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Abstract

In this paper we propose a general variable neighborhood search approach for the
balanced location problem. Next to large shaking neighborhoods, the embedded
variable neighborhood descent utilizes three neighborhood structures that focus
on different solution aspects. By a computational study, we show that this VNS
outperforms existing methods with respect to average solution quality and stability.
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1 Introduction

We consider the Balanced Location Problem (LOBA), a variant of the discrete
facility location problem in which one aims to open p facilities and balance
the number of clients allocated to them. Hereby, each client must be assigned
to its closest open facility. More formally, we are given m potential facilities,
n clients, a parameter p ∈ N and transportation costs (distances) cij ≥ 0, be-
tween each client i and each potential facility j. In a feasible solution we open
exactly p facilities and assign each client to an open facility with the minimum
transportation cost. Let u and l be the maximum and minimum number of
clients assigned to any open facility, respectively. Then the objective is to
determine a set of p open facilities such that the difference between u and l is
minimized.

LOBA has applications in the location of antennas for mobile communi-
cation, or in the territory design [4], where small geographic areas must be
grouped into larger geographic clusters according to some planning criteria like
political districting, solid waste collection, or school districting. Note that a
similar problem that addresses the minimization of the Gini index has been
studied by Drezner et al. [1].

LOBA has been introduced by Marin [5] who proposed two different in-
teger programming formulations and a branch-and-cut algorithm, utilizing
preprocessing techniques to reduce the problem size and a so-called inter-

change heuristic (cf. Section 3) to derive good upper bounds. Furthermore,
he developed several families of valid inequalities to strengthen these formu-
lations. Computational results have been reported on instances with up to
50 potential facilities and 100 clients. Recently, Filipović et al. [2] suggested
to solve LOBA using a hybrid metaheuristic called HGA which combines a
genetic algorithm with a fast interchange heuristic. HGA is based on a binary
encoding scheme and uses caching techniques to improve its computational
performance. In a computational study performed in [2], the authors com-
pared HGA with the heuristic method from [5] using instances from [5] plus
a set of significantly larger instances with up to 1000 potential facilities and
1000 clients. The obtained results document a superior performance of HGA
in most of the cases.
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2 VNS for the Balanced Location Problem

We initialize the VNS by randomly selecting p facilities to create an initial so-
lution. We then use three neighborhood search procedures that are exchanged
in a systematic way within the embedded variable neighborhood descent al-
gorithm. Random moves in larger, so-called shaking neighborhoods are per-
formed in order to escape from local optima and to explore new regions of
the search space. In this section we elaborate on the main ingredients of the
proposed VNS approach. A detailed description of the variable neighborhood
search metaheuristic can be found in, e.g., [3].

Evaluating the Objective Function

As in many discrete location problems, for each location decision in LOBA
(i.e., for each subset of open facilities) we can determine the optimal assign-
ments in polynomial time. Therefore, the natural way to store the solutions is
to use a set of p indices corresponding to open facilities. It is therefore crucial
to choose appropriate data structures in order to be able to efficiently evaluate
the objective value of a solution.

Our data structures depend on the size of the parameter p and an auxiliary
parameter c (set to c = 0.95 in the default implementation (see also [2])). If
p is large, i.e., p > c · √m, for each client i, we pre-compute a list Fi of all
facilities sorted in non-decreasing order according to cij. For each client i, we
simply iterate through Fi until the first open facility is found. Clearly, this
facility has minimal transportation costs to i among all open facilities. In the
worst case, the number of steps for each client is m−p ≤ m− c ·√m and thus
the overall run-time complexity is O(n · (m − p)) = O(nm). For reasonable
solutions, however, we expect that on average only m/p (rather than m − p)
facilities need to be processed for each client until the first open facility occurs.
In this case, the expected total complexity is given by O(n ·m/p) = O(n

√
m).

If p is small, i.e., p ≤ c · √m, this strategy is slow since most facilities
will not be active. Thus, it is likely that one would need to consider a sig-
nificant proportion of list Fi for each client i before finding an open facility.
To avoid this situation, for each client i we iterate through the list L of open
facilities and identify an open facility j(i) with the minimum transportation
cost to i (j(i) = argminj∈L cij). Thus, the overall run-time complexity of this
procedure is O(n · p).

Shaking Neighborhoods

Since only the facilities with a maximum and minimum number of assigned
clients are considered when computing the objective value of a solution, it may



be even more likely than for other problems to get trapped in poor local optima
when considering local search neighborhoods which are relatively restricted.
Thus, it is crucial to use larger shaking neighborhoods in order to escape from
such local optima.

To perform a move in the k-th shaking neighborhood, kmin ≤ k ≤ kmax,
k out of the p currently open facilities are chosen uniformly at random and
closed. Afterwards, k among the now m − p + k closed facilities are chosen
uniformly at random and opened.

Embedded Variable Neighborhood Descent

We improve candidate solutions using a variable neighborhood descent
(VND) based on three neighborhoods, denoted by LS1, LS2, LS3. These
are applied in the usual way, i.e., if an improving solution within the LSi

neighborhood could be identified, the search continues within LS1. Otherwise,
if the solution turns out to be locally optimal w.r.t. LSi, we resort to LSi+1,
for i = 1, 2.

Overall, if x denotes the current incumbent and o(x) its objective value,
and VND terminates with solution x′′, three cases may happen: (i) if o(x′′) >
o(x), a new shaking move (with increased shaking size) is performed on x
and the VND is repeated, (ii) if o(x′′) < o(x), x′′ is the new incumbent x
and a shaking move with the previous shaking size is performed, and (iii) if
o(x′′) = o(x) then x′′ is used a new incumbent with probability pmove in which
case the shaking size remains identical while with probability 1 − pmove, the
incumbent x is kept and the next shaking neighborhood is considered.

Neighborhood Structures

LS1 and LS2 focus on the two most influential aspects of a solution, namely on
the open facilities with a largest and smallest number of assigned clients. For
a given candidate solution x, let F (x) denote its open facilities and Fmax(x) ⊆
F (x) and Fmin(x) ⊆ F (x), be the sets of facilities with the largest and smallest
number of assigned clients, respectively.

The neighborhood LS1(x) consists of all solutions x′ that can be con-
structed by closing exactly one facility from Fmax(x) and opening another
facility instead. In case a neighboring solution that decreases the objective
value exists, x is replaced by such a solution yielding the maximum decrease.

On the contrary, the neighborhood LS2(x) consists of all solutions x
′ that

differ from a given solution x by closing one facility from Fmin(x) and opening
a new, originally closed facility instead. As for LS1, in case at least one



improving solution exists in LS2(x), a neighboring solution maximizing the
improvement of the objective value is chosen as the next one.

Finally, the neighborhood LS3 consists of those solutions x
′ that differ from

the current one x in exactly one facility from F (x)\ (Fmax(x)∪Fmin(x)) which
is closed, and a new one from F \ F (x) is opened instead. In other words we
have LS3 = {x′ | |F (x′) ∩ F (x)| = |F (x)| − 1 and |F (x′) \ F (x)| = 1}.

All three local search procedures are based on swaps between open and
closed facilities. More precisely, we apply the best improvement strategy in
which we search for a pair (j1, j2) of facilities (j1 ∈ F (x), j2 6∈ F (x)) that
brings the highest gain with respect to the current solution.

Efficient Implementation of Swap Moves

An obvious option for implementing swap moves would be to apply the
fast interchange heuristics (cf. [2]) to each candidate pair (j1, j2). A significant
speed-up can, however, be achieved when implementing an one-to-all rather
than many one-to-one calculations. Here, we divide each swap into two parts:

(i) Close one facility and correspondingly update the objective value.

(ii) Open a new facility

In this step, after closing facility j, we need to identify the closest open
facility for each client originally assigned to j. In the second step, when
opening a new facility j′, for each client we only need to compare its distance
to j′ with the distance to the actual closest facility from F (x) \ {j}. Observe,
that when searching any of the three proposed neighborhood structures we
only need to consider the first step once for each facility that may be closed.
In LS1, for example, often |Fmax(x)| = 1, i.e., only one facility may be closed.

Note that the whole VND scheme is collapsed into a single local search
procedure if Fmax(x) = Fmin(x) = F (x) since all three neighborhoods would
be identical in this case. To search this neighborhood, we need to consider
swaps between every open and every closed facility.

In the general case the size of each neighborhood LSi, i = 1, 2, 3, is given
by |Fclose(x)| · |F (x) \Fclose(x)| ≤ p · (m− p). Hereby, Fclose(x) denotes the set
of facilities that may be closed in neighborhood i, e.g., Fclose(x) = Fmax(x) for
LS1.

Closing a facility with u assigned clients can be done in O(u ·m), since we
either need O(u·(m−p)) steps if p is large or O(u·p) steps if p is small. In a one-
to-all calculation we then need to try whether any of the closed m−p facilities
yields an improvement. Since the latter can be performed in O(n · (m − p))
steps, the overall complexity of searching any of our neighborhoods is O(pnm).



This worst case could, however, only occur if all open facilities may be closed
and there are O(n) clients assigned to each open facility. Thus, in particular
LS1 and LS2 can be searched much faster in practice.

3 Experimental results

Our computational study has been performed on a single core of an In-
tel quad core processor with 2.5GHz, 1GB RAM, with Windows XP. For
the VNS, which has been implemented in C, we set parameters kmin = 2,
kmax = min{p, 20}, pmove = 0.2, and used an iteration limit of Nmax = 1000 as
termination criterion.

Tables 1 and 2 compare the performance of the VNS, with the genetic
algorithm (HGA) from [2], and the heuristic method (AMH) from [5]. Since,
VNS and HGA are not deterministic, each experiment has been repeated
20 times. We used benchmark instances from [2,5] with randomly generated
distances between clients and potential facility sites. We report computational
results on a subset of 12 small, 16 medium, and 16 large instances from this
very large benchmark collection.

In Tables 1 and 2, the first column (Inst) identifies the used instance which
is denoted with m − n − p − pl, where m, n, and p, denote the numbers of
potential facility sites, clients, and facilities that need to be opened, respec-
tively. The last integer pl gives the “perturbation level”, a parameter used to
create the corresponding instance, cf. [5]. For HGA and VNS, we report best
found solutions obest, average objective values oavg, together with correspond-
ing standard deviations of relative errors in parenthesis (in percent), average
runtimes for finding the best solution of each run tbest in seconds, average

Table 1
Comparison of B&C, AMH, GA, and VNS on some small instances.

B&C AMH GA V NS

Inst opt t o t obest oavg tbest tavg #best obest oavg tbest tavg #best

50-100-3-10 96 950 96 62 96 96.0 (0.0) 0.0 0.3 20 96 96.0 (0.0) 0.0 0.0 20

50-100-3-50 87 884 87 61 87 87.0 (0.0) 0.0 0.3 20 87 87.0 (0.0) 0.0 0.0 20

50-100-3-100 79 876 79 72 79 79.2 (0.8) 0.0 0.3 19 79 79.0 (0.0) 0.0 0.1 20

50-100-3-400 48 1007 48 89 48 48.0 (0.0) 0.0 0.3 20 48 48.0 (0.0) 0.0 0.1 20

50-100-6-10 95 - 95 95 95 95.0 (0.0) 0.0 1.0 20 95 95.0 (0.0) 0.0 0.1 20

50-100-6-50 83 - 83 51 83 83.0 (0.0) 0.0 0.4 20 83 83.0 (0.0) 0.0 0.1 20

50-100-6-100 70 - 76 73 70 70.9 (6.1) 0.0 0.4 19 70 70.0 (0.0) 0.0 0.1 20

50-100-6-400 35 - 35 80 35 35.0 (0.0) 0.0 0.4 20 35 35.0 (0.0) 0.0 0.1 20

50-100-10-10 96 1195 96 51 96 96.0 (0.0) 0.0 1.5 20 96 96.0 (0.0) 0.0 0.1 20

50-100-10-50 83 635 83 51 83 83.0 (0.0) 0.0 0.9 20 83 83.0 (0.0) 0.0 0.1 20

50-100-10-100 69 508 72 53 69 69.0 (0.0) 0.0 0.5 20 69 69.6 (1.7) 0.0 0.1 16

50-100-10-400 18 - 18 71 18 18.0 (0.0) 0.0 0.5 20 18 18.0 (0.0) 0.0 0.2 20



Table 2
Comparison of GA and VNS on some medium and large size instances.

GA V NS

Inst obest oavg tbest tavg #best obest oavg tbest tavg #best

200-200-3-100 188 188.7 (0.3) 0.1 0.9 7 188 188.0 (0.0) 0.0 2.3 20

200-200-3-1000 156 156.0 (0.0) 0.0 0.8 20 156 156.0 (0.0) 0.0 2.6 20

200-200-3-2000 122 122.0 (0.0) 0.0 0.8 20 122 122.0 (0.0) 0.0 3.1 20

200-200-3-5000 61 61.0 (0.0) 0.0 0.8 20 61 61.0 (0.0) 0.0 3.3 20

200-200-6-100 184 185.8 (0.8) 1.3 7.0 8 184 184.0 (0.0) 0.1 3.7 20

200-200-6-1000 129 129.0 (0.0) 0.1 1.1 20 129 129.0 (0.0) 0.1 5.3 20

200-200-6-2000 74 74.0 (0.0) 0.1 1.2 20 74 74.0 (0.0) 0.1 5.7 20

200-200-6-5000 20 20.0 (0.0) 0.3 1.5 20 20 20.0 (0.0) 0.7 6.7 20

200-200-10-100 177 180.6 (1.7) 0.0 10.8 8 177 177.0 (0.0) 0.3 6.1 20

200-200-10-1000 100 100.7 (1.1) 0.4 1.7 11 100 100.2 (0.4) 3.5 9.2 16

200-200-10-2000 43 43.0 (0.0) 0.2 1.6 20 43 43.0 (0.0) 0.5 9.9 20

200-200-10-5000 3 4.3 (26.2) 0.3 1.9 3 3 3.2 (12.5) 4.0 10.4 16

200-200-20-100 167 167.4 (0.4) 1.6 33.3 12 167 167.7 (0.4) 3.7 8.6 8

200-200-20-1000 56 56.7 (4.0) 1.2 4.2 15 56 62.3 (6.9) 10.7 15.7 3

200-200-20-2000 8 10.7 (16.8) 0.8 4.4 1 8 9.6 (12.5) 8.5 17.9 6

200-200-20-5000 2 2.2 (18.3) 1.0 3.4 17 2 2.0 (0.0) 3.3 15.0 20

1000-1000-3-100 993 994.0 (0.0) 0.2 11.4 1 993 993.0 (0.0) 1.2 117.6 20

1000-1000-3-1000 978 978.0 (0.0) 1.9 9.0 20 978 978.0 (0.0) 0.9 124.3 20

1000-1000-3-10000 909 909.0 (0.0) 1.0 8.7 20 909 909.0 (0.0) 3.2 133.1 20

1000-1000-3-100000 494 498.1 (3.7) 3.4 11.4 18 494 494.0 (0.0) 18.8 154.6 20

1000-1000-6-100 991 991.0 (0.0) 0.6 12.6 20 990 990.0 (0.0) 29.4 206.7 20

1000-1000-6-1000 964 964.0 (0.0) 2.2 19.3 20 964 964.0 (0.0) 3.0 270.6 20

1000-1000-6-10000 839 840.1 (0.1) 3.8 15.0 9 839 839.5 (0.1) 84.1 285.4 15

1000-1000-6-100000 241 242.6 (1.4) 8.0 19.9 15 241 241.0 (0.0) 82.9 358.2 20

1000-1000-10-100 986 990.8 (0.2) 46.9 589.8 2 986 987.5 (0.1) 52.3 293.3 3

1000-1000-10-1000 945 945.5 (0.2) 19.2 52.9 18 945 945.0 (0.0) 75.5 413.8 20

1000-1000-10-10000 760 763.9 (0.8) 5.6 21.1 2 760 769.5 (1.1) 200.3 470.9 3

1000-1000-10-100000 69 78.7 (14.6) 9.6 25.1 3 69 95.1 (18.0) 380.2 616.8 1

1000-1000-20-100 976 982.6 (0.7) 74.1 1431.5 1 978 978.0 (0.0) 23.4 531.6 20

1000-1000-20-1000 907 913.8 (0.7) 120.8 575.8 7 907 917.4 (0.3) 173.7 764.8 1

1000-1000-20-10000 590 608.8 (4.4) 10.2 34.8 1 604 638.8 (3.1) 733.7 937.3 1

1000-1000-20-100000 3 5.2 (33.5) 22.8 45.1 1 4 9.3 (56.5) 909.2 1289.4 2

total runtimes tavg in seconds, and the number of runs #best in which the
best solution was found. For small instances, i.e., in Table 1, we also report
best found solution values o and needed runtimes t in seconds for the exact
branch-and-cut (B&C) approach from [5] as well as for the heuristic method
AMH from the same paper. For the branch-and-cut a dash indicates that the
time limit of one hour has been reached and thus the found solution is not
necessarily optimal. We note, that the results of the branch-and-cut approach
and AMH have been obtained on a similar, yet slightly different hardware,
and thus the runtimes are not directly comparable.

From Table 1, we conclude that VNS always found an optimal or best
known solution for small instances very fast. Furthermore, on medium and
large instances it slightly outperforms HGA with respect to average solution



quality and appears to be more stable on average. With respect to the neces-
sary runtime, the picture is more diverse, i.e., whether VNS or GA is faster
heavily depends on the considered instance.

4 Conclusions

In this paper we proposed a robust and effective variable neighborhood search
metaheuristic for the balanced location problem. This VNS utilizes large
shaking neighborhoods in order to escape from local optima as well as an
embedded variable neighborhood descent consisting of three neighborhood
structures focusing on different solution aspects.

By a computational study, we showed that the VNS is able to reach optimal
solutions very fast and consistently for small instances that can be solved to
proven optimality with a previously proposed branch-and-cut approach. For
larger instances, we showed that this VNS outperforms a genetic algorithm
with respect to stability and average solution quality. In future work, we
want to study a parallel version of this VNS in order to achieve a significant
speed-up. Furthermore, its hybridization with exact methods appears to be a
promising direction for future research.
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