
Favoritenstraße 9-11 / E186, A-1040 Wien, Austria
Tel. +43 (1) 58801-18601, Fax +43 (1) 58801-18699
www.cg.tuwien.ac.at

Forschungsbericht / Technical Report

TECHNISCHE UNIVERSITÄT WIEN
Institut für Computergraphik und Algorithmen

Hop Constrained Steiner Trees

with multiple Root Nodes

Luis Gouveia, Markus Leitner, Ivana Ljubić

TR–186–1–13–02

April 8, 2013

Hop Constrained Steiner Trees with multiple Root Nodes

Luis Gouveiaa,1, Markus Leitnerb,2,∗, Ivana Ljubićc,3

aDEIO/CIO Faculdade de Ciênçias, Universidade de Lisboa, Bloco C2, Campo Grande, 1749-016, Lisboa,
Portugal

bInstitute of Computer Graphics and Algorithms, Vienna University of Technology, Favoritenstraße 9-11,
1040 Vienna, Austria

cDepartment of Statistics and Operations Research, University of Vienna, Brünnerstraße 72, 1210 Vienna,
Austria

Abstract

We consider a network design problem that generalizes the hop and diameter constrained

Steiner tree problem as follows: Given an edge-weighted undirected graph with two disjoint

subsets representing roots and terminals, find a minimum-weight subtree that spans all the

roots and terminals so that the number of hops between each relevant node and an arbitrary

root does not exceed a given hop limit H . The set of relevant nodes may be equal to the set

of terminals, or to the union of terminals and root nodes. This article proposes integer linear

programming models utilizing one layered graph for each root node. Different possibilities to

relate solutions on each of the layered graphs as well as additional strengthening inequalities

are then discussed. Furthermore, theoretical comparisons between these models and to

previously proposed flow- and path-based formulations are given. To solve the problem to

optimality, we implement branch-and-cut algorithms for the layered graph formulations. Our

computational study shows their clear advantages over previously existing approaches.

Keywords: Integer programming, OR in telecommunications, Steiner tree, Hop-constraints

∗Corresponding author. Tel.:+43-1-58801-18624; Fax:+43-1-58801-18699.
Email addresses: legouveia@fc.ul.pt (Luis Gouveia), leitner@ads.tuwien.ac.at (Markus

Leitner), ivana.ljubic@univie.ac.at (Ivana Ljubić)
1Supported by the National Funding from FCT - Fundação para a Ciência e Tecnologia, under the project:

PEst-OE/MAT/UI0152.
2Supported by the Austrian Science Fund (FWF) under grant I892-N23.
3Supported by the APART Fellowship of the Austrian Academy of Sciences.

1

1. Introduction

Quality-of-service aspects are among the major issues when designing modern telecom-

munication networks and in particular bounding the maximum overall delay of each relevant

communication path is important. It is widely accepted that in many applications the delay

along some connection mainly depends on the number of intermediate routers, i.e., hops, and

that restricting the maximum length of each established path by some predefined thresh-

old limits the probability of failures. Furthermore, whenever redundancy is not of major

importance it is usually desired that the final network has tree structure in order to en-

sure unique communication paths. The literature contains many works dedicated to two

problems that fit into this framework, namely the “centralized” hop-constrained minimum

spanning/Steiner tree problem (HMSTP / HMStTP), see, e.g., [4, 6, 8, 12, 13, 20] and the

references therein, and the “decentralized” diameter-constrained minimum spanning/Steiner

tree problem (DMSTP / DMStTP), see, e.g., [1, 7, 9, 10, 13, 16] and the references therein.

To define the HMSTP consider an undirected, edge-weighted graph G = (V,E) with

node set V , edge set E, a hop limit H ∈ N, and one dedicated central node r ∈ V . The

objective is to identify a minimum cost spanning tree such that the path between the root

r and any node v ∈ V does consist of at most H edges. For the Steiner variant (HMStTP)

we are further given a set of terminals T ⊂ V and the aim is to identify a minimum cost

Steiner tree connecting all terminals such that the path between the root r and any terminal

node t ∈ T does consist of at most H edges. To define the DMSTP consider, as before,

an undirected, edge-weighted graph. The objective is to identify a minimum cost spanning

tree such that the path between any two nodes does consist of at most D edges, for some

given diameter limit D ∈ N. Changes to the Steiner variant (DMStTP) are analogous to the

hop-constrained problems.

However, several other tree problems with hop constraints appear to be of practical in-

terest and one objective of this work is to propose a more general framework to contextualize

these problems. In practice we may have multiple (e.g., replicated) central servers in which

case each server communicates with a subset of terminals. Hop constraints are imposed on

the communication paths, e.g., between each server-terminal pair, to ensure that the com-

munication delays are not too high and also to ensure a certain reliability of the network,

cf. [4].

Consider, thus, the general and new Hop Constrained Minimum Steiner Tree Problem

with Multiple Root nodes (HSTPMR) problem. We are given an undirected graph G =

(V,E), with node set V , edge set E, edge costs ce ≥ 0, for all e ∈ E, and a hop limit H ∈ N.

2

The node set V contains two disjoint subsets: root nodes R, |R| ≥ 1, and terminal nodes

T ⊆ V \ R. Furthermore, we are given a set T ′ ⊆ T ∪ R of relevant nodes for which hop

limits to all root nodes need to be considered.

A solution to the HSTPMR is a Steiner tree G′ = (V ′, E ′) spanning all root and terminal

nodes, i.e., R ∪ T ⊆ V ′, such that the hop constraints are met for all relevant nodes v ∈ T ′.

More precisely, for each relevant node t ∈ T ′ and each root r ∈ R, the unique path between

t and r can contain at most H edges. The objective is to find a feasible subtree yielding

minimum total edge costs. If T ∪ R = V , the solution will be a spanning tree of G.

In this study we consider two particular cases of this new framework which as far as

we know have not been studied before (with exception to the introductory work in [14]): a)

T ′ = T ∪R and b) T ′ = T . In the first case, delay bounds between roots have to be taken into

consideration (e.g., when roots model replica servers) and in the second case delays between

roots are not critical (e.g., when services by different providers are offered to terminals).

An illustrative instance of the HSTPMR with two roots and three terminals is given in

Figure 1(a), while Figures 1(b) and 1(c) depict solutions to this instance for T ′ = T ∪R and

T ′ = T , respectively, assuming that H = 3. Notice that one could generalize this problem

even further by introducing subsets of roots and hop limits that would depend on each node

from T ′.

However, the two cases already present different characteristics that strongly affect the

corresponding models. For the case T ′ = T ∪ R, it is easy to see that the hop-constrained

arborescences associated to each root span the same set of nodes and the same set of undi-

rected edges. This property is useful to strengthen the models that will be proposed in the

next subsection. Unfortunately, this property may not be satisfied in the case T ′ = T since

the maximum distance between any two roots may exceed H . In fact as can be deduced

from Figure 1(c), the subtree obtained from undirecting the arcs of the hop-constrained ar-

borescence associated to root 0 does not coincide with the subtree obtained from undirecting

the arcs of the hop-constrained arborescence associated to root 1. Thus, many of the model

enhancements valid for the case T ′ = T ∪R that we will discuss below, will not be valid for

T ′ = T . The following results, however, provide an upper bound on the maximum distance

between any two roots:

Lemma 1. Let G′ = (V ′, E ′) be a feasible solution to an instance of the HSTPMR with

T ′ = T and let d(u, v) denote the distance between two nodes u, v ∈ V ′ in G′. Then, the

maximum distance between any pair of root nodes in G′ does not exceed 2H − ℓ where ℓ is

the maximum distance between any two terminal nodes in G′, i.e., ℓ = maxu,v∈T d(u, v).

3

Proof. If there is a single terminal, two roots can be each at distance H from it, which

gives the maximum distance of 2H . Assume that |T | ≥ 2, let t1 and t2 be two terminals

at maximum distance and let P = (t1 = v0, v1, . . . , vℓ = t2) (vi ∈ V ′ for 0 ≤ i ≤ ℓ, and

{vi, vi+1} ∈ E ′ for 0 ≤ i ≤ ℓ− 1) denote the path between t1 and t2 in G′. Furthermore, let

r ∈ R be an arbitrary root and vj ∈ P , 0 ≤ j ≤ ℓ, be the node from P such that the path

between r and vj is edge disjoint to P . Since, the maximum distance between a terminal

and a root node may not exceed H , we have

d(r, vj) ≤

H − ℓ+ j if j ≤ ℓ/2

H − j if j ≥ ℓ/2

Now let s ∈ R be another root and vk ∈ P , 0 ≤ k ≤ ℓ again be the node from P such that

the path between s and vk is edge disjoint to P . Without loss of generality we assume that

j ≤ k. Then, by case distinction it is easy to see that

d(r, s) = d(r, vj) + d(vj, vk) + d(s, vk) ≤ 2H − ℓ

holds and that this bound can be tight.

The next corollary immediately follows from Lemma 1.

Corollary 1. Let diam(T) be the minimum diameter of a subtree of G spanning all nodes

from T . Then, for any feasible solution G′ = (V ′, E ′) to an instance of the HSTPMR on G

with T ′ = T the maximum distance between any pair of root nodes in G′ does not exceed H ′,

where H ′ = 2H − diam(T).

Notice that H ′ can be calculated in polynomial time: It suffices to run breadth-first-

search starting from each t ∈ T until all remaining terminals are reached. The subtree with

the smallest diameter obtained gives us the value of diam(T). As we will show in Section 3.4,

this corollary allows us to provide modified models, where many of the enhancements directly

valid for the case T ′ = T ∪ R apply. The drawback is that these modified models use many

more variables and constraints than the original model without the enhancements.

Our Contribution. In this paper, besides introducing the general and new problem we present

three kinds of results: a) Complexity: We analyze special cases in which the HSTPMR can

be reduced to previously studied network design problems, identify special polynomial cases,

show that the problem is NP-hard in general, and that one cannot guarantee to find an

4

0

1

2 3

4

5

6 7

(a)

0

1

2 3

47

5

6

(b)

0

1

2 3

4

5

6 7

(c)

Figure 1: (a) An illustrative instance with R = {0, 1}, T = {2, 3, 4}, and potential Steiner nodes S = {5, 6, 7}.
(b) A feasible solution for T ′ = T ∪R and H = 3. (c) A feasible solution for T ′ = T and H = 3.

approximation ratio better than Θ(log |V |) unless P=NP. b) Mixed integer programming

(MIP) models: We discuss layered graph reformulations, present strengthening valid in-

equalities and show that the obtained models theoretically dominate flow- and path-based

models studied in [14]. c) Computational results: Branch-and-cut algorithms are developed

for layered graph models and computationally compared to each other and to the best per-

forming approach from [14]. Computations are carried out on a set of benchmark instances

known from the HMSTP – the results show that the branch-and-cut approaches appear to

be reasonable alternatives to solve these more general cases.

Outline of the Paper. In the remainder of this section we study the computational complex-

ity of the HSTPMR. In Section 2 we discuss a generic integer linear programming (ILP)

formulation of the problem and review a path-based formulation from our previous work [14]

which outperformed the other flow- and path-based models from [14] both theoretically, i.e.,

with respect to the quality of its linear programming (LP) bounds, and computationally. Af-

terwards, two possibilities for reformulating the HSTPMR over layered graphs together with

further valid inequalities for strengthening the LP relaxations of the resulting models are

discussed in Section 3. In Section 4 we compare our models with respect to their LP relax-

ation values and also show which variants dominate the previously proposed models. Details

of the developed branch-and-cut approaches are given in Section 5, where we also discuss

the results of our computational study. Finally, some conclusions are drawn in Section 6.

1.1. Computational Complexity

Next, we analyze the computational complexity of the HSTPMR and its relationship

with other problems. Obviously, for singleton sets R and T the problem becomes the Hop

Constrained Shortest Path Problem (HSPP) which can be solved in polynomial time for any

H since we are given nonnegative edge costs. If either |R| = 1 or |T ′| = 1 (but not both), the

problem is either the HMStTP if V 6= T ∪ R or the HMSTP if V = T ∪ R. These problems

5

are known to be NP-hard if 2 ≤ H < |V | − 1, cf. [6]. If T ′ = R or |T | = 1 and T ′ = T ∪ R,

we have the DMStTP or the DMSTP with the diameter equal to H which are known to be

NP hard if 4 ≤ H < |V | − 1, cf. [5].

In the remainder of this paper, we will consider the most general case, assuming that

H ≥ 3, |R| ≥ 2 and |T | ≥ 2, which is shown to be NP-hard by the following Lemma (see

Appendix for the proof).

Lemma 2. Assuming that |R| ≥ 2 and |T | ≥ 2, the HSTPMR can be solved in polynomial

time for H = 2. For H ≥ 3, the problem is NP-hard, and it cannot be guaranteed to find an

approximation ratio better than Θ(log n) unless P=NP.

An overview on all complexity results regarding the HSTPMR and its relationships with

related problems is provided in Table 1 where “∈ P” is used to denote cases when the

problem is solvable in polynomial time and “–” denotes that a particular case is infeasible

or that no previously considered problem corresponds to that case.

Notation. Let S = V \ (T ∪ R) denote the set of remaining nodes that we will refer to as

potential Steiner nodes. To model a feasible solution G′ = (V ′, E ′) on G, we will use binary

edge variables, xij , that are set to one if {i, j} ∈ E ′, and to zero, otherwise, for all {i, j} ∈ E.

In addition, we will use binary node variables associated to potential Steiner nodes: yi is

set to one if i ∈ V ′ ∩ S, and to zero, otherwise, for all nodes v ∈ S. Furthermore, let

A = {(i, j), (j, i) | {i, j} ∈ E} denote the set of bi-directed arcs in G. For a subset W ⊂ V ,

we use δ(W) = {{i, j} ∈ E | i /∈ W, j ∈ W}, δ−(W) = {(i, j) ∈ A | i /∈ W, j ∈ W}, and

δ+(W) = {(i, j) ∈ A | i ∈ W, j /∈ W} to denote the undirected and directed, ingoing and

outgoing cutset, respectively. For a set of arcs A′ and some vector of variables z, we also use

notation z[A′] =
∑

(i,j)∈A′ zij. Finally, for a binary vector x ∈ {0, 1}|E| let E(x) denote the

subset of edges for which xe = 1.

Table 1: Complexity of the HSTPMR.

|R| |T | T ′ Problem H = 1 H = 2 H = 3 H ≥ 4
1 1 ∈ {T, T ∪R} HSPP ∈ P
1 > 1 ∈ {T, T ∪R} HMStTP ∈ P NP-hard

> 1 1 T HMStTP ∈ P NP-hard
> 1 1 T ∪R DMStTP – ∈ P NP-hard

2 0 R HSPP ∈ P
> 2 0 R DMStTP – ∈ P NP-hard
≥ 2 ≥ 2 ∈ {T, T ∪R} – – ∈ P NP-hard

6

2. Generic Formulation

Next we present a generic model for the HSTPMR which will be specialized later on by

means of paths and layered graphs.

Let F = {x ∈ {0, 1}|E| | ∀s ∈ R, ∀t ∈ T ′, ∃ s− t path P in E(x) s.t. |P | ≤ H} be the

set of incidence vectors that contain at least one feasible path between each s ∈ R and each

t ∈ T ′ \ {s}, i.e., a path of length at most H . A generic MIP model for the HSTPMR is

given by (1)–(7):

min
∑

{i,j}∈E

cijxij (1)

s.t. x ∈ F (2)

xij ≤ yi i ∈ S, {i, j} ∈ E (3)
∑

{i,j}∈E

xij = |R|+ |T |+
∑

i∈S

yi − 1 (4)

∑

{i,j}∈E

xij ≥ 2yi i ∈ S (5)

xij ∈ {0, 1} {i, j} ∈ E (6)

yi ∈ {0, 1} i ∈ S (7)

Constraints (2) ensure that a solution must contain a feasible path for each commod-

ity pair (s, t). These constraints can be modeled in several ways by using multi-commodity

flows, path variables and constraints, or jump inequalities. To discuss the constraints (3)–(5)

which, together with (2) ensure that the solution is a tree, we first observe that due to con-

straints (2) the solution subgraph induced by the hop-constrained paths for all commodities

will be connected. Hence, to obtain a valid model, we further add constraints (3) and (4),

inequalities (3) to guarantee that a node variable is set to one whenever an incident edge is

chosen and equation (4) to ensure that the number of edges in the solution is one less than

the number of nodes. Finally, constraints (5) guarantee that the degree of each Steiner node

in a feasible solution is at least two, i.e., Steiner nodes cannot be leaves of a solution. Due

to the hop constraints these constraints also guarantee that the solution is not disconnected

as illustrated by Figure 2. Thus (1)–(7) is a feasible model for the HSTPMR and Figure 2

illustrates that constraints (5) are not redundant in this formulation since omitting them we

may obtain isolated components.

7

0

1

2 3

46 7

5

Figure 2: A solution feasible for (1)–(7) without constraints (5) if T ′ = T ∪R and H = 3 that is infeasible
for the HSTPMR.

2.1. Disaggregated Path Formulation

In this section, we briefly recall model UPathDI from [14] which turned out to be the

best model, both from a theoretical as well as from a computational perspective among

all models presented in [14]. Next to already introduced edge and node decision variables,

UPathDI used disaggregated arc variables asij , ∀s ∈ R, ∀(i, j) ∈ A, to indicate whether or

not arc (i, j) is used when interpreting the solution as an outgoing arborescence rooted at s.

Furthermore, the set of all hop constrainted paths Wst ⊆ 2A, |p| ≤ H , ∀p ∈ Wst, from each

root s ∈ R to each relevant terminal t ∈ T ′ \ {s} is considered and an exponential number

of path variables 0 ≤ λst
p ≤ 1 one for each commodity pair (s, t), s ∈ R, t ∈ T ′ \ {s}, and

each feasible path p ∈ Wst is introduced. Then, a valid path model is obtained by replacing

(2) by (8)–(12) in model (1)–(7).

asij + asji = xij s ∈ R, {i, j} ∈ E (8)
∑

p∈Wst

λst
p = 1 s ∈ R, t ∈ T ′ \ {s} (9)

∑

p∈Wst:(i,j)∈p

λst
p ≤ asij s ∈ R, t ∈ T ′ \ {s}, (i, j) ∈ A (10)

λst
p ≥ 0 s ∈ R, t ∈ T ′ \ {s}, p ∈ Wst (11)

asij ∈ {0, 1} s ∈ R, (i, j) ∈ A (12)

Finally, for UPathDI we add the strengthening constraints (13) and (14) ensuring that

the indegree of each node i 6∈ R is identical for all arborescences and that Steiner nodes

cannot be leaves in them. In turn, we remove (4) and (5) since these constraints were shown

to be redundant in the resulting model [14].

8

00

13 23

22

21

33

32

43

42 62

61

72

71

(a) G0
L

10

03 23

22

33

32

31

43

42

41

52

51

72

(b) G1
L

Figure 3: Layered graphs corresponding to the instance given in Figure 1(a) for H = 3 and T ′ = T ∪ R.
Edges that map back to the solution in Figure 1(b) are drawn in bold.

as[δ−(i)] =

yi, i ∈ S

0, i = s

1, else

s ∈ R, i ∈ V (13)

as[δ+(i)] ≥ yi s ∈ R, i ∈ S (14)

3. Layered Graph Formulations

Reformulating hop-constrained network design problems using layered graphs recently

became a popular technique for obtaining theoretically strong ILP models yielding tight LP

bounds. Branch-and-cut algorithms used to solve these models are frequently among the

leading approaches for the underlying problems, cf. [13, 17]. In this section we show two

different layered graph approaches that can be used to model the HSTPMR.

3.1. Layered Graphs with H Layers

We now introduce one layered graph Gs
L = (V s

L , A
s
L) for each root node s ∈ R. For every

s ∈ R, V s
L is defined by its root node s0, together with nodes ih, 1 ≤ h ≤ H − 1, for all

original nodes i ∈ V \ {s} and nodes tH for all other relevant terminals t ∈ T ′ \ {s}. For

each pair of nodes ih, jh+1 ∈ V s
L we add an arc (ih, jh+1) to As

L if (i, j) ∈ A. Formally, for

each s ∈ R, V s
L = {s0} ∪ {ih : i ∈ V \ {s}, 1 ≤ h ≤ H − 1} ∪ {tH : t ∈ T ′ \ {s}} and

As
L = {(ih, jh+1) : ih ∈ V s

L , jh+1 ∈ V s
L , (i, j) ∈ A}; see Figure 3 for an example.

9

In addition to the previously introduced node and edge design variables, we use two new

sets of binary variables to model the problem in the layered graph framework. Variables

Xsh
ij , are associated to arcs (ih, jh+1) ∈ As

L and are set to one if the corresponding arc is part

of the rooted Steiner arborescence in Gs
L, for each s ∈ R. Variables Y sh

i are associated to

nodes ih ∈ V s
L , i ∈ V, 0 ≤ h ≤ H , and are set to one if the corresponding node is part of the

rooted Steiner arborescence in Gs
L, for each s ∈ R. The resulting MIP model to which we

will refer to as LG is given by (15)–(21) together with (3)–(7).

min
∑

{i,j}∈E

cijxij (15)

s.t. Xs[δ−(ih)] = Y sh
i s ∈ R, ih ∈ V s

L , i 6= s (16)

H
∑

h=1

Y sh
i

= 1 i ∈ T ′ \ {s}

≤ 1 i ∈ R \ (T ′ ∪ {s})

≤ yi i ∈ S

s ∈ R, i ∈ V (17)

∑

(ih−1,jh)∈A
s

L
, i 6=k

Xs,h−1
ij ≥ Xsh

jk s ∈ R, (jh, kh+1) ∈ As
L, j 6= s (18)

H−1
∑

h=0

(

Xsh
ij +Xsh

ji

)

≤ xij s ∈ R, {i, j} ∈ E (19)

Xsh
ij ∈ {0, 1} s ∈ R, (ih, jh+1) ∈ As

L (20)

Y sh
i ∈ {0, 1} s ∈ R, ih ∈ V s

L (21)

(3)− (7)

Indegree constraints (16) link arc to node variables on each layered graph, while con-

straints (17) ensure that each original node is used at most once on each layered graph

and link node variables on the layered graph to original node variables for potential Steiner

nodes. Since layered graphs are acyclic, inequalities (18) ensure connectivity on each layered

graph, i.e., they guarantee that an arc (jh, kh+1) emanating from node jh may only be used

if at least one ingoing arc (ih−1, jh) with i 6= k is selected. Constraints (19) link arc variables

on each layered graph to undirected edge variables on the original graph. Figure 4 shows

that in the context of this model, that is after adding all the information provided by the

layered graph variables, constraints (4) and (5) are still necessary to guarantee that the final

solution will be a tree.

10

2 3

0 1

6 7

4

5 8

(a)

2 3

0 14

5 8
6 7

(b)

2 3

0 1

6 7

4

5 8

(c)

00
41
12

51
22
33

(d)

10
41
02

51
32
13

(e)

Figure 4: (a) An illustrative instance with R = {0, 1} and terminals T = {2, 3} that is infeasible for H = 3
and T ′ = T ∪R; (b) Solution feasible for LG without (4) and (5); (c) Solution feasible for LG without (5);
(d) and (e) Arborescences in G0

L and G1
L corresponding to (b) and (c).

3.2. Model Enhancements (General)

Acyclicity of each layered graph, allows to eliminate subtours in model LG using a polyno-

mial number of constraints (18). Hence, LG is a compact model which can be solved by LP-

based branch-and-bound. It is well known, however, that one can strengthen layered graph

based models by adding directed cutset constraints (22) where V s
i = {ih ∈ V s

L | 1 ≤ h ≤ H}.

Xs[δ−(W)] ≥ 1, s ∈ R, t ∈ T ′ \ {s}, W ⊆ V s
L \ {s0}, V s

t ⊆ W (22)

The resulting model will be denoted by LGC. It contains an exponential number of

constraints and can be solved by branch-and-cut (B&C).

3.3. Model Enhancements for T ′ = T ∪ R

As pointed out in the introduction, the arborescences for each root share the same set

of edges. Thus, we can replace inequalities by equations in (17) and (19), i.e., consider

equations (23) and (24) instead.

H
∑

h=1

Y sh
i =

yi i ∈ S

1 i ∈ (R ∪ T) \ {s}

0 i = s

s ∈ R (23)

H−1
∑

h=0

(

Xsh
ij +Xsh

ji

)

= xij s ∈ R, {i, j} ∈ E (24)

We use LGCI to refer to model LGC where inequalities (17) and (19) are replaced by

equations (23) and (24). To make sure that the indegree of each Steiner node does not

11

exceed its outdegree, we can further add

Xs[δ+(ih)] ≥ Y sh
i s ∈ R, ih ∈ V s

L , i ∈ S (25)

to obtain model LGCIO.

Another set of valid inequalities is derived from the fact that the distance between two

roots must not depend on the arborscence considered, i.e., on the chosen root. Root-depth

constraints (26) which are further added to obtain model LGCIOR simply state that if root

q ∈ R is on level h w.r.t. Gs
L, then root s ∈ R must be on the same level w.r.t. Gq

L.

Y sh
q = Y qh

s s ∈ R, q ∈ R \ {s}, 1 ≤ h ≤ H (26)

3.4. The Case T ′ = T : Layered Graphs with H ′ = 2H − diam(T) Layers

As pointed out above, the strengthening inequalities (23) and (24) are not valid in this

case since we cannot simply ensure that the arborescences for each root share the same set

of edges. Corollary 1 permits us to introduce a different layered graph model Ĝs
L containing

H ′ layers for the case T ′ = T in which all arborescences use the same set of original nodes

and edges. In each such graph Ĝs
L the maximum layer H(i) of some original node i ∈ V is

defined as

H(i) =

0 if i = s

H ′ if i ∈ R \ {s}

H ′ − 1 if i ∈ S

H if i ∈ T

Formally, for each s ∈ R, Ĝs
L = (V̂ s

L , Â
s
L) is defined by V̂ s

L = {s0} ∪ {ih : i ∈ V \ {s}, 1 ≤

h ≤ H(i)} and Âs
L = {(ih, jh+1) : ih ∈ V̂ s

L , jh+1 ∈ V̂ s
L , (i, j) ∈ A}.

Based on this observations, model (27)–(33) to which we will refer to as LGE uses the

same set of variables as the previous model. Note, however, that for this case we consider H ′

layers which is almost as twice as the number of layers in the original graph. On the other

hand, the model defined in this extended layered graph permits us to use the strengthening

inequalities that have been used for the T ′ = T ∪ R case.

12

min
∑

{i,j}∈E

cijxij (27)

s.t. Xs[δ−(ih)] = Y sh
i s ∈ R, ih ∈ V̂ s

L , i 6= s (28)

H(i)
∑

h=1

Y sh
i =

1 i ∈ (T ∪R) \ {s}

yi i ∈ S
s ∈ R, i ∈ V (29)

∑

(ih−1,jh)∈Â
s

L
, i 6=k

Xs,h−1
ij ≥ Xsh

jk s ∈ R, (jh, kh+1) ∈ Âs
L, j 6= s (30)

H(i)
∑

h=0

Xsh
ij +

H(j)
∑

h=0

Xsh
ji = xij s ∈ R, {i, j} ∈ E (31)

Xsh
ij ≥ 0 s ∈ R, (ih, jh+1) ∈ Âs

L (32)

Y sh
i ≥ 0 s ∈ R, ih ∈ V̂ s

L (33)

(5)− (7)

Note that, we do not include constraints (3) and (4) in model LGE since they are redun-

dant as we will prove in Section 4. As previously discussed, by considering directed cutset

constraints (34) we can obtain a stronger model LGC
E which contains an exponential number

of constraints. To avoid that Steiner nodes may be leaves in any of the arborescences, we

further add inequalities (35) yielding model LGCO
E . Finally, by the same arguments as before

root-depth constraints (36) are valid and we will use LGCOR
E to refer to the resulting model.

Xs[δ−(W)] ≥ 1 s ∈ R, t ∈ (T ∪ R) \ {s}, W ⊆ V̂ s
L \ {s0},

{th : 1 ≤ h ≤ H(t)} ⊆ W (34)

Xs[δ+(ih)] ≥ Y sh
i s ∈ R, ih ∈ V̂ s

L , i ∈ S (35)

Y sh
q = Y qh

s s ∈ R, q ∈ R \ {s}, 1 ≤ h ≤ H ′ (36)

4. Polyhedral Comparison

In this section we compare the different formulations with respect to the value of their

LP relaxation. In Section 4.1 we address the case T ′ = T ∪R and in Section 4.2 we address

that case T ′ = T . We also show that some set of constraints become redundant after the

addition of some sets of valid inequalities.

13

By PM we will denote the convex hull of all feasible LP solutions of a MIP formulation

M and by proj
a
1,...,an(PM), the orthogonal projection of the convex hull of LP solutions of

M onto the space defined by variables a1, . . . , an. Furthermore, by vLP(.) we denote the

value of the LP relaxation of some model. When comparing two formulations F1 and F2,

we say F1 is stronger than F2 if vLP(F2) ≤ vLP(F1) and strictly stronger if there additionally

exist instances for which strict inequality holds. Furthermore, if for two formulations, none

of them is stronger than the other, we say that they are incomparable. In many cases strict

dominance follows due to the computational results that will be discussed in Section 5.1.

Usually, however, we will additionally provide solutions that are feasible for one model and

not feasible for the other. In some cases these figures will be left for the Appendix.

For better readability, Table 2 provides a summary of all model variants and their defi-

nitions.

4.1. Polyhedral comparison for T ′ = T ∪R

The following theorem which is proved by a series of subsequent lemmas summarizes the

obtained relations between the considered models when T ′ = T ∪R.

Theorem 4.1. For T ′ = T ∪R, the following relations hold:

LG

UPathDILGC

LGCI

LGCIO

LGCIOR

Thereby, an arrow indicates that the for-

mulation at the target is strictly stronger

than the one at the source while a dashed

edge indicates that the corresponding for-

mulations are incomparable.

Lemma 3. Formulation LGC is strictly stronger than formulation LG.

We skip the proof of this lemma, since it is well known that the result holds for the case

of a single root and the result easily extends to multiple roots.

Lemma 4. Formulation LGCI is strictly stronger than formulation LGC. Furthermore, con-

straints (3) and (4) are redundant in LGCI.

14

Table 2: Overview on the considered models.
Model T ′ Definition

UPathDI ∈ {T, T ∪ R} (1), (3), (6), (7), (8)–(14)
LG ∈ {T, T ∪ R} (15)–(21), (3)–(7)
LGC ∈ {T, T ∪ R} LG, (22)

LGCI T ∪R LGC, (23), (24)
LGCIO T ∪R LGCI, (25)
LGCIOR T ∪R LGCIO, (26)
LGE T (27)–(33), (5)–(7)
LGC

E T LGE, (34)
LGCO

E T LGC
E, (35)

LGCOR
E T LGCO

E , (36)

Proof. Since LGCI contains all constraints of model LGC it is sufficient to consider the

example given in Figure 8 in the Appendix which shows that constraints (23) and (19)

improve the LP bound. Computational results given in Section 5.1 further show this relation.

To prove the second result, consider an arbitrary root s ∈ R and edge {i, j} ∈ E incident

to some potential Steiner node i ∈ S. To see that constraints (3) are redundant we use

equations (24), (18), (16), and (23) together with the fact that the minimum and maximum

layer of nodes ih corresponding to potential Steiner nodes i is 1 and H − 1, respectively:

xij

(24)
=

H−1
∑

h=0

(Xsh
ji +Xsh

ij) =

H−2
∑

h=0

Xsh
ji +

H−1
∑

h=1

Xsh
ij

(18)

≤

≤

H−2
∑

h=0

Xsh
ji +

H−2
∑

h=0

∑

(kh,ih+1)∈A
s

L
,

k 6=j

Xsh
ki =

H−1
∑

h=1

Xs[δ−(ih)]
(16)
=

H−1
∑

h=1

Y sh
i

(23)
= yi

To show that equation (4) is implied:

∑

{i,j}∈E

xij

(24)
=

∑

{i,j}∈E

H−1
∑

h=0

(

Xsh
ij +Xsh

ji

)

=
∑

i∈V

H
∑

h=1

Xs[δ−(ih)]
(16)
=

(16)
=

∑

i∈V

H
∑

h=1

Y sh
i

(23)
= |R|+ |T |+

∑

i∈S

yi − 1

Lemma 5. Formulation LGCIO is strictly stronger than formulation LGCI. Furthermore,

inequalities (5) are redundant in LGCIO.

15

98

3

6

1

2
0

4

7

5

(a) (x̄, ȳ)

00

4111 51

726222

63 33

846414

957515

(b) (X̄0, Ȳ0)

10

6101

42 72 22 3252

8373 3353

94847404

9545

(c) (X̄1, Ȳ1)

Figure 5: A feasible solution (x̄, ȳ, X̄, Ȳ) to the LP relaxation of LGCI of an instance with R = {0, 1},
T = {3, 4, 5, 6, 7, 8, 9},H = 5, and T ′ = T ∪R. (a) Subgraph induced by variable values x̄e, e ∈ E; ȳ3 = 1/3.
(b), (c) Subgraphs induced by variable values X̄sh

ij , s ∈ {0, 1}, (ih, jh+1) ∈ As
L, respectively. Solid edges and

arcs indicate a variable value of 1, dashed edges and arcs of 2/3 and dotted edges and arcs of 1/3.

Proof. Since LGCIO contains all constraints of LGCI, it only remains to show that LGCIO

is strictly stronger. This relation can be seen from the computational results discussed in

Section 5.1. In addition, Figure 9 in the Appendix illustrates an example that is feasible for

the LGCI model, but it violates inequalities (25).

Finally, for each potential Steiner nodes i ∈ S, inequalities (5) are redundant since:

∑

{i,j}∈δ(i)

xij

(24)
=

∑

{i,j}∈δ(i)

H−1
∑

h=0

(

Xsh
ij +Xsh

ji

)

=

H
∑

h=1

Xs[δ−(ih)] +

H−1
∑

h=0

Xs[δ+(ih)]

(16),(25)

≥

H
∑

h=1

Y sh
i +

H−1
∑

h=0

Y sh
i

(24)
= 2yi

Lemma 6. Formulation LGCIOR is strictly stronger than formulation LGCIO.

Proof. Since LGCIOR contains all constraints of LGCIO, it only remains to show that root-

depth constraints (26) can be violated in an optimal LP solutions of model LGCIO. Consider

the solution shown in Figure 5 feasible for LGCIO (H = 5; T ′ = T ∪ R). Clearly, inequali-

ties (26) are violated since Ỹ 05
1 6= Ỹ 15

0 and also Ỹ 04
1 6= Ỹ 14

0 .

It remains to show that, for solution values (x̄, ȳ) corresponding to Figure 5(a) we cannot

find a different set of feasible vectors (X̃s, Ỹs), s ∈ {0, 1}, that satisfy constraints (26). This

is established by the following two observations which will be proved in the following:

16

1. For any solution vector (X̃0, Ỹ0) feasible w.r.t. (x̄, ȳ), Ỹ 05
1 ≥ 1/3 holds.

2. For any solution vector (X̃1, Ỹ1) feasible w.r.t. (x̄, ȳ), Ỹ 15
0 = 0 holds.

To see that Ỹ 05
1 = 1/3 must hold, note that each path in 5(a) between nodes 0 and 3

consists of at least three edges. Since H = 5 and we need to establish a feasible connection

from 0 to 9, this implies that Ỹ 03
3 = 1 and thus through the path 0-5-7-3 and 0-1-6-3 we send

2/3 and 1/3 units of flow, respectively. Since indegree of 6 and 7 needs to be one, 1/3 units

of flow are sent through (6, 7), (3, 6), (2, 6). Consequently, 1/3 units of flow has to be sent

along 0-5-7-3-6-1 to reach node 1 which means that Ȳ 05
1 ≥ 1/3.

Note that Ỹ 15
0 = 0 means that node 0 cannot be at the last layer. To see that this holds

observe that terminal 4 can only be reached through node 0. Therefore, when 1 is taken as

the root, the maximal layer for node 0 is four.

Lemma 7. Formulation UPathDI is strictly stronger than formulation LG.

Proof. Let (x̄, ȳ, ā, λ̄) be an optimal solution to the LP relaxation of formulation UPathDI.

We first show how to derive a solution (x̄, ȳ, X̄, Ȳ) ∈ PLG with the same objective value.

The main difficulty in this derivation is that the linking constraints (19) of model LG sum

over all copies of one edge e ∈ E while the linking constraints (8) of model UPathDI consider

each terminal individually. Thus, for each s ∈ R and each arc (i, j) ∈ A, we use values of

the variables asij to obtain the values of the variables Xsh
ij , (ih, jh+1) ∈ As

L, 0 ≤ h ≤ H − 1 as

follows:

X̄sh
ij =

āsij if i = s

max{0,min{āsij,
∑

(kh−1,ih)∈A
s

L
:k 6=j X̄

s,h−1
ki } −

∑h−1
h′=0 X̄

sh′

ij } otherwise
(37)

For each root s and for each arc (i, j), the values X̄sh
ij are defined recursively w.r.t. the

layers starting from the root. Available capacities āsij are distributed among the layers while

respecting the connectivity constraints (18) and ensuring that
∑H−1

h=0 X̄sh
ij ≤ āsij . We note

that since ās[δ−(i)] ≤ 1, ∀i ∈ V , cf. (13), we can use equations (16) to set variable values

Ȳ sh
i , ∀s ∈ R, ∀ih ∈ V s

L . To see that inequalities (17) hold, we first observe that for each node

i ∈ V , we have

H
∑

h=1

Ȳ sh
i

(16)
=

H
∑

h=1

X̄s[δ−(ih)] =
∑

(j,i)∈A

H
∑

h=1

X̄sh
ji

(37)

≤
∑

(j,i)∈A

āsji
(13)
=

ȳi i ∈ S

0 i = s

1 else

17

It remains to prove that for each root s ∈ R and each terminal t ∈ T ′ \ {s},
∑H

h=1 Ȳ
sh
t =

1 does hold. First observe that due to (9), (10), and (13) for each arc (u, t) we have
∑

p∈Wst:(u,t)∈p
λ̄st
p = āsut. Furthermore, for each arc (i, j), i 6= s, contained in the used

set of paths from s to t, i.e., in the set {p ∈ Wst | λ̄p > 0}, we have
∑

p∈Wst|(i,j)∈p
λ̄p ≤

∑

p∈Wst|(k,i)∈p,k 6=j λ̄p since flow balance holds for each path. Thus, due to (37) we will dis-

tribute the total available capacity āsit for each arc (i, t) with t ∈ T ′ \ {s} on the arcs of the

layered arborescence with root s, i.e.,
∑H

h=1 X̄
s[δ−(th)] =

∑H

h=1 Ȳ
sh
t = ās[δ−(t)] = 1.

To see that the inequality can be strict consider the LP-solution (x̄, ȳ, X̄, Ȳ) given in

Figure 8 (see Appendix) feasible for LG. It is, however, not possible to derive assignments

of variable values a0 and a1 that satisfy all constraints of model UPathDI.

Lemma 8. Formulations UPathDI and LGC are incomparable.

Proof. We first consider the solution given in Figure 8 which is a feasible LP-solution of LGC

but infeasible for the LP relaxation of UPathDI. Hence, it suffices to additionally consider an

LP-solution feasible for UPathDI which is infeasible for LGC. As already observed by Gouveia

et al. [13] for the single root case a path formulation allows to use the full capacity of arcs

at different positions in paths to different terminals, while in a layered graph formulation

total capacity must be equal to the sum of capacities on different positions independently

of the considered terminal. Their example can be generalized to the multiple root case in a

straightforward way.

Lemma 9. Formulation LGCIO is strictly stronger than formulation UPathDI.

Proof. We show that given an LP solution (x̄, ȳ, X̄, Ȳ) of LGCIO we can construct a solution

(x̄, ȳ, ā, λ̄) ∈ PUPathDI using

āsij :=
H−1
∑

h=0

X̄sh
ij ∀s ∈ R, ∀(i, j) ∈ A (38)

Hereby, to simplify the notation we assume that X̄sh
ij = 0 if (ih, jh+1) /∈ As

L. From

Lemma 4 we conclude that inequalities (3) are satisfied since they are implied by model

LGCIO. Constraints (8) follow due to (38) and (24). Furthermore, from the directed cutset

constraints (22), using the max-flow min-cut theorem together with the path decomposition

of the flow we can construct the necessary set of paths on the layered graph for each root

s ∈ R and each relevant terminal t ∈ T ′ \ {s}. Since hop constraints are implicitly satisfied

in the structure of the layered graph, constraints (9) and (10) are satisfied. Using (38), (16),

18

and (23) we show that equations (13) are satisfied as follows:

∑

(j,i)∈A

āsji
(38)
=

∑

(j,i)∈A

H−1
∑

h=0

X̄sh
ji =

H
∑

h=1

X̄s[δ−(ih)]
(16)
=

H
∑

h=1

Ȳ sh
i

(23)
=

ȳi i ∈ S

0 i = s

1 else

Finally, using the fact that potential Steiner nodes i ∈ S do not exist in any layered graph

at layer H , inequalities (14) hold for each root s ∈ R since

∑

(i,j)∈A

āsij
(38)
=

∑

(i,j)∈A

H−1
∑

h=0

X̄sh
ij =

H−1
∑

h=0

X̄s[δ+(ih)]
(25)

≥

H−1
∑

h=0

Ȳ sh
i

(23)
= ȳi.

To see that the inclusion can be strict, we refer again to the previously mentioned straight-

forward generalization of the example provided by Gouveia et al. [13] for the single root

case.

4.2. Polyhedral comparison for T ′ = T

In this subsection we prove similar results for the case T ′ = T . Again, the following

theorem is proved by a series of subsequent lemmas.

Theorem 4.2. For T ′ = T , the following relations hold:

LG

UPathDI LGC LGE

LGC
E

LGCO
E

LGCOR
E

Thereby, an arrow indicates that

the formulation at the target is

strictly stronger than the one at the

source while a dashed edge indicates

that the corresponding formulations

are incomparable.

In what follows, we will prove only those results stated in the latter theorem that are

non-trivial and cannot be derived in a similar way as for the case T ′ = T ∪R.

Lemma 10. Formulation LGC is strictly stronger than formulation LG. Furthermore, for-

mulation LGC
E is strictly stronger than formulation LGE.

19

We skip the proof of this result since it is well known for the case of one root and it is

easy to find examples showing that the directed cutset constraints can be violated in optimal

LP solutions of models LG and LGE, respectively.

Lemma 11. Formulation LGE is strictly stronger than formulation LG and formulation

LGC
E is strictly stronger than formulation LGC. Furthermore, constraints (3) and (4) are

redundant in LGE.

Proof. To see that LGE is stronger than LG, we observe that it essentially differs from model

LG by equations (29) which are lifted variants of inequalities (17) and equations (31) which

are stronger versions of inequalities (19). To see that the relation is strict, we consider

the LP-solution of LG corresponding to Figure 6 and note that we cannot find a layered

arborescence with root 1 feasible for LGE, i.e., such that the indegree of node 0 is one,

without increasing the variable value x01 or x03.

The same arguments can be used when considering the formulations with directed cutset

constraints, i.e., LGC
E and LGC

E. Redundancy of constraints (3) and (4) in LGE can be shown

using an analogous deduction as in Lemma 4 for the case T ′ = T ∪R.

Lemma 12. Formulations LGE and LGC are incomparable.

Proof. We first observe that if T ′ = T , the solution given in Figure 6 is a valid LP solution

for LGC. As argued before, however, we cannot find a feasible arborescence with root 1 such

that the indegree of 0 (and all terminals) is one. Since this argument does not depend on

the maximum allowed path length (and thus on the number of layers on a layered graph)

this solution is infeasible for LGE. On the other hand, it is well known that the directed

cutset constraints (22) can be violated in optimal LP-solutions of LGE.

Lemma 13. Formulation LGCO
E is strictly stronger than formulation LGC

E. Formulation

LGCOR
E is strictly stronger than formulation LGCO

E . Furthermore, constraints (5) are redun-

dant in LGCO
E .

Proof. LGCOR
E contains all constraints of LGCO

E which in turn contains all constraints of LGC
E.

Strict inequality can be seen by modifying the previously discussed exemplary solutions given

in Figures 5 and 9 to the case T ′ = T . Redundancy of inequalities (5) in LGCO
E can be shown

in an analogous way as for the case T ′ = T ∪R in Lemma 5.

Lemma 14. Formulation UPathDI is strictly stronger than formulation LG. Furthermore,

formulation LGCO
E is strictly stronger than formulation UPathDI.

20

5

3 4

0 1 2

(a) (x̄, ȳ)

00

11

22

23

31

32 42

43

52

53

(b) (X̄0, Ȳ0)

01

10

21

23

31

32 42 52

53

(c) (X̄1, Ȳ1)

Figure 6: A feasible solution (x̄, ȳ, X̄, Ȳ) to the LP relaxation of LG or LGC of an instance with R = {0, 1},
T = {2, 3, 4, 5}, T ′ = T , and H = 3. (a) Subgraph induced by variable values x̄e, e ∈ E. (b), (c) Subgraphs
induced by variable values X̄sh

ij , s ∈ {0, 1}, (ih, jh+1) ∈ As
L, respectively. Solid edges indicate a corresponding

variable value of 1 while dashed edges and arcs indicate a variable value of 1/2.

Proof. One can prove that UPathDI is stronger than LG and that LGCO
E is stronger than

UPathDI using analogous arguments than for the case T ′ = T ∪R, cf., Lemmas 7 and 9. To

see that the first relation can be strict consider the previously discussed example given in

Figure 6 which provides a feasible LP solution of LG which is infeasible for UPathDI. For

the second relation, again consider the previously mentioned straightforward generalization

of the example from [13] to the case with more than one root node.

Lemma 15. Formulations LGC and UPathDI are incomparable.

Proof. As mentioned before for the case T ′ = T ∪ R an exemplary LP-solution feasible for

UPathDI but infeasible for LGC can be constructed as a straightforward generalization from

the single root case [13]. On the other hand, as discussed in Lemma 12 the solution given in

Figure 6 is feasible for LGC but we cannot find a feasible orientation with root 1 such that

the indegree of 0 is one, i.e., the solution is infeasible for the LP-relaxation of UPathDI.

5. Computational Study

In this section, we detail all components of the implemented branch-and-cut algorithms

(B&C) for the different variants of LG and LGE and of the column generation approach

(CG) used to solve the LP relaxation of UPathDI. All approaches are implemented in C++

using IBM CPLEX 12.4 and all experiments have been performed on a single core of an

Inten Xeon processor with 2.53 GHz using at most 3GB RAM.

For the separation of directed cutset constraints (22) or (34), respectively, we run the

maximum flow algorithm of Cherkassky and Goldberg [2]. In all separation variants, we

use nested and backcuts, cf. [18], and insert at most 100 violated cuts in each iteration. If

21

a particular model considers outdegree constraints on potential Steiner nodes, cf. (25) and

(35), or root-depth inequalities, cf. (26) or (36), they are separated dynamically, rather than

statically inserted in the beginning, since preliminary tests showed that typically only very

few of them will be violated.

In the column generation approach of UPathDI, a hop constrained shortest path problem

between each root and each relevant node on a graph with nonnegative arc costs needs to

be solved in order to solve the pricing subproblem. As originally proposed by Gouveia et al.

[11] for a spanning tree problem with distance constraints we potentially add multiple path

variables for each root terminal pair by considering the shortest paths to all nodes adjacent

to a currently considered relevant node for all hop values 0 ≤ h ≤ H − 1, for more details

see [14].

Benchmark Instances. Evaluation and comparison of the approaches and models is con-

ducted on benchmark instances from [13] that are typically used for testing HMSTP and

DMSTP approaches. We chose the first instance from each of the groups of random (R) and

Euclidean instances (C) with 31, 41, and 61 nodes. For the sake of simplicity we will use

30, 40, and 60 to refer to them. All graphs are complete and we use the first |T | nodes as

terminals and the last |R| nodes as roots. In our experiments, we choose |R| ∈ {2, 4, 6, 8},

|T | ∈ {5, 10, 15, 20}, and test all possible combinations for hop limits H = 3, . . . , 6 and

T ′ ∈ {T, T ∪ R}.

5.1. Computational Results

Tables 3 and 4 detail our results regarding the LP relaxations of all proposed models for

T ′ = T ∪R and T ′ = T , respectively. Results are grouped by instance sets, numbers of root

nodes, and the hop limit. The tables provide information on: the total number of instances

in each group (#), the number of instances for which the LP relaxation of a particular model

could be solved within 7, 200 CPU-seconds (#solved), geometric means of the corresponding

CPU-times, the numbers of instances for which the LP relaxation is integral (#int), average

and maximum LP gaps in percent calculated by (OPT − vLP(.))/OPT. Notice, that #all

denotes the number of instances for which the LP-relaxation could be solved by all models

and for which the optimal IP solution is known. The values for #int, average and maximum

gaps are calculated only among those instances.

We first observe that solving the LP relaxation of UPathDI needs significantly more CPU-

time than solving the LP-relaxation of any of the layered graph models both for T ′ = T ∪R

and for T ′ = T . Furthermore, model UPathDI is not only theoretically dominated by the

22

Table 3: Results for solving LP relaxations in case T ′ = T ∪ R grouped by instance set, |R|, and H . Numbers of solved instances (#solved),
geometric means of CPU-times in seconds, numbers of instances solved by all approaches and where IP optimum is known (#all), numbers
of instances where LP relaxation is integral (#int), average and maximum LP relaxation gaps in %. P and L are used as abbreviations for
UPathDI and LG, respectively; time limit: 7 200 CPU-seconds.

#solved CPU-time [s] #int Avg. Gap [%] Max. Gap [%]
P L LC LCI LCIO LCIOR P L LC LCI LCIO LCIOR #all P L LC LCI LCIO LCIOR P L LC LCI LCIO LCIOR P L LC LCI LCIO LCIOR

Set C30 64 33 64 61 60 60 59 826 18 59 49 49 55 33 25 4 27 27 27 27 0.6 5.8 0.4 0.4 0.4 0.3 6.3 14.9 4.2 4.2 4.2 4.2

C40 64 23 64 51 52 52 48 2324 80 374 296 298 333 23 18 1 20 20 20 20 0.4 8.9 0.2 0.2 0.2 0.2 4.8 15.5 2.3 2.3 2.3 2.3

C60 64 14 54 38 37 35 36 4704 465 1559 1579 1613 1608 13 8 0 8 8 8 8 0.9 10.6 0.7 0.7 0.7 0.7 3.6 17.9 3.3 3.3 3.3 3.3

R30 64 38 64 64 64 64 64 1014 9 15 12 13 16 38 20 17 19 23 24 24 2.2 4.1 2.5 1.7 1.6 1.5 10.4 14.0 12.8 8.7 8.7 8.6

R40 64 25 64 59 59 58 57 2277 54 166 178 197 234 24 12 3 13 14 14 15 3.6 8.6 4.3 2.2 2.2 2.1 19.9 29.3 22.5 11.8 11.8 11.5

R60 64 15 59 50 46 45 43 4438 249 473 621 652 744 15 3 2 3 5 5 6 8.3 13.1 10.7 4.3 4.0 3.6 25.2 30.8 28.5 14.3 13.9 13.8

|R| 2 96 86 96 96 96 96 96 183 4 9 8 8 8 86 55 13 58 61 62 63 1.5 7.5 1.8 1.0 1.0 0.9 25.2 30.0 25.7 14.3 13.9 13.8

4 96 46 96 93 93 92 92 2719 46 115 108 121 136 44 22 8 24 26 26 27 3.7 7.9 4.3 2.2 2.1 2.0 20.7 30.8 28.5 8.7 8.7 8.6

6 96 13 93 77 73 72 68 5835 193 601 592 605 705 13 8 5 7 9 9 9 2.5 5.8 2.7 1.4 1.4 1.2 19.9 29.3 22.5 11.8 11.8 11.5

8 96 3 84 57 56 54 51 7066 556 1949 2002 2034 2352 3 1 1 1 1 1 1 4.0 8.4 3.2 2.0 2.0 1.9 6.3 13.1 6.4 3.1 3.1 2.9

H 3 96 51 96 94 94 94 92 1134 18 51 55 58 68 51 15 0 16 21 21 23 3.9 9.2 4.7 2.1 2.1 1.9 20.7 30.8 28.5 11.8 11.8 11.5

4 96 38 96 86 83 81 78 2145 52 168 184 198 228 37 23 7 25 25 26 26 3.1 8.5 3.4 2.2 2.0 1.9 25.2 30.0 25.7 14.3 13.9 13.8

5 96 31 92 75 74 73 71 2717 105 330 300 317 367 31 23 7 23 25 25 25 0.6 5.8 0.7 0.6 0.6 0.5 8.6 17.0 10.6 8.6 8.5 8.1

6 96 28 85 68 67 66 66 3097 182 421 316 325 327 27 25 13 26 26 26 26 0.1 4.7 0.0 0.0 0.0 0.0 0.7 17.9 0.3 0.3 0.3 0.3

Table 4: Results for solving LP relaxations in case T ′ = T grouped by instance set, |R|, and H . Numbers of solved instances (#solved),
geometric means of CPU-times in seconds, numbers of instances solved by all approaches and where IP optimum is known (#all), numbers of
instances where LP relaxation is integral (#int), average and maximum LP-gaps in %. P and L are used as abbreviations for UPathDI and LG,
respectively; time limit: 7 200 CPU-seconds.

#solved CPU-time [s] #int Avg. Gap [%] Max. Gap [%]
P L LC LE LC

E LCO
E LCOR

E P L LC LE LC
E LCO

E LCOR
E #all P L LC LE LC

E LCO
E LCOR

E P L LC LE LC
E LCO

E LCOR
E P L LC LE LC

E LCO
E LCOR

E

C30 64 40 64 57 64 57 57 56 600 16 116 21 93 114 121 40 29 0 27 4 32 32 33 0.6 11.5 0.7 5.8 0.4 0.4 0.3 5.0 21.1 6.8 14.9 4.2 4.2 4.2

C40 64 28 64 46 62 44 45 40 2031 61 487 132 552 620 703 26 19 0 20 2 21 21 23 0.6 13.9 0.6 8.3 0.3 0.3 0.2 5.5 26.1 6.9 15.5 3.2 3.2 2.5

C60 64 16 60 31 42 28 29 26 4413 364 2082 853 2657 2672 2747 13 8 0 7 0 8 8 8 0.9 15.2 0.9 9.8 0.7 0.7 0.7 3.6 25.4 3.3 17.9 3.3 3.3 3.3

R30 64 48 64 64 64 64 64 63 754 10 19 14 26 31 36 48 22 16 21 19 22 26 27 2.8 5.7 3.2 4.6 2.6 2.4 2.2 11.1 25.8 13.4 18.6 10.1 9.6 9.4

R40 64 31 64 57 62 51 48 48 1904 42 176 109 350 425 487 26 12 2 11 3 12 12 12 3.8 10.8 4.8 8.0 3.3 3.0 2.9 16.8 35.2 21.1 28.9 14.8 14.0 13.8

R60 64 16 61 45 49 39 35 33 3992 191 532 502 994 1432 1540 15 3 2 3 2 3 4 4 9.2 14.1 11.0 12.1 8.3 5.7 5.4 25.7 35.2 29.9 30.0 24.8 16.9 16.8

|R| 2 96 86 96 96 96 96 96 96 188 4 11 4 13 15 16 86 55 11 57 13 58 61 61 1.6 8.5 1.8 7.3 1.4 1.0 1.0 25.2 30.0 25.7 30.0 24.8 14.1 13.9

4 96 52 96 91 93 87 85 83 2027 39 160 85 242 306 359 49 22 5 22 9 23 24 24 4.2 13.2 4.8 7.5 3.6 3.2 3.0 25.7 35.2 29.9 28.9 20.8 16.9 16.8

6 96 28 96 68 84 59 60 56 4399 145 855 409 1227 1435 1592 22 10 4 8 6 10 11 15 2.5 11.7 3.1 5.6 2.1 2.0 1.8 11.3 26.1 14.9 18.2 11.1 11.0 10.7

8 96 13 89 45 70 41 37 31 5870 394 2446 1070 3088 3421 3765 11 6 0 2 2 7 7 7 2.3 13.7 3.5 6.3 2.0 2.0 1.8 8.5 25.8 10.4 18.6 8.3 8.2 7.9

H 3 96 63 96 92 96 92 90 84 840 14 59 32 123 151 173 57 16 0 18 0 19 20 22 4.2 12.0 4.9 8.8 3.3 2.9 2.7 25.7 35.2 29.9 28.9 20.8 16.9 16.8

4 96 43 96 78 90 71 71 68 1810 44 231 106 362 467 524 42 24 5 23 6 26 27 29 3.5 12.5 4.1 8.6 3.3 2.6 2.5 25.2 30.0 25.7 30.0 24.8 14.1 13.9

5 96 38 96 68 82 62 58 56 2420 87 431 177 534 624 674 37 25 5 22 8 25 28 28 0.9 8.9 1.2 5.2 0.9 0.8 0.7 9.6 24.1 13.2 17.0 9.6 9.2 8.9

6 96 35 89 62 75 58 59 58 2670 166 601 249 485 523 555 32 28 10 26 16 28 28 28 0.2 7.7 0.2 4.0 0.2 0.2 0.1 2.7 26.1 2.2 17.9 1.8 1.8 1.8

23

stronger layered graph variants but also exhibits significantly larger LP gaps in our test cases.

Thus, it is clearly not competitive to the layered graph approaches. Since in the integer case

the latter are additionally expected to benefit much more from built-in preprocessing of state-

of-the-art ILP solvers we will not consider model UPathDI in the remainder of this study.

Comparing the different layered graph models, the largest improvement on the reported LP

gaps is obtained with the inclusion of the directed cutset constraints. On the other hand,

their inclusion also significantly increases the runtime. From Table 3 we further observe that

when T ′ = T ∪R, that is in the case where the arborescences of each root share the same set

of nodes and edges, the addition of equations (23) and (24), often yields a further significant

reduction on the reported LP gaps. This reduction is usually obtained with no cost or

only with little cost in terms of CPU-time. Adding outdegree constraints (25) for potential

Steiner nodes on each layered graph and root-depth constraints (26) further reduces the

obtained gaps in many cases. This improvement, however, is typically rather small. On the

other hand, since we only dynamically separate these constraints the additional CPU-time

is almost negligible.

For T ′ = T , cf. Table 4, we conclude that despite the reported tighter LP bounds, the

additional CPU-time needed to solve LGE is not negligible compared to LG.

Similar to our previous observations w.r.t. LGCI in case T ′ = T ∪R, the bounds of model

LGC
E are clearly better than those of LGE or LGC. Outdegree and root-depth constraints

produce a further, although usually rather small, improvement on the reported LP bounds.

Their influence seems to be more significant for the larger random instances.

Overall, we conclude that the LP gaps usually increase with the instance size, increasing

number of root nodes or decreasing hop limit and that the gaps resulting from random in-

stances (R) are usually significantly larger than those resulting from the Euclidean instances

(C). Furthermore, all proposed model enhancements are not only of theoretical importance

but clearly tighten the LP bounds in many cases. In general the additional CPU-time needed

to compute the tighter gaps is reasonable and, as we will see below, using the enhancements

often contributes for solving the integer models.

Tables 5 and 6 summarize the computational results for solving the layered graph models

in the integer case for T ′ = T ∪ R and T ′ = T , respectively. Here, we report the numbers

of instances in each set (#), the numbers of instances solved to proven optimality within

the time limit of 7, 200 CPU-seconds (#solved), geometric means of CPU-times in seconds,

average optimality gaps in percent, numbers of instances where the the LP relaxation could

be solved by each layered graph model (#L), and average optimality gaps in percent on

24

them. Hereby, optimality gaps are calculated as (UB − LB)/UB where UB and LB denote

the obtained upper and lower bounds, respectively.

From Table 5, i.e., in case T ′ = T ∪ R, we first observe that model LGCI clearly out-

performs the weaker variants LG and LGC with respect to all analyzed criteria. Whether

LGCI or the two even stronger models LGCIO and LGCIOR perform best heavily depends

on the considered instance and its parameters. On the one hand, LGCI often yields the

lowest CPU-times and optimality gaps after two hours. On the other hand, LGCIO and

LGCIOR successfully solve some instances to proven optimality that could not be solved by

the theoretically weaker models. For T ′ = T the benefit of the stronger models including

the various enhancements is intensified. LGCOR
E solved more instances to proven optimality

than any of the other models. LGC
E and LGCO

E also perform almost as good. With respect to

needed CPU-times, these three models are usually quite close to each other and frequently

exhibit a better overall performance than the weaker variants. In particular, we conclude

that considering the extended layered graph with 2H−diam(T) layers which enables most of

the strengthening techniques clearly pays off in practice. When comparing the average gaps

grouped by the numbers of root nodes, we observe that only for |R| = 2 we were able to solve

all instances to optimality. The problem becomes more difficult to solve already for |R| = 4,

where the average gaps are 11.1% and 21.3% for T ′ = T ∪R and T ′ = T , respectively. Note

that for the instances of manageable size (i.e., where the LP relaxations could be solved by

all layered graph models) the average gaps are significantly smaller. When |R| = 6 or |R| = 8

the remaining gaps remain, however, quite large (e.g., around 26% for |R| = 8). Overall,

we conclude that the models including the proposed enhancements often outperform their

weaker variants and in particular allow to solve more instances to proven optimality within

the given time limit.

6. Conclusions

In this article, we studied a generalization of the hop- and diameter constrained Steiner

tree problems which arises by introducing multiple central, i.e., root, nodes. After introduc-

ing the general case we draw our attention to two particular cases which are motivated from

practical applications. For them we identified special polynomially solvable cases and proved

that the problem is NP-hard in general. Furthermore, we discussed MIP models for the two

cases based on layered graph reformulations together with strengthening valid inequalities,

established a hierarchy with respect to their LP relaxation values, and also compared them

theoretically to a previously proposed path model. A computational study carried out on

25

Table 5: Results for T ′ = T ∪ R grouped by instance set, |R|, and H . Numbers of instances (#solved) solved to proven optimality, geometric
means of CPU-times in seconds, average optimality gaps in %, numbers of instances (#L) for which the LP relaxation could be solved by all
layered graph variants, and average optimality gaps in % on the them; time limit: 7 200 CPU-seconds.

#solved CPU-time [s] Avg. Gap [%] Avg. Gap [%] (LP solved)
LG LGC LGCI LGCIO LGCIOR LG LGC LGCI LGCIO LGCIOR LG LGC LGCI LGCIO LGCIOR #L LG LGC LGCI LGCIO LGCIOR

Set C30 64 48 58 58 59 57 273 79 62 70 72 8.9 5.7 7.9 7.8 10.3 59 6.9 0.8 0.0 1.7 2.7
C40 64 32 42 48 44 47 1371 417 286 369 355 20.3 21.5 17.5 19.8 20.8 47 8.7 1.4 0.3 3.1 2.6
C60 64 14 38 38 37 35 4550 1626 1495 1830 1826 42.9 39.1 36.6 38.6 41.7 35 14.7 0.0 0.0 0.0 0.0

R30 64 58 53 56 58 60 60 86 38 45 44 7.0 13.6 8.3 8.3 6.3 64 7.0 13.6 8.3 8.3 6.2

R40 64 33 27 33 35 35 698 823 569 574 550 35.2 46.9 39.1 39.0 39.3 56 28.7 39.9 30.7 30.5 30.6
R60 64 25 23 35 32 31 1597 2007 943 1063 1087 49.2 56.8 39.3 44.5 46.6 43 29.6 37.4 15.1 22.0 22.8

|R| 2 96 86 93 96 96 96 41 18 11 13 14 1.1 2.1 0.0 0.0 0.0 96 1.1 2.1 0.0 0.0 0.0

4 96 64 75 84 84 83 702 390 202 254 232 17.3 15.9 9.1 10.0 11.1 92 15.1 15.5 6.2 7.2 7.2
6 96 37 46 54 52 52 2063 1465 1026 1146 1169 41.7 41.9 33.4 39.0 41.1 68 27.3 23.1 15.1 20.9 21.1
8 96 23 27 34 33 34 3945 3654 2907 3145 3095 48.9 62.4 56.6 56.3 57.7 48 27.2 33.9 27.4 28.2 26.5

H 3 96 69 67 77 78 79 300 282 100 118 113 15.4 20.9 10.5 11.3 11.6 92 15.2 19.5 10.6 11.2 11.4
4 96 43 49 60 60 58 1052 581 431 472 475 32.3 38.0 29.8 31.1 34.0 77 25.4 27.0 16.8 19.1 20.2
5 96 48 58 65 63 66 944 546 412 497 500 28.8 34.5 28.6 32.5 30.9 70 11.5 12.3 7.9 10.4 8.1
6 96 50 67 66 64 62 786 430 370 433 428 32.5 29.1 30.1 30.4 33.5 65 7.6 1.4 1.4 3.1 3.1

Table 6: Results for T ′ = T grouped by instance set, |R|, and H . Numbers of instances (#solved) solved to proven optimality, geometric means
of CPU-times in seconds, average optimality gaps in %, numbers of instances (#L) for which the LP relaxation could be solved by all layered
graph variants, and average optimality gaps in % on the them; time limit: 7 200 CPU-seconds.

#solved CPU-time [s] Avg. Gap [%] Avg. Gap [%] (LP solved)
LG LGC LGE LGC

E LGCO
E LGCOR

E LG LGC LGE LGC
E LGCO

E LGCOR
E LG LGC LGE LGC

E LGCO
E LGCOR

E #L LG LGC LGE LGC
E LGCO

E LGCOR
E

Set C30 64 36 52 42 57 57 56 576 173 370 140 140 143 10.2 15.1 14.5 10.9 10.3 12.5 54 6.9 2.8 7.6 0.0 0.0 0.0

C40 64 23 35 29 38 38 39 2166 783 1779 834 725 704 26.0 33.1 29.9 33.1 31.6 31.5 39 9.8 2.3 8.5 3.1 1.8 3.1
C60 64 7 23 9 27 26 27 5581 2631 4930 2854 2905 2912 51.3 56.6 56.1 53.9 51.2 52.6 25 19.0 2.3 18.7 0.0 0.0 0.0

R30 64 57 50 59 55 54 58 66 104 86 110 96 99 6.4 16.6 2.7 12.9 11.5 7.3 63 6.5 15.4 2.5 11.5 11.7 7.4
R40 64 26 26 27 30 28 26 980 1103 1082 1018 961 984 45.9 50.2 43.5 47.7 51.0 53.6 48 34.2 40.0 29.9 34.4 36.8 40.2
R60 64 26 19 26 22 21 23 1792 2180 2205 2475 1954 1911 52.6 63.1 55.0 61.4 61.8 60.2 32 21.5 36.8 18.8 31.7 24.2 24.3

|R| 2 96 83 93 87 94 95 96 49 22 57 30 24 24 3.0 2.0 2.3 1.3 0.2 0.0 96 3.0 2.0 2.3 1.3 0.2 0.0

4 96 53 63 60 73 69 71 1082 706 955 693 618 651 19.6 26.8 18.2 20.7 21.9 21.3 82 14.2 19.4 10.9 12.0 11.2 12.5
6 96 24 34 28 41 41 40 3130 2472 2828 2162 2033 2066 47.3 53.5 50.4 51.4 50.8 52.1 53 28.8 27.7 27.2 26.8 25.5 27.7
8 96 15 15 17 21 19 22 5258 5145 4956 4591 4614 4456 58.3 74.1 63.6 73.2 72.1 71.6 30 32.9 37.3 28.4 32.6 35.6 26.6

H 3 96 63 58 64 70 68 70 394 412 366 294 311 306 19.8 25.5 15.2 17.6 18.3 17.9 83 14.6 19.5 11.3 12.4 13.7 12.3
4 96 38 43 39 49 50 50 1270 839 1308 885 789 797 33.7 46.4 37.5 47.2 43.8 44.6 68 22.5 29.7 20.5 27.0 22.7 24.7
5 96 38 47 43 52 51 52 1326 866 1354 945 858 901 34.5 45.1 38.9 43.4 41.1 42.8 54 11.2 11.6 9.1 8.5 7.9 9.0
6 96 36 57 46 58 55 57 1302 670 1176 827 670 654 40.2 39.5 42.9 38.5 41.8 39.8 56 11.2 1.8 10.5 3.4 4.3 1.8

26

a set of benchmark instances known from the literature shows that the branch-and-cut ap-

proaches based on the layered graph reformulations clearly outperform the previously leading

path model. Our results clearly indicate that all proposed model enhancements reduce the

LP gaps in practice. Furthermore, in spite of the additional time needed to solve the LP

relaxations, the stronger ILP models often lead to a better overall performance.

The results of our computational study also indicate two directions for potential future

research: a) Since even for the strongest among the proposed models the bounds of the

linear programming relaxation are sometimes quite large, one may try to identify further

strengthening valid inequalities or even different modeling approaches. b) We observed that

for several instances, no reasonably good primal solutions could be obtained leading to large

optimality gaps. Hence, obtaining high-quality heuristic solutions is another interesting topic

for future research. It is, however, an open question whether we can always find a feasible

solution to the HSTPMR in polynomial time. We conclude this paper by pointing out that

other variants of the more general problem introduced at the beginning of the paper may

be worth studying. Consider the variant with T ′ = R and V = T ∪ R. This corresponds to

the problem of finding a minimum cost spanning tree that includes a diameter constrained

Steiner tree with terminal set R. This variant is closely related two-level problem described

and studied in [15]. It is also worth pointing out the particular case with |R| = 2 where

we obtain the problem of finding a minimum cost spanning tree such that the length of the

path between the two given root nodes does not exceed H . To the best of our knowledge it

is not known and it does not appear to be obvious whether this problem can be solved in

polynomial time.

References

[1] N. R. Achuthan, L. Caccetta, P. A. Caccetta, and J. F. Geelen. Computational meth-

ods for the diameter restricted minimum weight spanning tree problem. Australasian

Journal of Combinatorics, 10:51–71, 1994.

[2] B. V. Cherkassky and A. V. Goldberg. On implementing push-relabel method for the

maximum flow problem. Algorithmica, 19:390–410, 1994.

[3] P. Crescenzi, V. Kann, R. Silvestri, and L. Trevisan. Structure in approximation classes.

SIAM Journal on Computing, 28:1759–1782, 1999.

[4] G. Dahl, L. Gouveia, and C. Requejo. On formulations and methods for the hop-

constrained minimum spanning tree problem. In Mauricio G. C. Resende and Panos M.

27

Pardalos, editors, Handbook of Optimization in Telecommunications, pages 493–515.

Springer, 2006.

[5] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory

of NP-Completeness. W. H. Freeman & Co., 1979.

[6] L. Gouveia. Using the Miller-Tucker-Zemlin constraints to formulate a minimal spanning

tree problem with hop constraints. Computers & Operations Research, 22(9):959–970,

1995.

[7] L. Gouveia and T.L. Magnanti. Network flow models for designing diameter-constrained

minimum-spanning and Steiner trees. Networks, 41(3):159–173, 2003.

[8] L. Gouveia and C. Requejo. A new Lagrangian relaxation approach for the hop-

constrained minimum spanning tree problem. European Journal of Operational Re-

search, 132(3):539–552, 2001.

[9] L. Gouveia, T.L. Magnanti, and C. Requejo. A 2-path approach for odd-diameter-

constrained minimum spanning and Steiner trees. Networks, 44(4):254–265, 2004.

[10] L. Gouveia, T.L. Magnanti, and C. Requejo. An intersecting tree model for odd-

diameter-constrained minimum spanning and Steiner trees. Annals of Operations Re-

search, 146(1):19–39, 2006.

[11] L. Gouveia, A. Paias, and D. Sharma. Modeling and solving the rooted distance-

constrained minimum spanning tree problem. Computers & Operations Research, 35

(2):600–613, 2008.

[12] L. Gouveia, A. Paias, and D. Sharma. Restricted dynamic programming based neighbor-

hoods for the hop-constrained minimum spanning tree problem. Journal of Heuristics,

17(1):23–37, 2011.

[13] L. Gouveia, L. Simonetti, and E. Uchoa. Modeling hop-constrained and diameter-

constrained minimum spanning tree problems as Steiner tree problems over layered

graphs. Mathematical Programming, 128:123–148, 2011.

[14] L. Gouveia, M. Leitner, and I. Ljubić. On the hop constrained Steiner tree problem

with multiple root nodes. In A.R. Mahjoub et al., editors, Proceedings of the 2nd

International Symposium on Combinatorial Optimization, volume 7422 of LNCS, pages

201–212. Springer, 2012.

28

[15] L. Gouveia, M. Leitner, and I. Ljubić. The two-level diameter constrained spanning

tree problem. Technical Report TR 186–1–12–02, Institute of Computer Graphics and

Algorithms, Vienna University of Technology, 2012.

[16] M. Gruber. Exact and Heuristic Approaches for Solving the Bounded Diameter Min-

imum Spanning Tree Problem. PhD thesis, Vienna University of Technology, Vienna,

Austria, 2009.

[17] I. Ljubić and S. Gollowitzer. Layered graph approaches to the hop constrained connected

facility location problem. INFORMS Journal on Computing, 2012. to appear.

[18] I. Ljubić, R. Weiskircher, U. Pferschy, G. Klau, P. Mutzel, and M. Fischetti. An al-

gorithmic framework for the exact solution of the prize-collecting Steiner tree problem.

Mathematical Programming, 105:427–449, 2006.

[19] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems.

Journal of the ACM, 41:960–981, 1994.

[20] S. Voß. The Steiner tree problem with hop constraints. Annals of Operations Research,

86:271–294, 1999.

Appendix

Proof of Lemma 2. H = 2: For |R| ≥ 3, each optimal solution must be a star centered at

a node v ∈ V with all roots and terminals different from v being leaves. Thus, we

enumerate all such stars and each one yielding lowest cost is an optimal solution. In

case |R| = 2 there are additional feasible solutions that can be obtained by assigning

each terminal t ∈ T to the closest of the two roots and connecting the roots by an

edge. Thus, we can still obtain an optimal solution by enumeration. This argument

holds for both cases, T ′ = T and T ′ = T ∪R.

H ≥ 3: To show this non-approximability result, we use an error-preserving reduction (see,

e.g. [3]) from the SET COVER problem. Given a set cover instance with the set of

elements X = {x1, . . . , xn} and a collection of subsets Y = {y1, . . . , ym}, we transform

it into a HSTPMR instance with two roots 0, 1 andH = 3 as follows: Construct a graph

G with the set of nodes V = {x1, . . . , xn, y1, . . . , ym, 0, 1}. We insert an edge of cost one

between xi and yj whenever the set yi contains the element xi. We connect all y nodes

to the root 0 and set the cost of those edges to n+1. Finally, we connect 0 and 1 with

29

x1 x2 x3 xn

y1 y2 ym

0 1

Figure 7: Transformation of a set cover instance with elementsX = {x1, . . . , xn} and subsets Y = {y1, . . . ym}
to an instance of HSTPMR with R = {0, 1}, T = {x1, . . . , xn}, and H = 3. Edge costs are set to c0yi

= n+1,
1 ≤ i ≤ m, cyixj

= 1, if set yi, 1 ≤ i ≤ m, contains element xj , 1 ≤ j ≤ n, and c01 = 1.

an edge of cost one. It is not difficult to see that there is a one-to-one correspondence

between the set of feasible solutions of the set cover and the set of feasible solutions of

the HSTPMR on G with H = 3. This transformation can be done in polynomial time.

To show that this transformation also preserves the approximation ratio, observe that

if the cost of the set cover solution is k, so is the cost of the corresponding HSTPMR

solution equal to F (k) = (n + 1)(k + 1). Let S be a feasible HSTPMR solution with

the objective value equal to F (ks) where ks is the value of the corresponding set cover

solution, and let k be the value of the optimal set cover solution. Then we have:

F (ks)−OPT

OPT
=

(n + 1)(ks + 1)− (n + 1)(k + 1)

(n+ 1)(k + 1)
=

ks − k

k + 1
≥ β

ks − k

k

which is true for, e.g., β = 1/2. Therefore, any approximation algorithm for the

HSTPMR that runs in polynomial time cannot have a better approximation ratio than

Θ(logn) since ks−k
k

≥ Θ(log n) holds for the set cover problem unless P=NP [19].

For |R| ≥ 3, we attach all further roots to 0 and set the edge costs to one. The rest of

the proof works similarly.

30

1 7 3

6
2

8

4 0 5

(a) (x̄, ȳ)

13 33

62 22 72 82

41 51

00

(b) (X̄0, Ȳ0)

33 23 03

32 82 52 42

71 61

10

(c) (X̄1, Ȳ1)

Figure 8: A feasible solution (x̄, ȳ, X̄, Ȳ) to the LP relaxation of LGC to an instance with R = {0, 1},
T = {2, 3}, T ′ = T ∪ R, and H = 3. (a) Subgraph induced by variable values x̄e, e ∈ E, and ȳi, i ∈ S.
(b), (c) Subgraphs induced by variable values X̄sh

ij , s ∈ {0, 1}, (ih, jh+1) ∈ As
L, respectively. Solid (dashed)

edges and arcs indicate a corresponding variable value of 1 (0.5); ȳ5 = ȳ7 = 1, ȳ4 = ȳ8 = 0.75, and ȳ6 = 0.5.
Observe that arc (7, 8) is used in the arborescences rooted at 1 but neither arc (7, 8) nor arc (8, 7) can be
part of a feasible arborescence rooted at 0 since potential Steiner nodes do not exist at layer H , i.e., iH /∈ V s

L ,
∀i ∈ S, ∀s ∈ R. Similarly, arc (5, 8) is used in the arborescence rooted at 0 but neither (5, 8) nor (8, 5) can
be part of a feasible arborescence rooted at 1. Further note, that in order to satisfy constraints (3)–(5) the
unique feasible assignment of node variable values is ȳ5 = ȳ7 = 1, ȳ4 = ȳ8 = 0.75, and ȳ6 = 0.5 and it is not
possible to derive feasible arborescences on the layered graphs such that

∑H−1

h=1
Ȳ sh
i = yi, ∀s ∈ R, ∀i ∈ S.

1

7

3 9

6

2

8

4 0 5

10

(a) (x̄, ȳ)

00

41 51

62 22 72 82

13 33 83 93103

74 9434

(b) (X̄0, Ȳ0)

10

71 61

82 52 42102

33 23038393

5494

25

(c) (X̄1, Ȳ1)

Figure 9: A feasible solution (x̄, ȳ, X̄, Ȳ) to the LP relaxation of LGCI to an instance with R = {0, 1},
T = {2, 3, 9}, T ′ = T ∪R, and H = 5. (a) Subgraph induced by variable values x̄e, e ∈ E, and ȳi, i ∈ S. (b),
(c) Subgraphs induced by variable values X̄sh

ij , s ∈ {0, 1}, (ih, jh+1) ∈ Âs
L, respectively. Dashed (solid) edges

and arcs indicate a corresponding variable value of 1/2 (1); ȳ4 = ȳ6 = ȳ10 = 0.5, and ȳi = 1, i ∈ {5, 7, 8}.
This solution clearly violates inequalities (25) since Steiner nodes 7 is a leave in the arborescence on G0

L.
Further note, that for the given values of x̄ and ȳ each feasible set of arborescences must contain Steiner
nodes as leaves to satisfy constraints (23) and (19), i.e., the solution cannot satisfy inequalities (25).

31

