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Abstract

This thesis deals with local branching, a local search algorithm applied on top of a Branch
and Cut algorithm for mixed integer programming problems. Local branchingdefines custom
sized neighborhoods around given feasible solutions and solves them partially or completely
before exploring the rest of the search space. Its goal is to improve the heuristic behavior of
a given exact integer programming solver, i.e. to focus on finding good solutions early in the
computation.

Local branching is implemented as an extension to the open source Branch and Cut
solver COIN/BCP. The framework’s main goal is to provide a generic implementation of local
branching for integer programming problems. IP problems are optimization problems where
some or all variables are integer values and must satisfy one or more (linear) constraints.
Several extensions to the standard local branching algorithm were added to the framework.
Pseudo-concurrent exploration of multiple local trees, aborting local trees and a variable fix-
ing heuristic allow the user to implement sophisticated search metaheuristics that adjust the
local branching parameters adaptively during the computation. A major design goal was to
provide a clean encapsulation of the local branching algorithm to facilitate embedding of the
framework in other, higher-level search algorithms, for example in evolutionary algorithms.

As an example application, a solver for the multidimensional knapsack problemis imple-
mented. A custom local branching metaheuristic imposes node limits on local subtrees and
adaptively tightens the search space by fixing variables and reducing thesize of the neigh-
borhood. Test results show that local branching can offer significant advantages to standard
Branch and Cut algorithms and eventually proves optimality in shorter time. Especially for
large, complex test instances exploring the local neighborhood of a goodfeasible solution
often yields better short-term results than the unguided standard Branch and Cut algorithm.
Improving the solutions found early in the computation also helps to remove additional parts
of the search tree, potentially leading to better solutions in longer runs.



Zusammenfassung

Diese Diplomarbeit beschäftigt sich mit Local Branching, einem lokalen Suchalgorithmus,
der auf einem Branch and Cut Algorithmus für ganzzahlige Optimierungsprobleme aufsetzt.
Local Branching definiert beliebig große Nachbarschaften um gegebene g̈ultige Lösungen
und löst diese teilweise oder komplett, bevor der Rest des Lösungsraums durchsucht wird.
Das Ziel ist eine Verbesserung des heuristischen Verhaltens des gegebenen Solvers für
ganzzahlige Optimierungsprobleme, d.h. sich auf das möglichst fr̈uhe Finden guter L̈osungen
zu konzentrieren.

Local Branching ist als Erweiterung des Open Source Branch and CutSolvers COIN/BCP
implementiert. Das Hauptziel des Frameworks ist eine generische Implementierung von
Local Branching f̈ur ganzzahlige Optimierungsprobleme, also Probleme, bei denen alle
oder einige Variablen ganzzahlig sein müssen, und zusätzlich eine oder mehrere (lineare)
Bedingungen in Form von Ungleichungen erfüllen müssen. Es wurden mehrere Erweiterungen
zum Framework hinzugefügt: die pseudo-parallele Abarbeitung mehrerer lokaler Suchbäume,
das vorzeitige Terminieren lokaler Suchbäume sowie eine unabhängige Variablen-Fixing-
Heuristik. Durch diese Erweiterungen können die Parameter für Local Branching im Laufe der
Berechnung beliebig verändert werden. Ein wesentliches Ziel beim Entwurf des Frameworks
war eine klare Kapselung des Local Branching Algorithmus, um die Einbettung in andere,
höhere Suchalgorithmen zu ermöglichen, etwa in evolution̈are Algorithmen.

Als Beispielapplikation wurde ein Solver für das mehrdimensionale Rucksackproblem
implementiert. Eine eigene Local Branching Metaheuristik beschränkt die Gr̈oße lokaler
Bäume durch Knotenlimits und kann den Suchraum durch Anwendung der Variablen-
Fixing-Heuristik weiter einschränken. Die Testergebnisse zeigen signifikante Vorteile für
Local Branching im Vergleich zum normalen Branch and Cut Algorithmus. Vor allem f̈ur
große, komplexe Testinstanzen liefert die Suche in lokalen Bäumen oft bessere Resultate
am Anfang der Berechnung. Dadurch wird auch die Zeit zum Finden (und Beweisen) der
optimalen L̈osung potentiell verringert, da dadurch früher zus̈atzliche Teile des Suchbaums
weggeschnitten werden können.
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Chapter 1

Introduction

Integer programming problems (IPs) are optimization problems that restrict some or all vari-
ables to integer values. In contrast to linear programming problems (LPs) without integrality
constraints, IPs are NP-hard. Much research has gone into effective search algorithms for
integer programs, leading to exact algorithms like Branch and Bound [25],cutting plane al-
gorithms [30], and a large variety of heuristical algorithms that trade optimality for quickly
getting “good enough” solutions.

This thesis considers the modification of standard Branch and Cut to follow ideas from lo-
cal search based heuristics, the so-calledlocal branching[13]. Branch and Boundis a generic
algorithm for solving integer programming problems by partitioning the search space into
smaller subproblems (branching), calculating bounds on the best solution that can be found
in a subproblem (bounding), and removing those subproblems that are proven to contain only
solutions inferior to the best known solution (pruning). The bounding operation is commonly
executed by solving the LP relaxation (i.e. the IP problem without the integralconstraints).
Branch and Cuttries to delay the branching operation by adding constraints (cuts) that are
violated by the current LP result, leading to a reduction of the search tree size.

Local branching defines subproblems through additional local branching cuts that isolate
a neighborhood of a certain size around a given feasible solution. By exploring this smaller
subproblem before the rest of the search tree, the intention is to improve good feasible solutions
before continuing Branch and Cut in a standard way. Several extensions have been added to
local branching: pseudo-concurrent tree exploration, the possibility toabort local trees, and a
variable fixing heuristic have been added. Due to its general design, local branching can be
used with any IP solver.

A large part of integer programming is concerned withcombinatorial problems. These
include for example the subset sum equality problem, various graph theoryproblems, and the
well-known family of knapsack problems. In this thesis, themultidimensional knapsack prob-
lem is used to demonstrate the use and the benefits of local branching. Althoughall types of
knapsack problems are NP-hard, some problems can be efficiently solvedby enumerative tech-
niques like dynamic programming. For others, like the multidimensional knapsackproblem,
no such methods are known. These problems supply well suited testcases for fully fledged
Branch and Cut solvers, and are often too complex to be solved to optimality in reasonable
time.
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1.1 Thesis Overview

In chapter 2, an overview of integer programming problems, cutting plane techniques and
Branch and Bound algorithms is given to summarize the building blocks of Branch and Cut.
Chapter 3 provides an introduction to local branching as proposed by Fischetti and Lodi [13].
Chapter 4 introduces the framework implemented for this thesis, including extensions to the
local branching algorithm, and describes the overall design of the interface to the framework.
In chapter 5, an overview of the open source COIN/BCP framework used for implementing
local branching is given. Chapter 6 contains the implementation details of the local branching
framework. An overview of knapsack problems in general and multidimensional knapsack
problems in particular is given in chapter 7. The implementation of a sample local branching
application for the multidimensional knapsack problem is described in chapter8. Test results
exploring the benefits and drawbacks of local branching based on the sample application are
given in chapter 9. Chapter 10 summarizes the results and provides a briefoutlook on possible
future work. In appendix A, the patches necessary for the COIN/BCP source code are de-
scribed. Appendix B provides a brief overview of the test scripts used for analyzing the local
branching test runs.
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Chapter 2

Branch and Cut

Branch and Cut is an exact algorithm for solving integer programming problems. It combines
cutting plane methods with Branch and Bound. The following introduction is based on Lee and
Mitchell’s Branch and Bound tutorial [26], Mitchell’s introduction to Branchand Cut [29], the
COIN/BCP User’s Manual by Ralphs and Ladanyi [36], and the book on integer programming
by Laurence Wolsey [42].

2.1 Integer Programming Problems

An integer programming problem(IP) is an optimization problem in which some or all vari-
ables are restricted to integer values. A givenobjective functionhas to be maximized or mini-
mized in a solution space constrained by inequalities. Amixed integer programming problem
(MIP) contains both integer and continuous variables, apure integer programming problem
restricts all variables to be integer.Mixed or pure 0-1 integer programming problemsrestrict
all integer variables to be 0 or 1, thus they are also calledbinary integer programming prob-
lems. In this thesis we will concentrate onlinear 0-1 integer programming problemswhere
all variables are binary and all terms of the objective function and constraints are linear. The
objective function should be maximized. A linear 0-1 IP can then be stated as:

maximize cT x

subject to Ax ≤ b (2.1)

x ∈ {0, 1}n

with A ∈ R
m×n, b ∈ R

m andc ∈ R
n. We can define the solution spaceS of a problem as

S = {x ∈ {0, 1}n : Ax ≤ b}. (2.2)

2.1.1 Convex Hull of an Integer Program

In algebraic topology,Ax ≤ b defines aconvex polyhedronwhich contains all feasible solu-
tions of the integer program. H. Weyl proved in 1935 that a convex polyhedron can be defined
as the intersection of a finite number of half-spaces or as theconvex hullcombined with the
conical hull of a finite number of vectors or points. If the problem is formulated in rational
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numbers, Weyl’s theorem implies the existence of a finite system of linear inequalities whose
solution set coincides with the convex hull of our solution spaceS, also written asconv(S).
This directly leads tocutting plane algorithmsfor solving integer programming problems that
will be described in section 2.3.

2.1.2 Relaxations

A key concept of integer programming is that of problem relaxation. Arelaxationof an opti-
mization problem as stated in equation (2.1) is an optimization problem

max{cT
Rx : x ∈ SR}, (2.3)

whereS ⊆ SR andcT x ≤ cT
Rx for all x ∈ S. The relaxed solution space is a superset of

the problem solution space, and the relaxed objective function is equal to or greater than the
original function for all feasible solutions of the given problem.

A common relaxation for linear integer programming problems is thelinear programming
relaxation(LP relaxation). The integer constraints on all variables are removed and the prob-
lem can then be solved with linear programming methods. The most common algorithmfor
solving linear programs is thesimplex methodinvented by George Bernard Dantzig in 1947.
There are instances where the simplex method requires an exponential number of steps, but
those problems seem to be highly unlikely in practical applications where the simplex method
achieves very good performance.

Khachian’sellipsoid algorithm[22] proved that linear programming was polynomial in
1979. Karmarkar’s interior-point method [20] was both a practical and theoretical improve-
ment over the ellipsoid algorithm.

2.2 Branch and Bound

Branch and Boundis a class of exact algorithms for various optimization problems, especially
integer programming problems and combinatorial optimization problems (COP). Itpartitions
the solution space into smaller subproblems that can be solved independently (branching).
Boundingdiscards subproblems that cannot contain the optimal solution, thus decreasing the
size of the solution space. Branch and Bound was first proposed by Land and Doig in 1960 [25]
for solving integer programs.

Given a maximization problem as described in equations (2.1) and (2.2), a Branch and
Bound algorithm iteratively partitions the solution spaceS, for example by branching on bi-
nary variables - fixing one of them to 0 in one branch and to 1 in the other branch. For each
subproblem anupper boundon the objective value is calculated. The upper bound is guaran-
teed to be equal to or greater than the optimal solution for this subproblem. When a feasible
solution (i.e., no fractional variables remaining) is found, all subproblems whose upper bounds
are lower than this solution’s objective value can be discarded. The bestknown feasible so-
lution represents alower boundfor all subproblems, and only subproblems with an upper
bound greater than the global lower bound have to be considered. Discarding a subproblem is
calledfathomingor pruning. Upper bounds for a subproblem can be obtained by relaxing the
subproblem, thus they are often obtained by optimizing the subproblem’s LP relaxation.

Figure 2.1 summarizes the above steps using a pseudo-code notation. The sequence of
subproblems created by branching can be organized as a rooted directed graph. The original
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1. Initialize list of all subproblemsC = {S}

2. Generate a feasible solution and store it inŝ. It is not necessary to generate a feasible
solution (e.g. by heuristics), but it can help to reduce the search tree size. When no
initial solution is provided, the objective value forŝ is set to−∞.

3. Repeat whileC 6= ∅:

(a) Take a subproblemS′ from C

(b) RelaxS′ and solve the relaxed problem

(c) Decide to branch or prune as explained in figure 2.2.

4. Returnŝ

Figure 2.1: Branch and Bound pseudo-code

problem is the root node with edges going to each of its children. This graphis called the
search treeand itsnodesrepresent all generatedsubproblems.

2.3 Cutting Plane Algorithms

As in section 2.1, we will consider a binary integer programming problem, its mathematical
formulation is stated in equations (2.1) and (2.2). The fundamental conceptused for cutting
plane algorithms is that of avalid inequality. An inequality

πx ≤ π0 (2.4)

is valid if πx ≤ π0 for all x ∈ S, whereS contains all feasible solutions of the IP.
The basic idea ofcutting planesis to describe the convex hullconv(S) of the original prob-

lem by adding valid inequalities to the LP relaxation until the LP solution becomes feasible
for the original problem.

Mitchell [30] outlines the following structure of a cutting plane algorithm:

1. Solve the LP relaxation using linear programming methods such as the simplex algo-
rithm.

2. If the LP solution is feasible for the integral problem, return the optimal solution.

3. Otherwise add cutting planes to the relaxation that separate the LP solution from the
convex hull of feasible integral points.

4. Go to first step.

Cutting planes can be generated with or without problem specific knowledge. One method
of obtaining cutting planes is by combining inequalities from the current LP relaxation. This
is known asinteger rounding, and the resulting cutting planes are calledChv́atal-Gomory
cutting planes[15, 16, 7]. The following example is taken from [30]. Consider the integer
programming problem
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Depending on the solution of the relaxed problem, do one of the following:

1. No solution was found, the relaxed problem is infeasible. Then there is also no feasible
solution inS′, thus the subproblem is pruned.

2. The optimal solution is not better than̂s. The subproblem can be pruned because its
upper bound is lower than the global lower bound.

3. The optimal solution is better than̂s and it is inS′ (the integer constraints are satisfied).
Replacês with the new optimal solution. The subtree can be pruned because no better
solution can be found.

4. The optimal solution is better than̂s but it is not inS′ (at least one integer constraint is
violated). In this caseS′ is partitioned inton smaller subproblems such that:

⋃n
i=1 S′

i =
S′. Each of thesechildrenof S′ is added toC. This is the common case and is usually
calledbranching.

Figure 2.2: Deciding to branch or prune

minimize − 2x1 − x2 (2.5)

x1 + 2x2 ≤ 7

2x1 − x2 ≤ 3

x1, x2 ∈ N0.

A cutting plane is obtained by a weighted combination of inequalities, e.g.

0.2(x1 + 2x2 ≤ 7) + 0.4(2x1 − x2 ≤ 3) (2.6)

gives the valid inequality

x1 ≤ 2.6. (2.7)

This inequality is valid for all LP relaxations, but in a feasible solution, the lefthand side
must be an integer value. This leads to the inequality

x1 ≤ 2. (2.8)

Gomory’s cutting plane algorithm will find the optimal solution by iterating the steps as
described above. However, the number of steps to describe the convexhull (called theChv́atal
rank) is typically very high, leading to very slow convergence [10, 11].

It can be enhanced using techniques like adding many Chvátal-Gomory cuts at once, as
shown in [1] and [5]. Another approach is to combine cutting plane methods with Branch and
Bound, which leads to a method calledBranch and Cut.
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1. Initialize candidate listC = {S}

2. Generate a feasible solution and store it inŝ

3. Repeat whileC 6= ∅:

(a) Take a subproblemS′ from C

(b) RelaxS′ and solve the relaxed problem, store LP result ins̃

(c) Repeat:

(1) Try to add cuts to the relaxed problem that are violated bys̃

(2) Exit loop when no new cuts were generated in step 1

(3) Solve relaxed problem again, store LP result ins̃. Note that the objective
value ofs̃ is monotonically decreasing since the added cuts render infeasible
the previous LP results.

(d) Depending oñs, decide to branch or prune the node as shown in figure 2.2.

4. Returnŝ

Figure 2.3: Branch and Cut pseudo-code

2.4 Branch and Cut

Branch and Cutmethods use Branch and Bound to partition the solution space into smaller
subproblems, but also utilizecutting plane methodsto tighten the relaxation and thus to reduce
the size of the search tree. Branch and Cut was first proposed by Padberg and Rinaldi [31] as
a framework for solving traveling salesman problems.

The purpose of cutting planes orcutsis to reduce the upper bound derived from the optimal
solution of the LP relaxation. A smaller upper bound makes pruning the subproblem more
likely, thus reducing the search tree size. When the algorithm failed to generate new cuts that
are violated by the current LP solution, the subproblem isbranchedas in Branch and Bound.

As cut generation can be very expensive, it is common to generate cuts only for some nodes
in the search tree. For example, it might be reasonable to generate cuts forevery eighth node or
for all nodes at a depth of a multiple of eight. Thecut-and-branchvariant adds cutting planes
only at the root node. A pseudo-code formulation of Branch and Cut is given in figure 2.3.
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Chapter 3

Local Branching

While there exist sophisticated solvers for integer programming problems, for many hard prob-
lems the optimal solution is often hard to find within a reasonable time. Therefore,it becomes
increasingly important to find reasonably good solutions early in the computation process.

Local Branching is a local search meta-heuristic for integer programs proposed by Fischetti
and Lodi in 2002 [13] that is entirely embedded in a Branch and Cut framework. Its goal is to
improve the heuristic behavior of a given MIP solver without losing optimality, that is, to find
good feasible solutions as soon as possible while still being able to find the global optimum
and prove its optimality.

Local Branching works by partitioning the search tree through so-calledlocal branching
cuts. Since those local cuts are just specific constraints for integer programmingproblems,
they can be expressed like normal IP constraints using any generic MIP solver.

3.1 Soft vs. Hard Variable Fixing

A common technique for IP heuristics is hard variable fixing. For example, a heuristic might
use a LP solver to compute a continuous optimal solution, heuristically fix some variables to
integer values (e.g. by rounding the variable with the least fractional value), and then repeating
these steps for the resulting subproblem without the fixed variables. This way, relatively good
(but probably not optimal) solutions may be found in reasonable time even forhard problems.

The major downside of this approach is that it may be nearly impossible during the early
stages to decide which variable should be fixed. This inevitably leads to bad fixings which may
not be detected until much later, requiring some kind of backtracking to undobad choices.

To overcome this limitation of variable fixing, Fischetti and Lodi proposedsoft variable
fixing. It does not select a single variable for fixing, but only specifies that acertain percentage
of all variables of a givenfeasible solutionshould be fixed. This approach is best illustrated
using the binary integer programming problem described in section 2.1. Supposing there is a
feasible solution and 90% of its nonzero variables should be fixed to 1, Fischetti and Lodi add
asoft fixing constraint

n
∑

j=1

x̄jxj ≥ d0.9
n

∑

j=1

x̄je (3.1)

to the current formulation.̄xj represents the feasible solution around which a local neigh-

11



borhood is isolated, i.e. in any feasible solutionxj only 10% of those variables set to 1 in̄xj

may be flipped to 0. The idea is that fixing 90% of the variables helps the solverto find good
solutions as effectively as when fixing a large number of variables, but with a much larger
degree of freedom.

3.2 A Basic Local Branching Framework

Given a binary integer programming problem as stated in section 2.1 and a feasible solution
x̄, thebinary supportS̄ is defined as̄S := {j ∈ [1, n] : x̄j = 1}, i.e. the indices of those
variables that are set to 1. A soft fixing constraint in terms of the previoussection can then be
formulated as

∆(x, x̄) :=
∑

j∈S̄

(1 − xj) +
∑

j /∈S̄

xj ≤ k. (3.2)

Fischetti and Lodi call this alocal branching constraintthat counts all binary variables
that flipped their value from zero to one or from one to zero compared tox̄. ∆(x, x̄) actually
represents theHamming distancebetweenx andx̄, thus the constraint is also calledHamming
distance constraint. When the cardinality of̄S is fixed, this constraint is equivalent to

∆(x, x̄) :=
∑

j∈S̄

(1 − xj) ≤ k′(=
k

2
), (3.3)

because for every variablexj with j ∈ S̄ that flips from one to zero another variable must
flip from zero to one. This definition is consistent with the classicalk’-opt neighborhood for
the Traveling Salesman Problem, where at mostk′ edges may be replaced.

A local branching constraint partitions the search tree in two disjunct branches

∆(x, x̄) ≤ k (local branch) and ∆(x, x̄) > k (normal branch). (3.4)

The local branch is completely solved before continuing with the normal branch. When a
new global optimum̄x2 was found in the local branch, local branching can continue with the
new solution by adding a new constraint to the remaining “normal” branch, again partitioning
the search tree in two disjunct branches

∆(x, x̄) > k, ∆(x, x̄2) ≤ k (local branch), (3.5)

∆(x, x̄) > k, ∆(x, x̄2) > k (normal branch).

This scheme works as long as the local branching trees yield new global optima and is
illustrated in figure 3.2. The numbers indicate the sequence in which the subproblems are
generated and processed. The actual optimization problems are solved bya generic MIP solver.

The size of the local subtrees at positions 2, 4 and 6 depend on the choiceof thek param-
eter. Small values ofk define a relatively small neighborhood that is easier to solve, but may
not contain solutions that are significantly better than the current one. Larger values ofk offer
higher degrees of freedom during the tree search, but drastically increase the size of the local
branching trees.
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Figure 3.1: Local Branching
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3.3 Local Branching Extensions

Fischetti and Lodi [13] proposed several extensions to the standard local branching algorithm
described in the previous section.

• Imposing a time limit on local branching treesallows to use large values ofk without
having to explore a local tree completely. When time runs out and a better solution
was found in the local tree, the algorithm creates a new local tree at the original root
node using the new solution. However, since the previous local tree was not explored
completely, this may lead to a duplication of effort as the optimal solution might still
be in the first local tree, and its search space can therefore not be excluded. If the time
limit is reached without finding a new better solution,k is decreased to speed up the
exploration of the local tree.

• Diversificationmay be used when a local tree did not improve the best known solution.
Fischetti and Lodi suggest to start with a soft diversification by enlarging the neighbor-
hood, e.g. bydk/2e. When no better solution is found in this larger local tree, they apply
a strong diversification by taking another (worse) solution and restartinglocal branching
with this solution.

• Embedding local branchingin heuristic frameworks likeTabu Search, Variable Neigh-
borhood Search, Simulated Annealingor Evolutionary Algorithmscan be easily done,
since local branching naturally defines a custom sized neighborhood around a given so-
lution. Additional constraints imposed by the heuristic framework can be described as
linear cuts which makes them easy to join with local branching constraints.

• Working with infeasible solutionsis necessary for problems where finding an initial fea-
sible solution is hard, e.g. for hard set partitioning models. In order to use an infeasible
solution as initial solution for local branching, one may define additional slack variables
for some of the constraints while penalizing them in the objective function.

• General integer variablesrequire a new definition of the local branching constraint.
Some general integer problems still have a relevant subset of 0-1 variables that can be
used for local branching. In case there are no relevant binary variables, introducing
weights leads to a viable local branching constraint. In a MIP model that involves the
boundslj ≤ xj ≤ uj for j = 1 . . . n, a local branching constraint can be defined as

∆(x, x̄) :=
∑

j:x̄j=lj

µj(xj − lj) +
∑

j:x̄j=uj

µj(uj − xj) +
∑

j:lj<x̄j<uj

µj(x
+
j + x−

j ) ≤ k.

(3.6)
The weights are defined asµj = 1/(uj − lj), while x+

j andx−
j define additional slack

variables that satisfy the equation

xj = x̄j + x+
j − x−

j , x+
j ≥ 0, x−

j ≥ 0.

Of course, there are other possibilities to improve the standard local branching algorithm
not proposed by Fischetti and Lodi. The following enhancements have been integrated in our
local branching framework as described in chapter 4.
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• Fixing variablesallows to tighten the neighborhood when the original local tree was too
large to be explored completely. Variables that share the same value in the incumbent
solution and in the solution of the LP relaxation are less likely to change in the global
optimum. By fixing some of those variables in the local tree and adding a corresponding
cut to the remaining tree local branching can avoid calculating parts of the tree that will
probably yield no better results. This approach was proposed by Dannaet al. [8] and is
known asRINS(Relaxation Induced Neighborhood Search).

• Concurrent exploration of different local treesprovides diversification by creating sev-
eral local trees from different feasible solutions and exploring them simultaneously.
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Chapter 4

An Advanced Local Branching
Framework

In this chapter a generic framework for local branching is described. Standard local branching
is implemented as described in chapter 3, and several extensions are introduced to improve
its performance. The main goal of this framework is to provide a local search algorithm for
higher-level metaheuristics, for example evolutionary algorithms. These metaheuristics can
use local branching for exploring the neighborhood of certain solutions, and use the generated
feasible solutions as input for their own improvement algorithms. The actual implementation
of the framework will be described in chapter 6.

4.1 Basic Functionality

A sequential version of the standard local branching algorithm providesthe basis for the frame-
work. It is capable of using local branching to completely solve a problem without further user
intervention. The main phases of the local branching algorithm are:

1. Generate an initial solution for the first tree.

2. Initialize the first local treeusing the previously generated solution.

3. Repeat:

(a) Completely solve the local tree.

(b) When the local search terminates:

• A better feasible solution was foundin this local tree: create a new local tree
using the improved solution from this local tree as initial solution.

• No better feasible solution was found: abort local branching.

4. Solve the rest of the search tree.

5. Return optimal solution.

The initial solution can be created by a custom heuristic, or it is derived from the optimum
of the root node’s LP relaxation (e.g. by rounding or truncating the LP solution). The de-
fault implementation uses local branching constraints as described in section3, i.e. Hamming
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distance constraints defining a neighborhood around the solution according to the distance
parameterk. Other constraints for branching might be implemented by the user as well.

4.1.1 Limitations

The standard local branching algorithm works well for some instances, but has several limita-
tions:

1. Depending on the number of variables and the value ofk, the Hamming distance con-
straint possibly defines a very large neighborhood. Given a binary IPwith n variables, a
feasible solution has

(

n
k

)

= n!
(n−k)!k! neighbors with a Hamming distance ofk (the local

tree includes all neighbors with a Hamming distance not larger thank, so the actual
search tree is even larger).

2. Depending on the specific problem, there might be more than one reasonable initial
solution for local branching. When a given heuristic returns several promising solutions
that would create (partially) disjunct local trees (i.e. their Hamming distance is greater
thank), only one neighborhood can be explored.

3. While a local branching constraint defines a neighborhood around afeasible solution,
it provides no further guidance for exploring this neighborhood besides the standard
branch and cut strategies (e.g. best bound first search). Other local search heuristics
might help to tighten the search tree.

Preliminary testing with multidimensional knapsack problems confirmed these shortcom-
ings. The test instances contain integer programming problems with 100 to 500 variables and
5 to 30 constraints. Detailed results will be discussed in chapter 9.

The larger test instances (n ≥ 250, d ≥ 10) contain too many variables for usingk
values larger than approximately5. This allows at most five variables to flip their values,
and likely prohibits significant improvements to the initial solution of a local tree. For any
valuek > 5 even the local tree defines a subproblem that is often too complex to be solved
completely within the given time limit. Additionally, the first initial solution is either derived
by a first fit heuristic or by rounding the first LP solution, and both are unlikely to be in a small
neighborhood of the optimal solution.

4.2 Extending the Basic Algorithm

In order to address the shortcomings described in the previous section, three extensions have
been added to the standard local branching algorithm. The first one eliminates the restric-
tion of sequential execution by allowing to create new local trees before theprevious one(s)
are finished. On a related issue, the second extension allows to abort local trees before they
are completely solved. The last extension tries to reduce subproblem complexity by fixing
variables that are less likely to change in the optimal result than others.

4.2.1 Using Multiple Local Trees

The first major extension to standard local branching is the support forpseudo-concurrent
explorationof several local trees. It removes the burden of relying on one local tree at a time,
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Figure 4.1: Pseudo-concurrent local tree exploration using a single MIP solver instance

probably leading to a more robust search tree exploration less likely to be caught in local
optima of the objective function.

The framework provides a method to spawn any number of local branchingtrees simply by
providing an initial solution. However, these trees are not parallelized in thesense of a separate
process dedicated to a single local tree. Instead, there is still a single poolfor subproblems
where all local tree nodes are stored. Depending on the chosen tree search strategy, some
trees will probably get more time than others with less promising nodes. For example, when a
best bound first tree search is performed, a local tree whose nodes have relatively poor upper
bounds will get less time than a tree with more promising nodes.

Unfortunately this kind of pseudo-concurrent exploration likely leads to aduplication of
effort in some cases since it is not known a priori which trees will actually be completely
solved, and thus, inverse local branching constraints cannot be considered. When a local tree
is prematurely terminated, no information about this local tree (except feasible solutions found
so far) can be further utilized: the neighborhood defined by this tree cannot be excluded from
future local trees because it still may contain the optimal solution.

The framework achieves parallel exploration by a simple modification to the standard local
branching algorithm: before a local tree is not completely solved, the inverse local branching
constraint for the rest of the search tree remains inactive. When a localtree is prematurely
terminated, the inverse constraint is removed from all future local trees. Figure 4.2.1 shows
the modified version of the original algorithm previously shown in figure 3.2.All parts of the
search tree labeled with the same number are parallelized, thus the inverse constraints on the
right hand side are missing. The initial solutionsx̄1 andx̄2 are not necessarily related; they
are supplied by the higher-level metaheuristic.
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4.2.2 Aborting Local Trees

Aborting local trees greatly enhances control over local branching. It becomes possible to
impose time or node limits on local trees, abort stagnating local trees in favor ofmore promis-
ing ones, or simply restart local branching with new solutions (possibly generated outside the
framework.)

When a local tree is aborted, the inverse local branching constraint (defining the search
tree outside the local tree) must be removed. This also applies to the variable fixing constraint
introduced in the next section. Besides that, the only issue is to find some criteria for premature
local tree termination. Specifying atime limit is rather complex due to the distributed design of
COIN/BCP. Different machines may have different performance ratings, and it would require
non-trivial extensions to COIN to track the time spent for each subproblem,potentially across
several LP processes, cut generators, and variable generators.

The local branching framework offers extensive information about thenumber of nodes
processed per local tree instead. Using these facilities, it is easy to impose anode limit on
a local tree, or to specify a maximum number of nodes that can be processed in a single
local tree before an improvement is found. The downside of this approach is that the number
of nodes that can be processed in a given CPU timeslice depends on the complexity of the
IP problem. Thus node limits may have to be set heuristically, for example by someconstant
value multiplied with a weighted sum of the number of variables and the number of constraints.

4.2.3 Tightening the Search Tree by Variable Fixing

The variable fixing extension to local branching is based onRelaxation Induced Neighborhood
Search(RINS) proposed by Danna et al. [8]. The underlying assumption is thatvariables
having the same integer value in the incumbent solution and in the LP relaxation are likely to
be set to their optimal value. By fixing some of those variables to their currentvalue, the local
search focuses attention on the fractional variables.

Compared with reducing search tree size by reducing the value ofk, variable fixing gives
more freedom to the exploration of the more promising fractional variables while ignoring the
allegedly less promising integral variables of the current LP optimum.

Choosing the best variables to be fixed is a problem by itself. The framework picks a
random selection from the set of all variables having the same integer values in the integral
and the LP solution. The number of fixed variables is given relative to the total number of
variables in the (sub-)problem. In the following, letF1 denote the indices of variables fixed to
one, andF0 the indices of variables fixed to zero.

While fixing variables in the local tree can be done directly in the MIP solver, the inverse
constraint is a bit more complicated: a node becomes feasible when at least one of the fixed
variables changed its value. Ignoring the local branching constraint, thiscan be achieved
through a new row cut of the form

∑

j∈F1

(1 − xj) +
∑

j∈F0

xj > 0. (4.1)

When using Hamming distance cuts for local branching both constraints can be combined
to a single cut. A solution is feasible outside the local tree when either the Hamming distance
is greater thank, or at least one variable flipped. In other words, when a variable flips (and
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the above inequality becomes valid), the Hamming distance constraint should beconsidered
irrelevant. The following row cut achieves these goals:

∆(x, x̄) > k − k





∑

j∈F1

(1 − xj) +
∑

j∈F0

xj



 , (4.2)

where∆(x, x̄) denotes the Hamming distance between the initial solutionx̄ and the current
solutionx as defined in equation (3.2). When one of those fixed variables flips, the right hand
side will be less or equal to zero. Since the Hamming distance is always greater or equal to
zero, the constraint is satisfied (even if the Hamming distance is smaller thank).

4.2.4 Utilizing the Extensions

When developing a local branching metaheuristic, most often a combination ofthe extensions
described above works best. For example, it is apparent that when aborting local trees, one may
also change the local branching parameters for the value ofk and the number of variables to
be fixed. When using multiple trees, it may be reasonable to start different trees with different
local branching parameters.

The combination of variable fixing and node limits on local trees is a straight-forward
way of tightening the search tree as the global solution improves. For example, the search
may be started with rather weak constraints, i.e. a relatively high value ofk and no or little
variable fixing. When the local tree fails to yield new solutions in a given nodelimit, it is
aborted and the parameters are modified. For example, the value ofk is decreased or the
number of variables to be fixed is increased. Then a new local tree can becreated, using
the new parameters and the last improved solution from the previous tree (oreven the initial
solution of the previous tree, since the tightening might lead to a faster convergence towards
an improved solution). See chapter 8 for a sample implementation of this tightening scheme.
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Chapter 5

COIN/BCP

The implementation of the local branching framework is based on theBranch and Cut and
Price framework (BCP) that is part of theComputational Infrastructure for Operations Re-
search (COIN) project [28]. By augmenting an existing Branch and Cut framework re-
implementation of a MIP solver is avoided. Furthermore, developers familiar withCOIN/BCP
can easily use the framework.

5.1 COIN Overview

5.1.1 History

As research in combinatorial optimization advanced tremendously over the past decades, de-
velopers faced increasing complexity when trying to implement efficient versions of their algo-
rithms. While standard algorithms like Branch and Cut exist, problem-dependent algorithms
often required custom implementations due to problem-dependent methods like variable or cut
generation. In the early 1990s a research group was founded with the goal of providing de-
velopers a generic software framework which could be adapted to specific problems. This led
to the release ofCOMPSys(Combinatorial Optimization Multi-processing System) [12]. Af-
ter several revisions this project becameSYMPHONY(Single- or Multi-Process Optimization
over Networks). In 1998, a reimplementation in C++ was started at IBM research.

As a result, the COIN project was publicly announced in the first half of 2000, including
a generic Branch, Cut and Price framework codenamedCOIN/BCP. IBM guaranteed to sup-
port the online infrastructure for the COIN project for three years, including the website at
http://www.coin-or.org, several mailing lists and the source code repository. Much of the ini-
tial development was done by IBM researchers, but in the past years the spirit of open source
has picked up and has led to various contributions by external researchers.

5.1.2 Components

Our framework uses the following components of the COIN project:

• BCP: the Branch, Cut and Price framework used for solving MIPs.

• OSI: the Open Solver Interface, a standardized API for calling math programming
solvers. It is used by BCP to call a simplex solver for solving the LP relaxations. A
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wide variety of solvers is supported, most notably the free COIN/CLP and the commer-
cial CPLEX MIP solvers.

• CLP: COIN LP, the COIN project’s LP solver. This is a free implementation of a simplex
solver.

• CGL: A Cut Generator Library for generating standard cuts for IP problemslike Gomory
cuts or knapsack cover cuts.

5.2 Design of COIN/BCP

The following introduction to the design of COIN/BCP is based on the user manual by Ralphs
and Lad́anyi [36]. The major design goals for COIN/BCP are portability, efficiency and ease
of use. It provides a black-box design with a clean end-user interfacethat keeps most of the
actual implementation hidden from the user.

COIN/BCP was developed using an object-oriented approach. The central objects are cuts
and variables that can be used as base classes for user-defined objects. Additionally, user ob-
jects provide methods that can be re-implemented to alter specific aspects of thealgorithm,
like tightening variables or adding cuts. While this approach enables a straight-forward imple-
mentation for many combinatorial optimization tasks, there is still enough flexibility left even
for implementing complex meta-algorithms like local branching with little or no changesof
the COIN/BCP code.

5.2.1 Variables and Cuts

Since search trees can easily contain hundreds of thousands of nodes, a simple object-oriented
approach storing the variables and cuts for each node in objects leads to excessive memory
consumption. COIN/BCP tries to reduce memory usage by keeping the number of active vari-
ables and cuts (theactive set) as small as possible by using data structures that make it possible
to move objects in and out of the active set efficiently. This is accomplished bymaintaining an
abstractrepresentationof each global object that keeps information about adding or removing
it from a particular problem instance (i.e. a particular LP relaxation).

In other words, avariabledoes not represent a specific column of a LP relaxation, but is
an abstract object that can berealizedas a specific column of a LP relaxation. Similarly, acut
does not describe a specific row of a LP relaxation, but it contains an abstract cut that can be
realized as a row in a LP relaxation.

COIN/BCP distinguishes between two groups of cuts and variables: so-called core cuts
andcore variablesthat are active in all subproblems, andextra cutsandextra variablesthat
can be added and removed dynamically. Extra cuts help to reduce the activeset, but require
additional bookkeeping when adding or removing them from the formulation.There are two
different types of extra cuts:

• Indexed cutsare represented by a unique index value. The user must be able to generate
the corresponding row cut when given the index number by using some kind of a virtual
global list known only to the user. This is the most efficient way of representing extra
cuts in a formulation and is particularly useful when the number of cuts is veryhigh
and most likely only few are violated by any feasible solution. Using indexed cuts, only
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constraints that are violated by a given LP solution have to be realized as rows in the LP
relaxation. The downside is the extra bookkeeping involved for adding andremoving
those cuts, and the user must find an enumeration scheme when using indexed cuts.

• Algorithmic cutsgive the user absolute freedom, especially in the case when the number
of cuts is not known a priori and the cuts cannot be enumerated. The onlyrequirement is
that the user must be able to generate the corresponding row when givena set of active
variables by some sort of algorithm. The downside, as with indexed cuts, is the fair
amount of bookkeeping involved for creating and removing algorithmic cuts.

Indexedandalgorithmicvariables work in a similar way. Indexed variables are generated
by the user when given an index number. They are useful when givena big number of variables
while most likely only few of them would be different from zero. Adding all variables to the
core matrix would increase the problem complexity enormously. Similar to algorithmiccuts,
algorithmic variables can describe any user-defined constraint that is violated by a given LP
solution. Indexed and algorithmic variables are also essential for column generation algorithms
that generate variables during the computation.

5.3 COIN/BCP modules

COIN/BCP is grouped into four independent modules. They communicate using a message-
passing protocol which is defined in a separate API. Thus they are well equipped for parallel
execution, even on separate machines connected by a network.

5.3.1 The Tree Manager Module

The tree manager (TM) module represents the master process of the computation algorithm. It
is responsible for problem initialization and controls the other modules. Thereis only one tree
manager for any computation. Its main functions are:

• Reading parameters and the problem instance from the command line or from afile.

• Constructing the root node of the search tree.

• Beginning the computation by creating LP processes (see below) to solve individual
nodes of the search tree.

• Receiving new solutions from the child LP modules and storing the best one.

• Receiving new subproblems and storing them for later processing.

• Pruning subproblems based on the global upper bound.

• Sending stored subproblems to idle LP processes.

• Printing the final result when the computation has finished (i.e. all subprocesses are in
an idle state and all subproblems have been solved.)
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5.3.2 The Linear Programming Module

The linear programming (LP) module performs the actual computation, i.e. the bounding and
branching operations. Its main functionality includes:

• Requesting new subproblems from the tree manager.

• Receiving and processing subproblems.

• Choosing branching objects and sending the resulting subproblems back tothe tree man-
ager.

5.3.3 The Cut Generator Module

Since cut generation may be computationally expensive, it can be performed inside a separate
cut generator module. It receives a LP solution by a LP process, tries togenerate valid in-
equalities violated by this solution, and sends the cuts back to the LP solver. Then it remains
in an idle state until a new solution is sent to the cut generator.

5.3.4 The Variable Generator Module

Similar to the cut generator module, the variable generator module’s only responsibility is to
generate variables for a given LP solution. If any variables are generated, they are sent back to
the requesting LP process and the variable generator module keeps waiting for new solutions.

5.4 The Linear Programming Module

For a better understanding of our local branching extensions, a deeper explanation of the linear
programming module is required. The LP module uses a LP engine for finding upper bounds,
generates cuts and variables when necessary and performs branching operations.

5.4.1 The LP Engine

The LP module uses theOpen Solver Interface(OSI) in order to communicate with third-party
LP libraries orLP engines.

5.4.2 Managing the LP Relaxation

The LP module is responsible for managing extra variables and cuts. It does so by maintaining
a local cut pool where any generated extra cuts are stored. In each iteration, up to a specified
number of the strongest cuts are added to the problem. A cut’s strongnesscorresponds to the
degree of violation in the current LP solution. Cuts that proved ineffective over a specified
number of iterations are purged from the cut pool. Variables can be tightened by user-defined
methods before solving the LP.
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5.4.3 Branching

Branching is performed when no new cuts were generated or the user forces branching. A
branching objectdescribing all of the new cuts and variables and their corresponding bounds
is generated and sent back to the tree manager. The branching operationcan be based on cuts
or on variables. Optionallystrong branchingcan be performed. In strong branching, several
branching objects are created and then pre-solved, i.e. quickly optimized ina probably non-
optimal way. The most promising candidate, based on some internal rule (e.g.best objective
value) or on the user’s decision, is used for branching.

By default, COIN/BCP uses branching on fractional variables. One (standard branching)
or several (strong branching) fractional variables are selected andcorresponding branching
objects are generated. The selection of variables can be user-definedor based on some internal
rule, COIN/BCP allows to specify the number of the most fractional variables(i.e. those
nearest to 0.5 in a binary optimization problem) and the number of those variables close to one
to be selected for (strong) branching. When the total number of variablesis greater than one,
strong branching has to be enabled.

5.5 Parallelizing COIN/BCP

Since Branch and Cut methods can heavily benefit from parallelization onedesign goal of
COIN/BCP was that of parallelization. There are two main sources of parallelism: Obviously,
each subproblem of the candidate list can be solved independently from the others. This can be
accomplished by spawning more than one instance of the LP module, either on one machine
(reasonable for multi-processor systems) or on a cluster of computers connected by a network.

The second source lies within the processing of a single subproblem: the individual tasks
can be parallelized with the LP solver, which means a node can be completely processed in
roughly the time it takes the LP engine to solve the relaxation. This is the reason that the
potentially expensive cut and variable generators are placed in separate modules outside the
LP module.

In COIN/BCP, the architecture is based on a master/slave model. The tree manager as-
sumes the role of the master process in control of slave processes that execute its orders. The
tree manager is responsible for spawning at least one process of eachtype (LP, cut generation,
variable generation) and keeping them busy until all subproblems are solved.

5.5.1 Inter-Process Communication

COIN/BCP allows the user to choose between sequential and parallel execution. It is based
on an abstract message passing protocol with parallel and sequential implementations. The
former is an interface to the Parallel Virtual Machine (PVM) protocol, the latter emulates a
parallel machine that effectively executes the algorithm sequentially inside asingle process.
Support for other communication frameworks can be added by implementing theabstract base
class of COIN/BCP’s messaging framework.

One instance of an object in memory can never be shared between different modules since
these modules might be executed in different processes or on differentmachines. Instead,
objects can bepackedandunpackedinto a COIN-specific buffer class (BCPbuffer). The mes-
saging framework uses these buffers for communication between modules,thus it is possible
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to transmit user-defined objects by implementing methods for packing and unpacking objects
of these types.

5.5.2 Fault Tolerance

Using distributed computation, fault tolerance becomes important because a single crashed
machine should not cause the termination of the whole program. For this purpose, the tree
manager tracks all processes and restarts them as necessary. When aprocess is lost, the
subproblems assigned to this process are reassigned to other processes. Additionally, new
machines can be added to the distributed network on the fly without having to restart the com-
putation.

5.6 Developing Applications with COIN/BCP

This section gives a brief overview of the basic steps for developing an application with
COIN/BCP. It focuses on the parts that will be modified in our local branching framework,
a more complete description can be found in the COIN/BCP user manual [36].

Developing an application for a specific problem basically means subclassing some of
COIN/BCP’s provided classes, implementing some abstract methods and overriding others to
diverge from default behavior. The main classes designed for derivation by the user are:

• BCP lp user: The user-defined LP module extension. By subclassing it it is possible to
modify the LP module’s decisions (e.g. whether to branch or generate cuts)and to store
problem-specific data. One object of this type is generated for each LP process.

• BCP tm user: The user-defined tree manager extension. It is embedded into the tree
manager module and is responsible among other things for initializing the problemand
deciding on the tree search strategy.

• BCP vg user is used for implementing user-defined variable generators.

• BCP cg user provides a possibility to generate cuts inside a separate process.

• USER initialize: This class is used for instantiating objects of the derived BCPxx user
classes.

• BCP cut: This abstract base class is used for describing cuts, allowing the user toderive
problem-specific cut classes. The subclasses for core, indexed andalgorithmic cuts are
derived from this class.

• BCP var: This class can be subclassed for describing user-defined variable types. Sub-
classes for core, indexed and algorithmic variables are already defined.

• BCP solution: The abstract base class for describing feasible solutions. A generic
implementation exists (BCPsolutiongeneric).

In the BCPtm user and BCPlp user classes there are some key methods that are of great
importance for the implementation of our local branching framework. For a complete descrip-
tion of these classes, refer to the autogenerated documentation and the user’s manual [36].
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5.6.1 TheBCP tm user Class

• pack module data(): This method is invoked to pack the data needed to start the com-
putation in other modules. This can be used for sending problem-specific data (e.g. local
branching parameters) to the LP module.

• unpack feasible solution(): This method is called when the tree manager received a
new feasible solution. By overriding this method the user getseveryfeasible solution
found by a LP module, which can be used for further enhancements (e.g.crossover
between two or more solutions when using a genetic algorithm).

• initialize core() andcreate root() are used for initializing the problem (probably by
reading it from a file) and setting up the root node of the search tree.

• compare tree nodes(): This method is essential for the tree search strategy. It is in-
voked by the tree manager when a new tree node was received which will be inserted
in the candidate queue. By overriding this method it is possible to use an arbitrary
tree search strategy, we use this to calculate local tree nodes before anyother tree nodes.
The standard implementation can be configured by a parameter to perform either a depth
first, breadth first, or best bound first tree search.

The candidate queue

The tree manager keeps a list of all unprocessed subproblems in a singlecandidate queue. This
is also known as asingle-pool BCP algorithm. The candidate queue is implemented in the
BCP nodequeueclass as a heap-based priority queue. When the tree manager receivesnew
subproblems from one of the LP processes, thepriority of the item is determined indirectly
by repeatedly calling the binary comparetreenodes() function until the final position of the
subproblem has been found. The subproblems remain in the candidate queue until taken out by
the tree manager for an idle LP process. Since the lower bound may have increased since the
subproblem was inserted into the queue, the subproblem may be pruned before it is actually
sent to an LP process. In this case, the next subproblem is taken from the queue.

5.6.2 TheBCP lp user Class

• unpack module data(): This method is the counterpart to the packmoduledata()
method of the BCPtm user class. It receives the information sent by the tree manager
and can be used to initialize problem-specific data in a LP module.

• initialize solver interface() can be overridden to use a specific LP engine (like COIN’s
own CLP solver or the commercial CPLEX solver).

• initialize new search tree node(): This method is called before a new tree node is
solved, providing an opportunity to tighten or fix variables.

• generate heuristic solution(): When the problem’s structure allows to quickly gen-
erate feasible solutions based on the current LP solution (e.g. by clever rounding of
fractional values), this method can be overridden to generate feasible solutions. By
finding good solutions the search tree size can be drastically reduced.
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• select branching candidates(): This method decides whether to branch or not, and
selects branching candidates. The default implementation uses branching on fractional
variables, the local branching framework will override this method to implementlocal
branching cuts.
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Chapter 6

Implementation of the Framework

The main intention for creating a local branching framework was to provide aclean, reliable
and extendable framework for local branching metaheuristics. The main design goals of the
local branching framework are:

• Problem-independent functionality: The local branching framework should be usable for
any binary IP problem. Therefore, it should not make problem-dependent assumptions
and separate local branching logic from problem-dependent functionality.

• Explicit local branching metaheuristics: It should be possible to literally write a meta-
heuristic function without being forced to scatter the algorithm over many COIN/BCP
classes.

• “Transparency”: The implementation of an algorithm for COIN/BCP should not be
much different from the implementation using our local branching framework. Further-
more, existing COIN/BCP advantages such as parallelization should not be affected by
local branching.

• Avoid changes to COIN/BCP sourcecode: It would have been possible to embed local
branching directly into the COIN/BCP source repository. However, this would tie lo-
cal branching very close to COIN/BCP’s internals which are subject to change at will.
Additionally, it would be much harder to integrate future bugfixes and enhancements of
COIN/BCP.

• Hide COIN/BCP internals: The complexity of COIN/BCP should be hidden from the
local branching metaheuristic. Instead, service methods for querying thecurrent state of
local branching should be provided.

These goals were met by subclassing the predefined user classes of COIN/BCP (mainly
BCP lp user and BCPtm user) and embedding the local branching algorithm in those sub-
classes. Additionally, alocal tree managerclass provides handlers and parameters for con-
trolling the flow of the local branching algorithm. This way most of the complexity and the
COIN/BCP-specific implementation is hidden from the user.

Ideally, enabling local branching for an existing COIN/BCP program would be done by
replacing the COIN/BCP user classes with the framework’s derived classes. Of course, some
additional initialization has to be performed since some classes of the framework need to be
subclassed by the user again.
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The main classes of the framework are:

• LB tm: the local branching framework’s tree manager implementation. It is responsible
for managing local trees, creating and terminating local trees, and controlling the LP
modules.

• LB lp: the local branching framework’s LP module. It executes the tree manager’s in-
structions regarding local branching, i.e. creating local cuts in the branching operations
according to the given parameters (e.g. value ofk).

• LB MetaHeuristic: the user’s control module. It provides methods for the user to create
and terminate local trees, provides statistical data about all local trees, and handlers
that are repeatedly called and are intended to be used to implement another high-level
heuristic like an evolutionary algorithm. When using the framework, this is the main
class the user has to care about. Unlike COIN/BCP modules, this module is not executed
within its own process, but is attached to the tree manager module.

• LB init: the local branching framework’s implementation of the USERinitialize class.
It is used to initialize instances of the tree manager (LBtm) and LP modules (LBlp).
Currently LB init does not implement any initialization logic on its own, it merely exists
for extension purposes.

• LB cut: a simple row cut used for the Hamming distance constraint.

• LocalTreeManager: an internal data manager class that is responsible for tracking
all local trees, managing the found solutions for local trees, and maintaininga list of all
currently active local trees. The user probably does not need to override this class except
when additional data about local trees should be stored.

• LocalTreeIndex: used to store information about all existing local trees. An instance of
this class is shared by the LBMetaHeuristic and LocalTreeManager objects, the latter
being mostly responsible for updating the information in the LocalTreeIndex,while the
metaheuristic object can use the index to determine its actions (e.g. terminating a local
tree that appears to be stagnating).

• LocalTree: keeps information about a single local tree. Everything the tree manager
(and therefore the other local branching classes) knows about a local tree is kept in
a LocalTree object. For example, it contains information about the number ofactive
nodes, the number of created nodes since the last improvement of the objective value or
the current best solution found in the tree.

Figure 6.1 shows an UML diagram for the classes attached to the LBtm class.
There are four classes that must always be subclassed for a workingprogram. The methods

to be implemented are defined by the COIN/BCP superclasses and have to be implemented
anyway to get a working program (except for the LBMetaHeuristic subclass).

• LB tm: packcut algo() and unpackcut algo() must be able to pack and unpack LBcut
row cuts (although other custom cut types can be supported too). initializecore() must
be implemented to initialize the core matrix, ending with a call to LBtm’s version of this
method to complete initialization. The user must also implement the createlbh() method
to return a new instance of his implementation of the LBMetaHeuristic subclass.

30



Figure 6.1: UML class diagram for the tree manager extension

• LB lp: packcut algo() and unpackcut algo() have to be implemented similarly to the
user’s LB tm implementation. initializesolver interface() has to create the LP engine
for the LP process. generateheuristicsolution()maybe implemented to obtain feasible
solutions from LP results (e.g. by clever rounding).

• LB init: lp init() and tm init() are implemented to return new instances of the user’s
LB lp and LB tm subclasses. The tminit() method is a good place to initialize the
problem instance. LBtm’s initialize() method has to be called immediately after the
tree manager has been created.

• LB MetaHeuristic: at least initialsolution() must be implemented to return the initial
solution used for the very first local tree. The user probably wants to override some
other methods (especially treefinished()) in order to create more local trees during the
computation process.

6.1 Integrating Local Branching into COIN/BCP

The main effort of implementing local branching went into the interaction between the local
branching metaheuristic and the COIN Branch and Cut framework. A major goal was to
exploit the existing framework as much as possible. Rewriting parts of the COIN/BCP code
to implement local branching would leave the user stuck to exactly one versionof COIN/BCP,
without having the benefit of upcoming enhancements and bugfixes.

Our implementation requires only minimal patches of existing COIN/BCP code where the
original user classes did not provide the necessary flexibility. These changes are described in
appendix A.

6.1.1 Identifying Local Tree Nodes

COIN/BCP provides a mechanism to attach anuser data objectto nodes for storing individual
information about each node. By creating a subclass of BCPuserdata and creating methods
to pack and unpack objects of this subclass to a BCPbuffer, the LP modules can attach any
user-defined data to a single node of the search tree.
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The local branching framework uses this method to assign each node aLB userdataob-
ject. Its main components are thenode type, the unique number of its local tree if it is in a
local tree and some internal information. The node type distinguishes three types of nodes:

• UD LocalRoot: represents alocal root node, i.e. the root node of a local tree.

• UD NormalRoot: represent anormal root node, i.e. the root node for the search tree
outside the local tree.

• UD LocalNode: represents a node in a local tree.

Note that nodes outside a local tree do not have a type, in fact they have no assigned user
data objects at all since there is no extended information that might be of interest. The terms
local andnormal root node emerged from the way COIN/BCP handles branching: when a
subproblem is branched, appropriatebranching objectsare created (containing the variables
or cuts to be branched on), and these are used to create two or more child nodes that represent
the root nodes of the new subproblems. When local branching is initiated, branching occurs
on a local branching constraint, i.e. on a cut. Two children are created: one with a Hamming
distance of∆(x, x̄) ≤ k, the other with a Hamming distance of∆(x, x̄) > k. These child
nodes represent the root nodes of the new subproblems: the first being thelocal root node, the
second being thenormal root node.

The children of the local root node form a local tree and are assigned an unique identifi-
cation number (ID), represented by the classLocalTreeId. In order to guarantee unique tree
IDs even when the trees are created in different LP processes, a LocalTreeId consists of the
internal COIN index number of its root node and the unique index number ofthe LP process
where it was created (supplied by the tree manager). The other classes do not care about Lo-
calTreeId’s internals, all they need are the pre-defined operators (==, ! =, <) and the packing
and unpacking methods for transferring LocalTreeIds between modules.

6.1.2 The LB tm Module

The LB tm module provides our own implementation of COIN/BCP’s tree manager module. It
is derived from BCPtm user and implements some of its methods to integrate local branching
into the tree manager. It provides the LP modules with commands concerning local branching,
is able to create local trees by transmitting the appropriate root nodes and keeps track of the
number of created and pruned nodes for all local trees.

LB tm implements several methods of the BCPtm user class:

• pack module data(): sends miscellaneous initialization information to the LP process.
This includes the initial solution for local branching, if local branching is enabled at all,
and the value ofk to be used for the first local tree.

• pack user data(): this method is called by COIN/BCP when a node with an user data
object is sent to a LP module. Additionally to packing the node’s LBuserdata object,
the tree manager updates its tree statistics about pruned nodes and sends additional in-
formation when a new local tree is started (i.e. the initial solution, value ofk, and some
other necessary information).

• unpack user data(): used to unpack an LBuserdata object sent from a LP process.
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• unpack feasible solution(): this method is invoked by COIN/BCP when a new feasible
solution was sent by a LP process. This method unpacks the feasible solution (of type
BCP solutiongeneric) and updates the LocalTreeIndex’s statistics when it was foundin
a local tree. When a new global optimum is found, the solution is broadcastedto all
active LP processes using COIN/BCP’s messaging framework.

• compare tree nodes(): this binary comparison function is crucial for the local branch-
ing metaheuristic. It is called by COIN/BCP to insert a new tree node in the internal can-
didate queue. The nodes are ordered by priority, and the first node is the next to be sent
to an idle LP process. COIN/BCP implements this method in a way that it represents
a certain tree search strategy (i.e. ordering nodes by level for breadth-first or by upper
bound for best bound first search). The local branching framework extends this method
by always preferring local tree nodes to “normal” nodes. When both nodes are local tree
nodes (or both are normal nodes), the COIN/BCP comparison function is called.

6.1.3 The LB lp Module

The LB lp module implements local branching for the LP module. It executes the commands
sent from the tree manager (LBtm) module, and is able to create local trees when a normal
root node is sent.

The following methods of the BCPlp user superclass have been implemented:

• unpack module data(): the counterpart to LBtm::packmoduledata(). Initialization
of this LP process is performed, and common parameters like the value ofk are set, and
the initial feasible solution used for local branching is unpacked.

• pack user data(): packs an LBuserdata object to a buffer.

• unpack user data(): unpacks an user data object. This method is called by COIN/BCP
when a new node with an attached user data object arrived from the tree manager. The
additional information sent by LBtm::packuserdata() when a new local tree should be
created is also stored in the LBlp object.

• unpack user message(): this function was patched into COIN/BCP to allow trans-
mitting user-defined messages between the tree manager and LP modules. By setting
a certain message tag number this method gets called when the message arrivesat the
process.

• pack feasible solution(): packs a feasible solution to be sent to the tree manager. Ad-
ditional to its predefined behavior, the local branching framework adds the current user
data object if the feasible solution was generated in a local tree. This makes it possible
for the tree manager to assign each received solution to the local tree where it was found.

• initialize new search tree node(): this function gets called before a node is processed
(i.e. before the LP relaxation is computed). This allows the user to tighten variable and
cut bounds. The local branching framework performs two major tasks in this method:

– When the local root node of a new tree is processed, variable fixing mightoccur.
A given percentage of all free variables that is equal in the initial solution of the
local tree and the current LP result is fixed to its value.
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– As explained in section 4.2.3, the inverse constraint when fixing variables isex-
pressed as a row cut. Depending on whether the corresponding local tree was
completely solved, this row cut has to be (de-)activated when the normal root node
is processed.

• select branching candidates(): this method is invoked by COIN/BCP when the LP
relaxation of a subproblem has been solved. This method can either decideto repro-
cess the subproblem when cuts have been added, or to return one or more branching
objects. When a local tree should be created, an appropriate local branching constraint
(a Hamming distance cut by default) is created and a branching object is returned. The
local branching cut is created by the virtual method createlocal constraint() that can be
re-implemented by the user.

• set actions for children(): when a branching object was chosen, the LP process de-
cides for each child whether to keep it for immediate processing or to return itto the tree
manager. At most one child can be kept in a LP process. The local branching framework
uses this method to force processing of the local root node when a new tree was created.

• set user data for children(): the user data information for the child nodes of a branch-
ing object is generated after the branching object was chosen. When a new local tree
is created, this method sets the local tree identification number and other internal data
about the local tree. When an existing local tree is branched, it propagates the informa-
tion stored in the current user data object to its children.

Creating the Hamming distance cut

LB lp::createhammingconstraint() generates a Hamming distance constraint used for local
branching. It resembles the local branching constraint as described by Fischetti and Lodi. In
its current implementation it is restricted to binary IPs. It can be used as a template for custom
local cut generators.

Note that createhammingconstraint() is not virtual, the framework calls the virtual func-
tion createlocal constraint() when creating local cuts which in turn calls the Hamming dis-
tance generator. When implementing new cuts, simply override the latter virtual function.
Both functions return a local branching object and get information aboutthe current node
through their input parameters:

• lpres represents the current LP optimum.

• vars contains all available variables at the current node.

• cuts contains all current cuts. The generated local cut(s) can not be appended to this
collection, they must be contained in the returned branching object.

• br sol is the feasible solution sent from the tree manager to be used for local branching
(the initial solution).

The creation of the Hamming distance constraint is straight-forward: first, the feasible
solution brsol is unpacked to a local array for easier access. Then the variable coefficients
of the cut are generated. Each variable that flips its value in any feasible solution must be
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detected, and the sum of all changed variables must not be greater thank. Thus, the coefficients
for the cut are:

cj :=
{ 1 if j ∈ S0 = {j : x̄j = 0},

-1 if j ∈ S1 = {j : x̄j = 1},
(6.1)

wherex̄ is the initial solution for the local tree. The local cut is then described as

0 ≤
∑

j∈S0

xj +
∑

j∈S1

(1 − xj) ≤ k (6.2)

for any feasible solutionx. Simple transformation leads to the row constraint as it will be
passed to COIN/BCP:

− |S1| ≤
∑

j∈S0

xj −
∑

j∈S1

xj ≤ k − |S1|. (6.3)

After creating a row cut with the bounds for the local tree and the rest of the search tree,
some variables are selected for fixing if the tree manager requested variable fixing for this local
tree. The indices of all free (non-fixed) variables equal in both the initialand the current LP
solution are stored in an array, which in turn is used to randomly pick the requested number of
variables. An additional constraint for the normal tree is added as described in section 4.2.3.
The variables of the local tree will be fixed when initializenew searchtreenode() is called
for the local root node. The list of picked variables can be kept inside the LB lp module since
the local root node is processed immediately after branching by the same process.

6.2 Managing Local Trees

In order to provide a clean separation between the low-level local branching implementation
represented by the LBtm and LB lp classes and global local branching state information, the
LocalTreeManagerclass was introduced.

It encapsulates all methods for tracking local trees, such as maintaining active node num-
bers and assigning found solutions to local trees. ALocalTreeIndexobject is used for storing
the data, which is shared with theLB MetaHeuristicobjects that is responsible for controlling
the local branching algorithm.

To emphasize the different purposes of these classes, a quick overview of the control dis-
tribution follows. All classes below (except LBlp) are effectively singletons inside the LBtm
process.

• The LB lp module(s) process individual subproblems.

• The LB tm module assigns subproblems to LBlp modules and receives all new sub-
problems and solutions. When it receives information about a local tree (e.g. a new
solution was found), the appropriate LocalTreeManager method is called.It also polls
the LB MetaHeuristic object for commands, e.g. creation or termination of local trees.

• The LocalTreeManager is mostly a passive module that provides data manage-
ment routines concerning local trees. Its only active part lies in the activation of
LB MetaHeuristic routines on certain events, e.g. calling a method to notify the meta
heuristic of a new solution or a terminated tree.
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• The LB MetaHeuristic object is mainly responsible for controlling local branching –
that is, creating new local trees or terminating existing ones. Additionally, the initial
solution for the first local tree is generated inside this class.

• The LocalTreeIndex serves as shared data pool for the LocalTreeManager and
LB MetaHeuristic classes. The former is responsible for keeping the information up
to date, the latter uses it mainly as decision source (e.g. to terminate all trees with more
than 50.000 nodes).

6.2.1 The LocalTreeIndex

The LocalTreeIndex gathers information about all local trees and provides miscellaneous sta-
tistical information, e.g. the number of active trees or the number of created nodes per tree.

The LocalTree class

A local tree is represented by aLocalTreeobject. This class provides several get and set
methods. The latter are called by the LocalTreeManager, but the former can be also used in
some LBMetaHeuristic methods to query miscellaneous information about the given local
tree. The most significant properties of a local tree are:

• get nodes created() returns the total number of created nodes in this local tree.

• get nodes deleted() returns the total number of deleted nodes in this subtree. This in-
cludes pruned nodes (because of their upper bound), infeasible nodes, and nodes deleted
by the tree manager when a local tree was terminated.

• get active nodes() returns the number of active (i.e. not processed and not deleted)
nodes, in other words the difference between created and deleted nodes. A local tree
with no active nodes is terminated, all active local tree must have at least one node that
has not been deleted.

• get nodes created since improvement() returns the number of created nodes since
the last improvement of the best solutionin this local tree.

• get nodes deleted since improvement() is the equivalent number for deleted nodes.

• get terminated() returns true when this local tree has been explicitly terminated. This is
a helper function for the user to avoid terminating the same tree several times (since tree
termination might not occur immediately, depending on the number of active nodes.)

The LocalTreeIndex class

The LocalTreeIndex class stores all local trees in an associative container (using the previ-
ously introduced LocalTreeIds as key and LocalTree as value type). The local tree manager is
responsible for creating new entries when necessary, so the LocalTreeIndex actually provides
a single service method:

find() accepts a LocalTreeId as parameter and returns the corresponding LocalTree object,
or throws an exception when the local tree does not exist.
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Additionally, miscellaneous statistical information about all local trees (e.g. thebest global
solution found so far, or the number of nodes created since the last tree was terminated) is
provided through getter methods similar to those in the LocalTree class. For a complete de-
scription, refer to the autogenerated class documentation.

6.2.2 The LocalTreeManager

The LocalTreeManager is instantiated by the LBtm object and assumes control over the Lo-
calTreeIndex data storage. It provides a clean interface for all tasksconcerning local tree in-
formation, such as assigning solutions to local trees, adding created nodes or removing deleted
nodes. Additionally, it maintains the lists for active, terminated and aborted trees in the Lo-
calTreeIndex. The user probably does not want to interfere with the LocalTreeManager’s
methods, they are automatically called from LBtm when needed. Instead, the LocalTreeMan-
ager delegates control to the LBMetaHeuristic object, which will be implemented by the user
and is responsible for local tree control.

6.3 Controlling Local Branching

The LB MetaHeuristic class provides a clean and simple encapsulation of the local branching
algorithm. Its main goal is to provide an interface to the local branching framework without
requiring the user to deal with the internals of COIN and the framework. LBMetaHeuristic is
an abstract class that does not implement any local branching functionality. However, it takes
little to implement the standard local branching algorithm.

LB MetaHeuristic operates asynchronously in the sense that its actions, for example local
tree creation, are not immediately executed. Instead, internal flags indicatethe action to be
taken by the tree manager when it is possible. This limitation is caused by the internal structure
of COIN which imposes certain limits on direct control of the computation in exchange for
performance, efficiency and parallelism. This should be taken into account when advanced
tasks, such as creating multiple local trees at once, do not work as expected.

Local branching control is basically performed by two operations: creating local trees and
terminating local trees. Additional parameters influence local branching, such as the value of
k, or the amount of variables to be fixed.

LB MetaHeuristic offers the following methods and data fields for local branching control:

• create tree() sets internal variables to tell the tree manager that a new tree should be
created. The initial solution can be passed as a parameter, or the currentincumbent
solution will be used. Note that subsequent calls to this function have no effect since
the actual tree creation is executed asynchronously by the tree manager.For creating
multiple trees at once, the calls to createtree() have to be synchronized, for example
using the treecreated() handler described below.

• terminate tree() tells the tree manager to terminate the local tree with the given Local-
TreeId.

• terminate active trees() terminates all active trees. This may be especially useful for
terminating local branching.

• lb k contains the value ofk to be used for new local trees.
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• lb fixvars contains the amount of variables to be fixed relative to the total number of
variables.

The local branching algorithm is determined by LBMetaHeuristic’s reaction to certain
events. These event handlers are called by the LocalTreeManager and offer great degrees of
freedom for creating own local branching metaheuristics. The event handlers are:

• initial solution() is called to obtain the initial solution for the very first local tree. The
parameters lbk and lbfixvars might also be set in this procedure.

• tree created() is called when a new tree was generated. The corresponding tree iden-
tification and the tree object are passed as references. After creating atree with cre-
ate tree(), this is the first occasion to create another local tree.

• tree finished() is called when a tree is finished, i.e. it has no active nodes remaining.

• new node generated() is called whenever a new node was generated in a local tree.
Since this method gets called regularly, time-related tasks (such as terminating local
trees above a certain node limit) can be implemented in this method.

6.3.1 Implementing a Basic Local Branching Algorithm

In order to emphasize how the LBMetaHeuristic object can be used for implementing local
branching, consider the following task. Standard local branching should be implemented, i.e.
one active tree at any given time, with a node limit of 10.000 nodes per local tree. This is
accomplished by implementing LBMetaHeuristic’s event handlers in the following way:

• initial solution() returns a heuristically generated solution and setslb k andlb fixvars
to the desired values.

• tree terminated() creates a new local tree by calling createtree(). This single function
call implements the standard sequential local branching algorithm and ensures that there
is always only one active local tree.

• new node generated() uses the LocalTreeIndex object (index) to fetch the number
of created nodes for the active tree and calls terminatetree() when the node limit was
exceeded.
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Chapter 7

Multidimensional Knapsack Problems

7.1 Introduction

Given a knapsack of fixed capacityc andn items with profitspj and weightswj for j = 1 . . . n,
the task is to find the most valuable subset of items that fits into the knapsack. Weassume that
p1 . . . pn andw1 . . . wn are positive integers. Theunbounded knapsack problemdoes not limit
the number of times each item type can be used. In thebinary or 0-1 knapsack problem, the
number of items is constrained to be 0 or 1. Themultiple-choice knapsack problemrequires the
items to be chosen from disjoint classes. In themultiple knapsack problem, several knapsacks
are to be filled simultaneously.

The rest of this chapter will be based on binary knapsack problems. Formally, a binary
knapsack problem can be stated as:

maximize
∑n

j=1 pjxj (objective function) (7.1)

subject to
∑n

j=1 wjxj ≤ c (constraint)

xj ∈ {0, 1} j = 1 . . . n

In this formulation,xj is 1 when itemj is included in the knapsack and 0 otherwise.
p1 . . . pn contains the profit (or value) for each item, andw1 . . . wn the weight or resource
usage. Note that it is trivial to obtain a (poor) feasible solutionxj = 0 for all j.

This section is based on the book on knapsack problems by Pisinger et al. [21] which
provides a thorough reference for the family of knapsack problems.

7.1.1 Algorithms for Knapsack Problems

All knapsack problems are NP-hard, therefore it is highly unlikely to find an optimal algorithm
with a polynomial worst-case time complexity. Despite this, there are algorithms thatachieve
reasonable solution times also for large instances. The following overview of exact and ap-
proximate algorithms is based on [32]. Note that the multidimensional knapsack problem is
more complex and thus usually not covered by highly effective approaches like the dynamic
programming approach.

• Branch and Bound: A Branch and Bound implementation for knapsack problems was
first proposed by P. J. Kolesar in 1967 [23].

39



• Dynamic programming: Basically an enumeration algorithm which can achieve excel-
lent performance on some families of knapsack problems, especially those bounded by
relatively low integer capacity. For these it is possible to obtain an optimal solution in
Θ(nc) with n being the number of items andc the knapsack capacity.

• State space relaxation: A dynamic programming relaxation where the coefficients are
scaled by a fixed value. The complexity of an algorithm may be decreased, but the
optimal solution may no longer be found. This is an interesting approach for efficient
approximate algorithms.

• Preprocessing: Some variables may be fixed at their optimal values by using bounding
tests.

• Fully polynomial time approximation schemes(FPTAS): These are heuristics that can
find a solutionz with a relative error bounded by any constant valueε, i.e. z−z∗

z∗ ≤ ε,
wherez∗ is the optimal solution value, in polynomial time bounded by the length of the
input and1

ε . A fully polynomial approximation scheme for the binary knapsack problem
was presented by Ibarra and Kim in 1975 [19].

7.1.2 Multidimensional Knapsack Problems

The generalization of the knapsack problem to more than a single constraint isthemultidimen-
sional knapsack problem, also known asd-dimensional knapsack problem(d-KP) or multicon-
straint knapsack problem. It is defined as an integer program with the following structure:

maximize
∑n

j=1 pjxj

subject to
∑n

j=1 wijxj ≤ ci i = 1 . . . d (7.2)

xj ∈ {0, 1} j = 1 . . . n

An equivalent formulation using vectors is:

maximize cT x

subject to Wx ≤ c (7.3)

x ∈ {0, 1}n, c ∈ N
d
0, W ∈ N0

d×n

There are two main characteristics of integer programs that describe multidimensional
knapsack problems: First, they are particular difficult instances of integer programming be-
cause the constraint matrixW is unusually dense, while most other relevant classes are defined
by sparse constraint matrices. But analogously to other knapsack problems it is also particu-
larly easy to find a feasible solution:xj = 0 for all j, whereas in general integer programming
finding feasible solutions might be as hard as finding an optimal solution.

Typically the number of itemsn exceeds the number of constraintsd. A rough bound
for computing optimal solutions of multidimensional knapsacks with todays algorithms and
computers isn = 500 andd = 10.

It has been shown by Korte and Schrader in 1979 [24] that the existence of a fully polyno-
mial time approximation scheme for a multidimensional knapsack problem even with only two
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constraints (d = 2) would imply P = NP , i.e. that every NP-hard problem could be solved
in polynomial time. However, there exists a polynomial time approximation scheme (PTAS)
with a running time ofΘ(ndd/εe−d) [4]. Compared to a FPTAS, a PTAS has the drawback of
an exponential increase in running time with respect to the accuracy, i.e. its running time is
polynomial only with respect to the input length, but not to the requiredε value.

7.2 Heuristic Algorithms

The enormous complexity of multidimensional knapsack problems motivated extensive re-
search in heuristic algorithms.

7.2.1 Greedy Heuristics

Greedy heuristics work by inserting all items that do not violate any resource constraints (pri-
mal greedy heuristics) or by first putting all items into the knapsack and then removing items
until the solution becomes feasible (dual greedy heuristics). Since the order in which the
items are inserted or removed matters and some items are more valuable than others(i.e. offer
a relatively high profit for relatively low resource usage), items are sorted by an arbitraryeffi-
ciencyej before inserting them into the knapsack. The most obvious efficiency measure for a
one-dimensional binary knapsack problem is the relative profitej =

pj

wj
.

Since there is more than one resource constraint in multidimensional knapsack problems,
there is no such trivial method of determining the efficiency of an item. The nearest counterpart
would be the aggregation of alld constraints, i.e.

ej =
pj

∑d
i=1 wij

, (7.4)

whereej would be the efficiency for itemj. The main drawback is that it does not work
well when the resource constraints are of different orders of magnitude. In this case, one
constraint may completely dominate all others.

This can be avoided by taking the relative weight for each constraint anddefine

ej =
pj

∑d
i=1

wij

ci

. (7.5)

Senju and Toyoda [38] proposed a different way to incorporate the relative distribution of
weights by including the difference between the capacity and the total resource usage of all
items for a given constraint.

ej =
pj

∑d
i=1 wij(

∑n
j=1 wij − ci)

. (7.6)

A generalized formulation of these efficiency measures was proposed byFox and Scud-
der [37] by introducing arelevance valueri for every constraint.

ej =
pj

∑d
i=1 riwij

(7.7)

Equation (7.4) can be derived by settingri = 1 for all i, (7.5) by settingri = 1
ci

, and (7.6)
by settingri =

∑n
j=1 wij − ci.
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Advanced adaptive algorithms adjust the relevance values when an item was inserted, an
early version of such an algorithm can be found in [38].

7.2.2 Relaxation-Based Heuristics

Heuristics based on the LP relaxations of integer programs can also be used for multidimen-
sional knapsack problems with little or no adaptation. A simple and fast approach was given
by Bertsimas and Demir in 2002 [3]. It starts by fixing variables in the LP solution depending
on a parameterγ ∈ [0, 1]:

xH
j :=

{ 1 if xLP
j = 1,

0 if xLP
j < γ.

(7.8)

In the second phase the subproblem defined by the undecided variablesγ ≤ xLP
j < 1 is

solved again, and further variables are fixed:

xH
j :=

{ 1 if xLP
j = 1,

0 if xLP
j = 0,

0 for j = argmin{xLP
j | 0 < xLP

j < 1}.
(7.9)

The last assignment fixes the variable with the least fractional value to zero. This second
phase is repeated until all variables are fixed to zero or one. Small valuesfor γ lead to better
solution values but longer running times, while bigger values offer better performance. Setting
γ = 1 is equivalent to rounding down the first LP solution. The authors proposed setting
γ = 0.25 when performance is more important than solution quality.

7.2.3 Hybrid Algorithms

More advanced algorithms combine different approaches to the multidimensional knapsack
problem. They are often more complex and require more running time, but canyield near-
optimal solutions in many cases where simpler heuristics fail.

One such approach was proposed by Lee and Guignard in 1988 [27].Their algorithm starts
with a modified version of Toyoda’s primal greedy heuristic [40]. Insteadof deciding on each
item separately, they decide on several items at once before recomputing the relevance values,
leading to better performance. Based on this feasible solution, the LP relaxation is solved. A
comparison between the feasible solution and the LP solution in combination with thereduced
costs of the LP solution is used to fix some variables and reduce the problem size. These steps
are iterated, the number of iterations is controlled by a parameter.

A more recent heuristic was given by Vasquez and Hao in 2001 [41]. They combine linear
programming and tabu search to search binary areas around continuoussolutions. This is
facilitated by additional constraints that limit the search space around a solution, like a sphere
constraint that geometrically isolates the search space.

7.2.4 Evolutionary Algorithms

Evolutionary algorithms (EAs) were inspired by biological evolution and try tomimic the
evolutionary process. An evolutionary algorithm keeps one or morepopulationsof solutions
for a given problem, and tries to improve these solutions by imitating evolutionaryprocedures
like selection, recombinationandmutation.
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Several evolutionary algorithms exist for the multidimensional knapsack problem. Major
differences between algorithms concern varying operators for recombination and mutation,
and also different representations of the solutions themselves. Raidl [33, 34, 35] proposed
different approaches for the multidimensional knapsack problem, also combining evolutionary
algorithms with local improvement heuristics.

A particularly effective approach is based on an EA by Chu and Beasley[6]. It uses adirect
representationusing bit vectors∈ {0, 1}n for representing solutions. Recombination is done
by uniform crossover, i.e. a child solution is created by randomly picking bitsfrom one of its
parents. Bit-wise mutation can be used to increase the diversity of solutions.Both crossover
and mutation can produce infeasible solutions, so a repair algorithm is required. A two-phase
heuristic is used for repairing and local improvement: the items are ordered by an utility ratio
similar to the efficiency measures described in section 7.2.1. For repairing solutions, the least
promising items are removed until the solution becomes feasible. The local improvement
algorithm processes items not present in the current solution by decreasing utility ratio and
inserts them if no constraints are violated.

Decoder-based EAsreplace the direct representation of a solution with an encoding
scheme. Recombination and mutation operate on the encoded solutions, implicitly explor-
ing the original search space. The choice of the encoding scheme can greatly influence the
effectivity of recombination and mutation and the convergence of the overall search algorithm.

A possible encoding scheme for knapsack problems usespermutations. Instead of storing
the value for each variable, a permutationπ : J → J with J = {1, . . . , n} is used to repre-
sent a solution. In order to get a direct representation for a solution, decoding starts with the
feasible solutionx = (0, . . . , 0). Then the variables are visited in the sequence described by
the permutation, and variables that do not violate constraints are set to 1. Mutation randomly
exchanges two different positions in a permutation, recombination is done using uniform or-
der based crossover[9] which keeps the ordering (but not necessarily the positions) of the
parent solutions. Apermutation based EAfor the knapsack problem has been proposed by
Hinterding [18] and it has also been applied to the multidimensional knapsack problem by
Gottlieb [17], Raidl [33], Thiel and Voss [39].

43



Chapter 8

A Sample Application: MD-KP

This chapter guides through a sample application for the local branching framework, a Branch
and Cut solver for the multidimensional knapsack problem as described in chapter 7. The goal
is to optimize the following integer program:

maximize
∑n

j=1 pjxj

subject to
∑n

j=1 wijxj ≤ ci i = 1 . . . d (8.1)

xj ∈ {0, 1} j = 1 . . . n

Since the application actually will be embedded into the COIN/BCP main program, it
makes sense to adhere to COIN/BCP’s directory structure. COIN/BCP provides makefiles for
building custom applications where only the added user files have to be defined.

The application source is grouped into the following directories:

• include/ contains all header files for the application’s classes.

• LP/ contains the implementation of this program’s LP module.

• TM/ contains the tree manager module.

• Member/ contains the other classes, in our case the initialization class (descendant of
LB init) and the metaheuristic.

First of all, defining a class to hold a problem instance simplifies the further operations.
In case of the multidimensional knapsack problem, we basically need some arrays to hold the
coefficients of the constraints and the objective function, and the corresponding bounds. This
class is based on the BranchAndCut example from the COIN source and can be easily adopted
to other integer programming problems. It is defined as follows:

class KS prob {
public:

int nItems; ///< Total number of items (= columns)
int nConstraints; ///< Total number of constraints (= rows)

double optimalknown; ///< Known optimal solution, −DBL MAX if unknown

double * clb; ///< Lower bound for each core variable (usually 0.0)
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double * cub; ///< Upper bound for each core variable (usually 1.0)
double * val; ///< Objective value (profit) for each core variable
double ** res; ///< Resource demands
double * rescons; ///< Resource constraints

CoinPackedMatrix* core; ///< Core matrix
double * rlb core; ///< Lower bounds in the core matrix (usually 0.0)
double * rub core; ///< Upper bounds in the core matrix (usually rescons[rownum])

};

Next, the tree manager class will be implemented.

8.1 KS tm implementation

The tree manager implementation is responsible for reading the problem data from a file,
initializing the core matrix of COIN/BCP, and providing methods to pack and unpack cuts.

8.1.1 Test File Format

Our program will read test instances taken from Chu and Beasley’s paper on a genetic algo-
rithm for the multidimensional knapsack problem [6]. These test files contain270 different
instances, ranging from very easy to very complex problems. The problems are described in
plain text, each file contains 30 instances of the same dimension (i.e. the same number of
variables and constraints). The format of the text file is:

• The number of instances (should be 30).

• For each problem:

– Number of variablesn, number of constraintsd, optimal solution (if known).

– The coefficients of the objective functionpj for j = 1 . . . n.

– For each constrainti: the coefficients of the constraintwij .

– The upper bounds of the constraintsci for i = 1 . . . d.

KS tm::readinput() reads the data from the given file name using the given instance num-
ber into a KSprob object which is stored in KStm. Since it is just a very simple line parser
the implementation is omitted here.

8.1.2 Setting up the Core Matrix

The raw core matrix was set up by KStm::readinput() and stored into KSprob::core, but
until now COIN/BCP is not aware of the problem data. To do this, we must override
LB tm::initialize core() to create all core variables and core cuts (i.e. all IP constraints).
The core matrix is put together using the coefficients and upper and lower bounds loaded
by readinput(). In the end, we call the implementation of the superclass because the local
branching framework might have to do some setup actions on its own.

void KS tm::initialize core(BCP vec<BCP var core*>& vars,
BCP vec<BCP cut core*>& cuts, BCP lp relax*& matrix) {
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// initialize core variables
for (int i = 0; i < prob.nItems; ++i)

if (0.0 == prob.clb[i] && 1.0 == prob.cub[i])
vars.push back(new BCP var core(BCP BinaryVar, prob.val[i], 0, 1));

// initialize core cuts
for (int i = 0; i < prob.core−>getNumRows(); ++i)

cuts.push back(new BCP cut core(prob.rlb core[i], prob.rub core[i]));

// create LP relaxation
matrix = new BCP lp relax;
matrix−>copyOf(*prob.core, prob.val, prob.clb, prob.cub, prob.rlb core, prob.rub core);

LB tm::initialize core(vars, cuts, matrix); // execute LB’s initializiation
}

8.1.3 Packing and Unpacking of Cuts

We do not create own cuts in our sample application, but we still have to provide means to
pack and unpack LBcut objects. These cuts will be used for local branching cuts and inverse
variable fixing constraints. Since LBcut already provides methods for packing and unpacking
those cuts, the corresponding implementations in LBtm are very compact:

void KS tm::pack cut algo(const BCP cut algo* cut, BCP buffer& buf) {
const LB cut* lb cut = dynamic cast <const LB cut*>(cut);
if (!lb cut)

throw BCP fatal error(”pack cut algo(): unknown cut type!\n”);
lb cut−>pack(buf);

}

BCP cut algo* KS tm::unpack cut algo(BCP buffer& buf) {
return new LB cut(buf);

}

8.1.4 Sending the Problem Description to the LP Module

The LP module will need the problem description stored in the KSprob object for heuristically
finding feasible solutions. KStm::packmoduledata() allows to send any information to an
LP process when it is created, thus we simply append our problem description to the given
buffer. The local branching framework appends data on its own, so theimplementation of the
superclass is called too.

void KS tm::pack module data(BCP buffer& buf, BCP process t ptype) {
if (BCP ProcessType LP == ptype)

buf.pack(&prob);
LB tm::pack module data(buf, ptype);

}
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Actually only a pointer to the problem description is passed. This is possible since the
focus of the sample application does not lie on parallel execution, but on simplicity. How-
ever, it is a rather trivial task to write packing and unpacking routines forthe KSprob class
(especially since the core matrix does not need to be transmitted).

8.1.5 Creating a KSMetaHeuristic Object

The KSMetaHeuristic implements the abstract LBMetaHeuristic class and contains the user-
defined local branching control methods. Since the tree manager does not know the meta
heuristic’s type a priori, we instantiate a KSMetaHeuristic object by overriding LBtm’s ab-
stract method createlbh():

virtual LB MetaHeuristic* create lbh() {
return new KS MetaHeuristic(ltm−>index, &prob);

}

ltm is the tree manager’s LocalTreeManager object,ltm→indexis the shared LocalTreeIn-
dex, andprobcontains the problem definition initialized by KStm::readinput().

The implementation of the tree manager is now complete, the next task is to implement
the LP module.

8.2 KS lp Implementation

In the LP module implementation, the main effort goes into cut generation and heuristically
finding feasible solutions. First, we need the counterpart to packmoduledata, or the local
branching framework will use the wrong buffer values. Additionally, methods for packing and
unpacking cuts are also required.

void KS lp::unpack module data(BCP buffer& buf) {
buf.unpack(pprob);
LB lp::unpack module data(buf);

}

void KS lp::pack cut algo(const BCP cut algo* cut, BCP buffer& buf) {
const LB cut* lb cut = dynamic cast <const LB cut*>(cut);
if (!lb cut)

throw BCP fatal error(”LB lp::pack cut algo: unknown cut type!\n”);
lb cut−>pack(buf);

}

BCP cut algo* KS lp::unpack cut algo(BCP buffer& buf) {
return new LB cut(buf);

}

We also need to setup the LP solver. Here we will instantiate COIN’s own CLP solver, the
complete version of the sample application also supports CPLEX.

OsiSolverInterface* KS lp::initialize solver interface() {
OsiClpSolverInterface *clp = new OsiClpSolverInterface;
clp−>messageHandler()−>setLogLevel(0);
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return clp;
}

8.2.1 Generating Feasible Solutions

COIN/BCP provides a method where the user can generate feasible solutions from solved LP
relaxations. By generating good feasible solutions early in the computation, the search tree
size can be reduced. However, the heuristic should not be too complex since this method is
called for every solved LP relaxation.

For the multidimensional knapsack problem, we chose a simple greedy heuristicas de-
scribed in section 7.2.1. The efficiency measure is not based on the resource usage of each
variable, but on its value in the LP result. Thus, after sorting the variables by descending LP
value, all variables that do not violate the resource constraints are added to the solution, which
is then returned to the LP module.

BCP solution* KS lp::generate heuristic solution(const BCP lp result& lpres,
const BCP vec<BCP var*>& vars, const BCP vec<BCP cut*>& cuts) {

const double * x = lpres.x();
BCP solution generic* sol = new BCP solution generic(false );

// sort variables by LP result value, then insert them in reversed order (best first)
multimap<double , int > sorted;
for (unsigned int i = 0; i < vars.size(); ++i)

sorted.insert(pair<double , int >(x[i], i));

// track current resource usage
double * myres = new double [pprob−>nConstraints];
for (int j = 0; j < pprob−>nConstraints; ++j)

myres[j] = 0.0;

multimap<double , int >::reverse iterator it;
for (it = sorted.rbegin(); it != sorted.rend(); ++it) {

int i = (*it).second; // number of the variable to be inserted
bool ok = true ;
for (int j = 0; j < pprob−>nConstraints; ++j) {

// check if any resource constraint is violated
if (myres[j] + pprob−>res[j][i] > pprob−>rescons[j])

ok = false ;
}
if (ok) { // insert item into knapsack

for (int j = 0; j < pprob−>nConstraints; ++j)
myres[j] += pprob−>res[j][i];

sol−>add entry(vars[i], 1);
}

}

delete [ ] myres;
return sol;

}
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8.2.2 Generating Cuts

The second main task for the LP module is cut generation. When a LP relaxation was solved,
one can either try to generate cuts violated by the LP result, or the subproblem is branched.
COIN/CGL offers several generic cut generators. If one choosesto generate cuts, it can be
either done for every node, or for nodes meeting a certain condition. In this example, we
choose to generate cuts for nodes at every eighth level of the search tree. We try to create
genericknapsack cover cutsandGomory cuts. The cut generators are first instantiated and
stored in a list. We also set the maximal number of items for the knapsack cut generator.
Higher numbers lead to higher computational complexity, but also higher chances of finding
cuts. Then every cut generator is invoked to generate cuts and store them in cutlist. These cuts
are then appended to thenewcutsoutput parameter.

void KS lp::generate cuts in lp(const BCP lp result& lpres,
const BCP vec<BCP var*>& vars,
const BCP vec<BCP cut*>& cuts,
BCP vec<BCP cut*>& new cuts,
BCP vec<BCP row*>& new rows) {

vector<CglCutGenerator*> cgs;

// generate nodes at every 8th level
if (current level() % 8 == 0) {

CglKnapsackCover* kc = new CglKnapsackCover;
kc−>setMaxInKnapsack(pprob−>nItems);
cgs.push back(kc);
cgs.push back(new CglGomory);

}

if (cgs.size() > 0) {
OsiSolverInterface* si = getLpProblemPointer()−>lp solver;
for (int i = vars.size() − 1; i >= 0; −−i)

si−>setInteger(i);

OsiCuts cutlist;
for (int i = cgs.size() − 1; i >= 0; −−i) {

cgs[i]−>setAggressiveness(100);
cgs[i]−>generateCuts(*si, cutlist);
delete cgs[i];
cgs[i] = 0;

}
for (int i = cutlist.sizeRowCuts() − 1; i >= 0; −−i) {

LocalTreeId id = in localbranching() ? get ks user data()−>id : LocalTreeId();
new cuts.push back(new LB cut(cutlist.rowCut(i), id));

}
}

}

When using cut generation, we have to implement COIN/BCP’s cutsto rows method. It
is used to realize the abstract cut representations to actual rows of the LPrelaxation.

void KS lp::cuts to rows(const BCP vec<BCP var*>& vars, BCP vec<BCP cut*>& cuts,
BCP vec<BCP row*>& rows, const BCP lp result& lpres,
BCP object origin origin, bool allow multiple) {
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const int cutnum = cuts.size();
for (int i = 0; i < cutnum; ++i) {

const OsiRowCut* bcut = dynamic cast <const LB cut*>(cuts[i]);
if (bcut)

rows.push back(new BCP row(bcut−>row(), bcut−>lb(), bcut−>ub()));
else

throw BCP fatal error(”Unknown cut type in cuts to rows.\n”);
}

}

8.3 KS init Implementation

COIN/BCP provides the USERinitialize class to instantiate custom tree manager and LP
module implementations. KSinit implements LBinit, which in turn was derived from
USERinitialize. KS init::lp init() creates a new KSlp object, and KSinit::tm init() instanti-
ates a new KStm object. While the former is called once for every created LP process, the
latter is only called on program startup. Thus it is used to process command lineparameters
and initialize the tree manager by calling KStm::readinput() for the given file name. Addi-
tionally, the global function BCPuserinit() has to be implemented to return a new KSinit()
object.

With these three classes, the basic COIN/BCP implementation is finished. For the standard
COIN/BCP classes, the implemented methods are sufficient for an executableBranch and
Cut algorithm for the multidimensional knapsack problem. The local branching framework
requires the implementation of a fourth class, the local branching metaheuristic.

8.4 KS MetaHeuristic Implementation

All local branching related logic is contained in KSMetaHeuristic, our implementation of the
LB MetaHeuristic class. Our local branching controller accomplishes three maintasks:

• initial solution() creates a heuristic solution used for the first local branching tree.

• new nodegenerated() is called regularly by the framework and monitors local branching
progress. When the given node limits are exceeded, it restarts local branching.

• treefinished() starts a new local tree when the last active tree finished, effectively im-
plementing the sequential local branching algorithm.

8.4.1 Configuring Local Branching

Before the actual local branching implementation is described, we need a way to adjust cer-
tain parameters of our heuristic without recompiling the whole program. COIN/BCP offers
a convenient, generic parameter parser that can be used to load user-defined parameters from
the command line or from a file, perform type checking and sanity checks, and define de-
fault values. In order to utilize COIN/BCP’s parser, we start by defininga parameter class,
KS parameters. It is not derived from any other class, instead for each parameter type (integer,
double, string, ...) it defines enumerations containing the parameters’ names.This class is
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used as a generic type parameter for COIN/BCP’s BCPparameterset::createkeyword list()
and setdefault entries. The first method assigns actual string labels to the user-defined param-
eters, the second methods initializes all parameters with default values.

For example, the following code defines a couple of double parameters andthen imple-
ments COIN/BCP’s methods for using them:

class KS parameters {
public:

enum dbl params {
LB FixVarsInitial,
LB FixVarsIncrement,
LB FixVarsMax,
LB MultiK,
end of dbl params };

};

template <> void BCP parameter set<KS parameters>::create keyword list() {
keys.push back(make pair(BCP string(”LB FixVarsInitial”),

BCP parameter(BCP DoublePar, LB FixVarsInitial)));
keys.push back(make pair(BCP string(”LB FixVarsIncrement”),

BCP parameter(BCP DoublePar, LB FixVarsIncrement)));
keys.push back(make pair(BCP string(”LB FixVarsMax”),

BCP parameter(BCP DoublePar, LB FixVarsMax)));
keys.push back(make pair(BCP string(”LB MultiK”),

BCP parameter(BCP DoublePar, LB MultiK)));
}

template <> void BCP parameter set<KS parameters>::set default entries() {
set entry(LB FixVarsInitial, 0.0);
set entry(LB FixVarsIncrement, 0.0);
set entry(LB FixVarsMax, 0.0);
set entry(LB MultiK, 1.0);

}

BCP parameterset also provides methods for reading parameter from the command line,
from files, or from input streams. It also offers methods for accessingparameter values
(get entry() and setentry()) and packing or unpacking of parameter sets. Since the param-
eters are only important for the local tree metaheuristic, we do not need to pass the parameters
to other modules.

8.4.2 Setting up Local Branching

Before the local branching heuristic takes over control, we have to tell theframework if lo-
cal branching should be enabled at all - and which parameters to use. The event handlers
depend on an already running local branching algorithm (e.g. a new node was generated,
or a tree was terminated). The decision whether to create a local tree or to use standard
branching takes place when the first LP process is initialized in LBtm::packmoduledata().
LB MetaHeuristic::lb maxpassessets the maximum number of local trees. If it is zero, no lo-
cal trees will be generated at all and standard branching will be used. This information is also
used in tree creation methods, which will fail when the number of created local trees exceeds
lb maxpasses.
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The KSMetaHeuristic class sets lbmaxpasses in its readparameters() method, where
the command line is parsed using the parameter methods described in the previous section,
effectively disabling local branching when either the maximum number of local trees or the
value ofk has been set to 0. The value ofk for the very first local tree is also set in this method,
which is called by KSinit::tm init() after the tree manager and the KSMetaHeuristic objects
were created.

8.4.3 Creating the Initial Solution

The initial solution is retrieved by the local tree manager when the first LP process is initial-
ized. To demonstrate the use of pseudo-concurrent tree exploration, we use three different
heuristics to start local branching with three (partially) disjunct local trees. The solution de-
rived from the first LP result is used for the first local tree, and two greedy heuristics with
different efficiency measures provide the other two solutions.

Since the metaheuristic class does not know the first LP result (it is local to the LP pro-
cess), a small workaround forces the local branching framework to actually use the first LP
result: initial solution() returns an empty solution (i.e. with all variables set to 0) and tells
the framework to use the feasible solution derived from the first LP result(if it is better). The
first LP-derived solution is certainly better than the empty solution for any feasible problem
instance, thus it will always be used. The other initial solutions are stored inthe metaheuristic
object and are sent to the tree manager as soon as the first local tree is created.

To summarize the steps above, the initial local trees are created in the followingway:

1. initial solution() calls greedy() to generate two initial solutions using two differentef-
ficiency measures. These solutions are stored in the KSMetaHeuristic object for later
use.

2. initial solution() returns an empty solution to force the framework to use the solution
derived from the first LP result as initial solution for the first tree.

3. treecreated() issues createtree() to create the next two local branching trees.

The implementation of greedy() is similar to the feasible solution generator described in
section 8.2.1. A greedy heuristic inserts the items ordered by an efficiency value determined
by one of the following formulas as described in section 7.2.1:

ej =
pj

∑d
i=1

wij

ci

. (8.2)

The profitpj for itemj is divided by the relative resource usage, i.e. the sum of all relative
weights. The relative weight concerning a given resourcei and an itemj is the absolute weight
wij divided by the resource limitci. This way, weights are scaled to[0 . . . 1] regardless of their
absolute value, leading to a fair consideration of all weights.

ej =
pj

∑d
i=1 wij(

∑n
j=1 wij − ci)

. (8.3)

The second efficiency measure takes the weight distribution into account, i.e. it emphasizes
scarce resources.
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The code for sorting the items follows below, the greedy heuristic for inserting the items is
the same as in section 8.2.1. The parameterfun determines which efficiency measure should
be used.

vector<double > resource usages(pprob−>nConstraints, 0.0);
if (weight distribution == fun) {

// calculate total resource usages for all resources
for (int j = 0; j < pprob−>nConstraints; ++j) {

for (int i = 0; i < pprob−>nItems; ++i)
resource usages[j] += pprob−>res[j][i];

}
}

multimap<double , int > relval;
for (int i = 0; i < pprob−>nItems; ++i) {

double allres = 0.0;
if (relative weight == fun) {

// relative weight of each item
for (int j = 0; j < pprob−>nConstraints; ++j)

allres += pprob−>res[j][i] / pprob−>rescons[j];
} else if (weight distribution == fun) {

// weight distribution according to Senju and Toyoda
for (int j = 0; j < pprob−>nConstraints; ++j)

allres += pprob−>res[j][i] * (resource usages[j] − pprob−>rescons[j]);
}
relval.insert(pair<double , int >(pprob−>val[i] / allres, i));

}

The implementation of initialsolution() is simple. Two solutions are generated, and an
empty solution is returned to force the LP process to use the feasible solution derived from the
first LP result.

BCP solution generic* KS MetaHeuristic::initial solution(
BCP vec<BCP var core*>& corevars,
std::map<BCP IndexType, BCP var*>& vars,
bool & allow lp result) {

solution relative weight = greedy(corevars, vars, relative weight);
solution weight distribution = greedy(corevars, vars, weight distribution);
allow lp result = true ;
return new BCP solution generic(false );

}

The treecreated() handler is called when a new tree was created by the tree manager. Here
we can create the two other local trees from the initial solutions created in initialsolution().

void KS MetaHeuristic::tree created(const LocalTreeId& id, LocalTree& tree) {
if (1 == index.trees.size())

create tree(solution relative weight);
else if (2 == index.trees.size()) {

create tree(solution weight distribution);
}
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8.4.4 Imposing Node Limits on Local Trees

While the framework provides all necessary information for terminating treesabove a certain
node count, the criteria for aborting local trees have to be checked in the meta heuristic. In this
metaheuristic, we will implement a rather simple node-based tree termination schemethat has
the following characteristics:

• Trees will be aborted when their total number of created nodes exceeds agiven limit.

• Trees will be aborted when the number of created nodes since the last improvement of
the best feasible solution found inside the local tree exceeds a given limit.

• When a tree is aborted and the maximum number of local trees is not reached,a new
local tree is created with the current best global solution. Based on the result of the last
local tree, the new tree will be eventually modified:

– When a better solution was found since the last tree was created, local branching
is restarted with this new solution and the initial local branching parameters.

– When no new solutions were found, the new local tree is tightened (if the cor-
responding parameters are set): the number of variables to be fixed is increased,
and/or the value ofk gets modified.

Written as a handler using LBMetaHeuristic::newnodegenerated(), the following code
implements node limits for all local trees. Some additional safety checks occurs, such as
checking if local branching is enabled (lb enabled). Due to COIN/BCP’s asynchronous de-
sign, nodes may be added to a tree event after the tree was terminated. Thusit is also checked
if the current tree has not already been terminated (ltree.getterminated()). The last expres-
sions of the outerif clause formulate the node limits described above using the statistical data
of the LocalTreeIndex.

void KS MetaHeuristic::new node generated(const LocalTreeId& id, LocalTree& tree) {
int maxnodes without improvement =

params.entry(KS parameters::LB MaxNodesWithoutImprovement);
int maxnodes = params.entry(KS parameters::LB MaxNodes);
if (lb k > 1 && lb enabled && !tree.get terminated() &&

((maxnodes without improvement > 0 &&
tree.get nodes created since improvement() > maxnodes without improvement) | |

(maxnodes > 0 && tree.get nodes created() > maxnodes))) {

terminate active trees();
if (index.nodes created since improvement < index.nodes created since newtree) {

// an improved solution was found, restart with this solution
lb fixvars = params.entry(KS parameters::LB FixVarsInitial);
lb k = params.entry(KS parameters::LB K);

}
else if (params.entry(KS parameters::LB FixVarsInitial) > 0.0 | |

params.entry(KS parameters::LB MultiK) != 1.0) {
// the old tree did not yield a better solution,
// so fix some variables and/or modify k value.
lb fixvars += params.entry(KS parameters::LB FixVarsIncrement);
lb fixvars = min(lb fixvars, params.entry(KS parameters::LB FixVarsMax));
lb k = (int ) round(params.entry(KS parameters::LB MultiK) * lb k);
lb k = max(lb k, params.entry(KS parameters::LB MinK));
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lb k = min(lb k, params.entry(KS parameters::LB MaxK));
lb tightening = true ; // do it only once

}
}

}

8.4.5 Handling Terminated Local Trees

LB MetaHeuristic::treefinished is called when a formerly active tree has no more active
nodes remaining. It may be called when the tree was solved completely, or when it was
aborted, e.g. by our newnodegenerated() implementation. When the tree was aborted, the
tree’s getterminated() function returns true. In both cases, a new tree has to be created.
LB MetaHeuristic::createtree() takes care of the limit on the total number of local trees by
setting lbenabled to false if necessary. Our implementation additionally tracks the number
of retries for the current incumbent solution (i.e. the number of local treesspawned with the
last incumbent solution), disabling local branching when a given number of retries has been
exceeded.

void KS MetaHeuristic::tree finished(const LocalTreeId& id, LocalTree& tree) {
LB MetaHeuristic::tree finished(id, tree);
if (0 == index.active trees.size() && lb enabled) {

if (index.nodes created since improvement <

index.nodes created since newtree) {
create tree();
lb tightening = false ;
lb retries = 0;

}
else if (lb tightening && lb retries <

params.entry(KS parameters::LB MaxRetries)) {
create tree();
++lb retries;

}
else

lb enabled = false ;
}

}

8.5 Finishing Touches

The Branch and Cut solver for multidimensional knapsack problems is now complete. For
compiling the application, a properly patched installation of COIN/BCP is needed(see ap-
pendix A), and an adapted makefile. A makefile template can be taken from oneof the
COIN/BCP examples, found underExamples/BACor Examples/BranchAndCutin the COIN
directory. Note that all of the framework’s sources have to be added to the makefile. The
related part of theMakefile.bcfile should look like the following:

USER SRC =

USER SRC += KS init.cpp

USER SRC += KS lp.cpp
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USER SRC += KS tm.cpp

USER SRC += KS metaheuristic.cpp

# LB sources

USER SRC += LB tm.cpp

USER SRC += LB lp.cpp

USER SRC += LB cut.cpp

USER SRC += LB user data.cpp

USER SRC += LB init.cpp

USER SRC += localtree.cpp

USER SRC += localtreeid.cpp

USER SRC += localtreemanager.cpp

USER SRC += LB metaheuristic.cpp
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Chapter 9

Test Results

The multidimensional knapsack solver described in the previous chapter was used to under-
take extensive testing of local branching performance. The test instances were taken from
J.E. Beasley’s OR Library [2] which provides 270 instances for the multidimensional knap-
sack problem. They are grouped by problem dimension into nine files, eachcontaining 30
instances. The smallest problem size contains 100 variables and 5 constraints, the largest 500
variables subject to 30 constraints. Each file contains three groups of instances with tightness
ratios ofα = 0.25 , 0.5 , and0.75. The tightness ratio defines how “tight” the resource limits
are set, lower ratios define tighter resource limits.

Additional problems were taken from the Hearin Center for Enterprise Science [14]. This
dataset contains eleven test instances originally used for the multiple knapsack problem, rang-
ing from two instances with 100 variables and 15 constraints to an extremely large test instance
with 2500 variables and 100 constraints.

9.1 Test Environment

All tests were executed on an Intel Pentium 4 with 2.8 GHz and 2 GB of RAM, running Linux
with a 2.4.21 kernel. The LP engine used for testing was CPLEX 8.1.

The test application was configured to output status information at regular intervals, allow-
ing a reporting tool described in appendix B to generate tables and plots comparing different
configurations.

The running time is always given in CPU time for the COIN/BCP process as recorded by
COIN/BCP’s own timing statistics. This also includes time spent solving the LPs using the
CPLEX solver.

When analyzing the results with respect to time (i.e. determining when a solution was
found during the computation), the number of processed nodes is taken instead of the CPU
time. As described in chapter 6, it is much easier for COIN/BCP to track the number of nodes
during a computation than the CPU time spent so far. This simplification relies on thefact that
the number of processed nodes does not vary significantly for a giventest instance, even when
using different parameters for local branching.
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9.2 Test Results Overview

Summarizing the detailed results that will be presented in this chapter, three majorobservations
were made:

• Local branching can find better solutions than standard branching earlyin the computa-
tion especially for large, complex test instances.

• For smaller, easier test instances local branching did not show such advantages or was
inferior to standard branching.

• The settings for local branching, especially the value ofk, the number of variables to
be fixed, and the maximum number of nodes depend on the problem size. It was not
possible to find a parameter configuration that delivers good results for all problem sizes
(or even a rule of thumb to account for problem complexity).

Since local branching showed its benefits primarily with larger test instances, most of the
detailed results will concentrate on larger knapsack problems.

9.2.1 Final Objective Comparison

The first method for comparing two configurations is by comparing the best feasible solution
found in a given timespan. When both configurations found the same feasible solution (or
at least two solutions with the same objective value), the configuration which processed less
nodes to find this solution is considered better.

9.2.2 Online Performance

As an artificial measure for determining the efficiency of the algorithm an online performance
rating was introduced. The basic idea is to plot the best objective value over time, and then
calculate the sum of the area below:

nodesmax
∑

x=0

w(x)objval(x) (9.1)

with objval(x) being the interpolated final objective value for the number of processed
nodesx and nodesmax the total number of processed nodes. By adding a monotonically
decreasing weight function, the online performance favors algorithms that find good solutions
early in the computation, even if the final result is the same.

We chose a simple inverse exponential weight function,

w(x) = e
−x

nodesmax . (9.2)

The online performance rating is calculated by summing upobjval(x)w(x) for x =
1 . . . nodesmax and scaling the result by 1

nodesmax
. When comparing different configurations,

all results have to be processed over the same range. We setnodesmax to the maximum num-
ber of processed nodes for the last improvement in the considered configurations.

Figure 9.1 shows a plot of the objective value for two different configurations on the left,
and the corresponding online performance weight function on the right. While both config-
urations ultimately find almost equally good solutions, configuration 6 yields better solutions
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Figure 9.1: Final objective value and the corresponding online performance weights for a test
instance.

earlier in the computation, so its online performance score is greater than thatof configuration
1 (the former configuration is actually using local branching, while the latter isnot.)

9.3 Local Branching Configurations

As explained in the previous chapters, there are several key parameters that influence the per-
formance of local branching. In short, the user has to decide on the following parameters:

• The value ofk for the Hamming distance constraint determines how many binary vari-
ables can flip inside a single local tree.

• Fixing some variables helps to reduce the problem complexity inside the tree defined by
the chosenk value.

• Defining node limits on local trees avoids stagnation.

• By adapting the values ofk and the numbers of variables to be fixed at run-time, the
search can be narrowed or broadened at will.

The variables used for controlling these parameters are described in chapter 8. In the test
results, the following abbreviated notation will be used:

• k = kinitial , kscaling , k{min|max} defines the initialk value, the factork is multiplied with
when a tree is aborted, and the minimum (when the factor is less than 1) or maximum
(when the factor is greater than 1) value fork. When only one value is given,k remains
constant throughout the computation.

• Variable fixing:finitial , fincrement , fmax contains the number of variables fixed when a
local tree using a new incumbent solution is started, and the increment and maximum
values to be used when a tree is aborted and restarted with the same initial solution.

• Maximum nodesis the maximum number of nodes for a local tree, no node limit is used
when this parameter is omitted.
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• Maximum nodes without improvementdeclares the maximum number of nodes to be
created in a local tree without finding an improved feasible solution. When thisvalue is
omitted, no such node limit is imposed on local trees.

All parameters depend on the size of the test instance, so no reasonable default values can
be provided.

9.4 Short-Time Tests

The objective of the following tests is to accelerate the process of finding good solutions early
in the computation, while the final objective is not of paramount importance. For these test
runs, a time limit of 10 minutes per instance was used. Since there was no single configura-
tion that succeeded in all presented problem instances, the results are separated by problem
size. For the initial solution a greedy heuristic generated two solutions, the first using relative
weights as in equation (7.5) as efficiency measure and the second using thefirst LP optimum.
The better solution (regarding the objective value) was used as initial solution.

9.4.1 Local Branching and Node Limits

The first set of test runs uses standard local branching and for someinstances node limits,
but no cut generation. We start with examining the moderately sized mknapcb7 test instance
collection from the OR Library [2].

Mknapcb7: 100 variables, 30 constraints

The following configurations have been tested for all 30 test instances ofmknapcb7:

(1) Standard Branch and Cut.

(2) k = 13, variable fixing:0.1, no node limit.

(3) k = 13, variable fixing:0.1, 0.1, 0.8, maximum nodes per tree:10000.

For these test instances, the local tree search without a node limit was superior to a local
tree search with the same parameters, but with a limit on the total number of nodesper local
tree. When comparing final objectives with the conditions described earlierin this chapter,
configuration (2) wins against (1) with a clear advantage of27 : 10 (the numbers do not add
up to 30 because of some ties.) For configuration (3), the direct comparison yields only a slight
advantage of19 : 17 for local branching.

Introducing the online performance rating, (2) loses some of its advantage,but still show-
ing a distinct advantage of22 : 14 when compared to (1). Configuration (3) stays at19 : 17,
not showing a significant benefit from local branching.

Comparing the number of local trees, (2) mostly used only a single local tree with an
average of1.2 local trees, (3) created an average of27.1 trees per test instance.

Figure 9.2 shows two sample graphs from this test series.
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Figure 9.2: Two sample graphs for mknapcb7 showing a benefit for localbranching on the
left, and an advantage for normal Branch and Cut on the right.
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Figure 9.3: Two sample graphs for mknapcb8 showing the benefit of nodelimits for configu-
ration (3) against the same configuration without node limit (2) and standardBranch and Cut
(1).

Mknapcb8: 250 variables, 30 constraints

For the larger test instances of mknapcb8, imposing node limits proved to be more beneficial.
A local branching setup similar to the previous configurations proved to be superior to standard
Branch and Cut, especially when considering the online performance rating. The following
configurations delivered the best results compared to standard Branchand Cut:

(1) Standard Branch and Cut.

(2) k = 13, variable fixing:0.1, no node limit

(3) k = 13, variable fixing:0.1, 0.1, 0.5, maximum nodes per tree:5000

Comparing the final objective values, both (2) and (3) showed an advantage of 18 : 14
against (1). When comparing the online performance rating, (2) exhibiteda slight disadvantage
of 15 : 17, while (3) apparently benefited from the node limit and won clearly by21 : 11.

Figure 9.3 again shows two sample plots comparing the three parameter settings.
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Instance n d best final objective online performance Wilcoxon
mknapcb7 100 30 (2) 27 : 10 22 : 14 < 0.01%
mknapcb8 250 30 (3) 18 : 14 21 : 11 15.4%
mknapcb9 500 30 (3) 19 : 11 17 : 13 2.1%

Table 9.1: Summary table for the tested mknapcb problems. Each row represents 30 different
instances with the given dimensions. The ratios given for final objective value and online
performance compare the best local branching configuration to standard Branch and Cut.

Mknapcb9: 500 variables, 30 constraints

The largest class of test instances from the OR Library, mknapcb9, exhibited similar behavior
regarding local branching. Compared to standard branch and cut, two configurations exhibited
similar performance.

(1) Standard Branch and Cut.

(2) k = 10, variable fixing:0.1, 0.1, 0.8, maximum nodes per tree:5000

(3) k = 13, variable fixing:0.1, 0.1, 0.8, maximum nodes per tree:1000

Regarding the final objective values, configuration (2) achieves a ratioof 18 : 12 against
standard Branch and Cut, reducing the node limit leads to a further minor improvement of
19 : 11. The online performance ratings are a bit less favorable, showing a17 : 13 advantage
for both local branching configurations. Configuration (2) created anaverage of 12.2 local
trees per computation, while (3) used an average of 67.8 local trees.

Table 9.1 summarizes the results and also contains the result of aWilcoxon rank sum test.
It represents the error probability for the assumption that the first method performs on average
better than the second. It is generated by creating two columns, one for each configuration,
and setting a 1 where a configuration achieved the best result for a given test instance, and 0
otherwise. We do not compare the final objective values, because evenwhen two configura-
tions achieved the same value, we prefer the configuration that reached itwith fewer processed
nodes.

A Wilcoxon score close to 0 means that the the local branching configurationis very likely
to be better than the standard Branch and Cut algorithm, a value close to 0.5 means that no
significant difference exists. For mknapcb7 and mknapcb9 the Wilcoxon test clearly indicates
that the local branching results are better than the standard Branch and Cut results, while the
result for mknapcb8 (0.15) is less clear.

The detailed test results for all test instances are given in tables 9.2, 9.3, and 9.4.

MK-gk11: 2500 variables, 100 constraints

The huge eleventh test instance from the problems taken from the Hearin Center for Enter-
prise Science [14] shows clear advantages for most local branching configurations. The tested
configurations are:

(1) Standard Branch and Cut.
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Figure 9.4: Clear advantages for local branching in test instance MK-gk11.

(2) k = 5, variable fixing:0.05, 0.2, 0.5, maximum nodes per tree:250

(3) k = 20, no variable fixing, no node limit.

(4) k = 10, no variable fixing, maximum number of nodes:1000

All local branching configurations both showed faster convergence and better final objec-
tive values. The plot of the objective value is given in figure 9.4.

9.4.2 Cut Generation

The idea of cut generation is to find valid inequalities that are violated by the current LP opti-
mum as described in section 2.3, thus decreasing the LP optimum and increasing the chances
to prune a subproblem. The size of the search tree can be reduced significantly at the expense
of computationally expensive cut generation.

In our test results, cut generation did not lead to a significant advantagefor local branching
in comparison to the standard Branch and Cut algorithm, instead it compensated the advantage
of local branching. We used COIN/CGL’s generic cut generators, themost efficient proved to
be the knapsack cover cut generator. Others, like the Gomory cut generator, did not improve
the results but slowed down the computation.

Mknapcb7: 100 variables, 30 constraints

The following parameter configurations have been tested:

(1) Standard Branch and Cut.

(2) k = 13, variable fixing:0.1, no node limit.

(3) k = 13, variable fixing:0.1, 0.1, 0.8, maximum nodes per tree:1000.

Without cut generation, configuration (2) beat standard Branch and Cut by 27 : 10. With
cut generation, the standard algorithm reaches a tie result of18 : 18 both against (2) and (3).
Regarding the online performance rating, local branching gains a slight advantage of18 : 16
for configuration (2) and19 : 15 for (3).

63



final objective value online performance number of local trees
instance (1) (2) (3) (1) (2) (3) (1) (2) (3)
0 21946 21946 21946 13719.11 13719.11 13719.11 0 2 29
1 21716 21716 21716 13700.76 13710.87 13699.94 0 1 25
2 20754 20754 20754 13096.68 13102.44 13102.44 0 1 27
3 21464 21464 21464 13532.09 13511.85 13524.59 0 1 26
4 21844 21844 21844 13797.81 13809.01 13809.01 0 1 24
5 22176 22176 22176 14005.53 14005.90 14006.11 0 1 26
6 21799 21799 21799 13718.36 13723.17 13723.17 0 1 26
7 21397 21327 21327 13493.88 13472.05 13473.10 0 1 25
8 22471 22475 22482 14187.96 14201.18 14210.38 0 1 24
9 20983 20983 20983 13230.11 13230.08 13223.38 0 1 27
10 40691 40691 40767 25722.46 25723.66 25742.90 0 1 25
11 41308 41308 41304 26108.12 26108.20 26106.94 0 1 25
12 41630 41630 41630 26304.63 26304.63 26304.63 0 1 25
13 41041 41041 41041 25937.69 25937.69 25937.69 0 1 27
14 40889 40889 40889 25842.11 25842.93 25838.43 0 1 24
15 41028 41058 41022 25934.05 25921.21 25915.76 0 1 25
16 41062 41038 41038 25957.11 25936.80 25935.54 0 1 25
17 42719 42719 42719 26976.12 26979.48 26979.01 0 1 25
18 42230 42230 42230 42230.00 42230.00 42230.00 0 2 49
19 41700 41700 41700 41700.00 41700.00 41700.00 0 1 26
20 57494 57494 57494 36319.24 36320.82 36322.32 0 1 28
21 60027 60027 60026 37944.30 37943.28 37943.50 0 1 26
22 58052 58015 58052 36677.22 36670.90 36688.60 0 1 26
23 60776 60776 60776 38415.55 38415.96 38415.96 0 2 34
24 58884 58884 58884 37214.71 37214.71 37214.71 0 2 26
25 60011 60011 60011 37919.29 37910.45 37910.45 0 2 30
26 58132 58132 58132 36737.55 36737.63 36741.17 0 1 27
27 59064 59064 59064 37325.45 37333.21 37333.21 0 2 29
28 58975 58975 58975 37277.47 37278.91 37276.15 0 1 25
29 60603 60603 60603 38295.77 38299.39 38299.39 0 1 27

Table 9.2: All results for mknapcb7 using a single initial solution (n = 100, d = 30.)
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final objective value online performance number of local trees
instance (1) (2) (3) (1) (2) (3) (1) (2) (3)
0 56824 56824 56824 35914.54 35910.64 35910.64 0 1 25
1 58310 58332 58364 36842.34 36860.57 36878.71 0 1 23
2 56498 56508 56493 35706.59 35706.18 35701.40 0 1 24
3 56930 56930 56930 35989.96 35989.96 35989.96 0 1 24
4 56629 56601 56629 35783.77 35748.73 35773.20 0 1 23
5 57146 57146 57146 35983.42 35983.42 35983.42 0 1 24
6 56206 56180 56219 35513.51 35510.10 35524.30 0 1 22
7 56392 56413 56413 35636.01 35650.11 35644.80 0 1 23
8 57429 57413 57429 36271.66 36272.94 36278.42 0 1 22
9 56447 56447 56447 35659.16 35658.13 35658.13 0 1 23
10 107746 107746 107732 68108.02 68106.39 68088.89 0 1 23
11 108336 108335 108335 68469.79 68459.16 68469.89 0 1 23
12 106442 106375 106415 67257.55 67244.95 67256.61 0 1 22
13 106780 106766 106786 67498.51 67490.14 67499.44 0 1 22
14 107349 107414 107414 67856.07 67885.23 67880.51 0 1 22
15 107177 107246 107246 67729.09 67731.84 67736.79 0 1 22
16 106294 106241 106297 67167.78 67144.31 67181.55 0 1 23
17 103998 103998 103977 65727.95 65727.41 65724.06 0 1 24
18 106736 106751 106758 67452.37 67460.47 67468.22 0 1 22
19 105675 105716 105681 66792.13 66814.53 66798.56 0 1 21
20 150097 150081 150097 94866.09 94863.58 94866.84 0 1 25
21 149907 149881 149854 94742.37 94729.76 94706.55 0 1 24
22 152971 152973 152960 96697.38 96692.10 96687.17 0 1 27
23 153177 153177 153190 96824.54 96825.11 96824.86 0 1 25
24 150287 150287 150287 94938.43 94942.16 94947.21 0 1 26
25 148520 148544 148544 93871.33 93891.89 93889.45 0 1 25
26 147454 147471 147471 93209.11 93206.87 93218.07 0 1 26
27 152817 152912 152877 96585.86 96656.17 96635.54 0 1 26
28 149570 149570 149554 94533.41 94541.43 94538.37 0 1 24
29 149586 149595 149586 94553.56 94554.05 94554.53 0 1 24

Table 9.3: All results for mknapcb8 using a initial solution (n = 250, d = 30.)
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final objective value online performance number of local trees
instance (1) (2) (3) (1) (2) (3) (1) (2) (3)
0 115850 115841 115809 73184.48 73215.35 73192.49 0 12 70
1 114623 114667 114701 72420.52 72456.21 72473.47 0 12 69
2 116541 116661 116607 73647.29 73729.35 73693.17 0 14 73
3 115096 115128 115152 72753.14 72760.71 72784.41 0 11 71
4 116266 116316 116385 73495.78 73519.30 73553.33 0 14 66
5 115563 115584 115600 73032.02 73048.46 73065.10 0 12 70
6 113928 113982 113928 72006.14 72038.81 72006.60 0 11 70
7 114190 114137 114190 72161.72 72126.01 72170.82 0 14 78
8 115419 115133 115419 72943.75 72771.30 72822.16 0 12 64
9 116988 116891 116929 73908.53 73881.07 73888.93 0 12 67
10 217925 217995 217995 137747.72 137797.39 137801.07 0 12 75
11 214517 214626 214626 135580.86 135609.00 135589.10 0 12 65
12 215835 215844 215844 136399.86 136411.96 136372.69 0 12 58
13 217827 217827 217805 137664.20 137671.45 137665.81 0 11 72
14 215559 215515 215535 136263.63 136212.21 136221.81 0 10 62
15 215697 215722 215717 136337.13 136366.40 136351.87 0 11 60
16 215772 215780 215780 136388.68 136398.82 136381.53 0 12 59
17 216419 216366 216341 136784.92 136763.70 136744.46 0 11 66
18 217290 217196 217290 137312.79 137278.83 137348.63 0 11 73
19 214624 214592 214633 135652.21 135632.98 135649.19 0 11 65
20 301643 301643 301627 190667.63 190656.90 190667.01 0 12 76
21 299957 299987 299945 189579.82 189618.86 189577.88 0 14 62
22 304985 304985 304994 192790.68 192790.07 192792.68 0 14 76
23 301854 301891 301955 190787.31 190809.87 190803.87 0 12 58
24 304411 304413 304350 192420.91 192423.62 192368.46 0 12 68
25 296891 296891 296959 187672.97 187664.53 187705.63 0 13 74
26 303261 303262 303270 191663.09 191687.73 191671.50 0 14 67
27 306890 306937 306892 193995.36 193976.43 193981.49 0 12 70
28 303111 303088 303083 191592.30 191588.20 191565.66 0 15 65
29 300479 300499 300439 189930.56 189896.47 189905.03 0 11 64

Table 9.4: All results for mknapcb9 using a single initial solution (n = 500, d = 30.)
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9.4.3 Multiple Initial Solutions

Creating multiple local trees in the beginning of the computation can help to improve the initial
performance of the local branching algorithm. The processor time is distributed over several
local trees, preferring those with better nodes (according to the tree search strategy, i.e. those
with better bounds.)

As described in chapter 8, three different initial solutions were used:

• The feasible solution generated heuristically from the first LP result.

• A solution returned by a greedy heuristic using the relative weight as an efficiency mea-
sure.

• A solution returned by the same heuristic including the weight distribution as an effi-
ciency measure.

Compared to local branching with a single initial solution the results improved consider-
ably. For the mknapcb7 test instances, the three initial local trees contributed equally to the
best found solution, that is, the initial trees were of roughly the same size. For the mknapcb8
and mknapcb9 instances, the tree based on the first LP result was most often superior to the
trees based on efficiency measures, meaning that the latter two trees were often completed af-
ter a few nodes. Apparently the greedy heuristics with efficiency values worked better for the
smaller mknapcb7 instances than for the more complex mknapcb8 and mknapcb9 instances.

Mknapcb7: 100 variables, 30 constraints

The following configurations have been tested:

(1) Standard Branch and Cut.

(2) k = 13, variable fixing:0.1, no node limit.

(3) k = 13, variable fixing:0.1, 0.1, 0.8, maximum nodes per tree:10000.

Regarding the final objective values, both local branching configurations showed an24 :
10 advantage to standard Branch and Cut. While this result is similar to what localbranching
with a single initial solution achieved, the pseudo-concurrent tree exploration shows more
benefits when looking at the online performance rating. Both local branching configurations
achieved a clear advantage of25 : 9 compared to local branching, which is considerably better
than the results using a single initial solution.

Mknapcb8: 250 variables, 30 constraints

As in section 9.4.1, the following configurations have been tested for mknapcb8:

(1) Standard Branch and Cut.

(2) k = 13, variable fixing:0.1, no node limit

(3) k = 13, variable fixing:0.1, 0.1, 0.5, maximum nodes per tree:5000
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Instance n d best final objective online performance Wilcoxon
mknapcb7 100 30 (2) 24 : 10 25 : 9 0.02%
mknapcb8 250 30 (2) 22 : 8 24 : 6 0.02%
mknapcb9 500 30 (3) 22 : 8 25 : 5 0.02%

Table 9.5: Summary table for the tests using multiple initial solutions, including a Wilcoxon
probability score for the assumption that the final objective values of standard Branch and Cut
are better than the given local branching configuration.

Comparing the final objective values, configuration (2) showed an advantage of22 : 8
against standard Branch and Cut, (3) had an advantage of21 : 9. Regarding online perfor-
mance, (2) showed a clear advantage of24 : 6 and (3) an advantage of26 : 4 compared to
standard Branch and Cut.

Mknapcb9: 500 variables, 30 constraints

The following configurations were tested:

(1) Standard Branch and Cut.

(2) k = 10, variable fixing:0.1, 0.1, 0.8, maximum nodes per tree:5000.

(3) k = 13, variable fixing:0.1, 0.1, 0.8, maximum nodes per tree:1000.

Both (2) and (3) showed clearly superior results to (1), with (2) showinga slight advantage
of 17 : 13 and (3) beating standard Branch and Cut by22 : 8. The online performance ratings
clearly favor the local branching configurations: (2) beats (1) by24 : 6, (3) beats (1) by
25 : 5. Compared with the same configuration without multiple initial solutions, (2) exhibited
an advantage of19 : 11 for the final objective value and27 : 3 for the online performance
rating.

Table 9.5 summarizes the results for these test runs. The detailed results forall test in-
stances of mknapcb7, mknapcb8 and mknapcb9 are given in tables 9.6, 9.7, and 9.8. Bold
values indicate the best result for a single instance. Note that it is possible for more than one
configuration to achieve the “best” result.

9.5 Long Runs

The test runs described in the last section are useful for testing the short-time heuristical behav-
ior a large variety of local branching configurations. Testing the instances of the OR library [2]
with longer running times (up to one hour) did not reveal significantly different behavior. How-
ever, the very large eleventh instance of the second set of test instances [14] with 2500 variables
and 100 constraints was an interesting target for examining long-run behavior. The huge core
matrix dramatically slows down the LP solver, affecting the significance of the results of a 10
minute test run. Increasing the CPU time to 2 hours showed interesting results:local branching
extended its lead (with unmodified parameters), standard branch and cut was clearly inferior
to all tested configurations.

Figure 9.5 shows the final objective plots for the following configurations:
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final objective value online performance number of local trees
instance (1) (2) (3) (1) (2) (3) (1) (2) (3)
0 21946 21946 21946 13719.11 13719.11 13719.11 0 3 27
1 21716 21716 21716 13698.34 13720.04 13720.04 0 3 28
2 20754 20754 20754 13096.68 13114.77 13114.77 0 3 31
3 21464 21464 21464 13517.23 13566.96 13566.96 0 3 25
4 21844 21814 21814 13803.20 13792.24 13792.50 0 3 20
5 22176 22176 22176 14005.53 14018.62 14018.62 0 3 21
6 21799 21799 21799 13718.36 13758.35 13758.35 0 3 24
7 21397 21327 21397 13493.88 13483.27 13503.57 0 3 24
8 22471 22493 22525 14187.96 14218.78 14229.36 0 3 16
9 20983 20983 20983 13223.38 13262.97 13262.97 0 3 29
10 40691 40767 40767 25722.66 25737.27 25745.08 0 3 19
11 41308 41308 41304 26108.12 26110.50 26109.40 0 3 23
12 41630 41630 41630 26304.63 26313.70 26313.70 0 3 24
13 41041 41041 41041 25909.87 25925.38 25925.38 0 3 30
14 40889 40889 40872 25830.92 25842.90 25838.46 0 3 23
15 41028 41058 41058 25934.27 25937.79 25931.24 0 3 23
16 41062 41038 41062 25957.11 25942.97 25956.31 0 3 37
17 42719 42719 42719 26972.46 27001.34 27001.34 0 3 21
18 42230 42230 42230 42230.00 42230.00 42230.00 0 4 30
19 41700 41700 41700 41700.00 41700.00 41700.00 0 3 22
20 57494 57494 57494 36319.24 36343.09 36343.09 0 3 29
21 60027 60026 60026 37944.30 37943.18 37943.18 0 3 48
22 58052 58052 58025 36682.74 36681.73 36671.01 0 3 19
23 60776 60776 60776 38415.55 38418.18 38418.18 0 4 25
24 58884 58884 58884 37214.71 37214.71 37214.71 0 4 28
25 60011 60011 60011 37919.29 37931.77 37931.77 0 4 27
26 58132 58132 58132 36737.55 36748.63 36748.63 0 3 30
27 59064 59064 59064 37325.45 37336.68 37336.68 0 3 26
28 58975 58975 58975 37277.47 37280.14 37279.40 0 3 20
29 60603 60603 60603 38295.77 38307.77 38307.77 0 3 24

Table 9.6: All results for mknapcb7 using multiple initial solutions (n = 100, d = 30.)
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final objective value online performance number of local trees
instance (1) (2) (3) (1) (2) (3) (1) (2) (3)
0 56824 56824 56824 35914.54 35912.01 35912.54 0 3 16
1 58310 58520 58520 36842.34 36990.73 36990.73 0 3 17
2 56498 56553 56493 35708.82 35719.57 35713.55 0 3 17
3 56930 56930 56930 35989.96 35990.17 35990.17 0 3 17
4 56629 56601 56629 35783.77 35782.33 35796.56 0 3 15
5 57146 57146 57146 35983.42 36058.77 36058.77 0 3 16
6 56206 56253 56253 35513.51 35543.21 35553.50 0 3 15
7 56392 56457 56448 35636.01 35672.34 35674.56 0 3 16
8 57429 57429 57433 36271.66 36299.70 36293.59 0 3 14
9 56447 56447 56447 35659.16 35683.55 35683.55 0 3 16
10 107746 107746 107746 68108.02 68110.74 68110.74 0 3 17
11 108336 108335 108352 68469.79 68482.54 68489.44 0 3 16
12 106442 106440 106415 67257.55 67280.00 67265.87 0 3 15
13 106780 106790 106806 67498.51 67507.29 67516.62 0 3 16
14 107349 107374 107414 67856.07 67874.43 67893.45 0 3 14
15 107177 107246 107246 67729.09 67789.77 67789.77 0 3 16
16 106294 106283 106305 67167.78 67181.78 67189.00 0 3 14
17 103998 103998 103995 65727.95 65739.76 65737.10 0 3 15
18 106736 106758 106800 67452.37 67480.32 67501.87 0 3 15
19 105675 105742 105723 66792.13 66838.93 66827.20 0 3 15
20 150097 150073 150096 94866.09 94865.84 94866.62 0 3 17
21 149907 149862 149907 94742.37 94720.42 94748.96 0 3 17
22 152971 152973 152971 96697.38 96685.57 96690.15 0 3 18
23 153177 153177 153190 96824.54 96830.61 96838.22 0 3 18
24 150287 150287 150287 94938.43 95000.95 95000.95 0 3 19
25 148520 148544 148544 93871.33 93901.04 93901.04 0 3 18
26 147454 147471 147454 93209.11 93216.50 93204.43 0 3 15
27 152817 152877 152877 96585.86 96629.50 96623.47 0 3 17
28 149570 149568 149565 94546.38 94545.42 94542.68 0 3 16
29 149586 149595 149595 94553.56 94565.92 94565.92 0 3 18

Table 9.7: All results for mknapcb8 using multiple initial solutions (n = 250, d = 30.)
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final objective value online performance number of local trees
instance (1) (2) (3) (1) (2) (3) (1) (2) (3)
0 115850 115824 115838 73176.36 73214.09 73227.44 0 8 48
1 114623 114699 114701 72420.13 72488.98 72497.70 0 8 50
2 116541 116661 116661 73647.29 73744.23 73737.49 0 7 42
3 115096 115180 115206 72752.50 72799.13 72816.38 0 7 43
4 116266 116321 116385 73495.78 73530.94 73565.28 0 8 39
5 115563 115604 115741 73026.80 73060.22 73095.36 0 7 37
6 113928 113979 113928 72006.14 72044.76 72019.41 0 8 42
7 114190 114168 114174 72161.72 72166.85 72163.73 0 8 42
8 115419 115198 115419 72943.75 72817.93 72918.72 0 8 41
9 116988 116952 116886 73908.53 73921.92 73891.15 0 8 39
10 217925 217983 218042 137742.72 137792.81 137831.38 0 8 49
11 214517 214626 214626 135580.86 135671.85 135641.70 0 9 44
12 215835 215885 215854 136383.17 136454.78 136439.97 0 8 47
13 217827 217769 217827 137664.20 137654.34 137697.27 0 8 49
14 215559 215557 215548 136263.27 136258.66 136252.59 0 8 48
15 215697 215726 215718 136337.13 136370.18 136364.35 0 8 47
16 215772 215791 215792 136386.68 136407.75 136398.33 0 9 37
17 216419 216403 216419 136777.53 136788.67 136808.10 0 8 49
18 217290 217290 217312 137312.79 137350.16 137340.43 0 8 39
19 214624 214581 214633 135652.21 135641.87 135661.50 0 8 42
20 301643 301627 301583 190667.63 190668.82 190643.19 0 9 49
21 299957 299987 299984 189558.15 189630.07 189583.03 0 9 44
22 304985 305002 305002 192790.68 192804.37 192803.92 0 9 51
23 301854 302001 302004 190787.31 190862.57 190896.06 0 8 44
24 304411 304380 304398 192419.64 192406.11 192397.45 0 9 41
25 296891 296892 296986 187672.97 187673.13 187727.07 0 8 46
26 303261 303240 303285 191663.09 191689.34 191710.94 0 8 44
27 306890 306911 306910 193995.36 194005.21 194001.03 0 9 41
28 303111 303092 303090 191583.54 191600.27 191594.76 0 9 45
29 300479 300444 300488 189930.56 189920.25 189945.99 0 8 36

Table 9.8: All results for mknapcb9 using multiple initial solutions (n = 500, d = 30.)
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Figure 9.5: The final objective value for MK-gk11, using a time limit of 2 hours.

(1) Standard Branch and Cut.

(2) k = 5, variable fixing:0.05, 0.2, 0.5, maximum nodes per tree: 250

(3) k = 5, variable fixing:0.05, 0.2, 0.5, maximum nodes per tree: 500

(4) k = 10, variable fixing:0.05, 0.2, 0.5, maximum nodes per tree: 500

(5) k = 20, variable fixing:0.05, 0.2, 0.5, maximum nodes per tree: 1000
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Chapter 10

Summary and Outlook

This thesis described the implementation of a generic local branching framework based on
the open source COIN/BCP Branch, Cut and Price library. Local branching is a local search
heuristic that is well suited for integration in existing integer programming solvers. The frame-
work provides the possibility to augment COIN/BCP programs with local branching search
capabilities. Several extensions to the standard local branching algorithmwere implemented:
pseudo-concurrent exploration of multiple local trees, aborting local trees, and search space
tightening through variable fixing.

An encapsulated metaheuristic class offers means for a clean implementation oflocal
branching metaheuristics without touching COIN/BCP’s internals. Rich statistical data about
the current state of the local branching algorithm is provided by the framework. Methods for
creating new trees, terminating existing trees or modifying the local branchingsearch param-
eters are also provided.

As a sample application, a Branch and Cut solver for the multidimensional knapsack prob-
lem was used to demonstrate the application of the local branching frameworkand to research
the effects of local branching.

The results for the multidimensional knapsack problem were promising: localbranching
showed better convergence, especially in the early stages of the computation, and showed
significant benefits for large, complex test instances. By guiding the Branch and Cut solver
through neighborhood search and fixing of variables, local branching allows to find better
results earlier in the computation, which also leads to a reduction of the searchtree complexity
in the later stages. However, the benefit for relatively small test instanceswas less clear.

The local branching framework was designed in a way that facilitates embedding local
branching as a local search metaheuristic in another, higher-level search algorithm. This is the
main area where future work could be expected, to use the heuristical characteristics of local
branching to improve other search algorithms not based on Branch and Cut. In general, any
algorithm that involves some kind of local neighborhood search lends itselfto the integration of
local branching. For example, an evolutionary algorithm could use the framework to generate
new, better solutions based on especially promising candidates.
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Appendix A

COIN/BCP patches

The local branching framework requires some small patches to the COIN/BCP source. The
patches add the following functionality to COIN/BCP:

• Support for user-defined messages between LP and TM modules has been added.

• A special slot for the normal tree root node is provided in the candidate queue. This
is necessary because the normal root node must be used whenever a new local tree is
started.

• There is no way for the COIN/BCP user classes to catch all pruned nodes. Pruned nodes
are now added to a list that is available to the framework’s tree manager.

• When a local tree is aborted, all nodes must be removed from the candidatelist. Since
the nodes are potentially scattered over the candidate list, and the candidate list can
contain millions of nodes, explicitly deleting all nodes may be ineffective. Instead, a
list of local tree identification numbers is kept and nodes from these trees are pruned
immediately instead of being returned to the tree manager.

All filenames in this section are relative to the COIN/BCP root directory.

A.1 Adding User-Defined Messages

In order to support user-defined messages between LP and TM modules, we have to add
an unique message tag for user messages and stubs for packing and unpacking routines.
We start by adding two new message tags to the BCPmessagetag enumeration inin-
clude/BCPmessagetag.hpp(written in bold face):

(. . .)
/** The message contains the description of a variable. */
BCP Msg VarDescription, // VG / VP -> LP
/** No more (improving) variables could be found. (Message body is

empty.) */
BCP Msg NoMoreVars, // VG / VP -> LP
BCP Msg UserMessageToLp ,
BCP Msg UserMessageToTm

};
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Then we add virtual method declarations of unpackusermessage() to BCPtm user and
BCP lp user by adding the following lines to the corresponding class definitions inin-
clude/BCPlp user.hppandinclude/BCPtm user.hpp:

virtual void
unpack user message(BCP lp prob& prob, BCP buffer& buf);

We also provide a default implementation that throws an exception when called in
LP/BCP lp user.cppandTM/BCPtm user.cpp:

void
BCP tm user::unpack user message(BCP tm prob& prob, BCP buffer& buf) {

throw BCP fatal error(
”BCP tm user::unpack user message() invoked but not overridden!\n”);
}

The implementation for BCPlp user is identical except for the class name. The last step
to be taken is to call these handlers from the tree manager and LP module message process-
ing functions. For the tree manager, we add the following block to the switch statement of
BCP tm prob::processmessage()in TM/BCPtm msgproc.cpp:

case BCP Msg UserMessageToTm:
user−>unpack user message(*this , msg buf);
msg buf.clear();
break ;

Similarly, we add the following code to the switch statement of
BCP lp prob::processmessage()in LP/BCP lp msgproc.cpp:

case BCP Msg UserMessageToLp:
user−>unpack user message(*this , msg buf);
msg buf.clear();
break ;

A.2 Extending the Candidate List

When local trees can be spawned before the previous tree terminated, thenormal root node
(the sibling of the local tree root) has to be extracted from the candidate list. The easiest and
fastest way to achieve this goal is to store the normal root node in an extra variable and modify
the methods to insert and retrieve items.

A.2.1 include/BCPtm node.hpp

We start with modifyinginclude/BCPtm node.hpp. We have to add two member variables to
BCP nodequeuewhich is used to store the candidate list.

/** root node of the “normal” tree, to be used when all local trees
are processed or a new tree should be opened */

BCP tm node* normal root node;
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/** use normal root node instead of a candidate from the queue the
next time top() is called */

bool use normal root node;

Then we add a new parameter to BCPnodequeue::insert that permits to insert a normal
root node without using the extra slot. This is used when the normal root node is the last
remaining node and should be returned to the candidate list. By setting a default value, existing
calls to this function do not need to be modified.

/** Insert a new node into the queue. */
void insert(BCP tm node* node, bool replace normal root node = true );

We also slightly modify the inline functionsempty()andtop() to account for the normal
root variable.

/** Return whether the queue is empty or not */
inline bool empty() const { return !normal root node && pq.size() == 1; }

/** Return the top member of the queue */
BCP tm node* top() const {

return ((normal root node && use normal root node) | |
(normal root node && pq.size() == 1))
? normal root node : pq[1];

}

The last modification correctly initializes the new variables in the constructor.

BCP node queue(BCP tm prob& p): p(q), pq(),
normal root node(0), use normal root node(false ) { pq.push back(NULL); }

A.2.2 include/BCPtm node.cpp

We also have to change the implementations of theinsert and andpop methods of the
BCP nodequeue class. Since we have to access user data objects, we have to include the
framework’s user data header. By using a compile-time flag for applications that use the local
branching framework, the COIN source remains usable for other applications.

#ifdef COIN LB
#include ”LB user data.hpp”

#endif

Thepop()method removes a node from the head of the priority queue. When the queueis
has only one element left, the normal root node is re-inserted to the list. If thenormal root node
has been used (by settingusenormal root nodeto true), it is deleted when pop() is called.

void
BCP node queue::pop()
{

if (use normal root node && normal root node) {
normal root node = 0;
return ;
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}
if (normal root node && pq.size() <= 2) {

// reinsert normal root node when the last element is popped
insert(normal root node, false );
normal root node = 0;
use normal root node = false ;

}

(. . .)

In the insert() method, we have to detect normal root nodes and store themin the extra vari-
able instead of the normal candidate list. By using the COINLB flag again, the LBuserdata
cast does not conflict with other COIN/BCP applications.

void
BCP node queue::insert(BCP tm node* node, bool replace normal root node)
{

#ifdef COIN LB
if (node−>user data() && replace normal root node) {

const LB user data* ud =
dynamic cast <const LB user data*> (node−>user data());

if (ud && LB user data::UD NormalRoot == ud−>type) {
normal root node = node;
return ;

}
}
#endif

(. . .)

A.2.3 TM/BCP tm functions.cpp

Another small modification is necessary in the static helper functionBCP tm start onenode().
When the normal root node should be returned, it is returned without further checking (e.g.
if it should be pruned). This way the tree manager can recognize when thenormal root node
is pruned without further modifications (in this case, the node would be pruned by a LP pro-
cess). Also, when a node was pruned because of the global upper bound, it is added to the
prunednodes list that is described in the next section.

(. . .)
p.ub() * (1 − p.param(BCP tm par::TerminationGap Relative)))
process this = false;

if (p.candidates .use normal root node ) {
process this = true ;
p.candidates .use normal root node = 0;

}
if (process this)

break;
if (desc−>indexed pricing.get status() == BCP PriceNothing | |

p.current phase colgen == BCP DoNotGenerateColumns Fathom) {
next node−>status = BCP PrunedNode OverUB;

p.pruned nodes .push back (next node );
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(. . .)

A.3 Counting Pruned Nodes

We start by adding a new public member to theBCP tm prob class. It is used to store nodes
that have been pruned. Since even pruned nodes are never deleted from memory, the tree
manager can access this list without further restrictions. The tree managercan also empty the
list when the nodes have been processed.

/** Pruned nodes are stored in this list - may be cleared when no longer needed */
BCP vec<BCP tm node*> pruned nodes;

There are two more places where nodes may be pruned inside the tree manager.

A.3.1 TM/BCP tm msg node rec.cpp

Among other things, the method BCPtm unpackbranchinginfo() prunes child nodes gen-
erated from a branching object when necessary. We add those nodesto our prunednodes()
list.

(. . .)
case BCP FathomChild:

child−>status = BCP PrunedNode Discarded;
p.pruned nodes .push back (child );
break;

(. . .)

A.3.2 TM/BCP tm msgproc.cpp

The tree manager also receives pruned nodes from LP processes. These nodes are also added
to prunednodes.

(. . .)
case BCP Msg NodeDescription Discarded:
case BCP Msg NodeDescription OverUB Pruned:
case BCP Msg NodeDescription Infeas Pruned:

node = BCP tm unpack node no branching info(*this, msg buf);
pruned nodes .push back (node );

(. . .)

With these modifications, the tree manager is able to track the number of active nodes for
all local trees. It uses the local tree identification number stored in the userdata of the pruned
nodes to update the node numbers of the corresponding local tree.
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A.4 Aborting Local Trees

For aborting local trees, we store a set of local tree identification numbersin the candidate list.
In the tree manager method responsible for finding a new subproblem for aLP process, we
simply discard nodes that are in this set of terminated trees.

A.4.1 include/BCPtm node.hpp

We have to include two additional headers, again wrapped in a precompiler conditional.

#ifdef COIN LB
#include ”localtreeid.hpp”
#include <set>

#endif

Then we add a new public member to BCPnodequeue:

#ifdef COIN LB
/** LocalTreeId values of trees to be terminated
(= to be pruned by BCP node queue::pop and BCP node queue::top) */
std::set<LocalTreeId> terminate ids;

#endif

A.4.2 TM/BCP tm functions

In BCP tm start one, we modify the head of the main loop, the updates marked with bold face.

(. . .)
while (true){

if (p.candidates.empty()) return BCP NodeStart NoNode;
next node = p.candidates.top();
p.candidates.pop();
desc = next node−> desc;

bool process this = true;
#ifdef COIN LB

const LB user data* lb ud =
dynamic cast <const LB user data*> (next node−>user data ());

if (lb ud && p.candidates .terminate ids .end () !=
p.candidates .terminate ids .find (lb ud−>id ))

process this = false ;
else

#endif
if (! p.has ub()) // if no UB yet or lb is lower than UB then go ahead

break;
(. . .)
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Appendix B

Test Scripts

The results of chapter 9 were retrieved using test scripts written in Bash andPython code. The
printstats.pyscript expects a file containing the output of a set of test runs, usually covering
more than one instance and testing several configurations. The results are grouped by filename
and configuration, and miscellaneous statistical data can be extracted. Forexample, tables
containing the final objective values or the online performance rating. Additionally, plots of
the final objective value can be created. Thegnuplotprogram is used to generate these cuts
which can be viewed on screen or written to a postscript file. Since the test logs are usually
rather large and take some seconds for processing, a simple interactive command line interface
was implemented to shorten user response times.

B.1 Generating Log Files

To simplify testing different configurations on many different files, a short Bash script is avail-
able. The configurations to be tested are entered as an array, which is then applied to every
file supplied. Since the instances of the OR Library [2] contain 30 test instances per file, the
instance numbers to be tested can be specified in an array.

#!/bin/bash
outfile=testall.log
rm $outfile
instances=”‘seq 0 29‘”
testcases=(”LB K 0” ”LB K 10 LB MaxNodes 5000” ”LB K 20”)

for file in $*
do

echo −e ”Processing” $file ”. . .\n”
for inst in $instances
do

for opts in ”${testcases[@]}”
do

date >> $outfile
echo −e ”Processing” $file ”, instance” $inst ”, params =” $opts ”. . .\n” >> $outfile
nice Linux−O/bcps $opts ${file}:${inst} >> $outfile
echo >> $outfile

done
done

done
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The script has to be executed from the main knapsack application directoryand stores the
results in the file specified byoutfile. The instance numbers are stored ininstances(in this
case{0 . . . 29}), the configurations are stored intestcases. The test files are supplied on the
command line, possibly using wildcards.

B.2 Analyzing Log Files

The printstats.pyscript parses the log file given on the command line and offers a simple
line-based interactive interface to query the results. The most important commands are:

• helpreturns a list of all commands.

• help [command]returns a short description and possible parameters of the given com-
mand.

• table [configuration]*prints a table containing all tested instances as rows and the given
configurations (or all, if none are supplied) as columns. The index numbers of the
configurations correspond with the log file and are also displayed below thetable.

• columns [parameter]sets the displayed values. Possible parameters are:

– finalobjective: the final objective value.

– finalobjective delta: the final objective value, and the number of processed nodes
relative to the best configuration in a row (when two configurations foundthe same
result.)

– onlineperformance: the online performance rating.

– localtrees: the number of (created) local trees.

– localtime: time spent in local branching relative to the total computation time.

– finalbinary: a binary comparison function for the final objective value, useful for
executing Wilcoxon rank sum tests.

• showfilename [true/false]enables or disables the file name column in the table view.

• plot [filename] [configurations]*executes gnuplot to plot the final objective values of
the given configurations (or all if none are given).

• outputformat [screen/postscript]sets the output format of the plots generated by the plot
commands.screenuses gnuplot to display the diagram on the screen,postscriptwrites
the output to a postscript file.

• outputdir [directory] sets the directory where the postscript files are stored (default:
current working directory.)
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