
A Hybrid GA for the Edge-Biconnectivity
Augmentation Problem

Ivana Ljubić1, Günther R. Raidl1, and Jozef Kratica2

1 Institute for Computer Graphics, Vienna University of Technology,
Favoritenstraße 9–11/186, A-1040 Vienna, Austria

{ljubic|raidl}@apm.tuwien.ac.at
2 Faculty of Mechanical Engineering

Strumicka 92/5, Belgrade, Serbia
jkratica@matf.bg.ac.yu

Abstract. In the design of communication networks, robustness against
failures in single links or nodes is an important issue. This paper proposes
a new approach for the NP-complete edge-biconnectivity augmentation
(E2AUG) problem, in which a given graph G0(V, E0) needs to be aug-
mented by the cheapest possible set of edges AUG so that a single edge
deletion does not disconnect G0. The new approach is based on a pre-
liminary reduction of the problem and a genetic algorithm (GA) using
a binary vector to represent a set of augmenting edges and therefore a
candidate solution. Two strategies are proposed to deal with infeasible
solutions that do not lead to edge-biconnectivity. In the first, more tra-
ditional variant, infeasible solutions are detected and simply discarded.
The second method is a hybrid approach that uses an effective heuris-
tic to repair infeasible solutions by adding usually cheap edges to AUG
until the graph augmented with AUG becomes edge-biconnected. The
two GA-variants are empirically compared to each other and to another
iterative heuristic for the E2AUG problem using instances involving up
to 1270 edges.

1 Introduction

When designing communication networks, a minimum spanning tree is usually
the cheapest network that will allow a given set of sites to communicate. How-
ever, such a network is not robust against failures, since it might not survive
the break of even a single link or site. For many communication structures, an
important issue besides the minimization of connection costs is reliability. The
network should be robust against failures in connections or switching nodes in
the sense that any two nodes do not loose connection in case of up to a cer-
tain maximum number of simultaneous failures. To accomplish this, redundant
communication routes must exist for any pair of nodes.

In graph theory, the terms vertex-connectivity and edge-connectivity are used
to describe this kind of robustness. A connected, undirected graph G(V,E) has
edge-connectivity CE(G) (CE(G) ≥ 1) if at least CE(G) edges need to be deleted

in order to separate G into disconnected components. Similarly, the graph has
vertex-connectivity CV (G) (CV (G) ≥ 1) if at least CV (G) vertices with their
adjacent edges must be deleted for disconnecting G. Note that CV is always less
than or equal to CE(G), since at most one incident vertex for any of CE(G)
edges disconnecting G need to be deleted [2]. Furthermore, CE(G) is always less
than or equal to the minimum-degree of all vertices V [20].

In this article, we concentrate on the edge-biconnectivity augmentation
(E2AUG) problem, which is stated as follows. Given are a weighted, undirected
graph G(V,E) with edge-connectivity CE(G) ≥ 2 and a spanning subgraph
G0(V, E0), E0 ⊂ E with CE(G0) = 1. Each edge e ∈ E has an associated weight
w(e) > 0. The goal is to identify a set of augmenting edges AUG ⊂ E \E0 with
minimum total weight

W (AUG) =
∑

e∈AUG

w(e) (1)

such that graph GAUG(V, E0 ∪ AUG) is edge-biconnected, i.e. CE(GAUG) ≥ 2.
In G0, an edge e ∈ E0 is called a bridge if its deletion disconnects G0. GAUG

may therefore have no bridges. Note that the E2AUG problem is also called
bridge-connectivity augmentation problem [4].

Besides the design of communication networks, this problem is also important
to VLSI floorplanning [19]: An electronic circuit can be interpreted as a graph
whose vertices are the (rectangular) functional units and whose edges are the
interconnections between the units. If the graph has a so-called rectangular dual
(a planar embedding of a dual of the graph such that each face and the total
graph enclosure are rectangles), the most area-efficient chip-layout of the units
can be determined efficiently. It is known that a rectangular dual exists if the
graph is maximal planar and does not have complex triangles [19]. In general,
a graph representing an electronic circuit will not fulfill these requirements; the
graph must be augmented by additional vertices and edges. The most complex
part of this augmentation problem can be transformed into the E2AUG problem.

Eswaran and Tarjan [3] proposed a polynomial-time algorithm for the spe-
cial case when the weights w(e), e ∈ E, are all equal and G is a complete graph.
However, for the general case with different weights, they showed that the prob-
lem is NP-complete, see also [5, 8]. The problem even remains NP-complete if
weights are chosen from set {1,2} only [4]. In general, it is computationally too
expensive to solve larger problem instances to optimality using exact techniques
like branch-and-bound. Therefore, heuristics which are able to find high-quality
suboptimal solutions in polynomial time are of interest.

The next section gives an overview of previous work related to the E2AUG
problem. A new genetic algorithm approach is proposed in Sect. 3 and hybridized
by including a problem-specific repair and improvement heuristic in Sect. 4.
Empirical results for both variants are presented in Sect. 5. Especially the new
hybrid approach finds good solutions with high confidence that are usually better
or as good as those of another recently proposed iterative heuristic. Finally,
conclusions are drawn in Sect. 6.

E0 E \ E0 E′
0 E′ \ E′

0 E′
0

a) b) c)

AUG ′

shrunken componentedge-bicon. component

Fig. 1. An example for the problem reduction and augmentation: (a) given graphs
G(V, E) and G0(V, E0), (b) shrinking of existing edge-biconnected components into
single vertices, and (c) a feasible solution (AUG ′)

2 Related Work

Frederickson and Jájá [4] proposed an approximative algorithm for the E2AUG
problem which is based on the following steps:

Firstly, the problem is simplified by detecting all already edge-biconnected
components in G0 and shrinking their vertex sets in G and G0 into single new
vertices, see Fig. 1. Edges that connect vertices of the same component can be
discarded. Furthermore, among the edges that connect the same pair of com-
ponents only the minimum weight edge must be retained, i.e. in case of G0 the
bridges. Let G′(V ′, E′) and G′0(V

′, E′
0) be these reduced versions of G(V,E) and

G0(V, E0), respectively. In this way, G′0 will always be a spanning tree and many
edges from E \ E0 can usually be discarded from further consideration as aug-
menting edges. Note that for each edge in E′, a reference to the corresponding
edge in E is stored for being able to efficiently transform a final augmenting edge
set AUG ′ for the reduced graphs to the corresponding set AUG for the original
graphs.

In the next step, G′0 is interpreted as a directed tree in such a way that every
node has a path to a selected root node r. Then, a minimum weight branching
from node r, i.e. a directed minimum spanning tree including paths from r to all
other nodes, is determined. Using this minimum weight branching, a set AUG ′

(AUG) of edges augmenting G′0 (G0) to become edge-biconnected can be derived.
In [4], it is also shown that the total weight of the edges added by this

technique is no more than twice the weight of an optimal augmentation. Subse-
quently, this algorithm was improved by Khuller and Thurimella [9] with regards
to the time-complexity.

Khuller and Vishkin [10] proposed a similar approach for the related problem
of identifying a minimum weight edge-biconnected spanning subgraph when no
starting graph G0 is given. Khuller and Raghavachari [12] proposed another
algorithm using similar basic ideas for the problem of identifying a (nonspanning)

subgraph with a given edge- or vertex-connectivity for a given graph G. A survey
on several related problems and approximation algorithms is given by Khuller
[11]. Algorithms with better worst-case approximation factors for such problems
are sometimes known when the edge weights fulfill certain conditions such as the
triangle inequation. Du et al. [1] presented an approach to the k-edge-connected
Steiner Network problem in metric spaces.

Recently, Zhu et al. [21] proposed another algorithm for the E2AUG problem
with arbitrary weights, called DROP, that is based on [4] and leads in practice
to significantly better results than the previous approaches, although it has the
same worst-case approximation factor of two. Instead of deriving all augmenting
edges from a single minimum weight branching as in [4], an iterative process
is used which fixes only one augmenting edge at a time based on some mea-
surement of how useful a particular edge is. After fixing one edge, its weight is
reduced to zero and a new minimum weight branching is derived according to
this modification. This process continues until the minimum weight branching
contains only zero-weight edges and a complete set of augmenting edges has been
derived.

The first author presented in [15] and together with J. Kratica in [16] a ge-
netic algorithm (GA) for the vertex-biconnectivity augmentation problem. This
approach represents solutions by binary vectors. Infeasible solutions that are not
vertex-biconnected are either discarded or repaired by a heuristic. We used this
algorithm and the GANP framework [14] as a first basis for approaching the
E2AUG problem. However, various far reaching modifications turned out to be
necessary or important to obtain the efficient algorithm proposed in the next
sections.

3 The Basic Genetic Algorithm

As proposed by Frederickson and Jájá [4], we perform a pre-processing which re-
duces the graphs G0 to G′0 and G to G′ by shrinking all already edge-biconnected
components in G0 into single new vertices (Fig. 1). We remove all selfloops and
multiple edges, and consider only the cheapest edges connecting two different
edge-biconnected components. The set of edges that might act as augmenting
edges is then E′ \ E′

0.
The main structure of the proposed algorithm corresponds to a traditional

generational GA with overlapping populations [6]. Its operators and properties
are described in the following.

Encoding: A candidate solution is represented by a vector x of l = |E′ \ E′
0|

binary genes xi ∈ {0, 1}, i = 1, . . . , l. Each gene xi is associated with an edge
from E′ \E′

0 and indicates whether the edge is included in the set of augmenting
edges AUG ′ (xi = 1) or not (xi = 0).

Initialization: Initial solutions are created randomly by setting each gene xi

independently with probability 7/8 to 1. In this way, an initial augmented graph

is usually dense and the probability that the solution is feasible, i.e. the aug-
mented graph is edge-biconnected, is high. But nevertheless, it is not guaranteed
that only feasible solutions are generated.

Objective function: For each new chromosome, the set of augmenting edges
AUG ′ is determined, and an edge-biconnectivity check is performed on the aug-
mented graph G′AUG = (V ′, E′

0 ∪ AUG ′). This test involves a depth-first search
(DFS) on the graph and is derived from Tarjan’s algorithm to check vertex-
biconnectivity [18]:

During the DFS all vertices are numbered in the order they are reached.
The edges which the DFS follows to get to yet unreached nodes form a directed
tree (precisely a spanning arborescence with the starting node as root). For each
node j, a so-called low-value is determined, which is the smallest node reachable
from j by traversing zero or more tree edges followed by at most one other edge
(back-edge) [18]. If a node j with a low-value greater than the number of its
parent p exists, the edge (p, j) is a bridge, and the graph is therefore not edge-
biconnected. Otherwise, if no such node exists, the graph is edge-biconnected
and AUG ′ represents a feasible solution. The time-complexity of the whole test
is O(|E′

0 ∪ AUG ′|). A similar algorithm for testing edge-biconnectivity can also
be found in [11].

In our basic GA, any infeasible solution is discarded. The objective value of
a feasible solution is the sum of the weights of all augmenting edges W (AUG) =
W (AUG ′), see Eq. 1.

Selection and population replacement policy: Classic fitness proportional
selection with different variants of scaling and tournament selection were empir-
ically tested. The tournament selection turned out to be more robust for this
application. In the experiments documented in Sect. 5, the population size was
P = 150, and tournament selection was applied with a group size of 5.

During each generation, the worst 1/3 of the population is replaced by new
solutions generated by means of crossover and mutation. In order to avoid pre-
mature convergence, each new solution is checked if it is already contained in
the population and discarded in that case.

Crossover: Uniform crossover according to [17] is applied with a certain prob-
ability (pc = 85% in the examples of Sect. 5). The value of each gene of an
offspring is determined independently by inheriting it from the first parent with
a probability of 30% and otherwise from the second parent. In this way, about
30% of the genes are exchanged.

Mutation: Each gene of a newly created solution is mutated with a certain
probability pm. Usually, the diversity of the genetic material is large at the be-
ginning of a run and decreases with the time. We adapt the mutation rate during
a run to promote a fast convergence to good solutions during the first genera-
tions and to introduce more diversity for escaping from local optima during later
stages. The mutation probability at generation t is

pm(t) = pm0 + (pm1 − pm0) 2−t/γ (2)

(1) procedure repair(V ′, E′, E′
0,var AUG ′);

(2) begin
(3) while (bridge ← FindBridge(V ′, E′

0 ∪AUG ′)) do
(4) {C1, C2} ← FindConnectedComponents(V ′, E′

0 ∪AUG ′ \ {bridge});
(5) for e ∈ E′ \ (E′

0 ∪AUG ′) sorted according to increasing w(e) do
(6) if e connects C1 with C2 then
(7) AUG ′ ← AUG ′ ∪ {e};
(8) continue at (3);
(9) end;

Fig. 2. Pseudo-code for the greedy repair heuristic

with pm0 and pm1 denoting the lower and upper mutation rates for the beginning
and ending, respectively. The parameter γ controls, how fast the mutation rate
changes towards pm1.

According to preliminary tests, we suggest to set the lower mutation rate to
pm0 = 1/(2l), where l is the length of the genetic code, and the upper mutation
rate to pm1 = 3/(2l).

Caching of solutions: During a GA run, some solutions are often generated
repeatedly in subsequent generations. A classical GA evaluates each solution
irrespectively of its repetition. To increase the efficiency, we use a caching tech-
nique [13, 14] which memorizes all newly generated solutions with their objective
values. In case of a subsequent occurrence of a solution, the objective value can
quickly be retrieved instead of performing a new evaluation, as long as the solu-
tion resides in the cache. The used caching technique applies a least-recently-used
strategy with a hash-queue data structure [13].

4 The Hybrid Genetic Algorithm

Instead of discarding a newly generated solution that is infeasible, it can also be
repaired by extending set AUG ′ with additional edges by a heuristic until the
solution becomes edge-biconnected. For this purpose, the greedy heuristic shown
in Fig. 2 is used. This procedure is performed in a Lamarckian way, therefore,
the actual genotype is also modified according to the changes in set AUG ′.

First, a bridge is determined by performing a depth-first search as already
described in Sect. 3. If no bridge exists, graph G′AUG is already edge-biconnected
and the procedure terminates. Otherwise, the bridge is temporarily removed from
AUG ′, which will disconnect the graph into two components C1 and C2. These
components are identified by an additional depth-first search. Next, the cheapest
edge from E′ which is not yet contained in the augmented graph (including
the bridge) and which connects C1 with C2 is searched for. This edge is then
included in AUG ′. In this way, the originally found bridge – and eventually
also others – are bypassed. The algorithm restarts with checking the graph for
edge-biconnectivity and identifying a bridge until the solution becomes feasible.

Table 1. Categories of test problem instances: ranges for the number of vertices and
edges of G, length l of genetic code, and edge-weights w(e)

Category |V | |E| l w(e)

A [20, 40] [43, 79] [24, 40] [1, |V |(|V | − 1)/2]

B [20, 70] [81, 150] [55, 81] [1, |V |(|V | − 1)/2]

C [20, 100] [205, 248] [126, 182] [1, |V |(|V | − 1)/2]

D [40, 100] [384, 497] [315, 398] [1, |V |(|V | − 1)/2]

M [70, 90] [312, 438] [243, 349] [10, 1000]

N [100, 110] [1203, 1270] [1104, 1161] [10, 50]

For time-efficiency, all edges E′\E′
0 are sorted according to increasing weights

only once in a pre-processing step at the beginning of a run. In the worst-case,
AUG ′ is the empty set, each edge of the augmented graph is a bridge, and |E′

0|−1
additional edges having always the largest weights must be included. The time-
complexity of this heuristic is then O(|E′||V ′|). However, in practice only few
bridges exist in most solutions generated by the GA and a single additional
edge often eliminates several bridges. Therefore, the time-demand seems to be
acceptable also for relatively large problem instances, see Sect. 5. In the following,
we denote this hybrid version of the GA including the repair heuristic as HGA
and the basic GA of Sect. 3 as BGA.

In contrast to BGA, it is for HGA not meaningful to create large augmen-
tation sets leading to dense graphs as initial random solutions. This would only
slow down the convergence to light-weight high quality solutions. Instead, initial
solutions should now contain only few augmenting edges since the repair heuris-
tic will add necessary edges of usually small weights. Therefore, each gene is now
set to 1 with probability 1/16 only and to 0 otherwise.

5 Empirical Results

In this section, some typical empirical results obtained by BGA, HGA, and the
iterative DROP heuristic from Zhu et al. [21] (which has been applied several
times with different nodes as root), are documented. Problem instances belonging
to different categories were randomly created by a test data generator already
used in [21].

Table 1 shows the most important characteristics of these problem categories.
The graphs G of all problem instances were created randomly in such a way that
they are guaranteed to be edge-biconnected. The graphs G0 to be augmented
are always randomly generated spanning trees of G. In this way, no preliminary
problem reduction by shrinking already edge-biconnected components is possible
and G′ and G′0 always correspond to G and G0, respectively. Furthermore, the
length of the genetic code is always l = |E| − |E0| = |E| − |V |+ 1.

For BGA and HGA, all strategy parameters were set as described in the
previous sections. Each GA run was terminated when no better solution had
been found within the last Gconv generations with Gconv = 5000 for BGA and

Table 2. Results for DROP, BGA, and HGA: Average objective values of final solu-
tions W (AUG) with CPU-times t and number of generations gen needed; totally best
observed objective values W (AUG∗) (always from HGA)

DROP BGA HGA
Problem

W (AUG) W (AUG) t [s] gen W (AUG) t [s] gen W (AUG∗)

A1 686 686 0.08 48 686 0.01 1 686

A2 496 496 0.06 33 496 0.01 1 496

A3 6804 6607 0.13 50 6607 0.07 8 6607

A4 1642 1538 0.16 53 1538 0.01 1 1538

A5 4281 4281 0.48 180 4281 0.01 1 4281

Avg(A) 2782 2722 0.18 73 2722 0.02 2 2722

B1 15512 15512 0.45 192 15512 0.02 1 15512

B2 223 223 1.14 485 223 0.08 15 223

B3 7168 7223 1.39 555 7168 0.01 1 7168

B4 5984 5984 1.59 548 5984 0.28 21 5984

B5 13522 13556 3.11 738 13522 0.34 15 13522

B6 19026 19113 2.58 603 19022 4.50 188 19022

Avg(B) 10239 10268 1.71 520 10238 0.87 40 10238

C1 22309 22399 4.62 1261 22309 1.26 31 22309

C2 38191 38396 7.27 1914 38191 1.34 24 38191

C3 59776 59271 12.46 2973 59129 3.40 53 59129

C4 790 800 8.51 2510 790 0.18 18 790

Avg(C) 30266 30217 8.21 2165 30105 1.54 32 30105

D1 4932 5228 27.94 4915 4932 2.22 31 4932

D2 899 930 22.30 4196 899 1.57 58 899

D3 20411 21429 53.33 8612 20351 7.52 83 20321

D4 8142 9340 47.00 7602 8142 6.75 80 8142

D5 19602 21849 63.14 8939 19423 32.22 363 19355

Avg(D) 10797 11755 42.74 6853 10749 10.06 123 10730

M1 3010 3172 41.84 7068 2940 14.68 308 2940

M2 4610 4791 54.54 8510 4600 14.85 208 4600

M3 5040 5299 48.21 6346 4980 3.44 33 4980

Avg(M) 4220 4421 48.20 7308 4173 10.99 183 4173

N1 398 490 219.03 15631 393 230.38 1907 383

N2 450 544 201.90 13600 439 544.94 2408 432

Avg(N) 424 517 210.47 14616 416 387.66 2157 408

Gconv = 2000 for HGA. The parameter γ, which controls the adaption of the
mutation rate, was set to l/2 for BGA and to l/4 for HGA.

Table 5 shows results for the three algorithms. For BGA and HGA, the times t
(in seconds on a Pentium III/500MHz PC) and generations gen indicate when
the best-of-run solutions having objective value W (AUG) had actually been
encountered. All these values are average values determined from 10 independent

runs per problem instance. The best average objective values are always printed
bold. In addition, also the totally best objective values from the 10 HGA-runs
per instance (W (AUG∗)) are shown.

For the smaller problem categories A to C, the differences in the quality
of final solutions between all three algorithms are only small. Especially for
category A, HGA is able to identify the best solutions often already in the initial
generation due to its heuristic, and the needed CPU-times are only fractions of
a second. In some cases of category A, BGA and HGA are able to find better
solutions than DROP. For the larger problem instances in categories C to N,
BGA cannot compete with DROP and HGA, but HGA obtains in all cases
solutions either equally good or better than those of DROP. Therefore, the repair
heuristic included in HGA proves to be highly effective.

It is remarkable that HGA identifies good solutions with high confidence.
For many problem instances, all or most of the 10 runs per problem instance
found identical or equally good solutions. Note also that due to the heuristic, the
number of needed generations to identify good solutions is dramatically reduced
in comparison to BGA. Also regarding the CPU times, HGA is superior to BGA
in most cases.

6 Conclusion and Future Work

A new GA-based approach for augmenting a given graph G0 with an as cheap
as possible set of additional edges so that the graph becomes edge-biconnected
was proposed. By applying the preliminary shrinking of already edge-biconnected
components into single new vertices, the set of edges that must be considered for
augmentation can often greatly be reduced. Within the GA, candidate solutions
are represented by binary vectors, and infeasible solutions are either discarded
(in the basic GA) or repaired by a heuristic that adds cheap edges for detected
bridges until the solution becomes edge-biconnected (HGA).

In the presented empirical study involving underlying graphs with up to 110
nodes and 1270 edges, the hybrid approach proved to give significantly better
results than the basic GA and a recently proposed iterative heuristic [21]. Al-
though quality differences between the final solution of the hybrid GA and the
heuristic from [21] are only small, it is remarkable that HGA’s solutions are
nearly always better or equally good.

Future work should include the adaption of the algorithm to other graph-
augmentation problems such as the more general k-edge-connectivity augmen-
tation and the k-vertex-connectivity augmentation problems.

Acknowledgements

We thank Samir Khuller for giving us important informations related to the edge-
connectivity augmentation problem and An Zhu for providing us the problem-
instance generator as well as her results obtained by the DROP-algorithm ([21]).

This work is partly sponsored by the Austrian Science Fund (FWF) under the
grant P13602-INF.

References

1. Du X., Hu X., Wong C. K.: On Shortest k-Edge-Connected Steiner Networks in
Metric Spaces, Journal of Combinatorial Optimization 4(1), (2000), 99–107

2. Diestel R.: Graph Theory, 2nd edition, Graduate Texts in Mathematics 173,
Springer, New York, (2000)

3. Eswaran K. P., Tarjan R. E.: Augmentation Problems, SIAM Journal on Comput-
ing 5, (1979), 653–665

4. Frederickson G. N., Jájá J.: Approximation algorithms for several graph augmen-
tation problems, SIAM Journal on Computing 10(2), (1981), 270–283

5. Garey M. R., Johnson D. S.: Computers and Intractability: A Guide to the Theory
of NP Completeness, Freeman, (1979)

6. Goldberg D. E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing, Addison-Wesley, MA, (1989)

7. Jungnickel D.: Graphs, Networks and Algorithms, Springer, Berlin, (1999)
8. Kahn V., Crescenzi P.: A compendium of NP optimization problems,

www.nada.kth.se/theory/problemlist.html, (1999)
9. Khuller S., Thurimella R.: Approximation Algorithms for Graph Augmentation,

Journal of Algorithms 14(2), (1993), 214–225
10. Khuller S., Vishkin U.: Biconnectivity Approximations and Graph Carvings, Jour-

nal of the ACM 41(2), (1994) 214–235
11. Khuller S.: Approximation Algorithms for Finding Highly Connected Subgraphs,

in Approximation Algorithms for NP-hard problems, ed. Hochbaum D., PWS
Publishing Company, (1996)

12. Khuller S., Raghavachari B.: Improved Approximation Algorithms for Uniform
Connectivity Problem, Journal of Algorithms 21(2), (1996), 434–450

13. Kratica J.: Improving Performances of the Genetic Algorithm by Caching, Com-
puters and Artificial Intelligence 18(3), (1999), 271–283

14. Kratica J.: Parallelization of Genetic Algorithms for Solving Some NP-complete
Problems, PhD thesis (in Serbian), Faculty of Mathematics, Belgrade, (2000)

15. Ljubic I.: Application of Genetic Algorithms in Graph Connectivity Problems, MS
thesis (in Serbian), Faculty of Mathematics, Belgrade, (2000)

16. Ljubic I., Kratica J.: A Genetic Algorithm for the Biconnectivity Augmentation
Problem, submitted to the IEEE Congress on Evolutionary Computation, San
Diego, CA, (2000)

17. Syswerda G.: Uniform Crossover in Genetic Algorithms, Proc. of the 3rd Int. Con-
ference on Genetic Algorithms, Morgan Kaufmann, San Mateo, Calif., (1989), 2–9

18. Tarjan R. E.: Depth First Search and Linear Graph Algorithms, SIAM Journal of
Computing 1, (1972), 146–160

19. Tsukiyama S., Kioke K., Shirakawa I.: An Algorithm to Eliminate All Complex
Triangles in a Maximal Planar Graph for Use in VLSI Floorplanning, in Algo-
rithmic Aspects of VLSI Layout, ed. Sarrafzadeh M., Lee D. T., World Scientific
Publishing, (1993)

20. Veljan D.: Combinatorics and Graph Theory, Školska knjiga, Zagreb, (1989)
21. Zhu A., Khuller S., Raghavachari B.: A Uniform Framework for Approximating

Weighted Connectivity Problems, Proc. of the 10th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, Baltimore, (1999), 937–938

