
A Hybrid VNS for Connected Facility Location

Ivana Ljubi¢?

Department of Statistics and Decision Support Systems
University of Vienna

Austria
ivana.ljubic@univie.ac.at

Abstract. The connected facility location (ConFL) problem generalizes
the facility location problem and the Steiner tree problem in graphs.
Given a graph G = (V, E), a set of customers D ⊆ V , a set of potential
facility locations F ⊆ V (including a root r), and a set of Steiner nodes
in the graph G = (V, E), a solution (F, T) of ConFL represents a set of
open facilities F ⊆ F , such that each customer is assigned to an open
facility and the open facilities are connected to the root via a Steiner Tree
T . The total cost of the solution (F, T) is the sum of the cost for opening
the facilities, the cost of assigning customers to the open facilities and
the cost of the Steiner tree that interconnects the facilities.
We show how to combine a variable neighborhood search method with
a reactive tabu-search, in order to �nd sub-optimal solutions for large
scale instances. We also propose a branch-and-cut approach for solving
the ConFL to provable optimality. In our computational study, we test
the quality of the proposed hybrid strategy by comparing its values to
lower and upper bounds obtained within a branch-and-cut framework.

1 The Connected Facility Location Problem

Due to increasing customer demands regarding broadband connections, telecom-
munication companies search for solutions that �push� rapid and high-capacity
�ber-optic networks closer to the subscribers, thus replacing the outdated cop-
per twisted cable connections. The Connected Facility Location Problem (ConFL)
models the next-generation of telecommunication networks: In the so-called tree-

star networks, the core (�ber-optic) network represents a tree. This tree inter-
connects multiplexers that switch between �ber optic and copper connections.
Each selected multiplexer is the center of the star-network of copper connections
to its customers.

ConFL represents a generalization of two prominent combinatorial optimiza-
tion problems: the facility location problem and the Steiner tree problem in
graphs. More formally, ConFL is de�ned as follows: We are given an undirected
graph G = (V,E) with a set of facilities F ⊆ V and a set of customer nodes

D ⊆ V . We assign opening costs fi ≥ 0 to each facility i ∈ F , edge costs ce ≥ 0
? Supported by the Hertha-Firnberg Fellowship of the Austrian Science Foundation
(FWF)

to each edge e ∈ E, and demands dj to each customer j ∈ D. We also assume
that there is the set of Steiner nodes S = V \ (F ∪ D) and a root node r ∈ F .
Costs of assigning a customer j ∈ D to a facility i ∈ F are given as aij ≥ 0.
A solution (F, T) of ConFL represents a set of open facilities F ⊆ F , such that
each customer j ∈ D is assigned to an open facility i(j) ∈ F and the open fa-
cilities are connected to the root r ∈ F by a Steiner Tree T . The total cost of
the solution (F, T) is the sum of the cost for opening the facilities, the cost of
assigning customers to the open facilities and the cost of the Steiner tree that
interconnects the facilities:∑

i∈F

fi +
∑
j∈D

djai(j)j +
∑
e∈T

ce.

In this constellation, some facility nodes may be used as pure Steiner nodes, in
which case no opening costs for them will be paid.

As mentioned in [17], we can assume without loss of generality that the root
r represents an open facility and hence belongs to the Steiner tree. To solve
the unrooted version of the problem, we simply need to run the algorithm for all
facility nodes chosen as the root r. Without loss of generality, we can also assume
that customer demands are all equal to one. Otherwise, we can set aij ← djaij

for all pairs (i, j).
In Section 2, we propose a hybrid approach that combines Variable Neigh-

borhood Search (VNS) with a reactive tabu search method. Section 3 describes
a branch-and-cut (B&C) approach to solve the problem to provable optimality.
In the last Section, our computational results show the comparison of the pro-
posed hybrid approach with lower and upper bounds obtained within the B&C
framework.

1.1 Related Work

ConFL has been introduced by Karger and Minko� [6] who gave the �rst ap-
proximation algorithm of a constant factor. For the metric ConFL in which ce

is a metric and aij = 1/Mcij , for some constant M > 1, Swamy and Kumar [17]
used an integer linear programming (ILP) formulation to develop a primal-dual
approximation algorithm of factor 8.55.

The rent-or-buy problem is a special case of ConFL in which there are no
opening costs of the facilities and F = V . A randomized 3.55-approximation
algorithm for the metric rent-or-buy problem has been proposed by Gupta et
al. [3]. The rent-or-buy problem has also been studied by Nuggehalli et al. [16]
who gave a distributed greedy algorithm with approximation ratio 6, in the
context of the design of ad hoc wireless networks. Their algorithm solves the
rent-or-buy problem to optimality if the underlying graph has a tree topology.

The Steiner tree-star problem is another problem related to ConFL and to the
node-weighted Steiner tree problem in graphs. The main di�erence to ConFL lies
in the cost structure. To each non-customer node, we assign costs fi, i ∈ V \ D,
assuming therefore that F = V \ D. If node i belongs to the Steiner tree T , we

pay for it no matter if any customer is assigned to it or not. Thus, the objective
of the Steiner tree-star problem looks as follows:

min
∑
i∈T

fi +
∑
j∈D

ci(j)j +
∑
e∈T

ce,

where c is the cost-function used both for assignments and for edge-costs.
Khuller and Zhu [7] gave a 5-approximation algorithm for solving the metric ver-
sion of the problem. Lee et al. [11] proposed a branch-and-cut algorithm based
on a separation of anti-cycle constraints. Their algorithm solved instances with
up to 200 nodes to provable optimality. Xu et al. [18] developed a tabu search
heuristic that incorporates long-term memory and probabilistic move selections.
The authors considered insert-, delete-, and swap-moves, whereas swap-moves
are used for diversi�cation purposes. Computational results are given for in-
stances of Lee et al. [11] and for additional sets of instances with up to 900
nodes. For the largest instances, the running time of the algorithm of more than
10 hours was reported.

Note that without the connectivity requirement (connecting the facilities by
a Steiner tree), the ConFL reduces to the uncapacitated facility location problem

(UFLP). On the other hand, if the set of facilities to be opened is known in
advance, the problem is reduced to the Steiner tree problem in graphs (STP).
Therefore, clearly, the problem is NP-hard.

2 A VNS with a Tabu Search

2.1 Basic VNS Model

According to Hoefer's computational study [5] on the uncapacitated facility loca-
tion problem (UFLP), one of the successful metaheuristic approaches for solving
the UFLP is a tabu-search approach given by Michel and van Hentenryck [15].
Recently, the authors obtained a very e�cient strategy by simply extending a
tabu-search approach with a variable neighborhood search. Our VNS framework
follows these basic ideas given in [4]. Note however that, due to the nature of
the problem, the way we calculate the objective value signi�cantly di�ers from
the one used to evaluate UFLP (see Section 2.2). Algorithm 1 shows our generic
approach.

Representation: Assuming that for a �xed set of facilities, we can determinis-
tically �nd a (sub)-optimal solution, we conduct our local search in the space
of facility locations, thus changing con�gurations of vectors y = (y1, . . . , y|F|),
where yi = 1 if facility i is open.

When it is clear from context, we will use y to denote the subset of open
facilities (i.e. those with yi = 1).

k-Neighborhood: We de�ne a k-neighborhood Nk of a solution ŷ by all solutions
y such that the Hamming distance d(ŷ, y) between these two binary vectors is
equal to k:

Nk(ŷ) = {y ∈ {0, 1}|F| | d(ŷ, y) = k}.

Data : Instance of the ConFL.
Result : A feasible suboptimal solution to ConFL.

best = ŷ = Initialize();
nIter = 0;
while nSame < LimitSame and Time < TimeLimit do

y′ = TabuSearch(N1(ŷ));
nIter + +;
if Obj (y′) > Obj (ŷ) then

nSame + +;
ŷ = Shake(y′);

else

ŷ = y′;
if Obj (y′) < Obj (best) then

nSame = 0;
Decrease the tabuLength;
best = y′;

else

nSame + +;
Increase the tabuLength;

end
end

end

return best ;

Algorithm 1: VNS algorithm.

Reactive Tabu Search: The status of a facility i ∈ F is given by yi. A basic move

is the change of the status of a facility, i.e. yi ← 1 − yi. The tabu list consists
of the set of facilities that cannot be �ipped. A solution ŷ is locally improved
using the best improvement strategy with respect to its 1-neighborhood. Thus,
all possible �ips of single positions that are not in the tabu list are considered,
and the best one is taken. If there is more than one best �ip, we randomly select
one.

In order to forbid the reversal of recent search steps, we use a self-learning
mechanism that adapts the length of the tabu list during the search. We simplify
the ideas of the reactive tabu search, which was originally proposed by Battiti
and Tecchiolli [1]: the list size is increased whenever no improvement upon the
best found solution is made. Whenever a new best solution is detected, the list
size is decreased.

We implement a dynamic tabu list in the following way: to each facility i ∈ F ,
we associate a counter tabuList(i). When a facility is inserted into the tabu list,
we set tabuList(i)← nIter + tabuLength, which forbids �ipping the facility i for
the next tabuLength iterations, whereby nIter denotes the current iteration. The
value of tabuLength is adjusted automatically: if tabu search improves the value
of ŷ, but it is still worse than the best obtained value, we increase the length of
the tabu list by one. Otherwise, the length of the tabu list will be decreased by

one. We use standard settings for minimal and maximal values of tabuLength,
and set them to 2 and 10, respectively.

Shaking the Neighborhood: This diversi�cation mechanism enables escaping from
local optima found within the tabu search procedure. If the last tabu search
iteration did not improve upon the last selected value ŷ, we randomly select k
(k ≥ 2) positions and �ip them. The value k increases until it reaches a pre-
speci�ed maximum neighborhood size (50 in the default implementation), after
which it starts from 2 again.

Using this technique, the diversi�cation degree will be automatically ad-
justed. Increasing the size of neighborhoods systematically also assures that
signi�cant diversi�cations are avoided during early phases of the search.

Hash-Tables: Since the evaluation of solutions is computationally expensive (see
next Subsection), we maintain hash-tables for all vectors y for which the objective
value for STP, assignment or total ConFL value is already known (see also [10],
where a similar idea has been used). This strategy ensures that the objective
value of the same vector will not be calculated more than once within the whole
procedure, even if we return back to the same solution.

Termination Criteria: The algorithm terminates if the best found solution was
not improved within the last LimitSame iterations, or a pre-speci�ed TimeLimit
is exceeded. In our default implementation, we set LimitSame to 50, and
TimeLimit to 1000 seconds.

2.2 Evaluation of the Objective Function

Data : Vector ŷ: a facility i is selected if ŷi = 1.

Result : Locally improved vector yP and its objective function value.

if Hash(ŷ) de�ned then

(xP , T P , yP) = Hash(ŷ);
else

(TMST , yMST) = MSTHeuristic(ŷ);
(xA, yA) = Assign(yMST);
(xP , T P , yP) = Peeling(TMST , xA, yA);
Insert (xP , T P , yP) into Hash;

end

return
P

e∈TP
ce +

P
i∈F fiy

P
i +

P
i∈F

P
j∈D aijx

P
ij ;

Algorithm 2: Calculating the objective function.

Algorithm 2 shows the main steps of calculating the objective function for a
speci�ed vector ŷ. We use the following notation:

� vectors x (= xP or xA) refer to the assignment values, i.e. xij = 1 if customer
j is assigned to facility i and xij = 0, otherwise;

� TP and TMST denote the sets of nodes and edges building a Steiner tree
that connects the chosen set of facilities (yP and yMST , resp.).

Given ŷ, we �rst check if this con�guration has been already calculated before.
If so, we get the corresponding tree-, assignment-, and facility values from the
hash-table Hash. Otherwise, we run a three-step procedure:

Step 1: (TMST , yMST) = MSTHeuristic(ŷ): We consider the graph G′ =
(V ′, E′) � a subgraph of G induced by the set of facilities and Steiner
nodes V ′ = F ∪S with the edge costs c. For G′, we generate the so-
called distance network1 - a complete graph whose nodes correspond
to facilities i ∈ F , and whose edge-lengths l(i, j) are de�ned as short-
est paths in G′, for all i, j ∈ F .
We use the minimum spanning tree (MST) heuristic [14] to �nd a
spanning tree TMST that connects all selected facilities (ŷi = 1).
1. Let G′′ be the subgraph of G′ induced by ŷ.
2. Calculate the minimum spanning tree MST ′′

G of the distance
sub-network G′′.

3. Include in TMST all intermediate edges and nodes of G contained
in selected shortest-path edges from MST ′′

G.
4. Update the set of selected facilities: set yMST

i = 1 for all nodes
i ∈ TMST ∩ F .

Step 2: (xA, yA) = Assign(yMST): For each customer j ∈ D, we �nd the
cheapest possible assignment to a facility from yMST . The values are
stored in vector xA. Since not every facility from yMST necessarily
serves a customer, we denote with yA the subset of those that really
need to be opened.
This operation is calculated from scratch � although the di�erences
between two neighboring vectors ŷ1 and ŷ2 are in general very small,
the corresponding yMST

1 and yMST
2 solutions may be signi�cantly

di�erent. Thus, the total computational complexity for �nding the
cheapest assignment in the worst case is O(|F||D|).

Step 3: (xP , TP , yP) = Peeling(TMST , xA, yA): We �nally want to get rid
of some of those facilities that are still part of the Steiner tree, but
that are not used at all. We do this by applying the so-called peel-

ing procedure. Our peeling heuristic tries to recursively remove all
redundant leaf nodes (including corresponding tree-paths) from the
tree-solution TMST . Let k denote a leaf node, and let Pk be a path
that connects k to the next open facility from yA, or to the next
branch, towards the root r.

1 Calculation of the distance network is done only once in the beginning of the VNS
algorithm.

1. If the leaf node is not an (open) facility, i.e. if k 6∈ yA, we simply
delete Pk.

2. Otherwise, we try to to re-assign customers (originally assigned
to k) to already open facilities (if possible). If such obtained
solution is better, we delete Pk and continue processing other
leaves.

The main steps of this procedure are given in Algorithm 3.
If the set of facilities is sorted for each customer in increasing order
with respect to its assignment costs2, this procedure can be imple-
mented very e�ciently. Indeed, in order to �nd an open facility (from
yP) nearest to j and di�erent from k (denoted by ik(j)), we only
need to proceed this ordered list starting from k until we encounter
a facility from yP .
The algorithm stops when only one node is left, or when all the leaves
from TP have been proceeded. Thus, the worst-case running time of
the whole peeling method is O(|F||D|).

Data : Set yA, assignment xA and a Steiner tree TMST .

Result : Locally improved vector yP and its objective function value.

T P = TMST , yP = yMST , xP = xA;
for all leaves k in T P

do

Determine path Pk and its costs c(Pk) =
P

e∈Pk
ce;

if k 6∈ yP
then

T P = T P − Pk;
else

Dk = {j | j ∈ D, xP
kj = 1};

ik(j) = arg min{aij | i ∈ yP , i 6= k}, ∀j ∈ Dk;
if

P
j∈Dk

aik(j)j < fk + c(Pk) +
P

j∈Dk
akj then

yP
k = 0;

T P = T P − Pk;
xP

kj = 0, xP
i(k)j

= 1, ∀j ∈ Dk;

end
end

end

Algorithm 3: Peeling procedure.

2 Sorting of these lists is done once, in the initialization phase of VNS algorithm.

3 Branch-and-Cut for ConFL

We propose to calculate lower bounds and provably optimal solutions to ConFL
using the integer linear programming (ILP) model given below. For solving the
linear programming relaxations and for a generic implementation of the branch-
and-cut approach, we used the commercial packages ILOG CPLEX (version 10.0)
and ILOG Concert Technology (version 2.2).

We solve the ConFL to optimality on a directed graph GA = (V,A) obtained
from the original one G = (V,E) by simply replacing each edge e ∈ E by two
directed arcs of the same cost:

A = {(k, l)|{k, l} ∈ E ∧ l 6= r}

ckl = c({k, l}), ∀(k, l) ∈ A

The assignment costs (aij) remain unchanged.
The problem of �nding a rooted Steiner tree on a directed graph is known

as the Steiner arborescence problem: given GA, a root r and the set of terminals
F ⊂ V , �nd a subset of arcs R ⊂ A such that there is a directed path from r to
each i ∈ F , and that

∑
(k,l)∈R ckl is minimized.

To model the problem, we use the following binary vectors: yi indicates
whether a facility i is open, xij indicates whether customer j is assigned to
facility i and zkl indicates whether the arc (k, l) is a part of the directed Steiner
tree rooted at r.

(ConFL) min
∑
i∈F

fiyi +
∑
i∈F

∑
j∈D

aijxij +
∑

(k,l)∈A

cklzkl (1)

∑
i∈F xij ≥ 1, ∀j ∈ D (2)

xij ≤ yi, ∀i ∈ F ∀j ∈ D (3)∑
(k,l)∈δ−(S) zkl ≥ yi, ∀S ⊆ V \ {r}, i ∈ S ∩ F 6= ∅ (4)

yr = 1 (5)

0 ≤ xij , zkl, yi ≤ 1 ∀i, ∀j, ∀(k, l) ∈ A (6)

xij , zkl, yi ∈ {0, 1} ∀i, ∀j, ∀(k, l) ∈ A (7)

Here, with δ−(S) we denote the set of ingoing edges of S, i.e., δ−(S) =
{(k, l) ∈ A | k 6∈ S, l ∈ S}.

The assignment constraints (2) ensure that each customer is assigned to
exactly one facility. The capacity constraints (3) ensure that customers can only
be assigned to open facilities. The connectivity constraints (4) guarantee that
there is a directed path between every open facility and the root r, i.e. they
ensure that open facilities are connected to the root and to each other. With
constraint (5) we �x the root node r. Constraints (4) and (5) ensure existence
of the Steiner arborescence, whereas constraints (2) and (3) ensure a feasible
assignment.

Initialization: We initialize the LP with relaxed integer requirements (6), with
assignment- and capacity-inequalities (2)-(3), with indegree inequalities:∑

(k,l)∈A

zkl = yl,∀l ∈ F

and with the subtour elimination constraints of size two:

zkl + zlk ≤ yl, ∀l ∈ F .

Additionally, we add �ow-balance constraints ([8]) that ensure that the in-degree
of each Steiner node is less or equal than its out-degree:∑

(k,l)∈A

zkl ≤
∑

(l,k)∈A

zlk, ∀l 6∈ F .

Separation of Cut Inequalities: In each node of the branch-and-bound tree we
separate the cut-inequalities given by (4). For a given LP-solution ẑ, we construct
a support graph Gẑ = (V,A, z) with arc-weights ẑ : A 7→ [0, 1]. Then we calculate
the minimum cost �ow from the root r to each potential facility node i ∈ F
such that yi > 0. If this min-cost �ow value is less than yi, we have a violated
inequality, induced by the corresponding min-cut in the graph Gẑ, and we insert
it into the LP.

To improve computational e�ciency, we search for nested, back and
minimum-cardinality cuts and insert at most 100 violated inequalities in each
separation phase. For more details, see our implementation of the B&C algo-
rithm for the prize-collecting Steiner tree problem, where the same separation
procedure has been used [12, 13].

Branching: Branching on single arc variables produces a huge disbalance in the
branch-and-bound tree. Whereas discarding an edge from the solution (setting
zkl to zero) doesn't bring much, setting the node variable to one, signi�cantly
reduces the size of the search subspace. Therefore we set the highest branching
priority to potential facility nodes i ∈ F .

4 Computational Results

We consider three classes of benchmark instances, obtained by merging data
from three public sources. In general, we combine an UFLP instance with an
STP instance, to generate ConFL input graphs in the following way: �rst |F|
nodes of the STP instance are selected as potential facility locations, and the
node with index 1 is selected as the root. The number of facilities, the number of
customers, opening costs and assignment costs are provided in UFLP �les. STP
�les provide edge-costs and additional Steiner nodes.

� We consider two sets of non-trivial UFLP instances from U�Lib3:
3 http://www.mpi-inf.mpg.de/departments/d1/projects/benchmarks/U�Lib/

• MP-{1,2} and MQ-{1,2} instances have been proposed by Kratica et
al. [10]. They are designed to be similar to UFLP real-world problems
and have a large number of near-optimal solutions. There are 6 classes of
problems, and for each problem |F| = |D|. We took 2 representatives of
the 2 classes MP and MQ of sizes 200× 200 and 300× 300, respectively.

• The GS-{250,500}-{1,2} benchmark instances were initially proposed by
Koerkel [9] (see also Ghosh [2]). Here we chose two representatives of
the 250 × 250 and 500 × 500 classes, respectively. Connection costs are
drawn uniformly at random from [1000, 2000], while opening costs are
drawn uniformly at random from [100, 200].

� STP instances:
• Instances {C,D}5, {C,D}10, {C,D}15, {C,D}20 were chosen randomly
from the OR-library4 as representatives of medium size instances for the
STP.

All experiments were performed on a Pentium D, 3.0 GHz machine with
2GB RAM. The �rst table shows the number of facility nodes (|F|), the number
of customers (|D|), and the number of Steiner nodes (|S|); because sets are
disjoint, S = V \ (D ∪ F). Furthermore, lower bounds (LB) and upper bounds
(UB) obtained after running the B&C algorithm for one hour are provided.

The number of nodes in the branch-and-bound tree and the running time of
the exact method indicate that the instances with no more than 300 customer-
and facility nodes are not trivial, but also not too di�cult for the selected
method.

For 15 out of 48 benchmark instances � 6 from the �rst and 9 from the
second group � our B&C algorithm �nds an optimal solution in less than one
hour. Note that for the rest of the instances, we provide upper bounds found
by local improvement methods already incorporated in the CPLEX solver 10.0,
without using any additional primal heuristics.

The second table shows average and best values (out of 10 runs) obtained
from running the VNS strategy with time limit of 1000 seconds. Initial solutions
are obtained by randomly selecting 5% of potential facilities.

We provide the best found value of the VNS approach, as well as the best-
and average-gaps out of 10 runs (gapbest and gapavg , resp.). Standard deviation
of the gap is given in column gapstddev . The average number of iterations, and the
average running time (in seconds) needed to detect the best solution of each run
are given in the last two columns. Note that the gap values are always calculated
with respect to the lower bound given in the �rst column.

The obtained results clearly indicate that the B&C algorithm is not able to
handle instances with a large number of customer- or facility nodes within a rea-
sonable amount of time. Already for instances with F = D = 500, the algorithm
is not able to close the optimality gap. The main di�culty for B&C (and exact
methods in general) comes from the assignment and capacity constraints. On
the other side, for the same set of instances, our VNS approach �nds solutions
which are within 1% of the lower bound.

4 http://people.brunel.ac.uk/ mastjjb/jeb/orlib/steininfo.html

Instances Properties B&C Results
UFLP STP |D| |F| |S ∪ F| |E| |S| LB UB Time B&Bnodes

mp1 c5 200 200 500 625 300 2868.6 2889.6 3602.1 3458
mp2 c5 200 200 500 625 300 2869.5 2869.5 818.4 76
mp1 c10 200 200 500 1000 300 2672.1 2693.9 3602.2 2496
mp2 c10 200 200 500 1000 300 2663.5 2663.5 185.8 62
mp1 c15 200 200 500 2500 300 2636.7 2636.7 332.4 82
mp2 c15 200 200 500 2500 300 2646.5 2646.5 226.3 12
mp1 c20 200 200 500 12500 300 2606.7 2619.7 3603.4 1059
mp2 c20 200 200 500 12500 300 2627.5 2627.5 172.6 102
mq1 c5 300 300 500 625 200 4357.8 4357.8 2740.8 50
mq2 c5 300 300 500 625 200 3770.8 4185.6 3602.8 61
mq1 c10 300 300 500 1000 200 3878.4 3971.2 3602.9 746
mq2 c10 300 300 500 1000 200 3697.6 3778.8 3602.6 1025
mq1 c15 300 300 500 2500 200 3778.9 3868.8 3603.1 500
mq2 c15 300 300 500 2500 200 3612.7 3692.6 3603.0 918
mq1 c20 300 300 500 12500 200 3738.4 3830.5 3603.9 277
mq2 c20 300 300 500 12500 200 3641.7 3689.5 3603.9 268

mp1 d5 200 200 1000 1250 800 2704.9 2704.9 445.6 208
mp2 d5 200 200 1000 1250 800 2759.6 2759.6 3394.3 1869
mp1 d10 200 200 1000 2000 800 2667.9 2678.9 3607.7 2315
mp2 d10 200 200 1000 2000 800 2688.5 2688.5 1777.7 1379
mp1 d15 200 200 1000 5000 800 2639.7 2639.7 1089.7 269
mp2 d15 200 200 1000 5000 800 2648.5 2648.5 174.4 14
mp1 d20 200 200 1000 25000 800 2620.7 2620.7 971.8 410
mp2 d20 200 200 1000 25000 800 2628.5 2628.5 2919.2 1011
mq1 d5 300 300 1000 1250 700 3919.1 3919.1 3230.4 417
mq2 d5 300 300 1000 1250 700 3721.5 3835.7 3609.1 478
mq1 d10 300 300 1000 2000 700 3765.7 3945.1 3609.2 220
mq2 d10 300 300 1000 2000 700 3627.3 3749.3 3608.7 293
mq1 d15 300 300 1000 5000 700 3844.5 3844.5 3574.1 768
mq2 d15 300 300 1000 5000 700 3609.0 3710.7 3609.3 387
mq1 d20 300 300 1000 25000 700 3751.6 3846.8 3614.4 119
mq2 d20 300 300 1000 25000 700 3597.0 3752.0 3614.4 63

gs250a-1 c5 250 250 500 625 250 258300.0 259067.0 3602.8 370
gs250a-2 c5 250 250 500 625 250 257920.0 258714.0 3602.8 141
gs250a-1 c10 250 250 500 1000 250 258062.0 258855.0 3604.1 80
gs250a-2 c10 250 250 500 1000 250 257685.0 258450.0 3606.8 99
gs250a-1 c15 250 250 500 2500 250 257843.0 258307.0 3603.4 205
gs250a-2 c15 250 250 500 2500 250 257524.0 257922.0 3604.3 106
gs250a-1 c20 250 250 500 12500 250 257815.0 258494.0 3603.8 51
gs250a-2 c20 250 250 500 12500 250 257452.0 258253.0 3604.1 22
gs500a-1 c5 500 500 500 625 0 511499.0 756415.0 3607.0 0
gs500a-2 c5 500 500 500 625 0 511485.0 756031.0 3614.2 0
gs500a-1 c10 500 500 500 1000 0 511056.0 666907.0 3607.8 0
gs500a-2 c10 500 500 500 1000 0 511018.0 756031.0 3614.1 0
gs500a-1 c15 500 500 500 2500 0 510733.0 665029.0 3606.6 0
gs500a-2 c15 500 500 500 2500 0 510718.0 671085.0 3606.8 0
gs500a-1 c20 500 500 500 12500 0 510584.0 668346.0 3611.5 0
gs500a-2 c20 500 500 500 12500 0 510559.0 600688.0 3608.7 0

Table 1. Lower and upper bounds of selected benchmark instances obtained by running
B&C algorithm with time limit of one hour.

Instances B&C VNS
UFLP STP LB UB-gap best gapbest gapavg gapstddev Iter Time

mp1 c5 2868.6 0.7 2923.7 1.9 2.1 0.1 22.1 98.6
mp2 c5 2869.5 0.0 2880.4 0.4 0.4 0.0 66.8 363.1
mp1 c10 2672.1 0.8 2799.6 4.8 5.2 0.4 76.0 389.0
mp2 c10 2663.5 0.0 2743.3 3.0 3.0 0.0 40.0 187.2
mp1 c15 2636.7 0.0 2731.2 3.6 4.0 1.2 78.3 406.4
mp2 c15 2646.5 0.0 2801.2 5.8 6.7 1.4 35.7 186.1
mp1 c20 2606.7 0.5 2665.6 2.3 2.5 0.6 50.5 300.3
mp2 c20 2627.5 0.0 2700.6 2.8 3.3 0.6 52.6 305.2
mq1 c5 4357.8 0.0 4474.6 2.7 2.7 0.0 21.2 177.7
mq2 c5 3770.8 11.0 4185.6 11.0 11.9 1.4 40.0 353.0
mq1 c10 3878.4 2.4 4037.8 4.1 7.4 4.9 40.2 365.0
mq2 c10 3697.6 2.2 3934.9 6.4 7.2 1.7 36.7 340.1
mq1 c15 3778.9 2.4 4058.4 7.4 8.8 1.7 48.5 528.9
mq2 c15 3612.7 2.2 3743.0 3.6 3.6 0.1 25.9 250.5
mq1 c20 3738.4 2.5 3996.7 6.9 8.2 2.0 38.1 401.2
mq2 c20 3641.7 1.3 3782.8 3.9 5.1 0.6 35.8 375.5

mp1 d5 2704.9 0.0 2715.5 0.4 2.2 1.0 23.5 402.9
mp2 d5 2759.6 0.0 2766.2 0.2 1.4 1.2 31.7 482.3
mp1 d10 2667.9 0.4 2728.8 2.3 3.4 1.3 23.1 366.8
mp2 d10 2688.5 0.0 2691.5 0.1 0.6 0.8 13.6 365.0
mp1 d15 2639.7 0.0 2694.6 2.1 2.3 0.7 23.0 328.5
mp2 d15 2648.5 0.0 2705.6 2.2 2.8 1.3 20.4 379.0
mp1 d20 2620.7 0.0 2634.9 0.5 0.9 0.8 24.0 453.4
mp2 d20 2628.5 0.0 2629.5 0.0 0.0 0.0 15.4 321.9
mq1 d5 3919.1 0.0 4012.3 2.4 6.6 4.3 22.1 508.1
mq2 d5 3721.5 3.1 4007.3 7.7 11.8 2.5 21.4 460.7
mq1 d10 3765.7 4.8 3975.0 5.6 7.0 1.5 15.3 511.1
mq2 d10 3627.3 3.4 3796.4 4.7 7.0 1.4 18.0 593.8
mq1 d15 3844.5 0.0 3857.6 0.3 7.0 8.6 24.5 652.8
mq2 d15 3609.0 2.8 3798.9 5.3 8.9 3.8 27.9 627.0
mq1 d20 3751.6 2.5 3984.6 6.2 9.1 2.1 17.9 490.4
mq2 d20 3597.0 4.3 3749.0 4.2 5.4 1.5 17.6 495.5

gs250a-1 c5 258300.0 0.3 258592.0 0.1 0.3 0.1 65.2 523.5
gs250a-2 c5 257920.0 0.3 258145.0 0.1 0.3 0.1 63.3 458.3
gs250a-1 c10 258062.0 0.3 258555.0 0.2 0.4 0.1 74.9 668.5
gs250a-2 c10 257685.0 0.3 258223.0 0.2 0.5 0.1 60.6 341.7
gs250a-1 c15 257843.0 0.2 258268.0 0.2 0.3 0.1 58.9 548.6
gs250a-2 c15 257524.0 0.2 257819.0 0.1 0.3 0.1 88.0 598.3
gs250a-1 c20 257815.0 0.3 258239.0 0.2 0.2 0.0 87.2 598.0
gs250a-2 c20 257452.0 0.3 257776.0 0.1 0.3 0.1 106.0 697.4
gs500a-1 c5 511499.0 47.9 513871.0 0.5 0.6 0.1 44.8 838.1
gs500a-2 c5 511485.0 47.8 514124.0 0.5 0.6 0.0 55.2 845.9
gs500a-1 c10 511056.0 30.5 513429.0 0.5 0.5 0.0 50.4 881.1
gs500a-2 c10 511018.0 47.9 513543.0 0.5 0.5 0.0 58.5 939.5
gs500a-1 c15 510733.0 30.2 513165.0 0.5 0.6 0.0 48.9 928.0
gs500a-2 c15 510718.0 31.4 513108.0 0.5 0.6 0.1 41.7 871.2
gs500a-1 c20 510584.0 30.9 512764.0 0.4 0.5 0.0 48.1 943.8
gs500a-2 c20 510559.0 17.7 512560.0 0.4 0.5 0.1 51.4 906.0

Table 2. Comparison of the VNS with lower and upper bounds obtained by B&C.

For the instances of the �rst two groups, the algorithm does not always reach
the optimal solution, but the average gaps and their standard deviation indicate
a stable performance and the robustness of the approach.

The incorporation of the VNS method as a primal heuristic within the B&C
framework seems a promising direction for further research. The synergy e�ect
of this combination may bring advantages to both approaches: good starting
solutions obtained by rounding fractional solutions for the VNS, on one side,
and fast high-quality upper bounds for B&C, on the other side.

References

1. R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA Journal on Com-
puting, 6(2):126�140, 1994.

2. D. Ghosh. Neighborhood search heuristics for the uncapacitated facility location
problem. European Journal of Operations Research, 150:150�162, 2003.

3. A. Gupta, A. Kumar, and T. Roughgarden. Simpler and better approximation
algorithms for network design. In STOC, pages 365�372. ACM, 2003.

4. G. Harm and P. V. Hentenryck. A multistart variable neighborhood search for un-
capacitated facility location. In Proceedings of MIC2005: The Sixth Metaheuristics
International Conference. 2005.

5. M. Hoefer. Experimental comparison of heuristic and approximation algorithms for
uncapacitated facility location. In Proceedings of the Second International Work-
shop on Experimental and E�cient Algorithms (WEA 2003), pages 165�178. 2003.

6. D. R. Karger and M. Minko�. Building Steiner trees with incomplete global knowl-
edge. In FOCS, pages 613�623, 2000.

7. S. Khuller and A. Zhu. The general steiner tree-star problem. Information Pro-
cessing Letters, 84(4):215�220, 2002.

8. T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality.
Networks, 32:207�232, 1998.

9. M. Koerkel. On the exact solution of large-scale simple plant location problems.
European Journal of Operations Research, 39:157�173, 1989.

10. J. Kratica, D. To²i¢, V. Filipovi¢, and I. Ljubi¢. Solving the simple plant location
problem by genetic algorithms. RAIRO - Operations Research, 35(1):127�142,
2001.

11. Y. Lee, Y. Chiu, and J. Ryan. A branch and cut algorithm for a Steiner tree-star
problem. INFORMS Journal on Computing, 8(3):194�201, 1996.

12. I. Ljubi¢. Exact and Memetic Algorithms for Two Network Design Problems. PhD
thesis, Faculty of Computer Science, Vienna University of Technology, November
2004.

13. I. Ljubi¢, R. Weiskircher, U. Pferschy, G. Klau, P. Mutzel, and M. Fischetti. An
algorithmic framework for the exact solution of the prize-collecting Steiner tree
problem. Mathematical Progamming, Series B, 105(2-3):427�449, 2006.

14. K. Mehlhorn. A faster approximation for the Steiner problem in graphs. Informa-
tion Processing Letters, 27:125�128, 1988.

15. L. Michel and P. V. Hentenryck. A simple tabu search for warehouse location.
European Journal of Operational Research, 157(3):576�591, 2004.

16. P. Nuggehalli, V. Srinivasan, and C.-F. Chiasserini. Energy-e�cient caching strate-
gies in ad hoc wireless networks. In MobiHoc, pages 25�34, 2003.

17. C. Swamy and A. Kumar. Primal-dual algorithms for connected facility location
problems. Algorithmica, 40:245�269, 2004.

18. J. Xu, S. Y. Chiu, and F. Glover. Using tabu search to solve the Steiner tree-
star problem in telecommunications network design. Telecommunication Systems,
6(1):117�125, 1996.

