4 87498 0.0 6 0.0 0.0 1.9 500 100.0
K100.5 119078 0.0 2 0.0 0.0 1.4 500 100.0
K100.6 132886 0.0 2 0.0 0.0 1.2 500 100.0
K100.7 172457 0.0 2 0.0 0.0 1.6 500 100.0
K100.8 210869 0.0 2 2.3 0.0 1.5 500 0.0
K100.9 122917 0.0 2 0.0 0.0 1.4 500 100.0
K100.10 133567 0.0 1 0.0 0.0 1.4 500 100.0
K200 329211 0.0 9 0.0 0.0 2.4 500 100.0
K400 350093 0.0 68 0.0 0.0 6.9 500 100.0
K400.1 490771 0.0 194 0.0 0.0 6.7 500 100.0
K400.2 477073 0.2 234 0.2 0.0 7.1 1050 0.0
K400.3 415328 0.0 140 0.0 0.0 7.4 500 100.0
K400.4 389451 0.0 204 0.1 0.0 7.7 5793 26.7
K400.5 519526 0.0 122 0.3 0.0 7.1 574 0.0
K400.6 374849 0.0 60 0.0 0.0 8.3 523 100.0
K400.7 474466 0.1 306 0.1 0.2 7.7 1017 90.0
K400.8 418614 0.0 42 0.0 0.0 6.7 500 100.0
K400.9 383105 0.0 76 0.1 0.2 7.5 5153 0.0
K400.10 394191 0.4 231 0.7 0.2 8.7 3080 0.0
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Tables 4.5-4.7 contain the results of our comparison: For each instance, we show the optimal
value OPT , obtained by lower bounding procedure described by Lucena and Resende [111],
or alternatively by our new branch-and-cut algorithm (see Section 4.4). Solution values of
CRR, v(T ), or alternatively, percentage gaps for solution values of CRR, %-gap, are given in
Tables 4.6-4.7 and in Table 4.5, respectively. The total running time in seconds (t [s]) for CRR
is also provided. Given solution value v(T ), the percentage gap (%-gap) is calculated according
to the following formula:

%-gap =
v(T )−OPT

OPT
× 100% .

Recall that the values v(T ) represent the Goemans-Williamson minimization objective function.

Because of its stochastic nature, the MA was performed 30 times on each instance and the
average results are presented in Tables 4.5-4.7. In Table 4.5 the average percentage gap, %-gap,
and its standard deviation σ(c) are given. Tables 4.6-4.7 provide the average solution values
v(T )avg and their standard deviation σv. Furthermore, we show the average CPU-time and
the average number of evaluated solutions until the best solution was found (t [s], respectively
evals), and the success rates (sr), i.e. the percentage of instances for which optimal solutions
could be found. Note that when presenting t [s] values, the preprocessing times are also taken
into account.

When comparing our running time data (achieved on a Pentium IV with 2.8 GHz, 2 GB
RAM, SPECint2000=1204) with the results of Canuto et al. [23] (Pentium II with 400 MHz, 64
MB RAM), the widely used SPEC c© performance evaluation (www.spec.org) does not provide
a direct scaling factor. However, taking a comparison to the respective benchmark machines
both for SPEC 95 and SPEC 2000 into account, we can argue by a conservative estimate that
dividing the Canuto et al. running times by a factor of 10 gives a very reasonable basis of
comparison to our data.

Figure 4.6 summarizes our comparison results over all benchmark instances used in [23].
The computational results indicate that our memetic algorithm combined with preprocessing
is always faster than CRR: for groups K and P the MA is on average almost 2 times faster, for
group C this factor is 5, while for the group D the MA is almost 14 times faster. On the other
side, the average solution quality of the MA is slightly worse than that obtained by CRR. The
CRR algorithm found optimal solution for almost all instances of K,P and C groups, while the
average percentage gap was 0.4% for group D. Our memetic algorithm performed slightly worse,
but the average percentage gap per group was about 1% in the worst case (groups C and D).

We conclude that the MA is competitive against the heuristic approach proposed by Canuto,
Resende and Ribeiro. Although the obtained MA values are not always optimal, the average
gap and its standard deviation indicate a stable performance and the reliability of the memetic
algorithm.

4.3.8 Performance Analysis of Variation Operators

In this section we investigate the role of variation operators and the local improvement proce-
dure introduced in Sections 4.3.4, 4.3.5 and 4.3.6, respectively. Our analysis is based on the
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Table 4.6: Comparing the performance of Canuto et al. [23] (CRR) against our memetic algo-
rithm (MA) on the set of instances derived from OR-Library. Running times from Canuto et
al. to be divided by 10 for comparison (cf. SPEC comparison).

CRR MA
Instance OPT

v(T ) t [s] v(T )avg σv t [s] evals sr [%]

C1-A 18 18.0 3 18.0 0.0 1.9 500 100.0
C1-B 85 85.0 58 85.0 0.0 2.3 590 100.0
C2-A 50 50.0 7 50.0 0.0 1.8 500 100.0
C2-B 141 141.0 54 141.0 0.0 2.2 500 100.0
C3-A 414 414.0 87 414.0 0.0 2.9 500 100.0
C3-B 737 737.0 294 737.0 0.0 10.0 1569 100.0
C4-A 618 618.0 148 618.0 0.0 4.5 590 100.0
C4-B 1063 1063.0 387 1066.9 0.8 39.0 22176 0.0
C5-A 1080 1080.0 447 1080.0 0.0 9.4 730 100.0
C5-B 1528 1528.0 397 1528.1 0.3 20.1 4245 86.7
C6-A 18 18.0 9 18.0 0.0 4.1 500 100.0
C6-B 55 55.0 179 55.9 0.3 5.6 1359 6.7
C7-A 50 50.0 34 50.0 0.0 3.5 500 100.0
C7-B 102 103.0 167 106.0 0.0 5.7 1321 0.0
C8-A 361 361.0 313 362.7 0.7 8.5 1622 13.3
C8-B 500 500.0 404 502.0 1.1 29.0 16493 0.0
C9-A 533 533.0 475 533.1 0.3 13.4 3419 93.3
C9-B 694 694.0 583 699.3 2.4 38.5 16426 0.0
C10-A 859 859.0 628 860.3 0.9 35.4 12753 20.0
C10-B 1069 1069.0 474 1070.0 0.8 39.4 12692 33.3
C11-A 18 18.0 128 18.0 0.0 6.1 500 100.0
C11-B 32 32.0 140 32.0 0.0 9.1 1103 100.0
C12-A 38 38.0 162 38.7 0.5 9.0 2456 33.3
C12-B 46 46.0 156 46.0 0.0 8.7 590 100.0
C13-A 236 237.0 1050 237.0 0.2 17.9 5326 0.0
C13-B 258 258.0 733 258.5 0.7 35.9 15455 60.0
C14-A 293 293.0 829 293.0 0.0 21.0 3163 100.0
C14-B 318 318.0 766 318.6 0.5 29.8 9211 43.3
C15-A 501 501.0 957 502.2 0.8 45.4 14727 20.0
C15-B 551 551.0 837 551.8 0.9 45.7 15607 46.7
C16-A 11 11.0 1920 12.0 0.0 10.6 500 0.0
C16-B 11 11.0 1758 12.0 0.0 11.5 503 0.0
C17-A 18 18.0 549 19.0 0.0 11.2 620 0.0
C17-B 18 18.0 434 18.2 0.4 12.7 1951 76.7
C18-A 111 111.0 3990 112.4 0.7 24.1 7446 6.7
C18-B 113 113.0 3262 115.0 0.7 26.2 8361 6.7
C19-A 146 146.0 3928 146.2 0.4 17.9 5402 80.0
C19-B 146 146.0 3390 149.0 0.6 15.8 4035 0.0
C20-A 266 266.0 4311 266.0 0.0 7.3 598 100.0
C20-B 267 267.0 3800 267.0 0.0 5.2 500 100.0
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Table 4.7: Comparing the performance of Canuto et al. [23] (CRR) against our memetic algo-
rithm (MA) on the set of instances derived from OR-Library. Running times from Canuto et
al. to be divided by 10 for comparison (cf. SPEC comparison).

CRR MA
Instance OPT

v(T ) t [s] v(T )avg σv t [s] evals sr [%]

D1-A 18 18.0 6 18.0 0.0 3.1 500 100.0
D1-B 106 106.0 257 106.0 0.0 3.8 1950 100.0
D2-A 50 50.0 7 50.0 0.0 3.5 500 100.0
D2-B 218 228.0 486 218.3 1.0 7.3 4157 93.3
D3-A 807 807.0 734 807.0 0.0 7.4 500 100.0
D3-B 1509 1510.0 2184 1516.2 1.3 51.0 15976 0.0
D4-A 1203 1203.0 1263 1203.8 0.4 10.4 974 16.7
D4-B 1881 1881.0 2233 1885.2 2.0 49.6 9671 0.0
D5-A 2157 2157.0 3352 2157.0 0.0 29.1 1963 100.0
D5-B 3135 3135.0 2555 3137.7 0.9 65.1 7316 0.0
D6-A 18 18.0 20 18.0 0.0 7.7 500 100.0
D6-B 67 70.0 702 72.6 0.8 10.5 1192 0.0
D7-A 50 50.0 195 50.0 0.0 8.2 500 100.0
D7-B 103 105.0 711 105.0 0.0 9.5 520 0.0
D8-A 755 755.0 1727 755.5 0.5 19.1 2788 50.0
D8-B 1036 1038.0 3175 1045.7 3.9 123.8 36313 0.0
D9-A 1070 1072.0 4109 1074.7 1.0 52.1 13718 0.0
D9-B 1420 1420.0 2754 1436.4 3.0 151.2 31361 0.0
D10-A 1671 1671.0 4193 1674.4 1.4 122.2 21289 0.0
D10-B 2079 2079.0 2644 2089.8 2.1 107.3 14598 0.0
D11-A 18 18.0 540 18.0 0.0 15.4 500 100.0
D11-B 29 30.0 1280 29.0 0.0 17.4 814 100.0
D12-A 42 42.0 844 42.0 0.0 13.9 500 100.0
D12-B 42 42.0 687 42.0 0.0 15.1 620 100.0
D13-A 445 445.0 5047 446.7 0.5 58.7 14308 0.0
D13-B 486 486.0 4288 491.7 1.9 97.2 22843 0.0
D14-A 602 602.0 6388 605.6 1.2 102.3 21486 0.0
D14-B 665 665.0 6178 674.2 1.4 102.8 17746 0.0
D15-A 1042 1042.0 7840 1048.7 1.3 145.7 18343 0.0
D15-B 1108 1108.0 5220 1114.7 0.8 95.6 11026 0.0
D16-A 13 13.0 1397 14.0 0.0 23.1 500 0.0
D16-B 13 13.0 1043 13.3 0.4 26.4 1313 73.3
D17-A 23 23.0 3506 23.0 0.0 24.8 1983 100.0
D17-B 23 23.0 2089 23.0 0.0 23.7 948 100.0
D18-A 218 218.0 30044 220.8 0.7 81.4 19864 0.0
D18-B 223 224.0 36643 230.2 1.3 98.7 25585 0.0
D19-A 306 308.0 40955 317.7 2.7 87.6 18480 0.0
D19-B 310 311.0 38600 317.8 2.2 81.9 17912 0.0
D20-A 536 536.0 28139 537.0 0.0 18.4 1036 0.0
D20-B 537 537.0 22104 537.0 0.0 12.7 1587 100.0
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Figure 4.6: Comparing our memetic algorithm (MA) with the Canuto et al. [23] approach: (a)
The running time in seconds averaged per group - running times of Canuto et al. are divided
by 10 for comparison (see text) (b) The percentage gap %-gap averaged per group.

Table 4.8: Average performance over 30 runs of different MA-variants, for K, P, C and D

groups of PCST instances.

MA C+LI M+LI C+M+LI
Grp.

%-gap σ t [s] evals sr %-gap σ t [s] evals sr %-gap σ t [s] evals sr %-gap σ t [s] evals sr

K 0.2 0.0 4 1095 74.6 0.2 < 0.1 4 592 69.1 0.2 < 0.1 4 907 70.1 0.3 < 0.1 4 727 70.3
P 0.1 0.0 12 5910 68.8 0.3 < 0.1 10 5076 46.1 0.3 0.1 12 7478 27.3 0.6 0.1 6 3040 19.1
C 1.0 0.2 16 4926 55.7 2.2 0.1 17 6222 41.7 3.9 0.2 18 4264 24.6 2.4 0.2 11 1313 28.8
D 1.0 0.3 50 9092 40.8 1.9 0.3 61 11582 27.4 3.7 0.9 65 9479 20.2 3.5 0.2 37 1697 18.2
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results obtained on the set of benchmark instances mentioned in previous section.
Table 4.8 illustrates the importance of using both, recombination and mutation operators,

and that it is necessary to apply local improvement immediately after each variation operator.
Shown are average results of 30 runs for the following four scenarios of the memetic algo-
rithm: In MA, our default implementation, local improvement is applied after both variation
operators. In C+LI, new candidate solutions are created only by recombination followed by
local improvement. M+LI applies always only mutation followed by local improvement. In
C+M+LI, recombination and mutation are used, and local improvement is performed before
a solution is inserted into the population. All strategy parameters were set as in the previous
experiments with the only exception that in M+LI, the probability of applying mutation was
pmut = 1.

The best performance is obtained when candidate solutions are locally improved after both,
recombination and variation: the average percentage gap over all instances is 0.6% in that case
and in Tables 4.5-4.7 we have seen detailed results of this default scenario.

Comparing the other three scenarios, we can observe:

• C+M+LI converged fastest, but the obtained solutions were in nearly all cases substan-
tially poorer (1.7% of average gap over all instances). This points out that mutating of
candidate solutions that are not already locally optimal, leads to the premature conver-
gence of the underlying memetic algorithm. In other words, once the solution is being
mutated, due to the deterministic nature of the local improvement algorithm, the prob-
ability of getting stuck into poor suboptimal solutions is getting higher.

• C+LI, on the other side, generally needed much more evaluations and also more time
to converge. Although its total running time hardly deviates from the running time of
our default MA implementation, the average gap obtained over all instances was 1.2%.
This shows that incorporation of the mutation operator is needed in order to preserve
diversity of the memetic algorithm.

• Finally, the worst results were obtained by running M+LI, with 2% of average gap, which
clearly indicates that the recombination of genetic material represents an essential part
of our memetic algorithm.
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4.4 ILP Formulations of the Problem

In this section we provide a review of different ILP formulations used in literature for solving the
PCST to optimality. We also study their relationships and provide new sets of strengthening
inequalities.

First, we show an ILP formulation based on generalized subtour elimination constraints
and two flow formulations based on the representation of the solutions as rooted trees. Finally,
we concentrate on a connectivity-based formulation which represents the basis of our branch-
and-cut algorithm presented in Section 4.5.

Within this section, for every integer programming formulation (P) the optimal solution
value of the resulting LP-relaxation will be denoted by c(LPP ).

4.4.1 Formulation Based on Generalized Subtour Elimination Constraints

This ILP formulation has been used in Lucena and Resende [111], and follows from an ex-
tended formulation of the Steiner problem in graphs studied also by Goemans [65] and Mar-
got et al. [112].

To every subtree T ′ = (V ′
T , E′

T ) of the input graph G′ = (V ′, E′, c′, p′), we associate two
incidence vectors:

Xij =

{
1 (i, j) ∈ E′

T

0 otherwise
∀(i, j) ∈ E′, yi =

{
1 i ∈ V ′

T

0 otherwise
∀i ∈ V ′

The PCST can be formulated as the following ILP (the edge-variables are denoted by a
capital X to distinguish them from the variables for the directed formulations we will introduce
later):

(GSEC) min
∑

ij∈E′
c′ijXij +

∑

i∈V ′
p′i(1− yi) (4.7)

subject to
∑

ij∈E′
Xij =

∑

i∈V ′
yi − 1 (4.8)

∑

i,j∈S

Xij ≤
∑

i∈S\{k}
yi ∀S ⊆ V ′, |S| ≥ 2, ∀k ∈ S (4.9)

0 ≤ Xij ≤ 1 ∀(i, j) ∈ E′ (4.10)

0 ≤ yi ≤ 1 ∀i ∈ V ′ (4.11)

yi ∈ {0, 1} ∀i ∈ V ′ (4.12)

Constraints (4.8) and (4.9) describe the tree structure of the solution. Constraint (4.8) ex-
cludes the empty tree from the set of feasible solutions. Constraints (4.9) are called generalized
subtour elimination constraints. They guarantee that the solution is cycle free. Note that if
yi = 1, ∀i ∈ S, then (4.9) reduces to a classical subtour elimination constraint (SEC) as that
for the TSP. The validity of the provided formulation follows from Edmonds’ characterization
of the spanning tree polytope (see, for example, [42]).



120 CHAPTER 4. THE PRIZE-COLLECTING STEINER TREE PROBLEM

4.4.2 Rooted Tree Flow-Formulations

Directed tree formulations rely on a transformation of the PCST to the problem of finding a
minimum subgraph in a related, directed graph as proposed by Fischetti [51]. We transform the
reduced graph G′ = (V ′, E′, c′, p′) that results from the application of preprocessing into the
directed edge-weighted graph GSA = (VSA, ASA, c′′), and solve the so-called Steiner arborescence
problem described below. See [14] for a detailed introduction into digraphs.

The Steiner Arborescence Problem

Suppose we are given a graph Gr = (Vr, Er), with a distinguished root vertex r. Suppose also
that a (possibly empty) set of terminal vertices (also called target vertices) T ⊂ Vr \ {r} is
given. In the jargon of the Steiner tree problem of graphs, the vertices Vr \ (T ∪{r}) are called
Steiner vertices. We relate to the graph Gr a digraph G′

r = (Vr, Ar) whose set of arcs is given
as:

Ar = {(i, j) | i ∈ Vr, j ∈ Vr \ {i, r}} .

Definition 10. [Steiner Arborescence]
Given a digraph G′

r = (Vr, Ar), a Steiner Arborescence (SA) is a partial digraph G′
SA = (V ′

r , A′r)
of G′

r such that:

• all the target vertices i ∈ T have in-degree equal to one in G′
SA,

• all Steiner vertices have in-degree ≤ 1. Note that the construction of the digraph GSA

assures that the root vertex r has in-degree equal to 0.

• for each vertex i ∈ Vr \ {r} whose in-degree is equal to one, there is a directed path from
the root r to i.

With each partial digraph G′
SA = (V ′

r , A′r) of G′
r, a characteristic vector x ∈ {0, 1}|Ar| is

associated:

xij =

{
1 (i, j) ∈ A′r
0 otherwise

∀(i, j) ∈ Ar .

Definition 11. The Steiner Arborescence Problem
The Steiner arborescence polytope is defined as a convex hull of the characteristic vectors of
all Steiner arborescences of G′

r. The Steiner arborescence problem consists of minimizing a
linear objective function

∑
ij∈Ar

cijxij over the SA polyhedron.

Note that if the set of terminal vertices is empty, minimization over the SA polyhedron only
makes sense if there are negative edge-costs; otherwise the optimal solution contains only the
root vertex. Fischetti [51] studied the Steiner arborescence problem and related polyhedra. He
also showed that the node-weighted Steiner tree problem can be transformed into it. In what
follows, we will show how the PCST problem can be transformed into the Steiner arborescence
problem.
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Transformation of PCST into the Steiner Arborescence Problem

Suppose we are given an instance of the reduced PCST problem G′ = (V ′, E′, c′, p′). We
transform the graph G′ into a Steiner arborescence graph GSA = (VSA, ASA, c′′) in the following
way:

• In addition to the vertices of the input graph G′, the vertex set of the transformed graph
contains an artificial root r, i.e. VSA = V ′ ∪ {r}.

• The arc set ASA contains two directed edges (i, j) and (j, i) for each edge (i, j) ∈ E′ plus
a set of arcs from the root r to the customer vertices R′ = {i ∈ V ′ | pi > 0}, i.e.

A = {(i, j) | i ∈ V, j ∈ V \ {i, r}} ∪ {(r, i) | i ∈ R′} .

• The set of target vertices is empty.

• We define the cost vector c′′ as follows:

c′′ij =

{
c′ij − p′j ∀(i, j) ∈ ASA, i 6= r

−p′j ∀(r, j) ∈ ASA .

A Steiner arborescence G′
SA of GSA is called a feasible arborescence if G′

SA corresponds to
a solution of the PCST in which r has degree 1. In particular, a feasible arborescence with
minimal total edge costs corresponds to an optimal prize-collecting Steiner tree.

It is easy to see that the cost of the corresponding PCST solution in G′ can be found as
the sum of the arc-costs of G′

SA plus the sum of all vertex weights in G′.
In a Steiner arborescence graph GSA we will also consider customer vertices whose set

RSA is defined as RSA = {i ∈ VSA | i 6= r, pi > 0}. Note that the non-customer vertices
v ∈ VSA \RSA, v 6= r cannot be leaves of an optimal solution.

An example of this transformation can be found in Figures 4.8 (a) and (b) on page 126.
We model the problem of finding a minimum Steiner arborescence G′

SA = (V ′
SA, A′SA) by

means of an integer linear program. Therefore, we introduce a variable vector x ∈ {0, 1}|ASA|

with the following interpretation:

xij =

{
1 (i, j) ∈ A′SA

0 otherwise
∀(i, j) ∈ ASA .

The small letters x indicate arc variables in the directed model whereas capital letters X were
used in Section 4.4.1 for edges in the undirected case. Furthermore, to indicate which of the
vertices from VSA \ {r} belong to the solution, we use a variable vector y ∈ {0, 1}|VSA|−1:

yi =

{
1 i ∈ V ′

SA

0 otherwise
∀i ∈ VSA \ {r} .

In the sequel, we provide three different ILP formulations of the PCST problem on Steiner
arborescence graph.
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Single-Commodity Flow Formulation

This is one of the simplest ILP formulations of the problem. Segev [149] used a very simi-
lar formulation for the single vertex-weighted Steiner tree problem, under the name tree-type
formulation. A related formulation for the Steiner tree problem has been studied by several
authors, see, e.g., [40].

This formulation describes the structure of a rooted arborescence by a flow using the vari-
ables fij for the amount of flow on arc (i, j) for all (i, j) ∈ ASA. One unit of flow is sent from
the root vertex r to every customer vertex in the solution tree and fij represents the sum of all
such flows via arc (i, j). In the optimal solution the values of xij indicate directed paths from
r to every selected vertex. The resulting ILP formulation can be written as follows:

(SF ) min
∑

ij∈ASA

c′′ijxij +
∑

i∈VSA

p′i (4.13)

subject to
∑

ji∈ASA

xji = yi ∀i ∈ VSA \ {r} (4.14)

∑

ji∈ASA

fji −
∑

ij∈ASA

fij = yi ∀i ∈ RSA (4.15)

∑

ji∈ASA

fji −
∑

ij∈ASA

fij = 0 ∀i ∈ VSA \RSA, i 6= r (4.16)

0 ≤ fij ≤ (|VSA| − 1) · xij ∀(i, j) ∈ ASA (4.17)
∑

ri∈ASA

xri = 1 (4.18)

yi, xij ∈ {0, 1} ∀i ∈ VSA \ {r}, ∀(i, j) ∈ ASA (4.19)

The constant term in the objective function is added such that (SF) yields the desired overall
solution value (4.2). The so-called in-degree equation (4.14) guarantees that every selected
vertex has exactly one predecessor on its path from the root. The classical flow preservation
constraints are given by (4.15) and (4.16), where the former requires that every selected vertex
receives one unit of flow to be consumed in this vertex. Constraints (4.17) force the arcs which
are used by any flow to be included in the final directed tree of paths to the vertices. Finally,
the so-called root-degree constraint (4.18) makes sure that the artificial root r is connected only
to a single vertex, i.e. that we obtained a feasible arborescence.

Because of the so-called “big M” constraints resembled in (4.17), this formulation is known
to be computationally inefficient in the sense that the LP-solution value is likely to deviate
considerably from the optimal ILP value. An example of a solution of the LP-relaxation of
(SF) can be found in Figure 4.8 (c) on page 126.

Multi-Commodity Flow Formulation

A straightforward extension of the previous formulation is the so-called multi-commodity flow
formulation of the problem. Here, we split the flow from (SF) into separate commodities for
every selected customer vertex. The variable fk

ij describes the flow value of a single commodity
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k on arc (i, j) on the directed path from the root vertex r to a selected customer vertex k ∈ RSA

with yk = 1.

(MCF ) min
∑

ij∈ASA

c′′ijxij +
∑

i∈VSA

p′i (4.20)

subject to
∑

ji∈ASA

xji = yi ∀i ∈ VSA \ {r} (4.21)

∑

ji∈ASA

f i
ji −

∑

ij∈ASA

f i
ij = yi ∀i ∈ RSA (4.22)

∑

ji∈ASA

fk
ji −

∑

ij∈ASA

fk
ij = 0 ∀i ∈ VSA \ {k, r},∀k ∈ RSA (4.23)

0 ≤ fk
ij ≤ xij ∀(i, j) ∈ ASA,∀k ∈ RSA (4.24)

∑

ri∈ASA

xri = 1 (4.25)

yi, xij ∈ {0, 1} ∀i ∈ VSA \ {r},∀(i, j) ∈ ASA (4.26)

The meaning of the constraints is almost equivalent to the (SF) formulation. Of course the
flow preservation constraints are extended to hold for every single commodity in (4.22) and
(4.23). The former selects commodity i as the only possibility to deliver any flow into vertex
i. Conditions (4.24) force an arc to be included in the solution tree as soon as the flow of
any commodity traverses through. A multi-commodity flow formulation is well known for the
standard Steiner tree problem (see e.g. [134]) and it was applied to the SPWST by Segev [149].

It is not surprising that (MCF) strictly dominates the (SF) formulation. This means that
every solution of the LP-relaxation of (MCF) can be mapped into an equivalent LP-solution
of (SF) by simply merging the commodities on every arc into a single flow. Figure 4.8 (c) and
(d) on page 126 shows an example where c(LPMCF ) > c(LPSF ) holds, and so the domination
relation between the two formulations is strict.

4.4.3 Cut Formulation

A different ILP formulation (introduced in [51] for the NWST) concentrates on the connect-
edness of the solution. Therefore, cuts are introduced with the fairly simple condition that for
every selected vertex which is separated from r by a cut there must be an arc crossing this cut.

The corresponding ILP model then reads as follows:
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(CUT ) min
∑

ij∈ASA

c′′ijxij +
∑

i∈VSA

p′i (4.27)

subject to
∑

ji∈ASA

xji = yi ∀i ∈ VSA \ {r} (4.28)

x(δ−(S)) ≥ yk k ∈ S, r 6∈ S,∀S ⊂ VSA (4.29)
∑

ri∈ASA

xri = 1 (4.30)

xij , yi ∈ {0, 1} ∀(i, j) ∈ ASA, ∀i ∈ VSA \ {r} (4.31)

The cut constraints (4.29) are also called connectivity inequalities. They guarantee that
for each vertex v in the solution, there must be a directed path from r to v. Note that
disconnectivity would imply the existence of a cut S separating r and v which would clearly
violate the corresponding cut constraint.

As already observed in [51], the connectivity inequalities (4.29) can be put in an LP equiva-
lent form by adding together −x(δ−(S)) ≤ −yk and the in-degree equations

∑
ji∈ASA

xji =
yi for all i ∈ S, to produce the generalized subtour elimination constraint

∑
i,j∈S xij ≤∑

i∈S\{k} yi, the directed counterpart of (4.9). Chopra and Rao [28] have shown for the Steiner
tree problem that directed GSECs dominate directed counterparts of several other facet defin-
ing inequalities of the undirected (GSEC) formulation. This is also the reason why the directed
formulation is preferable in practice.

The following theorem shows the equivalence of the LP-relaxations of (CUT) and (MCF).
Note that this fact has already been observed in a related setting for the classical Steiner tree
problem (see for example [40]).

Theorem 6. The polytopes of the LP-relaxations for (MCF) and (CUT) are identical.

Proof. Let xij be feasible for (MCF) and assume that there exist S and k violating (4.29) in
(CUT), i.e., x(δ−(S)) < yk. Considering (4.22) for the same vertex k, it follows that there is
a flow of value yk from r to k in the directed network defined by the arc capacities xij . The
classical max-flow min-cut theorem implies that every cut separating r and k must have a cut
value at least yk in contradiction to the assumption.

Let xij be feasible for (CUT). We want to construct a corresponding feasible multi-commodity
flow for (MCF). If yk = 0 we simply set fk

ij = 0 for all (i, j) ∈ ASA. For yk > 0 consider the
network with source r and sink k′, where k′ is connected only to k by an arc (k, k′) with ca-
pacity yk and capacities xij for all other arcs (i, j) ∈ ASA. The maximum flow in this network
delivers the flow of commodity k. Its flow value fk is exactly yk as required in (4.22). If this
maximum flow fk were smaller than yk, then by the max-flow min-cut theorem there must exist
a minimal cut between r and k with capacity less than yk thus violating (4.29). Exceeding the
flow value of yk is prevented by the introduction of the artificial vertex k′ which cannot receive
a larger inflow. The feasibility of all other constraints in (MCF) is obvious.
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Figure 4.7: Two feasible Steiner arborescences representing the same PCST solution. Using
the asymmetry inequalities only the solution on the left-hand side is considered as feasible.

4.4.4 Asymmetry Constraints

In order to create a bijection between arborescence and PCST solutions, we introduce the
so-called asymmetry constraints:

xrj ≤ 1− yi, ∀i < j, i ∈ R (4.32)

These inequalities assure that for each PCST solution the customer vertex adjacent to the root
is the one with the smallest index. Figure 4.7 illustrates an example. Computational results
have shown that they significantly reduce the computation time, because they exclude many
symmetric solutions.

4.4.5 Strengthening the Formulation

Each feasible solution of the Steiner arborescence problem can be seen as a set of flows sending
one unit from the root to all customer vertices j with yj = 1.

Considering the tree structure of the solution it is obvious that in every non-customer vertex,
which is not a branching vertex in the Steiner arborescence, in-degree and out-degree must be
equal, whereas in a branching non-customer vertex in-degree is always less than outgoing degree.
Thus, we have: ∑

ji∈ASA

xji ≤
∑

ij∈ASA

xij , ∀i 6∈ R, i 6= r . (4.33)

These so-called flow-balance constraints were introduced by Koch and Martin in [99] for the
Steiner tree problem. They indeed represent a strengthening of the LP-relaxation of (4.28)-
(4.32), as can be shown by an example in Figures 4.8 (d) and (e). For the classical Steiner tree
problem, an analogous example can be found in [134].
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Figure 4.8: (a) an input graph G; (b) after transformation into the Steiner arborescence prob-
lem; (c) solution of (SF) LP-relaxation, c(LPSF ) = 0. LP-values of x and y variables are
shown; (d) solution of (MCF) LP-relaxation, c(LPMCF ) = c(LPCUT ) = 7.5; (e) solution of
(CUT) LP-relaxation augmented with flow-balance constraints has cost 8 and corresponds to
the optimal solution (f).
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4.5 Branch-and-Cut Algorithm

In the last section we gave an overview of the existing ILP formulations for the prize-collecting
Steiner tree problem. Within this section, we describe an implementation of the branch-and-
cut algorithm to solve the (CUT) formulation of the problem. The branch-and-cut algorithm
is designed as follows: At each node of the branch-and-bound tree we solve the LP-relaxation
(CUT), obtained by replacing the integrality requirements (4.31) by the simple bounds: 0 ≤
yi ≤ 1,∀i ∈ VSA \ {r} and 0 ≤ xij ≤ 1,∀(i, j) ∈ ASA. For solving the LP-relaxations and as
a generic implementation of the branch-and-cut approach, we used the commercial packages
ILOG CPLEX and ILOG Concert Technology (version 8.1).

4.5.1 Initialization

There are exponentially many constraints of type (4.29), so we do not insert them at the begin-
ning but rather separate them during the optimization process using the separation procedure
described below.

At the root node of the branch-and-bound tree, we start with in-degree, root-degree, flow-
balance and asymmetry constraints. Furthermore, we add the following group of inequalities:

xij + xji ≤ yi, ∀i ∈ VSA \ {r}, (i, j) ∈ ASA (4.34)

These constraints express the trivial fact that every arc adjacent to a vertex in the solution
tree can be oriented only in one way. They are also a special case of the connectivity constraints
written in their equivalent GSEC form, a directed counterpart of (4.9), with S := {i, j}.
Although the LP may become large by adding all of these inequalities at once they offer a
tremendous speedup since they do not have to be separated implicitly during the branch-and-
cut algorithm. Further details are discussed in Section 4.5.4. An example that illustrates an
advantage of such initialization is given in Figure 4.10.

4.5.2 Separation

During the separation phase which is applied at each node of the branch-and-bound tree, we
add constraints of type (4.29) that are violated by the current solution of the LP-relaxation.
Usually, this model is less dense than the equivalent directed (GSEC) model, so it may be
computationally preferable within the branch-and-cut implementation.

These violated cut constraints can be found in polynomial time using a maximum flow
algorithm on the support graph with arc-capacities given by the current solution. For finding
the maximum flow in a directed graph, we used an adaptation of Cherkassky & Goldberg’s
maximum flow algorithm [26]3.

The outline of the separation procedure is given in Algorithm 12. Given a support graph
Gs = (VSA, ASA, x), we search for violated inequalities by calculating the maximum flow for all
(r, i) pairs of vertices, i ∈ RSA, yi > 0. The maximum flow algorithm MaxFlow(G, x′, r, i, Sr, Si)
returns the flow value f and two sets of vertices:

3Available at http://www.avglab.com/andrew/CATS/maxflow_solvers.htm
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Data : A support graph Gs = (VSA, ASA, x).
Result: A set of violated inequalities incorporated into the current LP.

for i ∈ RSA, yi > 0 do
x′ = x + EPS ;
repeat

f = MaxFlow(G, x′, r, i, Sr, Si);
Detect the cut δ+(Sr) such that x′(δ+(Sr)) = f , r ∈ Sr;
if f < yi then

Insert the violated cut x(δ+(Sr)) ≥ yi into the LP;
end
x′ij = 1, ∀(i, j) ∈ δ+(Sr);
if BACKCUTS then

Detect the cut δ−(Si) such that x′(δ−(Si)) = f , i ∈ Si;
if Si 6= Sr then

Insert the violated cut x(δ−(Si)) ≥ yi into the LP;
x′ij = 1, ∀(i, j) ∈ δ−(Si);

end
end

until f ≥ yi or MAXCUTS constraints added ;
end

Algorithm 12: Separation procedure.
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• Subset Sr ⊂ VSA contains root vertex r and induces a minimum cut closest to r, in other
words, x(δ+(Sr)) = f ;

• Subset Si ⊂ VSA contains vertex i and induces a minimum cut closest to i, i.e., x(δ−(Si)) =
f .

If f < yi, we insert the violated cut x(δ+(Sr)) ≥ yi into the LP. We then follow the idea of
the so-called nested cuts [99]: we iteratively add further violated constraints induced by the
minimum (r, i)-cut in the support graph in which the capacities of all the arcs (u, v) ∈ δ+(Sr)
are set to one. This iterative process is done as long as the total number of the detected
violated cuts is less than MAXCUTS (100, in the default implementation), or there are no
more such cuts. By setting the capacities of the edges in a cut to one, we are able to increase
the number of violated inequalities found within one cutting plane iteration. To deal with
numerical instabilities of the LP solver, we inserted only those cuts that are violated by at
least some small value (10−4, in our default implementation).

Chopra et al. [27] proposed the so-called back-cuts, also used in [99], for the Steiner tree
problem. To speed up the process of detecting more violated cuts within the same separation
phase, we consider the reversal flow in order to find the cut “closest” to i, for some i ∈ R, yi > 0.
The advantage of Goldberg’s implementation is that only one maximum flow calculation is
needed in order to find both sets Sr, r ∈ Sr and Si, i ∈ Si defining the minimum cut of value
f . Note that back-cuts (controlled by the BACKCUTS parameter) are combined with nested
cuts in our implementation.

Finally, we considered the possibility of adding the smallest cardinality cut by increasing
all xij values by some value EPS . The smallest cardinality cuts may have a great influence on
the density of the underlying LP, however the running time of the maximum flow calculations
may also increase. Indeed, our computational results (cf. Section 4.5.4) confirm that for most
of our instances setting EPS to a positive value increases the CPU time.

4.5.3 Primal Heuristic

Within a branch-and-bound approach we call primal heuristics in order to find feasible solutions,
or in order to improve existing upper bounds. The branch-and-cut framework of CPLEX calls
the primal heuristic when the linear program in a node of the tree is solved and no more
violated inequalities are found just before a branch is performed.

The basic idea of our primal heuristic is that we first fix a set S of vertices (i.e. terminals)
that will be contained in the heuristic solution. Then we apply the standard minimum spanning
tree heuristic for the Steiner tree problem to the graph G = (V, E, c) with terminal set S. Let
T be the resulting tree. We solve the PCST on T optimally by the linear time algorithm
described in Section 4.3.6.

For choosing the set S of terminal vertices, we use the values of the y-variables in the
LP-solution of the current node in the branch-and-cut tree. We tested the following strategies:

• Using of y-values as probabilities for inserting a vertex into S (denoted by RMinSpan);
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• Computing for each vertex the average of its LP-value in the fractional solution and
the best known feasible solution and using this value as the probability for choosing the
vertex (the so-called, Incumbent Heuristic);

• Choosing all vertices vi where the value of yi in the current fractional solution is at least
1/2. We call this heuristic a CutOff Heuristic.

Having chosen the vertices in S, we compute the distance network GS for S where GS =
(S, S×S, dS). The length dS of an edge in GS is the length of the shortest path connecting the
two corresponding vertices in G. The length of a path is determined by the x-variables of the
edges on the path. We assign to each edge (i, j) in the problem graph the cost 1−max{xij , xji}
where xij is the value of the corresponding edge-variable in the fractional solution of the current
branch-and-bound node. Thus, a path is short if its edges have high LP-values.

We compute a minimum spanning tree T = (S,ET ) in GS and define the set S′ of vertices
in G as the union of S and the set of all vertices on the shortest paths that correspond to edges
in ET . Let GH = (S′, EH , c) be the subgraph of G induced by the vertex set S′. In this graph,
the cost of each edge is again the original cost in the problem instance.

This graph is connected and therefore we can compute a minimum spanning tree T ′ =
(S′, ET ′) for it. Finally, we use the linear time algorithm to solve the PCST optimally on the
tree T ′ (see Section 4.3.6). The resulting graph is our heuristic solution. The computational
results in Section 4.5.4 show that the primal heuristic can significantly improve the gap between
the lower bound and the best known feasible solution for some of our most challenging problem
instances.

4.5.4 Computational Results

In this section we provide computational results of the branch-and-cut algorithm described
above. In the sequel we show that we have succeeded to solve all instances known from
the literature to optimality. Furthermore, we introduce new sets of larger and more difficult
instances and solve some of them to optimality. A set of real-world instances arising from
the design of optical fiber networks with corresponding optimal solutions are also provided
in this section. Finally. we also implemented a column generation approach for the (MCF)
formulation provided in Section 4.4.2. In this section we compare several column generation
strategies (including one based on the memetic algorithm described in Section 4.3). In the end
we compare the performance of implementations of (MCF) and (CUT) formulations and draw
some conclusions.

Testing the Branch-and-Cut Algorithm

Our new branch-and-cut approach has been extensively tested on the instances introduced
in Section 4.2.1. In what follows, we compare our results against those recently obtained by
Lucena and Resende [111] (denoted by LR). For groups C and D, Tables 4.9 and 4.10 list
instance name, and the LR results: the best obtained lower bounds (L. Bound) and the CPU
times in seconds required to prove optimality (t [s]). If the CPU time is not given, it means
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that the LR algorithm terminated because of excessive memory consumption. For our new
ILP approach, we provide the following values: the provably optimal solution value (OPT ),
the total running time in seconds (t [s]) (including preprocessing time), the number of violated
cuts found by our separation procedure (#Cuts), the number of violated Gomory fractional
cuts automatically added by CPLEX (#G. Cuts) and the total running time of the same
algorithm without preprocessing (tnoprep [s]).

On all but 8 instances of groups C and D lower bounds obtained by LR were equal to known
upper bounds obtained by Canuto et al. [23]. However, on 16 instances from C and D, the LR
algorithm did not prove the optimality. Improving upon their results, our new ILP approach
solved all instances known from the literature to proven optimality. The optimal solution
values, that were not guaranteed to be optimal before, are marked with an asterisk while new
optimal values are given in bold face.

Comparing our running time data (achieved on a Pentium IV with 2.8 GHz, 2 GB RAM,
SPECint2000=1 204) with the results of Lucena and Resende [111] (done on SGI Challenge
Computer 28 196 MHz MIPS R10000 processors with 7.6 GB RAM, each run used a single
processor), the widely used SPEC c© performance evaluation (www.spec.org) does not provide
a direct scaling factor. However, taking a comparison to the respective benchmark machines
both for SPEC 95 and SPEC 2000 into account, we obtain a scaling factor of 17.2. On the
other side, in [38] the SGI machine is assigned a factor of 114 and to our machine the factor
1 414, which gives 12.4 as a scaling factor. Thus, we can argue by a conservative estimate that
dividing the LR running times by a factor of 20 gives a very reasonable basis of comparison to
our data.

Tables 4.9 and 4.10 document that our new approach is able to solve all the instances to
optimality within a very short time, even if preprocessing is turned off. The running time com-
parison for those instances where LR running times are known, shows that our new approach is
significantly faster. If we compare average running times for our ILP with and without prepro-
cessing, we also see that there is no particular advantage of applying preprocessing on instances
of groups C and D. For group D, the average total running time is even slightly better when
preprocessing is turned off. This indicates that for these instances there is a trade-off between
computational effort needed to preprocess the input graph, and the overall branch-and-cut
running time.

Both algorithms, LR and our new ILP approach, solved all P and K instances to optimality.
Thus, we omit the corresponding tables here and refer to Table 4.11 and the next subsection
where we analyze the running time of our algorithm. All the instances of K,P,C and D groups
are solved in the root node of the branch-and-cut tree.

Summarizing Results on K,P,C and D Groups In Table 4.11 we summarize experimental
results of the branch-and-cut algorithm without running the reduction procedures proposed in
Section 4.2. We represent the following values for each group K,P,C and D: for each instance
where the LR algorithm proved optimality, and whose tILP > 0.2, we calculate the speed-
up factor tLR/tILP . We then present the average (AVG), minimum (MIN) and maximum
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Table 4.9: Results obtained by Lucena and Resende (LR) and our new results, on the instances
from Steiner series C. Running times in (LR) are divided by 20 for comparison (cf. text above).
Asterisk marks new certificates of optimality for known values. New optimal solution values
are given in bold face.

LR ILP
Instance L. Bound t [s]/20 OPT t [s] # Cuts # G. Cuts tnoprep [s]

C1-A 18 0.0 18 1.3 0 0 0.1
C1-B 85 0.1 85 1.2 6 6 0.2
C2-A 50 0.0 50 1.1 0 0 0.1
C2-B 141 0.0 141 1.1 0 0 0.1
C3-A 414 0.1 414 1.2 0 0 0.3
C3-B 737 1.3 737 1.4 4 1 0.4
C4-A 618 0.1 618 1.3 2 6 0.9
C4-B 1063 14.4 1063 1.5 4 0 0.6
C5-A 1080 4.0 1080 1.4 0 0 8.6
C5-B 1528 174.4 1528 2.0 0 0 2.0
C6-A 18 0.0 18 2.2 0 0 0.1
C6-B 55 2.9 55 2.5 8 12 0.6
C7-A 50 0.1 50 2.6 0 0 0.1
C7-B 102 0.2 102 2.7 4 9 0.2
C8-A 361 1.7 361 2.9 0 0 0.6
C8-B 500 10.8 500 3.3 4 1 0.6
C9-A 533 4.2 533 3.6 12 16 0.9
C9-B 694 95.6 694 3.8 14 23 1.1
C10-A 859 8.0 859 4.0 8 0 2.5
C10-B 1069 175.1 1069 4.1 10 0 4.3
C11-A 18 0.2 18 9.7 2 0 0.2
C11-B 32 3.4 32 13.7 48 25 3.2
C12-A 38 1.9 38 7.1 4 0 0.3
C12-B 46 6.3 46 7.5 12 8 0.6
C13-A 236 16.6 236 10.5 4 1 2.1
C13-B 258 154.6 258 12.7 56 22 5.4
C14-A 293 87.5 293 8.0 2 0 0.6
C14-B 318 57.1 318 8.1 4 0 0.6
C15-A 501 2711.2 501 7.6 12 1 6.4
C15-B 551 — *551 6.6 4 0 4.4
C16-A 11 10.2 11 3.8 6 9 3.7
C16-B 11 10.3 11 3.7 6 9 3.6
C17-A 18 12.5 18 4.8 12 30 2.8
C17-B 18 19.4 18 4.0 8 15 2.8
C18-A 111 1001.6 111 4.1 2 2 5.3
C18-B 113 — *113 6.2 14 3 25.7
C19-A 146 7610.9 146 3.6 2 0 3.9
C19-B 146 950.0 146 3.4 2 0 4.1
C20-A 265 — 266 6.3 2 0 22.6
C20-B 267 — *267 5.0 2 0 51.8
C-AVG 334.3 — 334.3 4.5 7 5.0 4.4
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Table 4.10: Results obtained by Lucena and Resende (LR) and our new results, on the instances
from Steiner series D. Running times in (LR) are divided by 20 for comparison (cf. text above).
Asterisk marks new certificates of optimality for known values. New optimal solution values
are given in bold face.

LR ILP
Instance L. Bound t [s]/20 OPT t [s] # Cuts # G. Cuts tnoprep [s]

D1-A 18 0.0 18 4.9 0 0 0.2
D1-B 106 0.3 106 5.0 8 8 0.5
D2-A 50 0.0 50 4.9 0 0 0.2
D2-B 218 0.1 218 4.9 0 0 0.3
D3-A 807 0.6 807 5.7 0 0 1.1
D3-B 1509 16.6 1509 6.8 2 0 0.9
D4-A 1203 2.6 1203 6.0 0 0 3.0
D4-B 1881 77.6 1881 8.0 8 0 2.5
D5-A 2157 29.9 2157 8.5 6 0 93.8
D5-B 3135 — *3135 12.9 6 0 7.3
D6-A 18 0.1 18 14.5 0 0 0.2
D6-B 67 11.3 67 16.0 20 4 3.0
D7-A 50 0.2 50 11.4 0 0 0.2
D7-B 103 7.7 103 11.7 2 1 0.4
D8-A 755 8.5 755 15.3 24 0 9.5
D8-B 1036 163.4 1036 13.2 2 1 3.1
D9-A 1070 67.3 1070 32.3 24 15 30.7
D9-B 1420 1252.6 1420 25.1 104 0 3.5
D10-A 1671 3129.5 1671 18.7 8 0 30.4
D10-B 2079 — *2079 20.9 8 0 25.5
D11-A 18 1.7 18 29.1 2 4 0.5
D11-B 29 43.5 29 28.0 14 41 4.8
D12-A 42 14.1 42 24.6 10 2 1.6
D12-B 42 14.9 42 23.3 4 3 1.3
D13-A 445 1234.5 445 34.4 26 4 18.9
D13-B 486 223.2 486 31.4 12 0 3.3
D14-A 602 — *602 39.2 12 0 60.2
D14-B 665 — *665 41.9 14 1 22.4
D15-A 1040 — 1042 64.0 24 14 146.8
D15-B 1107 84595.9 1108 54.1 10 1 24.2
D16-A 13 497.9 13 14.4 8 4 19.3
D16-B 13 306.5 13 15.3 2 3 10.1
D17-A 23 847.0 23 15.3 6 27 38.0
D17-B 23 687.1 23 15.3 6 35 27.0
D18-A 218 — *218 61.1 60 2 16.1
D18-B 223 — 223 17.7 10 0 15.8
D19-A 306 — 306 24.0 20 42 49.3
D19-B 310 — 310 24.4 28 2 105.5
D20-A 529 — 536 38.0 0 0 48.3
D20-B 530 — 537 33.2 2 0 122.1
D-AVG 650.4 — 650.9 22.0 12.3 5.4 23.8
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(MAX) value of this factor per group. We also count the number of instances where we proved
optimality for values that were not guaranteed to be optimal by LR, and also the number of
instances where optimal solution were not known before. The last column shows the number
of instances for which our ILP approach needed not more than 0.2 seconds to solve them.

If we assume the conservative hardware speed-up factor of 20, the results of Table 4.11
show that:

• our algorithm is on average about 30 times slower for the instances of group K. However,
all of them could be solved to optimality by both LR and our algorithm within a short
running time (within 1000 seconds, in the worst case).

• on the remaining instances that could be solved to optimality by the LR algorithm, our
new approach is significantly faster, and the average running time speed-up factor lies
between 11 and 156.

• our new approach is able to solve all the instances to optimality within a very short time,
even if preprocessing (used also by Lucena and Resende [111]) is turned off.

Table 4.11: Comparison of running-time speed-up factors over all instances of a group: average,
minimal and maximal factors for each group are given.

tLR/(20 · tnoprep) new status of optimality
Group

AVG MIN MAX proven new value tILP < 0.2

K 0.1 0.03 0.2 - - 7
P 11.9 3.3 28.7 - - 6
C 116.9 0.1 1961.6 3 1 11
D 155.7 0.2 3498.6 5 7 12

The Advantage of Preprocessing for the Branch-and-Cut Algorithm The prepro-
cessing techniques still play an important role in solving larger instances to optimality. This
can be seen in Table 4.12 where the results of our new approach on the set E of benchmark
instances with and without preprocessing are compared. For these more challenging instances
both variant of the algorithm are terminated by setting the cplexTimeLimit parameter to
2 000 seconds. The results indicate the advantage of preprocessing when the size of the LPs
increases.

For 5 out of 40 instances the algorithm did not find the optimal solution within the given
time limit when preprocessing was turned off. On the rest of 35 instances there is only a slight
improvement in running time due to preprocessing – the branch-and-cut algorithm without
preprocessing is only for about 5% slower.

As before, the instances of this group are also solved without branching.
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Table 4.12: Results obtained on the instances derived from Steiner series E.

With preprocessing Without preprocessing
Instance OPT t [s] # Cuts # G. Cuts t [s] # Cuts # G. Cuts

E01-A 13 21.6 0 0 0.5 0 0
E01-B 109 22.7 10 21 1.7 6 9
E02-A 30 20.8 0 0 0.5 0 0
E02-B 170 21.0 4 4 1.6 6 5
E03-A 2231 34.8 6 18 25.8 26 5
E03-B 3806 35.0 6 0 16.5 14 6
E04-A 3151 39.4 8 2 291.1 18 12
E04-B 4888 33.3 8 0 20.4 6 0
E05-A 5657 78.9 14 2 — — —
E05-B 7998 62.0 2 0 135.0 16 0
E06-A 19 38.3 0 0 0.7 0 0
E06-B 70 39.1 2 5 3.6 4 11
E07-A 40 39.8 0 0 0.7 0 0
E07-B 136 42.0 6 15 3.8 4 12
E08-A 1878 97.5 10 19 80.2 10 8
E08-B 2555 60.9 14 2 22.8 22 2
E09-A 2787 111.4 10 5 593.2 20 3
E09-B 3541 69.7 6 2 23.7 10 3
E10-A 4586 285.1 96 2 545.5 12 0
E10-B 5502 112.8 10 0 350.0 145 2
E11-A 21 147.7 0 0 5.7 0 0
E11-B 34 154.4 2 8 8.7 2 16
E12-A 49 86.8 2 4 2.0 0 0
E12-B 67 100.5 22 21 22.9 32 24
E13-A 1169 173.1 12 3 98.0 20 2
E13-B 1269 177.3 14 7 27.6 10 1
E14-A 1579 566.0 200 0 71.2 32 1
E14-B 1716 458.2 166 6 140.0 160 1
E15-A 2610 490.6 150 0 314.1 54 1
E15-B 2767 577.7 136 4 696.2 112 5
E16-A 15 110.6 8 17 80.4 16 27
E16-B 15 112.5 8 23 103.2 18 22
E17-A 25 162.9 20 19 146.9 26 27
E17-B 25 113.8 10 18 245.2 44 23
E18-A 555 813.3 170 0 — — —
E18-B 564 688.8 143 0 — — —
E19-A 747 331.0 96 5 — — —
E19-B 758 228.6 70 4 1143.2 84 7
E20-A 1331 129.2 16 1 1288.3 48 3
E20-B 1342 232.7 2 0 — — —
E-AVG 1645.6 178.1 36.5 5.9 — — —
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Tuning Separation Strategy In our default implementation we used nested cuts and back-
cuts. The parameter EPS was set to 0.0, which means that we refrained from the calculation
of smallest cardinality cuts. Our computational experiments have shown that the usage of
back-cuts is crucial for our implementation. By omitting the back-cuts, some of the larger
instances (even of groups C and D) could not be solved to proven optimality - the algorithm
terminated because of excessive memory consumption.

The role of parameter EPS within the separation is studied in Table 4.13 where we show
CPU times in seconds averaged over each group of instances. All the runs were limited to
1 000 seconds (except for group E, where we set the limit to 2 000). As the first two columns
in Table 4.13 document, the usage of minimum cardinality cuts within the separation plays
the most important role for solving the instances in the K group. In contrary, for solving
the instances in the C, D and E groups, computing the smallest cardinality cuts seems to
be too expensive, i.e., there is a trade-off between the time needed to solve the maximum-
flow algorithm and the time for solving a single LP-relaxation. Figures 4.9(a) and (b) depict
the running time performance of the branch-and-cut algorithm with and without smallest
cardinality cuts for the largest 24 instances of groups D and E, respectively. Although there
are some instances where the usage of smallest cardinality cuts may reduce the total running
time, the overall performance is getting worse. For two largest groups, D and E, the usage of
smallest cardinality cuts slows down the running time for more than two times.

Table 4.13 also documents the crucial role of using inequalities (4.34) within the initial-
ization procedure. These inequalities say that each edge can only be used in one direction in
any feasible solution (see Section 4.5.1) and only if one of its incident vertices is in the solu-
tion. The last two columns represent results obtained by omitting inequalities (4.34) from the
initialization.

These inequalities that forbid subtours of size two play the most important role in our
implementation. By separating these inequalities instead of inserting them in the initialization
phase already, the algorithm is not able to solve many of the instances within a given time limit.
This negative effect can not be compensated by the – sometimes considerable – improvement
of running time brought about by the separation with smallest cardinality cuts (in particular
for K and P groups).

The difficulties with subtours of size two usually arise when a customer vertex i is con-
nected to a non-customer vertex j by an edge with cost cij < pi. In this case, the initial
LP-solution contains a directed arborescence rooted at j (note that yj = 0, i.e., the in-degree
of j is zero), with an arc (j, i) of negative cost. By adding xij ≤ yi,∀i ∈ VSA \ {r} inequalities,
instead of (4.34), solutions of the initial LP contain subtours of size two on such pairs (i, j) of
vertices. Figure 4.10 illustrates examples of fractional LP-solutions immediately after initial-
ization, i.e. before any separation is called. Similarly, the problems appear also if two customer
vertices i and j are connected by an edge whose cij < min{pi, pj}.

Although the number of these inequalities is linear in number of edges O(|ASA|), they
usually do not slow down the performance of solving a single LP-relaxation. On the other side,
they may save a huge number of separation calls.
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Figure 4.9: Running time comparison of separation with and without smallest cardinality cuts,
EPS = 0.0001 and EPS = 0.0, respectively. The largest 24 instances of the group D (a) and E

(b) are shown: from D09-A to D20-B, and from E09-A to E20-B, respectively. The total running
time of the branch-and-cut algorithm (without preprocessing time) is shown.
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Figure 4.10: The advantage of explicit initialization with (4.34) constraints can be seen when
comparing LP-solutions obtained immediately after initialization: (a) Given instance with edge
costs and vertex prizes; (b) LP-solution when we refrain from (4.34) inequalities. LP-values
of edges and vertices are shown, c(LP ) = 150; (c) LP-solution if xij ≤ yi,∀i ∈ VSA \ {r} are
used in initialization. c(LP ) = 300; (d) LP-solution when (4.34) are added explicitly in the
initialization. c(LP ) = 1650, the solution is already optimal, no separation needed.
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Table 4.13: Comparison of average CPU times over all instances of a group for separation
with or without smallest cardinality cuts (EPS = 10−4 or EPS = 0, respectively) and for
initialization with or without (4.34) constraints. Preprocessing times are discarded.

Init. with (4.34) ineq. Init. without (4.34) ineq.
Group

EPS = 0 EPS = 10−4 EPS = 0 EPS = 10−4

K 48.8 7.6 88.8 2.9
P 0.2 0.3 21.4 2.2
C 0.8 0.9 — 0.8
D 4.5 9.6 — —
E 95.1 199.1 — —

4.5.5 Testing Real-World Instances

In this section we consider a set of 35 instances based on the real-world examples that have
been used in the design of fiber optic networks for some German cities [10, 9]4. The instances
are generated according to GIS data bases: connections and positions of vertices are based
on real infrastructures, but, for reasons of data protection, the choice of customers and their
prizes are slightly changed. Our instances are divided in two groups: Cologne1 and Cologne2.
Basic properties of these instances, like the number of vertices |V |, the number of edges |E| and
the number of customers |R| are shown in Table 4.5.5. For each of the two groups there are 5
subgroups, each of which contains a number of equal-sized instances. The number of instances
of each subgroup is also shown in the table.

These instances contain an existing subnetwork that needs to be augmented to serve new
customers. This subnetwork can be shrunk into a single vertex, in the same way as we did it
in Section 3.2.1 for the V2AUG problem. Multiple edges are replaced by cheapest connections
and self-loops are discarded. After this transformation, we only need to consider the rooted
PCST problem, with the shrunk vertex as a root. Two examples of these instances are shown
in Figure 4.11.

Since these instances are typically very dense (i.e. they are almost complete graphs), it
does not pay off to apply degree-n test. Our experiments have shown that because the number
of customers is typically very small, the minimum adjacency test does not help reducing the
instances at all. Hence, we applied only the least-cost test, and, as Table 4.5.5 in column |E′|
documents, the savings obtained in that way are greater than 90%.

Table 4.15 shows the performance of our ILP approach on the real-world instances. We
compare two approaches based on the initialization of the LP with and without (4.34), i.e.
generalized subtour elimination constraints of size two. The results document that all the
instances of Cologne1 group could be solved to optimality in less than 2 400 seconds. For
instances of Cologne2 group, we present the percentage of the gap between global lower bound

4Instances are available at http://www.ads.tuwien.ac.at/pcst.
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Figure 4.11: Examples of two instances from Cologne1 group. Optimal solution of (a) i02M2;
(b) i04M3. Shadowed vertices represent customers, while bold lines belong to the existing
network. Grid lines in the background determine customers’ prizes.

Table 4.14: Properties of two groups of real-world instances, Cologne1 and Cologne2.

Cologne1 Cologne2

Group |V | |E| |R| |E′| # of inst. Group |V | |E| |R| |E′| # of inst.

i01 768 69077 10 6332 3 i01 1819 213973 9 16743 4
i02 769 69140 11 6343 3 i02 1820 213915 7 16740 4
i03 771 69100 13 6343 3 i03 1825 214095 12 16762 4
i04 761 68907 3 6293 3 i04 1817 213859 4 16719 4
i05 761 68934 3 6296 3 i05 1826 214013 13 16794 4
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Table 4.15: Results on two groups of real-world instances. We compare two ILP approaches,
where the initialization is done with and without constraints (4.34). All instances of Cologne1
group are solved to optimality, while for the Cologne2 group, we show the gap in percent
obtained after the time limit of 2 hours was exceeded.

Cologne1 Cologne2

Without (4.34) With (4.34) Without (4.34) With (4.34)
Instance

t [s] t [s] OPT
Instance

%-gap t [s] %-gap t [s] OPT

i01M1 0.5 2.9 109271.5 i01M2 0.0 2.1 0.0 5.1 355467.7
i01M2 252.3 487.8 315925.3 i01M3 1.9 31025.7 1.7 27331.9 628833.6
i01M3 1371.4 1195.8 355625.4 i01M4 2.1 45002.1 3.9 40927.5 773398.3
i02M1 0.5 2.9 104065.8 i02M2 0.0 107.0 0.0 110.7 288946.8
i02M2 431.8 598.2 352538.8 i02M3 0.5 9034.4 2.4 14173.6 419184.2
i02M3 2353.6 1810.9 454365.9 i02M4 2.1 13322.0 4.7 19124.3 430034.3
i03M1 0.5 3.1 139749.4 i03M2 0.0 907.1 0.0 855.9 459918.9
i03M2 362.6 326.8 407834.2 i03M3 3.3 37416.1 5.7 42150.0 643062.0
i03M3 1140.2 755.9 456125.5 i03M4 3.7 42752.0 5.6 42237.7 677733.1
i04M1 0.5 2.8 25282.6 i04M2 0.0 2.5 0.0 5.4 161700.5
i04M2 20.0 22.6 89920.8 i04M3 0.0 5095.1 2.1 13259.2 245287.2
i04M3 42.1 77.7 97148.8 i04M4 0.0 4298.1 0.1 8700.1 245287.2
i05M1 0.5 2.8 26717.2 i05M2 0.0 2107.0 0.0 2568.7 571031.4
i05M2 94.7 122.9 100269.6 i05M3 0.1 11852.9 1.0 19655.4 672403.1
i05M3 443.8 399.4 110351.2 i05M4 0.5 16203.8 0.8 16343.5 713973.6

and optimum after two hours computation time: %-gap = (OPT −LBg)/OPT . We also show
total running times in seconds (t [s]) needed to prove optimality (the time limit was set to
45 000 seconds). Finally, we also provide optimal values in OPT columns.

While constraints (4.34) have shown to be very advantageous for the previous instances
known from the literature, Table 4.15 documents that for the real-world instances there is a
trade-off between the size of the underlying LP and the number of separation calls that can
be saved. This can be explained by a very small percentage of customer vertices, which is less
than 2% and 1%, for Cologne1 and Cologne2 groups, respectively. The number of subtours
of size two usually depends on the number of negative edges which directly corresponds to the
number of customer vertices. On the other side, using (4.34), we insert 2 · |ASA| inequalities in
the initialization phase, which obviously represents a disadvantage for such very large instances
with only few customer vertices. All *M1 instances of Cologne2 group could be solved to
optimality in less than 30 seconds, and they always represent single-vertex solutions, thus we
omit them from Table 4.15.

We can conclude that our ILP approach shows that it can be used within real-world ap-
plications to solve instances that appear in practice. The approach is able to solve very large
graphs (with up to 1 825 vertices and 214 095 edges) to proven optimality within less than 12
hours, in the worst case. Since we are dealing with off-line network design problems, such a
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running time is still considered as reasonable.

Testing Primal Heuristics

All the instances mentioned above are solved in the root node of the branch-and-cut tree, thus
no branching was needed. In order to test the performance and quality of primal heuristics
described in Section 4.5.3, we introduced an additional set of difficult problem instances that
cannot be reduced by the preprocessing algorithm described in Section 4.2.

Rosseti et al. [147] proposed three new sets of artificially generated and very difficult in-
stances for the Steiner tree problem. We used the most difficult of them, the so-called hyper-
cubes, to derive new test problems for the PCST.

Figure 4.12: Comparing the performance of primal heuristics.

Graphs in this series for the Steiner tree problem are d-dimensional hypercubes with d ∈
{6, . . . , 12}. For each value of d, the corresponding graph has 2d vertices and d · 2d−1 edges.
These graphs are bipartite and the terminals are defined as one set of the bipartition. The
so-called unperturbed instances receive unit edge costs whereas edges of the so-called perturbed
instances receive random integral costs distributed uniformly in the interval [100, 110].

We derived the PCST hypercubes by assigning zero profits to non-terminal vertices and an
integer profit randomly chosen from a uniform distribution over the interval [1, 2] and [100, 220]
for unperturbed and perturbed instances, respectively. Our naming convention is as proposed
in [147], thus hcd[u|p] denotes an unperturbed (u) or perturbed (p) d-dimensional hypercube
instance.

The running time of the program was limited to 3 600 seconds. For each instance, we pro-
vided an initial feasible solution computed by the memetic algorithm described in Section 4.3.
As primal heuristic for the branch-and-bound algorithm, we tested three simple minimum
spanning tree heuristics described in Section 4.5.3 that use the fractional solution at the cur-
rent branch-and-bound node to compute a feasible solution. The primal heuristic is called in
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each node of the branch-and-bound tree. Note that our preprocessing method described in
Section 4.2 did not manage to reduce these instances at all.

Table 4.16 shows the results for our experiments with the hypercube instances. Beside
the size of the instance, we show the optimality gap for the algorithm obtained without primal
heuristic (i.e using only CPLEX default mechanism) and using three heuristics described above:
RMinSpan, Incumbent and CutOff. The optimality gap is obtained as

gapg =
UBg − LBg

LBg
× 100% ,

where UBg represents the costs of the best subtree (obtained either within the MA, or during
the branching), and LBg is a global lower bound. The optimality gapg expresses that the
solution with costs UBg is at most gapg% more expensive than the optimal solution.

Table 4.16: Computational results for the hypercube instances with a time limit of 3 600
seconds. The least optimality gaps (or the least running times for the instances solved to
optimality) are shown in bold.

No Heur. RMinSpan Incumbent CutOff
Instance |V | |E| gapg(t [s]) gapg(t [s]) gapg(t [s]) gapg(t [s]) LBg UBg

hc6u 64 192 0 (0.1) 0 (0.1) 0 (0.1) 0 (0.1) 35.0 35.0
hc6p 64 192 0 (60.6) 0 (78.5) 0 (77.8) 0 (78.1) 3907.0 3907.0
hc7u 128 448 0 (1145.5) 0 (813.1) 0 (814.0) 0 (813.3) 71.0 71.0
hc7p 128 448 1.5 1.3 1.4 1.5 7723.0 7630.5
hc8u 256 1024 6.4 6.4 6.4 6.4 149.0 140.0
hc8p 256 1024 2.3 2.4 2.8 2.7 15337.0 14988.0
hc9u 512 2304 7.8 7.8 7.8 7.8 300.0 278.3
hc9p 512 2304 9.3 3.9 4.5 4.1 30795.0 29643.1
hc10u 1024 5120 7.5 7.5 7.5 7.5 593.0 551.6
hc10p 1024 5120 10.6 10.6 10.6 10.6 65185.0 58913.4

The three instances hc6u, hc6p and hc7u could be solved to optimality within the time
bound. For these instances we show in brackets the running time in seconds each of the
algorithms needed to prove the optimality. Although in some cases usage of the primal heuristic
may slow down the performance (like in hc6p case), there are instances where (1) the primal
heuristic can significantly speed up the time needed to prove optimality (like hc7u, running
time reduced for about 30%) or (2) improve the optimality gap within a given timebound (for
hc9p, for example, using the RMinSpan heuristic we reduced the optimality gap for about
5.5%). For the hypercubes with dimensions 11 and 12, no lower bound could be found because
the initial linear program could not be solved before the end of the time limit.

Finally, although all the heuristics have widely similar performance, we can conclude that,
on average the RMinSpan Heuristic provides the best results.

Our heuristic can only improve the result if the branch-and-bound tree has more than one
node, otherwise it is never called. It follows that it is not useful for easy instances (where the
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problem can be solved in the root node) or very large instances (where CPLEX cannot finish
solving the linear program of the root node of the tree before the time limit). So we conclude
that the heuristic is of limited use and should only be tried for instances where CPLEX without
the heuristic has to branch.

4.5.6 Column Generation Approach for (MCF)

In this section we provide computational results for the multi-commodity flow formulation of
the PCST proposed in Section 4.4.2 enhanced with the flow-balance constraints provided in
Section 4.4.5. Since in this formulation we are dealing with a very large number of variables
(O(|ASA| · |RSA|) which is O(|V ′|3) in general case) we propose to use a column generation
approach to solve the LP-relaxation of the problem. If the optimal solution of the LP-relaxation
is not already integer, we switch to the CPLEX mixed integer programming optimizer that
continues to search for the optimal solution by applying a branch-and-bound approach.

We tested the following three column generation settings:

• Jünger et al. [89] proposed to initialize sparse and reserve graphs for solving the TSP
with the 5- and 10-nearest neighbor graph, respectively. Here, we initialized sparse and
reserve graphs using 2- and 3-nearest neighbor graphs. The reason for this is that the
solutions of the TSP span all the vertices of the underlying graph, which is in the PCST
not always the case. We call this approach NN.

• We consider a combination with the memetic algorithm proposed in Section 4.3. The
restricted master problem is initialized with the last MA population (the sparse graph)
while all the edges contained in the solutions of the first MA’s population, which do
not belong to the sparse graph already, are building the reserve graph. We denote this
approach by CGMA.

• We finally check what happens if the sparse and reserve graphs are empty, thus, a complete
pricing is done in each iteration, and the sparse graph contains as few edges as possible.
This strategy is denoted with EMP.

Recall that we are dealing with the unrooted PCST here. Thus, to assure the feasibility
of the sparse graph, in addition to the sparse graph edges obtained as described above, we
initialize the restricted master problem with all outgoing edges of the artificial root vertex.

Because of the size of the underlying LPs, we tested only small instances, like those belong-
ing to K group as well as smaller instances of group C (from C1 to C8). For all of these instances
all three strategies ended up with optimal solutions. The values of obtained lower bounds were
always optimal. However, total running times were different from instance to instance, ranging
from 219 to 4827 seconds, for group K, for example. Figure 4.13 shows running times of the
algorithms with the proposed three column generation techniques for the largest instances of
group K. Instances K100* were all solved to optimality in less than a second, while for K200

instance all approaches needed less than 10 seconds.
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Figure 4.13: The running time of the column generation approach for the (MCF) formulation
for the 11 largest K instances. Compared are three pricing strategies: EMP, CGMA and NN
defined above. Preprocessing times are not included.

Figure 4.14: Testing K400 instances: Size of the sparse graph when it is initialized using CGMA
and NN strategies.

Figure 4.15: Testing K400 instances: Size of the reserve graph when it is initialized using
CGMA and NN strategies.
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Figures 4.14 and 4.15 show the size of the sparse and reserve graph, respectively, for NN
and CGMA approaches. In this comparison, the outgoing edges from the artificial root vertex
are taken out of consideration. The size of the sparse graph in CGMA approach is significantly
smaller than when nearest neighbor strategy is used. This can be seen as an advantage for larger
LP formulations, when solving one pricing iteration can be a very time-consuming process. On
the other side, when sparse and reserve graphs are small, more edges are inserted during the
pricing phase, i.e. the number of iterations may increase. This is shown in Figure 4.16, where
the number of iterations the CGMA approach needed is for about 60% greater that the number
of NN iterations.

Comparing Figures 4.13 and 4.16 one observes that for group K, there is a direct correspon-
dence between the number of iterations and the running time of the algorithm. In that case,
small sparse and reserve graphs represent a disadvantage because the underlying LP formula-
tion can be solved quickly. It is interesting to see that sometimes, even when the sparse graph
represents the optimal solution, the running time of the column generation approach does not
directly depend on it. Indeed, for instances K400.1, K400.2, K400.3, K400.6, K400.8 and
K400 the solution found by MA was already optimal. However, the number of iterations the
CGMA approach needed to solve them is sometimes 100% greater than the number of iterations
of NN approach (see K100 instance, for example).

Figure 4.17 illustrates running times in seconds (not including preprocessing times) for
EMP, CGMA and NN pricing strategies tested on the smallest 16 instances of group C. The
running times indicate that when the size of the underlying LP increases, there is a trade-off
between the size of the LP formulation and the number of iterations. In this case, the increase
in the size of the sparse graph may significantly slow down the running time of a single pricing
iteration. This can be seen on instances C8-A and C8-B. Figure 4.18 shows that the number
of iterations CGMA approach needed to finish the optimization is on average for about 70%
greater than NN number of iterations. However, the CGMA approach is significantly faster
than both NN and EMP approaches, especially for the instances whose underlying LP is of
moderate size. Indeed, in Table 4.17 the instances of C group are shown for which the CGMA
outperformed the NN approach. We show the number of rows, the number of columns and the
number of non-zero entries for CGMA and NN approaches, immediately after the initialization
of the restricted master problem. One observes that when the size of the master problem
exceeds a certain threshold value, the NN approach is not competitive anymore.

Finally, we can conclude that the the multi-commodity flow formulation of the PCST is very
ineffective in practice. Figure 4.19 shows that the running times for the (MCF) formulation
(for the largest 11 K instances) vary widely and consistently exceed the running time for the
(CUT) model by a huge margin.

However, the proposed CGMA approach may be an advantageous one for those problems
where there is no ILP formulation with an efficient separation algorithm. For different kinds
of cutting and packing problems, for example, when LPs contain quadratic (or cubic) number
of rows or columns, the way of choosing the sparse and reserve graph may be of crucial role
(see [137]).
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Figure 4.16: Testing K400 instances: The number of iterations needed to solve the LP-relaxation
using CGMA and NN strategies.

Figure 4.17: The running time in seconds EMP, CCGA and NN approach needed to solve the
LP-relaxation for the smallest 16 instances of group C.

Figure 4.18: The number of iterations CCGA and NN approach needed to solve the LP-
relaxation for the smallest 16 instances of group C.
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Table 4.17: Size of the restricted master problem for CGMA and NN approaches.

CGMA NN
Instance

# of rows # of columns # of nonzeros # of rows # of columns # of nonzeros

C4-B 51208 30361 153755 79333 54164 244591
C5-B 66657 38486 205987 87425 57050 273708
C8-A 21852 13641 64862 94664 69110 284667
C8-B 32945 20592 97976 100173 73656 303776

K400.10 8359 5982 26508 35990 26334 108105
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Figure 4.19: CPU times of (CUT) and (MCF) formulations for 11 K400 instances. The instances
are sorted according to their number of edges after preprocessing.
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4.6 Summary

The prize-collecting Steiner tree problem (PCST) formalizes in an intuitive way the planning
problem encountered in the design of utility networks such as gas, or district heating, or fiber
optic networks. Selecting the most profitable customers and connecting them by a least-cost
network immediately leads to the problem of computing a Steiner tree, where the terminals
are not fixed but can be chosen arbitrarily from a given set of vertices each one contributing a
certain profit.

Two aims of this thesis were:

• To construct a part of the algorithmic framework to solve large and difficult instances of
PCST to optimality within reasonable running time. The method of choice is a branch-
and-cut approach based on an ILP formulation depending on connectivity inequalities
which can be written as cuts between an artificial root and every selected customer
vertex. While the choice of the ILP model is essential for the success of our method,
it should also be pointed out that solving the basic ILP model by a default algorithm
is by no means sufficient to reach reasonable results. Indeed, our experiments show
that a satisfying performance can be achieved only by appropriate initialization and
strengthening of the original ILP formulation and in particular by a careful analysis of
the separation procedure.

• To develop an efficient metaheuristic approach that finds suboptimal solutions for very
difficult problem instances, where the exact approach yields only lower bounds without
finding any feasible solution. For this purpose we developed a memetic algorithm that
incorporates a local improvement subroutine that solves the problem on trees to optimal-
ity. Furthermore, the algorithm is based on the efficient edge-set encoding and comprises
problem-dependent variation operators.

In our computational results we have shown that the memetic algorithm is of an order of
magnitude faster than the previous best known metaheuristic approach for the PCST. The
quality of solutions found was on average not worse than 1% (of optimum) per group. Fur-
thermore, using our ILP approach, we managed to solve to optimality (even without the usual
preprocessing) all instances from the literature in a few seconds thereby deriving new optimal
solution values and new certificates of optimality for a number of problems previously attacked.
For these instances, the ILP approach was also significantly faster than the memetic algorithm
itself.

For a number of new large instances constructed from Steiner tree instances, we also derived
optimal solutions within reasonable running time. For these instances with more than 60 000
edges, our advanced preprocessing procedure proved to be an indispensable tool for still finding
the optimum without branching.

We also tested real-world instances arising in the design of fiber optic networks. Even these
instances with up to 1 825 vertices and 214 095 edges we succeeded to solve to optimality, but
only after reducing them by applying the preprocessing. In the worst case, our ILP approach
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needed about 12 hours, which is, for off-line network design problems, still considered to be a
reasonable running time.

The so-called hypercube instances were the final performance test for our algorithms. The
built-in difficulty of these artificial instances for the standard Steiner tree problem carries over in
a natural way to PCST. For these cases, we used upper bounds found by the memetic approach
to initialize the branch-and-cut approach. We added a primal heuristic to our framework to
improve the upper bound in each node of the branch-and-cut tree. Our results show that, in
some cases, this heuristic can dramatically improve the best feasible solutions found.

For the multi-commodity flow based formulation of the problem, we proposed a column
generation algorithm as a lower bounding procedure to solve it. To speed up the pricing
process we used the sparse and reserve graph strategy. To initialize sparse and reserve graphs,
we suggested to use the results obtained after running the MA. Computational results for
three different pricing strategies are presented. Due to a possibility to formulate the PCST
by using efficiently separable connectivity constraints, the (MCF) formulation does not show
to be a preferable one for the PCST. However, for some other difficult COPs, where column
generation represents an essential part of the algorithmic framework, the usage of memetic
algorithms within pricing represents a new and promising approach (see [137] for the two-
dimensional bin-packing problem, for example).



Chapter 5

Discussion and Extensions

We developed metaheuristic and exact approaches for two combinatorial optimization problems
that belong to the class of network design problems. The first one, vertex biconnectivity
augmentation, appears in the design of survivable communication or electricity networks. The
second problem, the prize-collecting Steiner tree problem, describes a natural trade-off between
maximizing the sum of profits over all selected customers and minimizing the realization costs
when designing a fiber optic or a district heating network.

For the selected problems, the aim of this thesis was to develop tools that find feasible high-
quality solutions of practical relevance within reasonable running time. For this purpose, we
developed new memetic algorithms (MAs) based on novel solution representation techniques,
search operators, constraint handling techniques, local-improvement strategies, and heuristic
biasing methods.

Another goal was to provide methods that enable us to estimate the quality of the heuristic
solutions we obtained. Therefore, we proposed new branch-and-cut algorithmic frameworks
that provided optimal values or, in case of exhausted computational resources, lower bounds
that were used to determine optimality gaps for MA solutions.

Finally, we also investigated some possibilities of combining promising variants of exact
algorithms and MAs, like incorporating exact algorithms that solve some special cases within
MAs, biasing primal heuristics or guiding column generation using MA results. Our study
on combinations between exact and memetic algorithms represents a pioneering work in this
field that should lead to a better understanding of both, evolutionary and exact approaches.
The purpose of this thesis was also to instantiate better interactions between these, so far
independently pursued streams.

Vertex Biconnectivity Augmentation (V2AUG)
Given a graph G0 = (V, E0) and a set of possible augmentation edges E \ {E0}, our goal

is to augment G0 with a cheapest subset of augmentation edges, A ⊂ E \ {E0}, such that
GA = (V,E0 ∪A) is biconnected.

Our optimization algorithms rely on the block-cut tree and block-cut graph data structures
that are obtained after running a new deterministic preprocessing procedure. We also derived

151
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additional data structures that enhanced the performance of the basic MA operators and of
the primal heuristic. Our computational experiments on instances from the literature and
on a set of newly generated instances have shown that the preprocessing procedure reduced
substantially the size of input graphs.

Our memetic algorithm for V2AUG guarantees local optimality with respect to the num-
ber of augmentation edges of any candidate solution. This was achieved by applying a local
improvement procedure after initialization, recombination, and mutation. The memetic algo-
rithm usually dominates the total computation time, while the preprocessing does not influence
it. Within the memetic algorithm, local improvement dominates the computational costs. The
theoretical worst-case time complexity for local improvement of a single solution is O(|V |3).
However, we argued that the expected computational costs are substantially smaller. The com-
putational study supported this and showed that our new memetic algorithm derived the best
feasible solutions, when compared to three existing approaches for V2AUG. Compared to a
previously developed genetic algorithm, our MA provided significant improvements in terms of
running time and quality of solutions. Although there is a very fast approximation algorithm
for V2AUG proposed by Khuller and Thurimella in [95], the quality of obtained solutions was
typically lower than the quality of MA solutions.

Our branch-and-cut algorithm relies on an ILP formulation which comprises connectivity
constraints that assure vertex-biconnectivity of the augmented graph. The exact algorithm
relies on a separation procedure that runs in polynomial time. Our computational experiments
have shown that the branch-and-cut algorithm can be faster than the MA itself, when applied
to small and randomly generated instances. We compared two separation approaches: one, in
which only single violated vertex-biconnectivity cuts are added before the LP is resolved, and
a second one that adds all violated vertex-biconnectivity constraints before resolving the LP.
Computational experiments have shown that the latter represents an advantageous strategy
that allows significant savings in the total number of solved LPs. We also studied the role
of edge-connectivity constraints within the separation procedure. We learned that the edge-
connectivity separation can significantly reduce the total number of inserted cuts, thus having
a great impact on the total running time.

For solving larger benchmark instances we extended the proposed branch-and-cut algorithm
with a column generation procedure. Our results indicate that the incorporation of pricing rep-
resents the only practical way to solve very large instances to proven optimality. Furthermore,
we proposed a primal heuristic in which we restricted the set of augmentation edges only to
those edges whose fractional value is greater than a certain threshold value. Our results have
shown that this threshold value may have a great influence on the performance of the whole
branch-and-cut-and-price (BCP) algorithm. We also compared the performance of two differ-
ent MA settings that are used for the initialization of upper bounds. The collected results have
shown that for the instances of moderate size the time needed to instantiate the upper bounds
dominates the total BCP running time. We have also seen that for these instances the quality
of upper bounds does not influence the rest of BCP running time. However, when the problem
size becomes larger, it is recommended to run the MA to obtain solutions that are as good as
possible in order to reduce the optimality gaps.
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Finally, we investigated the performance of the branch-and-cut-and-price algorithm if, in-
stead of using nearest-neighbor graphs, the MA solutions are used within the pricing procedure.
The obtained results have shown that both pricing approaches are competitive, and that none
of them is significantly better than the other in terms of running time.

The Prize-Collecting Steiner Tree Problem The Prize-Collecting Steiner Tree Problem
(PCST) on a graph G = (V, E) with edge costs, c : E 7→ R+, and vertex profits, p : V 7→ R+,
asks for a subtree minimizing the sum of the total cost of all edges in the subtree plus the total
profit of all vertices not contained in the subtree. PCST appears frequently in the design of
fiber optic or utility networks where customers and the network connecting them have to be
chosen in the most profitable way.

Before starting the optimization, we proposed running a preprocessing procedure that re-
moves redundant edges or vertices from the input graph. The procedure generalizes tests
proposed by Duin and Volgenant in [41] for the node-weighted Steiner tree problem.

We first proposed a memetic algorithm in which all individuals of the population represent
local optima with respect to their subtrees. This is ensured by applying a linear-time local
improvement algorithm that solves the PCST on trees to optimality. To enhance our problem-
dependent variation operators, we proposed a clustering procedure that groups the subsets of
vertices and allows insertion or deletion of all of them at once. We tested the MA against a
multi-start local-search-based algorithm with perturbations developed by Canuto et al. in [23].
Extensive experiments on the benchmark instances used also in [23] have shown that the MA
compares favorably to previously published results. While the solution values were almost
always the same, we achieved substantial reductions of running time.

Our next contribution is the formulation of an integer linear program on a directed graph
model based on connectivity inequalities corresponding to edge-cuts in the graph. The main
advantage of this model is the efficient separation of sets of violated inequalities by a maximum
flow algorithm. Moreover, we introduced new asymmetry constraints that reject multiple con-
sideration of the same solution. Our new approach managed to solve all benchmark instances
from the literature to optimality, including eight for which the optimum was previously not
known. Compared to a recent algorithm by Lucena and Resende [111], our new method is
faster by more than two orders of magnitude. For these instances, the ILP approach was also
significantly faster than the memetic algorithm itself. Furthermore, we introduced a new class
of larger randomly generated instances and reached optimal results for all of them.

A particularly interesting high-tech application arises in the planning of the access net
domain (last mile) of fiber optic networks, which can be modeled as a PCST. We tested
modified real-world instances obtained from the German company NetCologne (used for the
extension of existing fiber optic networks). Even these instances with up to 1 825 vertices and
214 095 edges were successfully solved to provable optimality, but only after reducing them by
applying the preprocessing procedure. In the worst case, our ILP approach needed about 12
hours, which is, for off-line network design problems, still considered to be a reasonable running
time.

The so-called hypercube instances [147] were the final performance test for our MA and
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ILP algorithms. The built-in difficulty of these artificial instances for the standard Steiner
tree problem carries over in a natural way to PCST. For these cases, we used upper bounds
found by the memetic approach to initialize the branch-and-cut approach. We added a primal
heuristic to our framework to improve the upper bound in each vertex of the branch-and-cut
tree. Our results have shown that in some cases this heuristic can dramatically improve the
best feasible solutions found. For the largest hypercube instances, the only feasible solutions
are obtained by running the MA, while our ILP approach provided only lower bounds.

For the solution of the multi-commodity flow (MCF) based formulation of the problem,
we proposed a column generation algorithm as a lower bounding procedure. To speed up the
pricing process we used the sparse and reserve graph strategy. As for V2AUG, we suggested
to use the results obtained from running the MA to initialize sparse and reserve graphs. We
presented computational results for three different pricing strategies. Because it is possible
to formulate the problem by using efficiently separable connectivity constraints, the (MCF)
formulation turns out not to be preferable for the PCST. However, for some other difficult
COPs, where column generation represents an essential part of the algorithmic framework, the
use of memetic algorithms within pricing represents a new approach with promising results
(see [137] for the two-dimensional bin-packing problem, for example).

Finally, we learned that the choice of the ILP model was essential for the success of our
method, but also that solving the basic ILP model by a default algorithm was by no means
sufficient to reach reasonable results. Indeed, our experiments have shown that a satisfying
performance could be achieved only by appropriate initialization and strengthening of the
original ILP formulation and in particular by a careful analysis of the separation procedure.

Possible Extensions

Fractional and Piecewise Linear PCST

In the design of district heating networks, the energy companies are often interested not in
maximizing the absolute gain of a project but rather in maximizing the return on investment
(RoI). The corresponding problem, the so-called fractional prize-collecting Steiner tree problem
(FPCST) [98] (see also Section 4), consists of maximizing the ratio of profits over costs:

max

∑
v∈VT

p(v)
c0 +

∑
e∈ET

c(e)
(5.1)

over all subtrees T of G, where c0 > 0 represents the fixed cost of the project, e.g., the setup
costs of the heating plant in our application.

Using Newton’s iterative method (cf. Radzik [138]), each FPCST instance can be also solved
to proven optimality, provided the corresponding linear rooted PCST instances can be solved to
optimality. Thus, our branch-and-cut approach for PCST directly influences the performance
of the exact algorithm for FPCST. Furthermore, for those instances where the branch-and-cut
represents a bottleneck, we believe that the combination with our MA for solving linear PCST
may yield a new efficient heuristic method for FPCST.
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Another interesting problem arising in the design of district heating networks can be mod-
eled as the so-called piecewise linear prize-collecting Steiner tree problem (PWPCST). In prac-
tical applications it is often the case that fixed implementation costs of building a pipe are
not linearly dependent on its length. Furthermore, additional non-linear transportation costs
dependent on the amount of flow through each particular pipe, need to be taken into consid-
eration. If these cost functions are concave, we can approximate them by corresponding sets
of linear functions and solve the PWPCST using mixed integer programming methods. Flow-
based formulations of the linear PCST (see Section 4.4.2) can easily be extended to model the
piecewise PCST. Finally, we strongly believe that the pricing strategy based on heuristic re-
sults, which we used for V2AUG and PCST, can also be applied for improving the performance
of the exact algorithm for PWPCST.

kmax-Survivability Network Design Problem

The access net domain (last mile) still represents the bottleneck of present fiber optic archi-
tectures [10]. The minimization of implementation costs of fiber optic networks within urban
areas under some new problem-specific constraints is of substantial interest for most of the
network carriers.

One of these minimization problems, the so-called kmax survivable network design problem
(kmax-SNDP), represents a relaxation of the well-known {0, 1, 2} survivable network design
problem ({0, 1, 2}-SNDP) [152]. In this problem we search for a compromise between the full
survivability of a network against single link failures (edge-biconnectivity) and the minimization
of implementation costs. In kmax-SNDP a failure of a single connection is allowed if it does not
destroy ”the core” of the network. Hence, survivability of a connection between two vertices
may be sacrificed if the diameter of the subnetwork that becomes disintegrated, is not longer
than a given value kmax.

The problem can be modeled as follows: A simple graph G = (V, E) models the network
with its set of vertices V , while its set of edges E corresponds to possible link connections.
Each edge e ∈ E has a fixed cost ce > 0 representing the cost of establishing the direct link
connection. The cost of establishing a network N = (VN , EN ) consisting of a subset EN ⊂ E

of edges is given by c(EN ) =
∑

e∈EN
ce, i.e. it is the sum of the costs of all individual links

contained in EN . Furthermore, each edge e ∈ E has a fixed length le > 0. For a path P ⊂ EN ,
its length is defined as

∑
e∈P le.

As in the standard survivable network design problem, we are dealing with the following
three types of vertices:

• special vertices, for which a ”high” degree of survivability has to be ensured in the network
to be constructed;

• ordinary vertices, which only have to be connected to the network;

• optional vertices, which may or may not be a part of network at all. They directly
correspond to the Steiner vertices of the classical Steiner tree problem.
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The type of each vertex is modeled by an associated survivability requirement value rv ∈
{0, 1, 2}. Special vertices are represented by vertices of type 2, while ordinary and optional
vertices have type 1 and 0, respectively. In the standard {0, 1, 2}-SNDP, a network N =
(VN , EN ) is said to satisfy edge-connectivity requirements if, for each pair u, v ∈ VN of distinct
vertices, N contains at least

ruv = min{ru, rv}
edge-disjoint paths.

For economical reasons, in kmax-SNDP, we relax the edge-connectivity requirements and
introduce a parameter kmax ≥ 0, the so-called maximal branch length. Therefore, our goal is
to build a network of minimum cost such that for each two vertices u and v:

• if ruv = 1, there is a path connecting u and v,

• if ruv = 2, there are at least two edge-disjoint paths P ⊂ E and P ′ ⊂ E connecting u

and v, with the only exception of sub-paths not longer than kmax emanating from u or
v, where P and P ′ may coincide.

It is easy to see that 0-SNDP directly corresponds to the {0, 1, 2}-SNDP. Typically, a
network in which all customers have rv = 2 consists of an edge-biconnected component and
paths attached to it. These paths are called branches. Some examples are given in Figure 5.1.

The kmax-SNDP is a fresh problem for which there are a lot of open questions. To our
knowledge, the only known heuristic approach is published in [10]. We believe that the methods
proposed in this thesis may be successfully modified and applied to kmax-SNDP. It is certainly
promising to adapt our memetic approach in order to obtain high quality solution of the
problem. Furthermore, a study about solving some special cases to optimality in polynomial
time represents another interesting field of research. It is also important to investigate the
problem-specific polytope in order to obtain a tighter characterization of the problem. Finally,
we are convinced that our new branch-and-cut frameworks for V2AUG and PCST are flexible
and powerful enough to build the basis of further successful and competitive combinatorial
algorithms for kmax-SNDP and similar survivability network design problems.
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Figure 5.1: Examples of the 3-SNDP: Assume all edges have length le = 1, and all vertices
rv = 2. (a) A feasible solution. P and P ′ are two paths connecting u and v. There are two
branches induced by P ∩P ′, one that contains u and the other one that contains v. The length
of both branches is one, thus the solution is feasible. (b) An infeasible solution. The bridge
between two edge biconnected components contains neither u nor v. (c) A feasible solution.
There are two edge-disjoint paths connecting v and z, but they have a common vertex. There
are three branches and none of them is longer than 3, thus the solution is feasible.
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