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Abstract. Augmenting an existing network with additional links to
achieve higher robustness and survivability plays an important role in
network design. We consider the problem of augmenting a network with
links of minimum total cost in order to make it edge-biconnected, i.e. the
failure of a single link will never disconnect any two nodes. A new evolu-
tionary algorithm is proposed that works directly on the set of additional
links of a candidate solution. Problem-specific initialization, recombina-
tion, and mutation operators use a stochastic hill-climbing procedure.
With low computational effort, only locally optimal, feasible candidate
solutions are produced. Experimental results are significantly better than
those of a previous genetic algorithm concerning final solutions’ qualities
and especially execution times.

1 Introduction

All communication networks are designed for certain demands and requirements.
In the course of time, traffic demands typically increase and the networks are
often not as satisfying as at the beginning. Therefore, the augmentation of net-
works by additional links plays an important role in network design. In addition
to the increase of band-width, an increase of robustness and survivability is often
needed. A network can be made robust against failures in connections between
two sites or against site failures. The costs of such augmentations should usually
be as small as possible.

The robustness of a certain network, is in graph theory described by the
vertex and edge k-connectivity. A connected undirected graph G = (V, E) has
edge (vertex) connectivity k if at least k edges (vertices) must be deleted to
disconnect G. The removal of vertices hereby includes the removal of all adjacent
edges. Therefore, a vertex k-connected network is always edge k-connected, but
not necessarily vice versa.

The problem of augmenting a graph to become k = 1 connected is identical
to the minimum spanning tree (MST) problem, which can be solved efficiently
in polynomial time. However, in practical communication networks, a larger
connectivity-level for higher reliability is often needed. From the other side,
costs usually limit the connectivity level k to a small value.



In this paper, we concentrate on edge-connectivity with k = 2. This problem
is also called edge biconnectivity augmentation problem (E2AUG). Our goal is,
therefore, to augment a given network with additional links of minimum total
costs, to make it edge-biconnected.

Eswaran and Tarjan [1] showed that E2AUG is NP-hard. The problem re-
mains NP-hard, even in the case when all connections have weights chosen from
the set {1, 2} only. Due to the hardness of the problem, it was addressed by
heuristic methods including a hybrid genetic algorithm (HGA) [7]. In contrast
to this previous HGA, we present here a new evolutionary algorithm (EA) based
on a powerful preprocessing and a straight-forward edge-set representation. The
recombination and mutation operators produce only feasible solution candidates
and contain a local stochastic hill-climbing which removes redundant edges. That
way, the EA searches the space of locally optimal solutions only.

The initialization, recombination, and mutation operators are specifically
designed for the considered problem. Recombination and mutation preserve a
great amount of parental structures, i.e. the locality is high. The average com-
putational effort of recombination and mutation operators is low, which allows
a fast execution on large graphs, too. Empirical results indicate the new EA is
significantly better concerning the quality of final solutions, as well as the execu-
tion times when compared to the previous HGA and another iterative heuristic
for the E2AUG.

The next section provides a mathematical definition of E2AUG and a sum-
mary of previous work related to the problem. In Section 3, an explanation of
the preprocessing is given. Section 4 describes the EA with its stochastic local
hill-climbing procedure in detail. An empirical comparison to the previous HGA
is given in Section 5, and final conclusions are drawn in Section 6.

2 The Edge-Biconnectivity Augmentation Problem

Given are a connected, undirected graph G = (V, E), and an additional set
AUG of edges connecting nodes in V (AUG ∩ E = ∅). Each edge e ∈ AUG has
associated costs c(e) > 0. The graph GA = (V,E ∪ AUG) is edge-biconnected.
The goal is to augment graph G using a subset S of edges from AUG with
minimum total costs c(S) =

∑
e∈S c(e), so that graph GS(V, E ∪S) is also edge-

biconnected.
In graph G, an edge e ∈ E is called a bridge if its deletion disconnects G. GS

must therefore not contain any bridges. That is why this problem is also called
bridge-connectivity augmentation problem.

The problem has been stated the first time by Eswaran and Tarjan [1]. In this
work a polynomial algorithm for E2AUG is given for the specific case when all
edge costs are the same and graph GA is complete. A survey on several related
problems and approximation algorithms is given by Khuller [4].

In 1981, Frederickson and Jájá [2] proposed an approximative algorithm for
E2AUG based on the following steps:



Firstly, all already biconnected components in G are shrinked into “super-
nodes”, whereby all self-loops are discarded; from multiple edges e ∈ AUG con-
necting the same pair of nodes in the shrinked graph, only the cheapest edge is
retained. In this way, the problem of augmenting a general connected graph G,
can always be reduced to the problem of augmenting a spanning tree.

In the next step, the shrinked graph G is interpreted as a directed tree: a
random root r is chosen and all edges in E are directed toward this root. After
that, the algorithm searches for a minimum outgoing branching, i. e. a directed
tree with paths from the root r to all other nodes (Gabow et al. [3]), using edges
from the shrinked set AUG and E. A feasible set of augmenting edges S ⊂ AUG
can finally be derived from the set of edges included in this branching. It is
proven that this algorithm determinates a solution with costs no greater than
two times the costs of the optimal solution.

The time complexity of this algorithm has been improved by Khuller and
Thurimella [5]. Recently, Zhu et al. [11, 12] proposed an iterative scheme based
on the branching algorithm. They provide a heuristic formula for measuring how
good a certain augmenting edge in a determined outgoing branching can be.
Using this formula, only one edge at a time, as one step of an iterative process,
is fixed, and the edge’s cost is set to zero. Then, a new minimum outgoing
branching is derived, and the edge is fixed. This process continues until the
evaluated branching has zero costs and a complete set S is obtained.

Ljubic et al. [7] proposed a hybrid genetic algorithm (called HGA) for
E2AUG. This algorithm is based on a binary encoding, in which each bit cor-
responds to an edge in AUG , on standard uniform crossover, and on bit-flip
mutation. Infeasible solutions are repaired using a greedy repair-algorithm in a
Lamarckian way. This algorithm temporarily removes the bridges one by one
from an infeasible solution and searches for the cheapest edge from AUG con-
necting the two separated components. For a better performance, the algorithm
uses caching [6].

Although better results are obtained by HGA than by several previous ap-
proaches, this method has also disadvantages: The genetic code has length
|AUG |, which is not efficient for larger complete or dense graphs. The required
space and time to evaluate a solution is O(|V |2) in such cases, while the num-
ber of edges included in biconnectivity augmentation is always less then |V |,
according to Mader’s theorem [8]. Furthermore, many genetic codes created by
recombination and/or mutation are mapped to one and the same phenotypic
solution due to the repair operator. This effect endangers the GA to converge
too quickly to suboptimal solutions.

In this paper, we present a new evolutionary approach which overcomes these
disadvantages using a compact edge-set encoding, problem-based operators, and
a local stochastic hill-climbing. This EA searches the space of local optima only.
Such an approach belongs to a broader group of combinatorial optimization
algorithms, called local-search-based memetic algorithms [9].
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Fig. 1. An example for preprocessing: (a) given graph G = (V, E) and set AUG, (b)
after shrinking, (c) after elimination of edges, (d) after fixation of edges from AUG,
(e) after another shrinking.

3 Preprocessing

Good preprocessing can reduce a problem’s search space significantly. Our pre-
processing is based on the next three steps which are illustrated in Fig. 1:

Shrinking: This reduction has been originally described by Frederickson and Jájá
[2]. Edge-biconnected components of a graph are its maximal edge-biconnected
subgraphs (maximal in the sense that no other node from the graph can be
added, without violating biconnectivity). By this procedure, all edge-biconnected
subgraphs are found and shrinked into “super-nodes”. From the edges from AUG
that connect the same components, only the cheapest ones are included and all
others are discarded. Self-loops, i.e. augmenting edges connecting nodes of the
same component, are always discarded. For each edge in the shrinked graph
a reference back to the corresponding edge of the original problem is stored.
After shrinking, the graph has always a tree structure, where all edges represent
bridges of the initial configuration. Note that now, GS = (V,E ∪ S) and GA =
(V, E ∪ AUG) can become multigraphs, since AUG and E are not necessarily
disjoint anymore (see Fig. 1 (b)).

Edge elimination: Edge e0 ∈ E is covered by an edge e = (u, v) ∈ AUG if e0 lies
on the tree path (in G) connecting nodes u and v. This procedure detects and
removes each edge ein from AUG , for which some other edge eout ∈ AUG exists,
such that the tree-path (in G) covered by ein is a subset of the tree path covered
by eout and eout is cheaper then ein. More formally, if ein = (u, v) ∈ AUG , and:

Path(e) = {e0 | e0 ∈ E and e0 is part of the path connecting u and v in G}



then, ein is obsolete if:

∃ eout = (s, t) ∈ AUG such that Path(ein) ⊂ Path(eout) ∧ c(ein) ≥ c(eout).

Frederickson and Jájá [2, pp. 276–277] proposed a dynamic programming algo-
rithm for their branching based heuristic, that computes special distance values
for all edges in AUG and identifies all obsolete edges in the above sense as a
byproduct in O(|V |2) time.

Usually, the more star-like graph G is, the less edges can be eliminated by
means of this procedure.

Edge fixation: This procedure identifies edges that must necessarily be included
in the final solution. The sets Cover(e0), e0 ∈ E, are the sets of all augmenting
edges e = (u, v) ∈ AUG such that e0 lies on the (u, v)-path in G, i.e.

Cover(e0) = {e = (u, v) ∈ AUG | e0 ∈ Path(e)}. (1)

If there exists an edge e0 ∈ E such that |Cover(e0)| = 1, then edge e must
appear in all feasible solutions, since this is the only possibility to “cover” e0.
Edge e is therefore fixed by moving it from AUG to E. After such a fixation,
a new edge-biconnected component is created, which can further be shrinked
into a single new super-node. Since shrinking can enable further fixations, the
process is repeated until no more edges from AUG can be fixed.

Note that the more sparse graph GA is, the more edges can typically be fixed.

4 The Evolutionary Algorithm

Although preprocessing reduces the size of the problem, it is in general not able
to solve the problem completely. Therefore, we apply the following evolutionary
algorithm.

4.1 Edge-Set Encoding

Each candidate solution is directly represented by the set S of selected edges.
For this purpose, we use a hashed array as data structure. Insertion as well as
deletion of a single edge and the check whether an edge is contained or not take
always constant time. Furthermore, the space needed to store each individual is
O(S), where |S| < |V |.

4.2 Stochastic Hill-Climbing

The central part of the new approach is the local stochastic hill-climbing pro-
cedure, incorporated in the initialization, crossover, and mutation operators.
This procedure removes redundant edges from a given feasible solution in an
indeterministic way until the solution becomes edge-minimal concerning the bi-
connectivity property. This algorithm checks each edge in S in random order if
it can be removed without making the solution infeasible.



procedure hill-climbing(var S):
begin

ncov(e0) ← 0, for each e0 ∈ E;
for each e ∈ S do

for each e0 ∈ Path(e) do
ncov(e0) ← ncov(e0) + 1;

while not all edges e ∈ S are processed
select a yet unprocessed edge e ∈ S;
if ncov(e0) ≥ 2, ∀e0 ∈ Path(e)

S ← S \ {e};
for each e0 ∈ Path(e)

ncov(e0) ← ncov(e0)− 1;
end

Fig. 2. The EA’s stochastic hill-climbing.

For each edge e0 ∈ E we determine the number of all edges from S that
“cover” e0 in an initial step:

ncov(e0) = |{e | e ∈ S and e0 ∈ Path(e)}|.
An edge e ∈ S is then redundant and can be removed if:

∀ e0 ∈ Path(e) : ncov(e0) ≥ 2.

After each edge elimination from S, ncov(e0) is updated accordingly.
The pseudo-code presented in Figure 2 shows the algorithm in more de-

tail. During hill-climbing, each set Path(e), ∀e ∈ AUG , can be determined
in O(|path(e)|) time, if a depth-first search started from an arbitrarily cho-
sen root is performed and depth and parent informations are stored for each
node [10]. Hence, the worst-case execution time needed for determining all
ncov(e0), e0 ∈ Path(e), is O(|V ||S|), but in average the whole algorithm runs in
O(|S| log |V |) time.

4.3 Initialization

In order to create feasible initial solutions, we apply the described stochastic
hill-climbing procedure to the whole set AUG of edges that can be used for aug-
mentation, i.e. S = AUG . Due to the indeterminism of hill-climbing, generated
solutions are in general different and enough initial diversity is provided.

4.4 Edge Crossover

When designing a suitable crossover operator, our main goal was to produce a
new solution that inherits as many parental structures as possible in order to
provide a high level of locality. This can be accomplished by setting a child’s
edge-set to the union of the parental edge-sets and applying local stochastic
hill-climbing to it.



procedure edge-delete mutation(var S):
begin

do pmut times:
choose e ∈ S randomly;
S ← S \ {e};
for each e0 ∈ Path(e) do

ncov(e0) ← ncov(e0)− 1;
for each {e0 | e0 ∈ Path(e) ∧ ncov(e0) = 0} do

select e1 from Cover(e0) \ {e} randomly;
S ← S ∪ {e1};
for each e′ ∈ Path(e1) do

ncov(e′) ← ncov(e′) + 1;
hill-climbing(S);

end

Fig. 3. Edge-delete mutation.

In this way, a new locally optimal solution is efficiently created out of the
parental edges only. Nevertheless, even if the same two parents are again selected
for mating, a different offspring is generated with high probability.

Meaningful building-blocks will be transmitted from parents to offsprings,
and strong locality is provided. Since |S| < |V | for each parental edge-set, the
computational effort of edge crossover is only O(|V | log |V |).

4.5 Edge-Delete Mutation

The mutation operator’s main purpose is to counteract premature convergence
and to maintain enough diversity in the population by introducing new edges
from AUG \ S. Edge-delete mutation replaces a randomly selected edge from
S by one or more different, appropriate edges from AUG \ S, so that edge-
biconnectivity is maintained. Since the offspring generated in this way is not
necessarily edge-minimal anymore, local stochastic hill-climbing is finally applied
again. The algorithm presented in Fig. 3 shows more details.

To be able to perform the mutation efficiently, we suggest to determine the
set Cover(e0) as defined in (1) for each e0 ∈ E as a part of preprocessing. Then
the mutation operator needs only O(|V | log |V |) time, too.

The parameter pmut is the number of times an edge is substituted and there-
fore controls how strong mutation will actually change a certain solution.

4.6 Edge-Cost Based Heuristics

Usually, cheaper edges will appear more frequently in optimal solutions than
expensive edges. Based on this observation, we include additional cost-based
heuristic in the hill-climbing and mutation algorithms.



Heuristic in hill-climbing: During hill-climbing, the order of processing the edges
in S is crucial. In each iteration, we bias the selection of the edge coming next
towards more expensive edges by performing a tournament selection on all yet
unprocessed edges in S. From a group of kimpr randomly chosen edges, the most
expensive edge is selected.

Heuristic in edge-delete mutation: For mutation we select each replacement-edge
(needed to cover a newly introduced bridge e0) from Cover(e0) \ {e} by using a
tournament selection. Now, cheaper edges need to be preferred; thus, the edge
with the smallest costs is selected from a randomly chosen group of size kmut.

4.7 General EA Properties

We used a steady-state evolutionary algorithm in which only one new solution is
created by means of crossover and mutation. The new solution always replaces
the worst solution with one exception: Only new solutions that are not dupli-
cates of solutions already in population are accepted in order to maintain higher
diversity. Parents are chosen using tournament selection with the group size k.

5 Experimental Results

In this section we present experimental results of the proposed EA with stochas-
tic hill-climbing (EASHC) and the previous hybrid genetic algorithm (HGA)
from [7].

Since the problem of augmenting a general connected graph G, can effectively
be reduced to augmenting a tree (see Sec. 3), G is always a spanning tree in our
test instances. Table 1 shows the main properties of the considered instances.
Columns |Vpre| and |AUGpre| indicate the numbers of nodes and the numbers of
augmenting edges of G, respectively, after performing preprocessing. Instances
A3 to N2 were created using a generator from Zhu et al. [12]. All graphs were
randomly generated; column c(e) shows the intervals from which costs for each
e ∈ AUG were chosen. Results for problem instances A3 to N2 were adopted
from [7]. Instances R1 to E3 are new and larger than all previously tested ones.
In contrast to the other instances, E1 to E3 are Euclidean problems in which
nodes represent randomly placed points in the plane and edge costs correspond
to the points’ Euclidean distances.

It can further be observed that especially when GA is sparse (as in instances
A3, B1, B6), the fixing of edges together with the new iterative shrinking and
edge-elimination can dramatically reduce the problem size. On the other hand, if
GA is dense (instances N1 to E3), edge-fixation is not able to reduce the number
of nodes, but the edge-elimination is more effective. Especially for larger problem
instances, preprocessing times tpre are neglectable in comparison to the EA’s
total execution times, see Table 2. Preprocessing was able to reduce the problem
size |AUG | significantly: in case of instance B1 to ∼ 1/7, in average to about
the half.



Table 1. Properties of considered problem instances.

instance |V | |AUG| c(e) in |Vpre| |AUGpre| tpre[s]

A3 40 29 [1,780] 12 13 0.1

B1 60 55 [1,1770] 8 4 0.1

B6 70 81 [1,2415] 31 39 0.2

N1 100 1104 [10,50] 100 687 0.6

N2 110 1161 [10,50] 110 734 0.6

R1 200 9715 [1,100] 200 3995 11.2

R2 200 9745 [5,100] 200 3702 10.9

E1 200 19701 Euclidean 200 4104 25.8

E2 300 11015 Euclidean 300 4462 31.5

E3 400 7621 Euclidean 400 4806 51.6

Table 2. Average results of HGA and EASHC.

HGA EASHC

inst. best gap[%] σ(gap) eval t[s] gap[%] σ(gap) eval t[s]

A3 6607.0 0.0 0.0 380 0.1 0.0 0.0 0 0.1

B1 15512.0 0.0 0.0 50 0.0 0.0 0.0 0 0.1

B6 19022.0 0.0 0.0 9400 4.5 0.0 0.0 7 0.2

N1 383.0 2.6 2.0 95350 230.4 0.5 0.4 3998 10.4

N2 429.0 2.3 1.3 120400 544.9 0.0 0.0 3793 11.3

R1 121.4 1.1 1.0 244325 12398.3 0.0 0.1 12410 135.3

R2 320.5 6.7 1.7 243085 11434.4 0.7 0.1 38912 218.5

E1 2873.8 12.8 5.6 236305 20740.1 1.0 0.9 34129 191.0

E2 9355.2 8.9 1.7 236480 22602.5 0.4 1.6 97764 731.0

E3 21329.1 8.4 2.0 246640 23970.4 0.5 1.3 113831 1451.4

Suitable EA parameters were determined by extensive preliminary tests: pop-
ulation size |P | = 100, group size for tournament selection of the EA k = 5,
during recombination kimpr = 5, and during mutation kmut = 4. The mutation
rate is pmut = 5. Each run was terminated when no new best solution was found
within the last 100,000 created solutions.

Table 2 presents average results obtained from 100 runs/instance in case of
EASHC, and 10 runs/instance in case of HGA. Column best shows each prob-
lem instance’s best known solution. For both algorithms percentage gaps of the
final solutions’ average total costs to the best known values best and standard
deviations of gaps σ(gap) are given. Evals indicates the average number of eval-
uated solutions until the finally best solution had been obtained, and t is the
corresponding execution time in seconds.

For all problem instances EASHC’s final solutions are better than or at least
equally good as those obtained by HGA. Nevertheless, EASHC needs in all cases
significantly fewer iterations and was much faster. For instance E1, EASHC was
more than 100 times faster.



6 Conclusion

The proposed EA has the following advantages: initialization, recombination,
and mutation produce only feasible, locally optimal solution candidates, due
to the local stochastic hill-climbing. The iterative process is computationally
efficient since crossover and mutation run in O(|V | log |V |) time. Therefore, the
approach scales well to larger problem instances.

The direct representation in combination with the proposed variation op-
erators provides strong locality. In particular, crossover always generates new
solutions out of inherited parental edges only. Other investigations indicate that
the cost-based heuristics included in hill-climbing and mutation increase the per-
formance of the proposed EA substantially. The proposed EA obtained better
final solutions in dramatically shorter execution times than the previous hybrid
genetic algorithm.

Future work will include a generalization of the approach for k-edge connec-
tivity augmentation.
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