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Abstract In this article, we introduce the Two-Level Diameter Constrained
Spanning Tree Problem (2-DMSTP) which generalizes the classical DMSTP
by considering two sets of nodes with different latency requirements. We first
observe that any feasible solution to the 2-DMSTP can be viewed as a DMST
that contains a diameter constrained Steiner tree. This observation allows us to
prove graph theoretical properties related to the centers of each tree which are
then exploited to develop mixed integer programming formulations, strength-
ening valid inequalities, and symmetry breaking constraints. In particular,
we propose a novel modeling approach based on a three-dimensional layered
graph. In an extensive computational study we show that a branch-and-cut
based on the latter model is highly effective in practice.
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1 Introduction and Motivation

Given a graph G = (V,E) with edge costs ce ≥ 0, e ∈ E, the diameter con-
strained spanning tree problem (DMSTP) is to find a minimum spanning tree
such that the distance (in number of edges) between every pair of nodes is at
most some parameter Dm ∈ N, Dm > 1. The DMSTP has a wide range of
applications: in telecommunications, data compression, or parallel computing
(see, e.g., Deo and Abdalla [3], Noronha et al. [14]). In telecommunication
networks, for example, when multicasting is employed, the network latency
between a pair of users is directly proportional to the length of the routing
path. In a tree-multicasting, the maximum pairwise latency equals the diam-
eter of that tree. The optimization goal consist of finding a minimum-cost
spanning tree such that the maximum latency is restricted by some parameter
Dm (see, e.g., Vik et al. [16]). In a more realistic scenario, media types trans-
mitted over a network may range from text to video streaming, with different
latency requirements being imposed for transmitting text, voice over IP, or
video streaming in multi-player online games. Throughout this paper we will
assume that there are two disjoint groups of nodes - those with more strin-
gent latency requirements (e.g., video streaming users) and the remaining ones
whose latency requirements are less demanding. At first glance, the assump-
tion that there are two subsets with different latency requirements might look
too simplistic, but as we shall see later, it is already rich enough to impose
different and interesting research challenges.

More formally, we introduce a new problem which is a generalization of
the DMSTP to which we will refer to as the Two-Level Diameter Constrained
Spanning Tree Problem (2-DMSTP): Given a graph G = (V,E) (where |V | =
n) with edge costs ce ≥ 0, e ∈ E, and with the set of nodes V partitioned into
two subsets: P , the subset of primary and more important nodes, and S, the
subset of secondary and less important nodes. Two limits on the maximum
length of communication paths are imposed: The maximum distance between
nodes in P is allowed to be at most D′, and the maximum distance between
nodes in S or between a node in P and a node in S is allowed to be at most
D (D > D′ > 1). The optimization goal consists of finding a minimum-cost
spanning tree that satisfies these length restrictions.

Notice that for D′ = 2 and D = 3 the 2-DMSTP can be solved in polyno-
mial time by adapting an enumeration approach for the DMSTP with Dm = 3
(see, e.g., Gouveia et al. [7]). We fix a central edge {i, j} ∈ E and attach each
node in S to the closest node in the set {i, j}. All the remaining nodes in P
need to be attached either to node i or to node j, whichever is cheaper. The
obtained tree is feasible for the 2-DMSTP, and to find an optimal solution, we
repeat this procedure for all edges {i, j} ∈ E and choose the cheapest solution.

On the other hand, when |P | = 1 or |S| = 1 (but not both) we obtain the
Hop Constrained Minimum Spanning Tree Problem (HMSTP) which is to find
a minimum cost spanning tree such that the distance from a given node to any
other node, is at most Hm. These particular cases indicate that the 2-DMSTP
is also NP-hard in general. In fact, we can show the following result:



The Two-Level Diameter Constrained Spanning Tree Problem 3

Lemma 1 The 2-DMSTP is NP-hard for D ≥ 4, and any 2 ≤ D′ < D.

Proof The proof follows by reduction from the HMSTP which is NP-hard for
Hm ≥ 2 (see, e.g., [13]). Let us consider an instance GH of the HMSTP with
hop limit Hm = 2 and root 1. Attach now to the root a star built out of a set
of nodes p ∈ P , with the center p0 of that star directly connected to 1. The
obtained graph is now an instance of the 2-DMSTP with D = 4 and D′ = 2.
Each optimal solution of this graph corresponds to an optimal solution of the
HMSTP for Hm = 2 which concludes the proof. ⊓⊔

Our Contribution In this paper we first observe that the 2-DMSTP can be
viewed as a diameter constrained spanning tree with diameter D that contains
a diameter constrained Steiner tree with terminal set P and diameter D′. This
permits us to use center properties for each of these two subproblems and to
develop mixed integer programming (MIP) models that are more efficient than
the traditional formulations based on the pairwise distance constraints.

The results presented in this paper are threefold: (a) Graph theoretical
results: In the first part of the paper we study feasible 2-DMSTP solutions
from a graph theoretical perspective. We obtain upper bounds on the distance
between the two centers and we provide necessary and sufficient conditions for
those centers to be at minimum distance. (b) MIP models: We propose two
new models, both relying on the concept of layered graphs. Layered graphs
have been shown (see Gouveia et al. [8]) to provide the strongest MIP models
for the DMSTP, both, from theoretical and computational perspective. Our
first model can be viewed as an intersection of two layered graphs that inde-
pendently model the Steiner tree and the spanning tree. On the other hand,
the new graph theoretical results regarding the relative location of the two
centers permit us to embed these properties in a layered graph construction.
To do this, we propose a novel three-dimensional layered graph approach that
also incorporates distance constraints w.r.t. primary nodes in its structure. To
break symmetries, we use theoretical results regarding the minimum distance
between the centers. (c) Computational results: Branch-and-cut algorithms
are developed for the two proposed layered graph approaches. They are com-
putationally tested on a set of benchmark instances for the DMSTP. They
show that the novel three-dimensional layered graph model performs highly
effective in practice.

Outline of the Paper In the remainder of this section we give short literature
overview and provide a generic MIP model for the 2-DMSTP. The graph the-
oretical results are given in Section 2. Section 3 deals with the MIP modeling
issues for the 2-DMSTP, where the two layered graph approaches, along with
the sets of valid inequalities are proposed. The results of our computational
study are provided in Section 4.
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1.1 Related Literature

Since 2-DMSTP was not studied before, in this section we summarize the
previous work on the MIP approaches to the DMSTP (see, e.g., Gruber [9]
for further literature on the DMSTP). Several single-commodity flow models
were proposed and tested in Achutan et al. [1]. Multi-commodity flow models
with tighter linear programming (LP) relaxations were studied in Gouveia and
Magnanti [4]. The authors use the idea of a central node or a central edge that
serves as the source for the commodities. This approach allows for a reduction
of the number of commodities by a factor of n, while preserving the tight LP
bounds. Several other approaches for the DMSTP (see, e.g., Gruber and Raidl
[10], Santos et al. [15]) have used the properties of tree centers as well. In Gou-
veia et al. [5] the authors introduced an approach that views the DMSTP with
odd diameter as being composed of a directed spanning tree (from an artificial
root node) together with two constrained paths, a shortest and a longest path,
from the root node to any node in the tree. The authors proposed and tested
an extended flow based model derived from this idea. In Gouveia et al. [6],
an alternative modeling approach for odd diameters is proposed: the approach
views the DMSTP as an intersection of two trees directed out of the end-nodes
of the central edge. A constraint programming approach has been proposed
by Noronha et al. [14] where the obtained computational results indicate that
the approach cannot compete with MIP based approaches yet. Gruber and
Raidl [11] applied a heuristic separation technique in a branch-and-cut algo-
rithm applied to an MIP formulation based on jump constraints. The current
state-of-the-art approach for the DMSTP has been proposed by Gouveia et al.
[8] where the DMSTP is modeled as a Steiner tree problem on a layered graph.
The authors showed that the layered graph approach outperforms all previous
MIP based approaches both in theory and practice.

1.2 Generic MIP Model for the 2-DMSTP

As noted before, any feasible solution of the 2-DMSTP can be interpreted as
a diameter constrained spanning tree with diameter at most D that contains
a diameter constrained Steiner tree with terminal set P and diameter at most
D′. Let x1

e be binary variables indicating whether edge e is inside the primary
Steiner tree and let x2

e be binary variables indicating whether edge e is in the
spanning tree. Then the problem can be modeled in a generic way as follows:

min
e∈E

cex
2
e

{e : x1
e = 1} is a Steiner tree with diameter D′ and terminal set P (1)

{e : x2
e = 1} is a spanning tree with diameter D (2)

x1
e ≤ x2

e for all e ∈ E (3)

x1, x2 ∈{0, 1}|E| (4)
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Thus, instead of using all-pairs-distance-constraint-based models, this generic
formulation allows us to model each of the subproblems (1) and (2) indepen-
dently and to reduce the number of distance constraints by exploiting the
center properties of each of the two subproblems (cf. Section 3).

2 Graph Theoretical Properties of 2-DMSTP Trees

In this section we provide answers to the following questions: (a) What is the
maximum distance between the two centers in any feasible solution? (b) What
are necessary and sufficient conditions for this distance to be minimal? These
properties are used later on in Section 3 to derive new layered graph MIP
formulations for the 2-DMSTP.

Notation and Definitions. In the following, we assume that T = (V,ET), ET ⊆
E, is a spanning tree of G with diameter at most D that contains a Steiner
tree T ′ = (V ′

T, E
′
T), P ⊆ V ′

T ⊆ V , E′
T ⊆ ET, whose diameter is at most D′. We

will denote a feasible 2-DMSTP solution as a pair (T, T ′). Let duv ∈ N denote
the length of the path between u and v in T , i.e., its number of edges, and
let εT (u) = maxv∈V duv be the eccentricity of u, i.e., the maximum number of
edges on the path between u and any other node within the tree T . Similarly,
let εT ′(u) denote the eccentricity of u within T ′. Thus, any feasible 2-DMSTP
solution given by T and T ′ has to satisfy:

max
u∈V

εT (u) ≤ D and max
u∈V ′

T

εT ′(u) ≤ D′.

Whenever it is clear from context, we will write ε(u) instead of εT (u). Given
an edge e = {i, j}, we can also define the edge eccentricity ε(e) as follows
ε(e) = min{ε(i), ε(j)}. For a node u and an edge e = {i, j} in T , let due =
deu = min{dui, duj} be the distance from u to the node of e that is closer to
u. Similarly, the distance between two edges e = {i, j} and f = {k, l} of T ,
is given as def = minu∈{i,j},v∈{k,l} duv. Notice that for the latter, we obtain a
distance of zero if the two edges are either adjacent or if e = f .

The following two properties play a central role in the graph theoretical
results associated to spanning/Steiner trees with bounded diameter:

Central node Property: A tree T has diameter no more than an even integer
D if and only if for some node p of T (the central node) ε(p) ≤ D/2, i.e., the
path to any other node of the tree from node p contains at most D/2 edges.

Central edge Property: A tree T has diameter no more than an odd integer
D if and only if for some edge e = {p, q} of T (the central edge) ε(e) ≤ ⌊D/2⌋,
i.e., the path to any other node of the tree from either node p or node q
contains at most ⌊D/2⌋ edges.
We will use generic notation (c, c′) to denote a pair of centers for (T, T ′).
Whenever D (D′) is even, c (c′) will denote a central node, otherwise it will
denote a central edge. Furthermore, c′ and c will also be called primary and
secondary center, respectively.
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Central Path: Given a feasible 2-DMSTP solution (T, T ′), for each pair of
centers (c, c′) the unique path in T between c and c′ including c and c′ is
called the central path of (T, T ′) with respect to (c, c′). Note that, due to this
definition we distinguish between the length of the central path, i.e., its number
of edges, and the distance between the centers which is given by dcc′ and hence
will be less than the length of the central path unless both c and c′ are central
nodes, i.e., unless both D and D′ are even.

Finally, for nodes u, v and z belonging to the same path of a tree we use
u− v− z to state that node v is between nodes u and z on this path. Similarly,
u − e − v states that edge e is between nodes u and v and u − e − e′ denotes
that edge e is between node u and edge e′. For the set of edges E we will
define the set of arcs A by introducing two oppositely directed arcs for each
edge. For a subset W ⊂ V , we use δ−(W ) = {(i, j) ∈ A | i /∈ W, j ∈ W} and
δ+(W ) = {(i, j) ∈ A | i ∈ W, j /∈ W} to denote the ingoing and outgoing
cutset, respectively.

2.1 Maximum Distance Between the Centers

Given a feasible 2-DMSTP solution (T, T ′), for each of the two trees, T and
T ′ there exists a central node or central edge. Notice that if the diameters
are tight these centers are unique, but this does not need to be a case for an
arbitrary feasible solution. The following proposition gives a tight upper bound
on the distance between these two centers for an arbitrary feasible solution.

Proposition 1 Given a feasible 2-DMSTP solution (T, T ′), there exist centers
of T and T ′ such that the distance between them is at most ⌊D/2⌋ − ⌈D′/2⌉.

In order to prove this proposition, we will use the lemmas stated below. We
will provide the proofs for the case D′ and D being even, and the same proofs
can be easily adapted for the remaining cases.

Lemma 2a If D′ is even and D = D′+2m, m ∈ N, then there exists a central
node p of T ′ such that ε(p) ≤ D/2 + m.

Proof Assume first that the diameter D′ of T ′ is tight, in which case there
exists a unique central node p in T ′. To show that the result holds, assume the
opposite, i.e., let ε(p) > D/2+m. Let w ∈ V be a node with maximal distance
to p, i.e., w = argmaxv∈V dpv. Let q be the node adjacent to p on the path
from p to w. Consider now an arbitrary node z ∈ V ′

T and the path between
z and q in T ′. We distinguish the following two cases: (i) If p − q − z holds,
then, dqz < dpz ≤ D′/2; (ii) Otherwise, if z − p− q holds, then dqz = dpz + 1.
Since z − p − q − w also holds, we have dqz = dzw − dqw. By assumption,
dpw > D/2 + m and therefore dqw ≥ D/2 + m and we also have dzw ≤ D.
Hence, dqz ≤ D −D/2 −m = D′/2 and thus dqz ≤ D′/2 for any z ∈ V ′

T. But
then, it follows that the node q is also a center of T ′, which is a contradiction.

Assume now that the diameter D′ is not tight. Without loss of generality
let p be a central node of T ′ such that its eccentricity in T is minimal among all
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possible central nodes, i.e., for each central node u of T ′ we have ε(p) ≤ ε(u).
Assume again that ε(p) > D/2 +m and let w and q be the nodes constructed
as above. By the same arguments as above, it follows that q is another center
of T ′. Since we assumed p to be a central node minimizing the eccentricity
ε(.), there must exist t ∈ V such that dqt ≥ ε(p). Since T is a tree and w
is a node with maximum distance from p, the path from w to t is such that
w − q − p − t. Thus dwt = dpw + dpt ≥ ε(p) + ε(p) − 1. Due to our original
assumption we have dwt > D + 2m − 1 which contradicts the fact that the
diameter of T is at most D for any m ≥ 1. ⊓⊔

For a feasible solution (T, T ′) the following lemma shows that either the centers
of T and T ′ coincide, or the upper bound w.r.t. their distance can be tight.

Lemma 2b If D′ is even, D = D′+2m, m ∈ N, there exist central nodes p of
T ′ and r of T such that they either coincide, i.e., p = r, or dpr = ε(p)−D/2.

Proof From Lemma 2a, it follows that there exists a central node p of T ′ such
that ε(p) ≤ D/2 + m. If ε(p) ≤ D/2, then p is also a central node of T and
r = p and the result holds.

If ε(p) > D/2, then we will find the center r of T as follows. Let (p =
v0, v1, . . . , vε(p) = w) be the path from p to a node w with maximum distance
from p. Let dl = ε(p)−D/2 and notice that dl ≥ 1. We set r to be the node on
the p−w path in T such that dpr = dl, which also implies that drw = D/2. It
only remains to show that r is a center of T . To see this, consider an arbitrary
node z ∈ V . We distinguish the following two cases:

(i) The path from z to w is of the form z − r − w: Then, we have dzr =
dzw − drw ≤ D/2 since the diameter of T is at most D.

(ii) The path from z to w does not contain r. Then z is a successor of r when
directing T away from the root p. Thus drz = dpz −dpr ≤ ε(p)−m ≤ D/2.

Therefore, for any z ∈ V , we have drz ≤ D/2 and thus r is a center of T ,
which satisfies the desired properties, which concludes the proof. ⊓⊔

By similar arguments, one can prove the following lemmas, stating the analo-
gous relations for the other cases, i.e., when D′ or D is odd.

Lemma 3 If D′ is odd and D = D′ + 2m, m ∈ N, then there exists a central
edge e′ of T ′ such that ε(e′) ≤ ⌊D/2⌋+m. Furthermore, there exists a central
edge e of T such that either e = e′ or de′e = ε(e′) − ⌈D/2⌉.

Lemma 4 If D′ is even and D = D′ + 2m − 1, m ∈ N, then there exists a
central node p of T ′ such that ε(p) ≤ ⌊D/2⌋ + m. Furthermore, there exists
a central edge e of T such that either dpe = 0, i.e., e = {p, v}, or dpe =
ε(p) − ⌈D/2⌉.

Lemma 5 If D′ is odd and D = D′ + 2m − 1, m ∈ N, then there exists
a central edge e′ of T ′ such that ε(e′) ≤ D/2 + m − 1. Furthermore, there
exists a central node r of T such that either de′r = 0, i.e., e′ = {r, v}, or
de′r = ε(e′) −D/2.
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Fig. 1 A feasible solution of the 2-DMSTP with P = {0, 1, 2, 3}, D′ ≥ 4, and D ≥ 9.

Summarizing the results of Lemmas 2a-5, we can state the following: There
exist centers c′ and c of T ′ and T , respectively, such that they either coincide
or we have dc′c ≤ ⌊D/2⌋ − ⌈D′/2⌉.

This result also implies that the length of the central path (which also
includes the central edges) is at most ⌈D/2⌉ − ⌊D′/2⌋. To illustrate the result
of Proposition 1, consider the solution given in Fig. 1 with D′ = 4 and D = 9.
The distance between the two unique centers 4 and {1, 6} is exactly ⌊D/2⌋ −
⌈D′/2⌉ = 2 which proves that our upper bound is tight. On the other hand,
consider again the solution given in Fig. 1 but with D′ = 4 and D = 10. From
Proposition 1 it follows that there must exist a pair of central nodes such that
their distance is at most three. For this particular solution, however, node 4
is the unique center of the primary tree, while we may choose either node 1
or node 6 as the center of the secondary tree. Hence, the length of the central
path can also be much smaller than the obtained upper bound. This suggests
the following question: Can we provide a lower bound on the length of the
central path (assuming that centers of the two trees do not coincide)?

2.2 Solutions with Minimum Distance Between the Centers

As observed above, if the diameters are not tight, there exist various choices for
choosing centers of T and T ′. Assume that for a given instance there does not
exist an optimal solution such that the primary and secondary center coincide.
Then, among all possible pairs of centers, we are interested in characterizing a
pair with minimum distance. The results introduced in this section establish
necessary and sufficient conditions for those centers to be at minimum distance.
It turns out that either the centers coincide or the subtrees attached to them
will have maximum depth. In Section 3.3 we will use this result to derive
symmetry breaking inequalities for our model(s).

Proposition 2 If there does not exist centers (c, c′) of (T, T ′) that coincide,
then the length of the central path between c and c′ is minimal if and only if
there exist two distinct nodes, v in T and w in T ′, such that v − c − c′ − w
holds, and dcv = ε(c) = ⌊D/2⌋, dc′w = εT ′(c′) = ⌊D′/2⌋.

Proof We will prove this result for D and D′ even. The remaining cases can be
shown in a similar way. Let r and p be central nodes of T and T ′, respectively,
and let (r = v0, v1, . . . , vl−1, vl = p) denote the central path from r to p in T .

⇒: First assume (r, p), r 6= p, is a pair of central nodes such that l = dpr ≥ 1
is minimal. If ∄v ∈ V such that drv = D/2 and v − r − p holds, then clearly
ε(v1) ≤ D/2 would hold and hence v1 would be a central node of T with
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dv1p < dpr which contradicts the assumption that dpr is minimal. Likewise, if
∄w ∈ V ′

T such that dpw = D′/2 and r − p − w holds, then εT ′(vl−1) ≤ D′/2
and thus vl−1 would be a central node of T ′ closer to r than p.

⇐: If there exist v in T and w in T ′ such that drv = D/2, dpw = D′/2,
and v− r− p−w holds, then clearly r and p are the only nodes from the path
between r and p that are central nodes of T and T ′, respectively. Hence (r, p)
is a pair of central nodes with minimal distance. ⊓⊔

The proposition above also points out how to find centers (c, c′) with min-
imum distance between them, when given a feasible solution (T, T ′) with an
arbitrary pair of centers (c̄, c̄′). Consider, e.g., the solution given in Fig. 1 with
D′ = 6 and D = 10 in which case the set of feasible primary centers is {0, 4, 5}
and the set of feasible secondary centers is {1, 6}. Now start with any feasible
pair of centers, say p = 0 and r = 6. Observe that among all nodes u such
that p− r − u holds, node 13 is the node with maximum distance from r and
that dr,13 = 4. Since D/2 = 5, using Proposition 2 we conclude that (p, r) is
not a pair of central nodes with minimum distance. Now, from the proof of
Proposition 2 we know that r′ = 1 is also a valid center of the secondary tree.
Since dr′,13 = 5 = D/2, r′ is the secondary central node closest to the current
primary center p. For the primary center, however, among all nodes u such that
u− p− r′, node 2 is the node with maximum distance dpu = 1 < D′/2. Thus,
we observe that p′ = 4 and p′′ = 5 are primary central nodes closer to the
secondary center 1. Finally, we obtain a pair of central nodes (p′′, r′) = (5, 1)
with minimum distance that satisfies the conditions of Proposition 2.

3 MIP Formulations for the 2-DMSTP

In this section, we describe two ways of modeling the 2-DMSTP using layered
graphs. The first model that we will refer to as the two trees model (2T)
considers the intersection of two layered graphs, one of them to model the
tree T , the other one to model the subtree T ′. Additional coupling constraints
relate (“intersect”) the two models. The second model is a three-dimensional
layered graph model (3dLG) that incorporates the properties of Proposition 1
directly into its structure. Results of Proposition 2 are then used to break the
symmetries in this model.

3.1 Two Trees Model

To describe this model we first review the layered graph model for the Steiner
/ spanning tree problem with a single diameter bound Dm ≥ 4 which is then
used as building block the for the (2T) model (cf. Section 3.1.2).

3.1.1 Review: Modeling the Diameter Constrained Steiner Tree Problem

The hop constrained and diameter constrained spanning tree problems have
been recently modeled and solved successfully by using a branch-and-cut ap-
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proach on adequate layered graphs (see [8]). We will now review this approach
to the DMSTP with the modification for the Steiner tree variant (DSTP) as
it will be a building block of our (2T) model described below. The approach
relies on the idea to model the DSTP as a directed Steiner tree problem in
an extended (layered) graph. For a DSTP on graph G = (V,E) with required
node set R ⊂ V and an even diameter Dm, we add a dummy root node 0, set
Hm := Dm/2 and construct a layered graph GL = (VL, AL) as follows:

• VL = {(0)}∪ {ih : i ∈ V, 0 ≤ h ≤ Hm − 1}∪RL, where RL = {iHm
: i ∈ R}

• AL = A0 ∪A1 ∪A2 where
• A0 = {((0), i0) : i ∈ V },
• A1 = {(ih, jh+1) : (i, j) ∈ A, 0 ≤ h ≤ Hm−2}∪{(iHm−1, jHm

) : (i, j) ∈
A, j ∈ R},

• A2 = {(ih, iHm
) : i ∈ R, 0 ≤ h ≤ Hm − 1}.

The costs of arcs in A0∪A2 are set to zero, and the costs of arcs in A1 are set to
the corresponding cij values. Then, the DSTP can be modeled as the directed
Steiner tree problem on GL with root 0, the set of terminals equal to RL, and
an extra constraint stating that the out degree of the root node is equal to
one. The latter constraint ensures the connectivity of the solution, and that
the node at the layer zero, chosen by an optimal solution in the layered graph
is a central node of the corresponding optimal tree.

We associate nonnegative variables X0
0i to each arc ((0), i0) ∈ A0, X

h
ij to

arcs (ih−1, jh) ∈ A1, and Xh
ii to arcs (ih−1, iHm

) ∈ A2. For a subset Â ⊂ AL,

by X[Â] we denote the sum of X-variables associated to the arcs of this set.
Let DSTP(R,Dm) denote the set of all incidence vectors X corresponding to
feasible Steiner trees in GL that correspond to Steiner trees in G. In [8] the
authors use the well known cut set formulation for Steiner trees to derive the
currently strongest MIP model for the DMSTP, so we have:

DSTP(R,Dm) = {X∈{0, 1}|AL| | X[δ−(W )] ≥ 1, ∀W ⊂ VL\{0},W∩RL 6= ∅,

X[δ+(0)] = 1, X[δ−(iHm
)] = 1, ∀iHm

∈ RL,

Hm−1
∑

h=0

X[δ−(ih)] ≤ 1, ∀i ∈ V \RL} (5)

Using binary arc decision variables aij ∈ {0, 1}, ∀(i, j) ∈ A, the problem is
then solved as

min{
∑

(i,j)∈A

cijaij | aij =

Hm
∑

h=1

Xh
ij , ∀(i, j) ∈ A,X ∈ DSTP(R,Dm)} (6)

Gouveia et al. [8] also showed that a similar approach is possible when Dm

is odd, in which case a central edge needs to be selected. This edge is intended
to be placed at the layer zero so that the distance of the remaining nodes from
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that edge is bounded by Hm := ⌊Dm/2⌋. Since an edge cannot be explicitly
placed at the layer zero, an additional layer “-1” is introduced, together with
nodes i−1 for each i ∈ V and arcs (i0, j−1) for all (i, j) ∈ A with costs cij which
represent the potential central edges. Finally, zero-cost arcs (i−1, i0), ∀i ∈ V ,
are added to GL. Again, the DSTP is modeled as the directed Steiner tree
problem with the root 0, the set of terminals RL and two additional constraints:
(a) the out-degree of the root is one, and (b) the number of solution arcs from
layer zero to level “-1” is exactly one. The latter two constraints ensure that
the arc connecting a node from layer zero to layer “-1” is exactly the central
edge we were looking for. For deriving the corresponding MIP formulation, we
need to replace the linking constraints from (6) by aij =

∑Hm

h=−1 X
h
ij , for all

(i, j) ∈ A and to add
∑

(i0,j−1)∈AL
X−1

ij = 1 to (5).
In the remainder of this paper, for the DMSTP with diameter bound Dm,

the set of all feasible incidence vectors X ∈ 2|AL| of arcs on the layered graph
will be denoted by DMSTP(Dm) (cf. the definition given in (5)).

3.1.2 The (2T) Model

The generic MIP formulation introduced in Section 1.2 permits us to use the
best known formulations for the DMSTP / DSTP and merge them into a single
model by coupling the variables associated to corresponding solutions. Using
the layered graph approach introduced in Section 3.1.1 to model diameter
constrained trees in general, we can model the 2-DMSTP as follows:

min
∑

e∈E

cexe

X1 ∈ DSTP(P,D′) (7)

X2 ∈ DMSTP(D) (8)
∑

h

(

Xh,1
ij + Xh,1

ji

)

≤ xe ∀e = {i, j} ∈ E (9)

∑

h

(

Xh,2
ij + Xh,2

ji

)

= xe ∀e = {i, j} ∈ E (10)

x ∈ {0, 1}|E|

This model is based on the intersection of two layered graphs: Graph G1
L

is used to model diameter constrained Steiner trees with terminal set equal
to P and the diameter bounded by D′. Graph G2

L is used to model diameter
constrained spanning trees in G with the diameter bounded by D. Binary vari-
ables X1 and X2 are the incidence vectors of diameter constrained solutions
on graphs G1

L and G2
L, respectively. Variables X1 and X2 are finally linked to

undirected edge variables using constraints (9) and (10).
Although the model appears to be quite intuitive (given the generic formu-

lation introduced in Section 1.2) and may be moderately successful in solving
the problem, it contains two main drawbacks:
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(i) The two subproblems are only loosely coupled together in terms of original
variables, and

(ii) The model is undirected, i.e., the coupling constraints (9) and (10) only
relate layered arc variables to undirected edge design variables xe and it
remains unclear how to direct this model.

In the next subsection we show how to strengthen the lower bounds of this
model by adding some additional valid inequalities derived from the graph
theoretical properties of feasible solutions.

3.1.3 Strengthening the (2T) Model

Due to Proposition 1, several strengthening coupling constraints between arc
variables X1 and X2 can be derived as shown below. If D′ and D are even,
D = D′ + 2m, let r and p be the centers of T and T ′, respectively. We have:

Xh,1
ij ≤

m+h
∑

l=1

X l,2
ij +

m−h+1
∑

l=1

X l,2
ji ∀(i, j) ∈ A, 1≤h≤min{m,D′/2} (11)

Xh,1
ij ≤

h+m
∑

l=h−m

X l,2
ij ∀(i, j) ∈ A, m + 1≤h≤⌊D′/2⌋ (12)

To see that these inequalities are valid notice that if arc (i, j) is at distance
h ≤ min{m,D′/2} from the primary center p, then this arc may belong to the
central path. Regarding the location of the arc (i, j) with respect to the two
centers p and r, we distinguish two cases: (i) If r − p − i − j holds, then the
same arc (i, j) is used in X2, and its distance from the secondary center r is at
most m+h. (ii) If p− i− j− r holds, then in the X2-solution arc (j, i) is used,
and its distance from r is at most m− h + 1. These facts are incorporated in
inequalities (11), for all (i, j) ∈ A. On the other hand, if arc (i, j) is at distance
m < h ≤ ⌊D′/2⌋ from the primary center p, then the same arc has to be used
in the spanning tree X2, and its distance from the secondary center r is at
most h + m, and at least h−m, which is expressed using inequalities (12).

If D′ and D are odd, D = D′ + 2m, m ∈ N, we have to replace (11) by the
following two sets of inequalities:

X−1,1
ij ≤ X−1,2

ji +

m
∑

l=1

(X l,2
ij + X l,2

ji ) ∀(i, j) ∈ A (13)

Xh,1
ij ≤X−1,2

ji +
m−h
∑

l=1

X l,2
ji +

m+h
∑

l=1

X l,2
ij ∀(i, j) ∈A, 1≤h≤min{m, ⌊D′/2⌋} (14)

Inequalities (13) exploit the fact that the primary and secondary central
edges e′ and e either coincide, or that the distance of e′ from e is at most
m− 1 (see Lemma 3). In case the edges coincide, there are two possible edge
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orientations, and by considering only one of them, we are able to break the
symmetries. Inequalities (14) are the adaptation of (11) in which the secondary
central arc is considered. Again, by choosing one of the two possible directions,
we break the symmetries of this model.

If D′ is even and D is odd, D = D′ + 2m − 1, m ∈ N, the length of the
central path is at most m (see Lemma 4), i.e., the distance between the two
centers is at most m− 1. This fact is exploited by inequalities (15)–(17).

Xh,1
ij ≤X−1,2

ji +

m−h
∑

l=1

X l,2
ji +

m+h−1
∑

l=1

X l,2
ij ∀(i, j) ∈A,1≤h≤min{m−1,D′/2} (15)

Xm,1
ij ≤ X−1,2

ji +

2m−1
∑

l=1

X l,2
ij ∀(i, j) ∈A (16)

Xh,1
ij ≤

h+m−1
∑

l=h−m

Xh,2
ij ∀(i, j) ∈A, m + 1 ≤ h ≤ D′/2 (17)

Finally, if D′ is odd and D is even, D = D′ + 2m− 1, m ∈ N, we consider
inequalities (18)–(20), which exploit the results of Lemma 5.

X−1,1
ij ≤

m
∑

l=1

(X l,2
ij + X l,2

ji ) ∀(i, j) ∈A (18)

Xh,1
ij ≤

m−h
∑

l=1

X l,2
ji +

m+h
∑

l=1

X l,2
ij ∀(i, j) ∈A, 1 ≤ h ≤ min{m− 1, ⌊D′/2⌋} (19)

Xh,1
ij ≤

h+m
∑

l=h−m+1

X l,2
ij ∀(i, j) ∈ A, m ≤ h ≤ ⌊D′/2⌋ (20)

3.2 Three-Dimensional Layered Graph Model (3dLG)

In this section, by exploiting in a different manner the graph theoretical results
of Section 2 we show that the problem can be viewed as a single directed Steiner
tree problem on a more sophisticated layered graph, more precisely a three-
dimensional layered graph, with a moderate number of additional constraints.
Many of the graph theoretical relations established in Section 2 will be satisfied
by the new graph, making unnecessary the inclusion of additional constraints
as it was done in the previous subsection to strengthen the (2T) model.

To make the explanation easier, we define the upper bounds on eccentric-
ities for the primary and secondary center as H ′ := ⌊D′/2⌋ and H := ⌊D/2⌋,
respectively. As before, in order to simplify the explanation of the new model
we start by assuming that D and D′ are even and let r and p be the centers
of T and T ′, respectively. Let us now direct the tree T by making it a rooted
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p = v0 v1 vl−1 vl = r

T0 T1 Tl−1 Tl

Fig. 2 Feasible 2-DMSTP solution presented as a spanning arborescence rooted at the
primary center. Arborescences dangling on the central path are denoted by T0, . . . , Tl.

arborescence with the root equal to p. We can view the solution as composed
by a directed path between p and r, together with several subarborescences
whose roots are nodes in the path. More precisely, the solution contains a di-
rected path from p to r (p = v0, v1, . . . , vl−1, vl = r), dpr = l. Each of the nodes
vi, i = 0, . . . , l, is a root of a subarborescence of T , denoted by Ti (see Fig. 2)
and each subarborescence Ti, i = 0, . . . , l, satisfies the following properties:

(P1) The maximal length of a path from T ′ in T0 is H ′

(P2) The maximal length of a path from T ′ in Ti is at most H ′ − i
(P3) The maximal length of any path in Tl is H, and
(P4) The maximal length of any path in Ti is at most H − l + i.

We note that these properties indicate the distance of a node in P (or in S)
to the path. For the moment we will replace (P4) which gives the maximum
distance from a node S to the main path by (P4’):

(P4’) The maximal length of any path in Ti is at most H.

This relaxed problem can be modeled as an arborescence in a large (three-
dimensional) layered graph in which each of the arborescences Ti is modeled
as a separate (two-dimensional) layered graph. The constraints on the lengths
of a path in each of layered graphs associated to Ti are guaranteed explicitly
by imposing a certain number of layers on these graphs. The central path will
be directed from the primary center to the secondary center and Proposition 1
gives an upper bound on the length of this path. This path links the layered
graphs associated to each subarborescence and we define the depth of the
layered graph as the length of this path. In this way, we are able to obtain a
fully directed model, that is a model that views each feasible solution of this
relaxation (replacing (P4) by (P4’)) as a spanning arborescence rooted at the
primary central node.

The main difficulty of this approach is that property (P4) is not guaran-
teed by the graph construction. (For the sake of completeness we state that the
problem modeled in this way is the original problem where the maximum dis-
tance between nodes in S is augmented by the maximum length of the central
path.) Thus, we need to add extra constraints to guarantee this condition.

Each node of the layered graph is denoted by idh - it is associated to the
original node i at layer h and depth d. Arcs between nodes of different depths
only exist at layer zero and the path realized at layer zero represents the central
path. For a fixed depth d, and fixed hop-limits H1 and H2 associated to nodes
from P and S, respectively, we first explain how to construct a layered graph
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1

2

3

4

5

6

Fig. 3 An exemplary instance with P = {1, 2, 3}, S = {4, 5, 6}, D′ = 4, and D = 8.

GH1,H2,d
2L = (V H1,H2,d

2L , AH1,H2,d
2L ) which will ease the necessary definitions later

on. The graph GH1,H2,d
2L (0 < H1 ≤ H2) is constructed so that copies of each

node i from P are made at layers 0 to H1 and nodes from S are copied at
all layers between 0 and H2. Arcs are superimposed so that for each edge
e = {i, j} from E, arcs are added between the copies of i and j (and j and i)
in two consecutive layers.We have:

V H1,H2,d
2L = {idh : i ∈ V, 0 ≤ h ≤ H1} ∪ {idh : i ∈ S, H1 < h ≤ H2} (21)

AH1,H2,d
2L = {(idh, j

d
h+1) : (i, j) ∈ A, 0 ≤ h ≤ H1 − 1}∪

{(idH1
, jdH1+1) : (i, j) ∈ A, i ∈ V, j ∈ S}∪

{(idh, j
d
h+1) : (i, j) ∈ A, {i, j} ∩ P = ∅, H1 < h ≤ H2 − 1} (22)

In the following, the case when both D′ and D are even is discussed in
detail before showing the necessary adaptations for the other cases. We will
use the following notation:

dmax = ⌈D/2⌉ − ⌊D′/2⌋ and ñ = D′ mod 2,

where dmax denotes the maximum length of the central path (including the
possibly existing central edges), and parameter ñ indicates whether there is
a primary central edge, in which case (P2) is reformulated as “The maximal
length of a path from T ′ in Ti is at most H ′ − i + 1, for all i = 1, . . . , l”.

We model the 2-DMSTP on G3L as a Steiner arborescence problem with the
set of terminals R3L and some additional constraints, where G3L = (V3L, A3L)
is defined as follows:

V3L = {(0)} ∪R3L ∪ V H′,H,0
2L ∪ (

dmax
⋃

d=1

V H′−d+ñ,H,d
2L ) with R3L = {(i) : i ∈ V } and

A3L = A0
3L ∪ (

dmax
⋃

d=1

AC,d
3L ) ∪ (

dmax
⋃

d=0

AZ,d
3L ) ∪AH′,H,0

2L ∪ (

dmax
⋃

d=1

AH′−d+ñ,H,d
2L ), where

A0
3L = {((0), i00) : i ∈ V } (zero costs)

AC,d
3L = {(id−1

0 , jd0 ) : (i, j) ∈ A, id−1
0 , jd0 ∈ V3L}

AZ,d
3L = {(idh, (i)) : i ∈ V, idh ∈ V3L} (zero costs)
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Fig. 4 3-dimensional layered graph for the instance given in Fig. 3 and two possible em-
beddings of the solution {{1, 2}, {1, 3}, {3, 4}, {3, 5}, {5, 6}}. For the solution shown in blue,
1 is the primary and secondary center, while for the solution shown in red, 2 is the primary
center and 3 is the secondary center. Thus for the latter solution, the central path consists
of two arcs. For simplicity nodes in R3L and their ingoing arcs are not drawn.

Fig. 4 illustrates an example in which D = 8, D′ = 4 and, for the sake of
simplicity, the nodes of R3L and the arcs from

⋃dmax

d=0 AZ,d
3L are not shown. The

costs of the arcs from A0
3L ∪ (

⋃dmax

d=0 AZ,d
3L ) are set to zero, and the costs of the

arcs from
⋃dmax

d=1 AC,d
3L ∪ AH′,H,0

2L ∪ (
⋃dmax

d=1 AH′−d+ñ,H,d
2L ) are set to the original

cost, cij , for each of the corresponding arcs (i, j) ∈ A. The primary center

is chosen from the subgraph V H′,H,0
2L and if primary and secondary center do

not coincide, the central path is modeled using the arcs from ∪dmax

d=1 AC,d
3L . By

construction, graph G3L satisfies properties (P1)-(P3). However, since we do
not know the exact length l of the central path, the property (P4) is ensured by
explicitly imposing some extra constraints in the model. The following binary
variables are used in our MIP formulation:

• X00
0j , for arcs ((0), j00) ∈ A0

3L,

• Xhd
ij for arcs (idh−1, j

d
h) ∈ AH,H′,0

2L or ∈ AH−d+ñ,H′,d
2L for d = 1, . . . , dmax,

• X0d
ij for arcs (id−1

0 , jd0 ) ∈ AC,d
3L where d = 1, . . . , dmax, and

• Xhd
ii for arcs (idh−1, (i)) ∈ AZ,d

3L where d = 0, . . . , dmax.

Furthermore, we use binary variables zd, 0 ≤ d ≤ dmax, with zd = 1 if
the distance between the two chosen centers is at least d and zero otherwise.
The reason why these variables are included is to enforce the statement of
property (P4) that is not implicitly guaranteed by G3L. Finally, arc variables
aij ∈ {0, 1}, ∀(i, j) ∈ A, are used to project the arcs from G3L into G.

3.2.1 D′ and D even

For D and D′ are even, the 2-DMSTP on G3L is modeled as follows:
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min
∑

(i,j)∈A

cijaij (23)

s.t. X[δ−(W )] ≥ 1 ∀W ⊂ V3L, W ∩R3L 6= ∅, (0) /∈ W (24)

min{dmax,H
′}

∑

d=0

H′−d
∑

h=0

X[δ−(idh)] = 1 ∀i ∈ P (25)

dmax
∑

d=0

H
∑

h=0

X[δ−(idh)] = 1 ∀i ∈ S (26)

∑

i∈V

X[δ−(id0)] = zd d = 0, . . . , dmax (27)

aij =

dmax
∑

d=0

H
∑

h=1

Xhd
ij +

dmax
∑

d=1

X0d
ij ∀(i, j) ∈ A (28)

d−1
∑

t=0

H
∑

h=H−d+t+1

X[δ−(ith)] ≤ 1 − zd ∀i ∈ V, d = 1, . . . , dmax (29)

X ∈ {0, 1}|A3L|, z ∈ {0, 1}dmax+1, a ∈ {0, 1}|A| (30)

Directed cutset constraints (24) ensure connectivity between the artificial
root (0) and every terminal node in R3L, while the indegree constraints (25)
and (26) state that across all layers and all depths, each node i ∈ V is vis-
ited exactly once. Inequalities (27) ensure that for each depth, at most one
node is chosen at layer zero, and establish the connection to variables zd. Con-
straints (28) link the arcs of the layered graph with the arcs in A. Notice that
for the sake of simplicity, in writing the summation terms, (28) also includes
reference to variables Xhd

ij that do not exist in our layered graph (and these
can be considered as fixed to zero). Finally, inequalities (29) are added to for-
bid too long paths between secondary nodes. They state that if the length of
the central path is at least d + 1, then, each of the subtrees dangling at the
depth d′ (d′ ≤ d) can contain paths whose length is at most H−d+d′, i.e., the
nodes at the layers ≥ H − d + d′ are forbidden. Note, that without inequali-
ties (29), we have a valid model for the previously mentioned relaxation of the
2-DMSTP obtained by replacing (P4) by (P4’) where the maximum distance
between secondary nodes is at most D + dmax.

Slight modification to this model need to be made for the remaining cases,
when D′ or D is odd. These cases are studied in the remainder of this section.

3.2.2 D′ odd, D odd

If D and D′ are odd, the main difference to the previous case is that we
now have central edges instead of central nodes and, as a consequence the
maximum number of allowed layers for primary nodes in each of the subgraphs
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for a fixed depth starts to decrease from d = 2 rather than from d = 1. This
fact is incorporated in the previous definition of G3L by considering ñ which
is equal to one in this case. To correctly model this case, we replace (25) by
(31), replace constraints (29) by inequalities (32), and set z1 = 1. Otherwise,
the model and variables are defined analogously.

H′

∑

h=0

X[δ−(i0h)] +

min{dmax,H
′}

∑

d=1

H′−d+1
∑

h=0

X[δ−(idh)] = 1 ∀i ∈ P (31)

d−2
∑

t=0

H
∑

h=H−d+t+2

X[δ−(ith)] ≤ 1 − zd i ∈ V, d = 2, . . . , dmax (32)

3.2.3 D′ even, D odd

If D is odd and D′ is even, the primary tree has a central node (which is chosen
at layer zero and depth zero) and thus the maximum number of allowed layers
for primary nodes starts decreasing from d = 1, i.e., ñ = 0. Again, the previous
model and all variables are defined analogously. Since D is odd, however, the
secondary tree has a central edge and thus we replace constraints (29) by
inequalities (32) and set z1 = 1.

3.2.4 D′ odd, D even

If D is even and D′ is odd, we have a primary central edge which is chosen
from AC,1

3L and a secondary central node which is chosen at layer zero and
depth greater than or equal to one. Thus, the maximum feasible layer of sec-

ondary nodes at depth zero is equal to H − 1 and hence we replace V H′,H,0
2L

by V H′,H−1,0
2L and AH′,H,0

2L by AH′,H−1,0
2L in the previously given definition of

G3L. As for the case when D′ and D are odd, the fact that the maximum
layer of primary nodes starts decreasing from d = 2 rather than from d = 1 is
captured by the definition of ñ. Furthermore, we replace (25) by (31) and set
z1 = 1. Otherwise, both the model and the variables are defined analogously
to the case when both D′ and D are even.

3.3 Symmetry Breaking Constraints for (3dLG)

In case the length of the central path can be less than dmax, there will be
different feasible Steiner trees on the layered graph modeling the same solu-
tion in terms of original variables, cf. Fig 4. To avoid this situation, we use
Proposition 2 to derive corresponding symmetry breaking constraints for the
(3dLG) model. These constraints will ensure that each solution modeled by
the (3dLG) model will have minimal distance between the two chosen centers.
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D′ even, D even Assume that nodes p and r are the centers of T ′ and T ,
respectively. If p 6= r, then z1 = 1. In that case, we want to make sure that the
centers are at minimal distance, and hence with constraints (33) we enforce
that there must exist a node i ∈ P , such that dpi = εT ′(p) = H ′ and i− p− r
holds. Furthermore, constraints (34) and (35) ensure that if dpr = l, 1 ≤ l ≤ m,
then for at least one node i ∈ V with p− r − i, we have dri = ε(r) = H.

∑

i∈P

X[δ−(i0H′)] ≥ z1 (33)

∑

i∈S

X[δ−(idH)] ≥ zd − zd+1 d = 1, . . . , dmax − 1 (34)

∑

i∈S

X[δ−(idmax

H )] ≥ zdmax
(35)

D or D′ odd In all the remaining cases (when at least one of the diameters is
odd), constraints (33) are replaced by (36), and (34) are replaced by (37):

∑

i∈P

X[δ−(i0H′)] ≥ z2 (36)

∑

i∈S

X[δ−(idH)] ≥ zd − zd+1 d = 2, . . . , dmax − 1 (37)

Below we describe additional constraints that can further break the sym-
metries of our model.

D and D′ odd In case that the two center edges coincide, for every solution
we can obtain a symmetric solution by exchanging all chosen nodes / arcs on
depth zero and one. Thus, we consider a further set of symmetry breaking
constraints (38). These simply guarantee that, if the two central edges are
identical, i.e., if z2 = 0, the index of the node chosen at layer zero and depth
zero is smaller than the one chosen at layer zero and depth one:

X[δ−(i00)] +
∑

j<i

X[δ−(j10)] ≤ 1 + z2 i ∈ V (38)

D′ even, D odd There is an additional case, where symmetric solutions may
cause difficulties. This situation occurs whenever an optimal solution exists
in which either node of the secondary center edge can be chosen as primary
central node. We observe, that in this situation, z2 will be equal to zero (since
the centers coincide) and no primary node will be chosen at layer H ′ and
depth zero, since the node chosen at layer zero and depth one would not be a
primary center otherwise. By adding constraints (39) we ensure that if both
nodes incident to the secondary central edge are primary central nodes, we
chose the one with smaller index at depth zero.
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X01
ji ≤ z2 +

∑

p∈P

X[δ−(p0H′)] (j, i) ∈ A, j > i (39)

D′ odd, D even For the case when either node of the primary central edge can
be chosen as secondary central node, we observe that both a node i chosen at
layer zero and depth zero and a node j chosen at layer zero and depth one are
valid secondary centers, if no node is active at layer H and depth one. Thus,
by constraints (40) we ensure that in this case the node chosen at layer zero
and depth zero has a smaller index than the one at layer zero and depth one.

X01
ji ≤ z2 +

∑

k∈S

X[δ−(k1H)] (j, i) ∈ A, j > i (40)

4 Branch-and-Cut Algorithms. Computational Study.

In this section we compare the computational performance of three branch-
and-cut algorithms (B&C) for the following models: (i) (2T), (ii) (2T)

+
(which

is a variant of (2T) with additional inequalities (11)–(18), cf. Section 3.1.3),
and (iii) (3dLG). B&C approaches are implemented in C++ using IBM CPLEX
12.4. The evaluation and comparison of the three approaches is conducted on
a benchmark instances from [8] that have been frequently used for testing
the HMSTP and the DMSTP approaches. We choose the first instance from
each of the groups of random (TR) and Euclidean instances (TC) with 31,
41, and 61 nodes. For the sake of simplicity, in the following we will use 30,
40, and 60 to refer to instances with 31, 41, and 61 nodes, respectively. Each
graph is complete, and we use the first |P | nodes of an instance as primary
nodes. Furthermore, for each instance set we set D′ = 3, . . . 6, and for each D′

we consider D = D′ + i, for i = 2, . . . , 5. Regarding the number of primary
nodes, we choose |P | ∈ {5, 10, . . . , |V |−1} for instances with 31 and 41 nodes,
respectively, and |P | ∈ {10, 20, . . . , 60} for instances with 61 nodes.

B&C Configuration for (2T) and (2T)
+

We initialize the MIP model with the
compact constraints from (5) for G1

L and G2
L and we add a compact number

of connectivity constraints:

∑

(ih−1,jh)∈Aℓ

L
, i6=k

Xh,ℓ
ij ≥ Xh+1,ℓ

jk ∀(jh, kh+1) ∈ Aℓ
L, ℓ = 1, 2 (41)

to ensure connectivity on each of the two layered graphs. Furthermore, in
CPLEX, we assign higher branching priorities to edge variables than to layered
arc variables. Regarding (2T)

+
, the MIP is initialized with inequalities (11)–

(18), as our preliminary tests have shown that this variant performs better
than a dynamic separation of these constraints.
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B&C Configuration for (3dLG) The highest branching priority is given to
z-variables, followed by the arc design variables a, which in turn are given
higher branching priority than layered arc variables. We initialize the B&C
with (25)-(29) and with the appropriate compact connectivity cuts (similar

to (41)) applied to each of the subgraphs GH′−d+ñ,H,d
2L . In addition we add:

zd ≥ zd+1 d = 0, . . . , dmax − 1 (42)

Symmetry breaking constraints (cf. Section 3.3) are dynamically separated.

Experimental Set-Up All experiments have been performed on a single core
of an Intel Xeon processor with 2.53 GHz using at most 3GB RAM. We used
the single threaded variant of IBM CPLEX 12.4 and an absolute time limit of
10 000 CPU-seconds has been applied in all experiments. For the separation
of cutset inequalities in (5) and (24), we run the maximum flow algorithm
of Cherkassky and Goldberg [2]. In all separation variants, we used nested and
backcuts, cf. [12]), and inserted at most 100 violated cuts in each iteration.

4.1 Computational Experiments

We first analyze the overall performance of (2T), (2T)
+

and (3dLG) on in-
stances with 31 and 41 nodes with respect to their LP gaps (see Fig. 5a) and
with respect to the CPU-time needed by each of the B&C approaches (see
Fig. 5b).
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Fig. 5 LP gaps and B&C CPU-times for (2T), (2T)+, and (3dLG).

From Fig. 5a we conclude that adding inequalities (11)–(18) to model (2T)
significantly increases the obtained LP bounds. Furthermore, neither (2T)

+

nor (3dLG) dominates the other with respect to the quality of LP bounds.
This is not surprising given that (3dLG) is directed (as opposed to (2T)

+
)

but does not incorporate the maximum allowed distance between secondary
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Table 1 Numbers of instances solved to optimality (#solved), geometric means of CPU-
times in seconds, and average optimality gaps in [%], grouped by |P |.

#solved CPU-time [s] Gap [%]

|P | # (2T) (2T)+ (3dLG) (2T) (2T)+ (3dLG) (2T) (2T)+ (3dLG)
5 64 64 64 64 58 46 109 0.0 0.0 0.0

10 96 82 87 87 319 260 273 5.2 3.1 0.0

15 64 62 64 64 256 174 83 0.0 0.0 0.0

20 96 85 89 94 487 377 149 3.1 6.3 0.0

25 64 60 63 64 367 281 33 0.0 0.0 0.0

30 96 89 92 96 801 805 147 2.1 3.1 0.0

35 32 28 27 32 1512 1429 89 3.2 3.2 0.0

40 64 41 39 64 3209 3732 474 15.7 15.7 0.0

50 32 12 14 32 4971 5039 749 31.4 31.4 0.0

60 32 12 9 32 5455 6970 1343 19.0 25.2 0.0

nodes into its structure. From a practical perspective, we observe that (3dLG)
outperforms (2T)

+
with respect to the number of instances for which the LP

relaxation is integral, while the smallest maximum LP-gap is obtained for
(2T)

+
. With respect to the CPU-times needed for solving the integer models,

(3dLG) clearly outperforms (2T)
+
, which in turn performs better than its

simpler variant (2T).
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Fig. 6 CPU-times of (2T)+ and (3dLG) for instance sets 30, 40, and 60.

To analyze the performances and possibly existing individual advantages
of (2T), (2T)

+
, and (3dLG) in more detail, we present numbers of solved

instances, geometric means of CPU-times (in seconds), and average optimal-
ity gaps (in %) grouped by the numbers of primary nodes, size of the given
instance graph, and diameter values (see Tables 1, 2, and 3, respectively).
Furthermore, Fig. 6 provides the distribution of CPU-times for the various
settings of D, D′, and |P |, grouped by the size of the given instance graph.

From Table 1 we are able to draw the important conclusion that model
(2T)

+
performs comparably well to (3dLG) whenever the number of primary

nodes is very small. We argue that this is due to the fact that the size of G3L

as well as the number of constraints needed to ensure property (P4) decreases
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Table 2 Numbers of instances solved to optimality (#solved), geometric means of CPU-
times in seconds, and average optimality gaps in [%], grouped by the instance graph.

#solved CPU-time [s] Gap [%]

Inst # (2T) (2T)+ (3dLG) (2T) (2T)+ (3dLG) (2T) (2T)+ (3dLG)
TC30 96 95 96 96 122 116 37 0.0 0.0 0.0

TR30 96 96 96 96 41 41 14 0.0 0.0 0.0

TC40 128 117 123 128 818 648 200 1.6 1.6 0.0

TR40 128 117 117 128 777 555 120 0.0 0.8 0.0

TC60 96 45 48 85 4161 4111 2026 26.1 30.3 0.0

TR60 96 65 68 96 2531 2380 1018 10.5 9.5 0.0

Table 3 Numbers of instances solved to optimality (#solved), geometric means of CPU-
times in seconds, and average optimality gaps in [%], grouped by (D′, D).

#solved CPU-time [s] Gap [%]

D′ D # (2T) (2T)+ (3dLG) (2T) (2T)+ (3dLG) (2T) (2T)+ (3dLG)
3 5 40 36 37 40 448 196 93 0.0 0.0 0.0

3 6 40 35 35 40 310 263 56 0.1 0.1 0.0

3 7 40 36 35 40 402 484 149 2.5 0.1 0.0

3 8 40 35 35 40 352 428 132 0.1 0.1 0.0

4 6 40 37 38 40 259 184 52 0.0 0.0 0.0

4 7 40 37 38 39 418 317 110 0.0 0.0 0.0

4 8 40 36 35 39 333 313 110 0.0 0.0 0.0

4 9 40 31 31 39 688 617 143 0.0 5.0 0.0

5 7 40 33 37 40 1391 914 394 2.6 0.0 0.0

5 8 40 34 36 39 958 811 280 5.1 5.0 0.0

5 9 40 29 31 38 1733 1786 584 7.6 12.5 0.0

5 10 40 30 32 38 1683 1677 534 10.1 12.5 0.0

6 8 40 36 37 40 335 285 81 10.0 7.5 0.0

6 9 40 32 32 39 603 606 225 17.5 17.5 0.0

6 10 40 33 32 39 522 508 212 15.0 17.5 0.0

6 11 40 25 27 39 1009 1055 373 22.5 25.0 0.0

with the increasing number of primary nodes. This also explains, why, on the
contrary to (2T) and (2T)

+
, model (3dLG) scales remarkably well with respect

to the increasing number of primary nodes. Our observations due to the results
shown in Table 2 are twofold: (i) Euclidean instances (TC) generally seem to be
much harder to solve than random instances (TR), and (ii) the (3dLG) model
clearly scales better to larger instance graphs than the two variants of (2T).
The latter fact is also strongly supported by Fig. 6. From Table 3, we conclude
that the difficulty of the instances increases with increasing difference between
D and D′. Furthermore, as expected from what is known for the DMSTP,
even diameter cases seem to be easier to solve than situations where at least
one diameter is odd.

Overall, we conclude that (3dLG) provides superior performance and out-
performs the two variants of the two-trees model for almost all variations of
input parameters. Further note that for (3dLG) only very few instances could
not be solved to proven optimality within the given time limit (11 out of 640)
and the remaining gap between upper and lower bounds is usually very small
(less than 0.25%). This is in contrast to the performance of models (2T) and



24 L. Gouveia, M. Leitner, I. Ljubić

(2T)
+
, in particular for large instances with 61 nodes. For model (2T)

+
92

out of 640 instances were not solved to optimality and the maximum obtained
gaps were about 100%. These findings are also supported by the more detailed
results presented in Tables 4, 5, 6, and 7 in the Appendix.

5 Conclusions

In this article, we introduced the Two-Level Diameter Constrained Spanning
Tree Problem (2-DMSTP) which generalizes the DMSTP by considering two
sets of nodes with different maximum latency requirements. Studying graph
theoretical properties related to the centers of each tree allowed us to propose
two MIP formulations based on layered graphs, strengthening valid inequali-
ties and symmetry breaking constraints. In particular our second model which
is based on a novel three-dimensional layered graph approach (3dLG) turned
out to perform extremely well in practice. Our computational study has shown
that the (3dLG) approach works particularly well for graphs where the pro-
portion of the number of primary nodes over the number of secondary nodes
is large. Besides considering a generalization of the problem to more than two
different sets of nodes (k-DMSTP), further interesting aspects to be studied in
the future include the study of a model that intersects two three-dimensional
layered graph models, one incorporating primary and a second incorporating
secondary distance constraints in its structure. In such a model explicit dis-
tance constraints become redundant, since each distance is guaranteed by one
of the two layered graphs. It is, however, not at all obvious how to propose
effective linking constraints in order to obtain a model that dominates in the-
ory the ones proposed in this article. Finally, we point out that the idea of the
three-dimensional graph can be easily extended to model problems involving
more complicated distance constraints and which are not easy to model with
a single layered graph (in fact, we claim that they cannot be modeled with a
single layered graph). As one example consider the problem where the maxi-
mum depth of each of the subarborescences depends on the distance of its root
from the two end points of the central path. Hence, this concept may turn out
to be fruitful for other network design problems as well.
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Appendix

Table 4 Results for solving the LP relaxations on instances with 31 and 41 nodes: Numbers
of instances solved within the given time limit (#solved), geometric means of CPU-times in
seconds, and average LP gaps [%] with respect to instance graph and |P |. Note that for this
set of experiments, all preprocessing and presolving routines of CPLEX as well as its build
in additional cuts have been turned off. Average LP gaps are given only over those instances
solved by all three models.

#solved CPU-time [s] Gap [%]

Inst |P | # (2T) (2T)+ (3dLG) (2T) (2T)+ (3dLG) (2T) (2T)+ (3dLG)
TC30 5 16 16 16 16 41 33 198 0.1 0.1 0.4
TC30 10 16 16 16 16 88 84 121 0.1 0.1 0.1

TC30 15 16 16 16 16 320 168 109 0.3 0.1 0.1

TC30 20 16 16 16 16 191 153 83 0.5 0.3 0.0

TC30 25 16 14 16 16 636 335 90 0.3 0.1 0.0

TC30 30 16 16 16 16 275 341 87 0.0 0.0 0.0

TC40 5 16 16 16 16 393 304 2205 0.1 0.1 0.5
TC40 10 16 16 16 16 303 285 607 0.1 0.1 0.2
TC40 15 16 16 16 16 832 433 497 0.4 0.1 0.2
TC40 20 16 15 16 16 993 486 417 0.6 0.2 0.2

TC40 25 16 15 16 16 1318 1021 364 0.6 0.2 0.2

TC40 30 16 14 15 16 2005 1251 437 0.3 0.1 0.1

TC40 35 16 13 15 16 1776 1692 420 0.1 0.0 0.1
TC40 40 16 15 13 16 2154 2518 617 0.0 0.0 0.0

TR30 5 16 16 16 16 11 7 26 1.1 0.4 0.3

TR30 10 16 16 16 16 33 23 59 1.2 0.3 0.2

TR30 15 16 16 16 16 99 56 68 0.2 0.1 0.1

TR30 20 16 16 16 16 85 59 59 0.0 0.0 0.0

TR30 25 16 16 16 16 206 181 71 0.1 0.0 0.0

TR30 30 16 16 16 16 201 233 62 0.0 0.0 0.0

TR40 5 16 16 16 16 145 89 382 0.4 0.1 0.4
TR40 10 16 16 16 16 536 306 402 1.2 0.2 0.5
TR40 15 16 16 16 16 891 401 549 0.9 0.2 0.2

TR40 20 16 14 16 16 736 640 423 0.9 0.2 0.1

TR40 25 16 15 14 16 931 658 383 0.1 0.0 0.0

TR40 30 16 13 16 16 2004 1273 975 0.3 0.2 0.2

TR40 35 16 13 14 16 2598 1411 777 0.4 0.4 0.4

TR40 40 16 12 11 16 2718 3211 633 0.5 0.5 0.5
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Table 5 Numbers of instances solved to optimality (#solved), geometric means of CPU-
times in seconds, and average optimality gaps in [%] with respect to instance graph and
|P |.

#solved CPU-time [s] Gap [%]

Inst |P | # (2T) (2T)+ (3dLG) (2T) (2T)+ (3dLG) (2T) (2T)+ (3dLG)
TC30 5 16 16 16 16 43 38 73 0.0 0.0 0.0

TC30 10 16 16 16 16 73 76 51 0.0 0.0 0.0

TC30 15 16 16 16 16 183 140 49 0.0 0.0 0.0

TC30 20 16 16 16 16 131 104 24 0.0 0.0 0.0

TC30 25 16 15 16 16 213 196 19 0.0 0.0 0.0

TC30 30 16 16 16 16 204 299 29 0.0 0.0 0.0

TC40 5 16 16 16 16 336 302 947 0.0 0.0 0.0

TC40 10 16 16 16 16 249 249 301 0.0 0.0 0.0

TC40 15 16 15 16 16 619 374 250 0.0 0.0 0.0

TC40 20 16 14 16 16 887 480 207 0.0 0.0 0.0

TC40 25 16 14 16 16 1168 629 145 0.0 0.0 0.0

TC40 30 16 14 15 16 1231 938 116 6.3 6.2 0.0

TC40 35 16 13 13 16 1629 1527 85 6.3 6.3 0.0

TC40 40 16 15 15 16 1871 2553 121 0.0 0.0 0.0

TC60 10 16 3 7 7 7602 6072 7216 31.4 18.8 0.1

TC60 20 16 10 10 14 3929 3038 2593 18.8 31.3 0.0

TC60 30 16 13 13 16 2344 2609 1778 6.3 12.5 0.0

TC60 40 16 10 9 16 2991 3444 1279 25.0 31.3 0.0

TC60 50 16 5 5 16 4492 4995 899 43.8 43.8 0.0

TC60 60 16 4 4 16 5521 5833 1809 31.4 43.8 0.0

TR30 5 16 16 16 16 8 5 13 0.0 0.0 0.0

TR30 10 16 16 16 16 23 23 23 0.0 0.0 0.0

TR30 15 16 16 16 16 49 43 28 0.0 0.0 0.0

TR30 20 16 16 16 16 45 53 10 0.0 0.0 0.0

TR30 25 16 16 16 16 101 105 6 0.0 0.0 0.0

TR30 30 16 16 16 16 122 174 14 0.0 0.0 0.0

TR40 5 16 16 16 16 102 73 159 0.0 0.0 0.0

TR40 10 16 16 16 16 428 190 112 0.0 0.0 0.0

TR40 15 16 15 16 16 767 407 139 0.0 0.0 0.0

TR40 20 16 14 15 16 869 621 121 0.0 6.2 0.0

TR40 25 16 15 15 16 727 485 71 0.0 0.0 0.0

TR40 30 16 14 16 16 1925 1261 132 0.0 0.0 0.0

TR40 35 16 15 14 16 1404 1338 93 0.0 0.1 0.0

TR40 40 16 12 9 16 2325 3111 169 0.1 0.2 0.0

TR60 10 16 15 16 16 770 617 1433 0.1 0.0 0.0

TR60 20 16 15 16 16 742 580 710 0.1 0.0 0.0

TR60 30 16 16 16 16 1905 1694 911 0.0 0.0 0.0

TR60 40 16 4 6 16 8151 7091 1932 37.7 31.4 0.0

TR60 50 16 7 9 16 5502 5083 624 18.9 18.9 0.0

TR60 60 16 8 5 16 5389 8328 998 6.5 6.6 0.0
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Table 6 Numbers of instances solved to optimality (#solved), geometric means of CPU-
times in seconds, and average optimality gaps in [%] with respect to D and D′ for Euclidean
instances.

#solved CPU-time [s] Gap [%]

Inst D′ D # (2T) (2T)+ (3dLG) (2T) (2T)+ (3dLG) (2T) (2T)+ (3dLG)
TC30 3 5 6 6 6 6 43 19 13 0.0 0.0 0.0

TC30 3 6 6 6 6 6 54 33 9 0.0 0.0 0.0

TC30 3 7 6 6 6 6 76 83 14 0.0 0.0 0.0

TC30 3 8 6 6 6 6 36 58 12 0.0 0.0 0.0

TC30 4 6 6 6 6 6 49 40 14 0.0 0.0 0.0

TC30 4 7 6 6 6 6 114 109 27 0.0 0.0 0.0

TC30 4 8 6 6 6 6 114 112 26 0.0 0.0 0.0

TC30 4 9 6 6 6 6 351 441 43 0.0 0.0 0.0

TC30 5 7 6 6 6 6 159 107 73 0.0 0.0 0.0

TC30 5 8 6 6 6 6 173 184 81 0.0 0.0 0.0

TC30 5 9 6 5 6 6 469 527 142 0.0 0.0 0.0

TC30 5 10 6 6 6 6 470 457 134 0.0 0.0 0.0

TC30 6 8 6 6 6 6 63 62 26 0.0 0.0 0.0

TC30 6 9 6 6 6 6 113 156 55 0.0 0.0 0.0

TC30 6 10 6 6 6 6 126 121 85 0.0 0.0 0.0

TC30 6 11 6 6 6 6 287 297 95 0.0 0.0 0.0

TC40 3 5 8 7 8 8 206 63 22 0.0 0.0 0.0

TC40 3 6 8 8 8 8 53 63 15 0.0 0.0 0.0

TC40 3 7 8 8 8 8 125 142 60 0.0 0.0 0.0

TC40 3 8 8 8 8 8 149 183 38 0.0 0.0 0.0

TC40 4 6 8 8 8 8 735 384 115 0.0 0.0 0.0

TC40 4 7 8 8 8 8 853 568 204 0.0 0.0 0.0

TC40 4 8 8 8 8 8 794 804 192 0.0 0.0 0.0

TC40 4 9 8 5 7 8 2421 1500 286 0.0 0.0 0.0

TC40 5 7 8 8 8 8 2249 1416 643 0.0 0.0 0.0

TC40 5 8 8 8 8 8 1157 947 388 0.0 0.0 0.0

TC40 5 9 8 8 8 8 1785 1879 735 0.0 0.0 0.0

TC40 5 10 8 6 8 8 2686 2329 677 0.1 0.0 0.0

TC40 6 8 8 8 8 8 1016 725 235 0.0 0.0 0.0

TC40 6 9 8 7 7 8 1954 1363 514 0.0 0.0 0.0

TC40 6 10 8 8 7 8 1702 1697 490 0.0 12.5 0.0

TC40 6 11 8 4 6 8 3920 3625 908 25.0 12.5 0.0

TC60 3 5 6 6 6 6 311 228 221 0.0 0.0 0.0

TC60 3 6 6 5 5 6 594 653 112 0.1 0.1 0.0

TC60 3 7 6 6 6 6 608 914 609 0.0 0.0 0.0

TC60 3 8 6 6 6 6 672 885 375 0.0 0.0 0.0

TC60 4 6 6 3 4 6 5406 3938 1206 0.1 0.0 0.0

TC60 4 7 6 3 4 5 7494 5734 2602 0.2 0.1 0.0

TC60 4 8 6 2 2 5 8789 8000 2493 0.2 0.2 0.0

TC60 4 9 6 0 0 5 10000 10000 3601 0.2 33.5 0.0

TC60 5 7 6 3 5 6 6820 5211 4211 16.7 0.1 0.0

TC60 5 8 6 3 3 5 6890 8032 4202 16.8 33.4 0.0

TC60 5 9 6 1 0 4 9691 10000 7374 50.1 66.7 0.0

TC60 5 10 6 2 2 4 9742 9835 7072 33.4 50.0 0.1

TC60 6 8 6 3 3 6 7682 7865 2366 50.0 50.0 0.0

TC60 6 9 6 1 1 5 9350 9665 5542 83.3 83.3 0.0

TC60 6 10 6 1 1 5 9438 9787 5822 66.7 66.7 0.0

TC60 6 11 6 0 0 5 10000 10001 7169 100.0 100.0 0.0
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Table 7 Numbers of instances solved to optimality (#solved), geometric means of CPU-
times in seconds, and average optimality gaps in [%] with respect to D and D′ for random
instances.

#solved CPU-time [s] Gap [%]

Inst D′ D # (2T) (2T)+ (3dLG) (2T) (2T)+ (3dLG) (2T) (2T)+ (3dLG)
TR30 3 5 6 6 6 6 484 127 38 0.0 0.0 0.0

TR30 3 6 6 6 6 6 238 139 27 0.0 0.0 0.0

TR30 3 7 6 6 6 6 332 405 41 0.0 0.0 0.0

TR30 3 8 6 6 6 6 239 251 59 0.0 0.0 0.0

TR30 4 6 6 6 6 6 7 6 2 0.0 0.0 0.0

TR30 4 7 6 6 6 6 11 17 6 0.0 0.0 0.0

TR30 4 8 6 6 6 6 11 11 9 0.0 0.0 0.0

TR30 4 9 6 6 6 6 16 23 10 0.0 0.0 0.0

TR30 5 7 6 6 6 6 75 64 19 0.0 0.0 0.0

TR30 5 8 6 6 6 6 45 50 11 0.0 0.0 0.0

TR30 5 9 6 6 6 6 108 150 31 0.0 0.0 0.0

TR30 5 10 6 6 6 6 91 95 28 0.0 0.0 0.0

TR30 6 8 6 6 6 6 6 6 2 0.0 0.0 0.0

TR30 6 9 6 6 6 6 14 21 8 0.0 0.0 0.0

TR30 6 10 6 6 6 6 10 11 8 0.0 0.0 0.0

TR30 6 11 6 6 6 6 19 26 23 0.0 0.0 0.0

TR40 3 5 8 7 7 8 1451 554 165 0.1 0.0 0.0

TR40 3 6 8 7 7 8 1064 857 87 0.1 0.1 0.0

TR40 3 7 8 7 6 8 866 984 213 0.1 0.1 0.0

TR40 3 8 8 6 6 8 703 723 233 0.1 0.1 0.0

TR40 4 6 8 8 8 8 174 136 28 0.0 0.0 0.0

TR40 4 7 8 8 8 8 369 165 63 0.0 0.0 0.0

TR40 4 8 8 8 8 8 194 155 65 0.0 0.0 0.0

TR40 4 9 8 8 7 8 490 319 66 0.0 0.0 0.0

TR40 5 7 8 8 8 8 2963 1398 380 0.0 0.0 0.0

TR40 5 8 8 8 8 8 1683 1015 219 0.0 0.0 0.0

TR40 5 9 8 6 7 8 4167 2964 493 0.1 0.1 0.0

TR40 5 10 8 7 7 8 2759 2821 355 0.1 0.0 0.0

TR40 6 8 8 8 8 8 202 136 32 0.0 0.0 0.0

TR40 6 9 8 8 8 8 561 400 95 0.0 0.0 0.0

TR40 6 10 8 8 8 8 433 356 74 0.0 0.0 0.0

TR40 6 11 8 5 6 8 1087 933 112 0.1 12.6 0.0

TR60 3 5 6 4 4 6 3677 3056 2100 0.2 0.2 0.0

TR60 3 6 6 3 3 6 2487 2192 1255 0.2 0.3 0.0

TR60 3 7 6 3 3 6 2898 3533 2925 16.9 0.3 0.0

TR60 3 8 6 3 3 6 3323 4077 2685 0.3 0.3 0.0

TR60 4 6 6 6 6 6 1002 670 145 0.0 0.0 0.0

TR60 4 7 6 6 6 6 1455 1061 316 0.0 0.0 0.0

TR60 4 8 6 6 5 6 722 722 257 0.0 0.0 0.0

TR60 4 9 6 6 5 6 1164 1040 297 0.0 0.0 0.0

TR60 5 7 6 2 4 6 8864 6153 2296 0.4 0.2 0.0

TR60 5 8 6 3 5 6 5707 3557 1420 16.9 0.1 0.0

TR60 5 9 6 3 4 6 5469 6111 3309 0.2 16.8 0.0

TR60 5 10 6 3 3 6 5308 5989 3830 33.5 33.5 0.0

TR60 6 8 6 5 6 6 1821 1747 306 16.7 0.0 0.0

TR60 6 9 6 4 4 6 2064 2452 1083 33.3 33.3 0.0

TR60 6 10 6 4 4 6 1693 1655 727 33.3 33.3 0.0

TR60 6 11 6 4 3 6 2815 3637 1849 16.7 33.4 0.0


