
A Genetic Algorithm for the Index Selection
Problem

Jozef Kratica1, Ivana Ljubić2 and Dušan Tošić3

1 Institute of Mathematics, Serbian Academy of Sciences and Arts,
Kneza Mihajla 35/I, pp. 367, 11001 Belgrade, Yugoslavia

jkratica@mi.sanu.ac.yu
2 Institute of Computer Graphics and Algorithms, Vienna University of Technology,

Favoritenstraße 9–11/186, 1040 Vienna, Austria
ljubic@ads.tuwien.ac.at

3 Faculty of Mathematics, University of Belgrade,
Studentski trg 16, Belgrade, Yugoslavia

dtosic@matf.bg.ac.yu

Abstract. This paper considers the problem of minimizing the response
time for a given database workload by a proper choice of indexes. This
problem is NP-hard and known in the literature as the Index Selection
Problem (ISP).
We propose a genetic algorithm (GA) for solving the ISP. Computational
results of the GA on standard ISP instances are compared to branch-
and-cut method and its initialisation heuristics and two state of the art
MIP solvers: CPLEX and OSL. These results indicate good performance,
reliability and efficiency of the proposed approach.

1 Introduction

The Index Selection Problem (ISP) is one of the crucial problems in the physical
design of databases. The main goal is to choose a subset of given indexes to be
created in a database, so that the response time for a given database workload
is minimized.

The ISP represents a generalization of the well-known Uncapacitated Facility
Location Problem - UFLP, which is known as NP-hard in a strong sense [1].
Some authors also consider the ISP problem as the multilevel (or multi-stage)
uncapacitated facility location problem ([2, 3]). Suppose we are given a set of
indexes (that can be built or not) and a set of queries. Each built index requires
a maintenance time, while each query can be answered in answer time, which
depends on the set of built indexes. The main goal is to minimize the overall
execution time, defined as the sum of the maintenance times plus the sum of the
answer times for all queries.

In the simple case, each query can be answered either without using any
index, in a given answer time, or with using one built index, reducing answer
time by a gain specified for every index usable for query. In this situation the
problem can be formulated as an UFLP.

2 Jozef Kratica, Ivana Ljubić and Dušan Tošić

However, in most database management systems each query may use not only
a single index, but a set of indexes ([4, 5]). This problem can not be formulated
as a pure UFLP, but must be generalized and formulated as an ISP. Detailed
description of the problem and analysis of all aspects of its influence on the
managing of database systems is beyond the scope of this paper. Some important
survey articles are [6, 7].

In this paper we propose a genetic algorithm (GA) for solving the ISP. In
the following section, we will present the mathematical formulation of the prob-
lem and point out the previous work. Section 3 explains in detail all important
aspects of the GA: encoding, evaluation of solutions and genetic operators. In
Section 4, we will compare the results of the GA with branch-and-cut (BnC) al-
gorithm proposed in [8, 9]. Results are also compared with those obtained using
two state of the art MIP solvers: CPLEX and OSL. Finally, in Section 5, we will
draw out some conclusions and propose ideas for the future work.

2 The Index Selection Problem

Let N = {1, 2, ..., n} be the set of all indexes and M = {1, 2, ..., m} the set
of all queries for a database. Each index can be built or not - each built index
requires a given maintenance time fj > 0. In the ISP, not only single indexes,
but also sets of indexes can be used for a query. Therefore, we are given a set
of configurations P = {1, 2, ..., p} - each configuration k ∈ P is associated with
some subset Nk ⊂ N of indexes. A configuration is active, if all its indexes are
built. When all indexes of a certain configuration k ∈ P are built, during the
execution of a query i ∈ M , we gain gik ≥ 0 time. In practice, for the most pairs
(i,k), i ∈ M , k ∈ P the gains gik are equal zero. This can easily be explained
with the fact that a certain configuration has an influence only on a limited
number of queries from M . Our goal is to build the indexes, so that the total
time needed to execute all the queries is minimized, i.e. that the total time of
gains is maximized. Formally, the problem can be stated as:

max

∑

i∈M

∑

k∈P

gik · xik −
∑

j∈N

fj · yj

 (1)

subject to ∑

k∈P

xik ≤ 1, i ∈ M (2)

xik ≤ yj , i ∈ M, j ∈ N, k ∈ P (3)

xik, yj ∈ {0, 1}, i ∈ M, j ∈ N, k ∈ P (4)

In this formulation, each solution is represented by the set of built indexes
S ⊂ N , where y represents a characteristic vector of S, i.e.:

A Genetic Algorithm for the Index Selection Problem 3

yj =
{

1, index j ∈ S
0, otherwise (5)

For each query-configuration pair (i, k) ∈ M × P , we introduce a variable:

xik =
{

1, query i uses configuration k
0, otherwise (6)

Constraint (2) explains that each query i ∈ M can use at most one configuration.
Constraint (3) says that the queries can be served only by active configurations.

2.1 Previous Work

In [6], two methods for solving the ISP are proposed. One is a heuristics based
on the solution of the suitably defined knapsack subproblem and on Lagrangean
decomposition. This method is used on larger scale ISP instances, up to several
thousand indexes and queries, and it produces solutions of a good quality. The
second method is a branch-and-bound algorithm based on the linear program-
ming relaxation of the model. The performance of the algorithm is enhanced by
means of the preprocessing which reduces the size of the candidate index set.
Optimal solutions on the ISP instances involving several hundred indexes and
queries have been reported.

In [8], an improvement of the previous method by using branch-and-cut
(BnC) algorithm is proposed. The problem is formulated as the Set Packing
Problem that contains all clique inequalities. For initialisation of the root node
in the branch-and-bound tree, a so called LP-heuristics is used: this is an adapted
greedy heuristics for the UFLP, followed by a 2-interchange heuristics. The greedy
heuristics starts with an empty index set, and iteratively adds to the current set
the index leading to the largest objective function increase. The 2-interchange
procedure tries to improve the current solution by adding an index, removing
an index, or interchanging two indexes. Analogous algorithms working on con-
figurations instead of indexes are also applied, and the best solution is taken
as a primal bound. Computational results on two different challenging types of
instances (class A and class B) are reported. Although these instances contain
only 50 (respectively 100) indexes and queries, presented results indicate that
two new classes are more complicated than the instances tested in the previous
paper with several thousand of indexes and queries.

A separation procedure for a suitably defined family of lifted odd-hole in-
equalities is embedded within the branch-and-cut method presented in [9]. These
inequalities are obtained by applying Chvátal-Gomory derivation to the clique
inequalities. As an initialisation heuristics, the LP-heuristics described above is
used. The results of this approach compared to those obtained using CPLEX 3.0
MIP solver, show the effectiveness of the presented approach on the instances
of class A and class B. However, the performance analysis indicates that the
instances of class B are easily solvable by both exact algorithms, and that the
instances of real interest are those of class A.

4 Jozef Kratica, Ivana Ljubić and Dušan Tošić

3 The Genetic Algorithm

We used traditional generational GA (containing Npop individuals) with over-
lapping populations: Nelit is the number of elitist individuals that survive to the
next generation. Since the evaluation of the objective value is a time-consuming
operation, we store a certain amount of already calculated values in a cache-
table of size NCache . Before the objective value for a certain individual is calcu-
lated, the table is checked [10, 11]. Least Recently Used caching strategy, which
is simple but effective, is used for that purpose. Caching is implemented by a
hash-queue data structure.

3.1 Encoding and Objective Function

We store only non-zero gik (i ∈ M, k ∈ P) values, since their number is small
compared to the matrix dimension |M | · |P |. For each query i we need to remem-
ber three variables: the number of gik variables that are greater than zero, the
values itself stored in an array and their original indices. Thus, we enhance the
evaluation of the objective function, since during the search the complete matrix
need not to be considered. Figure 1 shows an example. A similar strategy has
been used when the contents of the configurations are stored. Each solution S

1 2 3 4 5 6 7 8

1 15 0 0 0 20 0 0 0
2 0 20 0 0 0 0 0 0
3 0 0 30 0 0 0 0 40

(a)

1 2 3 4 5

1 2 15 1 20 5
2 1 20 2
3 2 30 3 40 8

(b)

1 2 3 4 5

1 2 20 5 15 1
2 1 20 2
3 2 40 8 30 3

(c)

Fig. 1. An example how the values (gik) can be efficiently stored: (a) The rows represent
the queries, while the columns represent possible configurations; (b) The matrix is
reduced so that the first number which represents the number of non-zero values is
followed by an array of values itself and their original indices. (c) The gains gik are
finally sorted in the decreasing order.

is encoded using the binary vector y, given by (5). According to the values of
indexes that are built, we determine the set of active configurations.

For each query i, we need to find the configuration k∗ whose time gain is
maximized, i.e.

k∗ = max
k∈P

gik. (7)

Finally, we need to sum all such gains over all queries, and to subtract the
maintenance times of the built indexes.

The whole objective value’s evaluation process can be enhanced significantly
if the values gik are sorted in a decreasing order, for each query i ∈ M . That
way, the first active configuration (if such exists) in the sorted array, represents
the best one.

If the obtained value is negative, the building of the indexes does not pay
off. In that case yj = 0, for all j ∈ N and there are no active configurations -
the objective value is set to zero.

A Genetic Algorithm for the Index Selection Problem 5

Time Complexity of the Objective Function The set of built indexes can
be found in O(n) time. Each configuration can contain n indexes in the worst
case. Thus, all active configurations can be found in O(np) time. For each query
i ∈ M , finding the best configuration according to (7), can be done in O(p)
time. Hence, finding the best configurations for all queries needs O(mp) time.
However, this is only a theoretical upper bound, since the matrix (gik) is usually
sparse. Finally, subtraction of the maintenance time for each built index i ∈ S
can be performed in O(n) time. In total, evaluation of the objective function for
each individual can be done in O((n + m)p) time.

3.2 Genetic Operators and Other Aspects of the GA

In order to avoid premature convergence, multiple individuals are discarded from
the population. To recombine two individuals, we use the uniform crossover
described in [12]. The recombination is applied to a pair of selected individuals
with probability pcro.

Mutating every single gene may be unnecessarily low, since usually only
several genes really mutate, while the majority of them remains the same. For
a given mutation rate, the number of muted genes of one generation can be
predicted. Using the Central limit theorem, by the Gaussian distribution, the
mutation procedure is performed only on the number of randomly chosen genes.
That way, a relatively small mutation probability does not create drawbacks on
the performance of the simple mutation operator we used.

In our model, the mutation rate has been changed over the generations: We
start with a mutation rate pmstart, and let it converge towards pmend:

pm = pmend + (pmstart − pmend) · 2
−Ngen
pmgen (8)

where Ngen represents the current generation, and pmgen a mutation’s bias-
parameter. Note that for the large number of generations, the mutation rate
converges towards pmend, but the value itself can not be achieved.

As a selection method, we used the fine grained tournament selection, pro-
posed in [13]. Instead of having an integer parameter Ntour, which represents the
tournament size in the classic tournament selection, the new operator’s input is
a floating point parameter Ftour representing an average tournament size. The
size of each of Npop−Nelite tournaments is chosen so that this value is on average
as close as possible to Ftour. Such a selection scheme can significantly affect the
overall performance of the GA, as it can be seen in [14].

4 Empirical Results

We have tested our GA on class A of randomly generated ISP instances, obtained
by the generator of A. Caprara and J.J. Salazar Gonzales [9]. This generator
intends to produce instances of the structure similar to real-world ISP instances,
in the spirit of [6].

6 Jozef Kratica, Ivana Ljubić and Dušan Tošić

All instances are given with 50 queries, 50 indexes and 500 configurations.
For each j ∈ N , fj = 100, and for each k ∈ P , |Nk| is chosen as a random
integer from {1, . . . , 5}. |Nk| indexes inside of Nk are then randomly selected
from N . For each k ∈ P , a set Mk is defined by randomly selecting 5 queries
from M ; The answer time gain gik, ∀i ∈ M , is set to zero if i ∈ M \Mk, and to
a random integer from {1, . . . , t|Nk|} otherwise (where the parameter t is given
as an input).

The following setup was used for the GA, as it proved to be robust in prelimi-
nary tests: population size Npop = 150; number of elitist individuals Nelit = 100;
size of the cache NCache = 5000; average group size for the fine grained tourna-
ment selection Ftour = 5.5; crossover probability pcro = 0.85, where 30% of infor-
mation has been exchanged; mutation parameters pmstart = 0.01, pmend = 0.002
and pmgen = 300. Each run was terminated after 2 000 iterations. On all the in-
stances we considered, this criterion allowed the GA to converge so that only
minor improvements in the quality of final solutions can be expected when pro-
longing the runs. Thus, the main goal was to find high-quality solutions, and
running times were considered only secondary.

Table 1 shows average results of our GA approach obtained on 40 instances of
class A, running on an AMD Athlon K7/1.333GHz (Pentium IV class machine)
with 256MB SDRAM memory. The GA was run 20 times on each instance.

Average time needed to detect the best value is given in t[s] column, while
ttot[s] represents the total time needed to execute all 2000 generations. On av-
erage, the best value has been reached after gen generations. In sr column, the
success rate is given, i.e. in how many runs (out of 20) the optimal value has
been reached.

The quality of a solution S obtained by the GA is evaluated as a percentage
gap with respect to the optimal cost cost(S∗):

gap(S) =
cost(S)− cost(S∗)

cost(S∗)
· 100% . (9)

In the column gap, average over 20 runs is given. The values cost(S∗) can be
found in Table 2. Standard deviation of the average gap (σ) is also presented in
the Table 1. There are additional four columns showing in how many runs the
obtained gaps were less than 0.2%, 1%, 5% respectively, and in how many runs
the gap was greater than 5%.

The last two columns are related to the caching: eval represents the aver-
age number of needed evaluations, while cache[%] displays savings (in percent)
achieved by using the caching technique. On average, instead of making 100, 000
calls of the objective function, we took between 75% and 85% of the values from
the cache-table.

Results of two MIP solvers (CPLEX and OSL) for the same set of instances
are given in Table 2. OSL is tested also on AMD Athlon K7/1.333GHz machine,
but CPLEX according to its license was run on Pentium III/800 MHz with
1GB memory. The columns describe: the instance name, the optimal solution,
the number of CPLEX iterations, the number of branch-and-bound nodes and

A Genetic Algorithm for the Index Selection Problem 7

Table 1. Empirical results of the GA on class A instances

err < err >
Inst. t[s] ttot[s] gen sr

0.2% 1% 5% 5%
gap σ eval cache[%]

i200.111 0.1 1.1 39 20 0 0 0 0 0.0 0.0 16844 83.2
i200.222 0.1 0.9 41 20 0 0 0 0 0.0 0.0 14684 85.3
i200.333 0.1 1.3 83 20 0 0 0 0 0.0 0.0 22449 77.6
i200.444 0.1 0.9 40 20 0 0 0 0 0.0 0.0 14485 85.5
i200.555 0.1 0.9 40 20 0 0 0 0 0.0 0.0 12448 87.6

i175.111 0.1 1.1 67 20 0 0 0 0 0.0 0.0 17151 82.9
i175.222 0.1 1.0 62 20 0 0 0 0 0.0 0.0 14941 85.1
i175.333 0.1 1.2 120 19 1 0 0 0 <0.1 <0.1 20447 79.6
i175.444 0.1 1.0 47 20 0 0 0 0 0.0 0.0 15747 84.3
i175.555 0.1 0.9 40 20 0 0 0 0 0.0 0.0 13355 86.7

i150.111 0.1 1.0 69 20 0 0 0 0 0.0 0.0 15659 84.3
i150.222 0.1 1.2 68 18 2 0 0 0 <0.1 <0.1 19950 80.1
i150.333 0.1 1.1 104 20 0 0 0 0 0.0 0.0 18381 81.6
i150.444 0.1 1.0 41 20 0 0 0 0 0.0 0.0 15448 84.6
i150.555 0.1 1.0 38 20 0 0 0 0 0.0 0.0 15244 84.8

i125.111 0.1 1.0 50 19 0 1 0 0 <0.1 <0.1 15883 84.1
i125.222 0.2 1.3 219 18 2 0 0 0 <0.1 <0.1 22142 77.9
i125.333 0.1 1.1 97 20 0 0 0 0 0.0 0.0 17742 82.3
i125.444 0.1 1.0 44 20 0 0 0 0 0.0 0.0 14433 85.6
i125.555 0.1 1.1 46 20 0 0 0 0 0.0 0.0 18594 81.4

i100.111 0.3 1.2 528 14 6 0 0 0 <0.1 <0.1 20335 79.7
i100.222 0.2 1.4 280 6 0 14 0 0 0.2 0.1 25388 74.6
i100.333 0.1 1.1 73 20 0 0 0 0 0.0 0.0 16624 83.4
i100.444 0.1 0.9 40 20 0 0 0 0 0.0 0.0 13368 86.6
i100.555 0.1 1.2 150 19 0 1 0 0 <0.1 <0.1 20469 79.5

i075.111 0.1 1.1 139 17 0 3 0 0 0.1 0.3 17299 82.7
i075.222 0.3 1.2 294 16 0 4 0 0 0.1 0.2 19688 80.3
i075.333 0.3 1.3 306 18 2 0 0 0 <0.1 <0.1 23088 76.9
i075.444 0.1 0.9 48 20 0 0 0 0 0.0 0.0 13982 86.0
i075.555 0.1 1.3 138 20 0 0 0 0 0.0 0.0 21611 78.4

i050.111 0.2 1.1 256 12 8 0 0 0 0.1 0.1 19693 80.3
i050.222 0.2 1.1 189 6 0 0 14 0 1.1 1.2 19667 80.3
i050.333 0.2 1.1 180 9 7 4 0 0 0.2 0.3 18180 81.8
i050.444 0.3 1.2 429 8 0 7 5 0 0.5 0.5 21174 78.8
i050.555 0.2 1.1 195 9 0 0 11 0 0.7 0.7 17980 82.0

i025.111 0.3 1.1 360 8 0 0 12 0 1.3 1.6 21381 78.6
i025.222 0.3 1.1 517 11 0 0 8 1 2.0 3.1 21263 78.7
i025.333 0.3 1.0 423 2 0 5 7 6 2.9 2.6 19434 80.6
i025.444 0.2 1.0 193 7 0 0 1 12 5.1 4.1 17808 82.2
i025.555 0.4 1.1 623 2 0 5 13 0 0.8 0.5 21784 78.2

8 Jozef Kratica, Ivana Ljubić and Dušan Tošić

Table 2. Results obtained by two MIP solvers: CPLEX and OSL

CPLEX OSL
Instance cost(S∗)

Iterations Nodes t[s] Iterations t[s]

i200.111 41102 190 0 0.5 3866 22
i200.222 40412 319 4 7.6 5364 56
i200.333 41034 383 13 8.2 5834 70
i200.444 41030 177 0 0.4 4316 24
i200.555 40706 191 0 0.4 3845 20

i175.111 35452 220 0 0.7 5233 54
i175.222 34803 937 26 17.4 6445 71
i175.333 35355 1477 66 18.4 18565 232
i175.444 35352 221 0 0.5 4509 24
i175.555 35097 211 0 0.5 4097 22

i150.111 29781 348 2 10.6 5577 64
i150.222 29199 3829 172 26.5 26104 281
i150.333 29712 4027 220 22.1 45093 546
i150.444 29703 604 7 18.3 6056 72
i150.555 29458 531 8 13.0 6751 78

i125.111 24121 1191 39 18.4 8375 105
i125.222 23612 20619 959 63.3 222424 2349
i125.333 24088 17458 1038 41.1 137939 1555
i125.444 24054 2325 69 24.1 10920 127
i125.555 23839 2338 101 29.2 11763 127

i100.111 18479 12752 465 82.7 62798 636
i100.222 18138 40775 2001 190.5 1792061 18071
i100.333 18486 57212 3346 187.4 2202795 28493
i100.444 18419 7863 314 72.3 51660 496
i100.555 18255 21598 994 79.9 212854 2037

i075.111 12956 60188 2376 288.5 768490 7157
i075.222 12698 83844 4100 349.2 - -
i075.333 12899 117720 5714 486.9 - -
i075.444 12777 149620 4602 495.1 2153357 18380
i075.555 12761 147597 7658 584.5 2245747 19196

i050.111 7475 1138414 36611 4151.2 - -
i050.222 7400 1005745 40367 3719.7 - -
i050.333 7423 2383662 124310 9900.6 - -
i050.444 7312 2309766 98514 9783.8 - -
i050.555 7384 1764340 61630 7664.2 - -

i025.111 2356 70114754 1039922 249709.9 - -
i025.222 2347 19846560 282383 66569.9 - -
i025.333 2339 131290943 3945602 441895.3 - -
i025.444 2278 90164493 1596756 294388.1 - -
i025.555 2289 71976083 1178812 170476.5 - -

A Genetic Algorithm for the Index Selection Problem 9

Table 3. Comparing results obtained by LP-heuristics, BnC and GA

BnC (HP9000/720) GA (AMD K5)
Instance

root-t[s] root-gap[%] ttot[s] t[s] ttot[s]

i200.111 1.1 0 1.1 1.5 22.9
i200.222 1.0 0 1.0 1.6 21.2
i200.333 0.9 0 0.9 2.3 28.0
i200.444 1.0 0 1.0 1.3 20.1
i200.555 1.4 0 1.4 1.5 18.7

i175.111 1.2 0 1.2 2.0 22.5
i175.222 1.3 0 1.3 1.6 21.4
i175.333 1.1 0 1.1 3.8 25.4
i175.444 1.1 0 1.1 1.6 21.0
i175.555 2.0 0 2.0 1.3 19.1

i150.111 2.0 0 2.1 1.6 20.6
i150.222 2.5 0 2.5 1.9 24.1
i150.333 1.3 0 1.3 3.3 24.4
i150.444 2.1 0 2.1 1.6 21.3
i150.555 3.3 0 3.3 1.4 20.7

i125.111 4.7 0 4.8 1.5 20.5
i125.222 5.2 0 5.2 2.0 25.0
i125.333 1.6 0 1.6 2.8 23.2
i125.444 4.3 0 4.3 1.5 20.3
i125.555 7.4 0 7.4 2.0 24.1

i100.111 32.6 0 33.3 8.1 24.9
i100.222 25.4 0 25.4 6.9 27.8
i100.333 4.8 0 4.8 2.4 22.4
i100.444 31.6 0.2 37.6 1.5 18.8
i100.555 26.6 0.3 45.2 5.2 26.8

i075.111 83.8 1.9 391.2 3.6 22.3
i075.222 78.9 1.8 773.4 9.7 26.0
i075.333 47.5 0.5 75.9 6.1 27.4
i075.444 92.1 2.3 815.2 1.9 20.3
i075.555 79.1 1.9 457.2 3.4 26.0

i050.111 139.6 7.4 7553.5 4.5 23.8
i050.222 152.4 7.1 6583.4 7.6 25.6
i050.333 134.2 5.2 1692.0 7.7 24.9
i050.444 192.5 8.0 9284.9 5.8 24.5
i050.555 157.4 8.1 10566.7 2.8 23.4

i025.111 565.3 37.7 > 50000 7.0 23.2
i025.222 595.5 38.4 > 50000 6.3 23.3
i025.333 585.5 36.0 > 50000 7.0 22.7
i025.444 691.3 35.8 > 50000 7.6 21.4
i025.555 584.6 34.9 > 50000 5.2 22.2

10 Jozef Kratica, Ivana Ljubić and Dušan Tošić

CPLEX’s running time in seconds; OSL’s number of iterations and its running
time.

Results of the branch-and-cut algorithm described in [8, 9] directly compared
to the GA are given in Table 3. It is clear that AMD Athlon K7/1.333GHz is a
more powerful machine than the one used in [9] (HP 9000/720 at 80 MHz, 59
Specs, 58 MIPS, 18 Mflops), but the exact speedup factor is unknown. This factor
is unfortunately not constant, and greatly depends on instance’s characteristics.
For a fair comparison of the performance, the GA with the same set of parameters
is tested also on AMD K5/100MHz machine with 64MB memory (Pentium I
class machine). The performance on this machine is very similar to that of HP
9000/720.

The first two columns of Table 3 represent the running time of the LP-
heuristics (described in Sect. 2.1) (root-t[s]) and its gap (root-gap[%]), respec-
tively. These values are followed by BnC’s total time needed to obtain optimal
solution, GA’s average time needed to detect the best value, and GA’s total time
needed to execute all 2000 generations.

For the instances of type i200, i175, i150 and i125, solutions obtained by the
LP-heuristics are already optimal, and no branching has been performed. For
some of these instances is the BnC even faster than our GA. On the other side,
the instances of type i100, i075, i050 and i025 seem to be quite challenging for
the exact algorithms, since BnC’s running time grows up exponentially. Even
the initialisation time is at least four times greater than GA’s average running
time. The quality of initial solutions is also very bad (for the group i025, gaps
are even greater than 30%).

In contrast to BnC’s exponential nature, the GA performs very efficiently,
keeping a satisfying quality of the obtained solutions (in the worst case, the
success rate was 10%, and the total running time was less than 2 seconds).

In 50% of the instances, the GA had a success rate of 100%, while in 70% of
them, the average gap was not greater than 0.1%. In only one out of 40 tested
instances, the average gap was greater than 3% (i025.444).

For extended results obtained on the class B of instances, see
http://www.geocities.com/jkratica/instances/. These instances appear to
be easily solvable for BnC, CPLEX and OSL (optimal solutions are usually
achieved within few seconds).

5 Conclusions

We proposed a genetic algorithm for the Index Selection Problem based on bi-
nary encoding, efficient data structures (for the evaluation of the objective func-
tion), on the uniform crossover, and simple mutation. The algorithm is tested
on the class of challenging instances known from the literature. Obtained results
indicate its efficiency and reliability.

The algorithm fits well into the parallel implementation and different is-
land models, described in [15], should be tested. Incorporation of some problem-
dependent variation operators, or a local-search procedures, could possibly make
the algorithm more powerful for the instances of a larger size.

A Genetic Algorithm for the Index Selection Problem 11

Acknowledgements

We thank to A. Caprara and J.J. Salazar Gonzales, the authors of [8, 9], for
providing us the generator of test-instances for the ISP.

Ivana Ljubić is supported by the Doctoral Scholarship Programme of the
Austrian Academy of Sciences (DOC).

References

1. J. Krarup and P.M. Pruzan. The simple plant location problem: Survey and syn-
thesis. European Journal of Operational Research, 12:36–81, 1983.

2. D. W. Tcha and B.-Y. Lee. A branch-and-bound algorithm for the multilevel
uncapacitated facility location problem. European Jornal of Operational Research,
18(1):35–43, 1984.

3. Y. A. Kochetov and E. N. Goncharov. Probabilistic tabu search algorithm for the
multi-stage uncapacitated facility location problem. In B. Fleischmann, R. Lasch,
U. Derigs, W. Domschke, and U. Rieder, editors, Operations Research Proceedings
2000, pages 65–70. Springer, 2000.

4. E. Barcucci, R. Pinzani, and R. Sprugnoli. Optimal selection of secondary indexes.
IEEE Transactions on Software Engineering, 16, 1990.

5. M.Y.L. Ip, L.V. Saxton, and V.V. Raghavan. On the selection of an optimal set
of indexes. IEEE Transactions on Software Engineering, pages 135–143, 1983.

6. A. Caprara, M. Fischetti, and D. Maio. Exact and approximate algorithms for
the index selection problem in physical database design. IEEE Transactions on
Knowledge and Data Engineering, 7(6), 1995.

7. S. Finkelstein, M. Schkolnick, and P. Tiberio. Physical database design for rela-
tional databases. ACM Transactions on Database Systems, 13:91–128, 1988.

8. A. Caprara and J.J. Salazar Gonzalez. A branch-and-cut algorithm for a gener-
alization of the uncapacitated facility location. Problem Trabajos de Operativa -
TOP, 4(1):135–163, 1996.

9. A. Caprara and J.J Salazar Gonzalez. Separating lifted odd-hole inequalities to
solve the index selection problem. Discrete Applied Mathematics, 92:111–134, 1999.

10. J. Kratica. Improving performances of the genetic algorithm by caching. Computers
and Artificial Intelligence, 18(3):271–283, 1999.

11. J. Kratica. Parallelization of Genetic Algorithms for Solving Some NP-complete
Problems (in Serbian). PhD thesis, Faculty of Mathematics, Belgrade, 2000.

12. G. Syswerda. Uniform crossover in genetic algorithms. In 3th International Confer-
ence on Genetic ALgorithms, ICGA’89, pages 2–9, Internet, 1989. Morgan Kauf-
mann, San Mateo, Calif.

13. V. Filipović. Proposition for improvement tournament selection operator in genetic
algorithms (in serbian). Master’s thesis, Faculty of Mathematics, Belgrade, 1998.

14. V. Filipović, J. Kratica, D. Tošić, and I. Ljubić. Fine grained tournament selection
for the simple plant location problem. In 5th Online World Conference on Soft
Computing Methods in Industrial Applications, WSC5, pages 152–158, Internet,
2000. ISBN: 951-22-5205-8.

15. Erick Cantu-Paz. Efficient and Accurate Parallel Genetic Algorithms. Kluwer
Academic Publishers, Boston, 2000.

