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Abstract

This diploma thesis presents a new approach for multiple sequence align-
ment (MSA), which tries to overcome some of the main problems of existing
strategies.

At first it gives a formal definition of the MSA problem, elucidates occuring
difficulties and describes existing MSA algorithms particularly with regard
to evolutionary algorithms.

Then the maximum weight trace problem is introduced, which transforms
the problem of computing a multiple alignment with the best score to the
problem of finding a trace with maximum weight in a so–called alignment
graph. In our approach, this alignment graph contains information of pair-
wise alignments computed by CLUSTAL W as well as global information
gained by analysing the consistency between all sequences.

Finally an evolutionary algorithm (EA) is presented, which is used to com-
pute a multiple alignment based on the information of this alignment graph.
This EA uses a greedy heuristic to create a set of initial alignments. Then
fast variation operators as well as global optimisation strategies like path
relinking are applied to further improve these alignments iteratively.

Various tests and comparisons with other MSA programs indicate that this
new approach is able to outperform even widely used MSA packages like
CLUSTAL W on many reference alignments of the BAliBASE library.
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Chapter 1

Multiple Sequence Alignment

1.1 Introduction

Sequence alignment plays an important role in molecular sequence analysis.
There are three domains of biological sequences, namely DNA, RNA and pro-
teins. The sequence of a DNA molecule can be modelled as a string over a
4-character alphabet, each character representing one of the four nucleotides
that make up DNA. RNA can be modelled in a similar way. The third class
of biological macromolecules, the proteins, are chains of amino acids and can
be represented as strings over a 20-character alphabet.

The residue alphabet of each domain is shown in Figure 1.1, examples for
DNA and protein sequences are given in Figure 1.2.

DNA: A ... Adenine RNA: A ... Adenine

C ... Cytosine C ... Cytosine
G ... Guanine G ... Guanine
T ... Thymine U ... Uracile

Proteins: A ... Alanine C ... Cysteine D ... Aspartate

E ... Glutamate F ... Phenylalanine G ... Glycine
H ... Histidine I ... Isoleucine K ... Lysine
L ... Leucine M ... Methionine N ... Asparagine
P ... Proline Q ... Glutamine R ... Arginine
S ... Serine T ... Threonine V ... Valine
W ... Tryptophan Y ... Tyrosine

Figure 1.1: Residue alphabet of DNA, RNA and proteins
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   DNA sequences:

s1 C A T G A G A T C

s2 A C T C A G T A C

   Protein sequences:

s1 R S S F G D D H

s2 R S A T C C Y D F H T

s3 S S T F C A D D H

s4 R S A T F G A D D T

Figure 1.2: Examples for DNA and protein sequences

Sequence alignment is a way of placing one sequence above the other in order
to make the correspondence between characters or substrings of different
sequences clear. Such alignments can be used to

• determine evolutionary relationships that exist among various organ-
isms (phylogenetic analysis),

• identify conserved motifs which are important for the structure and
function of a group of related proteins,

• improve secondary and tertiary structure prediction for RNA and pro-
teins.

Naturally it only makes sense, if all involved sequences are defined on the
same domain.

Definition 1.1 (Sequence alignment): Let S = {S1, S2, . . . , Sn} be a set

of n strings over the finite alphabet A, each string Si consisting of li ordered

characters si,.:

Si = si,1si,2 . . . si,li , ∀i = 1, 2, . . . , n

We define a new alphabet Â = A ∪ {−} by adding the symbol dash ’−’ to

represent spaces. Then a set Ŝ = {Ŝ1, Ŝ2, . . . , Ŝn} of strings over the alphabet

Â is called alignment of the set S, if the following properties are fulfilled:

1. All strings in Ŝ have the same length l̂ with

max
i=1...n

(li) ≤ l̂ ≤
n∑

i=1

li.

5



2. Ignoring dashes, string Ŝi is identical with string Si ,∀i = 1, 2, . . . , n.

3. Ŝ has no column that only contains spaces.

Hence an alignment can be interpreted as an array with n rows, where the
i-th row contains string Ŝi. Depending on the number of sequences, we can
differentiate between pairwise sequence alignment (n = 2) and multiple se-
quence alignment (n ≥ 3).

For examples of a pairwise DNA and a multiple protein sequence alignment
based on the sequences given in Figure 1.2 see Figure 1.3.

   Pairwise alignment:

s1 C A – T G A G – A T C

s2 – A C T C A G T A – C

   Multiple alignment:

s1 R S S – – F G – D D H –

s2 R – S A T C C Y D F H T

s3 – S S – T F C A D D H –

s4 R S – A T F G A D D – T

Figure 1.3: Examples for a DNA and a protein sequence alignment

In order to solve the sequence alignment problem, we need a measure to de-
termine how good an alignment is. A simple method to distinguish amongst
the many possibilites of this arrangement is the distance approach, which
provides a measure of how much two strings differ [27].

Costs are assigned to elementary edit operations, like the substitution of
a character by another one, or the insertion/deletion of an arbitrary char-
acter. The distance between two aligned sequences is then defined as the
minimal total cost needed to transform one string into the other one.

For an example of this approach see Figure 1.4.
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   Substitution costs:  1

   Costs for insertion/deletion:  2

   Pairwise alignment:

s1 C A – T G A G – A T C

s2 – A C T C A G T A – C

2 2 1 2 2

Total transformation costs: 9

Figure 1.4: Distance between two sequences

Having such a distance function d(Ŝi, Ŝj) for two aligned sequences Ŝi and

Ŝj, the pairwise alignment problem can be formulated as follows:

Definition 1.2 (Pairwise alignment problem): Let S = {S1, S2} be

a set of two strings over the same alphabet A. Compute the alignment

Ŝ = {Ŝ1, Ŝ2} of S over the alphabet Â that minimises the distance d(Ŝ1, Ŝ2).

Scoring a multiple alignment is more complex than its pairwise counterpart,
as it can be formalised in different ways. The most commonly used definition
is the sum-of-pairs multiple alignment problem, which can be formulated as
follows:

Definition 1.3 (Sum-of-pairs multiple alignment problem): Let S =

{S1, S2, . . . , Sn} be a set of n strings over the same alphabet A. Compute

the alignment Ŝ = {Ŝ1, Ŝ2, . . . , Ŝn} of S over the alphabet Â that minimises

the sum of the distances of all pairs Ŝi and Ŝj:

min
Ŝ




n−1∑

i=1

n∑

j=i+1

d(Ŝi, Ŝj)




Another scoring method is the similarity approach [27]. Here we are looking
for a score that reflects how much two strings are alike. Matching characters
are rewarded and gaps are penalised by subtracting a gap penalty. The op-
timisation task is then defined as finding the alignment that maximises the
similarity score.

For an example see Figure 1.5.
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   Character match:  2
   Character mismatch: 0
   Gap penalty:  -1

   Pairwise alignment:

s1 C A – T G A G – A T C

s2 – A C T C A G T A – C
-1 2 -1 2 0 2 2 -1 2 -1 2

Similarity score: 8

Figure 1.5: Similarity between two sequences

As shown in [27], distance and similarity are related concepts, thus, under
certain conditions distance computations can be reduced to similarity com-
putations and vice versa.

Both, pairwise and sum-of-pairs multiple alignments, can be exactly solved
by dynamic programming [18], which converts the original problem to the
problem of searching for the shortest path in a weighted directed acyclic
graph. However, due to the fact that the converted problem is NP–hard [32],
algorithms that guarantee to find the true optimal solution have running
times growing exponentially with the size of the problem. Therefore, most
of the practical multiple alignment algorithms for larger instances are based
on heuristics providing an approximate solution to the problem.

1.2 Multiple Protein Sequence Alignment

When comparing protein sequences, simple scoring schemes as presented in
the last section, are not enough. Amino acids have biochemical properties,
that influence their relative replaceability in an evolutionary scenario. Thus
it is important to use a scoring scheme that reflects this probability as well
as possible.

A standard procedure toward this goal is based on the use of similarity ma-
trices [28] such as the point accepted mutation matrix PAM or the block
substitution matrix BLOSUM. These similarity matrices contain scores for
all possible matches and mismatches of amino acid symbols based on the fre-
quency of occurrence of these changes in known protein sequence databases.
With other words, a score is assigned according to its biological likeliness to
every possible substitution or conservation.
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Definition 1.4 (Scoring matrix) Let M be such a scoring matrix between

any two characters x and y of the alphabet A, which has the following char-

acteristics:

• M(x, y) = M(y, x), ∀x, y ∈ A

• M(x,−) = G, where G is a fixed gap penalty

• M(−,−) = 0

Definition 1.5 (Symbol score) Let Si and Sj be two strings over the

alphabet A and Ŝi and Ŝj the corresponding aligned strings over the alphabet

Â. Then the symbol score SS for the aligned sequences Ŝi and Ŝj is defined

as:

SS(Ŝi, Ŝj) =
l̂∑

k=1

M(ŝi,k, ŝj,k)

Additionally each sequence usually receives a weight proportional to the
amount of independent information it contains. Such sequence weights are an
attempt to minimise redundant information, based on the relatedness of the
sequences. They can be derived from a phylogenetic tree for the sequences.

Definition 1.6 (Weighted symbol score) Let W be such a weight matrix

for every pair of aligned sequences. Then the weighted symbol score WSS

for the aligned sequences Ŝi and Ŝj is defined as:

WSS(Ŝi, Ŝj) = Wi,j ·
l̂∑

k=1

M(ŝi,k, ŝj,k)

Insertions and deletetions are scored using gap penalties. If we define a gap
as continuous block of spaces, then a gap of length l has a penalty score
of l · G, where G < 0 is the fixed gap (extension) penalty. This is called
the linear gap penalty function. Adding up this penalty for each gap of an
aligned sequence gives the linear gap penalty score (LGPS).

There is another type of gap penalty, in which the first space receives a
gap opening penalty O < G < 0, which is stronger than the penalty for gap
extending spaces. A gap of length l has a cost of O +(l− 1) ·G then. This is
called the affine gap penalty function. Adding up this penalty for each gap
of an aligned sequence gives the affine gap penalty score (AGPS).
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As the affine gap penalty score is more appropriate than the linear gap
penalty score from the biological point of view, it is used more often.

This finally leads to the most frequently examined sum-of-pairs multiple
alignment problem, optimising a weighted sum-of-pairs function with affine
gap penalties.

Definition 1.7 Let S = {S1, S2, . . . , Sn} be a set of n strings over the same

alphabet A. Compute the alignment Ŝ = {Ŝ1, Ŝ2, . . . , Ŝn} of S over the al-

phabet Â that maximises the sum of the weighted symbol score WSS(Ŝi, Ŝj)

and the affine gap penalty score AGPS(Ŝi) for all aligned sequences Ŝi:

max
Ŝ




n−1∑

i=1

n∑

j=i+1

WSS(Ŝi, Ŝj) +
n∑

i=1

AGPS(Ŝi)




1.3 Problems associated with MSA

All alignment methods only make sense if they are assumed to be dealing
with a set of homologous sequences, i.e. with sequences sharing a common
ancestor. Having inappropriate sequences, MSA algorithms usually produce
a meaningless alignment.

Unfortunately accurate multiple alignments are difficult to build. There are
two main reasons for this:

• Firstly, it is difficult to evaluate the quality of a multiple alignment.
This is a biological problem and lies in the definition of correctness –
what should a biologically correct alignment look like?

• Secondly, even if a function is available for the evaluation, it is algo-
rithmically very hard to produce the alignment with the optimal score.

1.3.1 Choice of the Objective Function

The problem is to find a mathematical function – the so called objective
function – which is able to measure the biological quality of an alignment.
In theory, an objective function should incorporate everything that is known
about the sequences including their structure, their function and their evolu-
tionary history. This information is rarely known and so it is usually replaced
with sequence similarity. Thus for multiple protein sequence alignment, a
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simpler function is often used: weighted sums-of-pairs with affine gap penal-
ties. Under this model, each sequence receives a weight proportional to the
amount of independent information it contains and the score of the multiple
alignment is equal to the sum of all the weighted pairwise scores. Insertions
or deletions are measured using affine gap penalties that penalize a gap once
for opening and then proportionally to its length.

Although a sum-of-pairs function is clearly wrong from an evolutionary point
of view because it assumes every sequence within the set to be an ancestor of
every other sequence, the simplicity of its implementation and its validation
as reasonable indicator [30] made it popular within the most widely used
MSA packages.

The major problems of the affine gap penalty scheme are the two param-
eters, the gap opening and the gap extension penalty, whose adequate values
can only be set empirically and may vary from one set of sequences to the
next. There has been made an extensive review describing the different ways
of scoring gaps in a multiple alignment [2], which proposes other, simpler
types of gap penalties, e.g. quasi natural gap penalties. However, the affine
gap penalty scheme is still most commonly used.

Another approach to evaluate multiple alignments, which we also follow in
our method, is the use of a consistency based objective function reflecting
the level of consistency between a multiple alignment and a library contain-
ing pairwise and/or local alignments of the same sequences. Such methods
have the advantage of not being dependent on a specific similarity matrix
but rather on any method able to align two sequences at a time.

The first consistency based MSA method has been introduced by Kececioglu
[15], who transformed the MSA problem to the maximum weight trace prob-
lem as described in chapter 3.1. He presented a branch-and-bound algorithm,
whose implementation could optimally align up to 6 tyrosine kinase protein
sequences of length 273 to 285 in a few minutes. However, larger examples
required excessive space and therefore could not be handled by this exact
approach.

Reinert et al. [26] expressed the maximum weight trace problem as an inte-
ger linear program. They used a branch-and-cut algorithm and were able to
solve several problem instances, for which common dynamic programming
algorithms failed. Still, there are restrictions on the number and the length
of the sequences.
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Fauster [7] applied two fast greedy heuristics to the maximum weight trace
problem, which were able to solve even larger instances. The solutions found
this way were further improved by local improvement methods and a tabu
search algorithm. Comparisons with other programs validated the efficiency
of this approach. One of these heuristics is also used in our methods and
presented in section 4.3.

Another consistency based method has been described by Notredame et al.
[22]. He combined pairwise alignments (as computed by CLUSTAL W [28])
and local alignments (computed by Lalign [14]) in a so–called primary library.
Then he applied a heuristic – the library extension – analysing the consis-
tency between a pairwise alignment and all other sequences to add some
global information. Finally this library was used to derive a phylogenetic
tree for a progessive alignment algorithm (see next section), which computed
the multiple alignment. A generalisation of the idea of this library extension
is also used in our work and presented in chapter 3.4.

Aside, some other scoring models like profiles or hidden Markov models have
been developed and tested, a brief overview can be found in [20].

Depending on the used objective function and the underlying scoring model
(similarity matrix, gap penalties,...), the optimal multiple alignment is usu-
ally different. Therefore, there is also the task of finding a scoring model that
produces alignments as close as possible to the true biological alignment be-
sides the task of finding the algorithm to search for the optimal alignment.

1.3.2 Computation of the Alignment

As said before, most of the used practical alignment algorithms are based
on heuristics producing quasi-optimal alignments. They are all based on
different paradigms and each of them is well suited for certain situations. This
wide range of available methods makes it hard to decide which approach is
best suited for a given purpose. In general, these approaches can be classified
in three main categories – progressive, exact and iterative algorithms – which
are briefly described below. For a more detailed review and an extensive
bibliography to existing methods see the survey of Notredame [20].

• The majority of multiple sequence alignment heuristics is carried out
using a progressive approach. The most widely used algorithm of this
category is CLUSTAL W [28]. This method gradually builds an align-
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ment by first estimating the evolutionary distance between each pair
of sequences in the set and afterwards aligning the sequences one by
one to the multiple alignment according to decreasing similarity. As
this sequence addition can be performed with a pairwise alignment al-
gorithm – CLUSTAL W uses the dynamic programming algorithm of
Myers and Miller [17] – the approach has the great advantage of speed
and simplicity. However, because of the greedy nature of this heuristic,
no quality guarantees can be given. This means that if any suboptimal
choices are made during the computation, they cannot be corrected
later on when more sequences are added to the alignment.

• Another approach is to use extensions of dynamic programming algo-
rithms for simultaneously aligning multiple sequences. They always
produce optimal alignments with regard to the used objective func-
tion, however, they have drawbacks of exponential time complexity,
running time and memory requirement, so such algorithms can only
handle a small number of sequences and they are usually limited to the
sum-of-pairs multiple alignment problem.

• Iterative algorithms start with a random or (by other methods) pre-
computed alignment and try to refine it through a series of iterations
until no more improvements can be achieved. Such modifications can
be made either by deterministic strategies or by stochastic methods like
simulated annealing and evolutionary algorithms. Although iterative
algorithms cannot provide any guarantees for finding the optimal solu-
tion within reasonable time, they have already proved to be robust and
much less sensitive to the number of sequences than their deterministic
counterparts. The main advantage is the good conceptual separation
between optimisation and the objective function, which allows the us-
age of various objective functions. However, if used alone, iterative
algorithms have the drawback of converging relatively slowly and thus
requiring more computing time. Especially in combination with other
methods, such as an alignment improver, they are nevertheless very
promising. As our approach is based on an evolutionary algorithm,
a detailed review of existing EAs for the multiple sequence alignment
problem is given in the next section.
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Chapter 2

Evolutionary Algorithms

2.1 General

Evolutionary algorithms (EAs) are stochastic search methods based on the
concept of biological evolution [4]. They are very useful to find (near) optimal
solutions for combinatorial optimisation problems which traditional methods
fail to solve efficiently. The existing approaches to evolutionary algorithms
– including e.g. genetic algorithms [10], evolutionary programming [8] or
genetic programming [16] – are all based on the assumption that simulating
an evolutionary process in a population of potential solutions evolves better
solutions. Biological terms are conveniently used to describe this process:

• The chromosomes represent the potential solutions. Every chromo-
some is typically composed of several genes, the solution parameters.

• A set of chromosomes forms a population. Successive populations are
referred to as generations.

• To create new chromosomes (offsprings), two kinds of operators are
typically used: Crossovers are used to exchange genes between two
chromosomes, while Mutations change one or more genes in a single
chromosome.

• Based on the principle of survival-of-the-fittest, chromosomes with
a good performance (according to an applied fitness function) are more
likely to be selected to produce offsprings for the next generation.

The evolutionary process starts with the first generation usually composed of
random chromosomes. It is also possible to add good chromosomes from pre-
vious computations or solutions provided by other heuristics to this initial
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population (seeding). This bears the risk of misguiding the optimisation
process toward a local optimum. However, starting the evolution in a more
useful region of the search space often allows to reach a more appropriate
final solution very quickly. Furthermore, if the best chromosome of each
generation is always selected for the next generation (elitism), seeding also
ensures that the solution of the EA will always be at least as good as the
solutions provided by previous runs or other heuristics.

During the evolutionary process the chromosomes are exposed to different
variation operators. Such crossover and mutation operators can work in a
completely random way or perform changes based on special improvement
heuristics.

In every population the best chromosomes are selected to form the next
generation. This selection is based on a fitness function which assigns a
fitness value to every chromosome (evaluation). Chromosomes with a better
fitness value have a higher probability to ’survive’ and to produce offsprings
for the next generation. This selection is repeated until enough offsprings
have been chosen.

The whole evolutionary process is iterated until a termination condition –
e.g. terminate after k generations, terminate if the best solution in the pop-
ulation has not changed within the last k generations, terminate when a
given fitness value limit is reached – is fulfilled. Figure 2.1 shows the typical
structure of an evolutionary algorithm:

generate
initial

population
evaluation

termination

condition

fulfilled ?

YES return
best

solution

       NO

crossover

and/or
mutation

selection

generate new generation

Figure 2.1: Structure of an evolutionary algorithm
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The main advantage of evolutionary algorithms over other optimisation meth-
ods is that there is no need to provide a particular algorithm to solve a given
problem. It only needs a fitness function to evaluate the quality of different
solutions and a reasonable coding of the problem, which allows to generate
new chromosomes by suitable crossover and mutation operators in an effi-
cient way.

As EAs implicitly are a parallel technique, they can also be implemented
effectively on parallel computers to speed up the evolutionary process.

2.2 Evolutionary Algorithms for MSA

There have already been made a lot of attempts to solve the MSA problem
by evolutionary algorithms, as they are able to produce good alignments for
larger test sets as well as for test sets with low sequence similarity. How-
ever, any sequence alignment algorithm must trade off computation speed
for alignment accuracy. Applying rather straightforward EAs to the multi-
ple alignment problem therefore often results in fairly slow convergence or –
if the EAs is terminated too early – in poor results. Besides, general meth-
ods like seeding or parallelisation, problem specific crossover and mutation
operators are essential to speed up the evolutionary process.

2.2.1 Existing Evolutionary Algorithms for MSA

In the following the main characteristics of nine existing evolutionary al-
gorithms are presented. These algorithms differ in many features like the
chromosome representation of the multiple alignment, the used fitness func-
tion and the applied operators.

The first evolutionary algorithm using an adequate set of problem specific
crossover and mutation operators was SAGA [21]. SAGA is a straightforward
implementation of a genetic algorithm, which tries to optimise a weighted
sum-of-pairs function with natural or quasi-natural affine gap penalties. Like
most of the existing algorithms, it uses a two–dimensional array to represent
the multiple alignment. 22 different operators are applied to the chromo-
somes to perform crossovers (One Point Crossover, Uniform Crossover) and
mutations (Gap Insertion, different variants of Block Shuffling, Block Search-
ing, Local Optimal or Sub-Optimal Rearrangement). To control the usage of
these operators a dynamic scheduling scheme is used, i.e. each operator has
a probability of being chosen that is optimised during the run.
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Based on SAGA, two other evolutionary algorithms have been developed:
PGA [3], which is a parallel implemention of SAGA, and SAGA-COFFEE
[23], which tries to optimise a consistency based objective function: Let Wi,j

being the percent identity between two aligned sequences, Ci,j being the
number of aligned characters, that are shared between the pairwise align-
ment and a library containing all pairwise alignments, and Li,j being the
length of the pairwise alignment. Then the consistency based objective func-
tion of SAGA-COFFEE is computed as follows (with n being the number of
sequences):

COFFEE =




n−1∑

i=1

n∑

j=i+1

Wi,j · Ci,j


 /




n−1∑

i=1

n∑

j=i+1

Wi,j · Li,j




In contrast to these previously presented algorithms, GA [13] uses a number
string of the gap positions to represent the multiple alignment. Therefore all
operators are designed to work with these gap positions to optimise the align-
ment based on a sum-of-pairs fitness function. Altogether three crossover
(CombineBest, GoodPosCombine, OnePointCombine) and four mutation op-
erators (MergeSpace, MoveSpaceCol, BreakSpaceCol, MoveRowSpace) are
used.

One more evolutionary algorithm using the same chromosome representa-
tion as SAGA is EP [6]. This EA tries to optimise the following fitness
function:

Fitness = SymbolScore−GapScore,

with SymbolScore being the overall score for the number of matched sym-
bols of all columns and with GapScore being the number of all gaps of
all columns. For optimisation, EP uses one crossover (RecombineMatched-
Col) and four mutation operators (RandomShuffle, LocalShuffleOne, Grow-
MatchedCol, LocallyAlignBlock). Additionally, it provides the possibility to
use a heuristic for initialisation by precomputing all pairwise alignments and
merging them in a sequential manner (following a random permutation of all
sequences).

The genetic algorithm of Cai et al. [5] uses one crossover operator (One
Point Crossover) and a heuristic called Local Gap 0-1 Alignment to optimise
a sum-of-pairs fitness function. Additonally gaps are inserted at random
positions for mutation. Gusfield’s Center Star Algorithm [11] is used to com-
pute an approximative alignment for the initial population. Then gaps are
inserted at random positions to create diversity.
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Another EA is MSA EA [31], which uses CLUSTAL W to create one chro-
mosome of the initial population. The other chromosomes are randomly
initialised. Altogether one crossover (RecombineMatchedColumns) and four
mutation operators (LocalShuffle, BlockShuffle, GrowMatchedColumns, CleanUp-
GapColumns) are used for optimisation.

The genetic algorithm of Zhang et al. [33] focuses on the identification of
fully matched columns. One crossover operator (One Point Crossover) and
a randomised mutation operator are applied to the chromosomes during the
evolutionary process.

PHGA [19] is a parallel genetic algorithm, applied to the converted prob-
lem of finding the shortest path in a weighted directed acyclic n–dimensional
graph. It uses a number string of edge directions to represent a multiple
alignment in the search space. For the correspondence between an aligment
and this number string of edge directions see Figure 2.2. A sum-of-pairs
function with affine gap penalties is used for optimisation. The designed op-
erators work similarly as already described methods (One Point Crossover,
Random Shuffle). The initialisation is performed by a progressive alignment
strategy, adding the sequences in random order.

Example for n=2 using the following edge direction scheme:

C G T T

C   3
1

T 3

G 2

C 2

T   3

1

2        3

CGT––T

C–TGCT
(313223)

Figure 2.2: Correspondence between an alignment and a number string of

gap positions

In the next two sections, an overview of the presented crossover and mutation
operators is given. For comparison, these operators are all described with
regard to a 2-dimensional array chromosome representation, which allows to
refer to the multiple alignment as chromosome. Unless otherwise defined, a
block is a number of consecutive characters or gaps in one or more sequences.
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The term subalignment refers to a number of consecutive columns of the
alignment. Columns containg only gaps are not displayed as they are usually
deleted after any modification of the chromosome (e.g. CleanUpGapColumns
in EA) or applied to other mutation operators (e.g. BreakSpaceCol in GA).

2.2.2 Crossover Operators

Crossover operators are responsible for creating one or more new chromo-
somes (offsprings) by combining the attributes of existing chromosomes (par-
ents).

One Point Crossover used in SAGA [21]

One character of the first parent is randomly selected and the chromosome is
cut straight at this position. The second parent is tailored so that the right
and left parts of each chromosome can be joined together while keeping the
original sequence of characters. Any void space that appears at the junction
point is filled with gaps, so this method is a local rearrangement mutation
as well. An example is given in Figure 2.3.

parent 1

 s1 A G – A – A T C – A

s2 – T – – C G – A – –

s3 – C – A C A G A – A

s4 A G C – A – A T C –

offspring 1

 s1 A G – A – – – A – T C A

s2 – T – – C G – – A – – –

s3 – C – A – C A – – G A A

s4 A G C – – – A – – A T C

parent 2

 s1 A – G – A A – T C A

s2 – T C G – – A – – –

s3 C A – C A – – G A A

s4 A – G C A – – A T C

offspring 2

 s1 A – G – A – A T C – A

s2 – T – – – C G – A – –

s3 C A – – – C A G A – A

s4 A – G C – A – A T C –

Figure 2.3: One Point Crossover

Similar versions of this operator, where also the first chromosome is not nec-
essarily cut straight, are used in PHGA [19], GA [13] as well as by the genetic
algorithms of Cai et al. [5] and Zhang et al. [33].
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Uniform Crossover used in SAGA [21]

All consistent columns between two parents are selected. Two columns are
consistent, when they contain the same characters by reference to the origi-
nal sequence (or a gap between the same characters). Blocks between such
columns can be directly swapped without further considerations. This swap-
ping can be done in a completely stochastic or in a semi-hill climbing way, if
only the combination of swapped blocks with the best fitness is chosen. An
example is given in Figure 2.4.

parent 1

s1 A G – A C A T A – A

s2 – A – – C G – A – –

s3 C G – A C A G C A –

s4 A – C – C – A G C –

possible offspring

s1 A – G – A C A T – A – A

s2 – – A C – G – – – A – –

s3 – C G A – C A G – C A –

s4 A – – C – – C – A G C –

parent 2

s1 A – G – A C A T – A A

s2 – – A C – G – – – A –

s3 – C G A – C A G – C A

s4 A – – C – – C – A G C

Figure 2.4: Uniform Crossover

RecombineMatchedCol used in EP [6], MSA EA [31]

All fully matched columns of the first parent that are not present in the sec-
ond parent, but can be added there without disrupting any existing matched
columns, are determined. One of these matched columns is selected with
uniform probability and generated in the second chromosome by inserting
extra gaps. An example is given in Figure 2.5.
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parent 1

s1 A G – A C A T A – A

s2 – G – – C G – A – –

s3 C G – A C A G A A –

s4 A G C – C – A A C –

offspring

s1 A – G – A C – A T – A A

s2 – – G – – C G – – T A –

s3 – C G A – C – A G – A A

s4 A – G C – C – – A – A C

parent 2

s1 A – G – A C A T – A A

s2 – – G C – G – – T A –

s3 – C G A – C A G – A A

s4 A – G C – – C A – A C

Figure 2.5: RecombineMatchedCol

CombineBest used in GA [13]

A random number of consistent columns, which additionally have the same
absolute position in both alignments, are selected. Similarly to Uniform
Crossover, blocks between such columns can be directly swapped and only
the blocks giving the better fitness are used to produce the offspring. An
example is given in Figure 2.6.

parent 1

s1 A – G – A C A T A G A

s2 G – A – – C – G A – –

s3 – C G – A C A G C A –

s4 A – – C – C A – G C –

possible offspring

s1 – A G – A C A T A G A

s2 G – A – – C – G A – –

s3 C – G – A C A G C – A

s4 – A – C – C A – G C –

parent 2

s1 – A G – A C A T A G A

s2 G – A C – G – – A – –

s3 C – G A – C A G C – A

s4 – A – C – – C A G C –

Figure 2.6: CombineBest

GoodPosCombine used in GA [13]

Two consistent columns, which additionally have the same absolute position
in both alignments, are selected. Between those columns, all gaps appearing

21



in both chromosomes are chosen and placed at the same position in the off-
spring. Then gaps appearing in only one chromosome are randomly selected
and inserted until enough gaps exist in each row. An example is given in
Figure 2.7.

parent 1

s1 A – G – A C A T A G A

s2 G – A – – C – G A – –

s3 – C G – A C A G C A –

s4 A – – C – C A – G C –

subalignment subalignment

– –

– – – – –

–

– – –

offspring 1

s1 A – G – A C A T A G A

s2 G – A C – G – – A – –

s3 – C G A – C A G C A –

s4 A – – C – C A – G C –

parent 2

s1 – A G – A C A T A G A

s2 G – A C – G – – A – –

s3 C – G A – C A G C – A

s4 – A – C – – C A G C –

subalignment

– A C A T

C – G – –

A – C A G

C – C A –

offspring 2

s1 – A G – A C A T A G A

s2 G – A C – G – – A – –

s3 C – G A – C A G C – A

s4 – A – C – C A – G C –

Figure 2.7: GoodPosCombine

2.2.3 Mutation Operators

While crossover operators combine different patterns, there is still a need to
generate new ones. A common method is to swap characters and gaps (e.g.
PHGA [19]) or just to insert a constant number of gaps into each sequence
at a random position (e.g. Cai et al. [5]), but there are still some more mu-
tation operators, which try to speed up the evolutionary process using local
heuristics.

RandomShuffle, LocalShuffle, BlockShuffle used in EP [6], MSA EA
[31]

One ore more consecutive characters of a sequence are randomly selected
and tried to be moved to the left or the right side. If both neighbors are
gaps, the direction of the movement is chosen randomly. An example is
given in Figure 2.8.
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parent

s1 C – G – A C C – – A T C T A

s2 G T A – C – A C – G T A C G

s3 C A G A – A C G C A G T G –

s4 A – T C – – C T – C T G A C

offspring

s1 C – G – A C C – A – T C T A

s2 G T A – C – A C – G T A C G

s3 C A G A A C G C – A G T G –

s4 A – – – T C C T – C T G A C

Figure 2.8: RandomShuffle, LocalShuffle, BlockShuffle

GrowMatchedCol used in EP [6], MSA EA [31]

A fully matched column with no more than one adjacent fully matched col-
umn is selected randomly in the alignment. Then – if possible – a new, fully
matched column is generated next to it by swapping gaps with characters.
An example is given in Figure 2.9.

parent

s1 A G – A C A – T G A C

s2 – G – C C – – A – A G

s3 C G – A C – A C G A A

s4 A G C – C – A – G A C

offspring

s1 A G – A C A T G A C

s2 – G – C C A – – A G

s3 C G – A C A C G A A

s4 A G C – C A – G A C

Figure 2.9: GrowMatchedCol

LocalShuffleOne used in EP [6]

One of the sequences is selected at random and scanned to find all char-
acters having one or more gaps adjacent to them. One of these characters is
selected with uniform probability and shifted to each of these possible posi-
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tions. The position of the character giving the best fitness becomes the new
destination for it. An example is given in Figure 2.10.

parent

s1 A G – A C A – T G A – A

s2 – G – C – G – – – A A –

s3 C G – A C A C G A A – G

s4 A G C – T – G G A C – T

offspring

s1 A G – A C A – T G A – A

s2 – G – C – – – G – A A –

s3 C G – A C A C G A A – G

s4 A G C – T – G G A C – T

Figure 2.10: LocalShuffleOne

MergeSpace used in GA [13]

Two or three consecutive, but not necessarily adjacent gaps in a row are
randomly selected, merged together and shifted to a randomly chosen posi-
tion between two adjacent characters in the sequence. An example is given
in Figure 2.11.

parent

s1 C – G – A C C – – A T C – A

s2 G T – G – – A C – G T A C G

s3 C A G A – A C G C A G – G –

s4 A – T C – – C T – – T G A C

offspring

s1 C – G – A C C – – A T C – A

s2 G T G A C – G T A C – – – G

s3 C A G A – A C G C A G – G –

s4 A – T C – – C T – – T G A C

Figure 2.11: MergeSpace
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MoveSpaceCol used in GA [13]

Two or three adjacent gaps in a row are randomly selected and all other
gaps in these columns are determined. Then this block of gaps is shifted to
a randomly chosen position not containg any gaps. An example is given in
Figure 2.12.

parent

s1 C – G – A C C – – A T C T A

s2 G T A – – – A C – G T A C G

s3 C A G A – A C G C A G T G –

s4 A – T – – C – C T – C T G A

offspring

s1 C – G A C C – – A T – C T A

s2 G T A – A C – G T A – – C G

s3 C A G A A C G C A G T – G –

s4 A – T C – C T – C T – – G A

Figure 2.12: MoveSpaceCol

BreakSpaceCol used in GA [13]

A column containing only gaps is randomly selected. In each sequence, this
gap is moved to a another randomly chosen position. An example is given in
Figure 2.13.

parent

s1 C – G A – C C – – A – T C T

s2 G T A – – – A C – G – T A C

s3 C A G A – A C G C A – G T G

s4 A – T C – – C T – C – T G A

offspring

s1 C – G A C C – – A – T C – T

s2 G T A – – A – C – G – T A C

s3 C A – G A A C G C A – G T G

s4 A – T – C – C T – C – T G A

Figure 2.13: BreakSpaceCol
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MoveRowSpace used in GA [13]

A subalignment with short length is extracted from the full alignment. Then
a target sequence is produced by deleting all gaps from a randomly selected
sequence in the subalignment. Additionally a template sequence containing
the characters with the highest occurrence in each column of the subalign-
ment is generated. These two sequences are aligned by dynamic program-
ming under the condition that gaps are treated as ’base characters’ in the
template sequence and no new gaps are allowed to be inserted in the template
sequence. After the aligning process, the new target sequence replaces the
corresponding old one in the subalignment. An example is given in Figure
2.14.

parent (subalignment)

s1 C – G – A C C – – A T C A A

s2 C – G – – A C – G T – C A –

s3 – C G A – A C G – A G – A A

s4 A – G C – – C T – – T G A C

target sequence

C G A A C G A G A A

template sequence

C – G – – A C – – A T C A A

aligned target sequence

C – G A – A C G – A G – A A

offspring (subalignment)

s1 C – G – A C C – – A T C A A

s2 C – G – – A C – G T – C A –

s3 C – G A – A C G – A G – A A

s4 A – G C – – C T – – T G A C

Figure 2.14: MoveRowSpace

Local Gap 0-1 Alignment used by Cai et al. [5]

A subalignment of length two or three is randomly selected and tried to
be improved by local Gap 0-1 Alignment, which means that to the left of
any subsequence either a gap is inserted or not. The combination giving the
best fitness is chosen to be part of the new alignment. An example is given
in Figure 2.15.
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parent

s1 A G – A C G C T G – C

s2 – A T C A – G A C A G

s3 C G – A C G – C – T A

s4 A G C – T G A – G A C

possible subalignments

C G C – C G C C G C – C G C – C G C –

A – G A – G – – A – G A – G – A – G –

C G – C G – – C G – – – C G – C G – –

T G C T G C – T G C – T G C – – T G C

– C G C – C G C – C G C C G C – C G C –

– A – G A – G – A – G – – A – G – A – G

C G – – – C G – C G – – – C G – C G – –

T G C – T G C – – T G C T G C – – T G C

C G C – – C G C – C G C – C G C C G C –

A – G – – A – G – A – G A – G – – A – G

– C G – – C G – C G – – – C G – – C G –

– T G C T G C – – T G C – T G C – T G C

offspring

s1 A G – A – C G C T G – C

s2 – A T C A – G – A C A G

s3 C G – A – C G – C – T A

s4 A G C – – T G C – G A C

Figure 2.15: Local Gap 0-1 Alignment

LocallyAlignBlock used in EP [6]

All subalignments that are located between fully matched columns are deter-
mined and one of these subalignments is selected at random and optimised
by the following algorithm:

1. Extract the subalignment and fill this region in the alignment with
gaps.

2. Convert the extracted subalignment into a set of subsequences by re-
moving all gaps.

3. Find the longest subsequence and insert it back into the alignment in
the corresponding row, remove columns still having only gaps.

4. Place all other sequences in turn at the beginning of the corresponding
row in the alignment and move the characters (starting with the last
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one) into the free space to its right to the position giving the (locally)
maximum fitness gain.

As this operator would always generate the same arrangement for the sub-
alignment, the randomised version of it places the sequences in step 4 not in
turn but in a randomly permuted order. An example is given in Figure 2.16.

parent

s1 C – G – A G G – T – G – A A

s2 C – G G – G – – – A – – A –

s3 – C G A A – C G T – A G A G

s4 A – G – – – G T T – G – A C

alignment subsequences

C – G – – – – – – – A A A G G T G

C – G – – – – – – – A – G G A

– C G A A C G T A G A G A A C G T A G

A – G – – – – – – – A C G T T G

alignment subsequences

C – G A G – G T – G A A A G G T G

C – G – – – – – – – A – G G A

– C G A A C G T A G A G

A – G – – – – – – – A C G T T G

alignment subsequences

C – G A G – G T – G A A

C – G – G – G – A – A – G G A

– C G A A C G T A G A G

A – G – – – – – – – A C G T T G

alignment subsequences

C – G A G – G T – G A A

C – G – G – G – A – A –

– C G A A C G T A G A G

A – G G T T G – – – A C G T T G

offspring

s1 C – G A G – G T – G A A

s2 C – G – G – G – A – A –

s3 – C G A A C G T A G A G

s4 A – G G T T G – – – A C

Figure 2.16: LocallyAlignBlock
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BlockShuffling used in SAGA [21]

A block of consecutive characters of one or more sequences is randomly se-
lected and splitted horizontally (according to the phylogenetic tree) or ver-
tically. Then this (sub-)block is moved to the left or right position, either
randomly or in a semi-hill climbing way, looking for the position with the
best fitness. Similarly, this operator can be used on a block of consecutive
gaps. An example is given in Figure 2.17.

parent

s1 G – A C C – – A T C

s2 – G – – A C – G T A

s3 G A – A C G C A G –

s4 T C – – C T – – T G

possible  offspring  (no split)

s1 G A C C – – – A T C

s2 – G – A C – – G T A

s3 G A A C G C A G – –

s4 T C – C T – – – T G

alignment  after a vertically split

G A C C – – – A T C

– G – A – C – G T A

G A A C – G C A G –

T C – C – T – – T G

possible  offspring  (horizontally split)

s1 G A C C – – – A T C

s2 – G – A C – – G T A

s3 G A – A C G C A G –

s4 T C – – C T – – T G

possible  offspring  (vertically split)

s1 G A C C – – A T C

s2 – G – A C – G T A

s3 G A A C G C A G –

s4 T C – C T – – T G

Figure 2.17: BlockShuffling

Local Optimal or Sub-Optimal Rearrangement used in SAGA [21]

A block is selected at random and all gaps inside are tried to be placed
on the position giving the (locally) maximum fitness gain. If the optimi-
sation requires less than a specific number of combinations (about 2000),
this is done by exhaustive examination of all gap arrangements, else a local
alignment genetic algorithm is used.
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Block Searching used in SAGA [21]

A subsequence of random length (about 5-15 characters) without any gaps
is selected in one of the sequences and used to form the initial profile. In
a section tailored randomly (about 50-150 alignment positions) around the
position of this profile, all subsequences of the same length are compared
with the initial subsequence. The best matching one is selected and added
to form the new profile. Then the best match in the remaining sequences
is selected and added to the profile again. This goes on iteratively until a
match with the profile has been identified in all of the sequences. Finally the
sequences in the alignment are rearranged according to the formed profile.
An example is given in Figure 2.18.

parent

s1 A G T – G C A T T – G A – A – C

s2 – G – A C – C – G – G A C T – –

s3 C G – A C C – A C G A A – A G G

s4 A G C – T G C G T G A T – C T C

profile subalignments

A C G C A T A T T T T – T – G – G A G A –

– C – C – G – G – G – G – G A G A C

G C G C G T G T G T G A G A T A T –

profile subalignments

A C G C A T A T T T T – T – G – G A G A –

G C G – C – C – G – G – G – G – G A G A C

profile subalignments

G – G C A T A T T T T – T – G – G A G A –

A C G

G C G

offspring

s1 A G T – G C A T T – G – – – A – A – C

s2 – G – A C – C – G – G – – – A C T – –

s3 C G – A C C – – A C G – – A A – A G G

s4 A G C – T – – – G C G T G A T – C T C

Figure 2.18: Block Searching
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Gap Insertion used in SAGA [21]

The sequences are divided into two groups chosen by randomly splitting
an estimated phylogenetic tree (as given by CLUSTAL W ). Within each
group, every sequence receives a gap insertion at the same position. In the
stochastic version, the length of the inserted gaps and the insertion positions
are randomly chosen. In the semi-hill climbing version, the insertion position
in one group is chosen by exhaustively trying all the possible positions and
comparing the fitness of the resulting alignments. An example is given in
Figure 2.19.

parent

s1 C – G A A C C – T A T A

s2 G T A C C – A C A G T G

s3 C A G A – A C G C A G –

s4 A – T C C C C T G C T C

offspring

s1 C – G – – A A C C – T A T A

s2 G T A – – C C – A C A G T G

s3 C A G A – A C G C A G – – –

s4 A – T C C C C T G C T C – –

group 1

group 2

position 1 position 2

Figure 2.19: Gap Insertion

2.3 Review

A lot of different variation operators have already been designed for the
multiple sequence alignment problem. Local heuristics can speed up the
evolutionary process in many situations, which allows the EA to produce a
(near) optimal solution in reasonable time. However, because of their greedy
nature – all operations are performed only based on local considerations e.g.
by creating a fully matched column – such heuristics can never guarantee
any form of global improvement.

As a result of this shortcoming, all of these evolutionary algorithms only per-
form well on certain test instances (e.g. sequence sets of high similarity). On
other test instances, however, the quality of the obtained alignments is rather
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poor (also see the comparative results between our approach and SAGA in
section 6.4). Unfortunately, tests with this latter set of test instances were
only rarely performed by the authors of the EAs. Consequently, extensive
analyses are still missing from the literature to date.

In chapter 4 a new evolutionary algorithm is presented, whose operators
try to improve the multiple alignment based on additional global informa-
tion. This additional information is extracted from the so called alignment
graph, as introduced in the next chapter.
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Chapter 3

The Alignment Graph

3.1 The Maximum Weight Trace Problem

The multiple alignment problem as introduced in chapter 1 can be expressed
in various ways. In the complete maximum weight trace formulation, the
characters of the n sequences Si are viewed as vertices V in a complete n–
partite graph G and the edges represent the corresponding pairwise character
alignments. Every edge e ∈ G has a non-negative weight w giving priority
to the most reliable character pairs. We say that an alignment Ŝ realises an
edge e of G if the two characters connected by e are placed in the same col-
umn of the alignment. The set of edges realised by an alignment Ŝ is called
the trace of Ŝ and the weight of an alignment is the sum of the weights of
the edges it realises. The problem is to find a trace with maximum weight,
which is equivalent to the task of computing an alignment Ŝ of maximum
weight.

Maximum weight trace as introduced by Kececioglu [15] is a restriction of
the complete maximum weight trace formulation, as only a subgraph, the
so–called alignment graph, and not the complete graph is used. Hence, it is
also practicable for larger problem instances.

Definition 3.1 (Alignment graph) Let S = {S1, S2, . . . , Sn} be a set of n

sequences over the same alphabet A, each sequence Si consisting of li ordered

characters si,.:

Si = si,1si,2 . . . si,li , ∀i = 1, 2, . . . , n

Then an alignment graph is a graph G = (E, V ), whose vertices correspond

to the characters of the sequences and whose edges correspond to the pairwise
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character alignments:

V = {si,p}, ∀i = 1, 2 . . . , n, ∀p = 1, 2, . . . , li

E = {(si,p, sj,q)|1 ≤ i < j ≤ n, 1 ≤ p ≤ li, 1 ≤ q ≤ lj}

Since vertices of the alignment graph and the characters of the sequences

directly correspond to each other, the vertices of the graph are also referred

to as characters.

Figures 3.1 and 3.2 show the correspondence between a multiple alignment
and an alignment graph.

   multiple alignment:

s1 A G T – C G

s2 A – – – C –

s3 – G – C C G

s4 – – T A C G

Figure 3.1: Multiple alignment

A G T C G

A C

G C C G

T A C G

Figure 3.2: Alignment graph showing the edges realised by the multiple

alignment in Figure 3.1
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The edges of the alignment graph can be obtained from pairwise alignments
as well as from other methods like local alignment algorithms.

Kececioglu proved that the maximum weight trace problem contains the sum-
of-pairs MSA problem under certain conditions and that it is NP–hard.

Definition 3.2 (Maximum weight trace problem) Let S be a set of n

sequences, Ŝ an alignment of S and G = (V, E) the corresponding alignment

graph. Ŝ realises an edge e of E if the two characters connected by e are

placed in the same column of Ŝ. The set of edges realised by an alignment

Ŝ is called the trace of Ŝ.

Then the maximum weight trace problem can be formulated as follows: Com-

pute the alignment Ŝ that realises a trace with maximum weight:

max
Ŝ

∑

e∈trace(Ŝ)

w(e)

Hence, the problem of computing a multiple alignment with the best sum-of-
pairs score is transformed to the problem of finding a trace with maximum
weight. As we also have to face this problem in our method, we will approach
it more exactly in chapter 4.

3.2 Building the Alignment Graph

First of all the pairwise alignment graph is built. Each pair of sequences is
aligned one by one using e.g. the dynamic programming algorithm of Myers
and Miller [17]. So

(
n
2

)
pairwise alignments have to be computed and stored

in the pairwise alignment graph.

Without considering the complexity of building the pairwise alignments, the
time to build the graph and the memory required is:

O(l · n2), where l = max
i=1...n

li.

The total time including the pairwise alignments is O(l3 · n2).

An example for pairwise alignments is given in Figure 3.3. The corresponding
pairwise alignment graph is shown in Figure 3.4.
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sequences

s1 A G T C G

s2 A C

s3 G C C G

s4 T A C G

pairwise alignments

s1 A G T C G s1 A G T – C G s2 – A C –

s2 A – – C – s4 – – T A C G s4 T A C G

s1 A G T C G s2 A C – – s3 G C C G

s3 – G C C G s3 G C C G s4 T A C G

Figure 3.3: Pairwise alignments as computed by CLUSTAL W

A G T C G

A C

G C C G

T A C G

Figure 3.4: Pairwise alignment graph corresponding to the pairwise align-

ments of Figure 3.3
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3.3 Assigning a Weight

Within this pairwise alignment graph, a weight is assigned to all edges repre-
senting the pairwise character alignments. These weights can be determined
in various ways. The following scoring schemes have been implemented and
compared:

Sequence identity score (SIS): For every pair of aligned sequences, the
number of character matches m1 and character mismatches m0 is computed
(comparisons with gaps remain unconsidered), then the percent sequence
identity score is equal to:

SIS =
m1

m1 + m0

· 100,

which gives a result between 0% and 100%.

CLUSTAL W ’s identity score (CIS): As above, a percent sequence
identity score is calculated, but additionally, a weighted similarity matrix
and two types of gap penalties (for opening and extending gaps) are used for
this computation. For further details see Thompson et al. [28].

1-0 score (1-0S): Any edge, which connects the same characters, receives
the value 1 (100%), otherwise its weight is set to 0 (0%).

All these previously described scoring schemes assign the same weight to each
character of a pairwise alignment. Fauster [7] proposed a different method
using CLUSTAL W ’s similarity matrices such as PAM or BLOSUM. These
similarity matrices contain scores for all possible matches and mismatches of
amino acid symbols. However, applying such a score directly to an edge of
our graph would only reflect the relation between this single aligned charac-
ter pair and would not contain any information about the rest of the pairwise
alignment. Therefore, always a block of consecutive aligned character pairs
around one pair is considered during the computation. Fauster recommended
the following scoring scheme (with b = 10).

CLUSTAL W ’s similarity matrices with window filtering (CSM):
Let Ŝ be a pairwise alignment of the sequences Si and Sj, {e1, e2, . . . , em} a

set of edges representing the m pairwise character alignments in Ŝ, M(ek)
a similarity matrix score reflecting the similarity between the corresponding
characters of ek and (2 ·b+1) the arbitrary length of the block of consecutive
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aligned character pairs. Then the following weight is assigned to an edge ek:

CSM = M(ek) +
b∑

i=1

[
M(ek−i) ·

(
1− i

b + 1

)
· g−

]

+
b∑

i=1

[
M(ek+i) ·

(
1− i

b + 1

)
· g+

]
,

with

g− =

{
1 if there is no gap between position k − 1 and k − i,
0 else,

and

g+ =

{
1 if there is no gap between position k + 1 and k + i,
0 else.

An extensive review and comparison of these four implemented scoring schemes
can be found section 6.2.1. For exemplification the sequence identity score
is used in the following sections of this chapter to assign a weight to each edge.

Figure 3.5 shows the weights for the pairwise alignments of Figure 3.3, the
corresponding weighted pairwise alignment graph is given in Figure 3.6.

pairwise alignments

s1 A G T C G s1 A G T – C G s2 – A C –

s2 A – – C – s4 – – T A C G s4 T A C G

SIS: 100% SIS: 100% SIS: 100%

s1 A G T C G s2 A C – – s3 G C C G

s3 – G C C G s3 G C C G s4 T A C G

SIS: 75% SIS: 50% SIS: 50%

Figure 3.5: Pairwise alignments including weights (SIS)
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100 100 100

50 50

100 100

50 50 50 50

75 75 75

100100

75

A G T C G

A C

G C C G

T A C G

Figure 3.6: Corresponding pairwise alignment graph including weights

To put even more local and/or global information into the alignment graph,
it is reasonable to add new edges or to modify the weight of existing edges
based on more or less heuristic considerations. One method is presented in
the next section: the alignment graph extension.

3.4 The Alignment Graph Extension

The overall idea of the alignment graph extension is to combine information
in such a manner that the final weight of any pair of aligned characters re-
flects some of the global information contained in the whole alignment graph.
This can be achieved by examining the consistency of each aligned character
pair with the aligned character pairs from all other alignments. The process
is called alignment graph extension and is a generalisation of the idea of the
extended library as described by Notredame et al. [22].

In the simplest case this means that having a character X, which is inci-
dent to character Y as well as to character Z, the characters Y and Z are
aligned through character X too. This relation can be represented by adding
an edge between Y and Z or by increasing its weight accordingly, if this edge
already exists.
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An example is given in Figure 3.7.

transitive edge

X

Y

Z

T C

A

C C

A C

G G

G G

T G

A

C

Figure 3.7: Transitive edge

In other words, if there exists an edge between character X and Y as well as
an edge between character X and Z, the transitive relation between Y and Z
seems to be a desirable alignment, too. This method can also be generalised
to more than three characters.

Definition 3.3 (Edge path) Let siα,pα , 1 ≤ α ≤ k be characters of k ≥ 2

different sequences Si1 , Si2 , . . . , Sik . Then a sequence of edges is called edge

path from character si1,p1 to character sik,pk
, if there exists an edge between

siα,pα and siα+1,pα+1 ,∀α = 1, 2, . . . , k − 1.

Definition 3.4 (Transitive edge) If there exists an edge path between

character si1,p1 and character sik,pk
, the edge between si1,p1 and sik,pk

is called

transitive edge of level k.

As every edge connects characters of different sequences and each sequence
is allowed only once on the edge path, the length of the edge path – and
therefore the level k – is limited by the number of sequences.

Figure 3.8 shows some valid edge paths.
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valid
edge path

any combination of

forms a valid edge path
two of these three edges

T C

A

C C

A C

G G

G G

T G

A

C

Figure 3.8: Valid edge paths

Building the alignment graph extension of level k therefore leads to the prob-
lem of finding all transitive edges of level ≤ k and adding them to the graph
or updating their weights accordingly, if they already exist.

The extension of the alignment graph of Figure 3.6 is shown in Figure 3.9.

extension  level  2

extension  level  3

pairwise alignment graph

T C

A

C C

A C

G G

G G

T G

A

C

Figure 3.9: Alignment graph extension
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The weights for the transitive edges et are calculated using

w(et) =
wmin(ei)

(k − 1)
, k ≥ 2,

where wmin(ei) is the minimum weight of all edges ei on the edge path.

An example is given in Figure 3.10.

50

75

(50)

100

(25)

(50)

75

50

(50)

(50)

(75)

100

pairwise alignment graph

extension  level  2

extension  level  3

T C

A

C C

A C

G G

G G

T G

A

C

Figure 3.10: Alignment graph extension including weights

As characters connected by a transitive edge of a shorter edge path are more
likely to be related than others, the length k of the edge path is also con-
sidered in this formula. For k = 2 this formula exactly provides the same
weights as used for the extended library in [22]. Also note that an edge can
be considered several times, as it can be the transitive edge of different edge
paths (even of paths of different length). Therefore its weight can be updated
more than once.

The alignment graph after the whole extension process is shown in Figure
3.11.
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50

75

50

100

25

50

125

125

150

T C

A

C C

A C

G G

G G

T G

A

C

Figure 3.11: Alignment graph after extension

Note that for further computation, all weights are scaled to the interval [0, 1].

To perform the alignment graph extension, a recursive depth-first-search al-
gorithm can be used (see Listing 3.1). Limiting the depth of the recursion
allows to set the level of the alignment graph extension.

Listing 3.1

. global <bool> visited[1 ... number of sequences]

. EXTENSION ()

. begin

. forall s = (1 ... number of sequences)

. forall p = (1 ... length of sequence s)

. visited[s] = false

. DFS (s, p, s, p, 0, 0)

. end
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. recursive DFS (sstart, pstart, s, p, k, w)

. begin

. visited[s] = true

. forall send = (1 ... number of sequences)

. if visited[send] == false

. forall pend = ((send, pend) incident to (s, p))

. edgew = weight of edge (send, pend) (s, p)

. if (w == 0) or (edgew < w)

. minw = edgew

. else

. minw = w

. if (k ≥ 2)

. w = minw / (k − 1)

. w = w/2 as any edge is considered twice

. add edge (sstart, pstart) (send, pend) with weight w to the

graph (or update w accordingly if the edge exists)

. if (k < desired level of extension)

. DFS (sstart, pstart, send, pend, k + 1, minw)

. visited[send] = false

. end

Having a pairwise alignment graph with n sequences and the maximum
length l, there are at most n−1 edges incident to each character (one to each
other sequence). So for the recursion with a maximum depth k, at most

(n− 1) · (n− 2) · . . . · (n− k) = O(nk)

edges have to be considered for each of the n · l characters. Thus, in the worst
case, the algorithm performs in time

O(l · nk+1).

However, as there are fewer edges and n is rather small compared to l in
general, the running time is typically shorter.

3.5 Validation of the Extension

To rate how good the alignments which are derived from an alignment graph
can be, reference alignments of the BAliBASE library [29] are compared
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with their corresponding alignment graphs. In general, there are four pos-
sible relations between two characters of different sequences in the multiple
alignment and their corresponding edge in the alignment graph:

1. The two characters are aligned in the multiple alignment and the edge
exists in the alignment graph.

2. The two characters are not aligned in the multiple alignment and the
edge does not exist in the alignment graph.

3. The two characters are aligned in the multiple alignment and the edge
does not exist in the alignment graph.

4. The two characters are not aligned in the multiple alignment and the
edge exists in the alignment graph.

While relations 1 and 2 characterise optimal situations, the occurrence of
relations 3 and 4 should be as low as possible.

Definition 3.5 Let P be the set of all pairwise character alignments ap-

pearing in the reference alignment and RE ⊆ P be the subset of all pairwise

character alignments for which a corresponding edge exists in the alignment

graph G = (V, E). Then RE is also the subset of all edges of the alignment

graph that are realised by the multiple alignment.

Thus, considering weights for all edges, an alignment graph should achieve
the following criteria:

Goal 1: As many pairwise character alignments in the reference alignment
as possible should have corresponding edges in the alignment graph, i.e. |RE|
should be maximal.

Goal 2: At the same time, as few edges as possible should exist which
do not correspond to pairwise character alignments, i.e. |E\RE| should be
minimal. At least, such non-realised edges should have a lower weight.

Based on these goals, various comparisons between the BAliBASE refer-
ence alignments and their corresponding alignment graph with and without
extension have been performed. The results of these tests can be found in
section 3.5.2.
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3.5.1 BAliBASE v1.0

The performance of alignment programs usually depends on the number of
sequences and the level of similarity between them. Additionally other fac-
tors like the existence of large insertions may affect the qualitiy of the pro-
duced aligment. BAliBASE is a database of more than 140 manually-refined
multiple sequence alignments specifically designed for the evaluation and the
unbiased comparison of multiple sequence alignment programs. These pro-
tein alignments can be divided into four categories (=reference sets), which
encompass most of the situations arising when computing multiple align-
ments.

Reference 1 contains alignments of maximal 6 equi-distant sequences with
pairwise percent identities within a specified range. Based on these
percent identities, the reference set is further divided into three sub-
categories: Reference 1a (< 25%), Reference 1b (20%−40%), Reference
1c (> 35%). All the sequences are of similar length, with no large
insertions or extensions.

Reference 2 aligns up to three ’orphan’ sequences (less than 25% identi-
cal) from reference set 1 with a family of at least 15 closely related
sequences.

Reference 3 consists of up to 4 sub-groups, with less than 25% identity
between sequences from different groups.

Reference 4 is divided into two sub-categories containing alignments of up
to 20 sequences including N/C-terminal extensions (Reference 4a) and
insertions (Reference 4b).

Note that some of the reference alignments generated some problems during
computation (e.g. out of memory) and therefore have not been considered
for further analyses. A complete list of all used test instances can be found
in the appendix.

A frequently encountered problem when using reference alignments is the
effect of ambiguous regions, which can only be aligned arbitrarily and lead
to biases in the comparisons of programs. This is why the authors addition-
ally annotated these alignments by marking blocks considered to be correctly
aligned. Altogether these trusted regions represent about 58% of the aligned
characters.
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3.5.2 Results

As pointed out before, an alignment graph should meet special criteria as
far as possible. Two characters which are not connected by an edge in the
alignment graph only have a small probability to be aligned, whereas two
connected characters are much more likely to be aligned. Therefore, con-
sidering all pairs of aligned characters in the reference alignment, as many
corresponding edges as possible should exist in the alignment graph, i.e. |RE|
should be maximal (→ Goal 1).

|RE|/|P | is calculated for all BAliBASE alignments with and without the
alignment graph extension and can be seen in Figure 3.12. The respective
improvements made through the alignment graph extension for each reference
set are shown in Table 3.1.

 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

Reference 1a

Reference 1b

Reference 1c

Reference 2

Reference 3

Reference 4a

Reference 4b

 no extension  extension level 2  extension level 3  extension level 4

Figure 3.12: |RE|/|P | in percent
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no ext no ext → level 2 level 2 → level 3 level 3 → level 4
Reference 1a 59,25 % +18,02 % +3,31 % +0,36 %
Reference 1b 91,75 % +5,71 % +0,42 % +0,10 %
Reference 1c 97,14 % +2,29 % +0,05 % +0,00 %
Reference 2 81,61 % +13,57 % +2,62 % +1,18 %
Reference 3 69,15 % +26,15 % +3,91 % +0,80 %
Reference 4a 73,97 % +12,91 % +0,28 % +0,00 %
Reference 4b 82,61 % +13,62 % +1,97 % +0,77 %

Table 3.1: Increase of |RE|/|P | in percent

As can be seen, extending the pairwise alignment graph generally increases
the quoted percentage. However, the improvements are quite different: while
sequences with high similarity like reference set 1c already start with a high
percentage and therefore will not be improved much by a further extension
process, for sequences with lower similarity even the extension to level 3 pro-
vides appreciable results.

As the extension to level 4 only shows marginal improvements for all ref-
erence sets and also causes memory problems for larger instances, it has not
been considered in the following.
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On the downside, during the extension process a lot of edges are added
to the alignment graph, which are not realised in the reference alignments.
Figures 3.13 and 3.14 show the average size |E| of the alignment graph of
each reference set with and without extension. Additionally, the number
of realised edges |RE| is charted. Note the logarithmic scaling used in the
diagrams.
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Figure 3.13: Size of the alignment graph (part A)

As documented in Figure 3.13 and 3.14, the extension process generally adds
much more non-realised than realised edges to the alignment graph. For some
reference alignments with lower similarity, the size of the alignment graph
even grows exponentially with the level of extension.
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Figure 3.14: Size of the alignment graph (part B)

Just considering the previous results, it is difficult to decide whether it is
worth to extend the alignment graph to a higher level or to work just with
the pairwise alignment graph. On the one hand, there is the improved num-
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ber of realised edges with respect to the reference alignments, but on the
other hand, there is the additional computational effort and more impor-
tantly, the super–proportionally growing size of the alignment graph with its
extra memory requirements.

For a satisfying answer to this question, it is also necessary to consider the
weights of the edges: edges realised in the reference alignments should have
a higher weight than non-realised ones (→ Goal 2).

As shown in the next diagrams, an extended alignment graph generally ful-
fills this condition. The validation proceeds in two steps:

Step 1: The edges are partioned into intervals I according to their weights
and for each interval, |RE(I)|/|E(I)| is computed. Histograms showing these
frequencies are generated for each reference set and charted in Figures 3.15
and 3.16.

As desired, the extension process increases the quoted probabilities for edges
of higher weight and decreases these probabilities for edges of lower weight.
So, an edge of higher weight in the extended alignment graph also provides a
higher probability, that the corresponding characters are aligned in the ref-
erence alignment too (compared with an edge of same weight in the pairwise
alignment graph). These improvements become especially apparent for test
instances of lower sequence similarity (like reference set 1a in Figure 3.15),
but are also observable for all other reference alignments.

What is still unknown is the number of edges in each of these intervals of
Figures 3.15 and 3.16. Edges with high weight should generally predominate
in the solution. The weight-based distribution of the edges is analysed in the
following.

Step 2: All edges of the alignment graph are sorted by weight in descending
order. Then, one by one, an edge is picked and checked whether it is realised
by the alignment or not. This proportion is plotted for all reference sets in
Figures 3.17 and 3.18. Note that D denotes the subset of all already exam-
ined edges of E.

As shown in Figures 3.17 and 3.18, much more edges of high weight of the
extended alignment graph than of the pairwise alignment graph are incorpo-
rated in the reference solution. So, generally fewer edges of the the extended
alignment graph compared with the pairwise alignment graph need to be
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examined to obtain the same percentage of edges for which a corresponding
pairwise character alignment exists in the reference alignment.
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Reference 1a

%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

<
 0

,5

[0
,5

..
.0

,6
]

[0
,6

..
.0

,7
]

[0
,7

..
.0

,8
]

[0
,8

..
.0

,9
]

[0
,9

..
.1

,0
]

weight of edges

p
e

rc
e

n
ta

g
e

 o
f 

re
a

lis
e

d
 e

d
g

e
s

Reference 1b

%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

<
 0

,5

[0
,5

..
.0

,6
]

[0
,6

..
.0

,7
]

[0
,7

..
.0

,8
]

[0
,8

..
.0

,9
]

[0
,9

..
.1

,0
]

weight of edges

p
e

rc
e

n
ta

g
e

 o
f 

re
a

lis
e

d
 e

d
g

e
s

Reference 1c

%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

<
 0

,5

[0
,5

..
.0

,6
]

[0
,6

..
.0

,7
]

[0
,7

..
.0

,8
]

[0
,8

..
.0

,9
]

[0
,9

..
.1

,0
]

weight of edges

p
e

rc
e

n
ta

g
e

 o
f 

re
a

lis
e

d
 e

d
g

e
s

Figure 3.15: Histograms showing the percentage of realised edges

|RE(I)|/|E(I)| (part A)
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Figure 3.16: Histograms showing the percentage of realised edges

|RE(I)|/|E(I)| (part B)
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Figure 3.17: Relation between |D| and |RD|/|P | in percent (part A)

54



Reference 2

%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

5
0
0
0
0

number of examined edges of the alignment graph

(sorted by weight)

Reference 3

%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

8
0
0
0
0

1
0
0
0
0
0

number of examined edges of the alignment graph

(sorted by weight)

Reference 4a

%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

number of examined edges of the alignment graph

(sorted by weight)

Reference 4b

%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

number of examined edges of the alignment graph

(sorted by weight)

Figure 3.18: Relation between |D| and |RD|/|P | in percent (part B)
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Combining the results of this section, the following conclusions can be drawn:

• For sequences with lower similarity, the computational effort and the
required memory for storing the alignment graph grows exponentially
with the level of extension. However, beside of the non-realised edges,
also a lot of edges realised in the reference alignments are added during
the extension process. The extension also ensures, that realised edges
generally have a much higher weight than non-realised edges.

• For sequences with high similarity, the pairwise alignment graph al-
ready includes most of the edges realised in the reference alignments.
Therefore, only a few realised edges can be added during the extension
process. However, the extension updates the weight of existing edges
in such a way, that realised edges normally have a higher weight than
non-realised edges. Besides, the additional computational effort is by
far less dramatic than for sequences with lower similarity.

Following these conclusions, the alignment graph generally has been extended
for further computation. Such standardised treatment seems to be a reason-
able compromise regarding additional effort, profit and simplification. The
level of the alignment graph extension is further discussed in section 6.2.1.

3.6 Distribution of Edges

As shown in the previous results, edges with high weights – respectively
low rank when considering all edges sorted by weight in decreasing order –
predominate in the BAliBASE reference alignments. When computing or
improving a multiple alignment based on the alignment graph e.g. by apply-
ing an evolutionary algorithm, it is therefore reasonable to favour these edges
by biasing the used operators.

Raidl et al. [25] analysed the weight-based distribution of edges in optimal
solutions for different graph problems like the degree-constrained minimum
spanning tree or the traveling salesman problem. They derived probabilites
for selecting edges based on their rank to be incorporated into candidate
solutions (such that the average number of edge-selections until finding an
edge of an optimal solution is minimised) and proved, that an edge-selection
strategy using these approximately optimal probabilites performs best. The
following edge-selection strategy is proposed:

r =

⌊
2 log(1− u)

log |RE| − log(|RE|+ 1)

⌋
mod |E|+ 1
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with r being the random edge-rank and u ∈ [0, 1) being a uniformly dis-
tributed random number. Applying this approach to the MSA problem leads
to the problem of finding an appropriate value |R∗

E| for |RE|, as the number
of edges of the solution is unknown during the computation.

Therefore, we analyse the percentage of realised edges |RE| with respect
to all edges |E| of the alignment graph for all BAliBASE alignments using
the alignment graph extension. As this percentage depends much on the used
reference set (see Figures 3.13 and 3.14), structural information about the
current set of sequences also needs to be considered. Such information can
be obtained by analysing the size of the alignment graph with and without
the extension. For sequences with high similarity, only few edges are added
during the extension, while for sequences with lower similarity, the alignment
graph grows exponentially with the level of extension. ∆ = (|E| − |P |)/|P |
indicates the increase of the edges of the extended alignment graph E com-
pared with the edges of the pairwise alignment graph P .

Figure 3.19 shows the relation between |RE|/|E| and ∆ for all BAliBASE
reference alignments.
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The plotted values of Figure 3.19 are approximated by the following function:

f(x) =

{
95 · e−0.007x for x ≤ 250,
18.2− 0.007 · x for x > 250.

Applying these functions to our problem, we obtain the following estimation
R∗

E for the approximative number of realised edges in an alignment graph
with extension of level 3:

|R∗
E| =

{
0.95 · |E] · e−0.7·∆ for ∆ ≤ 2.5
0.01 · |E| · (18.2− 0.7 ·∆) for ∆ > 2.5
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Chapter 4

Our Evolutionary Algorithm

4.1 Preface

In this chapter we present a new evolutionary algorithm for the MSA prob-
lem which is able to compute multiple alignments based on the information
of an alignment graph.

At first we give a characterisation of the traces of an alignment graph, as
we extensively make use of the correspondence between multiple alignments
and traces in our method. Then we introduce a heuristic which produces
alignments of good quality in short time. Finally we present our evolution-
ary algorithm which further improves these alignments by applying a set of
problem specific mutation and crossover operators.

Until otherwise defined, n refers to the number of sequences, l to the length
of the longest sequence, and l̂ to the length of the alignment throughout this
chapter.

4.2 The Trace of an Alignment Graph

Based on a multiple alignment it is no problem to compute the corresponding
trace and vice versa. This correspondence has already been described in the
last chapter (see Figures 3.1 and 3.2).

So deriving a multiple alignment of an alignment graph leads to the prob-
lem of finding a feasible trace in this graph. Therefore we need a graph-
theoretical characterisation of traces without considering the corresponding
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multiple alignment. To this end we extend the alignment graph to a mixed
graph [15] which includes edges and arcs and give a definition for a cycle in
this mixed graph.

Definition 4.1 (Extended alignment graph) Let G = (V, E) be a simple

alignment graph and H = {(si,p, si,p+1)|1 ≤ i ≤ n, 1 ≤ p ≤ li − 1} be a set of

directed edges with weight 0. Then these directed edges are called arcs and

the mixed graph Ḡ = (V,E,H) is called extended alignment graph.

Definition 4.2 (Cycle) A path in a mixed graph Ḡ is a sequence of vertices

v1, v2, . . . , vn, n ≥ 2 such that either (vi, vi+1) ∈ E or (vi, vi+1) ∈ H for all i,

1 ≤ i < n. A path is called cycle, if the first and the last vertex on the path

are the same.

Based on these definitions, we can give a graph-theoretical formulation for a
trace:

Definition 4.3 (Trace) Let Ḡ = (V, E, H) be an extended alignment graph,

T ⊆ E and ḠT = (V, T, H) the extended alignment graph induced by T .

Then T is called a (feasible) trace if all existing cycles in ḠT contain no arcs.

For examples of a feasible and an infeasible trace see Figures 4.1 and 4.2.
Note that for explanation the arcs of the extended alignment graph are dis-
played in these examples too (dashed arrows).

A G T

A

G C

Figure 4.1: Feasible trace

A G T

A

G C

Figure 4.2: Infeasible Trace
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We usually require that traces are locally optimal:

Definition 4.4 (Locally optimal) Let Ḡ = (V, E,H) be an extended align-

ment graph, a trace T ⊆ E and ḠT = (V, T, H) the extended alignment graph

induced by T . Then the trace T is locally optimal if for all e ∈ E \ T the

following condition holds: ḠT ′ = (V, T ′, H) with T ′ = T ∪ {e} contains at

least one cycle with an arc.

Having a suboptimal trace, the corresponding multiple alignment can be
ambiguous. This is also possible if not enough edges exist the alignment
graph. For the sake of uniqueness we always create the shortest possible
alignment then. An example is given in Figures 4.3 and 4.4.

possible multiple alignments:

s1 A G T C G s1 A G T C G s1 A G T – C G

s2 A – – C – s2 A – – C – s2 A – – – C –

s3 – G C C G s3 – G C C G s3 – G – C C G

s4 T – A C G s4 – T A C G s4 – – T A C G

shortest possible
alignment

Figure 4.3: Possible multiple alignments to the trace of Figure 4.4

A G T C G

A C

G C C G

T A C G

Figure 4.4: (Locally) suboptimal trace as edge T–T may be added.
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Note that maximal n·l · n−1
2

edges can exist in a trace, i.e. from each character
there is an edge to a character in each other sequence.

Finding the trace with maximum weight is known to be NP–hard (see sec-
tion 3.1). Fauster [7] dealed with this problem by using two relatively fast
greedy heuristics, local improvement strategies and tabu search. Although
such methods can never guarantee optimality, they often provide reasonable
solutions in short time. Besides, these results can be used as starting point
for other optimisation strategies like evolutionary algorithms.

As one of these heuristics is also used in our methods, we will further describe
it in the next section.

4.3 The Greedy2 Heuristic

The greedy2 heuristic is based on the following idea. All edges of the align-
ment graph are sorted by weight in descending order. One by one, these
edges are tried to be realised by inserting them into the (originally empty)
trace. If it is not possible to add the edge, the inconsistent edge is skipped
and the process continues with the next edge. The set of all realised edges
forms the trace.

Therefore, the main problem is to decide whether the current edge can be
realised in the trace or not. Having a trace T and the induced extended
alignment graph ḠT = (V, T, H), an edge e = (si,p, sj,q) can be inserted into
the trace if one of the following conditions is fulfilled:

1. Any path in ḠT between character si,p and sj,q only consists of undi-
rected edges and not of arcs, i.e. si,p and sj,q are already aligned.

2. There exists no path from character si,p to chararcter sj,q, respectively
from character sj,q to character si,p with at least one arc.

Hence, it is necessary to search efficiently for all paths between two characters
si,p and sj,q. In the following, only the principles for the search from character
si,p to character sj,q are described, the same principles hold for the search in
the other direction:

1. Any path from character si,p to character sk,r also implies a path from
character si,p to the characters sk,r+1, sk,r+2, . . . , sk,s|k| , as these charac-
ters are connected by arcs.
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2. No sequence needs to be considered more than once, i.e. once a sequence
is left, it is not necessary to search on this sequence later again, as such
a path can be reproduced by using an abbreviation over arcs. Hence
only paths containing maximal n− 1 edges of T need to be considered.
The number of arcs of H in the path is not limited by n.

3. If (si,p∗ , sk,r) is the edge with minimal p∗ ≥ p between sequence Si and
sequence Sk, there cannot exist an edge e = (si,p+ , sk,r−) with p+ > p∗

and r− ≤ r.

Based on these principles, a breadth–first search is performed to determine
the minimal positions in all sequences, which can be reached from character
si,p. If the minimal position q∗ in Sequence Sj is greater than q, there exists
no path from character si,p to character sj,q and the edge can be added to
the trace. For further details see the description of Fauster [7].

In the worst case this breadth–first search takes time O(n3) for one char-
acter, so the overall complexity of the greedy2 heuristic is O(|E| · log |E| +
|E| · n3 · log l), with |E| · log |E| being the time to sort all edges by weight.

In practice, the greedy2 heuristic usually performs much better. Tests in-
dicate, that the overall complexity is O(|E| · log |E|+ |E| · n2 · log l) or even
O(|E| · log |E|+ |E| · n · log n · log l).

Fauster also presented a second version of this greedy2 heuristic with an
advanced trace structure, which supersedes the time consuming breadth first
search but requires to update the trace after any insertion. The overall com-
plexity of this advanced greedy2 heuristic is bounded by O(|E| · log |E|+ |T | ·
n2 · log l + |T | · log l), with |T | ≤ n · l · n−1

2
.

4.4 Our Evolutionary Algorithm

As pointed out before, multiple sequence alignment and maximum weight
trace are related. Therefore, it is also possible to use the trace data structure
in a chromosome of an evolutionary algorithm to represent the multiple align-
ment. The task of the EA is to maximise the weight of the trace then. Such
optimisation can be performed by realising as many edges of high weight as
possible or by replacing edges of low weight with edges of high weight.

Compared with the used heuristics of existing EAs for the MSA problem
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(see chapter 2), these methods have the advantage of using global informa-
tion as reflected by the edges of the alignment graph for the optimisation
instead of just local considerations like e.g. a fully matched column.

On the downside all these strategies have a certain amount of complexity,
as it is always necessary to keep the trace feasible, i.e. no cycles containing
arcs are allowed in the trace. So, methods which combine existing patterns
or (randomly) create new patterns in the chromosomes have a rather slow
performance compared to existing crossover and mutation operators.

To overcome this problem, we generally use a two-dimensional array to rep-
resent the multiple alignment of our chromosomes, but for some kind of mu-
tation and crossover operators we additionally make use of the corresponding
trace data structure. These operators proceed as follows:

1. First they use the multiple alignment of the chromosome to compute
the corresponding trace.

2. Then they perform the modifications on the trace data structure, while
the multiple alignment of the chromosome remains unchanged, it is
only used for reference (e.g. to get the position of a character in the
alignment).

3. Finally they compute the multiple alignment of the chromosome based
on the modified trace.

Hence it is not necessary to store the trace in a chromosome, it is only com-
puted if required. Thus, we always have to face the additional complexity of
the transformation operations – O(n2 · l) respectively O(|T |) ≤ O(n2 · l) –
when applying these mutation and crossover operators.

Parallelising an evolutionary algorithm helps to improve the performance
of the EA, as it usually preserves diversity in the population and allows to
emphasise different characteristics in the chromosomes. So some of the ex-
isting EAs for MSA (e.g. PGA [3]) also made use of these advantages of a
parallel implemention.

We follow this approach by using the so–called island model for our evo-
lutionary algorithm. The population is divided in several subpopulations
(islands), each consisting of a certain number of chromosomes. In each of
these subpopulations the chromosomes evolve separately during the evolu-
tionary process. Only from time to time (based on a provided probability)
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the best chromosomes between these subpopulations are exchanged (migra-
tion).

The chromosomes of these subpopulations are modified by fast mutation
and crossover operators, which directly work on the multiple alignment. The
main tasks of these operators are

• to combine patterns of different chromosomes to form new chromo-
somes,

• to perform small (random) modifications to introduce new patterns in
the population.

Additionally these operators are biased to favour patterns with good fitness
by using the information of the alignment graph. These operators are One
Point Crossover (see section 4.3.2), Best Consistent Cut Crossover (see sec-
tion 4.3.3) and Block Shuffling Mutation (see section 4.3.4).

To include global optimisation, we developed two heuristic operators, which
perform modifications on the trace data structure. These heuristics are Path
Relinking Crossover (see section 4.3.5) and Edge Insertion Mutation (see
section 4.3.6). Based on their complexity and the required transformation
operations, these heuristics are not applied every generation. Like the mi-
gration, they have a probability of being selected and applied to the best
chromosomes of each subpopulation.

For initialisation, a modified version of the greedy2 heuristic ist used, which
allows to create diversity in the initial population. This method is presented
in section 4.4.1

The fitness score is simply the sum–of–weights of all the edges, for which
a corresponding pairwise character alignment exists in the multiple align-
ment.

Various parameters allow to make the EA adjustable (e.g. population size,
termination condition, migration probability), an overview can be found in
section 5.4.

The whole structure of our evolutionary algorithm is given in Figure 4.5.
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insert edge
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P1 P2 ... PN
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subpopulation Pi

    * only applied to the best chromosomes of the subpopulations after a certain number of
  generations (based on a provided probability)

Figure 4.5: Structure of our evolutionary algorithm
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4.4.1 Greedy2 Based Initialisation

As pointed out before, we use a modified version of the (advanced) greedy2
heuristic to create the initial population. Only the first chromosome is cre-
ated as described in section 4.2. For all other chromosomes, the following
modifications are used:

1. Only the best |D| edges of E are tried to be inserted into the trace,
with D ⊆ E and |D| being a random number between n · l · 1

2
and

n · l · n−1
2

. Following the results of various tests, these boundaries seem
to be a reasonable compromise between alignment quality and time
complexity.

2. D is not sorted by weight anymore, it is randomly permutated for each
chromosome.

3. Edges, which could not be realised in the previous chromosome, are
moved to the top of D.

Using the advanced trace structure of the greedy2 heuristic, the worst case
time complexity for the first chromosome is

O(|E| · log |E|+ n4 · l · log l + n2 · l · log l).

For all other chromosomes, the initialisation takes time

O(n2 · l + n4 · l · log l + n2 · l · log l)

in the worst case (with the first term being the time to permute D randomly
and to shift the appropriate edges to the top of D).

Note that the obtained traces are often not locally optimal (if not enough
edges exist in D). Therefore some additional randomness is introduced to
each chromosome when the corresponding alignment to the given trace is
computed.

4.4.2 One Point Crossover

The One Point Crossover operator has already been presented in section
2.2.2. As it can be implemented very efficiently and was used in most of the
existing EAs for the MSA problem too, this operator has also been chosen
for our evolutionary algorithm.
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One character of the first chromosome is randomly selected and the chro-
mosome is cut straight at this position. The second chromosome is tailored
so that the right and the left parts of each chromosome can be joined to-
gether while keeping the original sequence. Any void space that appears at
the junction point is filled with gaps.

For simplicity, we make the following assumption unless otherwise defined:

• The character of each sequence, which preceeds the cutting position, is
called boundary character.

• Right part refers to all characters, which are placed to the right of the
boundary characters. If there is no boundary character in the sequence,
all the characters of this sequence belong to the right part.

• Left part refers to all characters, which do not belong to the right part.
Therefore, the left part contains the boundary characters.

Having two multiple alignments, the single operations of One Point Crossover
proceed as follows:

1. Randomly select a sequence of the first parent and one of its characters.

2. Determine the boundary characters in the first parent and copy the left
part to the offspring.

3. Find the boundary characters in the second parent and copy the right
part to the offspring.

So the entire algorithm takes time O(n · l̂) with usually n ¿ l̂.

As this operator starts with an empty offspring, any void space at the junc-
tion point is implicitly filled with gaps. For an example see Figure 2.3 in
section 2.2.2.

One Point Crossover can be very disruptive around the junction point. To
avoid this drawback, we added a second crossover operator, Best Consistent
Cut Crossover.

4.4.3 Best Consistent Cut Crossover

The definition of two consistent columns as given in section 2.2.2 is very re-
strictive, as it requires that both columns contain exactly the same characters
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by reference to the original sequence (or a gap between the same characters).
Therefore it is often difficult to find such columns for crossover operators like
Uniform Crossover.

We ease the requirements by defining a so–called consistent cut: Having
two chromosomes and cutting the first chromosome straight at some posi-
tion, the cut is called consistent, if no boundary character is aligned with a
character of the right part of the second chromosome.

An example for a consistent cut is given in Figure 4.6.

parent 1

s1 A G – A – – T C – A

s2 A T – – C T C C – –

s3 – C – A C – T C A –

s4 A G C – A A – T C –

left part

s1 A G – A – – T C – A

s2 A T – – C T C C – –

s3 – C – A C – T C A –

s4 A G C – A A – T C –

parent 2

s1 A G A – – – T C A –

s2 – – A – T C T C – C

s3 C A – – C – T C A –

s4 A – G C A – – A T C

right part

s1 A G A – – – T C A –

s2 – – A – T C T C – C

s3 C A – – C – T C A –

s4 A – G C A – – A T C

Figure 4.6: Example for a consistent cut

The Best Consistent Cut Crossover is a crossover heuristic, which determines
the best consistent cut between two chromosomes A and B by

• computing all possible cuts,

• selecting the cuts which are consistent,

• computing the fitness of all offsprings created by a consistent cut.

This heuristic can be implemented very efficiently, as it is possible to com-
pute the cuts incrementally, i.e. based on chromosome Ci−1 created by the
cut after column (i− 1), it is possible to compute Ci created by the consec-
utive cut after column i.

Compared with the implementation of One Point Crossover, it is therefore
not necessary to consider the whole left part of the first chromosome and
the whole right part of the second chromosome during the computation, it

69



is enough to consider the boundary characters of the current cut and shift
them accordingly.

Figure 4.7 demontrates the modifications between two consecutive cuts. Note
that the cut in offspring C6 is not consistent, as two columns in the right
part are affected by the movement of the boundary characters.

For a consistent cut, the following simple criterion must hold: Any col-
umn containing boundary characters, which need to be shifted during the
computation of the cut, has to be empty after the shift.

parent 1

s1 A G – A – – T C – A

s2 A T – – C T C C – –

s3 – C – A C – T C A –

s4 A G C – A A – T C –

offspring C5

s1 A G – A – T C A –

s2 A T – – C T C – C

s3 – C – A C T C A –

s4 A G C – A – A T C

parent 2

s1 A G A – – – T C A –

s2 – – A – T C T C – C

s3 C A – – C – T C A –

s4 A – G C A – – A T C

offspring C6

s1 A G – A – – T C A –

s2 A T – – C T – C – C

s3 – C – A C – T C A –

s4 A G C – A A – – T C

Figure 4.7: Example for the modifications between two consecutive cuts

Let wA(j) denote the sum–of–weights of all realised edges in column j of
chromosome A and wB(k) denote the same for chromosome B. The fitness
fCi

of a chromosome Ci, which is created based on a consistent cut after
column i, can be calculated as follows:

fCi
=

i∑

j=1

wA(j) +
l̂B∑

k=i+1

wB(k)

Hence, precomputing wA(j) for all columns j, 1 ≤ j ≤ l̂A respectively wB(k)
for all columns k, 1 ≤ k ≤ l̂B, allows to evaluate Ci in time O(l̂).

Having two parents A and B and the offsprings Ci, 0 ≤ i ≤ l̂A, the entire
algorithm proceeds as follows:

1. Precompute wA(j) and wB(k) for all columns.

2. C0 = B.
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3. i = 1.

4. Compute Ci.

• Ci = Ci−1.

• fCi
= 0.

• Determine the boundary characters in A based on a cut after
column i.

• Find these characters in Ci and shift them to the position given
by A.

• Test if the cut after column i is consistent.

• If the cut is consistent, calculate fCi
.

5. If fCi
> fCmax update Cmax.

6. i = i + 1.

7. Iterate step 4 to 6 until i = l̂A − 1.

8. Return Cmax.

As it takes time O(n2 · l̂) to precompute wA(j) respectively wB(j) and O(l̂ ·n)
to compute Ci based on Ci−1, the entire algorithm takes time O(n2 · l̂+ l̂2 ·n)
with usually n ¿ l̂. If no consistent cut can be found between the two
chromosomes, One Point Crossover is performed.

4.4.4 Block Shuffling Mutation

Random shuffle operators as described in section 2.2.3 provide the possibility
to perform small modifications on the chromosome in short time. As such
operators can also be adapted to consider the information of the alignment
graph for movement, they have been applied to our evolutionary algorithm,
too.

A block of consecutive characters (bounded by a gap or the begin/end of
the sequence on the left and the right side) in one sequence is randomly se-
lected. Then this block is moved to a left or right position either randomly
or in a heuristic way, looking for the position with the best fitness.

The single operations of this algorithm perform as follows:

1. Randomly select a character.
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2. Determine the block of characters of length b and the number of gaps
g to the left and the right of the block.

3. Randomly select whether the whole block or just a part (the left or the
right part) is moved.

4. Select the new position of the block

• randomly.

• in a heuristic way.

5. Move the block.

If the new position of the block is randomly selected, the entire algorithm
takes time O(2·b+g) with b+g < l̂ and usually n ¿ l̂. If this selection is per-
formed in a heuristic way, the entire algorithm takes time O(2 ·b+g+b ·g ·n),
as any character of the block of length b can be moved to g positions and
needs to be compared with maximal (n−1) characters of the other sequences.

To avoid huge complexity, the heuristic movement is only performed for
blocks of small size (b < 10) and a limited number of gaps around the block
(g < 10). An example is given in Figure 4.8.

parent

s1 A G – A A G A A – – – G

s2 – G A – G A – G – A – G

s3 A – G G – A A G A G A G

s4 – G A G A – – G A A A –

whole block

A G – A A G A A – – – G

left part

A G – A A G A A – – – G

right part

A G – A A G A A – – – G

offspring (right part, 2 shifts)

s1 A G – A – – A G A A – G

s2 – G A – G A – G – A – G

s3 A – G G – A A G A G A G

s4 – G A G A – – G A A A –

Figure 4.8: Block Shuffling Mutation
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4.4.5 Path Relinking Crossover

The main idea of path relinking [9] is to trace a path between two possible
solutions in the search space. On this path, all the interim solutions are
incrementally created by small modifications. Consequently, these interim
solutions can be evaluated incrementally too. Finally the best interim solu-
tion is kept.

Applying this approach to our evolutionary algorithm, a plausible path re-
linking operator for the traces of our chromosomes works as follows (note that
we have to compute the corresponding traces to our chromosomes before):

Definition 4.5 Let A and B be the locally optimal traces of two possible

solutions and Ii be the trace of one of the interim solutions I0, I1, . . . , IN on

the search path from A to B. Then for any trace Ii, (0 ≤ i ≤ N) the following

conditions are fulfilled:

• I0 = A, IN = B.

• A ∩B ⊆ Ii.

• B\Ii ⊆ B\Ii−1, i.e. once an edge of B is realised, it cannot be removed

anymore.

• A \ Ii−1 ⊆ A \ Ii, i.e. once an edge is removed from A, it cannot be

added anymore.

• Any trace of an interim solution Ii is locally optimal, i.e. no other

edge of the alignment graph can be inserted into Ii without removing

an existing one. For our path relinking crossover operator we use the

greedy2 heuristic to optimise the interim solutions during the path

relinking process.

Having a trace Ii−1, the main question is how to compute the consecutive
trace Ii. In our approach, we start with trace A and try to realise trace B
column by column from left to right, i.e. we use the corresponding multiple
alignment of trace B to select the appropriate edges (=the edges, which are
realised by the multiple alignment in column i) and add them to Ii. At the
same time, we have to remove edges from Ii to keep the trace feasible.

For all these operations, fIi
(the fitness score of Ii) is simultaneously up-

dated.
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An example for Path Relinking Crossover is given in Figures 4.9 to 4.11.
Note that edges, which are inserted by the greedy2 heuristic, are displayed
with dashed lines in the corresponding step. For explanation, the correspond-
ing multiple alignments to each interim solution Ii are shown too.

parent A

s1 A C A A

s2 A C

s3 C A A

s4 A A C
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A C A A

A C

C A A

A A C

parent B

s1 A C A A

s2 A C

s3 C A A

s4 A A C
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Figure 4.9: Path Relinking Crossover (part A): parent chromosomes
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alignment to trace I1
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alignment to trace I2

s1 A C A A

s2 A C

s3 C A A

s4 A A C
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alignment to trace I3

s1 A C A A

s2 A C

s3 C A A

s4 A A C

Figure 4.10: Path Relinking Crossover (part B): interim solutions
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alignment to trace I4

s1 A C A A
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alignment to trace I5

s1 A C A A

s2 A C

s3 C A A

s4 A A C

possible  offspring

s1 A C A A

s2 A C

s3 C A A

s4 A A C
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Figure 4.11: Path Relinking Crossover (part C): interim solutions and pos-

sible offspring
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Let G = (V, E) be the alignment graph, Xi the set of characters, which are
placed in column i in the corresponding multiple alignment of trace B, and
Yi = V \ ∑i

j=1 Xj the set of all characters, which are placed to the right of
column i in the corresponding multiple alignment of trace B. Furthermore,
let Y +

i ⊆ Yi denote the subset of all characters of Yi, which are connected
with a character of Xi by an edge of trace Ii−1.

Then the entire path relinking algorithm proceeds as follows:

1. I0 = A.

2. i = 1.

3. Compute Ii.

• Ii = Ii−1.

• fIi
= fIi−1

, simultaneously update fIi
in the following.

• Step 1: Remove all edges of Ii, which connect a character of Xi

with a character of Y +
i .

• Step 2: Insert all edges in Ii, which connect two characters of
Xi (if these edges do not already exist). Note that this is always
possible now, the trace remains feasible.

• Step 3: Try to add all (not already existing) edges of E to Ii

which connect a character of Y +
i with a character of Yi to keep

the trace locally optimal. We use the same method as described
in the greedy2 heuristic to insert these edges.

4. If fIi
> fImax update Imax.

5. i = i + 1.

6. Iterate step 3 to 5 until i = l̂B − 1.

7. Return Imax.

Additionally we have to perform three transformation operations – O(n2 · l)
– to compute trace A and B based on the corresponding parent alignments
respectively the offspring alignment based on trace Imax.

As |Xi| ≤ n and |Y +
i | ≤ n · n−1

2
hold, step 1 and step 2 can both be performed

in time O(n2).
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They are performed l̂ times during one (entire) Path Relinking Crossover,
so the overall complexity of these both steps is O(l̂ · n2) in worst case.

To estimate the complexity of step 3, we have to face that any character
of Y +

i can theoretically be connected with (n − 1) · l other characters of Yi.
So, in the worst case, n · n−1

2
· (n− 1) · l edges need to be considered for the

greedy2 heuristic.

However, there are usually much fewer edges in practice:

• Firstly, hardly ever all of the theoretically possible edges between char-
acters of Y +

i and Yi exist in E. Especially for test instances with higher
sequence similarity, |E| is rather small.

• Secondly, the size of Yi decreases during Path Relinking Crossover (ac-
cording to the increasing value of i).

• Finally, the more similar the parent chromosomes are, the fewer mod-
ifications are performed during the crossover. Hence, during the early
steps of our evolutionary algorithm Y +

i is usually greater as more dif-
ferences between the two chromosomes exist.

We have run our evolutionary algorithm on six different test alignments of
the BAliBASE library with standard parameters (see section 5.4) and have
analysed the average number of edges, which are inserted during one (entire)
Path Relinking Crossover. These test instances differ in many features like
the number of sequences, the length of the sequences and the sequence sim-
ilarity.

The results are shown in Table 5.1.

n l n · l n2 · l avg
Reference 1a: 1tvxA 4 69 276 1104 298
Reference 1a: 1cpt 4 434 1736 6944 2014
Reference 1c: 1doxc 4 96 384 1536 65
Reference 1c: 1ad3 4 447 1788 7152 131
Reference 2: 1aboA 16 80 1280 20480 4108
Reference 2: 1ped 19 388 7220 137180 72812

Table 5.1: Average number of edges inserted by the greedy2 heuristic
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Although the test instances are only a small sample and can not be seen
as representative for all reference alignments, they still confirm our consid-
erations from above and indicate that generally fewer than n2 · l edges are
inserted on average by the greedy2 heuristic.

So we obtain the following complexity for step 3 during one (entire) Path
Relinking Crossover: O(n2 · l · log(n2 · l)+n5 · l · log l) (also note the comments
in section 4.3 to the complexity of the greedy2 heuristic in practice).

Therefore, in the worst case, the overall complexity of Path Relinking Crossover
is O(n2 · l + l̂ · n2 + n2 · l · log(n2 · l) + n5 · l · log l) with usually n ¿ l ≤ l̂.

4.4.6 Insert Edge Mutation

The Insert Edge Mutation operator is based on the idea to select an edge
with high weight and to realise it in the chromosome.

The selection of the edge is performed by the edge–selection strategy as pre-
sented in section 3.6. All edges of the alignment graph are sorted by weight
in descending order and based on the provided formula a random rank for
the edge selection is computed. If the edge with this obtained rank already
exists in the chromosome, the edge with the next lower rank is examined.
This process is iterated until an edge not yet in the chromosome is found.

When adding an edge to a trace, it is usually necessary to remove one or
more edges before – preferably a set of edges with small overall weight – to
keep the trace feasible. By removing these edges, however, it may be possible
to add some other (new) edges to the trace. Therefore the selection of an
adequate set of edges is difficult.

We try to overcome this problem by applying the greedy2 heuristic to a
subalignment of the chromosome. An example for Insert Edge Mutation is
given in Figures 4.12 and 4.13.

Let e = (si,p, sj,q) be the selected edge with pl being the position of si,p

and pr being the position of sj,q in the corresponding alignment of the chro-
mosome. Let us assume pl < pr, then b = pr − pl + 1 denotes the length of
the subalignment. Let Yl be the set of all characters which are placed to the
left of column pl in the alignment, Yr the set of characters which are placed
to the right of column pr, and X the set of all characters, which are placed
within the subalignment (including characters of columns pl and pr).
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Then Insert Edge Mutation proceeds as follows:

1. Select edge e (as described above) and determine the position of the
corresponding characters in the parent alignment.

2. Add all edges of the parent alignment to the trace, which connect two
characters of Yl or two characters of Yr. Thus, the transformation
operation (multiple alignment → trace) only needs to be performed for
a part of the alignment.

3. Insert edge e into the trace. Note that this is always possible, the trace
keeps feasible.

4. Put all edges of the parent alignment which connect two characters of
X into a set D+.

5. Put all edges of the alignment graph which are incident to a character
of X and not already exist in the trace into a set D−.

6. Sort D+ and D− by weight in descending order.

7. Try to add the edges of D+ to the offspring. Then try the same for the
edges of D−. These operations are performed by the same methods as
described in the greedy2 heuristic.

8. Compute the offspring alignment based on the trace.

parent

s1 A C A A

s2 A C

s3 C A A

s4 A A C
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A A C

Figure 4.12: Insert Edge Mutation (part A): parent chromosome and edge

to be included (dashed line)
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(1) (2)
A C A A

A C

C A A

A A C

A C A A

A C

C A A

A A C

(3)
A C A A

A C

C A A

A A C

offspring

s1 A C A A

s2 A C

s3 C A A

s4 A A C

Figure 4.13: Insert Edge Mutation (part B): (1) empty trace, adopt all edges

(outside block) of parent, insert new edge → (2) add all possible edges which

exist in parent → (3) add all other possible edges

Note that the trace in Figure 4.12 is only shown for explanation, it is not
actually computed by our algorithm.
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To avoid huge complexity, we require (|D+|+ |D−|) ≤ n · b · n−1
2

by selecting
only a limited number of edges in step 5.

Thus, in the worst case (also note the comments in section 4.3 to the com-
plexity of the greedy2 heuristic in practice), steps 6 and 7 can be performed
in time O(n2 · b · log(n2 · b) + n2 · b · n3 · log l).

Considering the time for the transformation operations – O(n2 · l) – the over-
all complexity of Insert Edge Mutation is O(n2 ·b·log(n2 ·b)+n5 ·b·log l+n2 ·l)
in the worst case with b < l and usually n ¿ l.
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Chapter 5

Implementation Details

5.1 Used Tools

All algorithms were written in C++ and were run on a Pentium 4 with 1.9
GHz and 1 GB RAM under a SuSE Linux 8.1 platform using the g++ 3.2
compiler from the GNU Compiler Collection.

For the implemenation of the evolutionary algorithm, the C++ library EAlib
1.1 [24] was used. This library consists of an evolutionary computation
framework, which provides a toolkit for the fast implementation of evolution-
ary algorithms. The object orientated architecture makes it highly extensible
and easily adaptable to different optimisation problems.

Additionally the LEDA 4.4 [1] program package, which provides a sizable
collection of data types and algorithms was included.

For the documention of the source code, DoxyGen 1.2.17 [12] was used.

5.2 Classes and Modules

Following the paradigms of object–orientated programming, all implemented
methods were encapsulated in classes and modules, each providing various
input, output and access operators. A short description of the integral classes
of our evolutionary algorithm is given in the following.
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ClustalW: This class represents a low–level interface to CLUSTAL W, which
allows to load and save alignments in different file formats, to have
access to CLUSTAL W ’s scoring matrices and to compute pairwise
alignments.

Sequence: This class encapsulates a single sequence without gaps, which is
implemented as a string.

MultiSequences: This class contains a set of sequences, which is imple-
mented as an array of type Sequence.

MultiAlignment: This class represents an alignment of an associated set of
sequences. It contains a reference to a MultiSequences object and is
implemented as a two–dimensional array. The implemented methods
allow to find and move blocks of consecutive characters, to randomly
create an alignment and to check the feasibility of the alignment.

AGEdge: This class represents an edge of the alignment graph. It stores
the two sequences, the positions of both incident characters and an
assigned weight.

AGEdgeList: This class is a space–efficient container for all edges of the
alignment graph, implemented as doubly linked list of type AGEdge.

AlignmentGraph: This class represents the corresponding alignment graph
to a given set of sequences. It provides methods for adding new or
deleting existing edges, for assigning a weight to each edge or for per-
forming the aligment graph extension. It also provides the method to
compare the alignment graph with a given alignment, so that char-
acteristics like the average number of realised edges can be analysed.
The class contains a reference to the associated MultiSequences and
AGEdgeList objects and is implemented as a two–dimensional array of
type AGNode.

Each element of type AGNode represents one character and contains a
list of all incident edges of type AGEdge. These lists are implemented
as sorted sequences, which are realised by skip lists.
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MATrace: This class represents a (feasible) trace for a given alignment
graph. It provides the methods to determine, whether an edge can
be added to the trace or not, and allows to insert and remove edges.
It contains a reference to the associated AlignmentGraph object and
is implemented as follows: For any two sequences, a list of all edges
connecting these sequences is stored. As these lists are realised by
sorted sequences, the trace is implemented as a two–dimensional array
of sorted sequences.

MultiAlignmentChrom: This object is derived from the class chromosome
of the EAlib. It contains a MultiAlignment object representing the
multiple alignment of the chromosome and a reference to the associated
AlignmentGraph object. The methods allow to initialise and evaluate
the chromosome. All the described mutation and crossover operators
of our evolutionary algorithm are also implemented in this class.

MultiAlignmentIsland: This object is derived from the class islandModelEA
of the EAlib. It implements the migration strategy for our EA and calls
Insert Edge Mutation and Path Relinking Crossover based on a given
probability.

5.3 Program Flow

The program flow of our evolutionary algorithm for the MSA problem is
given in Figure 5.1.

load the sequences
build the pairwise
alignment graph

assign a weight to the
edges

perform the alignment
graph extension

run the evolutionary
algorithm

save the best
alignment

Figure 5.1: Program flow
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5.4 Parameters

Various parameters allow to make our evolutionary algorithm adjustable. A
short overview of the integral parameters with their default values is given
in Table 5.1.

parameter default description

edgew 7* Weighting strategy used to assign a weight to each

edge (0=SIS, 1=CIS, 3=1-0S, 7=CSM).

dfsk 3* Level of the alignment graph extension.

ifile – Name of the input alignment file.

rfile – Name of the output alignment file.

anfile – Name of the (optional) annotation file.

popsize 100 Size of the population.

islk 4 Number of subpopulations.

tgen 10000* Maximal number of generations until termination.

tcgen 1000* Number of generations for termination according

to convergence.

elit 1 Use elitism (0=No, 1=Yes).

dupelim 1 Eliminate duplicates (0=No, 1=Yes).

pcross 1 Probability for creating a new chromosome by

crossover.

pmut -1 Probability for mutating a new chromosome

(Poisson distributed random number).

pmig 0.001 Probability with which migration takes place after

each generation.

pprc 0.02* Probability with which Path Relinking Crossover

is performed each generation.

piem 0.1* Probability with which Insert Edge Mutation is

performed each generation.

Table 5.1: Overview of the parameters of our EA

For some of these parameters the default values were obtained by rigid op-
timisation (marked with *), while for other parameters the standard values
as provided by the EAlib are used. For further information see section 6.2.
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Chapter 6

Experimental Results

6.1 Evaluating the Alignment Quality

To rate the (biological) quality of a computed alignment, we use the evalu-
ation program baliscore.c from the BAliBASE library. This program com-
pares a computed alignment with the corresponding BAliBASE reference
alignment and rates it based on a calculated sum-of-pairs score.

Definition 6.1 (Sum-of-pairs score) Let S be a set of n strings and Ŝ the

corresponding alignment of length l̂. Let pi,j(k) = 1, if the two characters

on positions (i, k) and (j, k) in Ŝ are also aligned in the BAliBASE reference

alignment Ŝr of length l̂r, or pi,j(k) = 0 otherwise. Then the sum-of-pairs

score SPS(k) for column k is defined as:

SPS(k) =
n∑

i=1

n∑

j=1(i6=j)

pi,j(k).

The sum-of-pairs score SPS for the whole alignment is defined as:

SPS =




l̂∑

k=1

SPS(k)


 /




l̂r∑

kr=1

SPS(kr)


 ,

which always produces a score between 0 (no pair of characters is correctly
aligned) and 1 (optimal alignment).

Additionally, baliscore.c calculates a second sum-of-pairs score (SPS*), which
only considers the trusted regions of the reference alignments for comparison
by using the BAliBASE annotation files (also see section 3.5.1).
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6.2 Optimising the Program Parameters

The parameter setting is mainly responsible for the overall performance of
our MSA program. However, not all of the parameters are equally important.
While some of them hardly affect the performance of our approach (or only
affects it in certain situations) and standard values provide a reasonable com-
promise for general use, others are mainly responsible for the running time of
the EA and the quality of the obtained solution. These parameters (marked
with * in section 5.4) are further analysed in the following and tried to be
optimised using the test instances of reference set 1 of the BAliBASE library.

Naturally, these optimised values are not perfect for any test instance. How-
ever, as shown in the comparative results of section 6.4, they provide a rea-
sonable compromise between algorithm speed and solution quality.

6.2.1 Weighting Strategy and Level of the Alignment

Graph Extension

As described in section 3.3, four different weighting schemes have been im-
plemented to assign a weight to the edges of the pairwise alignment graph:

• Sequence identity score (SIS),

• CLUSTAL W ’s identity score (CIS),

• 1-0 score (1-0S),

• CLUSTAL W ’s similarity matrices with window filtering (CSM).

For comparison of these weighting schemes, each of them is used to build
the corresponding pairwise alignment graph. Then this graph is extended to
levels 2 and 3. Finally the greedy2 heuristic is applied to derive a multiple
alignment.

To evaluate the quality of each of these computed alignments, baliscore.c
is used to calculate the corresponding SPS-score and SPS*-score. The re-
sults for the test alignments are shown in Tables 6.1 and 6.2.
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SIS CIS 1-0S CSM
SPS SPS* SPS SPS* SPS SPS* SPS SPS*

Reference 1a 0,445 0,588 0,443 0,566 0,343 0,464 0,476 0,619
Reference 1b 0,839 0,949 0,838 0,948 0,779 0,905 0,855 0,959
Reference 1c 0,941 0,979 0,941 0,980 0,922 0,969 0,942 0,980

Table 6.1: Comparing different weighting schemes (extension level 2)

SIS CIS 1-0S CSM
SPS SPS* SPS SPS* SPS SPS* SPS SPS*

Reference 1a 0,459 0,596 0,451 0,573 0,372 0,508 0,487 0,628
Reference 1b 0,839 0,946 0,842 0,945 0,790 0,915 0,856 0,958
Reference 1c 0,941 0,979 0,941 0,979 0,923 0,969 0,942 0,980

Table 6.2: Comparing different weighting schemes (extension level 3)

As shown in Tables 6.1 and 6.2, the greedy2 heuristic always produces the
best results using CLUSTAL W ’s scoring matrices with window filtering
(CSM) to build the alignment graph. Also the further extension of the align-
ment graph to level 3 provides appreciable improvements, especially for test
instances with lower sequence similarity.

Thus, in the following, we will use CLUSTAL W ’s scoring matrices with
window filtering to build the pairwise alignment graph and we will extend it
to level 3 in general.

6.2.2 Usage of Path Relinking Crossover and Insert

Edge Mutation

Analysing the evolutionary process, we can see that two parameters mainly
influence the performance of our evolutionary algorithm: the probability with
which Path Relinking Crossover takes place (pprc) and the probability with
which Insert Edge Mutation is performed each generation (piem).

Two main effects can be observed, when these parameters are varied:

• Using the operators only rarely, the evolutionary algorithm converges
rather slowly.
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• Applying them rather frequently, the running time of our EA increases
dramatically.

These results are not very surprising as the operators are designed to speed
up the evolutionary process on the one hand but also have a huge complexity
compared to the other operators of our EA on the other hand.

Therefore, we tried to optimise these parameters by analysing the perfor-
mance of our EA using different probabilites for applying Path Relinking
Crossover (pprc = 0.1%, 0.02%, 0.01%, 0.002%) and Insert Edge Mutation
(piem = 0.1%, 0.01%). For meaningful results our evolutionary algorithm
was run 10 times with each parameter configuration on reference set 1 of the
BAliBASE library. To ensure that the EA has converged, the EA was always
run for 50000 generations (tgen = 50000).

For comparison, the following two values were computed: t (in seconds),
the time to perform one generation in the EA on average, and g, the gen-
eration when the best solution is obtained. Additionally the approximative
computational time t ·(g+tcgen) with tcgen = 1000, 3000, and 5000 was cal-
culated, as for further computation a more restrictive termination condition
is applied (also see next section – tcgen, termination according to conver-
gence). The corresponding results are shown in Table 6.3.

Note that the obtained solutions were always of similar alignment quality,
hence the corresponding fitness scores respectively SPS scores are not dis-
played in Table 6.3.

piem pprc t [sec] g t · (g + 1000) t · (g + 3000) t · (g + 5000)
0.1% 0.1% 0,0362 3806 173.97 246.37 318.77
0.1% 0.02% 0,0323 3935 159.40 224.00 288.60
0.1% 0.01% 0,0316 4185 163.84 227.04 290.24
0.1% 0.002% 0,0312 4392 168.23 230.63 293.03
0.01% 0.1% 0,0336 4326 178.95 246.15 313.35
0.01% 0.02% 0,0294 4677 166.90 225.70 284.50
0.01% 0.01% 0,0290 4849 169.62 227.62 285.62
0.01% 0.002% 0,0285 5271 177.18 234.18 291.18

Table 6.3: Approximative computational time (piem and pprc are varied)
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Based on the results of Table 6.3 (note that we will use tcgen = 1000 for
further computation – see next section), a probability of 0.1% for Insert Edge
Mutation and 0.02% for Path Relinking Crossover is applied to our EA by
default.

6.2.3 Termination Condition

In the last section, our evolutionary algorithm was always run for 50000 gen-
erations. However, in all test instances of reference set 1 of the BAliBASE
library, the best solution was already found in former generations (see Table
6.3). Thus, an optimised (more restrictive) termination condition allows to
speed up the evolutionary process while keeping the quality of the computed
alignments.

Therefore, our EA was run on these test instances with different termina-
tion conditions again. The respective running times and the quality of the
obtained alignments were compared to the results of the former runs. Var-
ious tests indicate that the following combination of termination conditions
performs best on reference set 1 of the BAliBASE library: tcgen = 1000 with
tgen = 10000.

Hence, these values are used in the following sections to terminate our evo-
lutionary algorithm.

6.3 Overall Results

For meaningful results, our evolutionary algorithm was run 10 times on each
test instance of the BAliBASE library using the default parameters as pro-
vided in section 5.4.

The respective values compared to the greedy2 heuristic are shown in Ta-
ble 6.4. Note that Sum(w) denotes the sum–of–weights of all the edges, for
which a corresponding pairwise character alignment exists in the solution,
and Var(w) denotes the variance of these sum–of–weight scores based on the
10 runs performed with each test instance.
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greedy2 EA (avg of 10)
Sum(w) SPS SPS* Sum(w) Var(w) SPS SPS*

Reference 1a 516.080 0.487 0.628 535.561 7.896 0.497 0.634
Reference 1b 1074.468 0.856 0.958 1076.131 0.553 0.858 0.958
Reference 1c 1594.748 0.942 0.980 1595.251 0.086 0.941 0.980
Reference 2 17278.645 0.830 0.892 17284.870 11.714 0.831 0.892
Reference 3 21628.881 0.731 0.839 21675.844 39.657 0.740 0.846
Reference 4a 4772.292 0.636 0.775 4784.547 10.938 0.643 0.777
Reference 4b 5206.853 0.794 0.877 5210.772 2.934 0.794 0.875

Overall running time of our EA: ≈ 55 hours (1 run)

Table 6.4: Overall results

The full result table containing the scores of each test instance can be found
in the appendix.

As shown in Table 6.4, our evolutionary algorithm is generally able to im-
prove (or even optimise) the sum–of–weights score of the alignment obtained
by the greedy2 heuristic. However, these improvement are quite different.
While for test instances with higher sequence similarity the greedy2 heuristic
already provides near optimal solutions, test instances with lower sequence
similarity can be significantly improved by our EA. This phenomenon has
already been observed before (see section 3.5) and is a result of the quality
of the respective alignment graph (particularly reflected by the weight-based
distribution of the edges in the alignment graph).

Considering the biological quality of the solutions (the SPS score), the fol-
lowing observation can be made. Although our EA usually increases the
sum–of–weights score of the given multiple alignment, the biological quality
often does not improve accordingly (e.g. reference set 4b). This shortcoming
stems from the fact that we use different functions for optimisation and com-
parison. So it is possible that we have already found a biologically optimal
alignment but our evolutionary algorithm still does not converge – e.g. a bi-
ologically correct edge (with high weight) is replaced by a set of biologically
incorrect edges (each with smaller weight but with higher overall weight).
Thus, future work should aim to further improve the biological quality of
the alignment graph to make it biologically more correct (e.g. by considering
information of local alignments).

Nevertheless, our solutions are still fairly good compared to alignments ob-
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tained by other MSA programs. This fact is further documented in the next
section.

6.4 Comparisons with other MSA Programs

To evaluate the overall performance of our evolutionary algorithm and the
quality of the obtained solutions, our EA is compared with three exist-
ing MSA programs using all reference alignments of the BAliBASE library.
These other MSA packages are:

• CLUSTAL W 1.82 [28], the most popular progressive alignment strat-
egy,

• Fauster’s Meta Heuristics (FMH) [7], a combination of greedy heuris-
tics, local improvement strategies and tabu search,

• SAGA 0.95 [21], a widely–used evolutionary algorithm for MSA.

The comparative results between our EA and the three other methods are
shown in Table 6.5.

EA (avg of 10) CLUSTAL W FMH SAGA
SPS SPS* SPS SPS* SPS SPS* SPS SPS*

Reference 1a 0.497 0.634 0.512 0.650 0.509 0.655 0.395 0.471
Reference 1b 0.858 0.958 0.828 0.914 0.866 0.943 0.788 0.875
Reference 1c 0.941 0.980 0.943 0.965 0.949 0.970 0.915 0.933
Reference 2 0.831 0.892 0.795 0.875 0.814 0.880 0.738 0.804
Reference 3 0.740 0.846 0.749 0.863 0.754 0.867 0.617 0.716
Reference 4a 0.643 0.777 0.621 0.760 0.639 0.782 0.459 0.522
Reference 4b 0.794 0.875 0.757 0.850 0.801 0.900 0.615 0.705

Table 6.5: Comparison with other MSA programs

The full result table containing the respective scores of each test instance can
be found in the appendix.

Note that these average scores for entire reference sets have to be treated
with care – especially for reference alignments with lower sequence similarity
(e.g. reference set 1a). While our EA performs rather similar (or sometimes
even better) for most of these test instances, for some of them the results
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are much worse – based on the nonsatisfying biological quality of the corre-
sponding alignment graph there. Hence, average scores for entire reference
set can be some kind of misleading.

Considering all used test instances of the BAliBASE library our EA is able
to compute the best solution in 54% of all instances (compared to 28% by
CLUSTAL W, 37% by Fauster’s Meta Heuristics and 15% by SAGA).

Naturally, the running time cannot be ignored totally. So, it can take some
time until the EA converges, especially for test instances with many se-
quences. However, it should always be taken into account that we use the
greedy2 heuristic for initialisation, so a termination of the EA ahead of time
still provides solutions of good quality.
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Chapter 7

Conclusions

In this paper we presented a new approach for fast and accurate multiple
sequence alignment, able to outperform even widely used MSA packages like
CLUSTAL W on many test instances of the BAliBASE library. Three strate-
gies were mainly responsible for the good performance of our algorithm: The
usage of an alignment graph for the evaluation of multiple alignments, a fast
heuristic to produce qualitatively good solutions in short time and the fur-
ther optimisation of these alignments with a parallel evolutionary algorithm.

An alignment graph is able to reflect much more information than other
evaluation methods like e.g. sum-of-pairs functions. So our alignment graph
contained

• information of pairwise alignments as computed by CLUSTAL W,

• local information obtained by using an appropriate weighting scheme
(CLUSTAL W ’s similarity matrices with window filtering),

• global information gained by analysing the consistency between all se-
quences (alignment graph extension).

We validated the effectivity of this evaluation method by comparisons on ref-
erence alignments of the BAliBASE library and used this approach for our
evolutionary algorithm.

A common problem of evolutionary algorithms is the long computational
time required for useful results. To overcome this problem we applied a
fast heuristic to create the initial population of our EA (greedy2 based ini-
tialisation). For many test alignments already these initial solutions were
qualitatively better than the final solutions of other tested MSA packages.
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The initial alignments were further improved by a parallel evolutionary al-
gorithm, which uses fast variation operators as well as global optimisation
heuristics. Using such a set of problem specific improvement operators, our
method was able to compute the best solution in 54% of all used test in-
stances of the BAliBASE library (compared to 28% by CLUSTAL W, 37%
by Fauster’s Meta Heuristics and 15% by SAGA) .

Future work should aim to further improve the biological quality of the
alignment graph to make it biologically more correct (e.g. by considering
information of local alignments).
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Appendix

Sum(w) SPS SPS* Sum(w) Var(w) SPS SPS* SPS SPS* SPS SPS* SPS SPS*

ref1a/1aboA 206,854 0,584 0,674 222,345 0,027 0,654 0,768 0,693 0,772 0,680 0,792 0,513 0,581

ref1a/1idy 210,257 0,604 0,673 211,499 0,331 0,656 0,676 0,546 0,569 0,621 0,662 0,354 0,446

ref1a/1r69 147,015 0,450 0,508 147,791 0,295 0,427 0,483 0,538 0,717 0,439 0,525 0,576 0,417

ref1a/1tvxA 162,554 0,530 0,658 165,992 0,309 0,478 0,583 0,223 0,200 0,492 0,600 0,633 0,700

ref1a/1wit 464,695 0,702 1,000 464,708 0,001 0,705 1,000 0,630 0,873 0,708 1,000 0,721 0,990

ref1a/2trx 288,362 0,692 0,737 290,259 2,175 0,692 0,737 0,660 0,707 0,694 0,707 0,568 0,430

ref1a/1bbt3 638,618 0,351 0,507 660,003 91,771 0,328 0,445 0,512 0,805 0,318 0,463 0,392 0,523

ref1a/1havA 336,912 0,227 0,415 361,186 5,031 0,224 0,417 0,222 0,338 0,281 0,556 0,210 0,336

ref1a/1sbp 624,307 0,481 0,560 643,256 8,523 0,489 0,578 0,467 0,594 0,492 0,594 0,336 0,444

ref1a/1uky 353,249 0,444 0,720 363,449 0,336 0,443 0,724 0,531 0,741 0,423 0,660 0,214 0,364

ref1a/2hsdA 497,880 0,543 0,644 516,933 0,076 0,572 0,696 0,482 0,635 0,563 0,676 0,393 0,516

ref1a/2pia 502,947 0,604 0,787 514,931 0,078 0,600 0,785 0,624 0,848 0,673 0,847 0,555 0,678

ref1a/3grs 369,383 0,301 0,479 382,430 0,014 0,298 0,469 0,377 0,410 0,304 0,490 0,213 0,281

ref1a/kinase 886,568 0,611 0,747 893,929 1,180 0,618 0,751 0,655 0,790 0,636 0,749 0,426 0,507

ref1a/1ajsA 900,481 0,344 0,469 921,804 4,988 0,361 0,473 0,386 0,574 0,413 0,587 0,226 0,283

ref1a/1cpt 973,199 0,700 0,822 978,786 15,219 0,705 0,829 0,697 0,836 0,697 0,820 0,632 0,786

ref1a/1lvl 533,604 0,391 0,580 592,861 3,727 0,403 0,557 0,368 0,467 0,411 0,578 0,194 0,201

ref1a/1pamA 1057,040 0,395 0,600 1086,742 3,753 0,401 0,600 0,408 0,581 0,397 0,619 0,079 0,123

ref1a/1ped 383,518 0,594 0,676 413,410 6,331 0,594 0,692 0,678 0,777 0,600 0,692 0,669 0,773

ref1a/2myr 535,886 0,330 0,442 612,458 25,577 0,370 0,475 0,394 0,538 0,384 0,533 0,085 0,123

ref1a/4enl 525,914 0,444 0,585 537,271 2,451 0,481 0,626 0,664 0,820 0,511 0,663 0,384 0,438

ref1a/gal4 754,520 0,392 0,522 800,302 1,522 0,431 0,577 0,518 0,698 0,451 0,588 0,306 0,420

ref1b/1aab 257,062 0,884 1,000 257,089 0,000 0,869 1,000 0,818 0,940 0,911 1,000 0,854 1,000

ref1b/1fjlA 533,982 1,000 1,000 533,982 0,000 1,000 1,000 0,994 1,000 1,000 1,000 0,989 1,000

ref1b/1hfh 612,773 0,868 0,966 612,773 0,000 0,868 0,966 0,820 0,886 0,880 0,946 0,861 0,927

ref1b/1hpi 223,555 0,923 0,989 223,555 0,000 0,923 0,989 0,864 0,935 0,923 0,946 0,885 0,924

ref1b/1csy 601,115 0,851 0,979 601,188 0,006 0,849 0,977 0,861 0,933 0,878 0,975 0,807 0,979

ref1b/1pfc 665,214 0,859 0,986 665,407 0,027 0,859 0,986 0,774 0,897 0,862 0,979 0,832 0,986

ref1b/1tgxA 159,461 0,817 0,947 160,178 0,000 0,837 0,935 0,833 0,914 0,837 0,866 0,647 0,704

ref1b/1ycc 311,392 0,816 0,918 311,427 0,001 0,819 0,918 0,810 0,885 0,825 0,832 0,720 0,737

ref1b/3cyr 320,732 0,802 0,903 320,734 0,000 0,799 0,898 0,722 0,784 0,830 0,875 0,789 0,867

ref1b/451c 299,182 0,618 0,814 303,374 0,079 0,629 0,820 0,555 0,649 0,640 0,739 0,611 0,674

ref1b/1ad2 650,520 0,853 0,963 652,551 0,393 0,862 0,963 0,821 0,949 0,868 0,971 0,845 0,931

ref1b/1aym3 871,294 0,882 0,950 873,932 0,053 0,892 0,950 0,927 0,957 0,893 0,947 0,874 0,971

ref1b/1gdoA 718,386 0,799 0,927 719,099 0,099 0,802 0,927 0,850 0,908 0,812 0,902 0,844 0,908

ref1b/1ldg 1216,160 0,935 0,992 1216,170 0,000 0,935 0,993 0,920 0,967 0,940 0,996 0,886 0,946

ref1b/1mrj 856,982 0,917 0,997 857,700 0,289 0,923 0,997 0,853 0,993 0,927 1,000 0,896 0,985

ref1b/1pgtA 804,819 0,936 1,000 804,945 0,012 0,936 1,000 0,941 1,000 0,936 1,000 0,866 1,000

ref1b/1pii 843,610 0,810 0,873 843,610 0,000 0,810 0,873 0,787 0,841 0,813 0,871 0,799 0,862

SAGAgreedy2 EA (avg of 10) Clustal W FMH
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Sum(w) SPS SPS* Sum(w) Var(w) SPS SPS* SPS SPS* SPS SPS* SPS SPS*

ref1b/1ton 1013,540 0,864 0,955 1014,343 0,313 0,866 0,955 0,718 0,801 0,880 0,953 0,752 0,824

ref1b/2cba 932,422 0,803 0,968 932,860 0,137 0,806 0,968 0,702 0,875 0,796 0,968 0,715 0,898

ref1b/1ac5 1105,360 0,787 0,990 1116,528 0,700 0,805 0,997 0,788 0,974 0,802 0,986 0,629 0,789

ref1b/1dlc 1764,820 0,856 0,959 1772,218 0,809 0,857 0,960 0,848 0,960 0,864 0,961 0,742 0,824

ref1b/1eft 1263,950 0,854 0,935 1266,905 4,751 0,856 0,935 0,829 0,910 0,865 0,931 0,834 0,905

ref1b/1fieA 2579,370 0,946 0,984 2579,473 0,064 0,946 0,984 0,938 0,965 0,949 0,977 0,877 0,904

ref1b/1gowA 1256,710 0,768 0,922 1257,870 0,887 0,770 0,922 0,805 0,924 0,782 0,915 0,445 0,555

ref1b/1pkm 1502,370 0,898 0,987 1503,012 0,988 0,896 0,987 0,905 0,936 0,902 0,948 0,829 0,899

ref1b/1sesA 2734,580 0,962 0,992 2734,580 0,000 0,962 0,992 0,942 0,979 0,967 0,990 0,883 0,909

ref1b/2ack 1914,040 0,764 0,916 1919,985 0,363 0,766 0,917 0,705 0,865 0,775 0,914 0,498 0,613

ref1b/arp 2173,550 0,882 0,944 2174,388 0,614 0,883 0,945 0,818 0,901 0,891 0,952 0,753 0,858

ref1b/glg 2475,000 0,779 0,996 2481,983 6,004 0,783 0,999 0,750 0,956 0,787 0,992 0,739 0,933

ref1b/1adj 1572,080 0,943 1,000 1572,080 0,000 0,943 1,000 0,935 0,937 0,946 0,945 0,940 0,943

ref1c/1aho 347,498 0,914 1,000 347,547 0,005 0,909 1,000 0,816 0,920 0,933 1,000 0,920 0,983

ref1c/1csp 461,344 0,965 0,982 461,344 0,000 0,965 0,982 0,981 0,993 0,975 0,993 0,917 0,935

ref1c/1dox 316,715 0,918 0,937 316,715 0,000 0,918 0,937 0,914 0,860 0,918 0,860 0,848 0,797

ref1c/1fkj 641,620 0,923 1,000 641,999 0,007 0,924 1,000 0,901 0,971 0,927 0,987 0,926 0,982

ref1c/1fmb 423,683 0,943 0,983 423,683 0,000 0,943 0,983 0,964 0,984 0,964 0,984 0,964 0,984

ref1c/1krn 448,763 0,935 1,000 448,789 0,002 0,931 1,000 0,975 0,992 0,960 1,000 0,969 1,000

ref1c/1plc 529,073 0,938 0,976 529,089 0,001 0,938 0,976 0,914 0,953 0,938 0,976 0,943 0,976

ref1c/2mhr 760,186 0,970 0,985 760,186 0,000 0,970 0,985 0,978 0,990 0,981 0,990 0,970 0,990

ref1c/9rnt 646,260 0,958 0,995 646,260 0,000 0,958 0,995 0,938 0,963 0,965 0,978 0,991 0,973

ref1c/1amk 1666,620 0,988 1,000 1666,620 0,000 0,988 1,000 0,978 0,996 0,989 0,996 0,959 0,972

ref1c/1ar5A 742,413 0,900 0,985 744,506 0,014 0,909 0,985 0,953 0,986 0,910 0,982 0,982 0,992

ref1c/1ezm 2060,830 0,954 0,955 2061,920 0,000 0,953 0,955 0,981 0,950 0,956 0,927 0,920 0,892

ref1c/1led 845,753 0,941 0,977 846,252 0,386 0,936 0,970 0,900 0,932 0,953 0,969 0,744 0,757

ref1c/1ppn 1330,820 0,971 0,987 1330,960 0,016 0,972 0,987 0,987 0,984 0,982 0,982 0,986 0,987

ref1c/1pysA 972,133 0,936 0,984 972,290 0,013 0,935 0,984 0,950 0,919 0,948 0,920 0,938 0,900

ref1c/1thm 1054,210 0,880 0,972 1054,210 0,000 0,880 0,972 0,898 0,953 0,883 0,951 0,830 0,885

ref1c/1tis 1801,970 0,919 0,939 1805,555 0,008 0,918 0,940 0,965 0,973 0,946 0,958 0,940 0,949

ref1c/1zin 855,702 0,920 0,936 856,646 0,006 0,918 0,934 0,955 0,965 0,919 0,932 0,933 0,937

ref1c/5ptp 1387,300 0,938 0,970 1387,770 0,146 0,929 0,961 0,948 0,963 0,923 0,945 0,896 0,911

ref1c/1ad3 1829,690 0,943 0,988 1829,690 0,000 0,943 0,988 0,951 0,980 0,948 0,981 0,946 0,979

ref1c/1gpb 5481,220 0,979 0,994 5481,220 0,000 0,979 0,994 0,981 0,989 0,980 0,988 0,929 0,933

ref1c/1gtr 2604,280 0,949 0,991 2604,372 0,011 0,949 0,991 0,948 0,988 0,954 0,993 0,905 0,964

ref1c/1lcf 6192,960 0,958 0,994 6195,273 0,735 0,962 0,997 0,947 0,979 0,961 0,980 0,827 0,847

ref1c/1rthA 3319,710 0,915 0,967 3320,392 0,571 0,913 0,966 0,902 0,957 0,916 0,964 0,861 0,914

ref1c/3pmg 2105,470 0,972 0,998 2106,007 0,324 0,973 0,998 0,950 0,992 0,977 0,995 0,884 0,929

ref1c/actin 2637,230 0,961 0,991 2637,230 0,000 0,961 0,991 0,931 0,964 0,964 0,985 0,868 0,894

ref2/1aboA 3479,210 0,841 0,939 3479,828 0,221 0,842 0,940 0,797 0,880 0,838 0,904 0,857 0,910

ref2/1idy 6277,370 0,772 0,755 6283,406 14,780 0,772 0,757 0,774 0,810 0,723 0,735 0,828 0,873

ref2/1csy 7213,150 0,856 0,883 7234,726 3,812 0,859 0,882 0,805 0,862 0,841 0,891 0,754 0,810

ref2/1r69 8033,800 0,824 0,947 8036,496 1,960 0,824 0,947 0,792 0,941 0,806 0,944 0,765 0,857

ref2/1tvxA 4797,180 0,760 0,762 4797,180 0,000 0,760 0,762 0,737 0,753 0,743 0,764 0,723 0,746

ref2/1tgxA 4437,310 0,843 0,922 4442,422 8,421 0,842 0,921 0,735 0,851 0,802 0,876 0,795 0,853

ref2/1ubi 5241,300 0,834 0,879 5246,180 0,500 0,836 0,881 0,795 0,869 0,800 0,869 0,772 0,839

ref2/1wit 9977,300 0,811 0,953 9982,796 5,561 0,811 0,953 0,823 0,929 0,826 0,915 0,784 0,873

ref2/2trx 9391,440 0,877 0,902 9391,440 0,000 0,877 0,902 0,885 0,960 0,852 0,904 0,831 0,894

ref2/1uky 26579,500 0,829 0,895 26591,580 34,108 0,834 0,898 0,845 0,909 0,847 0,904 0,805 0,846

ref2/2hsdA 30432,400 0,849 0,901 30449,320 4,162 0,850 0,900 0,763 0,874 0,835 0,899 0,735 0,775

ref2/2pia 18095,600 0,889 0,992 18095,720 0,011 0,890 0,992 0,793 0,918 0,869 0,984 0,749 0,894

ref2/3grs 12599,800 0,799 0,836 12601,980 1,922 0,799 0,836 0,754 0,815 0,792 0,830 0,742 0,809

ref2/kinase 22942,000 0,847 0,903 22946,680 4,002 0,844 0,902 0,821 0,880 0,845 0,901 0,700 0,776

ref2/1ajsA 35902,000 0,795 0,818 35904,820 5,891 0,795 0,818 0,773 0,756 0,774 0,757 0,671 0,680

SAGAgreedy2 EA (avg of 10) Clustal W FMH
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Sum(w) SPS SPS* Sum(w) Var(w) SPS SPS* SPS SPS* SPS SPS* SPS SPS*

ref2/1cpt 19920,200 0,899 0,982 19920,200 0,000 0,899 0,982 0,846 0,950 0,897 0,974 0,721 0,807

ref2/1pamA 34682,100 0,769 0,917 34697,500 79,378 0,771 0,917 0,779 0,951 0,759 0,924 0,600 0,775

ref2/2myr 32099,600 0,812 0,887 32115,760 56,167 0,815 0,888 0,775 0,862 0,791 0,875 0,499 0,548

ref2/4enl 36193,000 0,861 0,872 36194,500 1,667 0,861 0,871 0,808 0,853 0,822 0,870 0,690 0,709

ref3/1r69 4697,140 0,484 0,773 4771,062 9,419 0,501 0,773 0,549 0,812 0,532 0,799 0,540 0,812

ref3/1wit 6014,630 0,795 0,849 6037,046 10,671 0,802 0,858 0,813 0,864 0,822 0,884 0,739 0,786

ref3/kinase 29306,100 0,760 0,844 29367,060 77,074 0,770 0,859 0,744 0,867 0,764 0,881 0,699 0,800

ref3/1pamA 34329,200 0,753 0,898 34370,960 91,914 0,753 0,894 0,786 0,955 0,740 0,897 0,588 0,741

ref3/1ped 29456,800 0,802 0,852 29492,720 30,468 0,810 0,865 0,808 0,879 0,824 0,887 0,586 0,651

ref3/4enl 33621,200 0,803 0,852 33667,960 39,047 0,809 0,860 0,786 0,826 0,818 0,863 0,666 0,671

ref3/2pia 13977,100 0,720 0,807 14024,100 19,004 0,736 0,811 0,754 0,840 0,780 0,861 0,502 0,551

ref4a/1aisB 660,506 0,161 0,243 785,585 47,120 0,222 0,260 0,315 0,371 0,209 0,314 0,154 0,157

ref4a/1ar1 3331,990 0,803 1,000 3332,132 0,120 0,805 1,000 0,760 0,977 0,811 1,000 0,635 1,000

ref4a/1au7A 379,745 0,333 0,357 381,898 1,482 0,337 0,357 0,184 0,150 0,299 0,357 0,131 0,107

ref4a/1ckaA 1386,400 0,924 1,000 1386,378 0,000 0,924 1,000 0,823 1,000 0,926 1,000 0,531 0,397

ref4a/1dynA 510,116 0,439 0,833 512,537 5,500 0,444 0,833 0,396 0,667 0,436 0,833 0,296 0,620

ref4a/1lkl 1364,280 0,878 1,000 1366,940 3,682 0,884 1,000 0,756 1,000 0,884 1,000 0,622 0,750

ref4a/1mfa 639,854 0,388 0,560 645,045 10,791 0,404 0,560 0,412 0,678 0,455 0,678 0,242 0,216

ref4a/1pfc 1797,980 0,492 1,000 1803,493 24,417 0,494 1,000 0,460 0,994 0,485 1,000 0,394 0,542

ref4a/1pysA 614,393 0,533 0,625 616,062 2,526 0,540 0,625 0,558 0,500 0,534 0,625 0,460 0,500

ref4a/1vln 6110,710 0,945 0,948 6112,552 4,314 0,943 0,948 0,925 0,978 0,939 0,948 0,688 0,608

ref4a/1ycc 1930,090 0,780 0,848 1930,897 0,664 0,785 0,861 0,781 0,875 0,789 0,872 0,604 0,510

ref4a/2abk 1497,240 0,615 0,667 1516,435 46,628 0,614 0,667 0,610 0,667 0,614 0,667 0,595 0,667

ref4a/kinase1 2650,680 0,698 0,792 2655,598 5,887 0,696 0,792 0,873 0,875 0,676 0,714 0,503 0,598

ref4a/1ag8 43938,100 0,918 0,978 43938,100 0,000 0,918 0,978 0,844 0,913 0,883 0,938 0,569 0,638

ref4b/1pysA 2606,380 0,633 0,747 2614,993 4,389 0,635 0,747 0,580 0,683 0,636 0,786 0,380 0,481

ref4b/1eft 1300,840 0,411 0,526 1327,843 6,692 0,409 0,507 0,363 0,395 0,429 0,573 0,079 0,096

ref4b/1ivy 4141,120 0,786 0,735 4141,373 0,099 0,786 0,735 0,818 1,000 0,822 0,870 0,680 0,611

ref4b/1qpg 2253,300 0,859 0,925 2254,610 2,031 0,865 0,928 0,903 1,000 0,882 0,950 0,703 0,858

ref4b/1thm1 3843,060 0,829 0,919 3845,673 14,753 0,832 0,919 0,706 0,769 0,851 0,957 0,719 0,833

ref4b/1thm2 2023,020 0,878 0,935 2023,085 0,009 0,878 0,935 0,852 0,862 0,887 0,935 0,826 0,770

ref4b/2cba 2947,070 0,832 0,929 2947,367 0,068 0,832 0,929 0,769 0,913 0,829 0,929 0,633 0,950

ref4b/S51 11674,000 0,853 1,000 11677,480 1,549 0,847 1,000 0,796 0,931 0,839 0,981 0,684 0,851

ref4b/S52 1550,990 0,890 1,000 1551,040 0,000 0,890 1,000 0,896 1,000 0,896 1,000 0,907 1,000

ref4b/kinase1 1409,220 0,828 0,923 1409,485 0,140 0,830 0,923 0,817 0,923 0,828 0,923 0,723 0,845

ref4b/kinase2 7973,040 0,853 0,941 7976,115 5,479 0,852 0,939 0,812 0,894 0,840 0,941 0,623 0,667

ref4b/kinase3 20760,200 0,874 0,943 20760,200 0,000 0,874 0,943 0,771 0,834 0,877 0,949 0,419 0,501

Sum(w) SPS SPS* Sum(w) Var(w) SPS SPS* SPS SPS* SPS SPS* SPS SPS*

Reference 1a 516,080 0,487 0,628 535,561 7,896 0,497 0,634 0,512 0,650 0,509 0,655 0,395 0,471

Reference 1b 1074,468 0,856 0,958 1076,131 0,553 0,858 0,958 0,828 0,914 0,866 0,943 0,788 0,875

Reference 1c 1594,748 0,942 0,980 1595,251 0,086 0,941 0,980 0,943 0,965 0,949 0,970 0,915 0,933

Reference 2 17278,645 0,830 0,892 17284,870 11,714 0,831 0,892 0,795 0,875 0,814 0,880 0,738 0,804

Reference 3 21628,881 0,731 0,839 21675,844 39,657 0,740 0,846 0,749 0,863 0,754 0,867 0,617 0,716

Reference 4a 4772,292 0,636 0,775 4784,547 10,938 0,643 0,777 0,621 0,760 0,639 0,782 0,459 0,522

Reference 4b 5206,853 0,794 0,877 5210,772 2,934 0,794 0,875 0,757 0,850 0,801 0,900 0,615 0,705

SAGA

greedy2 EA (avg of 10) Clustal W FMH SAGA

greedy2 EA (avg of 10) Clustal W FMH
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[4] T. Bäck, D. Fogel, and Z. Michalewicz. Handbook of Evolutionary Com-
putation. Oxford University Press, New York, 1997.

[5] L. Cai, D. Juedes, and E. Liakhovitch. Evolutionary computation tech-
niques for multiple sequence alignments. In Proceedings of the 2000
Congress on Evolutionary Computation, pages 829–835, 2000.

[6] K. Chellapilla and G. Fogel. Multiple sequence alignment using evolu-
tionary programming. In Proceedings of the 1999 Congress on Evolu-
tionary Computation, pages 445–452, 1999.

[7] J. Fauster. Neue heuristische Lösungsansätze für das Multiple Sequence
Alignment Problem. Vienna University of Technology, Vienna, 2003.

[8] D. Fogel. Evolutionary Computation: Toward a New Philosophy of Ma-
chine Intelligence. IEEE Press, New York, 1995.

[9] F. Glover, D. Corne, and M. Dorigo. Scatter search and path relinking.
In New Ideas in Optimization, pages 295–355. McGraw Hill, 1999.

[10] D. Goldberg. Genetic Algorithms in Search, Optimization and Learning.
Addison-Wesley, Reading, Massachusetts, 1989.

100



[11] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology. Cambridge University Press, New
York, 1997.

[12] D. Heesch. DoxyGen 1.2.17, 2002.

[13] J.-T. Horng, C.-M. Lin, B.-J. Liu, and C.-Y. Kao. Using genetic al-
gorithms to solve multiple sequence alignments. In Proceedings of the
Second Genetic and Evolutionary Computation Conference, pages 883–
890, 2000.

[14] X. Huang and W. Miller. A time-efficient, linear space local similarity
algorithm. Advances in Applied Mathematics, 12:337–357, 1991.

[15] J. Kececioglu. The maximum weight trace problem in multiple sequence
alignment. In Proceedings of the 4th Symposium on Combinatorial Pat-
tern Matching, pages 106–119, 1993.

[16] J. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. The MIT Press, Cambridge, MA, 1992.

[17] E. Myers and W. Miller. Optimal alignments in linear space. Computer
Applications in the Biosciences, 4(1):11–17, 1988.

[18] S. Needleman and C. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology, 48:443–453, 1970.

[19] H. Nguyen, I. Yoshihara, K. Yamamori, and M. Yasunaga. A parallel
hybrid genetic algorithm for multiple protein sequence alignment. In
Proceedings of the 2002 Congress on Evolutionary Computation, pages
309–314, 2002.

[20] C. Notredame. Recent progresses in multiple sequence alignment: a
survey. Pharmacogenomics, 3(1):131–144, 2002.

[21] C. Notredame and D. Higgins. SAGA: Sequence alignment by genetic
algorithm. Nucleic Acids Research, 24(8):1515–1524, 1996.

[22] C. Notredame, D. Higgins, and J. Heringa. T-COFFEE: A novel method
for fast and accurate multiple sequence alignment. Journal of Molecular
Biology, 392:205–217, 2000.

101



[23] C. Notredame, L. Holm, and D. Higgins. COFFEE: An objective func-
tion for multiple sequence alignment. Bioinformatics, 14(5):407–422,
1998.

[24] G. Raidl. EAlib 1.1. Vienna University of Technology, 2002.

[25] G. Raidl, G. Kodydek, and B. Julstrom. On weight-biased mutation for
graph problems. In Proceedings of the Seventh International Conference
on Parallel Problem Solving from Nature (PPSN VII), pages 204–213,
2002.

[26] K. Reinert, H.-P. Lenhof, P. Mutzel, K. Mehlhorn, and J. Kececioglu.
A branch-and-cut algorithm for multiple sequence alignment. In Pro-
ceedings of the First Annual International Conference on Computational
Molecular Biology, pages 241–249, 1997.

[27] J. Setubal and J. Meidanis. Introduction to Computational Molecular
Biology. International Thomson Publishing, 1996.

[28] J. Thompson, D. Higgins, and T. Gibson. CLUSTAL W: Improving the
sensitivity of progressive multiple sequence alignment through sequence
weighting, position specific gap penalties and weight matrix choice. Nu-
cleic Acids Research, 22(22):4673–4680, 1994.

[29] J. Thompson, F. Plewniak, and O. Poch. BAliBASE: A benchmark
alignments database for the evaluation of multiple sequence alignment
programs. Bioinformatics, 15:87–88, 1999.

[30] J. Thompson, F. Plewniak, and O. Poch. A comprehensive compari-
son of multiple sequence alignment programs. Nucleic Acids Research,
27(13):2682–2690, 1999.

[31] R. Thomsen, G. Fogel, and T. Krink. A Clustal alignment improver
using evolutionary algorithms. In Proceedings of the 2002 Congress on
Evolutionary Computation, pages 121–126, 2002.

[32] L. Wang and T. Jiang. On the complexity of multiple sequence align-
ment. Journal of Computational Biology, 1(4):337–348, 1994.

[33] C. Zhang and A. Wong. A genetic algorithm for multiple molecular
sequence alignment. CABIOS, 13(6):565–581, 1997.

102


