TECHNISCHE

I UNIVERSITAT
I WIEN

VIENNA

WIEN UNIVERSITY OF

TECHNOLOGY

DIPLOMARBEIT

An Extended Local Branching Framework
and its Application to the
Multidimensional Knapsack Problem

ausgefihrt am
Institut fur Computergrafik und Algorithmen
der Technischen Universit Wien

unter der Anleitung von
a.0. Univ.-Prof. Dipl.-Ing. Dr. Gnther Raidl
Univ.-Ass. Dipl.-Ing. Jakob Puchinger

durch

Daniel Lichtenberger

Matr. Nr. 9825754
Marzstrasse 80/12
1150 Wien

Datum Unterschrift

Abstract

This thesis deals with local branching, a local search algorithm appliedpoafta Branch
and Cut algorithm for mixed integer programming problems. Local branalefiges custom
sized neighborhoods around given feasible solutions and solves tiadlp or completely
before exploring the rest of the search space. Its goal is to improveethéstic behavior of
a given exact integer programming solver, i.e. to focus on finding golodicas early in the
computation.

Local branching is implemented as an extension to the open source BradcGut
solver COIN/BCP. The framework’s main goal is to provide a generic implertientaf local
branching for integer programming problems. IP problems are optimizatiditgmns where
some or all variables are integer values and must satisfy one or more Xlowestraints.
Several extensions to the standard local branching algorithm were &oldiee framework.
Pseudo-concurrent exploration of multiple local trees, aborting locesd taed a variable fix-
ing heuristic allow the user to implement sophisticated search metaheuristicsljinsttthe
local branching parameters adaptively during the computation. A majorrdgsig was to
provide a clean encapsulation of the local branching algorithm to facilitatedihg of the
framework in other, higher-level search algorithms, for example in evalatipalgorithms.

As an example application, a solver for the multidimensional knapsack prablienple-
mented. A custom local branching metaheuristic imposes node limits on loca¢asiland
adaptively tightens the search space by fixing variables and reducirgizthef the neigh-
borhood. Test results show that local branching can offer signifmdwantages to standard
Branch and Cut algorithms and eventually proves optimality in shorter time.ciadgefor
large, complex test instances exploring the local neighborhood of a fgasible solution
often yields better short-term results than the unguided standard BradoBGu algorithm.
Improving the solutions found early in the computation also helps to remove addiparts
of the search tree, potentially leading to better solutions in longer runs.

Zusammenfassung

Diese Diplomarbeit besdlftigt sich mit Local Branching, einem lokalen Suchalgorithmus,
der auf einem Branch and Cut Algorithmuig fganzzahlige Optimierungsprobleme aufsetzt.
Local Branching definiert beliebig groRe Nachbarschaften um gegeliltige Losungen
und IBst diese teilweise oder komplett, bevor der Rest dgésuhgsraums durchsucht wird.
Das Ziel ist eine Verbesserung des heuristischen Verhaltens debegege Solvers iir
ganzzahlige Optimierungsprobleme, d.h. sich auf daglithst fiilhe Finden guter &sungen

zu konzentrieren.

Local Branching ist als Erweiterung des Open Source Branch an8@ers COIN/BCP
implementiert. Das Hauptziel des Frameworks ist eine generische Implemagtigon
Local Branching fir ganzzahlige Optimierungsprobleme, also Probleme, bei denen alle
oder einige Variablen ganzzahlig seinissen, und zw@dzlich eine oder mehrere (lineare)
Bedingungen in Form von Ungleichungenigién missen. Es wurden mehrere Erweiterungen
zum Framework hinzugégt: die pseudo-parallele Abarbeitung mehrerer lokaler Siuaime,
das vorzeitige Terminieren lokaler Suéhlme sowie eine unabhgige Variablen-Fixing-
Heuristik. Durch diese Erweiterungeinen die ParametdiifLocal Branching im Laufe der
Berechnung beliebig vandert werden. Ein wesentliches Ziel beim Entwurf des Frameworks
war eine klare Kapselung des Local Branching Algorithmus, um die Eintmptitu andere,
hdhere Suchalgorithmen zu ebglichen, etwa in evoluticire Algorithmen.

Als Beispielapplikation wurde ein Solveillf das mehrdimensionale Rucksackproblem
implementiert. Eine eigene Local Branching Metaheuristik besdtirdie GbR3e lokaler
Baume durch Knotenlimits und kann den Suchraum durch Anwendung désblén-
Fixing-Heuristik weiter einsclimken. Die Testergebnisse zeigen signifikante Vortdile f
Local Branching im Vergleich zum normalen Branch and Cut Algorithmws. allem fir
groRe, komplexe Testinstanzen liefert die Suche in lokalaonBn oft bessere Resultate
am Anfang der Berechnung. Dadurch wird auch die Zeit zum Findad Beweisen) der
optimalen losung potentiell verringert, da dadurclitiier zu&tzliche Teile des Suchbaums
weggeschnitten werderdbknen.

Contents

1 Introduction 4
1.1 ThesisOverview e 5
2 Branch and Cut 6
2.1 Integer Programming Problems 6
2.1.1 Convex Hull of an Integer Program 6
2.1.2 Relaxations 7
2.2 BranchandBound 7
2.3 Cutting Plane Algorithms 8
24 Branchand Cut 10
3 Local Branching 11
3.1 Softvs. Hard Variable Fixing 11
3.2 ABasic Local Branching Framework 12
3.3 Local Branching Extensions 14
4 An Advanced Local Branching Framework 16
4.1 Basic Functionality 16
411 Limitations 17
4.2 Extending the Basic Algorithm 17
4.2.1 Using Multiple Local Trees, 17
422 AbortingLocalTrees 19
4.2.3 Tightening the Search Tree by Variable Fixing 19
4.2.4 Utilizingthe Extensions, 20
5 COIN/BCP 21
51 COINOVEIVIEW o i e e e e e e e 21
5.1.1 History e 21
51.2 Components 21
5.2 Designof COIN/BCP e 22
5.2.1 VariablesandCuts 22
5.3 COIN/BCPmodules i 23
53.1 TheTreeManagerModule 23
5.3.2 The Linear Programming Module 24
5.3.3 TheCutGeneratorModule 24
5.3.4 The Variable GeneratorModule 24
5.4 The Linear Programming Module 24

541 ThelLPENngine 24

5.4.2 Managingthe LP Relaxation 24
543 Branching. 25
5.5 Parallelizing COIN/BCP 25
5.5.1 Inter-Process Communication 25
55.2 FaultTolerance 26
5.6 Developing Applicationswith COIN/BCP 26
56.1 TheBCP.tmwuserClass 27
5.6.2 TheBCP.lpwuserClass 27
Implementation of the Framework 29
6.1 Integrating Local Branching into COIN/BCP 31
6.1.1 Identifying Local TreeNodes 31
6.1.2 ThelLBtmModule 32
6.1.3 ThelBlpModule 33
6.2 ManagingLocal Trees e 35
6.2.1 ThelocalTreelndex 36
6.2.2 ThelocalTreeManager. 37
6.3 Controlling LocalBranching 37
6.3.1 Implementing a Basic Local Branching Algorithm 38
Multidimensional Knapsack Problems 39
7.1 Introduction 39
7.1.1 Algorithms for Knapsack Problems 39
7.1.2 Multidimensional Knapsack Problems 40
7.2 Heuristic Algorithms 41
7.21 GreedyHeuristics. e 41
7.2.2 Relaxation-Based Heuristics 42
7.2.3 Hybrid Algorithms 42
7.2.4 Evolutionary Algorithms 42
A Sample Application: MD-KP 44
8.1 KStmimplementation 45
8.1.1 TestFileFormat 45
8.1.2 SettinguptheCoreMatrix 45
8.1.3 Packing and UnpackingofCuts 46
8.1.4 Sending the Problem Description to the LP Module 46
8.1.5 Creating a K3MetaHeuristicObject 47
8.2 KSlplImplementation 47
8.2.1 Generating Feasible Solutions 48
8.2.2 GeneratingCuts 49
8.3 KSinitImplementation 50
8.4 KSMetaHeuristic Implementation 50
8.4.1 Configuring Local Branching 50
8.4.2 Settingup LocalBranching 51
8.4.3 Creating the Initial Solution 52
8.4.4 Imposing Node LimitsonLocal Trees 54

8.4.5 Handling Terminated Local Trees 55

8.5 FinishingTouches 55
9 Test Results 57
9.1 TestEnvironment 57
9.2 TestResultsOverview 58
9.2.1 Final Objective Comparison 58
9.2.2 Online Performance 58
9.3 Local Branching Configurations 95
9.4 Short-Time Tests e 60
9.4.1 Local Branching and Node Limits 60
9.42 CutGeneration 63
9.4.3 Multiple Initial Solutions 67
95 LongRuUNS. e e 68
10 Summary and Outlook 73
A COIN/BCP patches 74
A.1 Adding User-Defined Messages i 4 7
A.2 Extending the Candidate List 75
A.2.1 include/BCRPtm_node.hpp 75
A.2.2 include/BCPIm_node.cpp oo 76
A.2.3 TM/BCPtm_functions.cpp 77
A.3 CountingPrunedNodes 78
A.3.1 TM/BCPtm_msgnoderec.Cpp v v v v v v v v v e e e a 78
A.3.2 TM/BCPIM_MSQGPrOC.CPP - « « v v v v v e e e e e e e e 78
A.4 AbortingLocal Trees 79
A.4.1 include/BCPtm_node.hpp 79
A.4.2 TM/BCPtm_functions 79
B Test Scripts 80
B.1 GeneratingLogFiles 80
B.2 AnalyzingLogFiles 81
Bibliography 82

Chapter 1

Introduction

Integer programming problems (IPs) are optimization problems that restnet soall vari-
ables to integer values. In contrast to linear programming problems (LP)uvititegrality
constraints, IPs are NP-hard. Much research has gone into effesgtarch algorithms for
integer programs, leading to exact algorithms like Branch and Bound ¢@8]ng plane al-
gorithms [30], and a large variety of heuristical algorithms that trade optimalitgdiickly
getting “good enough” solutions.

This thesis considers the modification of standard Branch and Cut to foleag ilom lo-
cal search based heuristics, the so-cdthedl branching[13]. Branch and Bounds a generic
algorithm for solving integer programming problems by partitioning the segrabesinto
smaller subproblems (branching), calculating bounds on the best solusiboatih be found
in a subproblem (bounding), and removing those subproblems thatamenpio contain only
solutions inferior to the best known solution (pruning). The boundingaijm is commonly
executed by solving the LP relaxation (i.e. the IP problem without the integratraints).
Branch and Cutries to delay the branching operation by adding constraints (cuts) that are
violated by the current LP result, leading to a reduction of the searchizee s

Local branching defines subproblems through additional local bragichuts that isolate
a neighborhood of a certain size around a given feasible solution. @Epréxg this smaller
subproblem before the rest of the search tree, the intention is to improddegsible solutions
before continuing Branch and Cut in a standard way. Several extensave been added to
local branching: pseudo-concurrent tree exploration, the possibildipaot local trees, and a
variable fixing heuristic have been added. Due to its general desigh bi@ehing can be
used with any IP solver.

A large part of integer programming is concerned wittmbinatorial problems These
include for example the subset sum equality problem, various graph themrlems, and the
well-known family of knapsack problems. In this thesis, theltidimensional knapsack prob-
lemis used to demonstrate the use and the benefits of local branching. Altabugbes of
knapsack problems are NP-hard, some problems can be efficiently fyleedimerative tech-
niques like dynamic programming. For others, like the multidimensional knagsabkem,
no such methods are known. These problems supply well suited testoagabyffledged
Branch and Cut solvers, and are often too complex to be solved to optimaliasomable
time.

1.1 Thesis Overview

In chapter 2, an overview of integer programming problems, cutting plamaitpees and
Branch and Bound algorithms is given to summarize the building blocks ofcBrand Cut.
Chapter 3 provides an introduction to local branching as proposed blgetisand Lodi [13].
Chapter 4 introduces the framework implemented for this thesis, includingsestento the
local branching algorithm, and describes the overall design of the ingetdethe framework.
In chapter 5, an overview of the open source COIN/BCP framewor#t fmeimplementing
local branching is given. Chapter 6 contains the implementation details of thiebi@nching
framework. An overview of knapsack problems in general and multidimaakknapsack
problems in particular is given in chapter 7. The implementation of a sample laraiting
application for the multidimensional knapsack problem is described in ch@ypliest results
exploring the benefits and drawbacks of local branching based omamhgle application are
given in chapter 9. Chapter 10 summarizes the results and provides auitgefk on possible
future work. In appendix A, the patches necessary for the COIN/BitiFce code are de-
scribed. Appendix B provides a brief overview of the test scripts usedrfalyzing the local
branching test runs.

Chapter 2

Branch and Cut

Branch and Cut is an exact algorithm for solving integer programming prablé combines
cutting plane methods with Branch and Bound. The following introduction isas Lee and
Mitchell's Branch and Bound tutorial [26], Mitchell’s introduction to Braresid Cut [29], the
COIN/BCP User's Manual by Ralphs and Ladanyi [36], and the bavkteger programming
by Laurence Wolsey [42].

2.1 Integer Programming Problems

An integer programming probler(iP) is an optimization problem in which some or all vari-
ables are restricted to integer values. A giadiective functiorhas to be maximized or mini-
mized in a solution space constrained by inequalitiesiiRed integer programming problem
(MIP) contains both integer and continuous variablepuee integer programming problem
restricts all variables to be integevlixed or pure 0-1 integer programming problemsstrict
all integer variables to be 0 or 1, thus they are also cdiiedry integer programming prob-
lems In this thesis we will concentrate dimear 0-1 integer programming problenghere
all variables are binary and all terms of the objective function and constrare linear. The
objective function should be maximized. A linear 0-1 IP can then be stated as:

T

maximize ctx
subjectto Az <b (2.1)
z € {0,1}"

with A € R™*" b € R™ andc € R™. We can define the solution spagef a problem as
S ={ze{0,1}": Az < b}. (2.2)

2.1.1 Convex Hull of an Integer Program

In algebraic topologyAz < b defines aconvex polyhedromwhich contains all feasible solu-
tions of the integer program. H. Weyl proved in 1935 that a convex pdiyimecan be defined
as the intersection of a finite number of half-spaces or asdhgex hulicombined with the
conical hull of a finite number of vectors or points. If the problem is forradadn rational

numbers, Weyl's theorem implies the existence of a finite system of linearatiges whose
solution set coincides with the convex hull of our solution spécalso written as:onv(.S).
This directly leads te@utting plane algorithm$or solving integer programming problems that
will be described in section 2.3.

2.1.2 Relaxations

A key concept of integer programming is that of problem relaxatiomelaxationof an opti-
mization problem as stated in equation (2.1) is an optimization problem

max{chz : = € Sy}, (2.3)

whereS C S andcl'z < cﬁx for all x € S. The relaxed solution space is a superset of
the problem solution space, and the relaxed objective function is equelgreater than the
original function for all feasible solutions of the given problem.

A common relaxation for linear integer programming problems idittear programming
relaxation(LP relaxation). The integer constraints on all variables are removed and the prob-
lem can then be solved with linear programming methods. The most common algéoithm
solving linear programs is thr@mplex methodéhvented by George Bernard Dantzig in 1947.
There are instances where the simplex method requires an exponentiamoinsbeps, but
those problems seem to be highly unlikely in practical applications where théesimgthod
achieves very good performance.

Khachian’sellipsoid algorithm[22] proved that linear programming was polynomial in
1979. Karmarkar's interior-point method [20] was both a practical aedr#tical improve-
ment over the ellipsoid algorithm.

2.2 Branch and Bound

Branch and Bounds a class of exact algorithms for various optimization problems, especially
integer programming problems and combinatorial optimization problems (CO#3jrtitions

the solution space into smaller subproblems that can be solved independatighing.
Boundingdiscards subproblems that cannot contain the optimal solution, thus siegydae

size of the solution space. Branch and Bound was first proposediaydrad Doig in 1960 [25]

for solving integer programs.

Given a maximization problem as described in equations (2.1) and (2.2greiBand
Bound algorithm iteratively partitions the solution spateor example by branching on bi-
nary variables - fixing one of them to 0 in one branch and to 1 in the othachrdor each
subproblem ampper boundn the objective value is calculated. The upper bound is guaran-
teed to be equal to or greater than the optimal solution for this subproblemn sWieasible
solution (i.e., no fractional variables remaining) is found, all subproblehose upper bounds
are lower than this solution’s objective value can be discarded. The&kbesin feasible so-
lution represents éower boundfor all subproblems, and only subproblems with an upper
bound greater than the global lower bound have to be considered.r@isga subproblem is
calledfathomingor pruning Upper bounds for a subproblem can be obtained by relaxing the
subproblem, thus they are often obtained by optimizing the subproblem’'ddRten.

Figure 2.1 summarizes the above steps using a pseudo-code notationeqlieace of
subproblems created by branching can be organized as a rooteddigempd. The original

1. Initialize list of all subproblem§&’ = {S}

2. Generate a feasible solution and store if.ift is not necessary to generate a feasible
solution (e.g. by heuristics), but it can help to reduce the search tree\dlhen no
initial solution is provided, the objective value féis set to—occ.

3. Repeat whil&> £ (:

(a) Take a subproblers’ from C
(b) RelaxS’ and solve the relaxed problem
(c) Decide to branch or prune as explained in figure 2.2.

4. Returns

Figure 2.1: Branch and Bound pseudo-code

problem is the root node with edges going to each of its children. This gsagdilled the
search treeand itsnodesrepresent all generatedibproblems

2.3 Cutting Plane Algorithms

As in section 2.1, we will consider a binary integer programming problem, its mmeteal
formulation is stated in equations (2.1) and (2.2). The fundamental consegtfor cutting
plane algorithms is that of\aalid inequality An inequality

mx < o (2.4)

is valid if Tz < mg for all x € S, whereS contains all feasible solutions of the IP.

The basic idea ofutting planess to describe the convex hulbnv(S) of the original prob-
lem by adding valid inequalities to the LP relaxation until the LP solution beconaesble
for the original problem.

Mitchell [30] outlines the following structure of a cutting plane algorithm:

1. Solve the LP relaxation using linear programming methods such as the singiex a
rithm.

2. If the LP solution is feasible for the integral problem, return the optimatisoiu

3. Otherwise add cutting planes to the relaxation that separate the LP sohatioriHe
convex hull of feasible integral points.

4. Go to first step.

Cutting planes can be generated with or without problem specific knowl€gemethod
of obtaining cutting planes is by combining inequalities from the current LRa&tan. This
is known asinteger rounding and the resulting cutting planes are callebvatal-Gomory
cutting planeq15, 16, 7]. The following example is taken from [30]. Consider the intege
programming problem

Depending on the solution of the relaxed problem, do one of the following:

1. No solution was found, the relaxed problem is infeasible. Then thetsdsa feasible
solution inS’, thus the subproblem is pruned.

2. The optimal solution is not better than The subproblem can be pruned because its
upper bound is lower than the global lower bound.

3. The optimal solution is better tharand it is inS’ (the integer constraints are satisfied).
Replaces with the new optimal solution. The subtree can be pruned because no petter
solution can be found.

4. The optimal solution is better tha@rbut it is not inS’ (at least one integer constraint|is
violated). In this casé’ is partitioned into» smaller subproblems such thaf;" | S/ =
S’. Each of thesehildrenof S’ is added taC'. This is the common case and is usual

calledbranching

y

Figure 2.2: Deciding to branch or prune

minimize — 2z, — 9 (2.5)
T1+ 210 <7
201 — 19 < 3
x1,xo € Np.

A cutting plane is obtained by a weighted combination of inequalities, e.g.

0.2(331 + 229 < 7) + 0.4(21'1 — T2 < 3) (26)

gives the valid inequality

z1 < 2.6. (2.7)

This inequality is valid for all LP relaxations, but in a feasible solution, theHaftd side
must be an integer value. This leads to the inequality

r1 < 2. (2.8)

Gomory’s cutting plane algorithm will find the optimal solution by iterating the steps a
described above. However, the number of steps to describe the duuiVésalled theChvatal
rank) is typically very high, leading to very slow convergence [10, 11].

It can be enhanced using techniques like adding manyatalvéGomory cuts at once, as
shown in [1] and [5]. Another approach is to combine cutting plane methatdBranch and
Bound, which leads to a method callBdanch and Cut

1. Initialize candidate lis€' = {S'}
2. Generate a feasible solution and store # in
3. Repeat whil&> £ (:

(a) Take a subproblers’ from C

(b) RelaxS” and solve the relaxed problem, store LP resuk in

(c) Repeat:
(1) Tryto add cuts to the relaxed problem that are violated by
(2) Exitloop when no new cuts were generated in step 1

(3) Solve relaxed problem again, store LP resul&inNote that the objective
value ofs is monotonically decreasing since the added cuts render infeasible
the previous LP results.

(d) Depending or3, decide to branch or prune the node as shown in figure 2.2.

4. Returns

Figure 2.3: Branch and Cut pseudo-code

2.4 Branch and Cut

Branch and Cuimethods use Branch and Bound to partition the solution space into smaller
subproblems, but also utilizmitting plane method® tighten the relaxation and thus to reduce
the size of the search tree. Branch and Cut was first proposed bgfaahd Rinaldi [31] as

a framework for solving traveling salesman problems.

The purpose of cutting planesautsis to reduce the upper bound derived from the optimal
solution of the LP relaxation. A smaller upper bound makes pruning the cbilgppn more
likely, thus reducing the search tree size. When the algorithm failed to @tenssw cuts that
are violated by the current LP solution, the subproblebréchedas in Branch and Bound.

As cut generation can be very expensive, itis common to generate dyifsiosome nodes
in the search tree. For example, it might be reasonable to generate ausrpeighth node or
for all nodes at a depth of a multiple of eight. Tt-and-branchvariant adds cutting planes
only at the root node. A pseudo-code formulation of Branch and Cutésngn figure 2.3.

10

Chapter 3

Local Branching

While there exist sophisticated solvers for integer programming problemsgiay hard prob-
lems the optimal solution is often hard to find within a reasonable time. Therd&fbezomes
increasingly important to find reasonably good solutions early in the compufaticess.

Local Branching is a local search meta-heuristic for integer prograopoped by Fischetti
and Lodi in 2002 [13] that is entirely embedded in a Branch and Cut frame\ts goal is to
improve the heuristic behavior of a given MIP solver without losing optimalig i, to find
good feasible solutions as soon as possible while still being able to find thal giotimum
and prove its optimality.

Local Branching works by partitioning the search tree through so-chited branching
cuts Since those local cuts are just specific constraints for integer progranprobtems,
they can be expressed like normal IP constraints using any genericdidit.s

3.1 Softvs. Hard Variable Fixing

A common technique for IP heuristics is hard variable fixing. For examplepsadtic might
use a LP solver to compute a continuous optimal solution, heuristically fix sorizdbhes to
integer values (e.g. by rounding the variable with the least fractional yalod then repeating
these steps for the resulting subproblem without the fixed variables. HByig@latively good
(but probably not optimal) solutions may be found in reasonable time evérafdrproblems.

The major downside of this approach is that it may be nearly impossible duenggitty
stages to decide which variable should be fixed. This inevitably leads toduagkfivhich may
not be detected until much later, requiring some kind of backtracking to bad@hoices.

To overcome this limitation of variable fixing, Fischetti and Lodi proposetft variable
fixing. It does not select a single variable for fixing, but only specifies tloatt@in percentage
of all variables of a givetfieasible solutiorshould be fixed. This approach is best illustrated
using the binary integer programming problem described in section 2.1.0Sugphere is a
feasible solution and 90% of its nonzero variables should be fixed to he¥isand Lodi add
asoft fixing constraint

ija:j > {09253]1 (3.1)
s =1

to the current formulationz; represents the feasible solution around which a local neigh-

11

borhood is isolated, i.e. in any feasible solutiononly 10% of those variables set to 1in
may be flipped to 0. The idea is that fixing 90% of the variables helps the fol¥ied good
solutions as effectively as when fixing a large number of variables, bhtavmuch larger
degree of freedom.

3.2 A Basic Local Branching Framework

Given a binary integer programming problem as stated in section 2.1 andibléesolution
z, the binary supportS is defined asS := {j € [1,n] : #; = 1}, i.e. the indices of those
variables that are set to 1. A soft fixing constraint in terms of the prexdeason can then be
formulated as

Alw,2): =) (1—xz)+ > ;< k. (3.2)
jeSs j¢S
Fischetti and Lodi call this #ocal branching constrainthat counts all binary variables
that flipped their value from zero to one or from one to zero compared o(z, z) actually
represents thelamming distanceetween: andz, thus the constraint is also callehmming
distance constraintWhen the cardinality of is fixed, this constraint is equivalent to

Ale,7) =S (1—ay) < K(=5), (3.3)

pd 2
jes
because for every variabilg with j € S that flips from one to zero another variable must
flip from zero to one. This definition is consistent with the classktalpt neighborhood for
the Traveling Salesman Problem, where at nkbstdges may be replaced.
A local branching constraint partitions the search tree in two disjuncthem

A(z,z) < k (local branch and A(x,z) > k (normal branch. (3.4)

The local branch is completely solved before continuing with the normathrahen a
new global optimunxz? was found in the local branch, local branching can continue with the
new solution by adding a new constraint to the remaining “normal” brancingrtitioning
the search tree in two disjunct branches

A(z,z) >k, A(x,7%) <k (local branch, (3.5)
A(x,z) >k, A(x,z%) >k (normal branch.

This scheme works as long as the local branching trees yield new glotialaoand is
illustrated in figure 3.2. The numbers indicate the sequence in which theohldms are
generated and processed. The actual optimization problems are solgéibgric MIP solver.

The size of the local subtrees at positions 2, 4 and 6 depend on the ohthes param-
eter. Small values of define a relatively small neighborhood that is easier to solve, but may
not contain solutions that are significantly better than the current ongetaalues of: offer
higher degrees of freedom during the tree search, but drasticalBaiseithe size of the local
branching trees.

12

MIP
solver

improved solutionz?

MIP
solver

improved solutiorz?

Figure 3.1: Local Branching

no improved solution

13

MIP
solver

MIP
solver

3.3 Local Branching Extensions

Fischetti and Lodi [13] proposed several extensions to the standaatdmanching algorithm
described in the previous section.

e Imposing a time limit on local branching treeflows to use large values é&fwithout
having to explore a local tree completely. When time runs out and a better solutio
was found in the local tree, the algorithm creates a new local tree at tHaabnigot
node using the new solution. However, since the previous local tree etaxplored
completely, this may lead to a duplication of effort as the optimal solution might still
be in the first local tree, and its search space can therefore not heledc If the time
limit is reached without finding a new better solutidnjs decreased to speed up the
exploration of the local tree.

e Diversificationmay be used when a local tree did not improve the best known solution.
Fischetti and Lodi suggest to start with a soft diversification by enlgrdie neighbor-
hood, e.g. by k/2]. When no better solution is found in this larger local tree, they apply
a strong diversification by taking another (worse) solution and restdaiadibranching
with this solution.

e Embedding local branchingn heuristic frameworks likabu SearchVariable Neigh-
borhood SearchSimulated Annealingr Evolutionary Algorithmsan be easily done,
since local branching naturally defines a custom sized neighborhooddeogiven so-
lution. Additional constraints imposed by the heuristic framework can beitesicas
linear cuts which makes them easy to join with local branching constraints.

¢ Working with infeasible solutioris necessary for problems where finding an initial fea-
sible solution is hard, e.g. for hard set partitioning models. In order toug&easible
solution as initial solution for local branching, one may define additionakslaables
for some of the constraints while penalizing them in the objective function.

e General integer variablesequire a new definition of the local branching constraint.
Some general integer problems still have a relevant subset of 0-1 learthlat can be
used for local branching. In case there are no relevant binarybl@siaintroducing
weights leads to a viable local branching constraint. In a MIP model thalvesdhe
bounds/; < x; <wujforj =1...n, alocal branching constraint can be defined as

Aw,z):= Y pile; =)+ Y wilyy—a)+ Y plaf +a7) <k
J:Z=l; JiTj=u Jilj<xj<u;
(3.6)

The weights are defined ag = 1/(u; — [;), while x;' andz; define additional slack
variables that satisfy the equation
xj =T +a] —],

Of course, there are other possibilities to improve the standard localHangralgorithm
not proposed by Fischetti and Lodi. The following enhancements hareibtegrated in our
local branching framework as described in chapter 4.

14

e Fixing variablesallows to tighten the neighborhood when the original local tree was too
large to be explored completely. Variables that share the same value in tinebecu
solution and in the solution of the LP relaxation are less likely to change in thalglob
optimum. By fixing some of those variables in the local tree and adding a pordig
cut to the remaining tree local branching can avoid calculating parts of ééhmewill
probably yield no better results. This approach was proposed by Cemhg8] and is
known asRINS(Relaxation Induced Neighborhood Search).

e Concurrent exploration of different local tre@sovides diversification by creating sev-
eral local trees from different feasible solutions and exploring themlsameously.

15

Chapter 4

An Advanced Local Branching
Framework

In this chapter a generic framework for local branching is describihdard local branching
is implemented as described in chapter 3, and several extensions are¢etidd improve
its performance. The main goal of this framework is to provide a local bedgorithm for
higher-level metaheuristics, for example evolutionary algorithms. Theseheetatics can
use local branching for exploring the neighborhood of certain solytemmuse the generated
feasible solutions as input for their own improvement algorithms. The actuéingmtation
of the framework will be described in chapter 6.

4.1 Basic Functionality

A sequential version of the standard local branching algorithm protiedsasis for the frame-
work. Itis capable of using local branching to completely solve a probléhowt further user
intervention. The main phases of the local branching algorithm are:

1. Generate an initial solution for the first tree
2. Initialize the first local treausing the previously generated solution.

3. Repeat:

(&) Completely solve the local tree
(b) When the local search terminates:

o A better feasible solution was foumulthis local tree: create a new local tree
using the improved solution from this local tree as initial solution.

¢ No better feasible solution was fourabort local branching.

4. Solve the rest of the search tree
5. Return optimal solution

The initial solution can be created by a custom heuristic, or it is derived fne optimum
of the root node’s LP relaxation (e.g. by rounding or truncating the LBtisn). The de-
fault implementation uses local branching constraints as described in s@ctienHamming

16

distance constraints defining a neighborhood around the solution augdodthe distance
parametek. Other constraints for branching might be implemented by the user as well.

4.1.1 Limitations

The standard local branching algorithm works well for some instancésds several limita-
tions:

1. Depending on the number of variables and the value, tiie Hamming distance con-
straint possibly defines a very large neighborhood. Given a binamjtiPn variables, a
feasible solution haéZ) = (n_”ik'),k, neighbors with a Hamming distance/ofthe local
tree includes all neighbors with a Hamming distance not larger khao the actual

search tree is even larger).

2. Depending on the specific problem, there might be more than one rbtsdomitial
solution for local branching. When a given heuristic returns seveoah{sing solutions
that would create (partially) disjunct local trees (i.e. their Hamming distance&eay
thank), only one neighborhood can be explored.

3. While a local branching constraint defines a neighborhood arodedsible solution,
it provides no further guidance for exploring this neighborhood bssitle standard
branch and cut strategies (e.g. best bound first search). Othéistmrah heuristics
might help to tighten the search tree.

Preliminary testing with multidimensional knapsack problems confirmed thesesimr
ings. The test instances contain integer programming problems with 100 ta&@06les and
5 to 30 constraints. Detailed results will be discussed in chapter 9.

The larger test instances (> 250, d > 10) contain too many variables for usirig
values larger than approximately This allows at most five variables to flip their values,
and likely prohibits significant improvements to the initial solution of a local treer. dny
valuek > 5 even the local tree defines a subproblem that is often too complex to be solved
completely within the given time limit. Additionally, the first initial solution is either dedive
by a first fit heuristic or by rounding the first LP solution, and both atikely to be in a small
neighborhood of the optimal solution.

4.2 Extending the Basic Algorithm

In order to address the shortcomings described in the previous sectiem giktensions have
been added to the standard local branching algorithm. The first one elimithateestric-
tion of sequential execution by allowing to create new local trees beforprévious one(s)
are finished. On a related issue, the second extension allows to abdtrémsabefore they
are completely solved. The last extension tries to reduce subproblem oty fixing
variables that are less likely to change in the optimal result than others.

4.2.1 Using Multiple Local Trees

The first major extension to standard local branching is the suppogsieudo-concurrent
explorationof several local trees. It removes the burden of relying on one losaldt a time,

17

w1 (2 ©

solver

Figure 4.1: Pseudo-concurrent local tree exploration using a sindPesbliver instance

probably leading to a more robust search tree exploration less likely toumhtcan local
optima of the objective function.

The framework provides a method to spawn any number of local brantreiegsimply by
providing an initial solution. However, these trees are not parallelized isethge of a separate
process dedicated to a single local tree. Instead, there is still a singlégpnibproblems
where all local tree nodes are stored. Depending on the chosen &eh Strategy, some
trees will probably get more time than others with less promising nodes. Faopéxawvhen a
best bound first tree search is performed, a local tree whose nadesdiatively poor upper
bounds will get less time than a tree with more promising nodes.

Unfortunately this kind of pseudo-concurrent exploration likely leads dogication of
effort in some cases since it is not known a priori which trees will actuadlycompletely
solved, and thus, inverse local branching constraints cannot baleogs. When a local tree
is prematurely terminated, no information about this local tree (except feasilutions found
so far) can be further utilized: the neighborhood defined by this treeotdre excluded from
future local trees because it still may contain the optimal solution.

The framework achieves parallel exploration by a simple modification to thdastefocal
branching algorithm: before a local tree is not completely solved, the evecal branching
constraint for the rest of the search tree remains inactive. When atteeais prematurely
terminated, the inverse constraint is removed from all future local treigsiré=4.2.1 shows
the modified version of the original algorithm previously shown in figure BlPparts of the
search tree labeled with the same number are parallelized, thus the invest®icbs on the
right hand side are missing. The initial solutionsandz? are not necessarily related; they
are supplied by the higher-level metaheuristic.

18

4.2.2 Aborting Local Trees

Aborting local trees greatly enhances control over local branchihdpedomes possible to
impose time or node limits on local trees, abort stagnating local trees in famooref promis-
ing ones, or simply restart local branching with new solutions (possiblgrgéed outside the
framework.)

When a local tree is aborted, the inverse local branching constraiimifdgethe search
tree outside the local tree) must be removed. This also applies to the vanaiechnstraint
introduced in the next section. Besides that, the only issue is to find somedotggremature
local tree termination. Specifyingteme limitis rather complex due to the distributed design of
COIN/BCP. Different machines may have different performance ratigs it would require
non-trivial extensions to COIN to track the time spent for each subprolgetantially across
several LP processes, cut generators, and variable generators.

The local branching framework offers extensive information abountimaber of nodes
processed per local tree instead. Using these facilities, it is easy to impuas#edimit on
a local tree, or to specify a maximum number of nodes that can be prdcessesingle
local tree before an improvement is found. The downside of this apipriedbat the number
of nodes that can be processed in a given CPU timeslice depends omibp&exity of the
IP problem. Thus node limits may have to be set heuristically, for example by cons¢éant
value multiplied with a weighted sum of the number of variables and the numbensfraints.

4.2.3 Tightening the Search Tree by Variable Fixing

The variable fixing extension to local branching is base&elaxation Induced Neighborhood
Search(RINS) proposed by Danna et al. [8]. The underlying assumption isvidndgdbles
having the same integer value in the incumbent solution and in the LP relaxatitikedy to
be set to their optimal value. By fixing some of those variables to their curadunt, the local
search focuses attention on the fractional variables.

Compared with reducing search tree size by reducing the valkgwairiable fixing gives
more freedom to the exploration of the more promising fractional variablds iginoring the
allegedly less promising integral variables of the current LP optimum.

Choosing the best variables to be fixed is a problem by itself. The frarkepicks a
random selection from the set of all variables having the same integersvaldlee integral
and the LP solution. The number of fixed variables is given relative to thertotaber of
variables in the (sub-)problem. In the following, It denote the indices of variables fixed to
one, andFj the indices of variables fixed to zero.

While fixing variables in the local tree can be done directly in the MIP solverirerse
constraint is a bit more complicated: a node becomes feasible when atheast the fixed
variables changed its value. Ignoring the local branching constraintcéimse achieved
through a new row cut of the form

Z (1 —x5)+ Z xj > 0. (4.1)

JEF j€Fy

When using Hamming distance cuts for local branching both constraintsecaontibined
to a single cut. A solution is feasible outside the local tree when either the Hamistagak
is greater thark, or at least one variable flipped. In other words, when a variable fipd (

19

the above inequality becomes valid), the Hamming distance constraint shoatthbielered
irrelevant. The following row cut achieves these goals:

A@,z)>k—k Y 1-z)+ Y =], (4.2)

JjE j€Fy

whereA(x, z) denotes the Hamming distance between the initial solutiand the current
solutionz as defined in equation (3.2). When one of those fixed variables flipsgtitehand
side will be less or equal to zero. Since the Hamming distance is always rgoe&tgual to
zero, the constraint is satisfied (even if the Hamming distance is smallek}than

4.2.4 Utilizing the Extensions

When developing a local branching metaheuristic, most often a combinatiba ektensions
described above works best. For example, itis apparent that wheinghbocal trees, one may
also change the local branching parameters for the valéeaoid the number of variables to
be fixed. When using multiple trees, it may be reasonable to start diffeesstwith different
local branching parameters.

The combination of variable fixing and node limits on local trees is a straigivafor
way of tightening the search tree as the global solution improves. For exathelsearch
may be started with rather weak constraints, i.e. a relatively high valéeaofi no or little
variable fixing. When the local tree fails to yield new solutions in a given rimdlig, it is
aborted and the parameters are modified. For example, the valuésadecreased or the
number of variables to be fixed is increased. Then a new local tree careaged, using
the new parameters and the last improved solution from the previous treegithe initial
solution of the previous tree, since the tightening might lead to a faster gemas towards
an improved solution). See chapter 8 for a sample implementation of this tighteiems.

20

Chapter 5

COIN/BCP

The implementation of the local branching framework is based orBthach and Cut and
Price framework (BCP) that is part of thEomputational Infrastructure for Operations Re-
search(COIN) project [28]. By augmenting an existing Branch and Cut framkwe-
implementation of a MIP solver is avoided. Furthermore, developers familiaGaiN/BCP
can easily use the framework.

5.1 COIN Overview

5.1.1 History

As research in combinatorial optimization advanced tremendously over shelg@aades, de-
velopers faced increasing complexity when trying to implement efficientores ®f their algo-
rithms. While standard algorithms like Branch and Cut exist, problem-depéeatigorithms
often required custom implementations due to problem-dependent methodsrlidgle or cut
generation. In the early 1990s a research group was founded witlo#h@fyproviding de-
velopers a generic software framework which could be adapted to spewfilems. This led
to the release c€EOMPSygqCombinatorial Optimization Multi-processing System) [12]. Af-
ter several revisions this project becaBMPHONY(Single- or Multi-Process Optimization
over Networks). In 1998, a reimplementation in C++ was started at IBMVareke

As a result, the COIN project was publicly announced in the first half 602hcluding
a generic Branch, Cut and Price framework codena@@tN/BCP. IBM guaranteed to sup-
port the online infrastructure for the COIN project for three yearduitinog the website at
http://www.coin-or.org, several mailing lists and the source code repository. Much of the ini-
tial development was done by IBM researchers, but in the past yeaspifit of open source
has picked up and has led to various contributions by external regearch

5.1.2 Components

Our framework uses the following components of the COIN project:
e BCP: the Branch, Cut and Price framework used for solving MIPs.

e OSI: the Open Solver Interface, a standardized API for calling math progragnmin
solvers. It is used by BCP to call a simplex solver for solving the LP relaxatid\

21

wide variety of solvers is supported, most notably the free COIN/CLP anddmmer-
cial CPLEX MIP solvers.

e CLP: COIN LP, the COIN project’s LP solver. Thisis a free implementation of a simple
solver.

e CGL: A Cut Generator Library for generating standard cuts for IP problé&@s&omory
cuts or knapsack cover cuts.

5.2 Design of COIN/BCP

The following introduction to the design of COIN/BCP is based on the user atéyRalphs
and Ladanyi [36]. The major design goals for COIN/BCP are portability, efficieand ease
of use. It provides a black-box design with a clean end-user intetffedekeeps most of the
actual implementation hidden from the user.

COIN/BCP was developed using an object-oriented approach. Thebebijicts are cuts
and variables that can be used as base classes for user-defined. obglitionally, user ob-
jects provide methods that can be re-implemented to alter specific aspectsatgjahithm,
like tightening variables or adding cuts. While this approach enables a stfarglard imple-
mentation for many combinatorial optimization tasks, there is still enough flexibilitylein
for implementing complex meta-algorithms like local branching with little or no changes
the COIN/BCP code.

5.2.1 Variables and Cuts

Since search trees can easily contain hundreds of thousands of asiteple object-oriented
approach storing the variables and cuts for each node in objects leaxisessige memory
consumption. COIN/BCP tries to reduce memory usage by keeping the nufdmive vari-
ables and cuts (thective setas small as possible by using data structures that make it possible
to move objects in and out of the active set efficiently. This is accomplishemHoytaining an
abstractepresentatiorof each global object that keeps information about adding or removing
it from a particular problem instance (i.e. a particular LP relaxation).

In other words, avariable does not represent a specific column of a LP relaxation, but is
an abstract object that can k@mlizedas a specific column of a LP relaxation. Similarly
does not describe a specific row of a LP relaxation, but it contains stragbcut that can be
realized as a row in a LP relaxation.

COIN/BCP distinguishes between two groups of cuts and variables: ligolcare cuts
andcore variableghat are active in all subproblems, aextra cutsandextra variableshat
can be added and removed dynamically. Extra cuts help to reduce the sattimit require
additional bookkeeping when adding or removing them from the formulafibere are two
different types of extra cuts:

¢ Indexed cutare represented by a unique index value. The user must be able tatgener
the corresponding row cut when given the index number by using sordekavirtual
global list known only to the user. This is the most efficient way of reprisg extra
cuts in a formulation and is particularly useful when the number of cuts is igty
and most likely only few are violated by any feasible solution. Using indexés] only

22

constraints that are violated by a given LP solution have to be realizewvasirohe LP
relaxation. The downside is the extra bookkeeping involved for addingemdving
those cuts, and the user must find an enumeration scheme when usinglindexe

¢ Algorithmic cutgyive the user absolute freedom, especially in the case when the number
of cuts is not known a priori and the cuts cannot be enumerated. Thesaplirement is
that the user must be able to generate the corresponding row wheregietof active
variables by some sort of algorithm. The downside, as with indexed cutse ifgith
amount of bookkeeping involved for creating and removing algorithmic cuts.

Indexedandalgorithmicvariables work in a similar way. Indexed variables are generated
by the user when given an index number. They are useful when gik@nnumber of variables
while most likely only few of them would be different from zero. Adding alriables to the
core matrix would increase the problem complexity enormously. Similar to algorittuméc
algorithmic variables can describe any user-defined constraint thatisggeddy a given LP
solution. Indexed and algorithmic variables are also essential for colunanajeon algorithms
that generate variables during the computation.

5.3 COIN/BCP modules

COIN/BCP is grouped into four independent modules. They communicatg asimessage-
passing protocol which is defined in a separate API. Thus they are eneped for parallel
execution, even on separate machines connected by a network.

5.3.1 The Tree Manager Module

The tree manageifM) module represents the master process of the computation algorithm. It
is responsible for problem initialization and controls the other modules. Therdy one tree
manager for any computation. Its main functions are:

e Reading parameters and the problem instance from the command line or filem a
e Constructing the root node of the search tree.

e Beginning the computation by creating LP processes (see below) to soivalirad
nodes of the search tree.

e Receiving new solutions from the child LP modules and storing the best one.
e Receiving new subproblems and storing them for later processing.

e Pruning subproblems based on the global upper bound.

e Sending stored subproblems to idle LP processes.

¢ Printing the final result when the computation has finished (i.e. all subgsesare in
an idle state and all subproblems have been solved.)

23

5.3.2 The Linear Programming Module

The linear programmind-) module performs the actual computation, i.e. the bounding and
branching operations. Its main functionality includes:

e Requesting new subproblems from the tree manager.
e Receiving and processing subproblems.

e Choosing branching objects and sending the resulting subproblems libekree man-
ager.

5.3.3 The Cut Generator Module

Since cut generation may be computationally expensive, it can be pedanside a separate
cut generator module. It receives a LP solution by a LP process, trigsnerate valid in-

equalities violated by this solution, and sends the cuts back to the LP sohar.ifliemains

in an idle state until a new solution is sent to the cut generator.

5.3.4 The Variable Generator Module

Similar to the cut generator module, the variable generator module’s onlgneigity is to
generate variables for a given LP solution. If any variables are giatkrthey are sent back to
the requesting LP process and the variable generator module keeps waitivegvfsolutions.

5.4 The Linear Programming Module

For a better understanding of our local branching extensions, aidegganation of the linear
programming module is required. The LP module uses a LP engine for findpey bpunds,
generates cuts and variables when necessary and performs bgpopérations.

5.4.1 The LP Engine

The LP module uses th@pen Solver Interfac@SI) in order to communicate with third-party
LP libraries orLP engines

5.4.2 Managing the LP Relaxation

The LP module is responsible for managing extra variables and cuts.sisdd®y maintaining
a local cut pool where any generated extra cuts are stored. In egatioite up to a specified
number of the strongest cuts are added to the problem. A cut’s strongpressponds to the
degree of violation in the current LP solution. Cuts that proved ineffeaiier a specified
number of iterations are purged from the cut pool. Variables can be tigthtenuser-defined
methods before solving the LP.

24

5.4.3 Branching

Branching is performed when no new cuts were generated or the usesforanching. A
branching objectescribing all of the new cuts and variables and their correspondinudisou
is generated and sent back to the tree manager. The branching opeaatioa based on cuts
or on variables. Optionallgtrong branchingcan be performed. In strong branching, several
branching objects are created and then pre-solved, i.e. quickly optimizedrimbably non-
optimal way. The most promising candidate, based on some internal rulébésigobjective
value) or on the user’s decision, is used for branching.

By default, COIN/BCP uses branching on fractional variables. Onadatd branching)
or several (strong branching) fractional variables are selectec¢@mdsponding branching
objects are generated. The selection of variables can be user-dafinesed on some internal
rule, COIN/BCP allows to specify the number of the most fractional variafiles those
nearest to 0.5 in a binary optimization problem) and the number of those var@bée to one
to be selected for (strong) branching. When the total number of variehigsater than one,
strong branching has to be enabled.

5.5 Parallelizing COIN/BCP

Since Branch and Cut methods can heavily benefit from parallelizatiordesign goal of
COIN/BCP was that of parallelization. There are two main sources of plsaiteObviously,
each subproblem of the candidate list can be solved independently fearthibrs. This can be
accomplished by spawning more than one instance of the LP module, eithaeanazhine
(reasonable for multi-processor systems) or on a cluster of computerected by a network.

The second source lies within the processing of a single subproblem: fiielirad tasks
can be parallelized with the LP solver, which means a node can be completebsped in
roughly the time it takes the LP engine to solve the relaxation. This is the reaabthéh
potentially expensive cut and variable generators are placed in sepaodules outside the
LP module.

In COIN/BCP, the architecture is based on a master/slave model. The tregenasa
sumes the role of the master process in control of slave processesdbateeits orders. The
tree manager is responsible for spawning at least one process df/padhP, cut generation,
variable generation) and keeping them busy until all subproblems aredsolv

5.5.1 Inter-Process Communication

COIN/BCP allows the user to choose between sequential and paralleitiexeclt is based
on an abstract message passing protocol with parallel and sequentianiempéions. The
former is an interface to the Parallel Virtual Machine (PVM) protocol, the Hataulates a
parallel machine that effectively executes the algorithm sequentially inssttegle process.
Support for other communication frameworks can be added by implementiagstract base
class of COIN/BCP’s messaging framework.

One instance of an object in memory can never be shared betweenrdiffesdules since
these modules might be executed in different processes or on diffestiines. Instead,
objects can bpackedandunpackednto a COIN-specific buffer class (BCBuffer). The mes-
saging framework uses these buffers for communication between mottulest is possible

25

to transmit user-defined objects by implementing methods for packing andkingabjects
of these types.

5.5.2 Fault Tolerance

Using distributed computation, fault tolerance becomes important becalisgle cashed
machine should not cause the termination of the whole program. For thisga e tree
manager tracks all processes and restarts them as necessary. \Wimress is lost, the
subproblems assigned to this process are reassigned to other psocasdsktionally, new
machines can be added to the distributed network on the fly without havingt&strihe com-
putation.

5.6 Developing Applications with COIN/BCP

This section gives a brief overview of the basic steps for developingpatication with
COIN/BCP. It focuses on the parts that will be modified in our local bramgcframework,
a more complete description can be found in the COIN/BCP user manual [36].
Developing an application for a specific problem basically means subaiassine of
COIN/BCP’s provided classes, implementing some abstract methods amidlioggothers to
diverge from default behavior. The main classes designed foralignivby the user are:

e BCP_lp_user: The user-defined LP module extension. By subclassing it it is possible to
modify the LP module’s decisions (e.g. whether to branch or generateanatsd store
problem-specific data. One object of this type is generated for eachddess.

e BCP_tm_user: The user-defined tree manager extension. It is embedded into the tree
manager module and is responsible among other things for initializing the praipiém
deciding on the tree search strategy.

e BCP_vg_user is used for implementing user-defined variable generators.
e BCP_cg_user provides a possibility to generate cuts inside a separate process.

o USER.initialize: This class is used for instantiating objects of the derived B&Rser
classes.

e BCP_cut: This abstract base class is used for describing cuts, allowing the wenive
problem-specific cut classes. The subclasses for core, indexeadgordhmic cuts are
derived from this class.

e BCP_var: This class can be subclassed for describing user-defined varigbke $ub-
classes for core, indexed and algorithmic variables are already defined

e BCP_solution: The abstract base class for describing feasible solutions. A generic
implementation exists (BCBolutiongeneric).

In the BCRtm_user and BCRp_user classes there are some key methods that are of great
importance for the implementation of our local branching framework. Fongptete descrip-
tion of these classes, refer to the autogenerated documentation andrtbenaseial [36].

26

5.6.1 TheBCP_tm _user Class

e pack_module_data(): This method is invoked to pack the data needed to start the com-
putation in other modules. This can be used for sending problem-spec#itedg. local
branching parameters) to the LP module.

e unpack_feasible_solution(): This method is called when the tree manager received a
new feasible solution. By overriding this method the user getsyfeasible solution
found by a LP module, which can be used for further enhancements ¢eogsover
between two or more solutions when using a genetic algorithm).

e initialize_core() and create_root() are used for initializing the problem (probably by
reading it from a file) and setting up the root node of the search tree.

e compare_tree_nodes(): This method is essential for the tree search strategy. It is in-
voked by the tree manager when a new tree node was received whichkeviilsérted
in the candidate queue. By overriding this method it is possible to use an arbitra
tree search strategy, we use this to calculate local tree nodes befathantree nodes.
The standard implementation can be configured by a parameter to perfoemeedtbpth
first, breadth first, or best bound first tree search.

The candidate queue

The tree manager keeps a list of all unprocessed subproblems in acsindidate queueThis

is also known as aingle-pool BCP algorithm The candidate queue is implemented in the
BCP_nodequeueclass as a heap-based priority queue. When the tree manager rewsives
subproblems from one of the LP processes,gherity of the item is determined indirectly
by repeatedly calling the binary comparee nodes() function until the final position of the
subproblem has been found. The subproblems remain in the candidaeuqug taken out by
the tree manager for an idle LP process. Since the lower bound may hasased since the
subproblem was inserted into the queue, the subproblem may be pruoeel ibés actually
sent to an LP process. In this case, the next subproblem is taken fecopidioe.

5.6.2 TheBCP Ip_user Class

e unpack_module_data(): This method is the counterpart to the pauokduledata()
method of the BCRm_user class. It receives the information sent by the tree manager
and can be used to initialize problem-specific data in a LP module.

e initialize_solver_interface() can be overridden to use a specific LP engine (like COIN'’s
own CLP solver or the commercial CPLEX solver).

e initialize_new_search_tree_node(): This method is called before a new tree node is
solved, providing an opportunity to tighten or fix variables.

e generate_heuristic_solution(): When the problem’s structure allows to quickly gen-
erate feasible solutions based on the current LP solution (e.g. by claweding of
fractional values), this method can be overridden to generate feasibkioss. By
finding good solutions the search tree size can be drastically reduced.

27

e select_branching_candidates(): This method decides whether to branch or not, and
selects branching candidates. The default implementation uses branoHirsgtional
variables, the local branching framework will override this method to impleroeat
branching cuts.

28

Chapter 6

Implementation of the Framework

The main intention for creating a local branching framework was to providean, reliable
and extendable framework for local branching metaheuristics. The maigndgoals of the
local branching framework are:

¢ Problem-independent functionalityhe local branching framework should be usable for
any binary IP problem. Therefore, it should not make problem-depérzdsumptions
and separate local branching logic from problem-dependent funtitiona

e Explicit local branching metaheuristic$t should be possible to literally write a meta-
heuristic function without being forced to scatter the algorithm over manyNZEZ P
classes.

e “Transparency™ The implementation of an algorithm for COIN/BCP should not be
much different from the implementation using our local branching framewukther-
more, existing COIN/BCP advantages such as parallelization should nféfebted by
local branching.

e Avoid changes to COIN/BCP sourcecodiewould have been possible to embed local
branching directly into the COIN/BCP source repository. However, thigldvie lo-
cal branching very close to COIN/BCP’s internals which are subject aogh at will.
Additionally, it would be much harder to integrate future bugfixes and eztégraants of
COIN/BCP.

e Hide COIN/BCP internals The complexity of COIN/BCP should be hidden from the
local branching metaheuristic. Instead, service methods for queryiroythent state of
local branching should be provided.

These goals were met by subclassing the predefined user classesNtBCO (mainly
BCP.p_user and BCRm_user) and embedding the local branching algorithm in those sub-
classes. Additionally, éocal tree manageclass provides handlers and parameters for con-
trolling the flow of the local branching algorithm. This way most of the complexity the
COIN/BCP-specific implementation is hidden from the user.

Ideally, enabling local branching for an existing COIN/BCP program ldidne done by
replacing the COIN/BCP user classes with the framework’s derivededa$3¥ course, some
additional initialization has to be performed since some classes of the fraknaeed to be
subclassed by the user again.

29

The main classes of the framework are:

LB_tm: the local branching framework’s tree manager implementation. It is refigen
for managing local trees, creating and terminating local trees, and corgrtiénLP
modules.

LB_Ip: the local branching framework’s LP module. It executes the tree marage
structions regarding local branching, i.e. creating local cuts in the birgoperations
according to the given parameters (e.g. valug)of

LB_MetaHeuristic: the user’s control module. It provides methods for the user to create
and terminate local trees, provides statistical data about all local tregdaadlers
that are repeatedly called and are intended to be used to implement anotivieig
heuristic like an evolutionary algorithm. When using the framework, this is the main
class the user has to care about. Unlike COIN/BCP modules, this module iscotex
within its own process, but is attached to the tree manager module.

LB._init: the local branching framework’s implementation of the USiBRalize class.

It is used to initialize instances of the tree manager (hB and LP modules (LBp).
Currently LB.init does not implement any initialization logic on its own, it merely exists
for extension purposes.

LB_cut: a simple row cut used for the Hamming distance constraint.

LocalTreeManager: an internal data manager class that is responsible for tracking
all local trees, managing the found solutions for local trees, and maintarisgof all
currently active local trees. The user probably does not need tadeéhis class except
when additional data about local trees should be stored.

LocalTreelndex: used to store information about all existing local trees. An instance of
this class is shared by the LBetaHeuristic and LocalTreeManager objects, the latter
being mostly responsible for updating the information in the LocalTreelndlede the
metaheuristic object can use the index to determine its actions (e.g. terminatirad a loc
tree that appears to be stagnating).

LocalTree: keeps information about a single local tree. Everything the tree manager
(and therefore the other local branching classes) knows about ktleeas kept in

a LocalTree object. For example, it contains information about the numbactive
nodes, the number of created nodes since the last improvement of thiévebjetue or

the current best solution found in the tree.

Figure 6.1 shows an UML diagram for the classes attached to ther_@&ass.

There are four classes that must always be subclassed for a wprkipmgm. The methods
to be implemented are defined by the COIN/BCP superclasses and have tolbaéemed
anyway to get a working program (except for the_MietaHeuristic subclass).

LB_tm: packcutalgo() and unpackut algo() must be able to pack and unpack tat
row cuts (although other custom cut types can be supported too). initedizf) must
be implemented to initialize the core matrix, ending with a call tatiyBs version of this
method to complete initialization. The user must also implement the cltgafemethod
to return a new instance of his implementation of theMBtaHeuristic subclass.

30

—<>}LB_Meta Heuristicl—

LocalTreeInEl—"LocaITreeManager|

' i
LocalTree LB_tm

Figure 6.1: UML class diagram for the tree manager extension

e LB_Ip: packcutalgo() and unpackutalgo() have to be implemented similarly to the
user’s LBtm implementation. initializesolverinterface() has to create the LP engine
for the LP process. generateuristicsolution()maybe implemented to obtain feasible
solutions from LP results (e.g. by clever rounding).

e LB_init: Ip_init() and tm.init() are implemented to return new instances of the user’s
LB_Ip and LB.tm subclasses. The tmit() method is a good place to initialize the
problem instance. LBm’s initialize() method has to be called immediately after the
tree manager has been created.

e LB_MetaHeuristic: at least initialsolution() must be implemented to return the initial
solution used for the very first local tree. The user probably wants toideesome
other methods (especially trdimished()) in order to create more local trees during the
computation process.

6.1 Integrating Local Branching into COIN/BCP

The main effort of implementing local branching went into the interaction betwiee local
branching metaheuristic and the COIN Branch and Cut framework. A majak \gas to
exploit the existing framework as much as possible. Rewriting parts of th&\BTIP code
to implement local branching would leave the user stuck to exactly one vers@@IN/BCP,
without having the benefit of upcoming enhancements and bugfixes.

Our implementation requires only minimal patches of existing COIN/BCP codeather
original user classes did not provide the necessary flexibility. Thesmggels are described in
appendix A.

6.1.1 Identifying Local Tree Nodes

COIN/BCP provides a mechanism to attachuger data objecto nodes for storing individual
information about each node. By creating a subclass of B€#data and creating methods
to pack and unpack objects of this subclass to a BGffer, the LP modules can attach any
user-defined data to a single node of the search tree.

31

The local branching framework uses this method to assign each nd8eiser data ob-
ject. Its main components are thede typethe unique number of its local tree if it is in a
local tree and some internal information. The node type distinguishes thres @y nodes:

e UD_LocalRoot: represents #bcal root nodegi.e. the root node of a local tree.

¢ UD_NormalRoot: represent amormal root nodei.e. the root node for the search tree
outside the local tree.

e UD_LocalNode: represents a node in a local tree.

Note that nodes outside a local tree do not have a type, in fact they baassigned user
data objects at all since there is no extended information that might be ofsnt@tee terms
local andnormal root node emerged from the way COIN/BCP handles branching: when a
subproblem is branched, approprié@nching objectsare created (containing the variables
or cuts to be branched on), and these are used to create two or moreotleklthat represent
the root nodes of the new subproblems. When local branching is initiatedchting occurs
on a local branching constraint, i.e. on a cut. Two children are createxiwih a Hamming
distance ofA(z,z) < k, the other with a Hamming distance &f(x,z) > k. These child
nodes represent the root nodes of the new subproblems: the firgttbelocal root node the
second being theormal root node

The children of the local root node form a local tree and are assigmedigue identifi-
cation number (ID), represented by the clasgalTreeld In order to guarantee unique tree
IDs even when the trees are created in different LP processes,adilt@eld consists of the
internal COIN index number of its root node and the unique index numbigredfP process
where it was created (supplied by the tree manager). The other classes chre about Lo-
calTreeld’s internals, all they need are the pre-defined operatets!(=, <) and the packing
and unpacking methods for transferring LocalTreelds between modules

6.1.2 The LB.tm Module

The LB_tm module provides our own implementation of COIN/BCP’s tree manager module. |
is derived from BCERm_user and implements some of its methods to integrate local branching
into the tree manager. It provides the LP modules with commands concernatdptanching,
is able to create local trees by transmitting the appropriate root nodes gosltkeek of the
number of created and pruned nodes for all local trees.

LB_tm implements several methods of the B@R user class:

e pack_module_data(): sends miscellaneous initialization information to the LP process.
This includes the initial solution for local branching, if local branching ialded at all,
and the value of: to be used for the first local tree.

e pack_user_data(): this method is called by COIN/BCP when a node with an user data
object is sent to a LP module. Additionally to packing the node’sus®rdata object,
the tree manager updates its tree statistics about pruned nodes anddshtiolsadh in-
formation when a new local tree is started (i.e. the initial solution, value ahd some
other necessary information).

e unpack_user_data(): used to unpack an LBiserdata object sent from a LP process.

32

e unpack_feasible_solution(): this method is invoked by COIN/BCP when a new feasible
solution was sent by a LP process. This method unpacks the feasible sdbftigpe
BCP_solutiongeneric) and updates the LocalTreelndex’s statistics when it was found
a local tree. When a new global optimum is found, the solution is broadctsttl
active LP processes using COIN/BCP’s messaging framework.

e compare_tree_nodes(): this binary comparison function is crucial for the local branch-
ing metaheuristic. Itis called by COIN/BCP to insert a new tree node in the aitesin-
didate queue. The nodes are ordered by priority, and the first node mext to be sent
to an idle LP process. COIN/BCP implements this method in a way that it represents
a certain tree search strategy (i.e. ordering nodes by level for bréesttbr by upper
bound for best bound first search). The local branching frameextends this method
by always preferring local tree nodes to “normal” nodes. When bodesiare local tree
nodes (or both are normal nodes), the COIN/BCP comparison functiatiésic

6.1.3 The LB.Ip Module

The LB_Ip module implements local branching for the LP module. It executes the commands
sent from the tree manager (L&) module, and is able to create local trees when a normal
root node is sent.

The following methods of the BCB_user superclass have been implemented:

e unpack_module_data(): the counterpart to LBm::packmoduledata(). Initialization
of this LP process is performed, and common parameters like the valuarefset, and
the initial feasible solution used for local branching is unpacked.

e pack_user_data(): packs an LBuserdata object to a buffer.

e unpack_user_data(): unpacks an user data object. This method is called by COIN/BCP
when a new node with an attached user data object arrived from the tremyera The
additional information sent by LBm::packuserdata() when a new local tree should be
created is also stored in the LUP object.

e unpack_user_message(): this function was patched into COIN/BCP to allow trans-
mitting user-defined messages between the tree manager and LP modulestirigy s
a certain message tag number this method gets called when the messageatthiges
process.

e pack_feasible_solution(): packs a feasible solution to be sent to the tree manager. Ad-
ditional to its predefined behavior, the local branching framework adssutrent user
data object if the feasible solution was generated in a local tree. This makesible
for the tree manager to assign each received solution to the local tree ivvas found.

e initialize_new_search_tree_node(): this function gets called before a node is processed
(i.e. before the LP relaxation is computed). This allows the user to tighterbl@adad
cut bounds. The local branching framework performs two major taskssmtéthod:

— When the local root node of a new tree is processed, variable fixing rodgiot.
A given percentage of all free variables that is equal in the initial solutfadheo
local tree and the current LP result is fixed to its value.

33

— As explained in section 4.2.3, the inverse constraint when fixing variabks is
pressed as a row cut. Depending on whether the corresponding leealvérs
completely solved, this row cut has to be (de-)activated when the norotalode
is processed.

e select_branching_candidates(): this method is invoked by COIN/BCP when the LP
relaxation of a subproblem has been solved. This method can either decieigro-
cess the subproblem when cuts have been added, or to return oneeobranching
objects. When a local tree should be created, an appropriate locahbrgrconstraint
(a Hamming distance cut by default) is created and a branching objectrisedturhe
local branching cut is created by the virtual method créatel constraint() that can be
re-implemented by the user.

e set_actions_for_children(): when a branching object was chosen, the LP process de-
cides for each child whether to keep it for immediate processing or to retiarthié tree
manager. At most one child can be kept in a LP process. The localiingrfcamework
uses this method to force processing of the local root node when a reewdsecreated.

e set_user_data_for_children(): the user data information for the child nodes of a branch-
ing object is generated after the branching object was chosen. When bcal tree
is created, this method sets the local tree identification number and other intetaa
about the local tree. When an existing local tree is branched, it progsatie informa-
tion stored in the current user data object to its children.

Creating the Hamming distance cut

LB _Ip::createhammingconstraint() generates a Hamming distance constraint used for local
branching. It resembles the local branching constraint as descnbEidd¢hetti and Lodi. In

its current implementation it is restricted to binary IPs. It can be used as a terfgpiaustom
local cut generators.

Note that creatdhammingconstraint() is not virtual, the framework calls the virtual func-
tion createlocal constraint() when creating local cuts which in turn calls the Hamming dis-
tance generator. When implementing new cuts, simply override the latter vicioetidn.

Both functions return a local branching object and get information attmuturrent node
through their input parameters:

e Ipres represents the current LP optimum.
e vars contains all available variables at the current node.

e cuts contains all current cuts. The generated local cut(s) can not bendggdo this
collection, they must be contained in the returned branching object.

e br_sol is the feasible solution sent from the tree manager to be used for locahiimgn
(theinitial solution).

The creation of the Hamming distance constraint is straight-forward: firstfethsible
solution brsol is unpacked to a local array for easier access. Then the variadficiznts
of the cut are generated. Each variable that flips its value in any feasibigos must be

34

detected, and the sum of all changed variables must not be greatét thlams, the coefficients
for the cut are:

L 1 iijS():{j::f‘j:O},
a={q ties—{a-1} €.1)

wherez is the initial solution for the local tree. The local cut is then described as

0< > i+ > (I—z) <k (6.2)
J€So JES
for any feasible solutior. Simple transformation leads to the row constraint as it will be
passed to COIN/BCP:

—]Sllg Zaﬁj—ijgk—\Sll. (63)
JESoH JEST
After creating a row cut with the bounds for the local tree and the resteo$dlarch tree,
some variables are selected for fixing if the tree manager requestededéisiaty for this local
tree. The indices of all free (hon-fixed) variables equal in both the iratidl the current LP
solution are stored in an array, which in turn is used to randomly pick theesteginumber of
variables. An additional constraint for the normal tree is added asideddn section 4.2.3.
The variables of the local tree will be fixed when initialimew searchtree node() is called
for the local root node. The list of picked variables can be kept insigl&Bilp module since
the local root node is processed immediately after branching by the saoespro

6.2 Managing Local Trees

In order to provide a clean separation between the low-level local birggnanplementation
represented by the LBn and LBlp classes and global local branching state information, the
LocalTreeManageclass was introduced.

It encapsulates all methods for tracking local trees, such as maintairting aode num-
bers and assigning found solutions to local treed.o8alTreelndexbject is used for storing
the data, which is shared with th&_MetaHeuristicobjects that is responsible for controlling
the local branching algorithm.

To emphasize the different purposes of these classes, a quick everfiee control dis-
tribution follows. All classes below (except L) are effectively singletons inside the Ltigh
process.

e The LB_lp module(s) process individual subproblems.

e The LB.tm module assigns subproblems to IfiBmodules and receives all new sub-
problems and solutions. When it receives information about a local trge &new
solution was found), the appropriate LocalTreeManager method is cétllatbo polls
the LB_MetaHeuristic object for commands, e.g. creation or termination of local trees

e The LocalTreeManager is mostly a passive module that provides data esanag
ment routines concerning local trees. Its only active part lies in the #otivaf
LB _MetaHeuristic routines on certain events, e.g. calling a method to notify the meta
heuristic of a new solution or a terminated tree.

35

e The LB_MetaHeuristic object is mainly responsible for controlling local branching —
that is, creating new local trees or terminating existing ones. Additionally, thelin
solution for the first local tree is generated inside this class.

e The LocalTreelndex serves as shared data pool for the LocalEmesdér and
LB_MetaHeuristic classes. The former is responsible for keeping the informagio
to date, the latter uses it mainly as decision source (e.g. to terminate all trees with mo
than 50.000 nodes).

6.2.1 The LocalTreelndex

The LocalTreelndex gathers information about all local trees andg@eswniscellaneous sta-
tistical information, e.g. the number of active trees or the number of creatiabmper tree.

The LocalTree class

A local tree is represented bylacalTreeobject. This class provides several get and set
methods. The latter are called by the LocalTreeManager, but the formdrecalso used in
some LBMetaHeuristic methods to query miscellaneous information about the giveh loca
tree. The most significant properties of a local tree are:

e get_nodes_created() returns the total number of created nodes in this local tree.

e get_nodes_deleted() returns the total number of deleted nodes in this subtree. This in-
cludes pruned nodes (because of their upper bound), infeasilds fent nodes deleted
by the tree manager when a local tree was terminated.

e get active_nodes() returns the number of active (i.e. not processed and not deleted)
nodes, in other words the difference between created and deletes. nddecal tree
with no active nodes is terminated, all active local tree must have at leastaate that
has not been deleted.

e get_nodes_created_since_improvement() returns the number of created nodes since
the last improvement of the best solutiorthis local tree

e get_nodes_deleted_since_improvement() is the equivalent number for deleted nodes.

e get_terminated() returns true when this local tree has been explicitly terminated. Thisis
a helper function for the user to avoid terminating the same tree several timestfee
termination might not occur immediately, depending on the number of activesnode

The LocalTreelndex class

The LocalTreelndex class stores all local trees in an associativeimentasing the previ-
ously introduced LocalTreelds as key and LocalTree as value type)loEal tree manager is
responsible for creating new entries when necessary, so the Loekldex actually provides
a single service method:

find() accepts a LocalTreeld as parameter and returns the correspondiaid e object,
or throws an exception when the local tree does not exist.

36

Additionally, miscellaneous statistical information about all local trees (e.dhabiglobal
solution found so far, or the number of nodes created since the last a®¢ewninated) is
provided through getter methods similar to those in the LocalTree class. Eonglate de-
scription, refer to the autogenerated class documentation.

6.2.2 The LocalTreeManager

The LocalTreeManager is instantiated by the trB object and assumes control over the Lo-
calTreelndex data storage. It provides a clean interface for all tasiserning local tree in-
formation, such as assigning solutions to local trees, adding creates moggnoving deleted
nodes. Additionally, it maintains the lists for active, terminated and abortesl itnetbe Lo-
calTreelndex. The user probably does not want to interfere with tlwalTceeManager’s
methods, they are automatically called from_tf8 when needed. Instead, the LocalTreeMan-
ager delegates control to the LetaHeuristic object, which will be implemented by the user
and is responsible for local tree control.

6.3 Controlling Local Branching

The LB_MetaHeuristic class provides a clean and simple encapsulation of the lacahimg
algorithm. Its main goal is to provide an interface to the local branching framewithout
requiring the user to deal with the internals of COIN and the frameworkMeBaHeuristic is
an abstract class that does not implement any local branching functiomédityever, it takes
little to implement the standard local branching algorithm.

LB_MetaHeuristic operates asynchronously in the sense that its actiongafopke local
tree creation, are not immediately executed. Instead, internal flags inthieagetion to be
taken by the tree manager when it is possible. This limitation is caused by thairgetcture
of COIN which imposes certain limits on direct control of the computation in exgédor
performance, efficiency and parallelism. This should be taken into atedwen advanced
tasks, such as creating multiple local trees at once, do not work astedpec

Local branching control is basically performed by two operations:tcrgéocal trees and
terminating local trees. Additional parameters influence local branchiregy, &s the value of
k, or the amount of variables to be fixed.

LB _MetaHeuristic offers the following methods and data fields for local briagatontrol:

e create_tree() sets internal variables to tell the tree manager that a new tree should be
created. The initial solution can be passed as a parameter, or the domemtbent
solution will be used. Note that subsequent calls to this function have actafihce
the actual tree creation is executed asynchronously by the tree mafageneating
multiple trees at once, the calls to createe() have to be synchronized, for example
using the treecreated() handler described below.

o terminate_tree() tells the tree manager to terminate the local tree with the given Local-
Treeld.

e terminate_active_trees() terminates all active trees. This may be especially useful for
terminating local branching.

e |b_k contains the value of to be used for new local trees.

37

o |b_fixvars contains the amount of variables to be fixed relative to the total number of
variables.

The local branching algorithm is determined by IMBetaHeuristic's reaction to certain
events. These event handlers are called by the LocalTreeManabeffangreat degrees of
freedom for creating own local branching metaheuristics. The evewlidrs are:

e initial_solution() is called to obtain the initial solution for the very first local tree. The
parameters lik and lhfixvars might also be set in this procedure.

o tree_created() is called when a new tree was generated. The corresponding tree iden-
tification and the tree object are passed as references. After credtieg with cre-
atetree(), this is the first occasion to create another local tree.

o tree_finished() is called when a tree is finished, i.e. it has no active nodes remaining.

e new_node_generated() is called whenever a new node was generated in a local tree.
Since this method gets called regularly, time-related tasks (such as terminatihg loc
trees above a certain node limit) can be implemented in this method.

6.3.1 Implementing a Basic Local Branching Algorithm

In order to emphasize how the LBetaHeuristic object can be used for implementing local
branching, consider the following task. Standard local branchingldh@uimplemented, i.e.
one active tree at any given time, with a node limit of 10.000 nodes per laml {Fhis is
accomplished by implementing LBletaHeuristic's event handlers in the following way:

e initial_solution() returns a heuristically generated solution and Ketsandlb_fixvars
to the desired values.

o tree_terminated() creates a new local tree by calling createe(). This single function
call implements the standard sequential local branching algorithm ancdesrikat there
is always only one active local tree.

e new_node_generated() uses the LocalTreelndex object (index) to fetch the number
of created nodes for the active tree and calls termitrat() when the node limit was
exceeded.

38

Chapter 7

Multidimensional Knapsack Problems

7.1 Introduction

Given a knapsack of fixed capacityandn items with profitgp; and weightsy; forj =1...n,
the task is to find the most valuable subset of items that fits into the knapsacssiame that
p1...pn andwy ... w, are positive integers. Thenbounded knapsack problatoes not limit
the number of times each item type can be used. Irbthary or 0-1 knapsack problepthe
number of items is constrained to be 0 or 1. Tindtiple-choice knapsack problenaquires the
items to be chosen from disjoint classes. Intidtiple knapsack problenseveral knapsacks
are to be filled simultaneously.

The rest of this chapter will be based on binary knapsack problemsnaigy a binary
knapsack problem can be stated as:

maximize Z?Zl DjTj (objective function) (7.1)
subjectto 377, w;z; <c (constraint)
z;€{0,1} j=1...n

In this formulation,z; is 1 when itemj is included in the knapsack and O otherwise.
p1...pn CONtains the profit (or value) for each item, awd. .. w, the weight or resource
usage. Note that it is trivial to obtain a (poor) feasible solutigr= 0 for all 5.

This section is based on the book on knapsack problems by Pisinger 2iaivliich
provides a thorough reference for the family of knapsack problems.

7.1.1 Algorithms for Knapsack Problems

All knapsack problems are NP-hard, therefore it is highly unlikely to fimdatimal algorithm
with a polynomial worst-case time complexity. Despite this, there are algorithmacdhive

reasonable solution times also for large instances. The following ovenfiewagt and ap-
proximate algorithms is based on [32]. Note that the multidimensional knapsablem is

more complex and thus usually not covered by highly effective appesaltke the dynamic
programming approach.

e Branch and BoundA Branch and Bound implementation for knapsack problems was
first proposed by P. J. Kolesar in 1967 [23].

39

e Dynamic programmingBasically an enumeration algorithm which can achieve excel-
lent performance on some families of knapsack problems, especially tbhasddxd by
relatively low integer capacity. For these it is possible to obtain an optimal solutio
©(nc) with n being the number of items andhe knapsack capacity.

e State space relaxatiomA dynamic programming relaxation where the coefficients are
scaled by a fixed value. The complexity of an algorithm may be decreasethd
optimal solution may no longer be found. This is an interesting approacHficieat
approximate algorithms.

e PreprocessingSome variables may be fixed at their optimal values by using bounding
tests.

e Fully polynomial time approximation schem@TAS: These are heuristics that can
find a solutionz with a relative error bounded by any constant vaduee. % <,
wherez* is the optimal solution value, in polynomial time bounded by the length of the
input and%. A fully polynomial approximation scheme for the binary knapsack problem
was presented by Ibarra and Kim in 1975 [19].

7.1.2 Multidimensional Knapsack Problems

The generalization of the knapsack problem to more than a single consttaiatrisltidimen-
sional knapsack problenalso known asl-dimensional knapsack problgia-KP) or multicon-
straint knapsack problenit is defined as an integer program with the following structure:

maximize > j=1PiT;
subjectto >0 wiz; <¢ i=1...d (7.2)
z;€{0,1} j=1...n

An equivalent formulation using vectors is:

maximize '

subject to Wz <c (7.3)
z € {0,117, c e Nd, W e Ny

There are two main characteristics of integer programs that describe multgionah
knapsack problems: First, they are particular difficult instances of infgggramming be-
cause the constraint matriX is unusually dense, while most other relevant classes are defined
by sparse constraint matrices. But analogously to other knapsaclep®i is also particu-
larly easy to find a feasible solutiom; = 0 for all j, whereas in general integer programming
finding feasible solutions might be as hard as finding an optimal solution.

Typically the number of items exceeds the number of constraints A rough bound
for computing optimal solutions of multidimensional knapsacks with todays algusitnd
computers it = 500 andd = 10.

It has been shown by Korte and Schrader in 1979 [24] that the exestdrecfully polyno-
mial time approximation scheme for a multidimensional knapsack problem evenmnisjttwe

40

constraints{ = 2) would imply P = NP, i.e. that every NP-hard problem could be solved
in polynomial time. However, there exists a polynomial time approximation schBi&g
with a running time o (n/%/¢1-4) [4]. Compared to a FPTAS, a PTAS has the drawback of
an exponential increase in running time with respect to the accuracy, i.einitghg time is
polynomial only with respect to the input length, but not to the requiredlue.

7.2 Heuristic Algorithms

The enormous complexity of multidimensional knapsack problems motivatedsesdene-
search in heuristic algorithms.

7.2.1 Greedy Heuristics

Greedy heuristics work by inserting all items that do not violate any resammastraintsyfri-
mal greedy heuristigsor by first putting all items into the knapsack and then removing items
until the solution becomes feasibldu@l greedy heuristigs Since the order in which the
items are inserted or removed matters and some items are more valuable tha(i.etheffer
a relatively high profit for relatively low resource usage), items arteddsy an arbitrareffi-
ciencye; before inserting them into the knapsack. The most obvious efficiencyureets a
one-dimensional binary knapsack problem is the relative prpfit %

Since there is more than one resource constraint in multidimensional kikgpsdétems,
there is no such trivial method of determining the efficiency of an item. Theeebeounterpart
would be the aggregation of allconstraints, i.e.

e — L’ 7.4
T wy 7
wheree; would be the efficiency for itemi. The main drawback is that it does not work
well when the resource constraints are of different orders of magnituid this case, one
constraint may completely dominate all others.
This can be avoided by taking the relative weight for each constraindefiue

b
ej = Z?Zl uéij . (7.5)
Senju and Toyoda [38] proposed a different way to incorporate thtue distribution of
weights by including the difference between the capacity and the totalreesasage of all
items for a given constraint.

Dy
> i1 Wi (2251 wij — i)

A generalized formulation of these efficiency measures was proposédgnd Scud-
der [37] by introducing aelevance value; for every constraint.

Pj
ej=—10 7.7
T iy 70

Equation (7.4) can be derived by setting= 1 for all 4, (7.5) by setting; = Cl and (7.6)
by settingr; = > 7, wi; — ci.

41

Advanced adaptive algorithms adjust the relevance values when an iteinseated, an
early version of such an algorithm can be found in [38].

7.2.2 Relaxation-Based Heuristics

Heuristics based on the LP relaxations of integer programs can also théouseultidimen-
sional knapsack problems with little or no adaptation. A simple and fast agipreas given
by Bertsimas and Demir in 2002 [3]. It starts by fixing variables in the LP soiud&pending
on a parametey € [0, 1]:

YT lo ifacJLP<’y.

(7.8)

In the second phase the subproblem defined by the undecided varia’gla%P <1lis
solved again, and further variables are fixed:

1 if a:fp =1,
ail = { 0 ifzkP =0, (7.9)
0 forj=argmin{z}" |0 <zt <1}.

The last assignment fixes the variable with the least fractional value to Zhi® second
phase is repeated until all variables are fixed to zero or one. Small Valugdead to better
solution values but longer running times, while bigger values offer bettéopeance. Setting
~ = 1 is equivalent to rounding down the first LP solution. The authors prghaetting
~ = 0.25 when performance is more important than solution quality.

7.2.3 Hybrid Algorithms

More advanced algorithms combine different approaches to the multidimahgioapsack
problem. They are often more complex and require more running time, butielgnear-
optimal solutions in many cases where simpler heuristics fail.

One such approach was proposed by Lee and Guignard in 1988}24t.algorithm starts
with a modified version of Toyoda’s primal greedy heuristic [40]. Instafadieciding on each
item separately, they decide on several items at once before recomptirggebance values,
leading to better performance. Based on this feasible solution, the LP tiefaisasolved. A
comparison between the feasible solution and the LP solution in combination wrédihezd
costs of the LP solution is used to fix some variables and reduce the prakkenikese steps
are iterated, the number of iterations is controlled by a parameter.

A more recent heuristic was given by Vasquez and Hao in 2001 [4Hy €ombine linear
programming and tabu search to search binary areas around contsulatiens. This is
facilitated by additional constraints that limit the search space around a splikima sphere
constraint that geometrically isolates the search space.

7.2.4 Evolutionary Algorithms

Evolutionary algorithms (EAs) were inspired by biological evolution and trynimic the

evolutionary process. An evolutionary algorithm keeps one or rpopailationsof solutions

for a given problem, and tries to improve these solutions by imitating evolutigmacedures
like selection recombinatiomandmutation

42

Several evolutionary algorithms exist for the multidimensional knapsadiemo Major
differences between algorithms concern varying operators for reioatidn and mutation,
and also different representations of the solutions themselves. RajdB4335] proposed
different approaches for the multidimensional knapsack problem, atsbiong evolutionary
algorithms with local improvement heuristics.

A patrticularly effective approach is based on an EA by Chu and Bepgjlely uses airect
representatiorusing bit vectorss {0, 1}" for representing solutions. Recombination is done
by uniform crossover, i.e. a child solution is created by randomly pickingfgite one of its
parents. Bit-wise mutation can be used to increase the diversity of soluBotis.crossover
and mutation can produce infeasible solutions, so a repair algorithm isedqéirtwo-phase
heuristic is used for repairing and local improvement: the items are ordgraal Wtility ratio
similar to the efficiency measures described in section 7.2.1. For repaitit@ss, the least
promising items are removed until the solution becomes feasible. The local iempeon
algorithm processes items not present in the current solution by deuresdsity ratio and
inserts them if no constraints are violated.

Decoder-based EAseplace the direct representation of a solution with an encoding
scheme. Recombination and mutation operate on the encoded solutions, impliplty- ex
ing the original search space. The choice of the encoding scheme ety gnfluence the
effectivity of recombination and mutation and the convergence of the bgeeach algorithm.

A possible encoding scheme for knapsack problems psasutations Instead of storing
the value for each variable, a permutation J — J with J = {1,...,n} is used to repre-
sent a solution. In order to get a direct representation for a soluti@odidey starts with the
feasible solutionr = (0,...,0). Then the variables are visited in the sequence described by
the permutation, and variables that do not violate constraints are set totatidviwrandomly
exchanges two different positions in a permutation, recombination is domg wsform or-
der based crossovdB] which keeps the ordering (but not necessarily the positions) of the
parent solutions. Apermutation based Efor the knapsack problem has been proposed by
Hinterding [18] and it has also been applied to the multidimensional knapsabkem by
Gottlieb [17], Raidl [33], Thiel and Voss [39].

43

Chapter 8

A Sample Application: MD-KP

This chapter guides through a sample application for the local branclamgivork, a Branch
and Cut solver for the multidimensional knapsack problem as describédjrter 7. The goal
is to optimize the following integer program:

maximize > i1 DT
subjectto 7wz <c¢ i=1...d (8.1)
z;€{0,1} j=1...n
Since the application actually will be embedded into the COIN/BCP main program, it
makes sense to adhere to COIN/BCP’s directory structure. COIN/BGRIpsomakefiles for

building custom applications where only the added user files have to bedefin
The application source is grouped into the following directories:

¢ include/ contains all header files for the application’s classes.
e LP/ contains the implementation of this program’s LP module.
e TM/ contains the tree manager module.

e Member/ contains the other classes, in our case the initialization class (descefidant o
LB_init) and the metaheuristic.

First of all, defining a class to hold a problem instance simplifies the furtheratipns.
In case of the multidimensional knapsack problem, we basically need soays &rhold the
coefficients of the constraints and the objective function, and the pamegg bounds. This
class is based on the BranchAndCut example from the COIN sourceaariteeasily adopted
to other integer programming problems. It is defined as follows:

class KS_prob {

public:
int nltems; /ll< Total number of items (= columns)
int nConstraints; /ll< Total number of constraints (= rows)

double optimalknown; ///< Known optimal solution, —DBL_MAX if unknown

double * clb; /ll< Lower bound for each core variable (usually 0.0)

44

double * cub; /ll< Upper bound for each core variable (usually 1.0)

double * val; /ll< Objective value (profit) for each core variable
double ** res; /ll< Resource demands
double * rescons; /ll< Resource constraints

CoinPackedMatrix* core; ///< Core matrix
double * rlb_core; /ll< Lower bounds in the core matrix (usually 0.0)
double * rub_core; /ll< Upper bounds in the core matrix (usually rescons[rownum])

+H

Next, the tree manager class will be implemented.

8.1 KS.tmimplementation

The tree manager implementation is responsible for reading the problem dataaffile,
initializing the core matrix of COIN/BCP, and providing methods to pack and ckpats.

8.1.1 Test File Format

Our program will read test instances taken from Chu and Beasleyér mappa genetic algo-
rithm for the multidimensional knapsack problem [6]. These test files co@téindifferent
instances, ranging from very easy to very complex problems. The pnskdee described in
plain text, each file contains 30 instances of the same dimension (i.e. the samerraimb
variables and constraints). The format of the text file is:

e The number of instances (should be 30).
e For each problem:

— Number of variables, number of constraintg, optimal solution (if known).
— The coefficients of the objective functign for j =1...n.

— For each constraint the coefficients of the constraint;;.

— The upper bounds of the constraintdor: = 1...d.

KS_tm::readinput() reads the data from the given file name using the given instance num-
ber into a KSprob object which is stored in K8n. Since it is just a very simple line parser
the implementation is omitted here.

8.1.2 Setting up the Core Matrix

The raw core matrix was set up by KB::readinput() and stored into K®rob::core, but
until now COIN/BCP is not aware of the problem data. To do this, we mustridee
LB_tm::initialize_core() to create all core variables and core cuts (i.e. all IP constraints)
The core matrix is put together using the coefficients and upper and laverdb loaded

by readinput(). In the end, we call the implementation of the superclass becausectie lo
branching framework might have to do some setup actions on its own.

void KS_tm:initialize_core(BCP_vec<BCP_var_core*>& vars,
BCP_vec<BCP_cut_core*>& cuts, BCP_Ip_relax*& matrix) {

45

/I initialize core variables
for (int i = 0; i < prob.nltems; ++i)
if (0.0 == prob.clb[i] && 1.0 == prob.cubli])
vars.push_back(new BCP_var_core(BCP_BinaryVar, prob.valli], 0, 1));

/I initialize core cuts
for (int i = 0; i < prob.core—>getNumRows(); ++i)
cuts.push_back(new BCP_cut_core(prob.rib_corel[i], prob.rub_coreli]));

/I create LP relaxation
matrix = new BCP_Ip_relax;
matrix—>copyOf(*prob.core, prob.val, prob.clb, prob.cub, prob.rlb_core, prob.rub_core);

LB_tm::initialize_core(vars, cuts, matrix); // execute LB’s initializiation

8.1.3 Packing and Unpacking of Cuts

We do not create own cuts in our sample application, but we still have to gronehns to
pack and unpack LB ut objects. These cuts will be used for local branching cuts and &vers
variable fixing constraints. Since LBut already provides methods for packing and unpacking
those cuts, the corresponding implementations intirBare very compact:

void KS_tm::pack_cut_algo(const BCP_cut_algo* cut, BCP_buffer& buf) {
const LB_cut* Ib_cut = dynamic _cast<const LB_cut*>(cut);
if (llb_cut)
throw BCP_fatal_error("pack_cut_algo(): unknown cut type!\n”);
Ib_cut—>pack(buf);

}

BCP_cut_algo* KS_tm::unpack_cut_algo(BCP_buffer& buf) {
return new LB_cut(buf);
}

8.1.4 Sending the Problem Description to the LP Module

The LP module will need the problem description stored in thegk& object for heuristically
finding feasible solutions. K&n::packmoduledata() allows to send any information to an
LP process when it is created, thus we simply append our problem destrip the given
buffer. The local branching framework appends data on its own, siongblementation of the
superclass is called too.

void KS_tm::pack_module_data(BCP_buffer& buf, BCP_process_t ptype) {
if (BCP_ProcessType_LP == ptype)
buf.pack(&prob);
LB_tm::pack_module_data(buf, ptype);

46

Actually only a pointer to the problem description is passed. This is possilide #ie
focus of the sample application does not lie on parallel execution, but odigimpHow-
ever, it is a rather trivial task to write packing and unpacking routineshierKS prob class
(especially since the core matrix does not need to be transmitted).

8.1.5 Creating a KSMetaHeuristic Object

The KS MetaHeuristic implements the abstract INBetaHeuristic class and contains the user-
defined local branching control methods. Since the tree manager do&sow the meta
heuristic’s type a priori, we instantiate a K@etaHeuristic object by overriding LBm’s ab-
stract method creatdh():

virtual LB_MetaHeuristic* create_Ibh() {
return new KS_MetaHeuristic(ltm—>index, &prob);
}

Itmis the tree manager’s LocalTreeManager objéiet,~indexis the shared LocalTreeln-
dex, andprob contains the problem definition initialized by Ki::readinput().

The implementation of the tree manager is now complete, the next task is to implement
the LP module.

8.2 KSlIp Implementation

In the LP module implementation, the main effort goes into cut generation amistially
finding feasible solutions. First, we need the counterpart to jpa@ttuledata, or the local
branching framework will use the wrong buffer values. Additionally, md#imr packing and
unpacking cuts are also required.

void KS_Ip::unpack_module_data(BCP_buffer& buf) {
buf.unpack(pprob);
LB_lp::unpack_module_data(buf);

}

void KS_Ip::pack_cut_algo(const BCP_cut_algo* cut, BCP_buffer& buf) {
const LB_cut* Ib_cut = dynamic _cast <const LB_cut*>(cut);
if (llb_cut)
throw BCP_fatal_error("LB_Ip::pack_cut_algo: unknown cut type!\n”);
Ib_cut—>pack(buf);

}

BCP_cut_algo* KS_Ip::unpack_cut_algo(BCP_buffer& buf) {
return new LB_cut(buf);
}

We also need to setup the LP solver. Here we will instantiate COIN’s own Gh@rsthe
complete version of the sample application also supports CPLEX.

OsiSolverinterface* KS_Ip::initialize_solver_interface() {

OsiClpSolverinterface *clp = new OsiClpSolverinterface;
clp—>messageHandler()—>setLogLevel(0);

a7

return clp;

8.2.1 Generating Feasible Solutions

COIN/BCP provides a method where the user can generate feasible selutionsolved LP
relaxations. By generating good feasible solutions early in the computati®sgtirch tree
size can be reduced. However, the heuristic should not be too comptexthis method is
called for every solved LP relaxation.

For the multidimensional knapsack problem, we chose a simple greedy heasstie-
scribed in section 7.2.1. The efficiency measure is not based on theaesmage of each
variable, but on its value in the LP result. Thus, after sorting the varialelescending LP
value, all variables that do not violate the resource constraints ard <lee solution, which
is then returned to the LP module.

BCP_solution* KS_Ip::generate_heuristic_solution(const BCP_Ip_result& Ipres,
const BCP_vec<BCP_var*>& vars, const BCP_vec<BCP_cut*>& cuts) {

const double * x = Ipres.x();
BCP_solution_generic* sol = new BCP_solution_generic(false);

/I sort variables by LP result value, then insert them in reversed order (best first)
multimap<double , int> sorted,;
for (unsigned int i = 0; i < vars.size(); ++i)

sorted.insert(pair<double , int>(x[il, i));

/I track current resource usage

double * myres = new double [pprob—>nConstraints];

for (int j = 0; j < pprob—>nConstraints; ++j)
myresl[j] = 0.0;

multimap<double , int >::reverse_iterator it;
for (it = sorted.rbegin(); it != sorted.rend(); ++it) {

int i = (*it).second; /Il number of the variable to be inserted
bool ok = true;
for (int j = 0; j < pprob—>nConstraints; ++j) {

/I check if any resource constraint is violated
if (myres[j] + pprob—>res][j][i] > pprob—>rescons]j])

ok = false;
if (ok) { Il insert item into knapsack
for (int j = 0; j < pprob—>nConstraints; ++j)

myres[j] += pprob—>res[j][i];
sol—>add_entry(varsli], 1);

}

delete[] myres;
return sol;

48

8.2.2 Generating Cuts

The second main task for the LP module is cut generation. When a LP relanat®solved,
one can either try to generate cuts violated by the LP result, or the subprableranched.
COIN/CGL offers several generic cut generators. If one chotsgenerate cuts, it can be
either done for every node, or for nodes meeting a certain condition. idredample, we
choose to generate cuts for nodes at every eighth level of the seaechWfe try to create
genericknapsack cover cutand Gomory cuts The cut generators are first instantiated and
stored in a list. We also set the maximal number of items for the knapsack certag@n
Higher numbers lead to higher computational complexity, but also highecebanf finding
cuts. Then every cut generator is invoked to generate cuts and storéthatlist These cuts
are then appended to thew . cutsoutput parameter.

void KS_Ip::generate_cuts_in_Ip(const BCP_lp_result& Ipres,
const BCP_vec<BCP_var*>& vars,
const BCP_vec<BCP_cut*>& cuts,
BCP_vec<BCP_cut*>& new_cuts,
BCP_vec<BCP_row*>& new_rows) {

vector<CglCutGenerator*> cgs;

/I generate nodes at every 8th level

if (current_level() % 8 == 0) {
CglKnapsackCover* kc = new CglKnapsackCover;
kc—>setMaxInKnapsack(pprob—>nltems);
cgs.push_back(kc);
cgs.push_back(new CglGomory);

}

if (cgs.size() > 0) {
OsiSolverinterface* si = getLpProblemPointer()—>Ip_solver;
for (int i = vars.size() — 1, i >= 0; ——i)
si—>setlnteger(i);

OsiCuts cutlist;

for (int i = cgs.size() — 1; i >= 0; ——i) {
cgsli]—>setAggressiveness(100);
cgs[i]—>generateCuts(*si, cutlist);
delete cgsli];

cgs[i] = 0;

}

for (int i = cutlist.sizeRowCuts() — 1; i >= 0; ——i) {
LocalTreeld id = in_localbranching() ? get_ks_user_data()—>id : LocalTreeld();
new_cuts.push_back(new LB_cut(cutlist.rowCut(i), id));

}

When using cut generation, we have to implement COIN/BCP’s ttutsws method. It
is used to realize the abstract cut representations to actual rows of tie¢alxBtion.

void KS_Ip::cuts_to_rows(const BCP_vec<BCP_var*>& vars, BCP_vec<BCP_cut*>& cuts,

BCP_vec<BCP_row*>& rows, const BCP_Ip_result& Ipres,
BCP_object_origin origin, bool allow_multiple) {

49

const int cutnum = cuts.size();
for (int i = 0; i < cutnum; ++i) {
const OsiRowCut* bcut = dynamic _cast <const LB_cut*>(cuts]i]);
if (bcut)
rows.push_back(new BCP_row(bcut—>row(), bcut—>Ib(), bcut—>ub()));
else
throw BCP_fatal_error("Unknown cut type in cuts_to_rows.\n");

8.3 KS.init Implementation

COIN/BCP provides the USEhitialize class to instantiate custom tree manager and LP
module implementations. Kt implements LBinit, which in turn was derived from
USERInitialize. KS.init::Ip_init() creates a new K% object, and KSnit::tm_init() instanti-
ates a new KSm object. While the former is called once for every created LP process, the
latter is only called on program startup. Thus it is used to process commarphliameters
and initialize the tree manager by calling K&::readinput() for the given file name. Addi-
tionally, the global function BCRiserinit() has to be implemented to return a new IK&()
object.

With these three classes, the basic COIN/BCP implementation is finished. Ftaridarsl
COIN/BCP classes, the implemented methods are sufficient for an execBaleh and
Cut algorithm for the multidimensional knapsack problem. The local bragdnamework
requires the implementation of a fourth class, the local branching metaheuristic

8.4 KS_MetaHeuristic Implementation

All local branching related logic is contained in K@etaHeuristic, our implementation of the
LB_MetaHeuristic class. Our local branching controller accomplishes threetaskis:

e initial _solution() creates a heuristic solution used for the first local brancheeg tr

e new.nodegenerated() is called regularly by the framework and monitors local biragch
progress. When the given node limits are exceeded, it restarts looahimg.

o treefinished() starts a new local tree when the last active tree finishedtiefly im-
plementing the sequential local branching algorithm.

8.4.1 Configuring Local Branching

Before the actual local branching implementation is described, we neeg towaaljust cer-
tain parameters of our heuristic without recompiling the whole program. CQR/Bffers
a convenient, generic parameter parser that can be used to loackfisedgparameters from
the command line or from a file, perform type checking and sanity checksdafine de-
fault values. In order to utilize COIN/BCP’s parser, we start by defirngarameter class,
KS_parameters. Itis not derived from any other class, instead for eaaimgter type (integer,
double, string, ...) it defines enumerations containing the parameters’ narhissclass is

50

used as a generic type parameter for COIN/BCP’s B@rRameterset::createkeywordlist()
and setdefaultentries. The first method assigns actual string labels to the user-defireed
eters, the second methods initializes all parameters with default values.

For example, the following code defines a couple of double parameterthandmple-
ments COIN/BCP’s methods for using them:

class KS_parameters {
public:
enum dbl_params {

LB_FixVarsinitial,
LB_FixVarsincrement,
LB_FixVarsMax,
LB_MultiK,
end_of_dbl_params };

+

template <> void BCP_parameter_set<KS_parameters>::create_keyword_list() {
keys.push_back(make_pair(BCP_string("LB_FixVarsinitial”),
BCP_parameter(BCP_DoublePar, LB_FixVarsinitial)));
keys.push_back(make_pair(BCP_string("LB_FixVarsincrement”),
BCP_parameter(BCP_DoublePar, LB_FixVarsincrement)));
keys.push_back(make_pair(BCP_string("LB_FixVarsMax”),
BCP_parameter(BCP_DoublePar, LB_FixVarsMax)));
keys.push_back(make_pair(BCP_string("LB_MultiK"),
BCP_parameter(BCP_DoublePar, LB_MultiK)));

}

template <> void BCP_parameter_set<KS_parameters>::set_default_entries() {
set_entry(LB_FixVarslnitial, 0.0);
set_entry(LB_FixVarsincrement, 0.0);
set_entry(LB_FixVarsMax, 0.0);
set_entry(LB_MultiK, 1.0);

}

BCP_parametesset also provides methods for reading parameter from the command line,
from files, or from input streams. It also offers methods for accesgargmeter values
(getentry() and seentry()) and packing or unpacking of parameter sets. Since the param-
eters are only important for the local tree metaheuristic, we do not needddlpmaparameters
to other modules.

8.4.2 Setting up Local Branching

Before the local branching heuristic takes over control, we have to tefrdngework if lo-

cal branching should be enabled at all - and which parameters to useevent handlers
depend on an already running local branching algorithm (e.g. a new wad generated,
or a tree was terminated). The decision whether to create a local tree oe wtarslard
branching takes place when the first LP process is initialized irtrhBpackmoduledata().
LB_MetaHeuristiclb_maxpassesets the maximum number of local trees. If it is zero, no lo-
cal trees will be generated at all and standard branching will be usgslinformation is also
used in tree creation methods, which will fail when the number of createtlttees exceeds
Ib_maxpasses.

51

The KSMetaHeuristic class sets _imaxpasses in its reggarameters() method, where
the command line is parsed using the parameter methods described in the ps®dtan,
effectively disabling local branching when either the maximum number of toges or the
value ofk has been set to 0. The valuefofior the very first local tree is also set in this method,
which is called by KSinit::tm_init() after the tree manager and the H&taHeuristic objects
were created.

8.4.3 Creating the Initial Solution

The initial solution is retrieved by the local tree manager when the first LBeggois initial-
ized. To demonstrate the use of pseudo-concurrent tree exploratoasevthree different
heuristics to start local branching with three (partially) disjunct local tréée solution de-
rived from the first LP result is used for the first local tree, and tweedy heuristics with
different efficiency measures provide the other two solutions.

Since the metaheuristic class does not know the first LP result (it is locattbRhpro-
cess), a small workaround forces the local branching frameworktt@ihc use the first LP
result: initiaLsolution() returns an empty solution (i.e. with all variables set to 0) and tells
the framework to use the feasible solution derived from the first LP r@§itlis better). The
first LP-derived solution is certainly better than the empty solution for aagiliée problem
instance, thus it will always be used. The other initial solutions are storthe imetaheuristic
object and are sent to the tree manager as soon as the first local tregtéxicr

To summarize the steps above, the initial local trees are created in the follaaing

1. initial_solution() calls greedy() to generate two initial solutions using two diffeeént
ficiency measures. These solutions are stored in thdvié&Heuristic object for later
use.

2. initial_solution() returns an empty solution to force the framework to use the solution
derived from the first LP result as initial solution for the first tree.

3. treecreated() issues createe() to create the next two local branching trees.

The implementation of greedy() is similar to the feasible solution generatoriloeddn
section 8.2.1. A greedy heuristic inserts the items ordered by an efficiahoy getermined
by one of the following formulas as described in section 7.2.1:

Dy
d ij "
Yim1 o
The profitp; for item j is divided by the relative resource usage, i.e. the sum of all relative
weights. The relative weight concerning a given resoussal an iteny is the absolute weight

w;; divided by the resource limi;. This way, weights are scaled td. . . 1] regardless of their
absolute value, leading to a fair consideration of all weights.

€; = (82)

e = Pi . (8.3)

d
D im1 Wi (307 wij —)
The second efficiency measure takes the weight distribution into accouittenghasizes
scarce resources.

52

The code for sorting the items follows below, the greedy heuristic for inggttiimitems is

the same as in section 8.2.1. The paramitedetermines which efficiency measure should
be used.

vector<double > resource_usages(pprob—>nConstraints, 0.0);
if (weight_distribution == fun) {
/I calculate total resource usages for all resources
for (int j = 0; j < pprob—>nConstraints; ++j) {
for (int i = 0; i < pprob—>nltems; ++i)
resource_usages[j] += pprob—>resl[j][i];

}

multimap<double , int> relval;
for (int i = 0; i < pprob—>nltems; ++i) {
double allres = 0.0;
if (relative_weight == fun) {
/I relative weight of each item
for (int j = 0; j < pprob—>nConstraints; ++j)
allres += pprob—>res][j][i] / pprob—>resconslj];
} else if (weight_distribution == fun) {
/I weight distribution according to Senju and Toyoda
for (int j = 0; j < pprob—>nConstraints; ++j)
allres += pprob—>res][jJ[i] * (resource_usages[j] — pprob—>resconslj]);

relval.insert(pair<double , int >(pprob—>val[i] / allres, i));

The implementation of initiakolution() is simple. Two solutions are generated, and an

empty solution is returned to force the LP process to use the feasible solatisadifrom the
first LP result.

BCP_solution_generic* KS_MetaHeuristic::initial_solution(
BCP_vec<BCP_var_core*>& corevars,
std::map<BCP_IndexType, BCP_var*>& vars,
bool & allow_Ip_result) {

solution_relative_weight = greedy(corevars, vars, relative_weight);
solution_weight_distribution = greedy(corevars, vars, weight_distribution);
allow_Ip_result = true;

return new BCP_solution_generic(false);

The treecreated() handler is called when a new tree was created by the tree mathage
we can create the two other local trees from the initial solutions created in_isitiation().

void KS_MetaHeuristic::tree_created(const LocalTreeld& id, LocalTree& tree) {
if (1 == index.trees.size())
create_tree(solution_relative_weight);
else if (2 == index.trees.size()) {
create_tree(solution_weight_distribution);

53

8.4.4 Imposing Node Limits on Local Trees

While the framewaork provides all necessary information for terminating tibese a certain
node count, the criteria for aborting local trees have to be checked in tiachewristic. In this
metaheuristic, we will implement a rather simple node-based tree termination stitarhas
the following characteristics:

e Trees will be aborted when their total number of created nodes exceggsndimit.

e Trees will be aborted when the number of created nodes since the lasvenpot of
the best feasible solution found inside the local tree exceeds a given limit.

e When a tree is aborted and the maximum number of local trees is not reached,
local tree is created with the current best global solution. Based onghk of the last
local tree, the new tree will be eventually modified:

— When a better solution was found since the last tree was created, lonahbrg
is restarted with this new solution and the initial local branching parameters.

— When no new solutions were found, the new local tree is tightened (if the cor
responding parameters are set): the number of variables to be fixedaased;,
and/or the value of gets modified.

Written as a handler using LBletaHeuristic::newnodegenerated(), the following code
implements node limits for all local trees. Some additional safety checks o@uok as
checking if local branching is enableth (enabled. Due to COIN/BCP’s asynchronous de-
sign, nodes may be added to a tree event after the tree was terminatedt. i3 lalso checked
if the current tree has not already been terminatede(getterminated(). The last expres-
sions of the outeif clause formulate the node limits described above using the statistical data
of the LocalTreelndex.

void KS_MetaHeuristic::new_node_generated(const LocalTreeld& id, LocalTree& tree) {

int maxnodes_without_improvement =
params.entry(KS_parameters::LB_MaxNodesWithoutimprovement);

int maxnodes = params.entry(KS_parameters::LB_MaxNodes);

if (Ib_.k > 1 && Ib_enabled && !tree.get_terminated() &&
((maxnodes_without_improvement > 0 &&

tree.get_nodes_created_since_improvement() > maxnodes_without_improvement) | |

(maxnodes > 0 && tree.get_nodes_created() > maxnodes))) {

terminate_active_trees();

if (index.nodes_created_since_improvement < index.nodes_created_since_newtree) {
/I an improved solution was found, restart with this solution
Ib_fixvars = params.entry(KS_parameters::LB_FixVarsinitial);
Ib_k = params.entry(KS_parameters::LB_K);

else if (params.entry(KS_parameters::LB_FixVarslnitial) > 0.0 ||
params.entry(KS_parameters::LB_MultiK) = 1.0) {

/I the old tree did not yield a better solution,
/I so fix some variables and/or modify k value.
Ib_fixvars += params.entry(KS_parameters::LB_FixVarsincrement);
Ib_fixvars = min(lb_fixvars, params.entry(KS_parameters::.LB_FixVarsMax));
Ib_k = (int) round(params.entry(KS_parameters::LB_MultiK) * Ib_k);
Ib_k = max(lb_k, params.entry(KS_parameters::LB_MinK));

54

Ib_k = min(lb_k, params.entry(KS_parameters::.LB_MaxK));
Ib_tightening = true; /I do it only once

8.4.5 Handling Terminated Local Trees

LB_MetaHeuristic::tredinished is called when a formerly active tree has no more active
nodes remaining. It may be called when the tree was solved completely, or ivhas
aborted, e.g. by our newodegenerated() implementation. When the tree was aborted, the
tree’s getterminated() function returns true. In both cases, a new tree has to &edre

LB _MetaHeuristic::creatéree() takes care of the limit on the total number of local trees by
setting lhenabled to false if necessary. Our implementation additionally tracks the number
of retries for the current incumbent solution (i.e. the number of local spawned with the

last incumbent solution), disabling local branching when a given numbtries has been
exceeded.

void KS_MetaHeuristic::tree_finished(const LocalTreeld& id, LocalTree& tree) {
LB_MetaHeuristic::tree_finished(id, tree);
if (0 == index.active_trees.size() && Ib_enabled) {
if (index.nodes_created_since_improvement <
index.nodes_created_since_newtree) {
create_tree();
Ib_tightening = false;
Ib_retries = 0;

else if (Ib_tightening && Ib_retries <
params.entry(KS_parameters::LB_MaxRetries)) {
create_tree();
++lb_retries;

}

else
Ib_enabled = false;

8.5 Finishing Touches

The Branch and Cut solver for multidimensional knapsack problems is nowplete. For
compiling the application, a properly patched installation of COIN/BCP is neéshs ap-
pendix A), and an adapted makefile. A makefile template can be taken fronofahe
COIN/BCP examples, found undExamples/BAG@r Examples/BranchAndCin the COIN
directory. Note that all of the framework’s sources have to be addedetontikefile. The
related part of thdlakefile.bdile should look like the following:

USER_SRC =

USER_SRC += KS_init.cpp
USER_SRC += KS_Ip.cpp

55

USER_SRC += KS_tm.cpp
USER_SRC += KS_metaheuristic.cpp

LB sources

USER_SRC += LB_tm.cpp
USER_SRC += LB_Ip.cpp
USER_SRC += LB_cut.cpp
USER_SRC += LB_user_data.cpp
USER_SRC += LB_init.cpp
USER_SRC += localtree.cpp
USER_SRC += localtreeid.cpp
USER_SRC += localtreemanager.cpp
USER_SRC += LB_metaheuristic.cpp

56

Chapter 9

Test Results

The multidimensional knapsack solver described in the previous chapsensea to under-
take extensive testing of local branching performance. The test iestamere taken from
J.E. Beasley’s OR Library [2] which provides 270 instances for the multidgiomal knap-
sack problem. They are grouped by problem dimension into nine files, aaathining 30
instances. The smallest problem size contains 100 variables and 5 ouasthe largest 500
variables subject to 30 constraints. Each file contains three groupdarfides with tightness
ratios ofa = 0.25, 0.5, and0.75. The tightness ratio defines how “tight” the resource limits
are set, lower ratios define tighter resource limits.

Additional problems were taken from the Hearin Center for Enterprisen8eifl4]. This
dataset contains eleven test instances originally used for the multiple kkgpshlem, rang-
ing from two instances with 100 variables and 15 constraints to an extremgdytst instance
with 2500 variables and 100 constraints.

9.1 Test Environment

All tests were executed on an Intel Pentium 4 with 2.8 GHz and 2 GB of RANhing Linux
with a 2.4.21 kernel. The LP engine used for testing was CPLEX 8.1.

The test application was configured to output status information at regtgavais, allow-
ing a reporting tool described in appendix B to generate tables and plotsaadogpifferent
configurations.

The running time is always given in CPU time for the COIN/BCP process asdeddy
COIN/BCP’s own timing statistics. This also includes time spent solving the LPg tisen
CPLEX solver.

When analyzing the results with respect to time (i.e. determining when a soluti®n wa
found during the computation), the number of processed nodes is takeadnsf the CPU
time. As described in chapter 6, it is much easier for COIN/BCP to track the ewofilmodes
during a computation than the CPU time spent so far. This simplification relies dacttbat
the number of processed nodes does not vary significantly for a gigeimstance, even when
using different parameters for local branching.

57

9.2 Test Results Overview

Summarizing the detailed results that will be presented in this chapter, threeabsgovations
were made:

e Local branching can find better solutions than standard branchingiedhlg computa-
tion especially for large, complex test instances.

e For smaller, easier test instances local branching did not show suahtades or was
inferior to standard branching.

e The settings for local branching, especially the valué athe number of variables to
be fixed, and the maximum number of nodes depend on the problem sizas hat
possible to find a parameter configuration that delivers good resulth fwoblem sizes
(or even a rule of thumb to account for problem complexity).

Since local branching showed its benefits primarily with larger test instanuest of the
detailed results will concentrate on larger knapsack problems.

9.2.1 Final Objective Comparison

The first method for comparing two configurations is by comparing the basilfle solution
found in a given timespan. When both configurations found the same lfeasiotion (or
at least two solutions with the same objective value), the configuration whiclegsed less
nodes to find this solution is considered better.

9.2.2 Online Performance

As an artificial measure for determining the efficiency of the algorithm an eplérformance
rating was introduced. The basic idea is to plot the best objective valudimes and then
calculate the sum of the area below:

nodesmaz
Z w(z)objval (z) (9.1)
=0

with objual(x) being the interpolated final objective value for the number of processed
nodesxz and nodesnq, the total number of processed nodes. By adding a monotonically
decreasing weight function, the online performance favors algorithméinidagood solutions
early in the computation, even if the final result is the same.

We chose a simple inverse exponential weight function,

w(z) = e Todesmar . (9.2)

The online performance rating is calculated by summingotipyal(z)w(z) for z =
1...nodesnq and scaling the result bw When comparing different configurations,
all results have to be processed over the same range. Wed#t,, ... to the maximum num-
ber of processed nodes for the last improvement in the consideredwatibns.

Figure 9.1 shows a plot of the objective value for two different conéiians on the left,
and the corresponding online performance weight function on the righileWoth config-
urations ultimately find almost equally good solutions, configuration 6 yieldsrksthations

58

mknapch9.txt/18 mknapch9.txt/18
217400

217200 |
217000 [~
216800
216600

075 |
216400 o7
216200 - 065 |
216000 | - 06 }

215800 : : : 0.55 : : :
0 3350 6700 10050 0 3350 6700 10050

processed nodes processed nodes

'
[1]
ks

y—

0.95 |
09
0.85
0.8 |

final objective value
w(X)

Figure 9.1: Final objective value and the corresponding online perfcenaveights for a test
instance.

earlier in the computation, so its online performance score is greater thasf twatfiguration
1 (the former configuration is actually using local branching, while the latteotig

9.3 Local Branching Configurations

As explained in the previous chapters, there are several key pararteteinfluence the per-
formance of local branching. In short, the user has to decide on thevfoigarameters:

e The value ofk for the Hamming distance constraint determines how many binary vari-
ables can flip inside a single local tree.

e Fixing some variables helps to reduce the problem complexity inside the treedibfin
the choserk value.

e Defining node limits on local trees avoids stagnation.

e By adapting the values df and the numbers of variables to be fixed at run-time, the
search can be narrowed or broadened at will.

The variables used for controlling these parameters are describedpitecBaln the test
results, the following abbreviated notation will be used:

® k = Kinitial, Kscaling> K{min|mas} d€fin€s the initiak value, the factok is multiplied with
when a tree is aborted, and the minimum (when the factor is less than 1) or maximum
(when the factor is greater than 1) value korWhen only one value is givek,remains
constant throughout the computation.

e Variable fixing: finitial, fincrement, fmae CONtAiNS the number of variables fixed when a
local tree using a new incumbent solution is started, and the increment arichumnax
values to be used when a tree is aborted and restarted with the same initiahsolutio

o Maximum nodess the maximum number of nodes for a local tree, no node limit is used
when this parameter is omitted.

59

e Maximum nodes without improvemetgclares the maximum number of nodes to be
created in a local tree without finding an improved feasible solution. Whendhis is
omitted, no such node limit is imposed on local trees.

All parameters depend on the size of the test instance, so no reasoefzlkt values can
be provided.

9.4 Short-Time Tests

The objective of the following tests is to accelerate the process of findiod gmiutions early
in the computation, while the final objective is not of paramount importance these test
runs, a time limit of 10 minutes per instance was used. Since there was no sinfjipuca-
tion that succeeded in all presented problem instances, the resultgarated by problem
size. For the initial solution a greedy heuristic generated two solutions, sheding relative
weights as in equation (7.5) as efficiency measure and the second usfirgtthE optimum.
The better solution (regarding the objective value) was used as initial solutio

9.4.1 Local Branching and Node Limits

The first set of test runs uses standard local branching and for s@t@mces node limits,
but no cut generation. We start with examining the moderately sized mknasthisince
collection from the OR Library [2].

Mknapcb7: 100 variables, 30 constraints

The following configurations have been tested for all 30 test instance&mdpch7:

(1) Standard Branch and Cut.
(2) k = 13, variable fixing:0.1, no node limit.

(3) k& = 13, variable fixing:0.1, 0.1, 0.8, maximum nodes per tre&0000.

For these test instances, the local tree search without a node limit wasostipe local
tree search with the same parameters, but with a limit on the total number of pedesal
tree. When comparing final objectives with the conditions described earlibis chapter,
configuration (2) wins against (1) with a clear advantagef 10 (the numbers do not add
up to 30 because of some ties.) For configuration (3), the direct comparedds only a slight
advantage of9 : 17 for local branching.

Introducing the online performance rating, (2) loses some of its advaritagstjll show-
ing a distinct advantage @ : 14 when compared to (1). Configuration (3) stayd@t 17,
not showing a significant benefit from local branching.

Comparing the number of local trees, (2) mostly used only a single local fitbeaw
average ofl .2 local trees, (3) created an average®fl trees per test instance.

Figure 9.2 shows two sample graphs from this test series.

60

mknapch7.txt/2 mknapch7.txt/3

20800 [. . . - 21500 ¢ -
- [1] =
20700 | 21400 | B -
g 20000 | o 21300 | /
€ 20500 | $ 21200
£ 20400 | ; 2 21100
2 20300 | 2 21000
ke) F Ee)
< 20200] < 20900
£ 20100 £ 20800
20000 20700
19900 - - - 20600 . - -
0 425 850 1275 0 2750 5500 8250
processed nodes processed nodes

Figure 9.2: Two sample graphs for mknapcb7 showing a benefit for lraalching on the
left, and an advantage for normal Branch and Cut on the right.

mknapch8.txt/15 mknapch8.txt/26
107300 . . \ - 147480

147460 | /
147440 |

107200

E E
< 107100 | =
> >
147420 ¥

£ 107000 2
‘g ‘g 147400
& 106900 =
kS © 147380
g 106800 g 147360

106700 | - 147340

106600 . . . 147320 . . .

0 8475 16950 25425 0 7300 14600 21900
processed nodes processed nodes

Figure 9.3: Two sample graphs for mknapcb8 showing the benefit of limods for configu-
ration (3) against the same configuration without node limit (2) and stari&tartch and Cut

).

Mknapch8: 250 variables, 30 constraints

For the larger test instances of mknapch8, imposing node limits proved to lechmioeficial.
A local branching setup similar to the previous configurations proved tajer®r to standard
Branch and Cut, especially when considering the online performance.raime following
configurations delivered the best results compared to standard Baadcbut:

(1) Standard Branch and Cut.
(2) k = 13, variable fixing:0.1, no node limit
(3) k& =13, variable fixing:0.1,0.1, 0.5, maximum nodes per treg000

Comparing the final objective values, both (2) and (3) showed an ady@anfds : 14
against (1). When comparing the online performance rating, (2) exhi&igdht disadvantage
of 15 : 17, while (3) apparently benefited from the node limit and won clearlgby11.

Figure 9.3 again shows two sample plots comparing the three parameter settings.

61

Instance | n | d | best| final objective| online performance Wilcoxon

mknapcb7| 100 | 30 | (2) 27: 10 22: 14 < 0.01%
mknapcb8| 250 | 30 | (3) 18: 14 21:11 15.4%
mknapcb9| 500 | 30 | (3) 19:11 17:13 2.1%

Table 9.1: Summary table for the tested mknapcbh problems. Each row neisr88aifferent
instances with the given dimensions. The ratios given for final objectigevand online
performance compare the best local branching configuration to sthBdamch and Cut.

Mknapch9: 500 variables, 30 constraints

The largest class of test instances from the OR Library, mknapcbiiechsimilar behavior
regarding local branching. Compared to standard branch and cutptviigarations exhibited
similar performance.

(1) Standard Branch and Cut.
(2) k=10, variable fixing:0.1,0.1, 0.8, maximum nodes per treg000

(3) k& = 13, variable fixing:0.1,0.1, 0.8, maximum nodes per tre@000

Regarding the final objective values, configuration (2) achieves aghti® : 12 against
standard Branch and Cut, reducing the node limit leads to a further minor ierpent of
19 : 11. The online performance ratings are a bit less favorable, showirig 43 advantage
for both local branching configurations. Configuration (2) createdwamage of 12.2 local
trees per computation, while (3) used an average of 67.8 local trees.

Table 9.1 summarizes the results and also contains the resuWidé@xon rank sum test
It represents the error probability for the assumption that the first me#rdorms on average
better than the second. It is generated by creating two columns, onecfoiceafiguration,
and setting a 1 where a configuration achieved the best result for @ tgistinstance, and 0
otherwise. We do not compare the final objective values, becausemantwo configura-
tions achieved the same value, we prefer the configuration that reastiddfiewer processed
nodes.

A Wilcoxon score close to 0 means that the the local branching configuiatieny likely
to be better than the standard Branch and Cut algorithm, a value close to WS thatino
significant difference exists. For mknapcb7 and mknapcb9 the Wilcosbilearly indicates
that the local branching results are better than the standard BranchuanesGlts, while the
result for mknapch8 (0.15) is less clear.

The detailed test results for all test instances are given in tables 9.2n€.9,4

MK-gk11: 2500 variables, 100 constraints

The huge eleventh test instance from the problems taken from the HeariarGer Enter-
prise Science [14] shows clear advantages for most local brancbinfiggarations. The tested
configurations are:

(1) Standard Branch and Cut.

62

MK-gk11/0
95220

95210 |
95200 |
95190 |
95180 |
95170 |
95160 | &
95150 |/

95140

NN

final objective value

75 150 225
processed nodes

Figure 9.4: Clear advantages for local branching in test instance MH-gk

(2) k = 5, variable fixing:0.05, 0.2, 0.5, maximum nodes per tre@50
(3) k£ = 20, no variable fixing, no node limit.

(4) k = 10, no variable fixing, maximum number of nodd$00

All local branching configurations both showed faster convergendéatter final objec-
tive values. The plot of the objective value is given in figure 9.4.

9.4.2 Cut Generation

The idea of cut generation is to find valid inequalities that are violated by tiertu_P opti-
mum as described in section 2.3, thus decreasing the LP optimum and ingrésesahances
to prune a subproblem. The size of the search tree can be reducectaigtyfat the expense
of computationally expensive cut generation.

In our test results, cut generation did not lead to a significant advafaalpeal branching
in comparison to the standard Branch and Cut algorithm, instead it compettisagelvantage
of local branching. We used COIN/CGL's generic cut generatoranth&t efficient proved to
be the knapsack cover cut generator. Others, like the Gomory cutagenelid not improve
the results but slowed down the computation.

Mknapcb7: 100 variables, 30 constraints

The following parameter configurations have been tested:
(1) Standard Branch and Cut.

(2) k = 13, variable fixing:0.1, no node limit.

(3) k& = 13, variable fixing:0.1,0.1, 0.8, maximum nodes per tre¢000.

Without cut generation, configuration (2) beat standard Branch am@y27 : 10. With
cut generation, the standard algorithm reaches a tie resii& 018 both against (2) and (3).
Regarding the online performance rating, local branching gains a sligahtage ofi8 : 16
for configuration (2) and9 : 15 for (3).

63

final objective value online performance number of local trees
instance| (1)) ®3))) ©) OB ®3)
0 21946| 21946| 21946| 13719.11| 13719.11| 13719.11| 0 | 2 29
1 21716| 21716 21716| 13700.76| 13710.87| 13699.94| 0 | 1 25
2 20754 | 20754 | 20754 | 13096.68| 13102.44| 13102.44| 0 | 1 27
3 21464 | 21464 | 21464 | 13532.09| 13511.85| 13524.59|| 0 | 1 26
4 21844 | 21844 | 21844 | 13797.81| 13809.01| 13809.01| 0 | 1 24
5 22176| 22176| 22176| 14005.53| 14005.90| 14006.11| 0 | 1 26
6 21799 21799| 21799| 13718.36| 13723.17| 13723.17| 0 | 1 26
7 21397| 21327| 21327 13493.88| 13472.05| 13473.10| 0 | 1 25
8 22471 | 22475| 22482 14187.96| 14201.18| 14210.38| 0 | 1 24
9 20983 | 20983 | 20983 13230.11| 13230.08| 13223.38| 0 | 1 27
10 40691 | 40691 | 40767 || 25722.46| 25723.66| 25742.90| 0 | 1 25
11 41308 | 41308 | 41304 | 26108.12| 26108.20| 26106.94| 0 | 1 25
12 41630| 41630| 41630 | 26304.63| 26304.63| 26304.63| 0 | 1 25
13 41041| 41041 | 41041 | 25937.69| 25937.69| 25937.69| 0 | 1 27
14 40889 | 40889 | 40889 | 25842.11| 25842.93| 25838.43| 0 | 1 24
15 41028| 41058 | 41022 | 25934.05| 25921.21| 25915.76| 0 | 1 25
16 41062 | 41038 | 41038 | 25957.11| 25936.80| 25935.54| 0 | 1 25
17 42719| 42719| 42719 | 26976.12| 26979.48| 26979.01| 0 | 1 25
18 42230 42230 42230 | 42230.00| 42230.00| 42230.00| 0 | 2 49
19 41700| 41700| 41700 | 41700.00| 41700.00| 41700.00/ 0 | 1 26
20 57494 | 57494 | 57494 | 36319.24| 36320.82| 36322.32| 0 | 1 28
21 60027 | 60027 | 60026| 37944.30| 37943.28| 37943.50| 0 | 1 26
22 58052 | 58015| 58052 | 36677.22| 36670.90| 36688.60| 0 | 1 26
23 60776| 60776| 60776| 38415.55| 38415.96| 38415.96| 0 | 2 34
24 58884 | 58884 | 58884 | 37214.71| 37214.71| 37214.71| 0 | 2 26
25 60011| 60011| 60011 37919.29| 37910.45| 37910.45| 0 | 2 30
26 58132| 58132| 58132 36737.55| 36737.63| 36741.17| 0 | 1 27
27 59064 | 59064 | 59064 | 37325.45| 37333.21| 37333.21|| 0 | 2 29
28 58975| 58975 | 58975| 37277.47| 37278.91| 37276.15| 0 | 1 25
29 60603 | 60603 | 60603 | 38295.77| 38299.39| 38299.39| 0 | 1 27

Table 9.2: All results for mknapcb7 using a single initial solution< 100, d = 30.)

64

final objective value online performance number of local trees
instance| (1)) ©) 1)) ©) OB ®3)
0 56824 | 56824 | 56824 || 35914.54| 35910.64| 35910.64| 0 | 1 25
1 58310 | 58332 | 58364 || 36842.34| 36860.57| 36878.71| 0 | 1 23
2 56498 | 56508 | 56493 || 35706.59| 35706.18| 35701.40| 0 | 1 24
3 56930 | 56930 | 56930 || 35989.96| 35989.96| 35989.96/ 0 | 1 24
4 56629 | 56601 | 56629 || 35783.77| 35748.73| 35773.20| 0 | 1 23
5 57146 | 57146 | 57146 || 35983.42| 35983.42| 35983.42|| 0 | 1 24
6 56206 | 56180 | 56219 || 35513.51| 35510.10| 35524.30| 0 | 1 22
7 56392 | 56413 | 56413 || 35636.01| 35650.11| 35644.80| 0 | 1 23
8 57429 | 57413 | 57429 | 36271.66| 36272.94| 36278.42| 0 | 1 22
9 56447 | 56447 | 56447 || 35659.16| 35658.13| 35658.13| 0 | 1 23
10 107746| 107746| 107732| 68108.02| 68106.39| 68088.89| 0 | 1 23
11 108336| 108335| 108335| 68469.79| 68459.16| 68469.89| 0 | 1 23
12 106442 | 106375| 106415| 67257.55| 67244.95| 67256.61| 0 | 1 22
13 106780| 106766| 106786| 67498.51| 67490.14| 67499.44|| 0 | 1 22
14 107349| 107414| 107414| 67856.07| 67885.23| 67880.51|| 0 | 1 22
15 107177| 107246| 107246| 67729.09| 67731.84| 67736.79| 0 | 1 22
16 106294 | 106241| 106297| 67167.78| 67144.31| 67181.55]| 0 | 1 23
17 103998| 103998| 103977| 65727.95| 65727.41| 65724.06] 0 | 1 24
18 106736| 106751| 106758| 67452.37| 67460.47| 67468.22| 0 | 1 22
19 105675| 105716| 105681| 66792.13| 66814.53| 66798.56| 0 | 1 21
20 150097| 150081| 150097| 94866.09| 94863.58| 94866.84| 0 | 1 25
21 149907 | 149881 | 149854 | 94742.37| 94729.76| 94706.55| 0 | 1 24
22 152971| 152973| 152960| 96697.38| 96692.10| 96687.17|| 0 | 1 27
23 153177| 153177| 153190| 96824.54| 96825.11| 96824.86| 0 | 1 25
24 150287| 150287| 150287| 94938.43| 94942.16| 94947.21| 0 | 1 26
25 148520| 148544| 148544| 93871.33| 93891.89| 93889.45| 0 | 1 25
26 147454| 147471| 147471| 93209.11| 93206.87| 93218.07| 0 | 1 26
27 152817| 152912| 152877| 96585.86| 96656.17| 96635.54|| 0 | 1 26
28 149570| 149570| 149554 | 94533.41| 94541.43| 94538.37|| 0 | 1 24
29 149586| 149595| 149586| 94553.56| 94554.05| 94554.53|| 0 | 1 24

Table 9.3: All results for mknapch8 using a initial solutien=£ 250, d = 30.)

65

final objective value

online performance

number of local trees

instance| (1) (2) ©) (1) (2) ®3) 1) 2 ®3)
0 115850| 115841| 115809| 73184.48 | 73215.35 | 7319249 || 0 | 12 70
1 114623 | 114667 | 114701 | 72420.52 | 72456.21 | 72473.47 | 0 | 12 69
2 116541 116661| 116607 | 73647.29 | 73729.35 | 73693.17 | 0 | 14 73
3 115096| 115128| 115152| 72753.14 | 72760.71 | 72784.41 || 0 | 11 71
4 116266| 116316| 116385| 73495.78 | 73519.30 | 73553.33 | 0 | 14 66
5 115563| 115584| 115600| 73032.02 | 73048.46 | 73065.10 || O | 12 70
6 113928| 113982| 113928 72006.14 | 72038.81 | 72006.60 || O | 11 70
7 114190| 114137| 114190| 72161.72 | 72126.01 | 7217082 | O | 14 78
8 115419 115133| 115419 72943.75 | 72771.30 | 72822.16 | 0 | 12 64
9 116988| 116891| 116929| 73908.53 | 73881.07 | 73888.93 || 0 | 12 67
10 217925| 217995| 217995 137747.72| 137797.39| 137801.07| 0 | 12 75
11 214517| 214626| 214626| 135580.86| 135609.00 135589.10| 0 | 12 65
12 215835| 215844 | 215844 | 136399.86| 136411.96| 136372.69| 0 | 12 58
13 217827| 217827 | 217805| 137664.20| 137671.45 137665.81|| 0 | 11 72
14 215559 | 215515| 215535| 136263.63| 136212.21| 136221.81| 0 | 10 62
15 215697 | 215722 | 215717 136337.13| 136366.40, 136351.87|| 0 | 11 60
16 215772| 215780| 215780| 136388.68| 136398.82| 136381.53|| 0 | 12 59
17 216419| 216366| 216341| 136784.92| 136763.70, 136744.46|| 0 | 11 66
18 217290| 217196| 217290 137312.79| 137278.83 137348.63|| 0 | 11 73
19 214624| 214592| 214633 | 135652.21| 135632.98| 135649.19| 0 | 11 65
20 301643| 301643| 301627 | 190667.63| 190656.90| 190667.01| 0 | 12 76
21 299957| 299987 | 299945 189579.82| 189618.86| 189577.88] 0 | 14 62
22 304985| 304985| 304994 | 192790.68| 192790.07| 192792.68| 0 | 14 76
23 301854| 301891| 301955| 190787.31| 190809.87| 190803.87| 0 | 12 58
24 304411| 304413| 304350 192420.91| 192423.62| 192368.46| 0 | 12 68
25 296891 | 296891 | 296959| 187672.97| 187664.53| 187705.63|| 0 | 13 74
26 303261| 303262| 303270 191663.09| 191687.73| 191671.50| 0 | 14 67
27 306890| 306937 | 306892 | 193995.36| 193976.43| 193981.49| 0 | 12 70
28 303111| 303088| 303083 | 191592.30 191588.20| 191565.66| O | 15 65
29 300479| 300499| 300439| 189930.56| 189896.47| 189905.03| 0 | 11 64

Table 9.4: All results for mknapch9 using a single initial solution< 500, d = 30.)

66

9.4.3 Multiple Initial Solutions

Creating multiple local trees in the beginning of the computation can help to imprevstial
performance of the local branching algorithm. The processor time is distdlmver several
local trees, preferring those with better nodes (according to the treghssteategy, i.e. those
with better bounds.)

As described in chapter 8, three different initial solutions were used:

e The feasible solution generated heuristically from the first LP result.

e A solution returned by a greedy heuristic using the relative weight adiaireaty mea-
sure.

e A solution returned by the same heuristic including the weight distribution affian e
ciency measure.

Compared to local branching with a single initial solution the results improvesiden
ably. For the mknapch7 test instances, the three initial local trees conttrieqtelly to the
best found solution, that is, the initial trees were of roughly the same siweh& mknapchb8
and mknapch9 instances, the tree based on the first LP result was teossaperior to the
trees based on efficiency measures, meaning that the latter two treesteareoonpleted af-
ter a few nodes. Apparently the greedy heuristics with efficiency valeekad better for the
smaller mknapch7 instances than for the more complex mknapcb8 and mknagteh@és.
Mknapcb7: 100 variables, 30 constraints

The following configurations have been tested:
(1) Standard Branch and Cut.
(2) k = 13, variable fixing:0.1, no node limit.

(3) k& = 13, variable fixing:0.1, 0.1, 0.8, maximum nodes per tre&0000.

Regarding the final objective values, both local branching configurasbowed a4 :
10 advantage to standard Branch and Cut. While this result is similar to whatd@athing
with a single initial solution achieved, the pseudo-concurrent tree exglorahows more
benefits when looking at the online performance rating. Both local brag@wonfigurations
achieved a clear advantage2sf: 9 compared to local branching, which is considerably better
than the results using a single initial solution.

Mknapch8: 250 variables, 30 constraints

As in section 9.4.1, the following configurations have been tested for mkBapcb
(1) Standard Branch and Cut.
(2) k = 13, variable fixing:0.1, no node limit

(3) k£ = 13, variable fixing:0.1,0.1, 0.5, maximum nodes per tre8000

67

Instance | n | d | best| final objective| online performance Wilcoxon

mknapcb7| 100 | 30 | (2) 24 :10 25:9 0.02%
mknapcb8| 250 | 30 | (2) 22:8 24:6 0.02%
mknapchb9| 500 | 30 | (3) 22:8 25:5 0.02%

Table 9.5: Summary table for the tests using multiple initial solutions, including a Wifcox
probability score for the assumption that the final objective values of atdi&tanch and Cut
are better than the given local branching configuration.

Comparing the final objective values, configuration (2) showed annéalya of22 : 8
against standard Branch and Cut, (3) had an advantagé ob. Regarding online perfor-
mance, (2) showed a clear advantage#f. 6 and (3) an advantage @b : 4 compared to
standard Branch and Cut.

Mknapch9: 500 variables, 30 constraints

The following configurations were tested:

(1) Standard Branch and Cut.
(2) k =10, variable fixing:0.1,0.1, 0.8, maximum nodes per treg000.

(3) k& = 13, variable fixing:0.1, 0.1, 0.8, maximum nodes per tre¢000.

Both (2) and (3) showed clearly superior results to (1), with (2) showiglight advantage
of 17 : 13 and (3) beating standard Branch and CuBy 8. The online performance ratings
clearly favor the local branching configurations: (2) beats (1Rby: 6, (3) beats (1) by
25 : 5. Compared with the same configuration without multiple initial solutions, (2) exldibite
an advantage of9 : 11 for the final objective value an@l7 : 3 for the online performance
rating.

Table 9.5 summarizes the results for these test runs. The detailed resultistést in-
stances of mknapcb7, mknapch8 and mknapch9 are given in tables 9.6n8.9.8. Bold
values indicate the best result for a single instance. Note that it is possibieofe than one
configuration to achieve the “best” result.

9.5 Long Runs

The test runs described in the last section are useful for testing thetsheheuristical behav-
ior a large variety of local branching configurations. Testing the instaoicine OR library [2]

with longer running times (up to one hour) did not reveal significantly diffiebehavior. How-
ever, the very large eleventh instance of the second set of test insfadte/ith 2500 variables
and 100 constraints was an interesting target for examining long-ruwibehhe huge core
matrix dramatically slows down the LP solver, affecting the significance ofabelts of a 10
minute test run. Increasing the CPU time to 2 hours showed interesting résciétidbranching
extended its lead (with unmodified parameters), standard branch andiswiearly inferior

to all tested configurations.

Figure 9.5 shows the final objective plots for the following configurations:

68

final objective value online performance number of local trees
instance| (1)) ®3))) ©) OB ®3)
0 21946| 21946| 21946| 13719.11| 13719.11| 13719.11| O | 3 27
1 21716| 21716 21716| 13698.34| 13720.04| 13720.04| 0 | 3 28
2 20754 | 20754 | 20754 | 13096.68| 13114.77| 13114.77| O | 3 31
3 21464 | 21464 | 21464 | 13517.23| 13566.96| 13566.96|| O | 3 25
4 21844 | 21814 | 21814 13803.20| 13792.24| 13792.50| 0 | 3 20
5 22176| 22176| 22176| 14005.53| 14018.62| 14018.62|| 0 | 3 21
6 21799| 21799| 21799| 13718.36| 13758.35| 13758.35| 0 | 3 24
7 21397| 21327| 21397 13493.88| 13483.27| 13503.57| 0 | 3 24
8 22471 | 22493 | 22525| 14187.96| 14218.78| 14229.36| 0 | 3 16
9 20983 | 20983 | 20983 13223.38| 13262.97| 13262.97|| 0 | 3 29
10 40691 | 40767 | 40767 || 25722.66| 25737.27| 25745.08/ 0 | 3 19
11 41308 | 41308 | 41304 | 26108.12| 26110.50| 26109.40| 0 | 3 23
12 41630| 41630| 41630 | 26304.63| 26313.70| 26313.70| 0 | 3 24
13 41041| 41041 | 41041 | 25909.87| 25925.38| 25925.38| 0 | 3 30
14 40889 | 40889 | 40872 | 25830.92| 25842.90| 25838.46| 0 | 3 23
15 41028| 41058 | 41058 | 25934.27| 25937.79| 25931.24| 0 | 3 23
16 41062 | 41038| 41062 | 25957.11| 25942.97| 25956.31| 0 | 3 37
17 42719| 42719| 42719 | 26972.46| 27001.34| 27001.34| 0 | 3 21
18 42230 42230| 42230 | 42230.00| 42230.00| 42230.00{ 0 | 4 30
19 41700| 41700| 41700 | 41700.00| 41700.00| 41700.00/ O | 3 22
20 57494 | 57494 | 57494 | 36319.24| 36343.09| 36343.09| 0 | 3 29
21 60027 | 60026 | 60026 | 37944.30| 37943.18| 37943.18| 0 | 3 48
22 58052 | 58052 | 58025| 36682.74| 36681.73| 36671.01|f O | 3 19
23 60776| 60776| 60776 | 38415.55| 38418.18| 38418.18| 0 | 4 25
24 58884 | 58884 | 58884 | 37214.71| 37214.71| 37214.71| 0 | 4 28
25 60011| 60011| 60011 | 37919.29| 37931.77| 37931.77| O | 4 27
26 58132| 58132| 58132 36737.55| 36748.63| 36748.63| 0 | 3 30
27 59064 | 59064 | 59064 | 37325.45| 37336.68| 37336.68|| 0 | 3 26
28 58975| 58975| 58975| 37277.47| 37280.14| 37279.40| 0 | 3 20
29 60603 | 60603| 60603 | 38295.77| 38307.77| 38307.77|| O | 3 24

Table 9.6: All results for mknapcb7 using multiple initial solutions=£ 100, d = 30.)

69

final objective value online performance number of local trees
instance| (1)) ©) 1)) ©) OB ©)
0 56824 | 56824 | 56824 || 35914.54| 35912.01| 35912.54| 0 | 3 16
1 58310 | 58520 | 58520 || 36842.34| 36990.73| 36990.73|| 0 | 3 17
2 56498 | 56553 | 56493 || 35708.82| 35719.57| 35713.55|| 0 | 3 17
3 56930 | 56930 | 56930 || 35989.96| 35990.17| 35990.17|| 0 | 3 17
4 56629 | 56601 | 56629 || 35783.77| 35782.33| 35796.56]| 0 | 3 15
5 57146 | 57146 | 57146 || 35983.42| 36058.77| 36058.77|| 0 | 3 16
6 56206 | 56253 | 56253 || 35513.51| 35543.21| 35553.50| 0 | 3 15
7 56392 | 56457 | 56448 || 35636.01| 35672.34| 35674.56/ 0 | 3 16
8 57429 | 57429 | 57433 || 36271.66| 36299.70| 36293.59| 0 | 3 14
9 56447 | 56447 | 56447 || 35659.16| 35683.55| 35683.55|| 0 | 3 16
10 107746| 107746| 107746|| 68108.02| 68110.74| 68110.74| 0 | 3 17
11 108336| 108335| 108352| 68469.79| 68482.54| 68489.44| 0 | 3 16
12 106442| 106440| 106415| 67257.55| 67280.00| 67265.87|| 0 | 3 15
13 106780| 106790| 106806| 67498.51| 67507.29| 67516.62]| 0 | 3 16
14 107349| 107374| 107414| 67856.07| 67874.43| 67893.45| 0 | 3 14
15 107177| 107246| 107246| 67729.09| 67789.77| 67789.77| 0 | 3 16
16 106294 | 106283| 106305| 67167.78| 67181.78| 67189.00 0 | 3 14
17 103998| 103998| 103995| 65727.95| 65739.76| 65737.10] 0 | 3 15
18 106736| 106758| 106800| 67452.37| 67480.32| 67501.87|| 0 | 3 15
19 105675| 105742| 105723| 66792.13| 66838.93| 66827.20] 0 | 3 15
20 150097| 150073| 150096| 94866.09| 94865.84| 94866.62|| 0 | 3 17
21 149907 | 149862 | 149907 || 94742.37| 94720.42| 94748.96| 0 | 3 17
22 152971| 152973| 152971| 96697.38| 96685.57| 96690.15| 0 | 3 18
23 153177| 153177| 153190| 96824.54| 96830.61| 96838.22|| 0 | 3 18
24 150287| 150287| 150287| 94938.43| 95000.95| 95000.95] 0 | 3 19
25 148520| 148544| 148544 | 93871.33| 93901.04| 93901.04] 0 | 3 18
26 147454| 147471| 147454| 93209.11| 93216.50| 93204.43| 0 | 3 15
27 152817| 152877| 152877| 96585.86| 96629.50| 96623.47|| 0 | 3 17
28 149570| 149568| 149565| 94546.38| 94545.42| 94542.68|| 0 | 3 16
29 149586| 149595| 149595| 94553.56| 94565.92| 94565.92| 0 | 3 18

Table 9.7: All results for mknapcb8 using multiple initial solutions=£ 250, d = 30.)

70

final objective value

online performance

number of local trees

instance| (1) (2) ©) 1) (2) ®3) 1)@ ®3)
0 115850| 115824| 115838 73176.36 | 73214.09 | 7322744 || O | 8 48
1 114623 | 114699| 114701 | 72420.13 | 72488.98 | 72497.70 | O | 8 50
2 116541 | 116661| 116661| 73647.29 | 73744.23 | 7373749 || O | 7 42
3 115096| 115180| 115206| 72752.50 | 72799.13 | 72816.38 || O | 7 43
4 116266| 116321| 116385| 73495.78 | 73530.94 | 73565.28 || O | 8 39
5 115563| 115604| 115741 73026.80 | 73060.22 | 73095.36 | O | 7 37
6 113928 113979 113928| 72006.14 | 72044.76 | 72019.41 | O | 8 42
7 114190| 114168| 114174| 72161.72 | 72166.85 | 72163.73 || O | 8 42
8 115419 115198 115419| 72943.75 | 72817.93 | 72918.72 | 0 | 8 41
9 116988| 116952| 116886| 73908.53 | 73921.92 | 73891.15 || O | 8 39
10 217925| 217983| 218042 | 137742.72| 137792.81| 137831.38 0 | 8 49
11 214517| 214626| 214626| 135580.86| 135671.85 135641.70 O | 9 44
12 215835| 215885| 215854 | 136383.17| 136454.78| 136439.97|| 0 | 8 a7
13 217827| 217769| 217827| 137664.20| 137654.34 137697.27| O | 8 49
14 215559 | 215557 | 215548 136263.27| 136258.66| 136252.59|| O | 8 48
15 215697 | 215726| 215718 136337.13| 136370.18| 136364.35| O | 8 a7
16 215772| 215791 | 215792| 136386.68| 136407.75 136398.33|| 0 | 9 37
17 216419| 216403| 216419| 136777.53| 136788.67| 136808.10| O | 8 49
18 217290| 217290| 217312| 137312.79| 137350.16| 137340.43|| O | 8 39
19 214624| 214581| 214633| 135652.21| 135641.87| 135661.50| O | 8 42
20 301643| 301627 | 301583 190667.63| 190668.82| 190643.19 O | 9 49
21 299957| 299987 | 299984 | 189558.15| 189630.07| 189583.03| 0 | 9 44
22 304985| 305002| 305002 | 192790.68| 192804.37| 192803.92| 0 | 9 51
23 301854| 302001| 302004 | 190787.31| 190862.57| 190896.06| O | 8 44
24 304411| 304380| 304398 | 192419.64| 192406.11| 192397.45| O | 9 41
25 296891 | 296892 | 296986| 187672.97| 187673.13| 187727.07| O | 8 46
26 303261| 303240| 303285| 191663.09| 191689.34| 191710.94| O | 8 44
27 306890| 306911| 306910 193995.36| 194005.21| 194001.03| O | 9 41
28 303111| 303092| 303090 191583.54| 191600.27| 191594.76| O | 9 45
29 300479| 300444 | 300488| 189930.56| 189920.25| 189945.99| O | 8 36

Table 9.8: All results for mknapch9 using multiple initial solutions=£ 500, d = 30.)

71

MK-gk11/0
95230 ,
95220 |
95210 }.¢
95200 §
95190 } -
95180 | -
95170 | -
95160 | -
95150 | -

95140 : : . :
0 757 1514 2271 3028

processed nodes

SN

final objective value

Figure 9.5: The final objective value for MK-gk11, using a time limit of 2 four

(1) Standard Branch and Cut.

(2) k = 5, variable fixing:0.05,0.2, 0.5, maximum nodes per tree: 250
(3) k£ = 5, variable fixing:0.05, 0.2, 0.5, maximum nodes per tree: 500
(4) k = 10, variable fixing:0.05, 0.2, 0.5, maximum nodes per tree: 500

(5) k = 20, variable fixing:0.05, 0.2, 0.5, maximum nodes per tree: 1000

72

Chapter 10

Summary and Outlook

This thesis described the implementation of a generic local branching fra&ased on
the open source COIN/BCP Branch, Cut and Price library. Localdhiag is a local search
heuristic that is well suited for integration in existing integer programming salviére frame-
work provides the possibility to augment COIN/BCP programs with local Wviagcsearch
capabilities. Several extensions to the standard local branching algavithenimplemented:
pseudo-concurrent exploration of multiple local trees, aborting locasirend search space
tightening through variable fixing.

An encapsulated metaheuristic class offers means for a clean implementatmealof
branching metaheuristics without touching COIN/BCP’s internals. Rich stalistata about
the current state of the local branching algorithm is provided by the frameviethods for
creating new trees, terminating existing trees or modifying the local branskengh param-
eters are also provided.

As a sample application, a Branch and Cut solver for the multidimensionas&okjprob-
lem was used to demonstrate the application of the local branching framanik research
the effects of local branching.

The results for the multidimensional knapsack problem were promising: tboaathing
showed better convergence, especially in the early stages of the compugatibshowed
significant benefits for large, complex test instances. By guiding thecBrand Cut solver
through neighborhood search and fixing of variables, local bragchilows to find better
results earlier in the computation, which also leads to a reduction of the sesgctomplexity
in the later stages. However, the benefit for relatively small test instavecetess clear.

The local branching framework was designed in a way that facilitates edimgetbcal
branching as a local search metaheuristic in another, higher-levehs#gorithm. This is the
main area where future work could be expected, to use the heuristicakctérstics of local
branching to improve other search algorithms not based on Branch andnGyeneral, any
algorithm that involves some kind of local neighborhood search lendstibstbié integration of
local branching. For example, an evolutionary algorithm could use thesfrerk to generate
new, better solutions based on especially promising candidates.

73

Appendix A

COIN/BCP patches

The local branching framework requires some small patches to the COMN#&8Grce. The
patches add the following functionality to COIN/BCP:

e Support for user-defined messages between LP and TM modulesdraadued.

e A special slot for the normal tree root node is provided in the candidegaequThis
is necessary because the normal root node must be used wheneweracal tree is
started.

e There is no way for the COIN/BCP user classes to catch all pruned nBdesed nodes
are now added to a list that is available to the framework’s tree manager.

e When a local tree is aborted, all nodes must be removed from the canlistlagince
the nodes are potentially scattered over the candidate list, and the candidasa lis
contain millions of nodes, explicitly deleting all nodes may be ineffective. &usta
list of local tree identification humbers is kept and nodes from these tregsraned
immediately instead of being returned to the tree manager.

All filenames in this section are relative to the COIN/BCP root directory.

A.1 Adding User-Defined Messages

In order to support user-defined messages between LP and TM moddsave to add
an unique message tag for user messages and stubs for packing auiingpoutines.
We start by adding two new message tags to the B@RBsagdag enumeration irin-
clude/BCRPmessagéag.hpp(written in bold face):

()

/** The message contains the description of a variable. */

BCP_Msg_VarDescription, Il VG | VP > LP

/** No more (improving) variables could be found. (Message body is
empty.) */

BCP_Msg_NoMoreVars, Il VG | VP > LP

BCP _Msg_UserMessageTolLp ,
BCP _Msg_UserMessageToTm

74

Then we add virtual method declarations of unpaskrmessage() to BCBn_user and
BCP.p_user by adding the following lines to the corresponding class definitiong-in
clude/BCPIp_user.hppandinclude/BCPtm_user.hpp

virtual void
unpack_user_message(BCP_Ip_prob& prob, BCP_buffer& buf);

We also provide a default implementation that throws an exception when called in
LP/BCPIp_user.cppand TM/BCP.tm_user.cpp

void

BCP_tm_user::unpack_user_message(BCP_tm_prob& prob, BCP_buffer& buf) {
throw BCP_fatal_error(

"BCP_tm_user::unpack_user_message() invoked but not overridden!\n");

}

The implementation for BCHp_user is identical except for the class name. The last step
to be taken is to call these handlers from the tree manager and LP moduleggmpseseess-
ing functions. For the tree manager, we add the following block to the switténstat of
BCP_tm_prob::processmessage(in TM/BCPtm_msgproc.cpp

case BCP_Msg_UserMessageToTm:
user—>unpack_user_message(*this, msg_buf);
msg_buf.clear();
break ;

Similarly, we add the following code to the switch statement of
BCP_Ip_prob::processmessage(in LP/BCP.Ip_msgproc.cpp

case BCP_Msg_UserMessageTolLp:
user—>unpack_user_message(*this, msg_buf);
msg_buf.clear();
break;

A.2 Extending the Candidate List

When local trees can be spawned before the previous tree terminatethrthal root node
(the sibling of the local tree root) has to be extracted from the candidate listedsiest and
fastest way to achieve this goal is to store the normal root node in an exiadle and modify
the methods to insert and retrieve items.

A.2.1 include/BCPtm_node.hpp

We start with modifyingnclude/BCRtm_node.hpp We have to add two member variables to
BCP_nodequeuewhich is used to store the candidate list.

/** root node of the “normal”’ tree, to be used when all local trees

are processed or a new tree should be opened */
BCP_tm_node* normal_root_node;

75

/** use normal_root_node instead of a candidate from the queue the
next time top() is called */
bool use_normal_root_node;

Then we add a new parameter to BG&dequeue::insert that permits to insert a normal
root node without using the extra slot. This is used when the normal rat# isothe last
remaining node and should be returned to the candidate list. By setting # dafae, existing
calls to this function do not need to be madified.

/** Insert a new node into the queue. */
void insert(BCP_tm_node* node, bool replace_normal_root_node = true);

We also slightly modify the inline functionsmpty()andtop() to account for the normal
root variable.

/** Return whether the queue is empty or not */
inline bool empty() const { return Inormal_root_node && _pg.size() == 1; }

/** Return the top member of the queue */

BCP_tm_node* top() const {
return ((normal_root_node && use_normal_root_node) ||
(normal_root_node && _pq.size() == 1))
? normal_root_node : _pq[1];

}

The last modification correctly initializes the new variables in the constructor.

BCP_node_queue(BCP_tm_prob& p): _p(q), -pq(),
normal_root_node(0), use_normal_root_node(false) { _pqg.push_back(NULL); }

A.2.2 include/BCPtm _node.cpp

We also have to change the implementations of itteert and andpop methods of the
BCP.nodequeue class. Since we have to access user data objects, we have te thelud
framework’s user data header. By using a compile-time flag for applicatiansisle the local
branching framework, the COIN source remains usable for other apptisa

#ifdef COIN_LB
#include "LB_user_data.hpp”
#endif

Thepop() method removes a node from the head of the priority queue. When the igueue
has only one element left, the normal root node is re-inserted to the list.ribtineal root node
has been used (by settingenormalroot_nodeto true), it is deleted when pop() is called.

void
BCP_node_queue::pop()
{
if (use_normal_root_node && normal_root_node) {
normal_root_node = 0;
return ;

76

}
if (normal_root_node && _pg.size() <= 2) {
/I reinsert normal_root_node when the last element is popped
insert(normal_root_node, false);
normal_root_node = 0;
use_normal_root_node = false;

In the insert() method, we have to detect normal root nodes and storértieerextra vari-
able instead of the normal candidate list. By using the COB\flag again, the LBuserdata
cast does not conflict with other COIN/BCP applications.

void
BCP_node_queue::insert(BCP_tm_node* node, bool replace_normal_root_node)
{
#ifdef COIN_LB
if (node—>user_data() && replace_normal_root_node) {
const LB_user_data* ud =
dynamic _cast <const LB_user_data*> (node—>user_data());
if (ud && LB_user_data:UD_NormalRoot == ud—>type) {
normal_root_node = node;
return ;
}
}
#endif
(-

A.2.3 TM/BCP_tm functions.cpp

Another small modification is necessary in the static helper fun&@R tm_start onenode()
When the normal root node should be returned, it is returned withothteluchecking (e.g.
if it should be pruned). This way the tree manager can recognize wherthel root node
is pruned without further modifications (in this case, the node would besgrbg a LP pro-
cess). Also, when a node was pruned because of the global upped,kiois added to the
prunednodes list that is described in the next section.

(-
p.ub() * (1 — p.param(BCP_tm_par::TerminationGap_Relative)))
process_this = false;

if (p.candidates .use_normal _root _node) {
process _this = true;
p.candidates .use _normal _root _node = O;

}

if (process_this)
break;

if (desc—>indexed_pricing.get_status() == BCP_PriceNothing ||
p.current_phase_colgen == BCP_DoNotGenerateColumns_Fathom) {

next_node—>status = BCP_PrunedNode_OverUB;

p.pruned _nodes .push _back (next _node);

77

A.3 Counting Pruned Nodes

We start by adding a new public member to B@P_tm_prob class. It is used to store nodes
that have been pruned. Since even pruned nodes are never detetechémory, the tree
manager can access this list without further restrictions. The tree marmgalso empty the
list when the nodes have been processed.

/** Pruned nodes are stored in this list - may be cleared when no longer needed */
BCP_vec<BCP_tm_node*> pruned_nodes;

There are two more places where nodes may be pruned inside the treeemanag

A.3.1 TM/BCP_tm_msgnoderec.cpp

Among other things, the method BGm_unpackbranchinginfo() prunes child nodes gen-
erated from a branching object when necessary. We add those twodes prunednodes()
list.

(--)

case BCP_FathomChild:
child—>status = BCP_PrunedNode_Discarded,;
p.pruned _nodes .push _back (child);
break;

A.3.2 TM/BCP_tm_msgproc.cpp

The tree manager also receives pruned nodes from LP proces$ses® fodes are also added
to prunednodes.

(-

case BCP_Msg_NodeDescription_Discarded:

case BCP_Msg_NodeDescription_OverUB_Pruned:

case BCP_Msg_NodeDescription_Infeas_Pruned:
node = BCP_tm_unpack_node_no_branching_info(*this, msg_buf);
pruned _nodes .push _back (node);

(-
With these modifications, the tree manager is able to track the number of aatige fov

all local trees. It uses the local tree identification number stored in thedaseof the pruned
nodes to update the node numbers of the corresponding local tree.

78

A.4 Aborting Local Trees

For aborting local trees, we store a set of local tree identification nuritbtre candidate list.
In the tree manager method responsible for finding a new subproblemLerpgiocess, we
simply discard nodes that are in this set of terminated trees.

A.4.1 include/BCPtm_node.hpp
We have to include two additional headers, again wrapped in a precommilditional.

#ifdef COIN_LB
#include ’localtreeid.hpp”
#include <set>

#endif

Then we add a new public member to B@Bdequeue:

#ifdef COIN_LB
/** LocalTreeld values of trees to be terminated
(= to be pruned by BCP_node_queue::pop and BCP_node_queue::itop) */
std::set<LocalTreeld> terminate_ids;

#endif

A.4.2 TM/BCP_tm _functions

In BCP_tm_start one we modify the head of the main loop, the updates marked with bold face.

(-)
while (true){
if (p.candidates.empty()) return BCP_NodeStart_NoNode;
next_node = p.candidates.top();
p.candidates.pop();
desc = next_node—>_desc;

bool process_this = true;
#ifdef COIN _LB
const LB _user _data* Ib_ud =
dynamic _cast <const LB _user _data*> (next_node —>user _data());
if (Ib_ud && p.candidates .terminate _ids.end() !=
p.candidates .terminate _ids .find (Ib _ud —id))
process _this = false;
else
#endif
if (! p.has_ub()) /I 'if no UB yet or Ib is lower than UB then go ahead
break;

79

Appendix B

Test Scripts

The results of chapter 9 were retrieved using test scripts written in Bashydhdn code. The
printstats.pyscript expects a file containing the output of a set of test runs, usualriog
more than one instance and testing several configurations. The resujt®aped by filename
and configuration, and miscellaneous statistical data can be extracteexdfople, tables
containing the final objective values or the online performance ratingitidddlly, plots of
the final objective value can be created. Tmplotprogram is used to generate these cuts
which can be viewed on screen or written to a postscript file. Since the tgsale usually
rather large and take some seconds for processing, a simple interactiveand line interface
was implemented to shorten user response times.

B.1 Generating Log Files

To simplify testing different configurations on many different files, a sBash script is avail-
able. The configurations to be tested are entered as an array, whicl iappked to every
file supplied. Since the instances of the OR Library [2] contain 30 test icssgper file, the
instance numbers to be tested can be specified in an array.

#l/bin/bash

outfile=testall.log

rm $outfile

instances="'seq 0 29"

testcases=("LB_K 0" "LB_K 10 LB_MaxNodes 5000 "LB_K 20")

for file in $*
do
echo —e "Processing” $file ”...\n"
for inst in $instances
do
for opts in "${testcases[@]}"
do
date >> S$outfile
echo —e "Processing” $file ”, instance” $inst ”, params =" $opts "...\n” >> S$outfile
nice Linux—O/bcps $opts ${file}:${inst} >> Soutfile
echo >> Soultfile
done
done
done

80

The script has to be executed from the main knapsack application direstdrstores the
results in the file specified bgutfile The instance numbers are storedriatanceq(in this
case{0...29}), the configurations are stored tiestcases The test files are supplied on the
command line, possibly using wildcards.

B.2 Analyzing Log Files

The printstats.pyscript parses the log file given on the command line and offers a simple
line-based interactive interface to query the results. The most importamhaads are:

e helpreturns a list of all commands.

¢ help [command}eturns a short description and possible parameters of the given com-
mand.

o table [configuration]*prints a table containing all tested instances as rows and the given
configurations (or all, if none are supplied) as columns. The index nuemifethe
configurations correspond with the log file and are also displayed belotaithe

e columns [parameterets the displayed values. Possible parameters are:

— finalobjective the final objective value.

— finalobjective deltathe final objective value, and the number of processed nodes
relative to the best configuration in a row (when two configurations foebadame
result.)

— onlineperformancethe online performance rating.
— localtrees the number of (created) local trees.
— localtime time spent in local branching relative to the total computation time.
— finalbinary. a binary comparison function for the final objective value, useful for
executing Wilcoxon rank sum tests.
e showfilename [true/falsednables or disables the file name column in the table view.

e plot [filename] [configurations]*executes gnuplot to plot the final objective values of
the given configurations (or all if none are given).

e outputformat [screen/postscripsits the output format of the plots generated by the plot
commandsscreenuses gnuplot to display the diagram on the screestscriptwrites
the output to a postscript file.

e outputdir [directory] sets the directory where the postscript files are stored (default:
current working directory.)

81

Bibliography

[1] E. Balas, S. Ceria, G. Corgjols, and N. Natraj. Gomory cuts revisite@perations
Research Letterd9:1-9, 1996.

[2] J. E. Beasley. Operation research library.
http://www.brunel.ac.uk/depts/ma/research/jeb/info.html.

[3] D. Bertsimas and R. Demir. An approximate dynamic programming apptoactulti-
dimensional knapsack problemdanagement Sciencé8(4):550-565, 2002.

[4] A. Caprara, H. Kellerer, U. Pferschy, and D. Pisinger. Apjma¢ion algorithms for
knapsack problems with cardinality constrainisuropean Journal of Operational Re-
search 123:333-345, 2000.

[5] S. Ceria, G. Cornuejols, and M. Dawande. Combining and strenigiipgomory cuts.
In E. Balas and J. Clausen, editohsteger Programming and Combinatorial Optimiza-
tion: Proc. of the 4th International IPCO Conferengeges 438-451. Springer, Berlin,
Heidelberg, 1995.

[6] P. C. Chu and J. E. Beasley. A genetic algorithm for the multidimensiomapgack
problem.Journal of Heuristics4(1):63—-86, 1998.

[7] V. Chvatal. Edmonds polytopes and a hierarchy of combinatorial probldbiscrete
Mathematics(4):305-337, 1973.

[8] E. Danna, E. Rothberg, and C. L. Pape. Exploring relaxation ieduneighborhoods to
improve mip solutionsMathematical Programming2004.

[9] L. Davis. A genetic algorithm tutorial. Irlandbook of Genetic Algorithmpages 1-101,
New York, 1991.

[10] F. Eisenbrand. On the chtal rank of polytopes in the 0/1 cubBiscrete Applied Math-
ematics 98:21-27, 1999.

[11] F. EisenbrandGomory-Chatal cutting planes and the elementary closure of polyhedra
PhD thesis, 2000.

[12] M. Eso, L. Ladanyi, T. K. Ralphs, and L. Trotter. Fully parallel generic branch-and-
cut. Proceedings of the Eighth SIAM Conference on Parallel Processingdientfic
Computing 1997.

[13] M. Fischetti and A. Lodi. Local branchingMathematical Programming98:23—47,
2002.

82

[14] H. C. for Enterprise Science. Benchmarks for the multiple knapgeaiidem.
http://hces.bus.olemiss.edu/tools.html.

[15] R. E. Gomory. Outline of an algorithm for integer solutions to linear paots.Bulleting
of the American Mathematical Socie(g4):275-278, 1958.

[16] R. E. Gomory. An algorithm for integer solutions to linear prografRecent Advances
in Mathematical Programmingpages 269-302, 1963.

[17] J. Gottlieb. Permutation-based evolutionary algorithms for multidimensioregsack
problems.Proceedings of 2000 ACM Symposium on Applied Comp2idgp.

[18] R. Hinterding. Mapping, order-independent genes and thedatkpproblem Proceed-
ings of the 1st IEEE International Conference on Evolutionary Computatiages 13—
17, 1994.

[19] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the kaak and sum of
subset problemsl. ACM 22(4):463-468, 1975.

[20] N. Karmarkar. A new polynomial-time algorithm for linear programmi@pmbinator-
ica, 4:373-395, 1984.

[21] H. Kellerer, U. Pferschy, and D. Pisingétnapsack ProblemsSpringer, 2004.

[22] L. G. Khachian. A polynomial algorithm for linear programmirigoklady Akad. Nauk
USSR224:1093-1096, 1979.

[23] P. Kolesar. A branch and bound algorithm for the knapsack pmobl&anagement
Sciencel3:723-735, 1967.

[24] B. Korte and R. Schrader. On the existence of fast approximatibanses. In O. L.
Mangasarian, R. R. Meyer, and S. Robinson, editdm)linear Programming Apages
415-437. Academic Press, 1981.

[25] A. H. Land and A. G. Doig. An automatic method for solving discretegpaonming
problems.Econometrica28:497-520, 1960.

[26] E. K. Lee and J. E. Mitchell. Branch-and-bound methods for intpgegramming. In
Encyclopedia of Optimizatigivolume 2, pages 509-519. Kluwer Academic Publishers,
2001.

[27] J. S. Lee and M. Guignard. An approximate algorithm for multidimensipes-one
knapsack problemsvianagement Sciencd4(3):402—-410, 1988.

[28] R. Lougee-Heimer. The common optimization interface for operatiossareh. IBM
Journal of Research and Developmefit:57—-66, 2003.

[29] J. E. Mitchell. Branch-and-cut algorithms for integer programmimgErncyclopedia of
Optimization volume 2, pages 519-525. Kluwer Academic Publishers, 2001.

[30] J. E. Mitchell. Cutting plane algorithms for integer programming.Ehtyclopedia of
Optimization volume 2, pages 525-533. Kluwer Academic Publishers, 2001.

83

[31] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for tiselgtion of large-scale
symmetric traveling salesman problens3AM Rev.33(1):60-100, 1991.

[32] D. Pisinger.Algorithms for Knapsack Problem®hD thesis, University of Copenhagen,
Dept. of Computer Science, Feb. 1995.

[33] G. Raidl. An improved genetic algorithm for the multiconstrainted 0-1 kaak prob-
lem. Proceedings of the 5th IEEE International Conference on Evolutionamyiita-
tion, pages 207-211, 1998.

[34] G. R. Raidl. Weight-codings in a genetic algorithm for the multiconstraivatpsack
problem. Proceedings of the 1999 IEEE Congress on Evolutionary Computgiamges
596-603, 1999.

[35] G. R. Raidl and J. Gottlieb. Empirical analysis of locality, heritability aedristic bias
in evolutionary algorithms: A case study for the multidimensional knapsadiqiro
Accepted for publication in the Evolutionary Computation Jour2ai4.

[36] T. K. Ralphs and L. Lag@nyi. COIN/BCP User's Manual
http://www.coin-or.org/Presentations/bcp-man.pdf, 2001.

[37] G. D. Scudder and G. Fox. A heuristic with tie breaking for certalnifteger program-
ming models.Naval Research Logistics Quarterly2:613—-623, 1985.

[38] S. Senju and Y. Toyoda. An approach to linear programming with @rtakbles. Man-
agement Scien¢é&1:B196-B207, 1967.

[39] J. Thiel and S. Voss. Some experiences on solving multiconstraiotaree knapsack
problems with genetic algorithm#NFOR 32 pages 226242, 1994.

[40] Y. Toyoda. A simplified algorithm for obtaining approximate solution toozene pro-
gramming problemsManagement Scienc2l1:1417-1427, 1975.

[41] M. Vasquez and J.-K. Hao. A hybrid approach for the 0-1 multidirmrad knapsack
problem.Proceedings of IJCAI Q12001.

[42] L. A. Wolsey. Integer ProgrammingJohn Wiley and Sons, 1998.

84

