
Favoritenstraß ��������� / E186, A-1040 Wien, Austria� �
	 . +43 (1) 58801-18601, Fax +43 (1) 58801-18699
www.cg.tuwien.ac.at

Forschungsbericht /
�
���

hnical Report

TECHNISCHE UNIVERSITÄT WIEN
Institut für Computergraphik und Algorithmen

A Memetic Algorithm for

Minimum-Cost

Vertex-Biconnectivity

Augmentation of Graphs

I. Ljubić, G. R. Raidl

TR-186-1-02-01

June 2002

A Memetic Algorithm for Minimum-Cost Vertex-Biconnectivity

Augmentation of Graphs

Ivana Ljubić and Günther R. Raidl∗

Institute of Computer Graphics and Algorithms,

Vienna University of Technology,

Favoritenstraße 9–11/186, 1040 Vienna, Austria

{ljubic|raidl}@ads.tuwien.ac.at

Contact author: Günther Raidl

phone: +43(1)58801-18616, fax: +43(1)58801-18699

REVISED VERSION

December 2002

Abstract

This paper considers the problem of augmenting a given graph by a cheapest possible set of addi-

tional edges in order to make the graph vertex-biconnected. A real-world instance of this problem is

the enhancement of an already established computer network to become robust against single node

failures. The presented memetic algorithm includes effective preprocessing of problem data and a

fast local improvement strategy which is applied before a solution is included into the population.

In this way, the memetic algorithm’s population consists always of only feasible, locally optimal

solution candidates. Empirical results on two sets of test instances indicate the superiority of the

new approach over two previous heuristics and an earlier genetic algorithm.

Keywords:

vertex-biconnectivity, connectivity augmentation, network survivability, memetic algorithm,

evolutionary computation

There are two main aspects for robust communication networks: reliability and survivability. Re-

liability is the probability that a network functions according to a specification. Survivability is

the ability of a network to perform according to a specification after some failure. In many ap-

plications it is not acceptable that the failure of a single service node—be it a computer, router,

or other device—leads to a disconnection of other nodes. Survivability is extremely important in

modern telecommunication networks, in particular in backbones. Redundant connections need to

be established to provide alternative routes in case of a temporary break of any one node.

This kind of robustness of a network is in graph theory described by means of vertex-connectivity.

A network is said to be vertex k-connected if at least k nodes must be deleted (together with the

set of their incident links) in order to separate it into two or more disconnected components. A

k-connected network, k ≥ 2, is said to be survivable. The probability of a second failure before a

first one is repaired is often neglected; k-connected networks with k ≥ 3 are usually considered not

worth the additional costs. Therefore, this paper focuses on the most common case of biconnected

networks, where k = 2.

In the vertex-biconnectivity augmentation problem, a connected but not vertex-biconnected net-

work is given. Thus, there are some critical nodes, called cut-points, whose removal would separate

the network into unconnected components. We say that we cover a cut-point when we add some

links to ensure that the removal of this node no longer disconnects the network. The global aim is

to identify a set of additional links with minimum total costs in order to cover all cut-points.

Formally, the vertex-biconnectivity augmentation problem for graphs (V2AUG) is defined as fol-

lows. Let G = (V, E) be a vertex-biconnected, undirected graph with node set V and edge set E

representing all possible connections. Each edge e ∈ E has associated cost(e) > 0. A connected,

spanning, but not vertex-biconnected subgraph G0 = (V, E0) with E0 ⊂ E represents a fixed,

existing network, and Ea = E \ E0 is the set of edges that may be used for augmentation. The

objective is to determine a subset of these candidate edges Es ⊆ Ea so that the augmented graph

Gs = (V, E0 ∪ Es) is vertex-biconnected and

cost(Es) =
∑

e∈Es

cost(e) (1)

is a minimum. See Fig. 2a for an example.

Eswaran and Tarjan (1976) have shown this problem to be NP-hard. Exact optimization algorithms,

like branch-and-bound or cutting-plane approaches, have been developed for V2AUG but are limited

1

in their applicability to instances of moderate size. For large instances, effective heuristic methods

are needed.

This article describes a new meta-heuristic approach, whose basic structure is outlined in Fig. 1.

From the problem’s original graphs, a more compact block-cut graph GA is deterministically de-

rived. Then, a new enhanced preprocessing is applied, which may shrink the block-cut graph

substantially by fixing or discarding certain augmentation edges in safe ways. Some further data

structures allowing the following optimization to be implemented in a more efficient way are also cre-

ated during preprocessing. The core of the whole system is a new evolutionary algorithm that uses

problem specific variation operators and strongly interacts with a local improvement procedure—a

so-called memetic algorithm (MA) (Moscato, 1999). This MA searches for a low-cost solution on

the reduced block-cut graph. The best solution found is finally mapped back to a solution for the

original V2AUG instance.

In the sequel, Sect. 1 introduces the block-cut graph. An overview on former approaches to V2AUG

and related problems is given in Sect. 2. Section 3 explains the preprocessing in detail, and Sect. 4

focuses on the memetic algorithm. In Sect. 5, empirical results are presented and compared to

those of three previous heuristic approaches, including a genetic algorithm. Conclusions are drawn

in Sect. 6.

1 The Block-Cut Graph

All maximal subgraphs of the fixed graph G0 that are already vertex-biconnected, i.e. the vertex-

biconnected components, are referred to as blocks. Any two blocks share at most a single node, and

this node is a cut-point; its removal would disconnect G0 into at least two components.

A block-cut tree T = (VT , ET) with node set VT and edge set ET is an undirected tree that reflects

the relations between blocks and cut-points of a fixed graph G0 in a simpler way (Eswaran and

Tarjan, 1976). Figure 2b illustrates this. Two types of nodes form VT : cut-nodes and block-

nodes. Each cut-point in G0 is represented by a corresponding cut-node in VT , each maximal

vertex-biconnected block in G0 by a unique block-node in VT .

A cut-node vc ∈ VT and a block-node vb ∈ VT are connected by an undirected edge (vc, vb) in ET

if and only if the cut-point corresponding to vc in G0 is part of the block represented by vb. Thus,

cut-nodes and block-nodes always alternate on any path in T . The resulting structure is always a

2

tree, since a cycle would form a larger vertex-biconnected component, and thus, the block-nodes

would not represent maximal biconnected components.

A block-node is associated with all nodes of the represented block in G0 excluding cut-points. If the

represented block consists of cut-points only, the block-node is not associated with any node from

V . In this way, each node from V is associated with exactly one node from VT , but not vice-versa.

In contrast to the previous definition of the block-cut tree according to Eswaran and Tarjan (1976),

we apply here the following simplification: Block-nodes representing blocks that consist of exactly

two cut-points only are unimportant and therefore removed; a new edge directly connecting the

two adjacent cut-nodes is included instead. In Fig. 2b, the block-node labeled “{}” is an example.

After the block-cut tree T has been derived for graph G0, all augmentation edges in Ea are su-

perimposed on T forming a new edge-set EA: For each edge (u, v) ∈ Ea, a corresponding edge

(u′, v′) is created with u′, v′ ∈ VT being the nodes that are associated with u, respectively v; edge

costs are adopted, i.e., cost((u′, v′)) = cost((u, v)). The so-called (augmented) block-cut graph

GA = (VT , ET ∪ EA) may be a multi-graph containing self-loops and multiple edges between two

nodes. However, applying the following safe reductions yields a simple graph:

1. Self-loops (u, u) ∈ EA, as, e.g., edge e′1 in Fig. 2b, are discarded. They can never help in

establishing biconnectivity.

2. Each augmentation edge that connects the same nodes as an edge from ET is discarded, since

such an edge can also never help in establishing biconnectivity. See edge e′2 in Fig. 2b.

3. Augmentation edges connecting two cut-nodes that are adjacent to the same block-node in

T are also discarded because of the same reason; see edge e′3 in Fig. 2b.

4. From multiple augmentation edges connecting the same nodes from VT , only one with mini-

mum weight is retained; see edge e′4 in Fig. 2b when assuming cost(e′4) < cost(e′5). The more

expensive edges may never appear in an optimum solution.

In order to be finally able to derive the original edges Es ⊆ Ea corresponding to a solution S ⊆ EA

identified on the block-cut graph, it is necessary to maintain a back-mapping from EA to Ea.

The computational effort for deriving the block-cut graph is linear in the number of edges of the

original graph G (O(|E|)), since all maximal biconnected subgraphs can be found in this time and

each edge needs to be considered only once.

3

2 Previous Work

Eswaran and Tarjan (1976) were the first investigating V2AUG and showed it to be NP-hard. An

exact polynomial-time algorithm could only be found for the special case when G is complete and

each edge has unit costs (Hsu and Ramachandran, 1993).

Frederickson and Jájá (1981) provided an approximation algorithm for the general case which

finds a solution within a factor 2 of the optimum, supposing graph G0 is connected. If G0 is not

necessarily connected, the approximation factor increases to 3, however, we do not consider this

case here. The algorithm includes a preprocessing step that transforms the fixed graph G0 into

the corresponding block-cut tree, superimposes the augmentation edges, and performs the basic

reductions as described in the last section. The augmented block-cut graph is further extended

to a complete graph such that there is an augmentation edge for each pair of nodes (u, v) 6∈ ET .

All these augmentation edges get new “reduced” costs according to the following definition and

maintain back-references to the original augmentation edges where the costs come from:

cost ′(u, v) = min ({cost(x, y) | (x, y) ∈ EA ∧ u, v are on the (x, y)-path in T} ∪ {∞}) . (2)

In the main part of the algorithm, the block-cut tree T is directed toward an arbitrarily chosen

leaf r, the root, yielding an ingoing arborescence. Each directed tree-edge is assigned zero costs.

Each cut-node is substituted by a star-shaped structure including new dummy-nodes in order to

guarantee that strongly connecting the block-cut tree implies vertex-biconnectivity of the underlying

fixed graph G0. Two different types of augmentation edges are distinguished: A back-edge connects

a node with one of its descendants in the directed block-cut tree; all other augmentation edges

are called cross-edges. Back-edges are directed from the node nearer to the root toward the node

farther away; cross-edges are replaced by pairs of reversely directed edges.

A minimum outgoing spanning arborescence (MOSA) of a weighted directed graph with a fixed root

r is a directed spanning tree of minimum weight such that all nodes except r have incoming degree

one, and no edge is directed toward r. Frederickson and Jájá derive such a MOSA for the directed

block-cut graph to obtain the solution’s edge-set Es. When using an efficient MOSA-algorithm as

described by Gabow et al. (1986), the total computational effort is O(|V |2). Frederickson and Jájá

(1982) further point out some relations between V2AUG and the traveling salesman problem.

This approximation algorithm has been improved by Khuller and Thurimella (1993). The main

difference is that the extension of the block-cut graph to a complete graph is omitted. Instead,

4

each cross-edge (u, v) is replaced by two reversely directed cross-edges (u, v) and (v, u) and two

back-edges (lca(u, v), u) and (lca(u, v), v), where lca(u, v) denotes the least common ancestor of u

and v in T , i.e. the first node the paths from u to r and v to r have in common. Back-edges are

again directed from the node nearer to the root toward the node farther away. Further, no dummy

nodes are included, but each augmentation edge (vc, v) going out of some cut-point vc is replaced

by an edge (vb, v), where vb is the node adjacent to vc on the undirected path from vc to v in T . The

algorithm exhibits a time complexity of only O(|E| + |V | log |V |), but has still the approximation

factor 2. Practical results of this algorithm can be found in the empirical comparison in Sect. 5.

An iterative approach based on Khuller and Thurimella’s algorithm has been proposed by Zhu et al.

(1999); for more details, see also Zhu (1999). In each step, a drop-heuristic measures the gain of

each augmentation edge if it would be included in a final solution. This is achieved by calling the

MOSA-algorithm for each edge once with its cost set to zero and once with its original cost. The

edge with the highest gain is then fixed, and its cost are permanently set to zero. The process is

repeated until the obtained MOSA has zero total costs. Furthermore, the whole algorithm is applied

with each leaf of the block-cut tree becoming once the root, and the overall cheapest solution is the

final one. Although the theoretical approximation factor remains 2, practical results are usually

much better than when applying Khuller and Thurimella’s algorithm; our empirical comparison in

Sect. 5 also supports this. However, time requirements are raised substantially.

A straight-forward genetic algorithm for V2AUG has been proposed by Ljubić and Kratica (2000).

This algorithm is based on a binary encoding in which each bit corresponds to an edge in Ea.

Standard uniform crossover and bit-flip mutation are applied. Infeasible solutions are repaired

in Lamarckian way by a greedy algorithm which temporarily removes cut-points one by one and

searches for the cheapest augmentation edges that reconnect the separated components. The major

disadvantage of this genetic algorithm is its high computational effort, which mainly comes from

the repair strategy having a worst-case running time of O(|V | |Ea| log |V |) per candidate solution.

Another, weaker kind of connectivity property is edge-biconnectivity. It means that a graph re-

mains connected after the removal of any single edge. While vertex-biconnectivity implies edge-

biconnectivity, the reverse does in general not hold. Similar algorithms as for V2AUG have been

applied to the edge-biconnectivity augmentation problem (E2AUG). From the algorithmic point-

of-view, E2AUG is easier to deal with, since it does not require the block-cut graph data structure.

The works from Eswaran and Tarjan (1976), Frederickson and Jájá (1981), Khuller and Thurimella

5

(1993), and Zhu et al. (1999) also address E2AUG. Raidl and Ljubić (2002) describe an effective

evolutionary algorithm for E2AUG, which scales well to large problem instances and outperforms

several previous heuristics. A compact edge set encoding and special initialization and variation

operators that include a local improvement heuristic are applied.

Based on this algorithm for E2AUG, the memetic algorithm for V2AUG presented in this article

has been developed. Preliminary results were reported in Kersting et al. (2002). Major differences

to the evolutionary algorithm for E2AUG lie in the underlying data structures (e.g., the now

necessary block-cut graph), the preprocessing, the recombination and mutation operators, the local

improvement algorithm, and the way how this local improvement is integrated in the evolutionary

algorithm. While it is relatively easy to check and eventually establish the cover of a single fixed

edge in case of E2AUG, this is significantly harder to achieve for a cut-node in the V2AUG-case,

especially in an efficient way: A critical fixed edge can always be covered by a single augmentation

edge, and it is obvious which augmentation edges are able to cover the critical edge. On the other

side, a combination of multiple augmentation edges is in general necessary to completely cover a

cut-node.

There are further problem classes related to V2AUG and E2AUG:

Finding a minimum-cost edge or vertex k-connected spanning subgraph of a graph (without any

fixed edges) is also known to be NP-hard for k ≥ 2. Approximation algorithms are described

in (Khuller, 1997). Cheriyan et al. (2001) developed an improved approximation algorithm for

the vertex k-connectivity case and give a survey on former approaches. To our knowledge, meta-

heuristics have not yet been applied to this problem.

In the context of graph drawing, Fialgo and Mutzel (1998) developed an algorithm for augmenting

graphs that must remain planar.

Another class of related problems is the augmentation of a multi-graph, i.e., a graph that may

contain multiple edges between the same vertices, with the smallest number of unweighted edges so

that the resulting graph becomes edge or vertex k-connected. In particular the edge k-connectivity

case turned out to be an easier problem: Watanabe and Nakamura (1987) described a polynomial

time algorithm for solving the problem to optimality. In case of vertex k-connectivity, exact poly-

nomial time algorithms are known for k ∈ {2, 3, 4}; whether the problem is NP-hard for general

k ≥ 5 is still an open question. A recent study on this topic can be found in Ishii (2000).

6

The more general problem of designing a minimum-cost network with individually specified con-

nectivity requirements for each node—the so-called survivable network design problem—has been

attacked by Stoer (1992) using a polyhedral approach. By means of cutting-plane techniques the

algorithm is able to find optimal or near-optimal solutions for instances of small and moderate

size. Monma and Shallcross (1989) considered a variant of this problem in which the connectivity

requirements of each node are limited to {0, 1, 2}.

Recently, Fortz (2000) studied a new kind of survivable network design problem with bounded rings.

It includes an additional constraint limiting the maximum length of cycles for which no shortcuts

exist. The author provides a study of the underlying polyhedron and proposes several classes of

facet-defining inequalities used in a branch-and-cut algorithm. Several heuristics are also proposed

in order to solve real-world instances of larger size.

3 Preprocessing

The memetic algorithm’s preprocessing derives the block-cut graph from the fixed graph G0 and

the set Ea of augmentation edges as described in Sect. 1. In addition, some more sophisticated

deterministic rules are applied in order to further reduce the block-cut graph, and other supporting

data structures needed for an efficient implementation of the main algorithm are created. The

following subsections describe these mechanisms in detail.

3.1 When is a Cut-Node Covered?

A block-cut tree’s edge e ∈ ET is said to be covered by an augmentation edge eA = (u, v) ∈ EA if

and only if e is part of the unique path in T connecting u with v. In order to completely cover a

cut-node vc ∈ VT , all its incident tree-edges need to be covered, but this is in general not sufficient.

If vc and its incident edges are removed from T , the tree falls apart into l connected components

Cvc
1 , . . . , Cvc

l , where l is the degree of vc in T ; we call them cut-components of vc; Figure 3 illustrates

this. To completely cover vc, at least l − 1 augmentation edges are needed such that all cut-

components Cvc
1 , . . . , Cvc

l are united into one connected graph.

We say that an augmentation edge eA = (u, v) ∈ EA contributes in covering the cut-node vc, if and

only if two tree-edges incident to vc are covered by eA. Such an augmentation edge is obviously

not incident to vc and always connects two cut-components Cvc
i and Cvc

j .

7

For any cut-node vc ∈ VT , let Γ(vc) ⊆ EA be the set of augmentation edges that contribute in cov-

ering vc. Furthermore, for each eA ∈ EA, let Ψ(eA) ⊆ VT be the set of cut-nodes to whose covering

eA contributes, i.e., Ψ(eA) = {vc ∈ VT | eA ∈ Γ(vc)}. Preprocessing explicitly computes and stores

the sets Γ(vc) for all cut-nodes and the sets Ψ(eA) for all augmentation edges as supporting data

structures. This is done by first performing a depth-first search on T and storing for each node its

depth and a reference to its parent node, in order to be able to efficiently determine the tree-path

between any pair of nodes. Then, the computation of all sets Γ(vc) and Ψ(eA) can be performed in

O(|EA| |VT |) time. The needed space for these data structures is bounded above by O(|EA| |VT |).
In the average case, however, T is a natural and not degenerated tree having diameter O(log |VT |).
Then, Γ and Ψ need space O(|EA| log |VT |).

For each entry e ∈ Γ(vc), preprocessing also stores references to the two tree-edges being incident

to vc and covered by e; we denote them by evc
T1(e) and evc

T2(e). They directly reflect the two cut

components edge e can connect.

In the memetic algorithm, it is necessary to efficiently check if a certain cut-node is covered by a

subset of augmentation edges S ⊆ EA. With the precomputed Γ and Ψ and the aid of a temporary

union-find data structure with weight balancing and path compression (Aho et al., 1983, pp. 183–

189), this check can be performed in nearly linear time O(|S|). In most cases the degree of the

cut-node vc is less than four. Then, even no union-find data structure is needed, since it is sufficient

to check whether each of the tree-edges incident to vc is covered by some augmentation edge being

not incident to vc.

3.2 Reducing the Block-Cut Graph

In addition to the simple reductions of the block-cut graph described in Sect. 1, we apply the

following more sophisticated rules which are partly adopted from the preprocessing for E2AUG in

Ljubić and Raidl (2001). These rules are safe in the sense that they never prevent the following

optimization from finding an optimal solution.

Edge Elimination: If there are two edges eA, e′A ∈ EA, cost(eA) ≤ cost(e′A), and eA covers

all those tree-edges that are covered by e′A (in addition to others), e′A is obsolete and can be

discarded; see Fig. 4a. All such edges can be identified in O(|VT |2) time as a byproduct of a

8

dynamic programming algorithm from Frederickson and Jájá (1981) for computing the reduced

costs of Eq. (2).

Fixing of Edges: An edge eA ∈ EA must be included in any feasible solution to the V2AUG

problem if it represents the only possibility to connect a cut-component Cvc
i of a cut-node vc to

any other cut-component of vc. In more detail, we consider for each cut-node vc its set Γ(vc) and

look for those edges being the only ones able to cover one of the tree-edges incident to vc. Such

augmentation edges are fixed by moving them from EA to ET ; see edge e′′A in Figs. 4b and 4c. The

corresponding original augmentation edges from Ea are permanently marked to be included in any

future solution. The whole procedure runs in O(|VT | |EA|) time.

Shrinking: By fixing an edge, a cycle is introduced in T . This cycle forms a new vertex-

biconnected component that can be shrinked into a single new block-node v∗ as shown in Fig. 4d.

Let Z ⊆ VT be the set of nodes forming the cycle. The following rules are applied:

1. Each block-node vb ∈ Z is remapped to v∗. All tree-edges between vb and a node u 6∈ Z are

remapped to (v∗, u). Each cut-node vc ∈ Z having degree two is now completely covered and

therefore handled in the same way. All the edges connecting nodes in Z are removed.

2. The remaining cut-nodes vc ∈ Z are not remapped to v∗. Instead, their membership to the

new block is expressed via new edges (v∗, vc).

3. All augmentation edges incident to one of the nodes in Z are superimposed anew on the

modified block-cut tree according to the rules of Sect. 1.

After shrinking all cycles in T , all modifications are also reflected to the supporting data structures.

Owing to the reductions, more edges may become available for elimination and/or fixing. Therefore,

all reduction steps are repeated until no further shrinking is possible.

An upper bound for the total effort of preprocessing is O(|VT |2|EA|) since edge elimination, the

fixing of edges, and shrinking may theoretically iteratively be applied up to O(VT) times. However,

this happens only in extreme situations and the expected total effort is lower, as also the empirical

results in Sect. 5 document.

9

4 The Memetic Algorithm

It is well known that classical evolutionary algorithms are usually less efficient in fine-tuning so-

lutions in complex search-spaces (Michalewicz, 1996). For many hard combinatorial optimization

problems combinations of evolutionary algorithms and local improvement techniques have been

applied with great success. In a memetic algorithm, candidate solutions created by an evolution-

ary algorithm framework are fine-tuned by some local improvement procedure. The exploration

abilities of the evolutionary algorithm are complemented with the exploitation capabilities of local

improvement. For a more detailed introduction to memetic algorithms, see Moscato (1999).

The memetic algorithm this article proposes for V2AUG is based on a straight-forward steady-

state evolutionary algorithm as shown in Fig. 5. In each iteration, k-ary tournament selection with

replacement (Blickle, 1997) is performed in order to select two parental solutions for mating. A

new candidate solution is always created by recombining these parents, mutating it with a certain

probability, and applying local improvement. Such a solution replaces always the worst solution in

the population with one exception: To guarantee a minimum diversity, a new candidate whose set

of augmentation edges S is identical to that of a solution already contained in the population is

discarded (Raidl and Gottlieb, 1999).

As a central element of the memetic algorithm, local improvement is applied to each randomly

created initial solution and to each solution derived by recombination and possibly mutation. In

this way, the evolutionary algorithm’s population always contains only locally optimal solutions

with respect to the number of augmentation edges. The following subsections describe in detail

how solutions are represented and local improvement, initialization, recombination, and mutation

are performed.

4.1 Representation of Solutions

Many evolutionary algorithms for combinatorial optimization problems represent candidate so-

lutions by vectors of fixed length and apply classical operators as k-point or uniform crossover

and position-wise mutation. Ljubić and Kratica (2000) followed this concept with their genetic

algorithm for V2AUG and represented a solution by a vector of |Ea| Booleans indicating which

augmentation edges are included in the solution.

10

The main disadvantage of this approach is that created candidate solutions need not to be feasible;

an expensive repair strategy, which also reduces the variation operators’ locality and heritability is

necessary. Furthermore, the memory effort for storing a solution is O(|Ea|).

In the memetic algorithm, a candidate solution is represented by directly storing references to all

the augmentation edges of S ⊆ EA in the form of a hash-table. In this way, only O(|S|) = O(|V |)
space is needed, since |S| < |V | in any solution that is locally optimal with respect to the number

of edges (in fact, |S| ¿ |VT | in most larger instances). Using a hash-table allows an edge to be

added, deleted, or checked for existence in constant time.

4.2 Local Improvement

A feasible candidate solution S is said to be locally optimal with respect to the number of edges,

if the removal of any edge e ∈ S violates the biconnectivity-property of graph Gs = (V,E0 ∪ Es),

where Es ⊆ Ea is the set of original augmentation edges corresponding to S united with the

edges fixed during preprocessing. An edge e ∈ S is said to be redundant if its removal does not

violate the biconnectivity-property of Gs. The local improvement operator shown in Fig. 6 and

described in the following makes a given feasible solution locally optimal by removing redundant

edges. It is specifically designed to perform efficiently on sparse solutions where |S| = O(|VT |),
since the solutions created by initialization, recombination, and mutation do not usually have

many redundant edges.

As first step, the algorithm identifies so-called obviously essential edges that must remain in S.

An edge e ∈ S is obviously essential if it is the only one from S able to connect a certain cut-

component Ci
vc

of a cut-node vc to any other of vc’s cut-components—compare the fixing of edges

during preprocessing. Such obviously essential edges from S are determined efficiently by finding

each tree-edge eT incident to a cut-node vc and covered only once by an edge e ∈ S that is

not incident to vc; e is then obviously essential. The worst-case time complexity of this part of

the algorithm, when implemented as shown in the pseudo-code, is O(|S| |VT |). However, since

|Ψ(e)| = O(log |VT |) in the expected case, the average running-time is O(|VT |+ |S| log |VT |).

The remaining not obviously essential edges from S, in the pseudo-code denoted by set R, are then

processed one-by-one in decreasing-costs order. Each edge e ∈ R is temporarily removed from S,

and the cut-nodes in whose covering e contributes, i.e. all vc ∈ Ψ(e), are checked if they remain

11

covered (see Sect. 3.1). If any of them is now uncovered, e is not redundant and therefore included

in S again.

In the worst case, the total computational effort of this local improvement procedure is O(|S|2|VT |)
per call. The example in Fig. 7 illustrates this: Assuming each block-node in the shown block-cut

graph represents a single node in the original graph G0, there are |VT | = (|V | − 2)/3 = O(|V |)
cut-nodes having all degree four. No augmentation edge is obviously essential. O(|S|) = O(|VT |)
augmentation edges incident to block-nodes 1 and 2 contribute in the covering of each cut-node. On

the other side, each of these augmentation edges contributes in the covering of O(|VT |) cut-nodes.

Since the time for checking whether a single cut-node remains covered when a certain augmentation

edge is removed is O(|S|), it takes O(|VT | |S|) time to completely check an augmentation edge for

redundancy, and the overall effort is O(|S|2|VT |) = O(|VT |3) per solution.

However, since |Ψ(e)| = O(log |VT |) on average, the average time for checking one edge from R

for redundancy is O(|S| log |VT |), and the average total time for one complete local improvement

is O(|VT | + |S| log |VT | + |R| |S| log |VT |). In case of the memetic algorithm’s candidate solutions,

usually most edges are obviously essential; thus, |R| is generally small.

Another possibility for checking an edge e ∈ S for redundancy is to temporarily remove it and

to check whether the augmented graph G′
s = (V,E0 ∪ E′

s), where E′
s ⊂ Ea is the set of original

augmentation edges corresponding to S\{e}, remains biconnected. Using the algorithm from Tarjan

(1972), the biconnectivity-check can be performed in time O(|V | + |S|). However, experimental

results have shown that in the memetic algorithm, this alternative redundancy-check is particularly

on larger problem instances significantly slower than the originally proposed one. The explanation

lies in the fact that in locally optimal solutions, |S| is typically substantially smaller than |VT |,
since several cut-points can often be covered by a single augmentation edge. Since we apply

local improvement only to candidate solutions obtained from the initialization, recombination, or

mutation procedures, and these solutions do not usually have many redundant edges, |S| ¿ |VT |
also holds in most of our cases. On the other hand, when considering local improvement without

the memetic algorithm framework and the number of augmentation edges |S| may be large, the

redundancy-check using Tarjan’s algorithm would presumably be more efficient.

12

4.3 Initialization

A solution of the initial population is created by starting with an empty edge-set S. Iteratively,

an edge is randomly selected from EA and included in S if it is not redundant. This process is

repeated until all cut-nodes are completely covered, thus, the augmented graph Gs is biconnected.

Intuitively, cheaper edges appear in optimum solutions more likely than expensive edges. Therefore,

the selection of edges for inclusion is biased toward cheaper edges according to a scheme originally

proposed in Raidl (2000) for the selection of edges to be included by mutation in candidate solutions

to the degree-constrained minimum spanning tree problem: During preprocessing, the edges in EA

are sorted according to costs. In this way, each edge has a rank, with ties broken randomly. A

rank, thus an edge, is selected by sampling the random variable

rank = b|N (0, s)| |VT |c mod |EA|+ 1 , (3)

where N (0, s) is a normally distributed random variable with zero mean and standard deviation s,

a strategy parameter controlling the strength of the scheme’s bias toward cheap edges.

A solution created in this way is not necessarily locally optimal since the inclusion of an edge

may make previously included edges redundant. Therefore, the memetic algorithm applies local

improvement also to each initial solution.

4.4 Recombination

The recombination operator was designed with the aim to provide highest possible heritability, i.e.

an offspring should consist of edges from its two parental solutions only. In the first step, edges

common in both parents S1 and S2 are always adopted: S ← S1∩S2. Then, while not all cut-nodes

are completely covered, an edge is selected from the set of remaining parental edges (S1 ∪ S2) \ S

and included in the offspring S if it is not redundant. To emphasize the inclusion of low-cost edges

again, they are selected via binary tournaments with replacement.

Figure 8 shows the recombination in pseudo-code. The check, whether an edge e actually helps in

covering a cut-node—thus, if e is not redundant—can be performed efficiently in nearly constant

amortized time when union-find data structures are maintained for all cut-nodes of degree greater

than three. Compare the check whether a set of augmentation edges covers a cut-node described

13

in Sect. 3.1. The computational effort of the whole recombination procedure is O((|S1|+ |S2|) |VT |)
in the worst case and O((|S1|+ |S2|) log |VT |) on average.

4.5 Edge-Delete Mutation

The aim of mutation is to introduce new edges not appearing in the population into candidate

solutions. Fig. 9 shows the mutation procedure in pseudo-code. From the candidate solution S, an

edge e is selected and removed. That way, one or more cut-nodes from Ψ(e) become uncovered.

These uncovered cut-nodes are identified and processed in random order: For each such cut-node vc,

the edges from Γ(vc) are considered in random order and included in S if they help in reestablishing

the cover of vc, i.e., if they connect two yet unconnected cut-components of vc.

The selection of the edge to be removed is biased toward more expensive edges by performing a

binary tournament with replacement on S. The new edges to be included in S for reestablishing

biconnectivity are chosen in an unbiased way to not reduce the population’s diversity too much.

As initialization and recombination, this procedure does not guarantee to yield a locally optimal

solution. Therefore, the memetic algorithm applies local improvement also after mutation. An

upper bound for the worst-case computational effort of mutation is O(|VT | |EA|). However, mutation

is substantially faster in practice, and the time needed for local improvement dominates the time

for mutation.

5 Empirical Results

To test the presented memetic algorithm and to compare it with previous approaches, problem

instances of different size and structure were used. Since shrinking can always trivially reduce the

problem of augmenting a general connected graph G0 to the problem of augmenting a tree, we

consider here only instances in which the fixed graph G0 is a spanning tree. The used test instances

were adopted from the following two sources.

• Random instances created by means of Zhu’s generator1:

Table 1 shows the characteristics of 27 instance-groups A1 to R2, each consisting of 30 different

instances. We call them random instances, since they were randomly created by a program
1Available at www.ads.tuwien.ac.at/research/NetworkDesign/Augmentation.

14

from Zhu (1999): Starting from |V | nodes, edges are created between each pair of nodes

u, v ∈ V , u 6= v, with the probabilities listed in column dens, the density of the graph. If the

resulting graph is not biconnected, the creation is restarted. A random spanning tree is then

determined on the graph yielding the set of fixed edges E0. All other edges form set Ea and

get assigned randomly chosen integer costs from the intervals listed in column cost(e).

Note that instances with the same names A1 to R2 and the same characteristics have already

been used in previous works (Zhu et al., 1999, Ljubić and Kratica, 2000, Raidl and Ljubić,

2002), however with only one representative instance per group instead of 30. Column |Ea|
of Table 1 lists the average numbers of augmentation edges and column CP(G0) the average

numbers of cut-points.

• Instances derived from Reinelt’s TSP-library (TSPLIB)2:

The larger instances listed in Table 2 are adopted from real-world traveling salesman problems.

pr226, lin318, pr439, and pcb442 are of Euclidean type, meaning that nodes represent points

in the Euclidean plane, edges exist between any two nodes, and edge costs are the Euclidean

distances of the corresponding points rounded up to the nearest integer value. The largest

instance pa561 is not of Euclidean type; it is a complete graph with edge costs directly given

by a matrix.

Since all these instances represent complete base graphs G, and incomplete graphs are of par-

ticular interest, too, additional sparse instances pr226-sp, lin318-sp, pr439-sp, pcb442-sp,

and pa561-sp were derived from the original TSPLIB-graphs by considering for each node

the edges to its d|V | · 10%e nearest neighbors only, i.e. the 10%-nearest-neighbor graphs. In

case of instance pr226-sp, the 10%-nearest-neighbor graph turned out to be not biconnected,

and the 15%-nearest-neighbor graph was used instead.

For the Euclidean instances we further calculated Delaunay triangulations yielding additional

sparse instances pr226-dt, lin318-dt, pr439-dt, and pcb442-dt.

In all these cases, minimum spanning trees were chosen as fixed graphs G0.

In their last six columns, Tables 1 and 2 show the results of the memetic algorithm’s preprocessing:

the numbers of nodes |VT |, augmentation edges |EA|, and cut-nodes CP(T) of the block-cut-graphs,

the CPU-times tpre for preprocessing (in seconds) and the savings factors CP(G0)/CP(T) and

2Available at www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95.

15

|Ea|/|EA|. In case of the random instances, these values are average values over the 30 instances

per group. All experiments described in this section were performed on a Pentium-III/800MHz

PC.

Preprocessing results document that the fixing of augmentation edges, which enables a shrinking of

the block-cut-graph and therefore a reduction of cut-nodes, is highly effective in sparser graphs like

those of groups A1 to C3. In these cases, the numbers of cut-nodes could often be reduced to less than

one half. As a consequence, also the numbers of augmentation edges could be substantially reduced.

16% of the instances from groups A1 to B4 could even be completely solved by preprocessing since

it was able to reduce each block-cut graph to a single block-node.

On denser problem instances, no edges could be fixed, thus, the numbers of cut-nodes in the

block-cut graphs are identical to the numbers of cut-points in the original graphs. However, edge-

elimination was in these cases highly effective. On average over all instances, the number of aug-

mentation edges that need to be considered for further optimization could be reduced to about a

quarter of the edges in Ea.

The following setup was used for the memetic algorithm as it proved to be robust for many different

classes of instances in preliminary tests: Population size |P | = 800; group size for tournament

selection k = 5; parameter for biasing initialization to include cheaper edges s = 2.5; crossover

probability pcro = 1; mutation probability pmut = 0.7. Each run was terminated when no new

best solution could be identified during the last Ω = 10 000 iterations. On all the instances we

considered, this criterion allowed the MA to converge so that only minor improvements in the

quality of final solutions can be expected when prolonging the runs. Thus, the main goal was to

find high-quality solutions, and running times were considered only secondary.

We compare the memetic algorithm (MA) to the heuristics from Khuller and Thurimella (1993)

(KT), Zhu et al. (1999) (ZKR), and the genetic algorithm from Ljubić and Kratica (2000) (LK).

These previous heuristics were implemented and applied as described in these works. Thus, the

new enhanced preprocessing of the MA was not used by them.

For each instance, KT has been run with each leaf-node of the block-cut tree becoming once the root

of the arborescence, and the best solution obtained in this way is regarded as KT’s final solution

to the instance.

16

ZKR could only be applied to the smaller random instances of groups A1 to N2 because of its high

computational effort. (The total CPU-time of a run was limited to 20 000 seconds.) For instances

of groups M1 to N2, only 10% of all leaves were subsequently tried as root of the block-cut tree,

while for the other instances, all leaves were considered.

The setup of LK was the same as described in Ljubić and Kratica (2000) except for the termination

criterion, which was changed to be similar to that of the MA in order to ensure convergence: A run

was terminated when no new best solution could be identified during the last 100 000 evaluations.

(Note, however, that the number of evaluations of the MA and LK may not directly be compared

due to the different computational complexities of the algorithms.)

Table 3 shows average results of the four approaches on the random instances. Each heuristic

was run once on each of the 30 instances of each group. For reference purposes, we were able to

solve all these instances also to guaranteed optimality by a not yet published branch-and-cut-and-

price approach. This exact algorithm relies on the MA, since it uses its high-quality solutions as

starting solutions and initial bounds. The needed time and space resources were excessive and

in particular much higher than those of the MA (except for the small instances). Due to its

exponential computational effort, the approach has clear limits regarding the size and complexity

of the instances to which it can be applied.

Column |E∗
s | lists average numbers of edges in these optimal solutions. The qualities of the solutions

Es obtained by the algorithms are reported as percentage gaps with respect to the optimal costs

cost(E∗
s):

%-gap =
cost(Es)− cost(E∗

s)
cost(E∗

s)
· 100% . (4)

Standard deviations of average gaps (σ) are also presented in the table. For LK and MA, average

CPU-times and numbers of evaluated solutions until the best solutions were found (t, respectively

evals), and success rates (sr), i.e. the percentage of instances for which optimal solutions could

be found, are reported in addition. CPU-times include preprocessing: in case of KT, ZKR, and

LK the derivation of the block-cut graph according to Sect. 1, in case of MA additionally the

more sophisticated reductions and the creation of supporting data structures—in particular Γ and

Ψ—according to Sect. 3.

Results show that MA clearly outperformed the other heuristics in most cases. It could find optimal

solutions to all instances of groups A1 to D4 and M1 to M3. On the remaining random instances, MA

17

was able to identify high-quality solutions with an average gap of only 0.33%. KT yielded in all

cases the worst results. Among ZKR and LK, ZKR could usually identify slightly better solutions.

Quality differences become most apparent in groups M1 to R2.

Regarding the running times, KT was usually fastest (about 2 to 3 times faster than the times

reported for MA), followed by MA. LK was usually much slower, in particular on the larger in-

stances. ZKR needed in any case the most time. With over 15 000 seconds CPU-time for instances

of group N2, ZKR is definitely only suitable for small instances.

Table 4 shows results for the larger TSPLIB-derived instances. Optimum solutions could be found

by branch-and-cut only up to instance pcb442-sp. Total costs of these optimum solutions—or if

unknown best-known solution values—and the numbers of edges in those solutions are listed in

columns cost(E∗
s) and |E∗

s |, respectively.

On these TSPLIB-derived instances, ZKR never terminated within the allowed maximum time of

20 000 seconds, and LK could obtain meaningful results on the eight sparse Euclidean instances

only. Because of the stochastic nature of LK and MA, these heuristics were performed 30 times on

each considered instance and Table 4 prints average results for them.

In contrast to ZKR and LK, MA scales well to the larger instances. Its CPU-time increases

only moderately with the problem size due to the relatively low computational complexities of

local improvement, recombination, and mutation. Because of the data structures created during

preprocessing, MA required up to 420MB main memory for the largest instance pa561 with |Ea| =
156 520 augmentation edges. MA’s solutions are of high quality again: On average, the gap was

only 0.65%, and optimum or best-known solutions could be found several times. KT followed far

behind with gaps between 19.6% and 32.6%; LK’s results were even worse: its average gaps are all

larger than 20.9%.

Statistical t-tests were performed and indicate that the quality differences between MA’s solutions

and those of the other approaches are significant at a 0.1% error-level on each instance. This also

holds for the results on random instances shown in Table 3, except in those cases were also ZKR

was able to identify always optimal solutions.

Figure 10 shows three exemplary solutions to the Euclidean problem instance lin318-sp found by

KT, LK, and MA. Obviously redundant edges, as they are contained in the solution of KT, can

never appear in a solution of MA due to its local improvement procedure.

18

The proposed preprocessing of MA can also be adapted to work with KT, ZKR, and LK. Tests

we performed indicate that in particular the total running times of these approaches are reduced

significantly in this way. However, the quality of obtained solutions was not substantially higher. On

average over all random and TSPLIB-derived instances where the individual approaches terminated

within the allowed time of 20 000 seconds, the total times were reduced by the factors 0.62 in case

of KT, 0.81 in case of ZKR, and 0.27 in case of LK. The %-gaps were reduced on average by the

factors 0.92 in case of KT, 0.96 in case of ZKR, and 0.91 in case of LK. On several instances of

groups A1 to C4, the combinations of our preprocessing with KT, ZKR, and LK were able to identify

optimal solutions as the MA did. Nevertheless, on the larger and more complicated instances, these

approaches were still not competitive with the MA.

To further investigate the difficulty of the problem instances and the effects of local improvement,

we performed fitness-distance correlation analyses according to Jones and Forrest (1995) and Merz

and Freisleben (1999, 2000). For each problem instance, 10 000 candidate solutions were created

randomly and locally improved as in the initialization of the MA. These solutions were evaluated

and their distances to the optimum solution in the search space were calculated. As distance

metric, the size of the symmetric difference of the corresponding edge sets was used. Figure 11

shows fitness-distance plots for the first instance of group R2 and instance pr439. The plots for

the other instances have similar structure. Each point in these plots represents one locally optimal

solution; the global optima are located at the lower left corners (point 0/0). In addition, Table 5

shows fitness-distance correlation coefficients ρ for ten of the largest instances with known global

optima.

In all considered instances, the fitness is clearly correlated with the distance to the optimum (0.51 ≤
ρ ≤ 0.71), which is a general indication that an evolutionary algorithm might work efficiently on

these instances. Furthermore, all local optima are plotted near to each other and have a relatively

large distance to the optimum. This shows that simply creating random solutions and locally

improving them by our method is not effective for its own. It does not imply that the local optima

are also grouped together in the search space and the global optima are located far away from them.

Table 5 also shows average distances of locally improved random solutions to the optima (dopt) and

average distances between locally improved random solutions (dloc). Since dopt is significantly

smaller than dloc for each instance, we can argue that the global optimum lies more or less in the

center of the space of all locally optimal solutions. In Merz and Freisleben (1999), problems with

19

such a characteristic are said to have a big valley structure, and recombination operators preserving

properties common to both parents can be expected to work well.

In the last two columns, Table 5 lists average probabilities PDcross and PDmut with which re-

combination, respectively mutation, followed by local improvement produces a candidate solution

being identical to (one of) its parent solution(s). These probabilities were measured over complete

runs of the MA. High values would indicate that the investigated variation operator does not work

efficiently and it might be omitted without decreasing the overall effectiveness of the search signifi-

cantly. In our case, these probabilities are always smaller than 18.5%. Thus, the variation operators

in combination with local improvement successfully create new solutions in more than four out of

five cases. In particular on dense base graphs such as the complete Euclidean problem instances,

the probability of mutation leading to the same local optimum is very small: PDmut ≤ 2.3.

Table 6 further illustrates the importance of using both, recombination and mutation, and that

it is not necessary to apply local improvement immediately after each variation operator. Shown

are results for the following three variants of the MA: In MA-CLML, recombination and mutation

are used, and local improvement is performed after each operator. In MA-CL, new candidate

solutions are created only by recombination followed by local improvement. MA-ML applies always

only mutation followed by local improvement. All strategy parameters were set identical as in the

previous experiments with the only exception that in MA-ML, the probability of applying mutation

was pmut = 1. The performance values of these variants can therefore directly be compared to those

of the original MA in Table 4.

MA-CL converged fastest, but the obtained solutions were in nearly all cases substantially poorer

than those of the original MA. This points out the particular importance of mutation. MA-ML,

on the other side, generally needed much more evaluations and also more time to converge. In

particular on dense problem instances, MA-ML’s solutions are far worse than those of the original

MA.

Performance values of MA and MA-CLML are similar for nearly all instances. Only on the single

instance pa561, MA yielded substantially better solutions than MA-CLML. No statistically signif-

icant differences can be observed for MA and MA-CLML in their numbers of needed evaluations

and running times. We conclude that the question whether local improvement should be applied

once per candidate solution or once after each variation operator is of minor importance.

20

6 Conclusions

The main features of the proposed memetic algorithm for the vertex-biconnectivity augmentation

problem are: The effective deterministic preprocessing which reduces the search space in most cases

substantially, the local improvement procedure which guarantees local optimality with respect to

the number of augmentation edges of any candidate solution, and the strong heritability and locality

of the proposed recombination, respectively mutation. Furthermore, the biasing of initialization

and recombination to include low-cost edges more likely, respectively the biasing of mutation to

remove more expensive edges more likely, play significant roles.

Supporting data structures established during preprocessing allow efficient implementations of ini-

tialization, recombination, mutation, and local improvement (Merz, 2000). Empirical tests indicate

that the algorithm calculates solutions of high quality, which are optimal in many cases and usually

significantly better than those of the other three heuristics from the literature. Although a theoret-

ical upper bound for the computational costs of preprocessing is O(|V |2|E|), it is in practice also

efficient on large problem instances and the memetic algorithm usually dominates the total compu-

tation time. Within the memetic algorithm, local improvement dominates the computational costs.

The theoretical worst-case time complexity of locally improving one solution is O(|VT |3), however,

we have argued that the expected costs are substantially smaller. Empirical results support this

and show that the approach scales well to instances of large size.

21

Notes

* This work is supported by the Austrian Science Fund (FWF) under the grant P13602–INF.

22

References

Aho, A. V., J. E. Hopcroft, and J. D. Ullman (1983). Data Structures and Algorithms. Reading,

MA: Addison-Wesley.

Blickle, T. (1997). “Tournament Selection.” In Handbook of Evolutionary Computation, T. Bäck,

D. B. Fogel, and Z. Michalewicz, eds., New York: Oxford University Press. C2.3:1–C2.3:4.

Cheriyan, J., S. Vempala, and A. Vetta (2001). “An Approximation Algorithm for the Minimum-

Cost k-Vertex Connected Subgraph.” Submitted for journal publication.

Eswaran, K. P. and R. E. Tarjan (1976). “Augmentation Problems.” SIAM Journal on Computing

5(4), 653–665.

Fialgo, S. and P. Mutzel (1998). “A New Approximation Algorithm for the Planar Augmentation

Problem.” In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms.

ACM-SIAM.

Fonseca, C., J.-H. Kim, and A. Smith (eds.) (2000). Proceedings of the 2000 IEEE Congress on

Evolutionary Computation. IEEE Press.

Fortz, B. (2000). Design of Survivable Networks with Bounded Rings. Network Theory and Appli-

cations. Universitè Libre de Bruxelles, Bruxelles, Belgium: Kluwer Academic Publishers.

Frederickson, G. N. and J. Jájá (1981). “Approximation Algorithms for Several Graph Augmenta-

tion Problems.” SIAM Journal on Computing 10(2), 270–283.

Frederickson, G. N. and J. Jájá (1982). “On the Relationship between the Biconnectivity Augmen-

tation and Traveling Salesman Problems.” Theoretical Computer Science 19(2), 203–218.

Gabow, H. N., Z. Galil, T. Spencer, et al. (1986). “Efficient Algorithms for Finding Minimum

Spanning Trees in Undirected and Directed Graphs.” Combinatorica 6(2), 109–122.

Hsu, T.-S. and V. Ramachandran (1993). “Finding a Smallest Augmentation to Biconnect a

Graph.” SIAM Journal on Computing 22(5), 889–912.

Ishii, T. (2000). Studies on Multigraph Connectivity Augmentation Problems. Ph.D. thesis, Dept.

of Applied Mathematics and Physics, Kyoto University, Kyoto, Japan.

23

Jones, J. and S. Forrest (1995). “Fitness Distance Correlation as a Measure of Problem Diffi-

culty for Genetic Algorithms.” In Proceedings of the Sixth International Conference on Genetic

Algorithms, L. J. Eshelman, ed. Morgan Kaufmann, 184–192.

Kersting, S., G. R. Raidl, and I. Ljubić (2002). “A Memetic Algorithm for Vertex-Biconnectivity

Augmentation.” In Applications of Evolutionary Computing: EvoWorkshops 2002 , S. Cagnoni,

J. Gottlieb, E. Hart, et al., eds. Springer, volume 2279 of LNCS , 102–111.

Khuller, S. (1997). “Approximation Algorithms for Finding Highly Connected Subgraphs.” In

Approximation Algorithms for NP-hard Problems, D. S. Hochbaum, ed., Boston, MA: PWS.

236–265.

Khuller, S. and R. Thurimella (1993). “Approximation Algorithms for Graph Augmentation.”

Journal of Algorithms 14(2), 214–225.

Ljubić, I. and J. Kratica (2000). “A Genetic Algorithm for the Biconnectivity Augmentation

Problem.” In Fonseca et al. (2000), 89–96.

Ljubić, I. and G. R. Raidl (2001). “An Evolutionary Algorithm with Hill-Climbing for the Edge-

Biconnectivity Augmentation Problem.” In Applications of Evolutionary Computing: EvoWork-

shops 2001 , E. J. W. Boers, S. Cagnoni, J. Gottlieb, et al., eds. Springer, volume 2037 of LNCS ,

20–29.

Merz, P. (2000). Memetic Algorithms for Combinatorial Optimization Problems: Fitness Land-

scapes and Effective Search Strategies. Ph.D. thesis, Department of Electrical Engineering and

Computer Science, University of Siegen, Siegen, Germany.

Merz, P. and B. Freisleben (1999). “Fitness Landscapes and Memetic Algorithm Design.” In New

Ideas in Optimisation, Berkshire, England: McGraw-Hill. 245–260.

Merz, P. and B. Freisleben (2000). “Fitness Landscape Analysis and Memetic Algorithms for

the Quadratic Assignment Problem.” IEEE Transactions on Evolutionary Computation 4(4),

337–352.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs. Berlin:

Springer.

24

Monma, C. L. and D. F. Shallcross (1989). “Methods for Designing Communications Networks

with Certain Two-Connected Survivability Constraints.” Operations Research 37(4), 531–541.

Moscato, P. (1999). “Memetic Algorithms: A Short Introduction.” In New Ideas in Optimization,

D. Corne, M. Dorigo, and F. Glover, eds., Berkshire, England: McGraw Hill. 219–234.

Raidl, G. R. (2000). “An Efficient Evolutionary Algorithm for the Degree-Constrained Minimum

Spanning Tree Problem.” In Fonseca et al. (2000), 104–111.

Raidl, G. R. and J. Gottlieb (1999). “On the Importance of Phenotypic Duplicate Elimination

in Decoder-Based Evolutionary Algorithms.” In Late Breaking Papers at the 1999 Genetic and

Evolutionary Computation Conference, S. Brave and A. S. Wu, eds. Orlando, FL, 204–211.

Raidl, G. R. and I. Ljubić (2002). “Evolutionary Local Search for the Edge-Biconnectivity Aug-

mentation Problem.” Information Processing Letters 82(1), 39–45.

Stoer, M. (1992). Design of Survivable Networks, volume 1531 of Lecture Notes in Mathematics.

Springer.

Tarjan, R. E. (1972). “Depth First Search and Linear Graph Algorithms.” SIAM Journal of

Computing 1, 146–160.

Watanabe, T. and A. Nakamura (1987). “Edge-Connectivity Augmentation Problems.” Journal of

Computer and System Sciences 35(1), 96–144.

Zhu, A. (1999). “A Uniform Framework for Approximating Weighted Connectivity Problems.”

B.Sc. thesis at the University of Maryland, MD.

Zhu, A., S. Khuller, and B. Raghavachari (1999). “A Uniform Framework for Approximating

Weighted Connectivity Problems.” In Proceedings of the 10th ACM-SIAM Symposium on Dis-

crete Algorithms. 937–938.

25

– create supporting data structures
– apply deterministic reduction rules to GA

Enhanced preprocessing:

Memetic Algorithm:
– searches for a low-cost solution S on GA

V2AUG problem instance consisting of
Input:

– spanning connected subgraph G0 = (V, E0) (= existing network)

Map solution S back to a solution ES ⊆ E
on the original problem

– weighted graph G = (V, E), (= all possible connections)

Derive block-cut graph GA = (VT , ET ∪ EA)

Figure 1: Basic structure of the proposed approach.

12

1
2

3 4

5

6

7

8

9

10

11

14

13

{5,6}

{11}

4 10
{7,8,9}{1,2,3} {13}12{}

{14}

blocks

e5

e2

e4

e1
e3

e′1
e′2

e′3

(a)

cut-nodes

(b)

block-nodesE0 Ea cut-points

e′5

e′4

Figure 2: (a) A base graph G with its fixed edges E0 and optional augmentation edges Ea and (b)

the corresponding block-cut tree T with the superimposed augmentation edges EA.

vc

Cvc
1

Cvc
3

Cvc
2

Cvc
4

Figure 3: The cut-components Cvc
1 , Cvc

2 , Cvc
3 , and Cvc

4 of a cut-node vc. Dashed edges form edge-set

Γ(vc). Dotted augmentation edges do not contribute in covering vc.

26

vc v∗

Cvc
2

Cvc
1

e′′A

vc

eA
e′A

(c) (d)

(b)(a)

e′′A

Figure 4: Reducing the block-cut graph: (a) Assuming cost(eA) ≤ cost(e′A), edge e′A can be

eliminated. (b) e′′A is the only edge able to connect the cut-components Cvc
1 and Cvc

2 of vc and is

therefore fixed. This introduces a new biconnected component in T (c), which is shrinked into the

single new block-node v∗ (d).

Memetic Algorithm for V2AUG:

begin

create random initial population P of feasible solutions;

for each solution S ∈ P do

locally improve (S);

repeat

select two parents S1, S2 ∈ P via k-ary tournament selection;

S ← recombine (S1, S2);

with probability pmut: mutate (S);

locally improve (S);

if S 6∈ P then

replace the worst solution from P with S;

until no new best solution found for Ω iterations;

end

Figure 5: The memetic algorithm for V2AUG.

27

procedure locally improve (S):

begin

R ← S; // set of edges to be considered for removal

// look for obviously essential edges:

for each eT ∈ ET do

covered [eT] ← ∅;
for each e ∈ S do

for each vc ∈ Ψ(e) do

covered [evc
T1(e)] ← covered [evc

T1(e)] ∪ {e};
covered [evc

T2(e)] ← covered [evc
T2(e)] ∪ {e};

// remove obviously essential edges from R:

for each eT ∈ ET do

if |covered [eT]| = 1 then

R ← R \ covered [eT];

// check remaining edges in R:

for each e ∈ R in decreasing cost-order do

S ← S \ {e};
if ∃vc ∈ Ψ(e): vc is uncovered in Gs then

S ← S ∪ {e};
end

Figure 6: The local improvement procedure.

21

Figure 7: Worst case example for local improvement.

28

procedure recombine (S1, S2):

begin

S ← S1 ∩ S2;

R ← (S1 ∪ S2) \ S;

repeat

select e ∈ R via binary tournament selection;

R ← R \ {e};
if ∃vc ∈ Ψ(e) : edge e helps in covering vc then

// edge e is not redundant

S ← S ∪ {e};
until all cut-nodes vc ∈ VT are covered;

return S;

end

Figure 8: Recombination.

procedure mutate (S):

begin

select e ∈ S via binary tournament selection;

S ← S \ {e};
for each uncovered vc ∈ Ψ(e) in random order do

F ← Γ(vc);

while vc is uncovered do

pick e′ ∈ F randomly; F ← F \ {e′};
if e′ helps in covering vc then

S ← S ∪ {e′};
end

Figure 9: Edge-delete mutation.

29

(a) KT: %-gap = 29.3, |Es| = 69 (b) LK: %-gap = 35.8, |Es| = 58 (c) MA: %-gap = 0.09, |Es| = 45

Figure 10: Exemplary solutions to problem instance lin318-sp found by (a) Khuller and

Thurimella’s heuristic, (b) the genetic algorithm from Ljubić and Kratica, and (c) the memetic

algorithm. Solution edges are shown in gray. In (a), arrows mark obviously redundant edges. In

(b), arrows mark obviously suboptimal crossing augmentation edges.

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100 120 140

co
st

(E
s)

 -
 c

os
t(

E
s*)

distance from Es to 	Es
*

first instance of R2

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 20 40 60 80 100 120 140 160

co
st

(E
s)

 -
 c

os
t(

E
s*)

distance from Es to 	Es
*

pr439

Figure 11: Fitness-distance plots for the first instance of group R2 and instance pr439.

30

Table 1: Characteristics of instance-groups created with Zhu’s generator and average results of the

memetic algorithm’s preprocessing.

Group |V | dens cost(e) ∈ |Ea| CP(G0) |VT | |EA| CP(T) tpre [s] CP(G0)/CP(T) |Ea|/|EA|
A1 20 0.16 {1, 190} 18 11 8 5 4 <0.1 3.0 3.4

A2 30 0.10 {1, 435} 29 16 10 8 5 <0.1 3.2 3.8

A3 40 0.08 {1, 780} 37 22 9 6 4 <0.1 4.9 6.0

A4 30 0.12 {1, 435} 32 16 10 8 5 <0.1 3.4 4.2

A5 40 0.10 {1, 780} 46 23 20 18 10 <0.1 2.2 2.5

B1 60 0.05 {1, 1770} 54 35 14 10 7 <0.1 4.7 5.4

B2 20 0.50 {1, 190} 81 10 20 44 10 <0.1 1.0 1.8

B3 50 0.06 {1, 1225} 45 29 14 11 7 <0.1 4.1 4.1

B4 50 0.08 {1, 1225} 61 27 26 26 14 <0.1 2.0 2.3

B5 60 0.07 {1, 1770} 74 33 29 29 16 <0.1 2.1 2.6

B6 70 0.06 {1, 2415} 96 39 45 48 24 0.1 1.6 2.0

C1 80 0.06 {1, 3160} 113 43 50 55 26 0.1 1.6 2.1

C2 90 0.05 {1, 4005} 125 50 53 55 29 0.1 1.7 2.3

C3 100 0.05 {1, 4950} 153 54 63 73 34 0.1 1.6 2.1

C4 30 0.50 {1, 435} 191 15 30 107 15 <0.1 1.0 1.8

D1 70 0.15 {1, 2415} 279 37 70 196 37 <0.1 1.0 1.4

D2 40 0.50 {1, 780} 349 20 40 187 20 <0.1 1.0 1.9

D3 90 0.15 {1, 4005} 507 46 90 366 46 0.1 1.0 1.4

D4 80 0.15 {1, 3160} 396 41 80 284 41 0.1 1.0 1.4

D5 100 0.15 {1, 4950} 648 52 100 464 52 0.1 1.0 1.4

M1 70 0.15 {10, 1000} 284 37 70 207 36 <0.1 1.0 1.4

M2 80 0.15 {10, 1000} 388 42 80 278 42 <0.1 1.0 1.4

M3 90 0.15 {10, 1000} 492 46 90 352 46 0.1 1.0 1.4

N1 100 0.25 {11, 50} 1124 50 100 705 50 0.1 1.0 1.6

N2 110 0.25 {11, 50} 1384 56 110 874 56 0.1 1.0 1.6

R1 200 0.50 {1, 100} 9734 117 200 3888 117 4.3 1.0 2.5

R2 200 0.50 {5, 100} 9744 118 200 3852 118 3.5 1.0 2.5

31

Table 2: Instances derived from the TSPLIB and results of the memetic algorithm’s preprocessing.

Instance |V | Type |Ea| CP(G0) |VT | |EA| CP(T) tpre [s] CP(G0)/CP(T) |Ea|/|EA|
pr226-dt 226 Euclidean 947 192 226 617 192 1.4 1.0 1.5

pr226-sp 226 Euclidean 3987 187 226 2550 187 1.7 1.0 1.6

pr226 226 Euclidean 25200 187 226 7089 187 11.0 1.0 3.6

lin318-dt 318 Euclidean 1563 248 318 1057 248 10.7 1.0 1.5

lin318-sp 318 Euclidean 5495 246 318 1874 246 12.6 1.0 2.9

lin318 318 Euclidean 50086 246 318 9473 246 95.6 1.0 5.3

pr439-dt 439 Euclidean 2156 358 439 1349 358 34.1 1.0 1.6

pr439-sp 439 Euclidean 11183 366 439 3026 366 42.7 1.0 3.7

pr439 439 Euclidean 95703 366 439 18700 366 280.2 1.0 5.1

pcb442-dt 442 Euclidean 2131 347 442 1298 347 42.9 1.0 1.6

pcb442-sp 442 Euclidean 10528 345 442 2557 345 53.7 1.0 4.1

pcb442 442 Euclidean 97020 345 442 19824 345 299.5 1.0 4.9

pa561-sp 561 matrix 18504 406 561 5175 406 157.2 1.0 3.6

pa561 561 matrix 156520 406 561 40601 406 417.6 1.0 3.9

32

Table 3: Results on random instances obtained by the heuristics from Khuller and Thurimella

(KT) and Zhu et al. (ZKR), the genetic algorithm from Ljubić and Kratica (LK), and the memetic

algorithm (MA).

KT ZKR LK MA
Grp. |E∗

s | %-gap σ t [s] %-gap σ t [s] %-gap σ t [s] evals sr [%] %-gap σ t [s] evals sr [%]

A1 6 1.2 2.2 0.1 0.0 0.0 0.8 0.5 1.6 <0.1 623 90.0 0.0 0.0 <0.1 586 100.0

A2 9 4.6 6.0 0.2 0.0 0.0 4.3 0.3 1.8 <0.1 2116 96.7 0.0 0.0 <0.1 666 100.0

A3 12 3.9 4.0 0.2 <0.1 0.1 14.2 0.0 0.0 0.1 4041 100.0 0.0 0.0 <0.1 506 100.0

A4 10 5.1 5.3 0.2 0.2 0.6 5.5 0.1 0.3 0.1 3038 93.3 0.0 0.0 <0.1 453 100.0

A5 12 7.7 6.4 0.2 <0.1 0.2 18.5 0.0 0.0 0.1 2640 100.0 0.0 0.0 <0.1 776 100.0

B1 18 4.4 4.2 0.4 0.1 0.5 73.5 <0.1 0.1 0.4 3788 96.7 0.0 0.0 <0.1 613 100.0

B2 7 4.5 6.7 0.1 0.0 0.0 6.1 <0.1 0.1 0.1 6103 96.7 0.0 0.0 0.1 887 100.0

B3 16 4.9 5.2 0.3 0.0 0.0 33.1 0.0 0.0 0.3 5951 100.0 0.0 0.0 <0.1 696 100.0

B4 16 6.2 5.6 0.3 0.1 0.4 64.4 0.2 0.8 0.4 5035 93.3 0.0 0.0 0.1 776 100.0

B5 19 4.9 4.2 0.4 0.1 0.3 131.9 0.2 0.9 0.7 8178 90.0 0.0 0.0 0.1 875 100.0

B6 22 7.5 4.4 0.7 <0.1 0.1 328.0 0.1 0.5 2.2 20615 86.7 0.0 0.0 0.3 1022 100.0

C1 26 6.8 4.5 0.9 <0.1 0.1 687.2 0.4 0.9 3.5 17681 80.0 0.0 0.0 0.4 1073 100.0

C2 29 7.6 4.2 1.1 0.2 0.6 1121.2 0.9 1.5 4.4 20166 60.0 0.0 0.0 0.5 1176 100.0

C3 32 8.9 5.6 1.6 0.1 0.2 2331.1 0.5 1.0 7.6 25078 53.3 0.0 0.0 0.6 1160 100.0

C4 11 4.6 7.3 0.3 <0.1 0.2 71.3 0.5 1.4 0.7 17303 80.0 0.0 0.0 0.4 1409 100.0

D1 23 7.6 4.5 1.1 0.2 0.5 1805.5 0.9 1.5 6.0 53353 43.3 0.0 0.0 1.7 1915 100.0

D2 14 5.0 5.0 0.6 0.1 0.2 403.0 0.4 1.1 2.4 31420 86.7 0.0 0.0 0.7 1838 100.0

D3 31 6.9 4.0 2.4 0.2 0.4 11046.5 1.1 1.2 15.9 51278 20.0 0.0 0.0 3.9 3016 100.0

D4 27 9.4 5.2 1.8 0.1 0.2 5208.8 1.6 2.0 11.2 49910 36.7 0.0 0.0 2.9 2686 100.0

D5 34 9.7 4.8 3.5 0.1 3.2 21762.5 1.8 2.2 25.5 59190 26.7 <0.1 0.1 5.9 4167 96.7

M1 23 8.5 4.9 1.2 0.4 0.9 237.0 1.7 2.1 6.7 49498 30.0 0.0 0.0 1.7 1984 100.0

M2 27 8.3 3.6 1.7 0.6 0.9 503.7 2.2 1.7 21.9 82105 10.0 0.0 0.0 2.9 2719 100.0

M3 30 9.8 4.5 2.4 0.3 0.6 1178.4 1.4 1.4 33.4 87141 26.7 0.0 0.0 4.3 3354 100.0

N1 27 34.4 6.5 5.2 3.2 1.7 14993.3 13.2 4.3 107.0 147146 0.0 0.2 0.3 9.5 8387 60.0

N2 29 36.5 5.7 7.0 4.1 2.3 16006.1 16.4 4.3 147.5 147030 0.0 0.4 0.5 13.7 11694 43.3

R1 57 16.3 3.8 64.3 – – – 10.7 4.4 4896.1 228723 0.0 0.1 0.2 39.8 9766 63.3

R2 47 31.9 4.2 91.6 – – – 20.2 4.7 5232.4 309073 0.0 0.4 0.4 58.5 21877 13.3

33

Table 4: Results on the TSPLIB-derived instances obtained by the heuristics from Khuller and

Thurimella (KT) and Zhu et al. (ZKR), the genetic algorithm from Ljubić and Kratica (LK), and

the memetic algorithm (MA). Values marked by ’*’ are from best-known solutions, since optimum

values are unknown.

KT LK MA
Instance cost(E∗

s) |E∗
s | %-gap t [s] %-gap σ t [s] %-gap σ t [s] evals sr [%]

pr226-dt 25152 25 19.6 1.4 26.6 8.8 47.8 0.0 0.0 3.9 1910 100.0

pr226-sp 22824 24 22.5 11.7 27.3 4.8 640.2 0.1 0.6 17.6 9800 96.7

pr226 22824 24 22.0 138.9 – – – 2.6 1.2 33.2 13073 16.7

lin318-dt 12013 45 28.1 5.0 20.9 2.3 246.7 <0.1 <0.1 26.0 9895 0.0

lin318-sp 11797 46 29.3 33.2 41.1 3.8 2633.7 0.3 0.3 40.8 27130 6.7

lin318 11797 46 29.3 620.4 – – – 1.0 0.5 128.9 23391 0.0

pr439-dt 28310 52 20.6 8.3 25.1 6.0 491.6 0.0 0.0 52.6 7557 100.0

pr439-sp 26800 48 21.2 71.0 40.5 4.3 13471.2 1.1 0.7 79.5 12164 20.0

pr439 26800 48 21.2 1498.5 – – – 2.5 1.1 408.1 22301 0.0

pcb442-dt 10328 60 31.4 12.3 21.4 3.1 320.5 0.1 0.1 67.6 9306 43.3

pcb442-sp 10460 60 32.6 106.5 33.8 5.2 18429.2 0.3 0.2 91.9 16902 6.7

pcb442 10478∗ 61∗ 30.5 2030.8 – – – 0.3 0.2 366.3 21493 3.3

pa561-sp 782∗ 101∗ 31.1 303.0 – – – 0.3 0.1 250.0 20868 3.3

pa561 784∗ 101∗ 30.4 5482.7 – – – 0.4 0.4 599.8 34710 13.3

34

Table 5: Fitness distance correlation coefficient ρ, average distance dopt of locally improved random

solutions to the optimum, average distance dloc between locally improved random solutions, and

average probabilities PDcross and PDmut that recombination, respectively mutation, followed by

local improvement produces a candidate solution being identical to a parent.

Instance ρ dopt dloc PDcross PDmut

N1 (1. instance) 0.57 53.4 62.7 15.3 14.1

N2 (1. instance) 0.54 58.2 69.4 13.8 14.3

R1 (1. instance) 0.51 107.5 116.9 13.0 3.4

R2 (1. instance) 0.55 99.9 118.2 12.5 4.5

pr226-sp 0.53 66.6 71.5 17.0 12.6

pr226 0.52 66.8 71.0 18.4 2.0

lin318-sp 0.65 97.7 115.2 15.5 14.5

lin318 0.63 95.8 115.8 15.4 2.3

pr439-sp 0.71 113.9 129.5 14.0 10.2

pr439 0.68 119.4 125.8 13.4 1.3

35

Table 6: Performance of different MA-variants: applying local improvement after recombination

and after mutation (MA-CLML), using only recombination followed by local improvement (MA-

CL), and using only mutation followed by local improvement (MA-ML).

MA-CLML MA-CL MA-ML
Grp./Inst.

%-gap σ t [s] evals sr %-gap σ t [s] evals sr %-gap σ t [s] evals sr

N1 0.3 0.3 8.1 8391 46.7 0.6 0.6 7.2 6318 33.3 0.9 0.9 21.9 31825 20

N2 0.5 0.5 11.5 12023 36.7 1.3 1.3 7.1 5561 13.3 1.2 1.2 30 40819 6.7

R1 0.1 0.1 106.4 22558 43.3 0.4 0.4 22.7 4120 30 16 16.3 233.6 106740 0.0

R2 0.7 0.8 76 27587 3.3 1.3 1.4 22.8 5677 0.0 8.8 8.9 148.3 79119 0.0

pr226-dt 0.0 0.0 3.8 1843 100.0 <0.1 <0.1 3.5 1694 93.3 0.0 0.0 6.6 11073 100.0

pr226-sp 0.0 0.0 12.5 11777 100.0 22.9 4.4 13.8 5278 0.0 0.2 0.3 29.0 52534 46.7

pr226 2.4 1.4 30.7 24320 16.7 24.0 3.9 27.6 5367 0.0 8.2 2.7 43.8 56114 0.0

lin318-dt 0.2 0.5 27.7 10273 0.0 1.5 0.7 17.3 4013 0.0 0.1 0.3 34.7 34923 6.7

lin318-sp 0.3 0.3 41.0 35853 0.0 3.3 1.0 21.3 6771 0.0 1.6 1.1 54.0 73078 0.0

lin318 1.5 0.7 129.9 33955 0.0 3.5 1.6 111.0 6179 0.0 15.4 3.9 156.5 92059 0.0

pr439-dt 0.0 0.0 50.5 6626 100.0 2.0 1.8 45.1 3971 0.0 0.3 0.9 71.4 35827 50.0

pr439-sp 1.0 0.7 72.3 18073 23.3 5.4 1.8 68.7 5507 0.0 2.3 1.1 130.7 84829 0.0

pr439 2.0 0.8 376.1 44083 0.0 40.9 3.1 383.0 6373 0.0 19.9 5.7 457.0 98467 0.0

pcb442-dt 0.1 0.1 68.1 8981 56.7 1.5 0.9 54.4 3844 0.0 0.1 0.2 82.4 28030 56.7

pcb442-sp 0.3 0.2 95.2 24473 6.7 1.7 0.8 68.1 4805 0.0 1.6 0.9 187.9 106494 0.0

pcb442 0.7 0.4 365.3 28673 0.0 1.4 0.6 334.8 5120 0.0 33.5 7.5 464.0 106346 0.0

pa561-sp 0.4 0.2 275.4 30987 3.3 3.7 0.5 195.1 5802 0.0 5.9 1.3 462.2 129287 0.0

pa561 2.2 0.5 584.7 31361 0.0 3.8 0.6 493.9 5369 0.0 34.5 5.9 764.8 106649 0.0

36

	tr
	vbca_subm2

