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Abstract

This thesis considers two NP hard generalized network design problems, where the nodes
of a graph are partitioned into clusters and exactly one node from each cluster must be
connected. The objective of both problems is to identify for a given graph a subgraph with
minimal total edge costs and satisfying certain constraints.

The Generalized Minimum Spanning Tree (GMST) problem extends the classical Min-
imum Spanning Tree problem by seeking a connected cycle-free subgraph containing exactly
one node from every cluster. This problem is solved by a Variable Neighborhood Search
(VNS) approach which uses three different neighborhood types. The first one is focused on
the nodes selected within a concrete solution, while the second one first selects the global
edges between the clusters. Both are large in the sense that they contain exponentially
many candidate solution, but efficient polynomial-time algorithms are used to identify best
neighbors. The third neighborhood type uses Integer Linear Programming (ILP) to solve
parts of the problem to provable optimality. Tests on Euclidean and random instances with
up to 1280 nodes indicate especially on instances with many nodes per cluster significant
advantages over previously published metaheuristic approaches.

Extending the classical Minimum Edge Biconnected Network problem, goal of the
Generalized Minimum Edge Biconnected Network (GMEBCN) problem is to obtain a
subgraph connecting exactly one node from each cluster and containing no bridges. Two
different Variable Neighborhood Search (VNS) approaches using four different neighborhood
types, are presented for this problem. The first one focuses on optimizing the used nodes,
while the second one puts more emphasis on the arrangement of them. Two different versions
exists for both neighborhoods. The simpler ones operate in a straightforward way on the
nodes of the solution-graph while the more sophisticated versions consider the so-called
“reduced graph”. Using this significant smaller graph, it is easy to determine the best used
nodes for the majority of clusters in an optimal way. The third neighborhood type optimizes
a solution by first adding a new edge and then removing as many unnecessary edges as
possible. Finally the last neighborhood optimizes both the used nodes as well as the edges.
It is based on changing the used nodes within exactly one cluster and removing all incident
edges which divides the graph into several edge-biconnected components. Afterwards the
solution is heuristically augmented until the edge biconnectivity property holds again.
Comparing these two approaches on Euclidean and random instances with up to 1280 nodes
indicate that the second approach, using the more sophisticated neighborhoods and having
higher computational complexity, is able to outperform the simpler, but much faster one
significantly with respect to solution quality.



Zusammenfassung

Diese Diplomarbeit beschäftigt sich mit zwei NP schweren, generalisierten Netzwerkdesign-
problemen, deren Knotenmenge in so genannte Cluster unterteilt ist. Eine zulässige Lösung
eines solchen Problems enthält jeweils genau einen Knoten aus jedem dieser Cluster, während
die optimale Lösung jene mit der geringsten Summe an Kantenkosten ist.

Das Generalisierte Minimale Spannbaum (GMST) Problem, bei dem es sich um eine
Erweiterung des klassischen minimalen Spannbaum Problems handelt, sucht einen möglichst
kostengünstigen, kreisfreien Teilgraph, der eben aus jedem Cluster genau einen Knoten
enthält und alle gewählten Knoten verbindet. Dieses Problem wird mit Variabler Nach-
barschaftssuche (VNS) mittels drei verschiedener Nachbarschaftstypen gelöst. Die erste
Nachbarschaft stellt die zu wählenden Knoten in den Mittelpunkt, während die zweite
zunächst die globalen Kanten zwischen den Clustern auswählt. Trotz der Tatsache, dass der
Suchraum für beide Nachbarschaften exponentiell groß ist, kann die jeweils beste Lösung
effizient in polynomieller Zeit ermittelt werden. Der dritte Nachbarschaftstyp verwendet
ganzzahlige lineare Programmierung (ILP) um Teile des Problems exakt zu lösen. Tests,
die sowohl für den euklidischen als auch den nicht euklidischen Fall durchgeführt wurden,
zeigen, dass dieser Ansatz speziell dann, wenn die Anzahl der Knoten pro Cluster groß ist,
bessere Ergebnisse als bisherige heuristische Ansätze liefert.

Beim zweiten Problem, dem Generalisierten Minimalen Kanten-Zweizusammenhaengenden
Netzwerk (GMEBCN) Problem, wird ein möglichst kostengünstiger, bezüglich der Kanten
zweifach zusammenhängender Teilgraph gesucht, der wiederum aus jedem Cluster genau
einen Knoten enthält. Zwei verschiedene Ansätze, basierend auf VNS mit vier Nachbarschaft-
stypen, werden für dieses Problem gegenübergestellt. Die erste Nachbarschaft optimiert
die ausgewählten Knoten, während die zweite deren Anordnung betrachtet. Für diese
beiden existiert jeweils noch eine aufwändigere Version, welche auf einem reduzierten Graph
operiert und die gewählten Knoten für die meisten Cluster exakt berechnet. Die dritte Nach-
barschaft erweitert eine Lösung zunächst durch hinzufügen einer neuen Kante und versucht
anschließend, so viele Kanten wie möglich zu entfernen, ohne den zweifachen Zusammenhang
zu zerstören, während die letzte Nachbarschaft sowohl Knoten als auch Kanten gleichzeitig
optimiert. Dazu entfernt sie zunächst einen Knoten mit allen inzidenten Kanten aus der
Lösung und wählt stattdessen einen anderen Knoten aus dem gleichen Cluster. Anschließend
werden heuristisch solange möglichst kostengünstige Kanten hinzugefügt, bis der geforderte
zweifache Zusammenhang wieder gegeben ist. Tests zeigen, dass die Ergebnisse für jenen
Ansatz, der die komplizierteren, aber natürlich auch langsameren Nachbarschaftsstrukturen
verwendet, eindeutig besser sind als jene des einfacheren und schnelleren Ansatzes.
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1. Introduction

This thesis is located in the area of combinatorial optimization, focusing on NP hard
generalizations of two classical network design problems that occur in real world where
multiple local area networks are interconnected by a backbone network.
Depending on the demands of such a network, the underlying problem can either be
formulated as the Generalized Minimum Spanning Tree (GMST) problem or the even harder
Generalized Minimum Edge Biconnected Network (GMEBCN) problem.

The Generalized Minimum Spanning Tree (GMST) problem is an extension
of the classical Minimum Spanning Tree (MST) problem and is defined as follows.
Consider an undirected weighted complete graph G = 〈V, E, c〉 with node set V , edge set E,
and edge cost function c : E → R

+. The node set V is partitioned into r pairwise disjunct
clusters V1, V2, . . . , Vr containing d1, d2, . . . , dr nodes, respectively.
A spanning tree of a graph is a cycle-free subgraph connecting all nodes. A solution to the
GMST problem defined on G is a graph S = 〈P, T 〉 with P = {p1, p2, . . . , pr} ⊆ V containing
exactly one node from each cluster, i. e. pi ∈ Vi for all i = 1, . . . , r, and T ⊆ P ×P ⊆ E being
a tree spanning the nodes P , see Figure 1.1. The costs of such a tree are its total edge costs,
i. e. C(T ) =

∑

(u,v)∈T c(u, v), and the objective is to identify a solution with minimum costs.

V1 V2

V3

V4

V5

p1

p2

p3 p4

p5

Fig. 1.1: Example for a GMST solution.

In case each cluster contains only one node, i. e. di = 1 for all i = 1, . . . , r, the problem
reduces to the simple MST problem, which can be efficiently solved in polynomial time. In
general, however, here the GMST problem is NP hard [28].
As mentioned before there are several real world applications of the GMST problem, e. g. in
the design of backbones in large communication networks. Devices belonging to the same
local area network can be seen as a cluster, and the global network connects one device per
local network. For a more detailed overview on the GMST problem, see [28, 5, 30].
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A variant to the GMST problem is the less restrictive At-Least GMST (L-GMST)
problem where more than one node is allowed to be connected from each cluster [21, 3].
However, this thesis concentrates on the GMST problem whose solutions contain exactly one
node for each cluster.

Similar to Generalized Minimum Spanning Tree Problem, the Generalized Mini-
mum Edge Biconnected Network (GMEBCN) problem is an extension of the
classical Minimum Edge Biconnected Network Problem (MEBCN).
The following definition can be derived directly from the GMST by requiring an edge
biconnected subgraph instead of a spanning tree.
Consider a weighted complete graph G = 〈V, E, c〉 with node set V , edge set E and edge
cost function c : E → R

+. The node set V is partitioned into r pairwise disjunct clusters
V1, V2, . . . , Vr containing d1, d2, . . . , dr nodes, respectively.
An edge biconnected network of a graph is a subgraph connecting all nodes and containing
no bridges. Therefore a solution to the GMEBCN problem defined on G is a subgraph
S = 〈P, F 〉 with P = {p1, p2, . . . , pr} ⊆ V containing exactly one node from each cluster, i. e.
pi ∈ Vi for all 1 ≤ i ≤ r, and F ⊆ P × P ⊆ E being an edge biconnected graph (i. e. does
not contain any bridges), see Figure 1.2.
The costs of such a subgraph are its total edge costs, i. e. C(F ) =

∑

(u,v)∈F c(u, v), and the
objective is to identify a solution with minimum costs.

Another important consideration for the GMEBCN problem will be the concept of an
edge-minimal edge-biconnected graph which is defined as a graph containing no redundant
edges. A redundant edge is an edge whose removal does not violate the edge-biconnectivity
property of the graph. Obviously, an optimal solution to the GMEBCN problem is always
edge-minimal.

V1 V2

V3

V4

V5

p1

p2

p3 p4

p5

V6

p6

V7

p7

Fig. 1.2: Example for a GMEBCN solution.

The GMEBCN problem is NP hard even for the case each cluster contains only one node,
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i. e. di = 1 for all 1 ≤ i ≤ r, which is the classical minimum edge biconnected network
(MEBCN) problem.

As for the GMST problem, real world application of the GMEBCN problem occur for
example in the design of backbones in large communication networks as it makes sense to
interconnect local area networks by a global network that can survive a single link outage
though of edge redundancy [5]. In that way all real world applications to the GMST problem
can be adapted to the GMEBCN problem whenever reliability is relevant.

This thesis attacks both problems using heuristic methods, by means of Variable Neighbor-
hood Search (VNS) as well as combined with Integer Linear Programming (ILP).

1.1 Guide to the Thesis

Chapter 2 starts with introducing the necessary theoretical fundamentals, terms, definitions
and methods used in this thesis before proceeding with a summary of the classical versions
of the two considered network design problems. Afterwards, Chapter 3 presents previous and
related research done so far.
Chapter 4 gives the details of the hybrid VNS approach developed for the GMST while
Chapter 5 discusses its experimental results in comparison to previous approaches as well as
the instance types used for testing. Previous versions of all chapters regarding the GMST
problems have been published in [18, 19].
Chapter 6 analysis if and how ideas similar to those developed for the GMST problem can
be utilized for the GMEBCN problem and presents two exact formulations for the GMEBCN
problem. Afterwards, Chapter 7 presents the details of two different VNS approaches for
the GMEBCN problem, while Chapter 8 discusses the experimental results gained for these
approaches.
Finally Chapter 9 presents some implementation details and is followed by a summary and
outlook for possible further work in Chapter 10.



2. Preliminaries

This chapter focuses on presenting the methods used for solving the problems considered in
this thesis as well as defining some general terms and notations. Next to that, a short summary
of the the classical versions of the both problems and a short introduction to generalized
network design problems will be given.

2.1 Graph Theory

Unless explicitly mentioned this thesis considers only simple (i. e. no parallel edges or self
loops), undirected graphs G = 〈V, E, c〉 with edge costs c : E → R.
Especially for the Generalized Minimum Edge Biconnected Network Problem the following
basic terms need to be introduced, whichs definitions are mostly taken from the book of
Diestel [2].

Definition 1: For any subset W ⊂ V of the nodes of a graph G = 〈V, E〉, the edge set δ(W ) =
{(i, j) ∈ E|i ∈W, j ∈ V \W} is called the cut set of W in G.

Definition 2: A graph G is called k-connected if it cannot be separated by removing less then
k vertices and called k-edge-connected if it cannot be seperated by removing less than k edges.
More formally k-(edge)-connectivity can be defined in the following way.
A graph G = 〈V, E〉 is called k-connected (for k ∈ N) if |V | > k and G \X is connected for
every set X ⊆ V with |X| < k. The greatest integer k such that G is k-connected is called
the connectivity κ(G) of G.
Similar a graph G = 〈V, E〉 is called k-edge-connected (for k ∈ N) if |V | > 1 and G \ F
is connected for every set F ⊆ E with |F | < k. The greatest integer k such that G is
k-edge-connected is called the edge connectivity λ(G) of G.

In case of edge-connectivity, the definition given above is equal to requiring k edge disjoint
paths between any two nodes, which obviously leads to a k edge-connected graph too. If
k = 2 it is common to speak of (edge)-biconnected graphs.
Obviously k-connectivity implies k-edge-connectivity while the opposite is not true in general.

Definition 3: An edge that separates its ends is called a bridge. Thus, the bridges in a graph
are precisely those edges that do not lie on any circle.

2.2 Metaheuristics

Metaheuristics for solving hard combinatorial optimization problems (COPs) are typically di-
vided into two groups, local search based metaheuristics (e. g. Variable Neighborhood Search)
and population based metaheuristics (e. g. evolutionary algorithms). The latter will not be
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considered here. Before moving to basic local search, some terms need to be defined [1]. As
this thesis does consider minimization problems only, minimum and optimum refer to the
same term.

Definition 4: A neighborhood structure N is a function N : X → 2X , assigning each possible
solution x ∈ X a set of neighbors N(x) ⊆ X.
N(x) is called the neighborhood of x.

Definition 5: A local minimum (optimum) with respect to a neighborhood N(x) of a minimiz-
ing combinatorial optimization problem is a solution x, such that ∀x′ ∈ N(x) : f(x) ≤ f(x′).

Definition 6: A global minimum (optimum) of a minimizing combinatorial optimization prob-
lem is a solution x∗, such that f(x∗) ≤ f(x), ∀x ∈ X. Therefore a global optimum is a local
optimum for all neighborhood structures N (see Figure 2.1).

local optima

global optimum

o
b
je

ct
iv

e
v
a
lu

e

search space X

Fig. 2.1: Local and Global Optimas.

2.2.1 Basic Local Search

Basic Local Search [1, 29], which is called hill climbing or iterative improvement is a simple
optimization method based on trial and error.
A typical Basic Local Search processes is shown in Algorithm 1. First of all an initial feasible
solution x is computed. Afterwards, the process of selecting a new solution x′ from the
neighborhood N(x) of x is repeated until some termination condition is met. Usually Basic
Local Search stops after a predefined time or if no better solution within the neighborhood
can be found.
Depending on the way the neighborhood is searched it is common to distinguish between best
improvement, next improvement, and random improvement local search. Best Improvement
(Steepest Descent) Local Search does an exhaustive search on N(x) and selects the best
solution x′ ∈ N(x) while Next (or First) Improvement Local Search accepts the first solution
x′ ∈ N(x) leading to an improvement of the current solution (i. e. f(x′) < f(x)). In opposite
to those Random Improvement Local Search randomly selects a solution x′ ∈ N(x), instead
of using a deterministic predefined order.
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Algorithm 1: Basic Local Search

x← initial solution
repeat

select x′ ∈ N(x)
if f(x′) ≤ f(x) then

x← x′

until termination condition is met

The main weakness of Basic Local Search is the lack of a possibility to overcome a local
optima in order to reach better solutions or even the global optimum of a problem. Several
extensions to Basic Local Search, such as Iterated Local Search [25, 26], Simulated Annealing
[24], or Tabu Search [12] have been proposed to overcome this weakness. A good survey on
such metaheuristics can be found in [1]. However we concentrate on the method used in this
thesis, Variable Neighborhood Search.

2.2.2 Variable Neighborhood Search

Variable Neighborhood Search (VNS) [14, 15] is a metaheuristic which exploits systematically
the idea of neighborhood change to head for local optima, but as well to escape from these
valleys in oder to reach under-explored areas to find even better results.
VNS is based on the following three observations [15].

• A local optimum with respect to one neighborhood structure is not necessary a local
optimum for another.

• A global optimum is a local optimum with respect to all possible neighborhood struc-
tures.

• For many problems local optima with respect to one or several neighborhoods are rela-
tively close to each other.

The basic Variable Neighborhood Descent (VND) scheme (see Algorithm 2) which is based
on the first observation, enhances the basic local search scheme by taking more neighborhood
structures in to concept.

Algorithm 2: Variable Neighborhood Descent

repeat
l = 1
while l ≤ lmax do

find the best neighbor x′ ∈ Nl(x)
if f(x′) < f(x) then

x = x′

l = 1
else

l = l + 1

until no improvement is obtained
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The basic idea of Variable Neighborhood Search (VNS) is to enhance VND by using a shake
function to jump to a random new solution within the neighborhood (with increasing size)
of the current solution. This procedure enables the possibility to escape from local optima
and valleys containing them. Several VNS schemes, such as Reduced VNS, Basic VNS, and
General VNS [15] exists. Among these, the general VNS scheme is used through all algorithms
in this thesis, and is presented in Algorithm 3.

Algorithm 3: General Variable Neighborhood Search

repeat
k = 1
while k ≤ kmax do

generate a point x′ from the kth neighborhood Nk(x) of x // shaking
// local search by VND
l = 1
while l < lmax do

find the best neighbor x′′ ∈ Nl(x
′)

if f(x′′) < f(x′) then
x′ = x′′

l = 1
else

l = l + 1

if f(x′) < f(x) then
new so far best local optimum
x = x′

k = 1
else

k = k + 1

until termination condition is met

2.3 Integer Linear Programs

Combinatorial Optimization Problems (COP) can often be formulated in a mathematical way
as Integer Linear Programs (ILP). An ILP is defined by an objective function (2.1), linear
constraints (2.2) and constraints forcing the variables to be integral (2.4). The standard form
of an ILP is defined as follows.

minimize cx (2.1)

subject to Ax ≥ b (2.2)

x ≥ 0 (2.3)

x integral (2.4)

As solving ILPs is NP hard in general, algorithms based on Branch and Bound, Branch and
Cut, or sophisticated ILP solvers such as CPLEX, which is a state-of-the-art Mathematical
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Programming Optimizer from ILOG 1, are used to handle them.

2.4 The Minimum Spanning Tree Problem

The Minimum Spanning Tree (MST) problem is one of the best known network design prob-
lems and is defined as follows.
Consider a weighted graph G = 〈V, E, c〉 with node set V , edge set E, and edge cost function
c : E → R

+. The optimal solution to the MST problem is a cycle free, connected subgraph (a
tree) S = 〈V, T 〉 connecting all nodes of G with minimal edge costs C(T ) =

∑

(u,v)∈T c(u, v).
Minimum Spanning Trees are usually computed using one of the classical greedy algorithms
of Kruskal (see Algorithm 4) or Prim (Algorithm 5) which always compute the optimal solu-
tion. For dense graphs the algorithm of Prim, which has computational complexity O(|V |2),
is faster, while Kruskals’ algorithm, which has complexity O(|V | + |E| log |E|) is the better
choice for sparse graphs.

Algorithm 4: Kruskal-MST(G = 〈V, E〉)

S = ∅
T = ∅
i = 1
sort edges with increasing costs, i. e. c(e1) ≤ c(e2) ≤ · · · ≤ c(en)
for v ∈ V do

add v to S as a single set

while S has more than one set do
if ui and vi do not belong to the same set in S then

T = T ∪ {(ui, vi)}
union the sets containing ui and vi

i++

Algorithm 5: Prim-MST(G = 〈V, E〉)

Select an arbitrary node s ∈ V
C = {s}
T = ∅
while |C| 6= |V | do

Select an edge e = (u, v) ∈ E, u ∈ C, v ∈ V \ C with minimal weight c(e)
T = T ∪ {e}
C = C ∪ {v}

2.5 The Minimum Edge Biconnected Network Problem

The Minimum Edge Biconnected Network (MEBCN) problem which is also called the 2-Edge
connected network (2-ECN) problem or the bridge connected network problem appears in the

1 http://www.ilog.com/products/cplex/
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area of survivable network design and is defined as follows.
Consider a weighted graph G = 〈V, E, c〉 with node set V , edge set E, and edge cost function c :
E → R

+. The optimal solution to the MEBCN problem is a subgraph S = 〈V, F 〉 connecting
all nodes and containing no bridges, with minimal edge costs, i. e. C(T ) =

∑

(u,v)∈F c(u, v).
By a reduction of the MEBCN problem to the Hamilton cycle problem (a graph has a Hamilton
cycle, if and only if it has an edge biconnected spanning subgraph with |V | edges) it can be
seen easily that the MEBCN problem is NP hard [23]. Therefore an optimal solution to the
MEBCN problem cannot be computed within reasonable time, unless P=NP.
Algorithm 6 and 7 show how to efficiently determine whether a graph G = 〈V, E〉 is edge
biconnected or not, using a depth first search algorithm [34, 10], which has complexity O(|V |+
|E|). Afterwards, the nodes of the edge biconnected components of G can be identified by
having the same label I, i. e. I[v] = I[v′] if and only if v and v′ belong to the same edge
biconnected component of G. The number of edge biconnected components of a graph is
equal to the value of c− |V | after applying Algorithm 7. If c− |V | = 1 we can conclude that
the corresponding graph is edge biconnected.

Algorithm 6: Bridge(G = 〈V, E〉)

empty stacks S and B
for v ∈ V do

I[v] = 0

c = |V |
forall v ∈ V do

if I[v] = 0 then
DFSBridges(v, 0) //see Algorithm 7

Algorithm 7: DFSBridges(v, u)

S.push(v)
I[v] = |S|
B.push(I[v])
forall edges (v, w) ∈ E do

if I[w] = 0 then
DFSBridges(w, v)

else
if w 6= u then

while I[w] < top element of B do
B.pop()

if I[v] = top element of B then
B.pop()
c++
while I[v] ≤ |S| do

I[top element of S] = c
S.pop()
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2.6 Generalization of Network Design Problems

Several Network Design Problems can be generalized by partitioning the node set V into
clusters Vk, k ∈ K [5]. Even if those clusters are not necessarily disjunct, the proposed
algorithms in this thesis requires node disjunct clusters (i. e. Vi ∩ Vj = ∅, ∀i, j ∈ K, i 6= j).
A common distinction between three different types (exactly, at least, at most) of such
generalizations can be done with respect to the number of nodes that need to be in a feasible
solution of the problem.
A feasible solution of an exactly generalized problem selects exactly one vertex from each
cluster Vk (∀k = 1, . . . , r). Similar to that, the at least version requires the solution to
contain at least one node from each cluster and the at most version requires the solution to
contain at most one node from each cluster.

Typically the prefixes E-, L-, and M- are used to distinguish between the different
generalization types of the same problem (i. e. L-GMST stands for the at least version,
E-GMST for the exact version, and M-GMST for the at most version of the GMST problem).
A missing prefix usually refers to the exact generalization of the network design problem.
This notation will be used in this thesis too as only exact generalizations are considered.



3. Previous Work

3.1 Previous Work for the Generalized Minimum Spanning Tree Problem

Reich and Widmayer [33] were the first to study the Grouped Steiner Tree problem, which
is a more general variant of the GMST problem. The actual GMST problem was introduced
by Myung, Lee, and Tcha [28]. They proved that this problem is NP hard and provided
four different ILP formulations. Feremans, Labbe, and Laporte [7] added another four
formulations and did some in-depth investigation on all eight ILPs. They have shown that
among these formulations, the “Undirected Cluster Subpacking” formulation does not only
have the best linear relaxation, but is also the most compact one in the number of variables.

Pop [30] introduced the “Local-Global” formulation, which is also compact in the number of
variables. It proved in particular to be more efficient in practice, especially in combination
with a relaxation technique called the “Rooting Procedure”. Instances with up to 240 nodes
divided into 30 clusters or 160 nodes divided into 40 clusters could be solved to optimality.
Furthermore, Pop utilized the idea of his ILP formulation in a Simulated Annealing approach
in order to heuristically solve larger instances. His work also formed a basis for the design of
the neighborhoods presented for the GMST problem in this thesis.
A more complex Branch-and-Cut algorithm which features new sophisticated cuts and
detailed separation procedures has been recently presented by Feremans, Labbe, and Laporte
[8]. Nevertheless, large instances can still not be solved to optimality in practical time.

Regarding approximation algorithms, Myung, Lee, and Tcha [28] have shown the in-
approximability of the GMST problem in the sense that no approximation algorithm with
constant quality guarantee can exist unless P = NP. However, there are better results for
some special cases of the problem. Pop, Still, and Kern [31] described an approximation
algorithm for the case when the cluster size is constant. If dmax is the maximal number of
nodes per cluster, the total costs of the resulting solution are at most 2 · dmax times the
optimal solution value.
Feremans and Grigoriev [6] provided a Polynomial Time Approximation Scheme (PTAS)
for the GMST problem in case of grid clustering, i. e. the cluster assignment is based on
a k × l, k ≤ l integer grid laid on the nodes in the Euclidean plane and all nodes within
the same grid cell belong to the same cluster. The authors first presented a dynamic
programming algorithm which can solve the problem to optimality in O(l · d6k

max · 2
34k2

· k2)
time. Extending this concept by dividing the grid into O(ε) slices, each containing O(1/ε)
rows to be solved with dynamic programming and then connected together, a PTAS is
obtained that provides quality bounds of O(1 + ε).

To approach more general and larger GMST instances, various metaheuristics have
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been suggested. Ghosh [11] implemented and compared a Tabu Search with recency based
memory (TS), a Tabu Search with recency and frequency based memory (TS2), a Variable
Neighborhood Descent Search, a Reduced VNS, a VNS with Steepest Descent and a Variable
Neighborhood Decomposition Search (VNDS). For all the VNS approaches, he used 1-swap
and 2-swap neighborhoods, which exchange the used nodes within clusters. Comparing these
approaches on instances ranging from 100 to 400 nodes partitioned into up to 100 clusters,
Ghosh concluded that TS2 and VNDS perform best on average.
Golden, Raghaven, and Stanojevic [13] presented a lower bounding procedure, which basically
computes the MST on a derived complete graph G′ = 〈V ′, E′, c′〉 with v′i ∈ V ′ representing the
clusters Vi in G. The edge costs c′(v′i, v

′
j) are chosen as min{c(a, b) | (a, b) ∈ E∧a ∈ Vi∧b ∈ Vj}.

Furthermore, the authors introduced upper bounding procedures by adapting Kruskal’s,
Prim’s, and Sollin’s algorithm for the classical MST problem, as well as providing a Genetic
Algorithm (GA). The GA encodes candidate solutions by the used nodes of each cluster.
Solution reproduction is done by a simple one-point crossover and a separation operator
which generates two offsprings from one solution. Local search based on exchanging the used
nodes is also applied in addition to a simple mutation procedure which changes the used
node of a random cluster.
Hu, Leitner, and Raidl [18] proposed a VNS approach which combines two different
neighborhood types using different solution representations and working in complementary
directions which is an earlier version of the GMST part of this thesis. Finally the same
authors proposed a significant extension by adding one more neighborhood type based on
solving parts of the problems via ILP and including more extensive experimental comparisons
in [19] which reflects the GMST part of this thesis.

Concerning the L-GMST, Dror, Haouari, and Chaouachi [3] developed two ILPs, four
simple construction heuristics and a basic genetic algorithm. In [17], the same authors
presented strategies for obtaining upper bounds by means of a sophisticated construction
heuristic and a complex genetic algorithm. They also discussed three alternative ILP
formulations which provide lower bounds after relaxing them in a Lagrangian fashion. Based
on these bounds, Haouari and Chaouachi [16] developed a branch-and-bound algorithm
which could solve some instances with up to 250 nodes and 1000 edges to optimality.
Unfortunately, many of the more specific concepts behind these algorithms for the L-GMST
cannot be applied to the GMST as considered here.

Duin, Volgenanta, and Voß [4] suggested to solve the more general Group Steiner
problem (GSP) by transforming it into a classical Steiner tree Problem in Graphs (SPG) and
applying effective algorithms for this more common problem. The GSP considers a weighted
graph G = 〈V, E, c〉 with not necessarily disjunct node sets Vk ⊂ V for indices k ∈ K. In
contrast to the GMST problem, there might also exist nodes v ∈ V with v 6∈

⋃

k∈K Vk. The
objective is to find a minimum cost tree spanning at least one node of each set Vk. The
transformation to SPG constructs a graph G′ by adding for each cluster Vk an artificial
node vk and edges (vk, u), ∀u ∈ Vk with “large” costs. The Steiner tree on G′ connecting all
terminal nodes vk corresponds to a solution for the GSP on G after removing the artificial
nodes and edges. However, when applying this transformation to the GMST problem, the
resulting clusters can contain more than one used node. Therefore, this method can be used
to solve the L-GMST problem, but is not directly applicable here. It would be necessary to
consider additional constraints preventing the application of standard algorithms for SPG.
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3.2 Previous Work for the Generalized Minimum Edge Biconnected Network

Problem

Not much research has been done on the GMEBCN problem so far. Feremans [5] described
the problem and several real world application to it while Huygens [20] studied the polytypes
of both the exact and the at least formulation of the GMEBCN problem.
Other than that, no research has been done on this problem.



4. Variable Neighborhood Search for the GMST

Problem

In this chapter, the new VNS approach for the GMST problem will be described in detail.
First, two constructive heuristics to produce initial solutions are considered. Chapter 4.2 de-
scribes the used neighborhoods and the search techniques applied to them, while Chapter 4.3
provides the details of their arrangement within the Variable Neighborhood Descent (VND).
Finally, Chapter 4.4 describes the shaking procedure, and Chapter 4.5 explains a memory
function to substantially reduce the number of evaluations for the same solutions.

4.1 Initialization

To compute an initial feasible solution for the GMST problem, either a specialized heuristic
or an adaption of a standard algorithm for the classical MST problem can be used. Golden,
Raghavan, and Stanojevic [13] give a comparison between three simple and three improved
adaptions of Kruskal’s, Prim’s and Sollin’s MST algorithms for the GMST problem. While all
three improved adaptions produce comparable results, the variant based on Sollin’s algorithm
in general has the highest computational effort. Therefore the improved version based on
Kruskal’s MST heuristic is adopted for initialization and will be compare to the rather simple
minimum distance heuristic which was also used by Ghosh [11] to generate initial solutions.

4.1.1 Minimum Distance Heuristic

The Minimum Distance Heuristic (MDH) for computing a feasible initial solution for the
GMST problem is shown in Algorithm 8. For each cluster, the node with the lowest sum of
edge costs to all nodes in other clusters is used and a MST is calculated on these nodes. Using
Krukal’s algorithm for computing the MST, the complexity of MDH is O(|V |2 + r2 log r2).

Algorithm 8: Minimum distance heuristic

for i = 1, . . . , r do
choose pi ∈ Vi with minimal

∑

v∈V \Vi

c(pi, v) as the used node

determine MST T on the used nodes P = {p1, . . . , pr}
return solution S = 〈P, T 〉



4. Variable Neighborhood Search for the GMST Problem 15

4.1.2 Improved Adaption of Kruskal’s MST Heuristic

Creating a feasible solution for the GMST by an adaption of Kruskal’s algorithm for the
classical MST problem is rather straightforward [13]. The basic idea is to consider edges in
increasing cost-order. An edge is added to the solution iff it does not introduce a cycle and
does not connect a second node of any cluster. Obviously, this adaption does not change the
time complexity of Kruskal’s original algorithm, which is O(|V |+ |E| log |E|).
By fixing an initial node to be in the resulting generalized spanning tree, different solutions
can be obtained. The Improved Adaption of Kruskal’s MST Heuristic (IKH), as it is called
by Golden, Raghavan, and Stanojevic [13], is shown in Algorithm 9 and follows this idea by
running the simple version |V | times, once for each node to be initially fixed. Due to the
fact that the sorting of edges needs to be done only once, the computational complexity is
O(|V |2 + |E| log |E|).

Algorithm 9: Improved Kruskal heuristic

for v ∈ |V | do
fix v to be in the generalized spanning tree
compute generalized spanning tree with the adaption of Kruskal’s MST algorithm

return solution with minimal costs

4.2 Neighborhoods

The implemented VNS algorithm uses three types of neighborhoods. The first two are based
on local search concepts of Ghosh [11] and Pop [30]. Ghosh represents solutions by the used
nodes and defines neighborhoods on them. Optimal edges are derived for a given selection on
nodes by determining a classical MST.
On the other hand, Pop approaches the GMST problem from the other side by representing a
solution via its “global connections” – the pairs of clusters which are directly connected. The
whole solution is obtained by a decoding function which identifies the best suited nodes and
associated edges for the given global connections. The neighborhood of a solution contains
all solutions obtained by replacing a global connection by another feasible one.
In the third neighborhood type reasonably small subgraphs of the whole instance are selected
and solved independently to optimality via an ILP formulation from Pop [30]. These solved
parts are then reconnected in a best possible way. The following chapters describe the three
neighborhood types and the ways they search in detail.

4.2.1 Node Exchange Neighborhood

In this neighborhood, which was originally proposed by Ghosh [11], a solution is represented
by the set of used nodes P = {p1, . . . , pr} where pi is the node to be connected from each
cluster Vi, i = 1, . . . , r. Knowing these nodes, there are rr−2 possible spanning trees, but one
with smallest costs can be efficiently derived by computing a classical MST on the subgraph
of G induced by the chosen nodes.
The Node Exchange Neighborhood (NEN) of a solution P consists of all node vectors (and
corresponding spanning trees) in which for precisely one cluster Vi the node pi is replaced by a
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different node p′i of the same cluster. This neighborhood therefore consists of
∑r

i=1(|Vi|−1) =
O(|V |) different node vectors representing in total O(|V | · rr−2) trees. Since a single MST
can be computed in O(r2) time, e.g. by Prim’s algorithm, a straight-forward generation and
evaluation of the whole neighborhood in order to find the best neighboring solution can be
accomplished in O(|V | · r2) time.
Using an incremental evaluation scheme, the computational effort can be reduced significantly.
The goal is to derive from a current minimum-cost tree S represented by P a new minimum-
cost tree S′ when node pi is replaced by node p′i. Removing pi and all its incident edges
from the initial tree S results in a graph consisting of k ≥ 1 connected components T1, . . . , Tk

where usually k ≪ r.
The new minimum-cost tree S′ will definitely not contain new edges within each component
T1, . . . , Tk, because they are connected in the cheapest way as they where optimal in S. New
edges are only necessary between nodes of different components and/or p′i. Furthermore, only
the shortest edges connecting any pair of components must be considered. So, the edges of
S′ must be a subset of

• the edges of S after removing pi and its incident edges,
• all edges (p′i, pj) with j = 1, . . . , r ∧ j 6= i, and
• the shortest edges between any pair of the components T1, . . . , Tk.

To compute S′, we therefore have to calculate the MST of a graph with (r−k−1)+(r−1)+
(k2 − k)/2 = O(r + k2) edges only. Unfortunately, this does not change the worst case time
complexity, because identifying the shortest edges between any pair of components may need
O(r2) operations. However, in most practical cases it is substantially faster to compute these
shortest edges and to apply Kruskal’s MST algorithm on the resulting thin graph. Especially
when replacing a leaf node of the initial tree S, results in only a single component plus the
new node and the incremental evaluation’s benefits are largest.

Exchanging More Than One Node

The above neighborhood can be easily generalized by simultaneously replacing t ≥ 2 nodes.
The computational complexity of a complete evaluation raises to O(|V |t · r2). While an
incremental computation is still possible in a similar way as described above, the complete
evaluation of the neighborhood becomes nevertheless impracticable for larger instances even
when t = 2. Therefore a Restricted Two Nodes Exchange Neighborhood (RNEN2) is used
in which only pairs of clusters that are adjacent in the current solution S are simultaneously
considered. In this way, the time complexity for a complete evaluation is only O(|V | · r2).
Nevertheless, RNEN2 is in practice still a relatively expensive neighborhood. Since its com-
plete evaluation consumes too much time in case of large instances, its exploration is aborted
after a certain time limit returning the so-far best neighbor instead of following a strict best-
neighbor strategy.

4.2.2 Global Edge Exchange Neighborhood

Inspired by Pop’s local-global ILP and his Simulated Annealing approach [30], the Global
Edge Exchange Neighborhood (GEEN) is defined on a so-called “global graph”. This graph
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V1 V2

V3

V4

V5

Fig. 4.1: A global graph Gg.

Gg = 〈V g, Eg〉 consists of nodes corresponding to the clusters in G, i .e. V g = {V1, V2, . . . , Vr},
and edge set Eg = V g × V g, see Figure 4.1.
Consider a spanning tree Sg = 〈V g, T g〉 with T g ⊆ Eg on this global graph. This tree
represents the set of all feasible generalized spanning trees on G which contain for each edge
(Va, Vb) ∈ T g a corresponding edge (u, v) ∈ E with u ∈ Va∧v ∈ Vb∧a 6= b. Such a set of trees
on G that a particular global spanning tree represents is in general exponentially large with
respect to the number of nodes. However, dynamic programming can be used to efficiently
determine a minimum cost solution from this set. In this process, the global spanning tree is
rooted at an arbitrary cluster Vroot ∈ V g and all edges are directed towards the leafs. This tree
is traversed in a recursive depth-first way calculating for each cluster Vk ∈ V g and each node
v ∈ Vk the minimum costs for the subtree rooted in Vk when v is the node to be connected
from Vk. These minimum costs of a subtree are determined by the following recursion:

C(T g, Vk, v) =







0 if Vk is a leaf of the global spanning tree
∑

Vl∈Succ(Vk)

min
u∈Vl

{c(v, u) + C(T g, Vl, u)} else,

where Succ(Vk) denotes the set of all successors of Vk in T g. After having determined the
minimum costs for the whole tree, the nodes to be used can be easily derived in a top-down
fashion by fixing for each cluster Vk ∈ V g the node pk ∈ Vk yielding the minimum costs. This
dynamic programming algorithm requires in the worst case O(|V |2) time and is illustrated in
Figure 4.2.
As Global Edge Exchange Neighborhood (GEEN) for a given global tree T g, any feasible
spanning tree differing from T g by precisely one edge is considered. If the best neighbor is
determined by evaluating all possibilities of exchanging a global edge and naively perform the
whole dynamic programming for each global candidate tree, the time complexity is O(|V |2·r2).
For a more efficient evaluation of all neighbors, the whole dynamic programming is performed
only once at the beginning, keep all costs C(T g, Vk, v),∀k = 1, . . . , r, v ∈ Vk, and incremen-
tally update our data for each considered move. According to the recursive definition of the
dynamic programming approach, we only need to recalculate the values of a cluster Vi if it
gets a new child, loses a child, or the costs of a successor change.
Moving to a solution in this neighborhood means to exchange a single global connection
(Va, Vb) by a different connection (Vc, Vd) so that the resulting graph remains a valid tree, see
Figure 4.3. By removing (Va, Vb), the subtree rooted at Vb is disconnected, hence Va loses a
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C(T g, V1, a) = 0
C(T g, V1, b) = 0

C(T g, V2, c) = 0
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C(T g, V3, e) = 4
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Fig. 4.2: Determining the minimum-cost values for each cluster and node. The tree’s total

minimum costs are C(T g, Vroot, h) = 6, and the finally selected nodes are printed

bold.

child and Va, as well as all its predecessors, must be updated. Before adding (Vc, Vd), one
first needs to consider the isolated subtree. If Vd 6= Vb, the subtree at cluster Vd has to be re-
rooted first. Thereby, the old root Vb loses a child. All other clusters which get new children
or lose children are on the path from Vb up to Vd, and they must be reevaluated. Otherwise,
if Vd = Vb, nothing changes within the subtree. When adding the connection (Vc, Vd), Vc gets
a new successor and therefore must be updated together with all its predecessors on the path
up to the root. In conclusion, whenever we replace a global connection (Va, Vb) by (Vc, Vd), it
is enough to update the costs of Va, Vb, and all their predecessors on the ways up to the root
of the new global tree.
If the tree is not degenerated, its height is O(log r), and one only need to update O(log r)
clusters of Gg. Suppose each of them contains no more than dmax nodes and has at most smax

successors. The time complexity of updating the costs of a single cluster Vi is O(d2
max · smax)

and the whole process needs time that is bounded by O(d2
max · smax · log r). The incremental

evaluation is therefore much faster than the complete evaluation with its time complexity of
O(|V |2) as long as the trees are not degenerated. An additional improvement is to further
avoid unnecessary update calculations by checking if an update actually changes costs of a
cluster. If this is not the case, the update of the cluster’s predecessors may be omitted as
long as they are not affected in some other way.
To examine the whole neighborhood of a current solution by using the improved method
described above, it is a good idea to choose a processing order that supports incremental
evaluation as well as possible. Algorithm 10 shows how this is done in detail.
Removing an edge (Vi, Vj) splits the rooted tree into two components: Kg

1 containing Vi and
Kg

2 containing Vj . The algorithm iterates through all clusters Vk ∈ Kg
1 and makes them root.

Each of these clusters is iteratively connected to every cluster of Kg
2 in the inner loop. The

advantage of this calculation order is that none of the clusters in Kg
1 except its root Vk has
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Vroot

Va

VbVc

Vd

Vroot

Va

Vc

Vb

Vd

Fig. 4.3: After removing (Va, Vb) and inserting (Vc, Vd), only the clusters on the paths from

Va to Vroot and Vb to Vroot must be reconsidered.

Algorithm 10: Global edge exchange (solution S)

forall global edges (Vi, Vj) ∈ T g do
remove (Vi, Vj)
M1 = preorder list of clusters in component Kg

1 containing Vi

M2 = preorder list of clusters in component Kg
2 containing Vj

forall Vk ∈M1 do
root Kg

1 at Vk

forall Vl ∈M2 do
root Kg

2 at Vl

add (Vk, Vl)
use incremental dynamic programming to determine the complete solution

and the objective value
if current solution better than best then

save current solution as best
remove (Vk, Vl)

restore and return best solution

to be updated more than once, because global edges are only added between the roots of Kg
1

and Kg
2 . Processing the clusters in preorder has another additional benefit: Typically, most

of the time very few clusters have to be updated when re-rooting either Kg
1 or Kg

2 .

4.2.3 Global Subtree Optimization Neighborhood

This neighborhood follows the idea of selecting subproblems of reasonable size, solving them
to provable optimality via ILP and merging the results to an overall solution as well as
possible. The current GMST S = 〈P, T 〉 is considered with its corresponding global spanning
tree Sg = 〈V g, T g〉 defined on the global graph Gg as described in Chapter 4.2.2, i. e. for each
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edge (u, v) ∈ T with u ∈ Vi∧v ∈ Vj , there exists a global edge (Vi, Vj) ∈ T g. After rooting Sg

at an randomly chosen cluster Vroot, a depth-first search to determine all subtrees Q1, . . . , Qk

containing at least Nmin and no more than Nmax clusters is performed. Figure 4.4 shows an
example for this subtree selection mechanism with Nmin = 3 and Nmax = 4 with its resulting
subtrees Q1, . . . , Q4 rooted at V1, . . . , V4.

Vroot

V1

V2

V3

V4

Q1

Q2

Q3

Q4

Fig. 4.4: Selection of subtrees to be optimized via ILP.

Moving to a solution in the Global Subtree Optimization Neighborhood (GSON) means to
optimize one subtree Qi as an independent GMST problem on the restricted graph induced
by the clusters and nodes of Qi. After solving this subproblem via ILP, the new subtree is
reconnected to the remainder of the current overall tree in the best possible way. This can
be achieved by considering all possible global edges that connect both components, which
is similar as in GEEN. Algorithm 11 summarizes the evaluation of this neighborhood in
pseudo-code.

Algorithm 11: Global exact subtree (solution S)

V1, . . . , Vk = roots of the subtrees Q1, . . . , Qk containing at least Nmin and
no more than Nmax clusters

forall i = 1, . . . , k do
remove the edge (parent of Vi, Vi) // separate subtree Qi from S
optimize Qi via ILP
reconnect Qi to S in a best possible way // as GEEN reconnection mechanism
if current solution better than best then

save current solution as best
restore initial solution

restore and return best solution

Whether or not to also consider contained subtrees as Q2 in addition to Q1 in Figure 4.4 was
a difficult question while designing GSON. In general, if Qi contains Qj , it is not guaranteed
that optimizing and reconnecting Qi would always yield a better result than optimizing and
reconnecting only the smaller subtree Qj . This is possible in particular if the connection
between Qi’s root cluster Vi and its predecessor is cheap, but Qj fits better at a different
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location. So it has been decided to include contained subtrees. If Nmin and Nmax are close,
the additional computational effort caused by contained subtrees is relatively low.
The computational complexity of GSON is hard to determine due to the optimization proce-
dure via ILP. If overlapping subtrees are not allowed, the number of subtrees to be considered
is bounded below by 0 and above by ⌊ r

Nmin
⌋. In our case, of allowing contained subtrees, the

number of subtrees to be optimized can be as large as ⌊ r
Nmax

·(Nmax−Nmin+1)⌋. Experiments
showed, that choosing Nmin = 5 and Nmax = 6 produced in general the best results.

Local-Global ILP Formulation

In order to solve the subproblems on restricted sets of clusters to optimality, GSON utilizes
Pop’s local-global ILP formulation [30], which turned out to be more efficient than other
formulations when using a general purpose ILP solver as CPLEX. This formulation is based
on the fact that for each cluster Vk, k = 1, . . . , r, there must be a directed global path from
Vk to each other cluster Vj , j 6= k. For each k, these paths together form a directed tree
rooted at Vk. The following binary variables are used.

yij =

{

1 if cluster Vi is connected to cluster Vj in the global graph

0 otherwise

∀i, j = 1, . . . , r,
i 6= j

λkij =











1 if cluster Vj is the parent of cluster Vi when we root the

tree at cluster Vk

0 otherwise

∀i, j, k = 1, . . . , r,
i 6= j, i 6= k

xe =

{

1 if the edge (u, v) ∈ E is included in the solution

0 otherwise
∀e = (u, v) ∈ E

zv =

{

1 if the node v is connected in the solution

0 otherwise
∀v ∈ V

Pop could prove that if the binary incidence matrix y describes a spanning tree of the global
graph, then the local solution is integral. Therefore it is sufficient to only force y to be integral
in the following local-global ILP formulation.
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minimize
∑

e∈E

cexe (4.1)

subject to
∑

v∈Vk

zv = 1 ∀k = 1, . . . , r (4.2)

∑

e∈E

xe = r − 1 (4.3)

∑

u∈Vi,v∈Vj

xuv = yij ∀i, j = 1, . . . , r, i 6= j (4.4)

∑

u∈Vi

xuv ≤ zv ∀i = 1, . . . , r, ∀v ∈ V \Vi (4.5)

yij = λkij + λkji ∀i, j, k = 1, . . . , r, i 6= j, i 6= k (4.6)
∑

j∈{1,...,r}\{i}

λkij = 1 ∀i, k = 1, . . . , r, i 6= k (4.7)

λkij ≥ 0 ∀i, j, k = 1, . . . , r, i 6= j, i 6= k (4.8)

xe, zv ≥ 0 ∀e = (i, j) ∈ E, ∀v ∈ V (4.9)

ylr ∈ {0, 1} (4.10)

Constraints (4.2) guarantee that only one node is selected per cluster. Equality (4.3) forces
the solution to contain exactly r − 1 edges while constraints (4.4) allow them only between
nodes of clusters which are connected in the global graph. Inequalities (4.5) ensure that edges
only connect nodes which are selected. Constraints (4.6) and (4.7) force the global graph to
be a directed spanning tree: Equalities (4.6) ensure that a global edge (i, j) is selected iff i
is the parent of j or j is the parent of i in the tree rooted at k. Constraints (4.7) guarantee
that every cluster except the root k has exactly one parent.

Alternative Neighborhoods

When designing GSON several other possible neighborhoods that combine the concepts of
global graph and exact ILP formulations have been considered. One possible adaption of
GSON would be to solve all subtrees of a limited size exactly first and then iterate through a
neighborhood structure which examines all variations of reconnecting these parts. As the num-
ber of possibilities for these reconnections is exponential, the exhaustive exploration turned
out to be too expensive in practice.
Another idea for enhancing GSON is to select the clusters inducing a subproblem to be solved
exactly not just from the subtrees connected via a single edge to the remaining tree, but from
any connected subcomponent of limited size. However, the number of such components is
in general too large for a complete enumeration. A practical possibility is to consider the
restricted set formed by choosing each cluster as root exactly once and adding Nmax − 1
further clusters identified via breadth first search. The motivation behind is that it might
be more meaningful to consider components of the current global tree where the clusters are
close to each other. Unfortunately, the performed experiments indicated that the gain of this
variant of GSON could not cover its high computational costs.
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4.3 Arrangement of the Neighborhoods

Our approach uses the general VNS scheme with VND as local improvement [14, 15]. In
VND, an alternation between NEN, GEEN, RNEN2, and GSON is performed in this order, see
Algorithm 12. This sequence has been determined according to the computational complexity
of evaluating the neighborhoods.

Algorithm 12: VND (solution S = 〈P, T 〉)

l = 1
repeat

switch l do
case 1: // NEN

for i = 1, . . . , r do
forall v ∈ Vi \ pi do

change used node pi of cluster Vi to v
recalculate the MST T by means of Kruskal’s algorithm
if current solution better than best then

save current solution as best

restore best solution
case 2: // GEEN

Global edge exchange (S) //see Algorithm 10

case 3: // RNEN2
forall clusters Vi and Vj adjacent in the current solution do

forall v ∈ Vi \ pi and u ∈ Vj \ pj do
change used node pi of cluster Vi to v
change used node pj of cluster Vj to u
recalculate the MST T by means of Kruskal’s algorithm
if current solution better than best then

save current solution as best

restore best solution
case 4: // GSON

Global exact subtree (S) //see Algorithm 11

if solution improved then
l = 1

else
l = l + 1

until l > 4

4.4 Shaking

It turned out that using a shaking function which puts more emphasis on diversity yields good
results for our approach, see Algorithm 13. This shaking process uses both, the NEN and the
GEEN structures. For NEN, the number of random moves for shaking starts at three because
a restricted 2-Opt NEN improvement is already included in the VND; thus, shaking in NEN
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with smaller values would mostly lead to the same local optimum as reached before. Shaking
in GEEN starts with two random moves for the same reason. The number k of random moves
increases in steps of two up to ⌊ r

2⌋.

Algorithm 13: Shake (solution S = 〈P, T 〉, size k)

for i = 1, . . . , k + 1 do
randomly change the used node pi of a random cluster Vi

recalculate the MST T and derive T g

for i = 1, . . . , k do
remove a randomly chosen global edge e ∈ T g yielding components Kg

1 and Kg
2

insert a randomly chosen global edge e′ connecting Kg
1 and Kg

2 with e′ 6= e
recalculate the used nodes p1, . . . , pr by dynamic programming

4.5 Memory Function

There is a common situation where VNS unnecessarily spends much time on iterating through
all neighborhoods. Suppose, a local optimum reached by VND is a dead end for all neigh-
borhoods and VNS uses shaking to escape from it. Sometimes, applying VND on the new
solution soon leads to the same local optimum. Nevertheless, VND spends much time on
iterating through all remaining neighborhoods again.
To avoid this situation a hash memory is used. Each deterministic neighborhood keeps a
hash value for the best solution obtained so far. Before VND tries to improve a solution, it
compares the current and the memorized hash values first. The computation is skipped if
these values are identical, i. e. the solution cannot be improved by this neighborhood. This
simple concept turned out to save much time in practice.



5. Computational Results for the GMST Problem

In the following, first a detailed description on the test instances used for testing the ap-
proaches for both problems is presented, followed by a summary for an experimental compar-
ison of the two constructive heuristics described in Chapter 4.1, which are considered for the
creation of initial solutions for the VNS. The computational results of the VNS approach on
the different test data sets follow in Chapter 5.3. Finally, Chapter 5.4 analyzes the individual
contributions of the different neighborhoods within the VND.
All experiments were performed on a Pentium 4, 2.8GHz PC with 2GB RAM using CPLEX
9.03 to solve the ILP subproblems within GSON.

5.1 Test Instances

Testing has been done on instances used by Ghosh [11], some further large instances of the
same types but with more nodes per cluster created by myself, and most of the large Euclidean
TSPlib1 instances with geographical clustering [5].
Ghosh [11] created so called grouped Euclidean instances. In this type of instances, squares
with side length span are associated to clusters and are regularly laid out on a grid of size
col× row as shown in Figure 5.1. The nodes of each cluster are randomly distributed within
the corresponding square. By changing the ratio between cluster separation sep and cluster
span span, it is possible to generate instances with clusters that are overlapping or widely
separated. The second type are so called random Euclidean instances where nodes of the
same cluster are not necessarily close to each other. Such instances are created by simply
scattering the nodes randomly within a square of size 1000 × 1000 and making the cluster
assignment independently at random. Finally, non-Euclidean random instances are generated
by choosing all edge costs randomly from the integer interval [0, 1000]. All graphs are fully
connected. The complete benchmark set used for testing contains instances with up to 1280
nodes, 818560 edges, and 64 clusters; details are listed in Table 5.1. For each type and size,
three different instances are considered. The values in the columns denote names of the sets,
numbers of nodes, numbers of edges, numbers of clusters and numbers of nodes per cluster.
In case of grouped Euclidean instances, numbers of columns and rows of the grid, as well as
the cluster separation and cluster span values are additionally given.
Applying geographical clustering [9] on the TSPlib instances is done as follows. First, r
center nodes are chosen to be located as far as possible from each other. This is achieved
by selecting the first center randomly, the second center as the farthest node from the first
center, the third center as the farthest node from the set of the first two centers, and so on.
Then, the clustering is done by assigning each of the remaining nodes to its nearest center
node. The largest of such TSPlib instances with up to 442 nodes, 97461 edges, and 89 clusters
are considered; details are listed in Table 5.1. The values in the columns denote names of

1 http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html
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Fig. 5.1: Creation of Grouped Euclidean Instances.

Instance set |V | |E| r |V |
r

col row sep span

Grouped Eucl 125 125 7750 25 5 5 5 10 10

Grouped Eucl 500 500 124750 100 5 10 10 10 10

Grouped Eucl 600 600 179700 20 30 5 4 10 10

Grouped Eucl 1280 1280 818560 64 20 8 8 10 10

Random Eucl 250 250 31125 50 5 - - - -

Random Eucl 400 400 79800 20 20 - - - -

Random Eucl 600 600 179700 20 30 - - - -

Non-Eucl 200 200 19900 20 10 - - - -

Non-Eucl 500 500 124750 100 5 - - - -

Non-Eucl 600 600 179700 20 30 - - - -

Tab. 5.1: Benchmark instance sets adopted from Ghosh [11] and extended with new sets.

Each instance has a constant number of nodes per cluster.

the instances, numbers of nodes, numbers of edges, numbers of clusters, and the average,
minimal, and maximal numbers of nodes per cluster.



5. Computational Results for the GMST Problem 27

Instance name |V | |E| r |V |
r

dmin dmax

gr137 137 9316 28 5 1 12

kroa150 150 11175 30 5 1 10

d198 198 19503 40 5 1 15

krob200 200 19900 40 5 1 8

gr202 202 20301 41 5 1 16

ts225 225 25200 45 5 1 9

pr226 226 25425 46 5 1 16

gil262 262 34191 53 5 1 13

pr264 264 34716 54 5 1 12

pr299 299 44551 60 5 1 11

lin318 318 50403 64 5 1 14

rd400 400 79800 80 5 1 11

fl417 417 86736 84 5 1 22

gr431 431 92665 87 5 1 62

pr439 439 96141 88 5 1 17

pcb442 442 97461 89 5 1 10

Tab. 5.2: TSPlib instances with geographical clustering [5]. Numbers of nodes vary for each

cluster.

5.2 Comparison of the Constructive Heuristics

Table 5.2 summerizes the comparison of MDH and IKH on all considered input instances. It
turned out that IKH performs consistently better than MDH on the TSPlib based, grouped
Euclidean, and non-Euclidean instances. Only on random Euclidean instances, MDH could
outperform IKH on 70% of the instances. The ratios IKH/MDH indicate the average factor
between the objective values of the solutions generated by IKH and MDH. Interestingly, the
two heuristics never obtained the same solutions or solutions of the same quality. As the
required CPU-times of both heuristics are very small (less than 80ms for the largest instances
with 1280 nodes), I decided to run both, MDH and IKH, and to choose the better result as
initial solution for VNS.
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Instance Type MDH better % IKH better % IKH/MDH

TSBlib based 0 100 0.89

Grouped Euclidean 0 100 0.85

Random Euclidean 70 30 1.36

Non-Euclidean 0 100 0.16

Tab. 5.3: Comparison of MDH and IKH.

5.3 Computational Results for the VNS

The results of the Variable Neighborhood Search (VNS) are compared to Tabu Search with re-
cency and frequency based memory (TS2) [11], Variable Neighborhood Decomposition Search
(VNDS) [11], the Simulated Annealing (SA) approach from Pop [30], and, in case of TSPlib
instances, also to the Genetic Algorithm (GA) from Golden, Raghavan, and Stanojevic [13].
While TS2 is deterministic, average results over 30 runs for VNDS and VNS and over at least
10 runs for SA (due to its long running times) are provided. For TS2, VNDS, and our VNS,
runs were terminated when a certain CPU-time limit had been reached. In contrast, SA was
run with the same cooling schedule and termination criterion as specified by Pop [30], which
led to significantly longer running times compared to the other algorithms. The results for
the GA are directly taken from Golden, Raghavan, and Stanojevic [13].
In Table 5.4 and 5.5, instance names, numbers of nodes, numbers of clusters, (average) num-
bers of nodes per cluster and the (average) objective values of the final solutions of the
different algorithms are shown. Best values are printed in bold. In case of SA and VNS, the
corresponding standard deviations are provided too. VNDS produces very stable results as
the standard deviations are always zero, except for the second instance of the set “Random
Eucl 400” where it is 0.34. For GA, standard deviations are not available as they are not
listed by Golden, Raghavan, and Stanojevic [13].
Table 5.4, compares VNS to TS2, VNDS, and SA on grouped Euclidean instances, random
Euclidean instances, and non-Euclidean instances. Additionally, relative values grouped by
the different sets are illustrated in Figure 5.2, 5.3, and 5.4 where the results of our VNS are
taken as base (100%).
The time limit was set to 600s for TS2, VNDS, and VNS. In fact, none of the tested algorithms
practically needs that much time on smaller instances to find the finally best solutions, but
Ghosh [11] used this time limit as termination criterion, so it is retained. SA required 150s
for small instances with 125 nodes and up to about 40000s for the largest instances with 1280
nodes.
When comparing the VNS approach with SA, it can be observed that VNS consistently finds
better solutions. Wilcoxon rank sum tests yield error probabilities of less than 1% for the
assumptions that the observed differences in the mean objective values are significant. Also
in comparison to VNDS, our VNS is the clear winner. There are only two instances where
VNS and VNDS obtained exactly the same mean results and one instance (the second of set
“Grouped Eucl 500”) on which VNDS performed better. In all other cases, VNS’ solutions
are superior with high statistical significance (error levels less than 1%). The results of VNS
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Fig. 5.2: Relative results on grouped euclidean instances for each set (VNS = 100%).

Fig. 5.3: Relative results on random euclidean instances for each set (VNS = 100%).

and TS2 are ambiguous. While TS2 usually produces better results on instances with few
nodes per cluster, VNS is typically superior when the number of nodes per cluster is higher.
This can in particular be observed on the instances with 30 nodes per cluster.
On grouped Euclidean instances, the objective values of the final solutions obtained by the
considered algorithms, especially those by TS2 and VNS, are relatively close. It seems that
these instances are easier to handle as the quality of the solutions are less affected by the
differences of the approaches. On random Euclidean instances, especially when the number
of nodes per cluster is higher, VNS produces substantially better results than TS2 and VNDS;
e.g. for the third instance of set “Random Eucl 600”, the solutions obtained by VNS are on
average 34.4% better than those of TS2. It can be observed too that SA, which is usually
worst, is able to outperform TS2 and VNDS on some of these instances. One can conclude
that the neighborhood type GEEN, which is also the main component of SA, is very effective
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Fig. 5.4: Relative results on non-euclidean instances for each set (VNS = 100%).

on random Euclidean instances and on instances with higher number of nodes per cluster.
On non-Euclidean instances, TS2 mostly outperforms all the other algorithms.
Table 5.5, compares our VNS to TS2, VNDS, SA, and also the GA on the TSPlib based
instances. The results for the GA are adopted from Golden, Raghavan, and Stanojevic [13],
where only smaller instances up to pr226 have been considered. The listed CPU-times were
the stopping criteria for TS2, VNDS and VNS. SA needed up to 10000s for large instances
as pcb442. The test runs indicate that our VNS outperforms VNDS and SA significantly.
Wilcoxon rank sum tests again yield error probabilities of less than 1% for the assumptions
that the observed differences in the mean objective values are significant. Judging by the few
results for GA, VNS produces results which are at least as good as those of GA. Considering
VNS and TS2, clear conclusions cannot be drawn. Most of the time, these two algorithms
generate comparable results under the same conditions. Smaller TSPlib instances are omitted
in Table 5.5 as the most capable algorithms TS2, GA and VNS were all able to (almost) always
provide optimal solutions as found by the Branch-and-Cut algorithm [8]. The latter could
solve all instances with up to 200 nodes except d198 to provable optimality in up to 5254s.
In overall, VNS and TS2 are the most powerful algorithms among all considered approaches.
Out of 46 instances that have been tested, VNS produces strictly better results in 19 cases,
TS2 is better in 17 cases, and on 10 instances, they are equally good.

5.4 Contributions of the Neighborhoods

In order to analyze how the different neighborhood searches of VNS contribute to the whole
optimization, a logging how often each one was able to improve on a current solution has
been done. Table 5.6 shows the ratios of these numbers of improvements to how often they
were called. These values are grouped by the different types of input instances. Additionally,
these values are illustrated in Figures 5.5, 5.6, and 5.7.
In general, each neighborhood search contributes substantially to the whole success. NEN
and RNEN2 are most effective in terms how often they improve on a solution, whereas the
differences in the objective values achieved by single improvements are typically larger in case
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of GEEN and GSON. Considering that GSON operates on solutions which are already local
optima with respect to all other neighborhoods, its improvement ratios are quite remarkable.

Fig. 5.5: Contributions of the neighborhoods on grouped euclidean instances.

Fig. 5.6: Contributions of the neighborhoods on random euclidean instances.

Regarding the different instance sets, it can be observed that the improvement ratio of GEEN
generally increases with the size of nodes per cluster. Furthermore, one can see that on large
grouped Euclidean instances containing 1280 nodes, GSON performs substantially better than
on other instances.
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Fig. 5.7: Contributions of the neighborhoods on non-euclidean instances.
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Instances TS2 VNDS SA VNS

Set |V | r |V |/r C(T ) C(T ) C(T ) std dev C(T ) std dev

125 25 5 141.1 141.1 152.3 0.52 141.1 0.00

Grouped Eucl 125 125 25 5 133.8 133.8 150.9 0.74 133.8 0.00

125 25 5 143.9 145.4 156.8 0.00 141.4 0.00

500 100 5 566.7 577.6 642.3 0.00 567.8 1.08

Grouped Eucl 500 500 100 5 578.7 584.3 663.3 1.39 585.7 1.02

500 100 5 581.6 588.3 666.7 1.81 584.2 1.93

600 20 30 85.2 87.5 93.9 0.00 84.6 0.00

Grouped Eucl 600 600 20 30 87.9 90.3 99.5 0.28 87.9 0.00

600 20 30 88.6 89.4 99.2 0.17 88.5 0.00

1280 64 20 327.2 329.2 365.1 0.46 316.3 2.20

Grouped Eucl 1280 1280 64 20 322.2 322.5 364.4 0.00 318.7 1.57

1280 64 20 332.1 335.5 372.0 0.00 330.8 1.70

250 50 5 2285.1 2504.9 2584.3 23.82 2318.5 39.27

Random Eucl 250 250 50 5 2183.4 2343.3 2486.7 0.00 2201.3 24.54

250 50 5 2048.4 2263.7 2305.0 16.64 2060.8 34.32

400 20 20 557.4 725.9 665.1 3.94 620.4 14.34

Random Eucl 400 400 20 20 724.3 839.0 662.1 7.85 595.3 0.00

400 20 20 604.5 762.4 643.7 14.54 588.4 6.08

600 20 30 541.6 656.1 491.8 7.83 443.5 0.00

Random Eucl 600 600 20 30 540.3 634.0 542.8 25.75 535.5 10.66

600 20 30 627.4 636.5 469.5 2.75 469.0 11.98

200 20 10 71.6 94.7 76.9 0.21 71.6 0.00

Non-Eucl 200 200 20 10 41.0 76.6 41.1 0.02 41.0 0.00

200 20 10 52.8 75.3 86.9 5.38 52.8 0.00

500 100 5 143.7 203.2 200.3 4.44 155.8 3.07

Non-Eucl 500 500 100 5 132.7 187.3 194.3 1.20 154.1 4.89

500 100 5 162.3 197.4 205.6 0.00 168.8 3.25

600 20 30 14.5 59.4 22.7 1.49 15.5 1.17

Non-Eucl 600 600 20 30 17.7 23.7 22.0 0.82 16.3 1.33

600 20 30 15.1 29.5 22.1 0.44 15.3 0.90

Tab. 5.4: Results on instance sets from [11] and correspondingly created new sets, 600s CPU-

time (except SA). Three different instances are considered for each set.
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TSPlib Instances TS2 VNDS SA GA VNS

Name |V | r time C(T ) C(T ) C(T ) std dev C(T ) C(T ) std dev

gr137 137 28 150s 329.0 330.0 352.0 0.00 329.0 329.0 0.00

kroa150 150 30 150s 9815.0 9815.0 10885.6 25.63 9815.0 9815.0 0.00

d198 198 40 300s 7062.0 7169.0 7468.73 0.83 7044.0 7044.0 0.00

krob200 200 40 300s 11245.0 11353.0 12532.0 0.00 11244.0 11244.0 0.00

gr202 202 41 300s 242.0 249.0 258.0 0.00 243.0 242.0 0.00

ts225 225 45 300s 62366.0 63139.0 67195.1 34.49 62315.0 62268.3 0.45

pr226 226 46 300s 55515.0 55515.0 56286.6 40.89 55515.0 55515.0 0.00

gil262 262 53 300s 942.0 979.0 1022.0 0.00 - 942.3 0.78

pr264 264 54 300s 21886.0 22115.0 23445.8 68.27 - 21888.6 5.03

pr299 299 60 450s 20339.0 20578.0 22989.4 11.58 - 20316.7 2.03

lin318 318 64 450s 18521.0 18533.0 20268.0 0.00 - 18513.0 11.87

rd400 400 80 600s 5943.0 6056.0 6440.8 3.40 - 5954.3 10.77

fl417 417 84 600s 7990.0 7984.0 8076.0 0.00 - 7982.0 0.00

gr431 431 87 600s 1034.0 1036.0 1080.5 0.51 - 1033.0 0.18

pr439 439 88 600s 51852.0 52104.0 55694.1 45.88 - 51868.2 47.58

pcb442 442 89 600s 19621.0 19961.0 21515.1 5.15 - 19746.2 55.26

Tab. 5.5: Results on TSPlib instances with geographical clustering, |V |
r

= 5, variable CPU-

time.
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Instance Type |V | r |V |/r NEN GEEN RNEN2 GSON

TSBlib based n.a. n.a. 5 0.55 0.44 0.67 0.18

125 25 5 0.54 0.49 0.72 0.15

500 100 5 0.55 0.41 0.76 0.16
Grouped Euclidean

600 20 30 0.58 0.54 0.74 0.23

1280 64 20 0.63 0.45 0.70 0.46

250 50 5 0.74 0.30 0.95 0.09

Random Euclidean 400 20 20 0.59 0.42 0.88 0.10

600 20 30 0.57 0.53 0.81 0.07

200 20 10 0.78 0.43 0.60 0.06

Non-Euclidean 500 100 5 0.80 0.16 0.68 0.24

600 20 30 0.79 0.49 0.56 0.09

Tab. 5.6: Relative effectivity of NEN, GEEN, RNEN2, and GSON.



6. The Generalized Minimum Edge Biconnected

Network Problem

This chapter starts with the definition of the Generalized Minimum Edge Biconnected Net-
work (GMEBCN) problem which has already been presented in Chapter 1. Afterwards,
Chapter 6.2 analyses if the effective concepts of either fixing the selected nodes or the global
edges and computing a concrete solution out of them as used for the GMST problem can be
applied in an appropriate way for the GMEBCN problem too. Unfortunately both subprob-
lems turn out to be NP hard for the GMEBCN problem. Therefore Chapter 6.3 discusses one
possible way to deal with this complexity by presenting a technique to substantially reduce
a current solution to a significant smaller graph in terms of the amount of clusters. Finally,
Chapter 6.4 provides two ILP formulations for the GMEBCN problem.

6.1 Problem Definition

The Generalized Minimum Edge Biconnected Network (GMEBCN) problem considers a
weighted complete graph G = 〈V, E, c〉 with node set V, edge set E and edge cost func-
tion c : E → R

+. The node set V is partitioned into r pairwise disjunct clusters V1, V2, . . . , Vr

containing d1, d2, . . . , dr nodes, respectively.
As introduced in Chapter 2.1, an edge biconnected network of a graph is a subgraph con-
necting all nodes and containing no bridges. Therefore a solution to the GMEBCN problem
defined on G is a subgraph S = 〈P, F 〉 with 1 ≤ i ≤ r, and F ⊆ P × P ⊆ E being an edge
biconnected graph (i. e. does not contain any bridges).
The costs of such an edge biconnected network are its total edge costs, i. e. C(F ) =
∑

(u,v)∈F c(u, v), and the objective is to identify a solution with minimum costs.

6.2 Subproblems and their Complexity

The main ideas of the neighborhoods described for the GMST problem are to either compute
the best possible MST on a fixed set of selected nodes for NEN and RNEN2 on the one hand
and to compute the best nodes to select for a fixed set of global edges on the other hand
(GEEN, GSON). As these concepts turned out to be very efficient it makes sense to apply
them on the GMEBCN problem, too. Theorem 1 starts by formally describing the obvious
fact of computing the optimal solution while fixing the selected nodes is NP hard.

Theorem 1: Given an instance G = 〈V, E, c〉 of the GMEBCN Problem. If the selected nodes
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P = {p1, . . . , pr} of a solution S = 〈P, F 〉 are fixed, then the problem of identifying the

optimal edges F ⊆ E is NP hard.

Proof Identifying the optimal edges for a given set of nodes P becomes the classical Minimum
Edge Biconnected Network (MEBCN) problem which is known to be NP hard (compare
Chapter 2.5). �

In order to discuss the remaining subproblem, we consider an edge-minimal edge-biconnected
global graph Gg

bic with fixed global edges Eg
bic. The NP hardness of the subproblem of looking

for the optimal selected nodes of each cluster yielding the minimum costs will be proved in
two steps.
First, the graph coloring problem will be reduced to the problem of finding the optimal selected
nodes of a general global graph Gg

gen which is not necessarily edge-minimal edge-biconnected.
In the second step, we transform Gg

gen into an edge-minimal edge-biconnected global graph
Gg

bic by adding artificial clusters so that finding the optimal selected nodes in Gg
bic yields the

minimum cost solution to Gg
gen.

Theorem 2: If the global edges of a global graph Gg
gen = 〈V g

gen, E
g
gen〉 are fixed, the problem of

identifying optimal selected nodes P yielding the minimum costs is NP hard.

Proof Consider the graph coloring problem on an undirected graph H = 〈U, F 〉 (Figure
6.1a). This graph is transformed into a clustered graph Gg

gen = 〈V g
gen, E

g
gen〉 by the following

procedure: Each node i ∈ U becomes a cluster Vi ∈ V g
gen and for each possible color c of i,

we introduce a node vc
i in cluster Vi (Figure 6.1b). For each edge (i, j) ∈ F , we create in the

clustered graph edges (vc
i , v

d
j ) ∀ vc

i ∈ Vi, ∀ vd
j ∈ Vj (Figure 6.1c). An edge’s costs are 1 if

c 6= d and ∞ otherwise.
If we are able to solve the problem of identifying the optimal nodes of each cluster in order
to minimize the total network costs of Gg

gen (Figure 6.1d), we also solve the original graph
coloring problem on H. Suppose vc

i is the selected node in cluster Vi, then c becomes the
color of node i ∈ U (Figure 6.1e). �

Theorem 3: If the global edges of an edge-minimal edge-biconnected global graph Gg
bic =

〈V g
bic, E

g
bic〉 are fixed, the problem of identifying optimal selected nodes of each cluster yielding

the minimum costs is NP hard.

Proof If Gg
gen = 〈V g

gen, E
g
gen〉, after the previous transformation, is not edge-minimal edge-

biconnected, Eg
gen consists of at least one redundant edge (Figure 6.2a). For each redundant

global edge e = (Vi, Vj) ∈ Eg
gen, we insert additional clusters V e

i and V e
j , which are exact copies

of Vi and Vj . The global edge (Vi, Vj) gets replaced by (Vi, V
e
i ), (V e

i , V e
j ) and (V e

j , Vj) (Figure
6.2b). Let Gg

bic = 〈V g
bic, E

g
bic〉 denote the resulting graph, which is obviously edge-minimal

edge-biconnected.
By adding the clusters V e

i and V e
j , we have to modify the local connections E as well. We

replace each edge (u, v) ∈ E | u ∈ Vi ∧ v ∈ Vj by (ue, ve) | ue ∈ V e
i ∧ ve ∈ V e

j with ue and ve

being the copies of u and v, respectively. Between Vi and V e
i , we add edges (u, ue) with costs 0
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Fig. 6.1: Transformation of Graph Coloring to GMEBCN - Part 1.

for all u ∈ Vi. The same procedure is applied for Vj and V e
j (Figure 6.2c). Let G′ = 〈V ′, E′, c〉

denote the resulting local graph of Gg
bic. Note that after this extension of polynomial size, G′

is edge-minimal edge-biconnected.
By determining the optimal selected nodes on G′ subject to the global edges of Gg

bic, we get
the optimal selected nodes on G subject to the global edges of Gg

gen by removing the artificial
clusters (Figure 6.2d). Thus, we also obtain the solution of the graph coloring problem on H
by choosing the edges F = {(u, v) ∈ E | ∃(ue, ve) ∈ F ′} with F ′ being the edge set of the
solution to the MEBCN problem on G′.
The backward transformation is valid because only one node (hence one color) is chosen per
cluster as we solve the GMEBCN problem containing exactly one node per cluster. Further-
more, the cloning process only creates edges from nodes u ∈ V to its copies ve

i ∈ V e and thus
only copies of the same node are selected in the copied clusters. �

6.3 Graph Reduction

Due to the unpleasant results regarding the complexity of the subproblems, the concept of
utilizing a global graph for defining neighborhoods cannot be adapted straightforward to the
GMEBCN problem. Nevertheless it is still possible to compute the best possible nodes for a
given global graph by additionally fixing the used nodes in a few clusters as described in this
chapter.
This so called graph reduction is based on the observation that good solutions to the GME-
BCN problem typically consist of only few clusters with high degrees and long paths of clusters
having degree two between them. As shown in Figure 6.3 the best nodes to select for such
a path between two clusters of higher degrees can be determined efficiently using either a



6. The Generalized Minimum Edge Biconnected Network Problem 39

a) global graph with one redundant edge e b) minimal edge-biconnected global graph

c) possible connections and the optimal one

1

0

0

d) backwards transformation

1

V1
V2

V3 V4

V1
V2

V3

V4

V
e

3

V
e

2

V2

V3

V
e

3

V
e

2

V2

V3

between V2 and V3 between V2 and V3

e

Fig. 6.2: Transformation of Graph Coloring to GMEBCN - Part 2.

shortest path algorithm or a dynamic programming approach similar as described for GEEN
in Chapter 4.2.2.
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Fig. 6.3: Reducing a Global Path.

Before going into the details how to reduce a graph, the concept of a global path and the
terms inner nodes and end nodes of a path have to be introduced.

Definition 7: A global path P g = 〈V g
p , Eg

p〉 of a global graph Gg = 〈V g, Eg〉 is defined by a
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subset of clusters V g
p = {V1, . . . , Vn} ⊆ V g and includes all edges of Gg between them, i. e.

Eg
p = {(u, v) ∈ Eg|u, v ∈ V g

p }, where all inner clusters have degree two, i. e. deg(Vi) = 2, (i=2,

. . . , n-1) in Gg.

As a global path is already defined by its edges, a simplified term will be used afterwards, e.

g. P = {(V1, V2), . . . , (Vn−1, Vn)} is a short notation for P = 〈VP, EP〉 with VP = {V1, . . . , Vn}

and EP = {(V1, V2), . . . , (Vn−1, Vn)}.

Definition 8: Given a path P = 〈Vp, Ep〉 with Vp = {v0, . . . , vn} and Ep =

{(v0, v1), . . . , (vn−1, vn)} with v0 6= v1 6= vn and deg(vi) = 2, ∀i = 1, . . . , n − 1. We call

v0, vn ∈ Vp the end nodes of P and v1, . . . , vn−1 ∈ Vp the inner nodes of P .

By computing the shortest paths between every pair of nodes of the end clusters of a global
edge, it is possible to replace each of these paths by a single global edge. The costs between
every pair of these nodes are the costs of the shortest paths between them.
For the edges of a given global path Eg

p = {(V1, V2), . . . , (Vn−1, Vn)}, the shortest path from
each node w ∈ V1 of the start cluster V1 to each node v ∈ Vk and Vk ∈ V g

p can be determined
by the following recursion:

Cw(P g, Vk, v) =







0 if k = 1 (Vk is the the start cluster of the global path)

min
u∈Vk−1

{c(v, u) + Cw(P g, Vk−1, u)} else.
∀w ∈ V1 (6.1)

The computation of the “Reduced Graph” or “Reduced Solution” is done by first determining
all clusters having degree greater than two in the global graph as these are the ones that will
be included in the reduced graph. Afterwards, all global paths are determined and reduced
one by one.
Several special cases may occur during this process. First of all it happens frequently that
two global paths connect the same clusters. Therefore multi-edges would occur in the re-
sulting graph. However these edges can simply be combined to a single edge by adding the
corresponding costs.
Secondly, such paths may be closed circles, i. e. V1 = Vn. A reduction of a circle using the
approach described above would lead to a single cluster with an edge to itself. As graphs
containing self loops are not considered during the algorithms, we need to avoid this situation.
Therefore, for each circle an additional cluster is included in the resulting reduced graph as
shown in Figure 6.4. Detection of these circles is done while determining all global paths
which is accomplished by a depth first search algorithm. For simplicity this algorithm adds
the last cluster it passes before reaching the start cluster (i. e. Vn−1) to the resulting reduced
graph, see Figure 6.4.

Definition 9: All clusters Vi, i = 1, . . . , r in a global graph Gg that are included in the cor-

responding reduced graph Gg
r (i. e. all clusters having deg(Vi) ≥ 3 and all clusters that are

additionally included in the case of the occurrence of circles) are called relevant clusters, while

all clusters Vi /∈ Gg
r are referred as irrelevant clusters.
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Fig. 6.4: Reducing a Simple Cycle.

Figure 6.5 shows an example how a graph is reduced. Clusters V1 and V6 have degree
higher than two, and therefore are included in the reduced graph, while all three paths
P1 = {(V1, V2), (V2, V3), (V3, V6)}, P2 = {(V1, V4), (V5, V6)}, and P3 = {(V1, V5), (V5, V6)} be-
tween them are reduced to a single global edge in the reduced graph. Assuming the circle
P4 = {(V6, V7), (V7, V8), (V8, V9), (V9, V6)} is examined in this order, V9 is included additionally
in the reduced graph.
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Fig. 6.5: Example of Reducing a Graph.

Algorithm 14 summarizes the steps for computing a reduced graph. Similar to GEEN (com-
pare Chapter 4.2.2) we save all values computed using dynamic programming which has the
benefit that decoding the reduced graph to a concrete set of used nodes for the original prob-
lem can be done without applying the whole algorithm again. Additionally these values will
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be used in intelligent enumeration strategies that update the objective value in an incremental
way for two neighborhoods based on graph reduction which will be presented in Chapter 7.3.

Algorithm 14: Compute Reduced Graph(solution S)

Gg = 〈V g, Eg〉 is the global graph of S = 〈P, F 〉
Eg

red = ∅
V g

red = set of all clusters in Gg with deg(V g
r ) ≥ 3

forall global paths P g = {(V1, V2), . . . , (Vn−1, Vn)} in Gg do
if V1 = Vn then

// P g is a circle
P g = P g \ {(Vn−1, Vn)}
V g

red = V g
red ∪ {Vn−1}

Eg
red = Eg

red ∪ {(Vn−1, Vn)}

else
if (V1, Vn) /∈ Eg

red then
Eg

red = Eg
red ∪ {(V1, Vn)}

calculate costs of reduced path P g

reduced global graph Gg
red = 〈V g

red, E
g
red〉

// generate corresponding “local” reduced graph Gred = 〈Vred, Ered〉
Vred = {v ∈ Vred|Vred ∈ V g}
Ered = ∅
forall edges (Vi, Vj) ∈ Eg

red do
forall v ∈ Vi do

forall w ∈ Vj do
Ered = Ered ∪ {(v, w)}
set c(v, w) in Gred to costs of reduced path between v and w

While calculating the costs of each reduced path, Algorithm 14 considers each edge of Gg

mostly once. For each edge considered the concrete costs have to be computed with dynamic
programming using equation 6.1 whose complexity is bounded by O(d3

max) to compute the
costs for all nodes of a single cluster. Thus the first part of Algorithm 14 has computational
complexity O(|Eg|d3

max) ≤ O(r2d3
max).

Finally generating the corresponding “local” reduced graph considers each edge of the reduced
global graph Eg

red = (Vi, Vj) exactly once. For each of these edges the costs between any pair of
nodes u ∈ Vi and v ∈ Vj have to be computed, so this part has complexity of O(|Eg

red|d
2
max) =

O(r2d2
max). Hence the overall complexity of Algorithm 14 is in O(r2d3

max) in the worst case.
However, as typical solutions to the GMEBCN problem consists of much fewer edges, the
computation of a reduced graph should perform substantial faster for practical instances. If
|Eg| = O(r) the complexity reduces to O(rd3

max).

6.4 Exact Methods for the GMEBCN problem

Survivable network design problems are often formulated either as cut formulations or using
multi-commodity flow based formulations [27]. They will be utilized in this chapter as well
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to describe the GMEBCN problem.
Cut based formulations for the minimum edge biconnected network problem are based on the
observation that the minimum cut in such a network contains at least two edges.
In order to extend a cutset formulation for the MEBCN problem [22] to the GMEBCN
problem, the following binary variables are used.

xe =

{

1 if the edge (u, v) ∈ E is included in the solution

0 otherwise
∀e = (u, v) ∈ E

zv =

{

1 if the node v is connected in the solution

0 otherwise
∀v ∈ V

Using these variables and the cutset δ(S) as defined in Chapter 2.1 the GMEBCN problem
can be formulated as in the following generalized cutset formulation where inequality (6.4)
ensures that the minimal cut between any two selected nodes consists of at least two edges.

minimize
∑

e∈E

cexe (6.2)

subject to
∑

v∈Vk

zv = 1 ∀k = 1, . . . , r (6.3)

x(δ(S)) ≥ 2(zi + zj − 1) ∀i ∈ S, j /∈ S, ∅ ⊂ S ⊂ V (6.4)

xe ∈ {0, 1} (6.5)

zv ∈ {0, 1} (6.6)

Due to the similar structure it seems reasonable to describe the GMEBCN problem by adapt-
ing the “Local-Global” formulation for the GMST as introduced by Pop [30]. Once the global
polytype for the GMEBCN problem is described, all constraints to compute the cheapest
possible local solution for a given global solution can be adopted.
For formulating the local global multicommodity based formulation the following binary vari-
ables are used in addtion to the ones defined before.

yij =

{

1 if cluster Vi is connected to cluster Vj in the global graph

0 otherwise

∀i, j = 1, . . . , r,
i 6= j

fk
ij =

{

1 if a flow f of commodity k exists on the directed edge (i, j)

0 otherwise

∀i, j = 1, . . . , r,
∀k = 2, . . . , r

gk
ij =

{

1 if a flow g of commodity k exists on the directed edge (i, j)

0 otherwise

∀i, j = 1, . . . , r,
∀k = 2, . . . , r
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minimize
∑

e∈E

cexe (6.7)

subject to
∑

v∈Vk

zv = 1 ∀k = 1, . . . , r (6.8)

∑

u∈Vi,v∈Vj

xuv = yij ∀i, j = 1, . . . , r, i 6= j (6.9)

∑

u∈Vi

xuv ≤ zv ∀i = 1, . . . , r, ∀v ∈ V \ Vi (6.10)

∑

i

fk
i,j −

∑

l

fk
j,l =











−1 if j = 1

1 if j = k

0 else

∀k = 2, . . . , r, ∀j = 1, . . . , r (6.11)

∑

i

gk
i,j −

∑

l

gk
j,l =











−1 if j = 1

1 if j = k

0 else

∀k = 2, . . . , r, ∀j = 1, . . . , r (6.12)

yi,j ≥ fk
i,j ∀i, j = 1, . . . , r, ∀k = 2, . . . , r (6.13)

yi,j ≥ gk
i,j ∀i, j = 1, . . . , r, ∀k = 2, . . . , r (6.14)

fk
i,j + fk

j,i ≤ 1 ∀i, j = 1, . . . , r, ∀k = 2, . . . , r (6.15)

gk
i,j + gk

j,i ≤ 1 ∀i, j = 1, . . . , r, ∀k = 2, . . . , r (6.16)

fk
i,j + gk

i,j ≤ 1 ∀i, j = 1, . . . , r, ∀k = 2, . . . , r (6.17)

fk
i,j + gk

j,i ≤ 1 ∀i, j = 1, . . . , r, ∀k = 2, . . . , r (6.18)

xe, zv ≥ 0, ∀e = (i, j) ∈ E, ∀v ∈ V (6.19)

fk
i,j ≥ 0, gk

i,j ≥ 0 1 ≤ k, i, j ≤ r (6.20)

ylr ∈ {0, 1} (6.21)

This formulation is based on sending two different types of flows (f, g) from a single source
V1 to every other cluster. Flows dedicated to different clusters are distinguished by their
commodity k, i. e. fk

i,j will be consumed by cluster Vk.
Therefore conditions 6.11 and 6.12 ensure that one unit of both flows is produced by V1,
preserved by every cluster they are not dedicated for, and consumed by the one having a
cluster number equal to the corresponding commodity k. To ensure edge biconnectivity, the
circulation of two flows of the same commodity on a single edge must be prohibited. As flows
are directed, the circulation of these must be additionally forbidden for the opposite directions
of a single edge (i. e. fk

i,j = 1 and fk
j,i = 1 is not allowed). This is achieved by inequalities 6.15,

6.16, 6.17, and 6.18. To describe a global edge biconnected network, each global edge must be
included in the solution, where at least one flow circulates, which is ensured by inequalities
6.13 and 6.14.
Finally constraint 6.8 guarantees that only one node is selected per cluster, equality 6.9
allows local edges only between nodes of clusters which are connected in the global graph,
and inequality 6.10 ensures that edges only connect nodes which are selected.



7. Variable Neighborhood Search for the GMEBCN

Problem

In this chapter, two new VNS approaches for the GMEBCN problem will be described in
detail. First, Chapter 7.1 presents a constructive heuristic to produce initial solutions, which
is followed by Chapter 7.2 describing four different neighborhoods as well as the search tech-
niques applied to them that try to bypass the high complexity of the GMEBCN problem
compare Chapter 6.2). Following the ideas of these fundamental neighborhoods, Chapter 7.3
describes two additional neighborhoods that take advantage of the graph reduction technique
described in Chapter 6.3. Afterwards, the concrete arrangement of the neighborhoods for
both VNS approaches is described in Chapter 7.4. Finally, Chapter 7.5 describes the shaking
procedure, and Chapter 7.6 explains a memory function similar to the one used for the GMST
problem.

7.1 Initialization

As no previous research has been done on the GMEBCN problem using heuristic methods
(compare Chapter 3.2), no algorithm for computing a feasible solution to the GMEBCN
problem has been described yet. It is not possible to extend an algorithm for the classical
MEBCN problem to solve the GMEBCN problem due to the high complexity of the classical
MEBCN problem compared to the classical MST problem. Therefore a specialized construc-
tion heuristic based on combining the ideas of the Improved Kruskal Heuristic (IKH) as used
to generated feasible solutions to the GMST problem (see Algorithm 9) with the well known
Christofides Heuristic for the Traveling Salesperson Problem (TSP) has been developed. This
“Adapted Christofides Heuristic (ACH)” which is shown in Algorithm 15 starts with com-
puting an initial GMST G = 〈V, E〉 using IKH (see Algorithm 9).

Algorithm 15: Adapted Christofides Heuristic

G = 〈V, E〉 = feasible GMST computed with IKH //see Algorithm 9
S = set of all nodes in G having odd degree
EM = set of edges in a greedy matching of S //see Algorithm 16
G = 〈V, E ∪ EM〉
compute edge biconnected components of G //see Algorithm 6
if G has more than one edge biconnected components then

add cheapest edges between all pairs of edge biconnected components

optimize solution //see Algorithm 17
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Similar to the Christofides Heuristic for the TSP, ACH determines all nodes having odd degree.
As the number of nodes having odd degree is even for every graph, a perfect matching on
those nodes always exists. However for ACH, which augments the edges of G with a perfect
matching, we must prevent including edges that are also part of G. As ACH generates a
matching in a greedy way (shown in Algorithm 16) with respect to the edge costs, it might
fail to find a perfect matching. To ensure edge biconnectivity in this seldom case, ACH
determines the edge biconnected components of G after augmenting it with the matching
edges using Algorithm 6 and adds the cheapest possible edges between any two of these
components. As the resulting graph is not necessarily edge minimal, a greedy optimization
process (see Algorithm 17) is attached afterwards to eliminate the redundant edges.

Algorithm 16: compute matching (GMST G = 〈V, E〉)

EM = ∅
Vo = {v ∈ V |deg(v) is odd}
Eo = {(u, v) ∈ E|u, v ∈ Vo}
sort Eo with increasing costs, i. e. c(e1) ≤ . . . c(en)
i = 1
while Vo 6= ∅ ∧ i 6= |Eo| do

// current edge ei = (ui, vi)
if ui ∈ V ∧ vi ∈ V then

if ei /∈ E then
EM = EM ∪ {ei}
Vo = Vo \ {ui, vi}

i++
return EM

As Algorithm 16 computes a matching on a solution to the GMST which consists of r nodes,
its complexity is O(r2 log r) if all nodes have odd degree. Determining the edge biconnected
components as well as adding cheapest edges between any two of them can be done within
O(r2). Therefore only IKH and the final optimization procedure have to be considered to
determine the overall complexity of ACH.
The worst case for Algorithm 17 occurs in the very unlikely case that all nodes have degree
greater than two and O(|F |) edges can be removed without violating the edge biconnectivity
property. Under these circumstances its complexity is bounded by O(|F |(|P |+|F |)+|F |2(|P |+
|F |) = O(|F |3). As |F | ≤ r2 this estimation leads to a overall complexity of O(r6) for
Algorithm 17.
However, IKH computes a solution to the GMST problem which consists of exactly r − 1
edges and Algorithm 16 therefore adds at most ⌊ r−1

2 ⌋ edges. Obviously, even if Algorithm 16
fails to find a perfect matching, the resulting graph consists of at most two edge biconnected
components. Therefore only a single edge need to be added to ensure edge biconnectivity.
Due to these considerations the amount of edges for the initial solution S = 〈P, F 〉 passed to
Algorithm 16 is bounded by O(r), which reduces its complexity to O(r3) for the worst case
that might occur in practice.
Additionally, the set of possible removable edges can be restricted by the observation that an
edge e incident to a node v having a degree less than three can never be removed, as deg(v)
would be less than two afterwards which obviously violates the edge biconnectivity property.
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Algorithm 17: optimize (solution S = 〈P, F 〉)

R = ∅ //set of redundant edges
forall edges (u, v) ∈ F do

if deg(u) ≥ 3 ∧ deg(v) ≥ 3 then
if S′ = 〈P, F \ {(u, v)}〉 is edge biconnected then

R = R ∪ {(i, j)}

while R 6= ∅ do
(u, v) is an arbitrary edge of R
E = E \ {(u, v)}
R = R \ {(u, v)}
forall edges (u, v) ∈ R do

if deg(u) ≤ 2 ∨ deg(v) ≤ 2 then
R = R \ {(u, v)}

else
if E \ {(u, v)} is not biconnected then

R = R \ {(u, v)}

Therefore the set of removable edges will typically be small and the computation of Algorithm
17 should perform considerable faster than O(r3) in practice.
Due to these considerations, ACH has a computational complexity of O(|V |2+|E| log |E|+r3).

7.2 Neighborhoods

Similar to the GMST problem, the neighborhoods presented in this chapter try to handle
the problem from different point of views. As shown in Chapter 6.2, simply representing
a solution by either the set of used nodes P = {p1, . . . , pr} or by the set of global edges
Eg ⊆ V g × V g, V g = {V1, . . . , Vr} and finding the optimal solution S = 〈P, F 〉 according to
this information cannot be done with reasonable computational effort.
Therefore a solution to the following neighborhoods is represented by both, the set of used
nodes as well as by its edges (either local or global, depending on the concrete neighborhood).
In that way no decoding procedure is required to obtain the whole solution.

7.2.1 Simple Node Optimization Neighborhood

The Simple Node Optimization Neighborhood (SNON) tries to overcome the hardness of
selecting the best nodes P = {p1, . . . , pr} for each cluster Vi, i = 1, . . . , r for a given set of
global edges. Moving to a solution in this neighborhood means to change the used node pi

of exactly one cluster Vi to another node p′i of the same cluster. The whole solution will not
be optimized with respect to the selected edges. Therefore if I = {pj ∈ P |(pi, pj) ∈ F} is
the set of nodes incident to pi in S = 〈P, F 〉, these nodes will be incident to p′i in the new
solution S′ = 〈P ′, F ′〉 with P ′ = P \ {pi} ∪ {p

′
i}, pi, p

′
i ∈ Vi, pi 6= p′i and F ′ = F \ {(pi, p)|p ∈

I} ∪ {(p′i, p)|p ∈ I}. Figure 7.1 shows the exchange of a node in cluster V6.
Due to the fact that updating the costs after a move can be done in an incremental way,
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the whole neighborhood can be examined in O(|V |) time. Algorithm 18 illustrates the search
process in this neighborhood in detail.
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Fig. 7.1: A Node Optimization Move changing the used node of V6 from p6 to p′6.

Algorithm 18: Simple Node Optimization (solution S)

for i = 1, . . . , r do
pi = used node of cluster Vi

forall v ∈ Vi do
if v 6= pi then

change used node of cluster Vi to v
if current solution better than best then

save current solution as best
restore initial solution

restore and return best solution

7.2.2 Node Re-Arrangement Neighborhood

As for SNON this neighborhood is based on an operation that obtains the edge biconnectivity
for a given initial solution. In contrast to SNON, the Node Re-Arrangement Neighborhood
(NRAN) is focused on the arrangement of nodes instead of exchanging the used nodes of
clusters. Therefore, a neighbor solution differs from the current solution by one swap move
between exactly two nodes of different clusters, see Figure 7.2. Swapping pi and pj (pi ∈
Vi, pj ∈ Vj , i 6= j) is defined as follows.
Consider a solution S = 〈P, F 〉 and let Ii = {p ∈ P |(pi, p) ∈ F} be the set of nodes incident
to pi, and Ij = {p ∈ P |(pj , p) ∈ F} the set of nodes incident to pj in S. A move within SNON
transforms S = 〈P, F 〉 into a new solution S′ = {P, F ′} with F ′ = F \ Ii \ Ij ∪ {(pi, p)|p ∈
Ij} ∪ {pj , p)|p ∈ Ii}. In other words all edges that were incident to pi are incident to pj
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afterwards, and vice versa.
Updating the objective value for a single move means to subtract the costs of the original
edges and add the costs of the new ones, which can be done in constant time. Therefore a
complete evaluation of NRAN which is shown in Algorithm 19 can be examined in O(r2), as
there are O(r2) possible moves.
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Fig. 7.2: A Node Re-Arrangement Move, swapping p6 and p7.

Algorithm 19: Node Re-Arrangement (solution S)

for i = 1, . . . , r do
for j = i + 1, . . . , r do

swap nodes of cluster i, j
if current solution better than best then

save current solution as best
restore initial solution

restore best solution

7.2.3 Edge Augmentation Neighborhood

Instead of optimizing a given solution while not alternating the connection properties as for
SNON and NRAN, the Edge Augmentation Neighborhood (EAN) explores a wider area by
adapting the idea of the Edge Exchange Neighborhood introduced for the GMST problem in
Chapter 4.2.2.
As edge biconnectivity must be guaranteed after a move, simply exchanging an edge by
another one is not possible. Therefore EAN first augments the actual solution S = 〈P, F 〉
by adding a single edge e /∈ F to it. The resulting graph S′ = 〈P, F ∪ {e}〉 is certainly not
edge minimal, i. e. there is at least one edge that can be removed without violating the edge
biconnectivity property.
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Afterwards EAN uses the optimization procedure as introduced in Algorithm 17 to determine
the set redundant edges Er of S′ and heuristically remove as many redundant edges as possible
from Er. Needless to say, removing e has to be prevented during this optimization process
as this would directly lead to the original solution S. Using this scheme, EAN theoretically
consists of all solutions S′ that are reachable from S by adding a single edge and removing
edges afterwards, until the graph is edge minimal edge biconnected again. However, the search
process does not iterate through all these possible solutions but removes the redundant edges
heuristically instead.
In the example provided by Figure 7.3, the initial solution is augmented by e = (p4, p5) which
leads to S′ where at least one edge out of Er = {(p2, p4), (p3, p4), (p3, p5), (p4, p5)} can be
removed. During the optimization process, (p2, p4) and (p3, p5) are removed which results in
a probably better solution S′′.
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Fig. 7.3: An Edge Augmentation Move, adding (p4, p5) and removing the redundant edges

(p2, p4) and (p3, p5).

As it turned out that a considerable amount of augmenting edges e ends in a graph where
only e itself is removable, it is crucial for the efficiency of EAN to determine as many of these
cases as possible in advance.

Theorem 4: Let S = 〈P, F 〉 be an edge biconnected graph which is edge minimal (i. e.

no edges can be removed without violating the edge biconnectivity property) and Fp =

{(v0, v1), (v1, v2), . . . , (vn−1, vn)}, Fp ⊆ F be a path in S (n ≥ 2) with disjunct inner nodes

(i. e. v1 6= v2 6= · · · 6= vn−1) and for which the condition deg(vi) = 2 holds for all inner nodes

vi, i = 1, . . . , n− 1 (see Definition 8).

After adding a single edge ea between two arbitrary inner nodes of Fp (i. e. ea = (vi, vj), i, j ∈
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{1, . . . , n−1}, ea /∈ Fp) no edge apart from ea can be removed from S′ = 〈P, F ∪{ea}〉 without

violating the edge biconnectivity property.

Proof Let ea = (vi, vj) be the edge inserted in S and er = (va, vb), ea 6= er be removable as
shown in Figure 7.4.

vn

vi

va

v0

vb

vj

v1

vn−1

er ea

Fig. 7.4: Augmenting a path.

From er = (va, vb) being removable without violating the edge biconnectivity property fol-
lows directly that two edge disjoint paths P1 = {(va, v

′
1), (v

′
1, v

′
2), . . . , (vl′ , vb)} and P2 =

{(va, v
′′
1), (v′′1 , v′′2), . . . , (vm′′ , vb)} must exist in S′ \ {er}.

As S was edge minimal the following holds: ea ∈ P1 ∨ ea ∈ P2. Otherwise both P1 and
P2 would be in S and er could therefore be removed in S too. Let ea ∈ P1 without loss of
generality.
Obviously no edge within Fp can be removed because if er ∈ Fp, then at least one node in
{va, vb} is incident to only two edges in S′ (we assume degS′(va) = 2 without loss of gen-
erality). Therefore degS′\{er}(va) = 1 which is a contradiction to the edge biconnectivity
condition.
Due to ea ∈ P1 and er /∈ Fp we can conclude that (v0, v1) ∈ P1 ∧ (vn−1, vn)} ∈ P1. There-
fore these edges cannot be part of P2. Due to this we can conclude that another path
P3 = P1 \ {er}∪Po, with Po = {(vi, vi+1, . . . , (vj−1, vj)} exists in the original solution S which
is edge disjoint to P2.
Therefore two edge disjoint paths P2 and P3 exist in S and we can remove er in S without
introducing bridges which is a contradiction to S being edge minimal. �

Good solutions to the GMEBCN problem usually consist of only few clusters with high
node degrees and quite long paths consisting of nodes having degree two between them, this
observation turns out to be important for practical instances while it unfortunately does
not reduce the computational complexity in worst case. Using this restriction, EAN can be
described as given in Algorithm 20.
As Algorithm 17 has a complexity of O(r3), the worst case complexity of a complete evaluation
of EAN is O(r5), which is a very bad estimation for its running time, as good solutions to
the GMEBCN problem usually do not lead to situations similar to the theoretical worst case
for Algorithm 17.
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Algorithm 20: Edge Augmentation (solution S)

for i = 1, . . . , r − 1 do
for j = i + 1, . . . , r do

if (i, j) /∈ F then
if i and j are not inner nodes of path then

add (i, j)
optimize(S) //see Algorithm 17
if current solution better than best then

save current solution as best
restore initial solution

restore best solution

7.2.4 Node Exchange Neighborhood

The Node Exchange Neighborhood (NEN) optimizes a solution by applying changes on both
the used nodes as well as on the edges connecting them. Similar to EAN, optimization re-
garding the edges is done in a heuristic way. A solution for NEN may differ by exactly one
used node and theoretically an arbitrary number of edges.
A single move within the Node Exchange Neighborhood (NEN) is accomplished by first ex-
changing the representative node pi of a cluster Vi to p′i and removing all edges that were
incident to pi which leads to a graph that consists of at least two components. First of all
NEN, which is given in Algorithm 21, reconnects the graph by adding the cheapest edges
between any pair of components (there are at least two and at most deg(pi) + 1 compo-
nents to connect). Once this step is completed, the edge biconnectivity property must be
restored which can principally be done by simply determining all bridges and adding edges
between any two edge biconnected components. Finally redundant edges are removed, using
the optimization procedure as given in Algorithm 17.

Algorithm 21: Node Exchange (solution S)

for i = 1, . . . , r do
forall v ∈ Vi \ pi do

remove all edges incident to pi

change used node pi of cluster Vi to v
add cheapest edges between any two graph components
restore biconnectivity //see Algorithm 22
optimize(S) //see Algorithm 17
if current solution better than best then

save current solution as best
restore initial solution

restore best solution

Figure 7.5 shows a worst case example of NEN by means of the amount of bridges to be
considered. It is essential to apply a more clever bridge covering strategy as the optimization
process might take plenty of time when a lot of edges are removable after many edges have
been added to cover all bridges. Unfortunately, situations similar to this worst case scenario
appear frequently when dealing with concrete solutions. This is due to the fact that removing
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an inner node of a path whose inner nodes have degree two, does lead to a graph where all
remaining edges of this path are bridges.
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b) after exchanging p4 by p′
4

and
reconnecting V4, all edges are bridges

Fig. 7.5: Worst Case Example for NEN, exchanging p4 to p′4.

Algorithm 22 shows one possible way to reduce the number of edges to be added. It first
determines all nodes with degree one in the current solution and connects each one with its
cheapest partner. In case only one node v with degree one exists it is connected with the
first reachable node having degree greater than two, which is determined by starting a depth
first search at v. This strategy helps to cover a lot of bridges by single edges. Remaining
bridges are covered by simply adding the cheapest edges between any pair of edge biconnected
components.

Algorithm 22: biconnect(solution S = 〈P, F 〉)

SE = {p ∈ P |deg(p) = 1}
if |SE| = 1 then

v is the first node with deg(v) ≥ 3 on the path originated at u ∈ SE

F = F ∪ {(u, v)}

else
forall u ∈ SE do

select v ∈ SE with minimal c(u, v)
F = F ∪ {(u, v)}

calculate edge biconnected components
if S has more than one edge biconnected component then

add cheapest edges between all pairs of biconnected components

Algorithm 17 is definitely the most expensive part of NEN by means of computational com-
plexity which is therefore bounded by O(|V |r3). Even when using the more clever bridge
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covering strategy, NEN is still a rather expensive neighborhood, therefore its exploration is
aborted after a certain time limit, similar to RNEN2, using the so-far best neighbor.

7.3 Neighborhoods based on Graph Reduction

Combining the knowledge of the graph reduction technique introduced in Chapter 6.3 with
the ideas of the so far described neighborhood operations (see Chapter 7.2) leads to two
obvious combinations of these which are described as follows.
Even if reducing the graph of a solution is not too expensive by means of computational effort,
it is crucial to avoid applying the complete reduction procedure after every single move within
a neighborhood. In the following Extended Node Optimizing Neighborhood, it is sufficient to
apply the reduction procedure once to the initial solution while the more complicated Cluster
Re-Arrangment Neighborhood shows how and in which cases a complete recomputation can
be avoided and how it is done.

7.3.1 Extended Node Optimization Neighborhood

The Extended Node Optimization Neighborhood (ENON) is a straightforward extension of
SNON as introduced in Section 7.2.1. In ENON a solution is represented by the set of used
nodes within the relevant clusters of the reduced graph Sred and the set of edges in S.
Therefore, ENON starts by computing the reduced graph Sred, which corresponds to its initial
solution S. ENON consists of all solutions S′

red that differ from Sred by at most two used
nodes in the relevant clusters, while the connections between clusters are not changed. Used
nodes of irrelevant clusters are selected in an optimal way when a solution is decoded again.
Compared to SNON this neighborhood has two advantages. First of all it is possible to change
the used nodes of two clusters because of the significant smaller graph in a reduced solution
compared to the original solution. Additional to that the used nodes of all irrelevant clusters
that do not occur in the reduced solution are selected in the best possible way.
As the reduction process has to be applied only once and updating the objective function can
be done with constant effort, ENON (see Algorithm 23) which has complexity O(r2d3

max), is
a very efficient neighborhood.

Alternative Implementation of ENON

Other than the so far described functionality ENON is able to solve the problem of selecting
the best used nodes exactly if the amount of clusters in the reduced solution is below some
predefined threshold. This exact calculation is done by the following integer program, which
is just a small adaption of Pop’s Local - Global formulation for the GMST problem [30]. As
in Chapter 4.2.3 the following binary variables are used.
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Algorithm 23: Extended Node Optimization (solution S)

Sred = reduced graph of S // see Algorithm 14
rg = number of clusters in Sred

for i = 1, . . . , rg − 1 do
u′

i = used node of cluster Vi

for j = i + 1, . . . , rg do
v′j = used node of cluster Vj

forall u ∈ Vi do
if u 6= u′

i then
change used node of cluster Vi to u
forall v ∈ Vj do

change used node of cluster Vj to v
if current solution better than best then

save current solution as best
restore initial solution

restore best solution

yij =

{

1 if cluster Vi is connected to cluster Vj in the reduced graph

0 otherwise

∀i, j = 1, . . . , |Vred|,
i 6= j

xe =

{

1 if the edge e ∈ Ered is included in the reduced graph

0 otherwise
∀e = (u, v) ∈ Er

zv =

{

1 if the node v is connected in the solution

0 otherwise
∀v ∈ Vred

With these variables the following ILP can be used to determine the best local solution of a
given reduced graph.

minimize
∑

e∈E

cexe (7.1)

subject to
∑

v∈Vk

zv = 1 ∀k = 1, . . . , |Vred| (7.2)

∑

u∈Vi,v∈Vj

xuv = yij ∀i, j = 1, . . . , |Vred|, i 6= j (7.3)

∑

u∈Vi

xuv ≤ zv ∀i = 1, . . . , |Vred|, ∀v ∈ Vred \ Vi (7.4)

xe, zv ≥ 0 ∀e = (i, j) ∈ Ered,∀v ∈ Vred (7.5)

However tests showed that the amount of clusters in a reduced solution is very low for all
considered instances. Due to that the improvement gained by using the ILP above instead of
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doing a heuristic optimization is too low to cover its computational effort. Therefore it was
not used for testing (i. e. the maximum amount of clusters for exact solving has been set to
zero).

7.3.2 Cluster Re-Arrangement Neighborhood

The Cluster Re-Arrangement Neighborhood (CRAN) extends NRAN (see Chapter 7.2.2) by
operating on a reduced graph. A solution is represented by the global edges between all
clusters and the used nodes of all relevant clusters (i. e. the ones that are included in the
reduced graph). The CRAN of a solution S consists of all solutions S′ that differ from S
by swapping exactly two nodes in the same way as done for NRAN, computing the reduced
graph, and selecting the best nodes in all irrelevant clusters. More concrete, CRAN swaps
nodes within the S and determines the corresponding changes in the reduced graph which is
used to retrieve the objective value. Obviously, recomputing all components of the reduced
graph can be avoided in the majority of cases. Figure 7.6 visualizes the changes of a reduced
graph in case two nodes of degree two, being part of the same global path are swapped.
Figure 7.7 shows the changes if two nodes belong to different paths are swapped. If one of
the considered nodes is an element of a relevant cluster, the structure of the reduced solution
may change significantly and therefore the whole reduction is applied completely.

V2
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V4 V5

V2

V3

V1

V4 V5

Fig. 7.6: After swapping V2 and V4 only the path containing them may change.

V2 V3V1

V4
V5 V6

V2 V3V1

V4
V5 V6

Fig. 7.7: After swapping V2 and V5 only the paths containing them may change.

The complexity of evaluating CRAN (Algorithm 24) completely is bounded by O(r4d3
max)

if the whole reduction process would be applied after every move. However, CRAN turned
out to consume too much time for a complete evaluation for some instances. Therefore, its
exploration is aborted after a certain time limit returning the so-far best neighbor instead of
following a strict best neighbor strategy.
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Algorithm 24: Cluster Re-Arrangement Optimization (solution S)

compute reduced graph Gred

for i = 1, . . . , r − 1 do
for j = i + 1, . . . , r do

swap clusters Vi and Vj

if Vi or Vj is a relevant cluster then
recompute reduced graph Gred completely

else
if Vi and Vj belong to the same global path P then

update P in Gred

else
update the global path containing Vi in Gred

update the global path containing Vj in Gred

if current solution better than best then
save current solution as best

restore initial solution and Gred

restore best solution

7.4 Arrangement of the Neighborhoods

As for the GMST problem the general VNS scheme with VND as local improvement [14, 15]
is used. In order to be able to examine the quality of the more complicated neighborhoods
based on graph reduction (ENON, CREN), two different VNS approaches are considered.
The first one (VND1 - see Algorithm 25) does not use neighborhoods based on graph reduction.
Therefore it alternates between SNON, NRAN, EAN, and NEN in this order which has been
determined taking both the computational complexity as well as concrete tests into account.
VND2, which is shown in Algorithm 26 alternates between SNON, NRAN, CRAN, EAN, and
NEN and therefore uses the more sophisticated neighborhoods having higher computational
complexity.

7.5 Shaking

Both VNS approaches are effective in selecting used nodes within solutions, but diversity with
respect to the included edges should not be neglected. Therefore the shaking procedure for
the GMEBCN problem given in Algorithm 27 is based on the Edge Augmentation procedure.
Shaking starts by augmenting a single edge and increments the number of edges that are
augmented up to a possible maximum of ⌊ r

4⌋.

7.6 Memory Function

Similar as for the GMST problem in Chapter 4.5 a hash memory to avoid unnecessary iterating
through neighborhoods is used. Even if several neighborhoods are not deterministic and might
therefore find a better solution using the same initial solution it turned out to be better to
apply another neighborhood instead. Therefore the hash memory is used for these too.
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Algorithm 25: VND1 (solution S = 〈P, F 〉)

l = 1
repeat

switch l do
case 1: // SNON

SimpleNodeOptimization(S) //see Algorithm 18

case 2: // NRAN
NodeReArrangmentOptimization(S) //see Algorithm 19

case 3: // EAN
EdgeAugmentationOptimization(S) //see Algorithm 20

case 4: // NEN
NodeExchangeOptimization(S) //see Algorithm 21

if solution improved then
l = 1

else
l = l + 1

until l > 4

Algorithm 26: VND2 (solution S = 〈P, F 〉)

l = 1
repeat

switch l do
case 1: // SNON

ExtendedNodeOptimization(S) //see Algorithm 23

case 2: // NRAN
NodeReArrangementOptimization(S) //see Algorithm 19

case 3: // CRAN
ClusterReArrangementOptimization(S) //see Algorithm 24

case 4: // EAN
EdgeAugmentationOptimization(S) //see Algorithm 20

case 5: // NEN
NodeExchangeOptimization(S) //see Algorithm 21

if solution improved then
l = 1

else
l = l + 1

until l > 5

Algorithm 27: Shake (solution S = 〈P, F 〉, size k)

for i = 0, . . . , k do
add an arbitrary edge (u, v) to the current solution

optimize solution //see Algorithm 17



8. Computational Results for the GMEBCN Problem

In the following a detailed summary and analysis of the computational results for both VNS
approaches as well as for the initial values gained by ACH is given. Chapter 8.2 analyzes
the individual contributions of all neighborhoods within VND1 and VND2. Testing has been
done on most of the instances used for the GMST problem as described in Chapter 5.1.

8.1 Computational Results for the VNS

As no reference values are available, the results of both Variable Neighborhood Search ap-
proaches (VNS1, VNS2) for the GMEBCN problem are compared to each other as well as
to the initial solutions computed by ACH. The results are shown in Table 8.1 for grouped
Euclidean, random Euclidean and non-Euclidean instances and in Table 8.2 for TSPlib based
instances which provide instance names, number of nodes, number of cluster, (average) num-
ber of nodes per cluster, the average objective values of the final solutions and the correspond-
ing standard deviations over 30 runs. Additionally, relative values grouped by the different
sets are illustrated in Figure 8.1, 8.1 and 8.3 where the results of VNS2 are taken as base
(100%). The time limit has been set to those used for testing the VNS approach for the
GMST problem as it is interesting to see if computation times similar to the GMST problem
are reasonable for the GMEBCN problem too. The maximum time limit for a single search
of CRAN and NEN has been set to 5s for all tests.

Fig. 8.1: Relative results on grouped euclidean instances for each set (VNS2 = 100%).

Both, VNS1 and VNS2 are able to generate good solutions within the time limit for instances
with many nodes per cluster. They need the most computation time for instances with a



8. Computational Results for the GMEBCN Problem 60

Fig. 8.2: Relative results on random euclidean instances for each set (VNS2 = 100%).

Fig. 8.3: Relative results on non-Euclidean instances for each set (VNS2 = 100%).

high number of clusters, which is the case especially for large TSPlib instances as well es for
the grouped Euclidean set with 500 nodes and 100 clusters. The reason for this is probably
the number of moves within EAN which is O(r2). For those instances both approaches might
find a better solution if the running time would be increased.
For smaller instances VNS1 performs much faster than VNS2 and it does not need long
for finding good solutions, while VNS2 needs considerable effort even for small instances.
Interestingly this behavior changes when moving to larger instances. VNS2 benefits from
operating on the much smaller reduced graphs for ENON and CRAN which significantly
reduced the difference between VNS1 and VNS2 by means of number of iterations. Another
unexpected behavior is observed from ACH which generates results with a standard deviation
of zero for all but three non-Euclidean instances. As the removement of redundant edges is
done in random order within ACH, we can conclude that this order is unimportant in the
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majority of cases for solutions generated by ACH.

Comparing the concrete results we can see that both VNS1 and VNS2 are able to im-
prove an initial solution generated by ACH significantly. However ACH produces solutions
that are not too bad for TSPlib based and grouped Euclidean instances while the gap
between ACH and both VNS approaches increases significantly for random Euclidean
instances. Regarding non-Euclidean instances the initial solutions generated by ACH are ten
times worse than the final solutions obtained by VNS2.
For TSPlib based instances, VNS1 and VNS2 produce solutions of similar quality. Out of 13
instances of this type VNS1 is better in 7 cases, while VNS2 is better in 6 cases. We can
conclude that for those instances having a relatively low number of nodes per cluster the
benefit of the graph reduction is relatively low. For grouped Euclidean, random Euclidean
and non-Euclidean instances, a completely different result can be observed.
While VNS1 can still produce solutions of similar quality as VNS2 for grouped Euclidean
instances, VNS2 is strictly better on all random and all but two non-Euclidean instances.
While the gap between VNS1 and VNS2 is relatively small for those instances where VNS1
generated the better results, VNS2 is able to outperform VNS1 significantly especially on
random Euclidean instances and on other instance types with a high number of nodes per
clusters.

8.2 Contributions of the Neighborhoods

Like the GMST problem, a record of how often each neighborhood was able to improve a
current solution has been taken, which allows to analyze how the different neighborhood
searches of VNS1 and VNS2 contribute to the whole optimization. Table 8.3 shows the ratios
of these numbers of improvements to how often they were called for VNS1, while Table 8.4
contains the same values for VNS2. These values are grouped by the different input instances.
Additionally, all values included in those tables are illustrated in Figures 8.4, 8.5, and 8.6 for
VNS1 and in Figures 8.7, 8.8, and 8.9 for VNS2.
For VNS1, each neighborhood search contributes substantially to the whole success. While
the effectivity of all four neighborhoods is nearly equal for TSPlib based instances, the results
are ambiguous for other instance types. For grouped Euclidean instances, SNON is the
most effective one while NRAN and EAN produce similar results. The high values of all
neighborhoods for grouped Euclidean instances (Grouped Euclidean 500 and 1280) with a high
amount of clusters is probably caused by the fact that much fewer iterations could be carried
out, and a considerable amount of the total computation time was spent before reaching
the first solution that is a local optimum for all four neighborhood structures. For random
Euclidean instances, NRAN and EAN were the most effective neighborhoods in terms how
often they could improve a solution. Opposite to that, NRAN produces the worst results for
non-Euclidean instances. As EAN and NEN were above average for non-euclidean instances
it can be concluded that the general structure of the initial solutions computed by ACH is
quite bad for those instances.
As for VNS1 all neighborhood searches used by VNS2 contribute to the optimization. Mostly
notable CRAN is the most effective one for all instance types. Furthermore, we can see that
NRAN could not contribute much to the optimization in case of non-Euclidean instances
which has been already observed for VNS1. However, CRAN which extends NRAN could
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Fig. 8.4: Contributions of the neighborhoods on grouped euclidean instances for VNS1.

Fig. 8.5: Contributions of the neighborhoods on random euclidean instances for VNS1.

maintain its strength even for instances of those type. Considering that the optima NEN
operates on are already local optima with respect to all other neighborhood structures its
improvement ratios are quite remarkable.
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Fig. 8.6: Contributions of the neighborhoods on non-euclidean instances for VNS1.

Fig. 8.7: Contributions of the neighborhoods on grouped euclidean instances for VNS2.



8. Computational Results for the GMEBCN Problem 64

Instances ACH VNS1 VNS2

Set |V | r |V |/r C(T ) std dev C(T ) std dev C(T ) std dev

125 25 5 227.1 0.00 159.5 0.00 159.7 0.33

Grouped Eucl 125 125 25 5 209.5 0.00 163.5 0.00 163.5 0.00

125 25 5 230.9 0.00 166.1 0.00 166.1 0.00

500 100 5 939.6 0.00 717.6 25.78 712.2 16.33

Grouped Eucl 500 500 100 5 993.6 0.00 799.0 35.40 736.7 33.86

500 100 5 943.7 0.00 761.7 37.21 751.5 38.87

600 20 30 172.6. 0.00 105.1 0.00 105.8 2.66

Grouped Eucl 600 600 20 30 151.0. 0.00 105.2 0.00 105.3 0.07

600 20 30 179.0 0.00 107.5 0.00 107.5 0.00

1280 64 8 590.2 0.00 436.8 36.47 402.2 22.90

Grouped Eucl 1280 1280 64 8 585.4 0.00 404.6 24.26 399.9 14.22

1280 64 8 562.5 0.00 433.3 35.75 417.0 15.83

250 50 5 4398.9 0.00 3746.6 123.22 3521.8 108.83

Random Eucl 250 250 50 5 5110.0 0.00 3661.8 166.90 3227.5 222.37

250 50 5 4975.1 0.00 3403.2 270.07 3015.2 139.05

400 20 20 3237.8. 0.00 1027.2 71.50 906.8 61.17

Random Eucl 400 400 20 20 2582.8 0.00 1059.5 138.33 867.4 40.78

400 20 20 2308.6 0.00 858.7 40.51 802.2 18.18

600 20 30 2984.3 0.00 725.1 103.93 602.6 4.03

Random Eucl 600 600 20 30 2964.1 0.00 823.7 55.31 785.4 39.64

600 20 30 2550.8 0.00 778.9 60.08 759.2 32.63

200 20 10 1569.7 5.73 244.9 34.41 237.5 29.33

Non-Eucl 200 200 20 10 1223.9 0.00 216.7 33.83 217.0 22.00

200 20 10 1465.6 0.00 179.8 28.38 195.6 32.20

500 100 5 2045.9 1.72 1121.3 123.29 1049.0 114.92

Non-Eucl 500 500 100 5 2073.6 146.39 1008.2 128.91 998.1 94.98

500 100 5 1565.0 0.00 1025.8 109.49 1020.4 78.15

600 20 30 1469.6 0.00 138.6 25.11 122.7 12.43

Non-Eucl 600 600 20 30 1754.6 0.00 132.0 18.98 118.0 16.04

600 20 30 414.3 0.00 119.4 18.98 117.9 16.54

Tab. 8.1: Results on instance sets from [11] and correspondingly created new sets, 600s CPU-

time (except ACH). Three different instances are considered for each set.
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TSPlib Instances ACH VNS1 VNS2

Name |V | r time C(T ) std dev C(T ) std dev C(T ) std dev

gr137 137 28 150s 562.0 0.00 440.8 2.42 442.2 2.94

kroa150 150 30 150s 17234.0 0.00 11532.8 2.44 11542.7 24.74

krob200 200 40 300s 17779.0 0.00 13309.4 79.90 13300.9 102.37

ts225 225 45 300s 83729.0 0.00 68769.7 305.85 69110.0 641.85

gil262 262 53 300s 1434.0 0.00 1157.1 54.88 1117.2 30.70

pr264 264 54 300s 39860.0 0.00 31639.6 1449.32 31641.9 1027.65

pr299 299 60 450s 28684.0 0.00 23953.9 792.38 23397.0 321.22

lin318 318 64 450s 28039.0 0.00 23101.1 840.31 22599.6 780.27

rd400 400 80 600s 9605.0 0.00 7275.4 237.96 7291.1 276.53

fl417 417 84 600s 12177.0 0.00 10636.4 286.75 10875.7 196.74

gr431 431 87 600s 1681.0 0.00 1408.2 50.76 1399.6 45.02

pr439 439 88 600s 86968.0 0.00 72752.7 3857.22 73193.7 2941.80

pcb442 442 89 600s 29573.0 0.00 26051.2 197.20 25960.8 621.32

Tab. 8.2: Results on TSPlib instances with geographical clustering, |V |
r

= 5, variable CPU-

time.

Fig. 8.8: Contributions of the neighborhoods on random euclidean instances for VNS2.



8. Computational Results for the GMEBCN Problem 66

Instance Type |V | r |V |/r SNON NRAN EAN NEN

TSPlib based n.a. n.a. 5 0.56 0.49 0.63 0.52

125 25 5 0.68 0.34 0.34 0.16

500 100 5 0.99 0.73 0.78 0.84
Grouped Euclidean

600 20 30 0.91 0.23 0.24 0.22

1280 64 20 1.00 0.61 0.66 0.91

250 50 5 0.24 0.83 0.61 0.36

Random Euclidean 400 20 20 0.19 0.45 0.28 0.18

600 20 30 0.14 0.47 0.25 0.17

200 20 10 0.28 0.08 0.35 0.43

Non-Euclidean 500 100 5 0.27 0.24 0.93 0.78

600 20 30 0.32 0.05 0.28 0.46

Tab. 8.3: Relative effectivity of SNON, NRAN, EAN, and NEN for VNS1.

Instance Type |V | r |V |/r ENON NRAN CRAN EAN NEN

TSPlib based n.a. n.a. 5 0.31 0.48 0.99 0.61 0.31

125 25 5 0.73 0.35 1.00 0.31 0.12

500 100 5 0.53 0.63 0.94 0.75 0.56
Grouped Euclidean

600 20 30 0.43 0.25 1.00 0.23 0.11

1280 64 20 0.70 0.45 0.94 0.53 0.67

250 50 5 0.32 0.77 0.99 0.57 0.27

Random Euclidean 400 20 20 0.46 0.49 0.99 0.24 0.10

600 20 30 0.31 0.51 1.00 0.24 0.09

200 20 10 0.40 0.05 0.75 0.26 0.20

Non-Euclidean 500 100 5 0.36 0.14 0.78 0.93 0.62

600 20 30 0.42 0.03 0.88 0.14 0.14

Tab. 8.4: Relative effectivity of ENON, RNAN, CNAN, EAN, and NEN for VNS2.
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Fig. 8.9: Contributions of the neighborhoods on non-euclidean instances for VNS2.



9. Implementation Details

The algorithms described in this thesis have been implemented with C++ on a Pentium 4,
2.8GHz PC with 2GB RAM and compiled with GCC 3.3.1.
CPLEX 9.03 is used to solve ILP subproblems and EAlib 2.0 [32], which is a problem inde-
pendent C++ library for the development of efficient metaheuristics.
For running the program for the GMST problem as well as the program for the GMEBCN
problem, some command line parameters need to be set in order to initialize EAlib [32]
properly (see Table 9.1).

Parameter Name Value

maxi 0

eamod 9

sub.eamod 10

Tab. 9.1: Program Parameters for EAlib [32].

9.1 Description of the Program for the GMST Problem

For the GMST problem the set of used nodes is represented by a vector whose entries refer
to the index of the selected nodes in the corresponding clusters, while (global) edges are
represented by an adjacency matrix. The following chapter provides a short description of
all classes implemented, while Figure 9.1 presents an UML diagram visualizing correlations
and dependencies between them. Table 9.2 shows all parameters to be set additionally to the
general ones needed to initialize EAlib [32].

Parameter Name Description

clusterfile instance file containing clustering information

edgefile instance file containing distance matrix

ghosh2 maxtime maximum computation time for RNEN2

ttime maximum computation time in seconds

Tab. 9.2: Program Parameters for GMST.
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9.1.1 Class Description
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Edge
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GlobalTree

LocalGlobal
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Fig. 9.1: UML Diagram modelling the program for the GMST problem.

• Cluster
Encapsulation of a single cluster. Next to a list of concrete nodes for an actual cluster
this class keeps track if a current cluster needs to be recomputed (important for GEEN
and GSON).

• ddm
Implementation of the dynamic disjunct set data structure in order to compute mini-
mum spanning trees efficiently using the algorithm of Kruskal.

• Edge
Extends GlobalEdge by additionally adding edge costs to represent a concrete edge
included in a solution.

• GlobalEdge
Representation of an edge within the global graph.

• GlobalTree
Implements all necessary methods to operate on a global graph.

• gmstChrom
Represents the chromosome for the GMST problem and implements all neighborhood
structures.

• gmstIlp
Base class to solve parts of a GMST instance exact using CPLEX. This class initializes
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all variables used for the Local - Global formulation of Pop [30] and describes the global
polytype of the problem.

• ImprovedKruskal
Implementation of the Improved Adaption of Kruskal’s Algorithm for the MST (IKH)
used to generate initial solutions.

• Instance
Creates and stores all necessary information for a concrete instance it reads from the
corresponding instance files.

• Kruskal
Implementation of Kruskals algorithm for the classical MST problem.

• LocalGlobal
Extends gmstIlp by describing the part of Pops [30] Local - Global ILP formulation
responsible for computing the best local solution from a given global one.

• MinDistHeur
Implementation of the Minimum Distance Heuristic (MDH) used to generate initial
solutions.

• Node
This class stores all important information for the nodes of a concrete instance during
the dynamic programming procedure in GEEN and GSON. This information includes
the concrete costs and the direct successors on the path having these costs.

• Statistics
Utility class to store additional information needed to carry out statistical analysis for
the neighborhoods.

9.2 Description of the Program for the GMEBCN Program

In opposite to the GMST problem, (global) edges included in a solution are internally repre-
sented by storing the adjacency list for each selected node. The corresponding class (Adja-
cenceList) which encapsulates this data structure does ensure that each of these lists is sorted
(ascending). Hence adding a new edge and testing if an edge is currently included in the solu-
tion cannot be done in constant time anymore, but has computational effort O(log(deg(Vi))),
(∀i = 1, . . . , r). This representation allows iterating through all incident nodes v of an ac-
tual node w in O(deg w) instead of O(r) if an adjacency matrix would be used. As iterating
through all neighbors is a frequent operation (e. g. DFSBridges) this advantage does prevail
the additional effort while constructing these lists.
Similar to the GMST problem, Table 9.3 presents the program parameters, Figure 9.2 vi-
sualizes the dependencies between all classes, which are explained more detailed in the next
chapter.
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Parameter Name Description

clusterfile instance file containing clustering information

edgefile instance file containing distance matrix

maxClusterSwapTime maximum computation time for CRAN in seconds

maxLocGlobExactSize maximum number of clusters in the reduced

graph to solve exact in ENON

maxNodeExchangeTime maximum computation time for NEN in seconds

ttime maximum computation time in seconds

Tab. 9.3: Program Parameters for GMEBCN.
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Fig. 9.2: UML Diagram modelling the program for the GMEBCN problem.

9.2.1 Class Description

• AdjacenceList
Implements and encapsulates the adjacency list data structure. All methods that update
the list ensure that the list is sorted ascending afterwards.

• Cluster
Encapsulation of a single cluster with its corresponding nodes.

• DepthFirstSearch
Implementation of Algorithm 7, used to test if a graph violates the edge biconnectivity
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property as well as to compute its edge biconnected components.

• ddm
Implementation of the dynamic disjunct set data structure in order to compute mini-
mum spanning trees efficiently using the algorithm of Kruskal.

• Edge
Internal representation of an edge (u, v) with specified costs. Both u, and v are specified
by their cluster number, while the concrete nodes can be queried by additionally taking
the vector of used nodes into account. This approach has the benefit that if only the
used nodes are changed, nothing has to be updated within the adjacency lists.

• gmebcnChrom
Implementation of the chromosome for the GMEBCN problem and implements all neigh-
borhood structures.

• ImprovedKruskal
Implements the Improved Adaption of Kruskals algorithm for the MST problem, as
used within ACH (Algorithm 15).

• Instance
Creates and stores all necessary information for a concrete instance it reads from the
corresponding instance files.

• ReducedGraph
Determines and stores a reduced graph. Implements methods to efficiently update a
global graph, as well as to decode a global graph to a concrete solution.

• ReducedPath
Internal representation of a global path and its corresponding reduced edge.

• ReducedPathElement
A single element (cluster) of a reduced path. This class additionally stores all informa-
tion computed with dynamic programming while generating the corresponding reduced
edges.

• Solution
Class to store and deal with a concrete solution.

• SolveReducedExact
Implements an Integer Linear Program to compute the best nodes from a given global
solution.

• Statistics
Utility class to store additional information needed to carry out statistical analysis for
the neighborhoods.
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9.3 Instance Generator

For extending the available benchmark set of instances an instance generator has been im-
plemented which supports the creation of clustered euclidean, random euclidean, and non
euclidean instances which already have been described in Chapter 5.1. Table 9.4 shows how
to generate different instance types using the generator, while Table 9.5 explains the concrete
parameters.

Instance Type Generation Command

Grouped Euclidean ./generate GROUPED EUCL rows cols p

sep span clusterfile edgefile

Random Euclidean ./generate NOT GROUPED EUCL clustercnt p

xmax ymax clusterfile edgefile

Non Euclidean ./generate NOT EUCL clustercnt p

maxdist clusterfile edgefile

Tab. 9.4: Generation of various Instance Types.

Each input instance consists of two files, one containing the distance values and a second one
saving the assignment of nodes to clusters. The one containing the distance values (“edgefile”)
starts with a header of two integral values, specifying the number of nodes and the number
of edges, which is followed by an upper triangular matrix containing the concrete edge costs,
which are assumed to be symmetric. The file containing the assignment of nodes to their
clusters (“clusterfile”) starts with a header specifying the node count which is followed by r
lists of nodes (one for each cluster), which are separated by zero values.
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Parameter Description

rows number of rows

cols number of columns

p number of nodes per cluster

sep cluster seperation

span cluster span

clusterfile name of file to save clustering information

edgefile name of file to save distance matrix

xmax x dimension of surrounding rectangle

ymax y dimension of surrounding rectangle

maxdist maximum distance between two nodes

clustercnt number of clusters

Tab. 9.5: Program Parameters for the Instance Generator
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This thesis proposed general Variable Neighborhood Search (VNS) approaches for solving
the Generalized Minimum Spanning Tree (GMST) problem and the Generalized Minimum
Edge Biconnected Network (GMEBCN) problem.

For the GMST problem initialization is done be the Minimum Distance Heuristic and
the Improved Adaption of Kruskal’s MST Heuristic, which are both based on Kruskal’s
classical algorithms for determining a MST. Though their performance depends on the
instance type, the latter constructive heuristic mostly provides better results.
The Variable Neighborhood Descent for the GMST problem combines three neighborhood
types: For the Node Exchange Neighborhood, solutions are represented by the used nodes
and one node is replaced by another of the same cluster. Optimal edges are derived by
determining a classical MST on these nodes. The Global Edge Exchange Neighborhood
works in complementary ways by considering for a solution primarily its global connections,
i. e. the pairs of clusters which are directly connected. Neighbors are all solutions differing
in exactly one global connection. Knowing this global structure for a solution, dynamic
programming is used to determine the best suited nodes and concrete edges. For both of
these neighborhoods, incremental evaluation schemes have been described, which speed up
the whole computation considerably. The Global Subtree Optimization Neighborhood selects
a subset of clusters connected within the current solution and solves the subproblem induced
by these clusters to optimality via Integer Linear Programming. The obtained subtree is
then reconnected to the remainder as well as possible.

Tests on TSPlib instances, grouped Euclidean instances, random Euclidean instances
and non-Euclidean instances show that the proposed VNS algorithm has significant advan-
tages over previous metaheuristic approaches in particular on instances with a large number
of nodes per cluster.
On grouped Euclidean and TSPlib based instances, the differences between the objective
values of the final solutions obtained by our VNS and the other candidate algorithms
are relatively low, which indicates that the structure of these instances are simpler. The
differences between the considered algorithms are largest on random Euclidean instances. In
this case, VNS produces substantially better results due to the effectiveness of Global Edge
Exchange Neighborhood.

A similar approach has been designed for the GMEBCN problem. Initialization is
done by the Adapted Christofides Heuristic which augments a solution to the GMST problem
generated by the Improved Adaption of Kruskal’s MST Heuristic. The augmentation is
done by creating a matching on all nodes of odd degree to generate an edge biconnected graph.

In contrast to the GMST problem, fixing the used nodes and computing the best cor-
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responding solution based on them cannot be done with reasonable effort as the classical
Minimum Edge Biconnected Network problem is known to be NP hard. Analogically, the
problem of determining the best used nodes for a given global graph is NP hard too, which
can be shown by a reduction from the graph coloring problem. This points out that the
GMEBCN is more complex than the GMST problem. To deal with this high complexity,
a technique to reduce the size of a solution graph has been introduced. It evaluates
the so called relevant clusters whose optimal selected nodes are hard to identify while
the optimal selected nodes of the remaining clusters, the so called irrelevant clusters, can
be determined exactly in an efficient way once the used nodes of all relevant clusters are fixed.

Based on these conclusions, six different neighborhoods were presented that consider
different aspects of the problem. For all these neighborhoods a solution is represented by the
used nodes as well as the selected (global) edges between them.
In the Simple Node Optimization Neighborhood, the used nodes of exactly one cluster gets
changed by another node of the same cluster while adopting the global edges of the original
solution. Complementary to that the Node Re-Arrangement Neighborhood considers the
arrangement of nodes within a solution. A neighbor solution differs by exchanging the sets
of incident edges of exactly two nodes.
The Edge Augmentation Neighborhood explores new areas by augmenting a current solution
with one new edge and removing redundant edges afterwards. To speed up the examination
of this neighborhood a large amount of cases where the solution cannot be improved are
determined and their execution prevented in advance.
Optimization on both the used nodes as well as the included edges is done in a heuristic
way within the Node Exchange Neighborhood. Moving to a solution is done by exchanging
exactly one used node by another node of the same cluster and additionally removing all
edges incident to this node. The graph is then heuristically augmented with new edges
until the edge biconnectivity property is met again. An efficient way has been developed
to re-biconnect a solution as adding too many edges would lead to a higher computational
effort when removing redundant edges.
The Extended Node Optimization Neighborhood and the Cluster Re-Arrangement Neigh-
borhood are natural extensions to the Simple Node Optimization Neighborhood and the
Node Re-Arrangement Neighborhood by taking the graph reduction technique into concept.
The Extended Node Optimization Neighborhood operates on a much smaller graph and
changes the used nodes of up to two clusters while computing the best used nodes for all
other clusters is done exactly using a dynamic programming procedure. Additionally it is
able to determine the optimal used nodes of all clusters using Integer Linear Programming
if the amount of clusters in the reduced graph is below some predefined threshold. Similar
to that the Cluster Re-Arrangement Neighborhood optimizes the arrangement of clusters in
the same way as done in the Node Re-Arrangement Neighborhood. A concrete solution is
determined by re-arranging exactly two clusters and computing the best used nodes for all
irrelevant clusters while forbearing from changing used nodes within any relevant cluster.
As it turned out to be crucial to prevent re-applying the reduction procedure an evaluation
scheme has been developed that prevents this process when possible.
Based on these neighborhoods, two different VNS approaches have been presented, one based
one the simpler, but much faster neighborhoods, while the second one additionally takes the
two neighborhoods utilizing the graph reduction technique in to concept.
Additional to that, some effort has been done on exact methods, by presenting an idea of
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adapting a rather successful Integer Linear Programming (ILP) formulation for the GMST
to the GMEBCN problem.
Tests on TSPlib instances, grouped Euclidean instances, random Euclidean instances,
and non-Euclidean instances show that the second VNS approach (VNS2), utilizing the
neighborhoods based on graph reduction, has significant advantages over the simpler version.
The superior performance is most evident on random Euclidean instances and instances with
a large number of nodes per cluster. On these instances, VNS2 produces substantially better
results which is due to the effectiveness of the graph reduction concept used by ENON and
CRAN. The differences between the objective values of the final solutions obtained by VNS1
and VNS2 on grouped Euclidean and TSPlib based instances are comparatively lower, which
approves the assumption that these instances are easier to deal with.

Further work can be done especially for the GMEBCN problem by introducing additional
neighborhoods, particularly those operating on the reduced graph and / or incorporating
more sophisticated ILP formulations. It might also be interesting to apply similar concepts
to other generalized network design problems.
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