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Abstract. We consider a new network design problem that general-
izes the Hop and Diameter Constrained Minimum Spanning and Steiner
Tree Problem as follows: given an edge-weighted undirected graph whose
nodes are partitioned into a set of root nodes, a set of terminals and a
set of potential Steiner nodes, find a minimum-weight subtree that spans
all the roots and terminals so that the number of hops between each rel-
evant node and an arbitrary root does not exceed a given hop limit H .
The set of relevant nodes may be equal to the set of terminals, or to
the union of terminals and root nodes. This paper presents theoretical
and computational comparisons of flow-based vs. path-based mixed in-
teger programming models for this problem. Disaggregation by roots is
used to improve the quality of lower bounds of both models. To solve
the problem to optimality, we implement branch-and-price algorithms
for all proposed formulations. Our computational results show that the
branch-and-price approaches based on path formulations outperform the
flow formulations if the hop limit is not too loose.

1 Introduction

We consider the Hop Constrained Minimum Steiner Tree Problem on a graph
with Multiple Root nodes (HCSTPMR). Formally, we are given an undirected
graph G = (V,E), with node set V , edge set E, edge costs ce ≥ 0, ∀e ∈ E, and
a hop limit H ∈ N. The node set V is partitioned into the set of root nodes R,
|R| ≥ 1, a (potentially empty) set of terminal nodes T ⊂ V \ R, and the set of
remaining nodes S = V \ {R ∪ T } that will be called potential Steiner nodes.
Furthermore, we are given a set T ′ ∈ {T,R ∪ T }, T ′ �= ∅, of relevant nodes for
which hop limits to all root nodes need to be considered.
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A solution to the HCSTPMR is a Steiner tree G′ = (V ′, E′) spanning all root
and terminal nodes, i.e., R∪T ⊆ V ′, such that the hop-constraints are met for all
pairs (u, v) with u ∈ R and v ∈ T ′. More precisely, if PG′(u, v) ⊆ E′ denotes the
edge set of the unique path from u ∈ R to v ∈ T ′ in G′ and lG′(u, v) = |PG′(u, v)|
its length, then each feasible solution has to satisfy:

lG′(u, v) ≤ H, ∀u ∈ R, ∀v ∈ T ′.

The objective is to find a feasible solution G∗ = (V ∗, E∗) yielding minimum
total edge costs, i.e. min

∑
e∈E∗ ce.

The HCSTPMR is NP-hard since it becomes the Hop Constrained Steiner
Tree Problem (HCSTP) for |R| = 1 or |T ′| = 1. Furthermore, we have the
Diameter Constrained Steiner Tree Problem (DCSTP) with diameter equal to
H if T ′ = R. The Hop and Diameter Constrained Minimum Spanning and
Steiner Tree Problems have been studied by many authors, see e.g. [6] and [10]
for recent contributions. The HCSTPMR which generalizes these well known
network design problems has not been studied in the literature before.

Overview of the paper. In Section 2 we first consider undirected flow- and
path-based mixed integer programming (MIP) formulations. Due to the hop-
constraints imposed for terminals with respect to each of the root nodes s ∈ R,
it is not obvious how to direct a feasible solution whenever |R| > 1. To overcome
this disadvantage, in Section 3 we propose a model that considers |R| directed
models, one for each root s ∈ R, combined together with adequate coupling
of the directed variables from each model with the undirected edge variables.
We also compare the proposed formulations with respect to their quality of LP
lower bounds. Section 4 provides implementation details of branch-and-price ap-
proaches that have been implemented for the proposed MIP formulations. Com-
putational comparison is conducted in Section 5 where lower bounds of our MIP
formulations are calculated and the overall performance of the branch-and-price
approaches is compared on a set of publicly available benchmark instances.

Notation. By PM we denote the convex hull of all feasible LP solutions of a MIP
formulation M and by proja1,...,an(PM ), the orthogonal projection of the convex
hull of LP solutions of M onto the space defined by variables a1, . . . , an.

2 Undirected Formulations

For the formulations considered throughout this section, for each s ∈ R and
t ∈ T ′, t �= s, we consider a pair (s, t) as a commodity. Our goal is to find an
optimal solution that includes a path between s and t with at most H hops,
for each commodity pair (s, t). To model a feasible solution G′ = (V ′, E′) on G,
we will use binary edge variables, xe, that are set to one if e ∈ E′, and to zero,
otherwise, for all e ∈ E. In addition, we will use binary node variables associated
to potential Steiner nodes: yv is set to one if v ∈ V ′ ∩ S, and to zero, otherwise,
for all nodes v ∈ S. Finally, A = {(i, j), (j, i) | {i, j} ∈ E} denotes the set of
bi-directed arcs in G.
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2.1 An Undirected Multi-commodity Flow Formulation

Multi-commodity-flow-based formulations are one of the oldest approaches for
modeling hop-constrained network design problems (see, e.g., [2]). Our formula-

tion (1)–(10) to which we refer as UFlowB uses continuous flow variables f st
ij ≥ 0,

denoting the amount of flow of commodity (s, t) sent through an arc (i, j) ∈ A
for each s ∈ R, t ∈ T ′ \ {s}.

min
∑

e∈E

cexe (1)

s.t.
∑

(i,j)∈A

fst
ij −

∑

(j,i)∈A

fst
ji =

⎧
⎪⎨

⎪⎩

1 if i = s

0 if i �= s, t

−1 if i = t

∀s ∈ R, ∀t ∈ T ′ \ {s}, ∀i ∈ V (2)

∑

(i,j)∈A

fst
ij ≤ H ∀s ∈ R, ∀t ∈ T ′ \ {s} (3)

0 ≤ fst
ij + fst

ji ≤ xe ∀s ∈ R, ∀t ∈ T ′ \ {s}, ∀e = {i, j} ∈ E (4)

xe ≤ yi ∀e = {i, j} ∈ E, i ∈ S (5)
∑

e∈E

xe = |R|+ |T |+
∑

v∈S

yv − 1 (6)

∑

e={i,j}∈E

xe ≥ 2yi ∀i ∈ S (7)

0 ≤ fsp
ij + fsq

ji ≤ xe ∀s ∈ R, ∀p, q ∈ T ′ \ {s}, p �= q, ∀e = {i, j} ∈ E (8)

yi ∈ {0, 1} ∀i ∈ S (9)

xe ∈ {0, 1} ∀e ∈ E (10)

Constraints (2) are the classical flow conservation constraintswhile inequalities (3)
are the hop-constraints restricting the maximum length of the path between each
root s ∈ R and each relevant terminal t ∈ T ′. Constraints (4) are the undirected
linking constraints between flow and edge variables. By modeling the problem us-
ing only constraints (2)-(4) and (10), one will obtain a subgraph ofG that connects
all roots and terminals, and respects all the hop limits, but which is not necessar-
ily a tree. To ensure the tree structure of the feasible solution, additional linking
constrains are added: inequalities (5) make sure that a node variable is set to one
whenever an incident edge is taken into solution, and constraint (6)makes sure that
the number of edges in the solution is one less than the number of nodes. Still, even
the model (2)-(6) plus (9)-(10) does not ensure that the obtained solution is a tree,
as illustrated by an example in Figure 1. For H = 3 and T ′ = R ∪ T no feasible
solution exists. Without constraints (7), however, the model (2)-(6) plus (9)-(10)
admits the solution given in Figure 1b. Therefore, inequalities (7) are necessary to
ensure that the final solution contains only a single connected component. Finally,
we also add bidirectional commodity-pair forcing constraints (8), see e.g. [3], to
strengthen our model. Validity of these constraints follows from the fact that, for
a given root node s ∈ R, there always exists an optimal solution in which flow of
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Fig. 1. a) An exemplary in-
stance with R = {r1, r2}, T =
{t1, t2} infeasible for H = 3 and
T ′ = R ∪ T and b) a solution
feasible for UFlow without con-
straints (7)

r1 r2

t1
a) b)

t2

r1 r2

t1 t2

two different commodities (s, p) and (s, q) will always be sent in the same direction
along an edge.

In our theoretical comparison and computational experiments we also consider
a variant without constraints (8) to which we refer as UFlow. Following from
what is known for problems without hop-constraints, cf. [3], one can easily find
instances showing that UFlowB is strictly stronger than UFlow.

2.2 An Undirected Path Formulation

We now propose a path-based formulation by considering the set of all directed
hop constrained paths Wst ⊆ 2A, i.e. lG(p) ≤ H , ∀p ∈ Wst, from each root
s ∈ R to each relevant terminal t ∈ T ′ \ {s}. For each commodity pair (s, t),
s ∈ R, ∀t ∈ T ′ \ {s}, we introduce an exponential number of path variables

0 ≤ λst
p ≤ 1, ∀p ∈ Wst. Constraints (2)–(4) of model UFlowB are now replaced

by inequalities (11)–(13). Further replacing inequalities (8) by the bidirectional

commodity-pair forcing constraints (14) yields model UPathB.

∑

p∈Wst

λst
p = 1 ∀s ∈ R, ∀t ∈ T ′ \ {s} (11)

∑

p∈Wst:(i,j)∈p∨(j,i)∈p

λst
p ≤ xe ∀s ∈ R, ∀t ∈ T ′ \ {s},∀e = {i, j} ∈ E (12)

λst
p ≥ 0 ∀s ∈ R, ∀t ∈ T ′ \ {s}, ∀p ∈ Wst (13)
∑

p∈Wst:
(i,j)∈p

λsu
p +

∑

p∈Wsv:
(j,i)∈p

λsv
p ≤ xe ∀s ∈ R, ∀u, v ∈ T ′ \ {s}, u �= v, ∀e = {i, j} ∈ E (14)

Constraints (11) ensure that each terminal is connected to each root node by a
feasible path while constraints (12) are the linking constraints to corresponding
edge variables. Notice that replacing equations (11) by “≥” inequalities ensuring
that each terminal is connected to each root by at least one feasible path would
also yield a valid model. Since the latter is often computationally advantageous
we use this variant in our computational experiments while we stick to the
equality constraints in the following theoretical comparison of our models.

Since the number of path variables may be exponentially large, we apply
column generation to solve the LP relaxation of this model (cf. Section 4).
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As for UFlowB we can obtain a weaker model UPath with significantly less
constraints by removing inequalities (14). By similar arguments as for the single
root case, one can easily obtain that UPathB is strictly stronger than UPath.

One can show the following result:

Lemma 1. Path-based models (UPath, UPathB) are strictly stronger than their
flow-based counterparts (UFlow, UFlowB), respectively. However, models UPath
and UFlowB are incomparable.

The proofs of the results stated in Lemma 1 are similar to ones described in [6]
for the single root case, where the authors show that a path model is equivalent
to a compact model where the hop-constrained subproblem is modeled as an
unconstrained path problem in a layered graph. The fact that the latter model
is then strictly stronger than the flow model follows immediately. These proofs
as well as layered graph subproblem model are easily adapted for the case with
multiple roots. For simplicity we omit this from here.

3 Disaggregating Design Variables by Root Nodes

One of the difficulties when modeling a hop constrained problem with multiple
root nodes is that it is far from obvious how to “direct the model”, since a
feasible solution basically consists of a “core” subtree spanning all the roots
(and probably some of terminals) and the remaining subtrees attached to it.
The core subtree cannot be directed, since each root defines its own set of hop-
constraints. In order to use the strength of “directing the model” we will model
the problem in a different way. Each feasible solution can be seen as the union of
|R| hop constrained subtrees, each one with a hop-constraint associated to the
path between the corresponding root and each node in T ′. Thus, we consider
a new model with variables associated to each one of these trees as well as the
original design variables xe to guarantee that each rooted tree solution maps
into the same tree. The advantage of this approach, is that we can direct each
one of the rooted models and obtain a model with a stronger LP relaxation. We
present next the model for the whole problem containing the directed version of
the rooted tree models.

For each s ∈ R we consider directed arc variables asij ∈ {0, 1}, ∀(i, j) ∈ A.

Variable asij is equal to one if arc (i, j) is part of the hop-constrained arborescence
rooted at s ∈ R, and to zero, otherwise. Each solution must then contain |R|
directed Steiner arborescences and installation costs of edges e = {i, j} need to
be paid whenever either arc (i, j) or arc (j, i) is used by at least one of them.
Hence, the following coupling constraints state the connection between asij and
xe variables:

as
ij + as

ji = xe ∀s ∈ R, ∀e = {i, j} ∈ E (15)

Furthermore, in model UFlow we need to replace (4) by

0 ≤ fst
ij ≤ as

ij ∀s ∈ R, ∀t ∈ T ′ \ {s}, ∀(i, j) ∈ A (16)
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to obtain model UFlowD while we substitute (12) by

∑

p∈Wst:(i,j)∈p

λst
p ≤ as

ij , ∀s ∈ R, ∀t ∈ T ′ \ {s}, ∀(i, j) ∈ A (17)

in model UPath yielding model UPathD.
Notice that the flow or path variables used to model different arborescences

may use different edge sets, if T ′ �= T ∪ R. We obtain tighter LP bounds, by
nevertheless using equations instead of inequalities in constraints (15), cf. [11].

Lemma 2. Disaggregated models are equally strong as the corresponding “bidi-
rectional” models, i.e. projx(PUFlowD) = projx(PUFlowB) and projx(PUPathD) =
projx(PUPathB).

Proof. We will show only the first equality, the second one can be proved anal-
ogously. First assume that x ∈ PUFlowD . Then for each edge e = {i, j} ∈ E and
each root s ∈ R we have xe = asij + asji. Furthermore, for each pair of terminals
p, q ∈ T ′ \ {s}, p �= q, asij ≥ f sp

ij and asji ≥ f sq
ji . Hence xe = asij + asji ≥ f sp

ij + f sq
ji

and thus x ∈ PUFlowB .
Now, consider x ∈ PUFlowB . For an edge e = {i, j} ∈ E and root s ∈ R, let

terminals p(s), q(s) ∈ T ′ \ {s} be defined such that p(s) = argmaxt∈T ′\{s}{f st
ij }

and q(s) = argmaxt∈T ′\{s}{f st
ji }. Then f

sp(s)
ij + f

sq(s)
ji ≤ xe holds either due to

constraints (4) (if p = q), or due to constraints (8) (otherwise). Consider now

root s′ = argmaxs∈Rf
sp(s)
ij + f

sq(s)
ji . We define as

′
ij = f

s′p(s′)
ij and as

′
ji = f

s′q(s′)
ji .

For the remaining roots s �= s′, we set asij = f
sp(s)
ij and asji = as

′
ij + as

′
ji − f

sp(s)
ij .

Hence, for all e ∈ E and s ∈ R constraints xe = asij + asji are satisfied. Capacity
constraints (16) hold as well and we have x ∈ PUFlowD . �
For both models we can additionally add the following disaggregated node-degree
constraints:

∑

(j,i)∈A

as
ji =

⎧
⎪⎨

⎪⎩

yi, i ∈ S

0, i = s

1, else

∀s ∈ R, ∀i ∈ V and
∑

(i,j)∈A

as
ij ≥ yi ∀s ∈ R, ∀i ∈ S (18)

We will refer to the resulting disaggregated formulations with constraints (18)
by UFlowDI and UPathDI.

Lemma 3. Formulations UFlowDI and UPathDI are strictly stronger than for-
mulations UFlowD and UPathD, respectively. Furthermore, constraints (6) and (7)
are redundant when constraints (18) are included.

Proof. To show that UPathDI is strictly stronger than UPathD, we consider
Figure 2. Figure 2a shows a feasible LP-solution of UPathD for H = 3 and
T ′ = T . Figures 2b, 2c, and 2d show the values of disaggregated arc variable
values ar1 , ar2 , ar3 , respectively. Figure 2e resembles the only possibility to orient
this solutions with r2 as root node such that the disaggregated node-degree
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r1 r2

r3

t1

t3

t2

r1

t1

t3

t2

r2

t1

t3

t2 r3

t1

t3

t2

a) b) c) d)

r2

t1

t3

t2

e)

Fig. 2. a) A feasible solution to PUPathD . Solid and dashed edges correspond to xe = 1
and xe = 1/2, respectively. Values of b) ar1 , c) ar2 , d) ar3 for the same feasible solution.
e) Values of ar2 that satisfy additional disaggregated node-degree constraints, but that
violate path constraints (11) for s = r2, t = t1, and H = 3. Solid and dashed arcs
indicate values of 1 and 0.5, respectively.

constraints are satisfied for all v ∈ V . In Figure 2e, however, there is only one
feasible path from r2 to t1 with maximum value of 0.5 since ar2r2t2 = 0.5. Hence,
this solution is not contained in PUPathDI . Similar examples can be constructed
to show that UFlowDI is strictly stronger than UFlowD.

To show that constraints (6) are implied, consider an arbitrary s ∈ R:

∑

e∈E

xe =
∑

(i,j)∈A

as
ij =

∑

(i,j)∈A:j∈(R∪T )

as
ij +

∑

(i,j)∈A:j∈S

as
ij = |R|+ |T | − 1 +

∑

j∈S

yj

For potential Steiner nodes i ∈ V \ (R ∪ T ) using constraints (18) we obtain
inequalities (7) as follows:

∑

e={i,j}∈E

xe =
∑

(j,i)∈A

as
ji +

∑

(i,j)∈A

as
ij ≥ yi + yi = 2yi

4 Branch-and-Price Algorithms

The MIP formulations considered throughout this paper exhibit a very large
(flow-based models) or even exponential (path-based models) number of vari-
ables, and henceforth, decomposition-based approaches are inevitable when it
comes to solving these models in practical applications. Column generation,
or more general branch-and-price algorithms, are a common way to approach
path-based models. On the other hand, flow-based formulations are frequently
approached by Lagrangian relaxation [8] or Benders decomposition [5]. In this
paper we propose to solve both types of formulations using branch-and-price,
i.e. by embedding column generation into branch-and-bound.

Column generation for the flow-based formulations. Applications of column gen-
eration to flow-based models have been described recently in [7,12]. Pricing in
these models is done on the set of design variables xe, e ∈ E. Notice that a
variable xe set to zero, implies that all flow variables corresponding to the same
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edge will be zero as well, which explains why, in some cases, we may benefit from
solving a smaller LP, in which only a subset of design variables is considered.

Since finding a feasible HCSTPMR solution is not an easy task, we initialize
the restricted master problem as follows: we enlarge the input graph G by a set
of dummy edges (of very large cost) between the nodes defining commodity pairs
and all root nodes, whenever such an edge does not exist in G. The LP is then
initialized using the edges of the subgraph induced by the set of nodes R∪T . In
the pricing subproblem, we explicitly calculate reduced costs of non-active dual
variables. Notice that this can be done in polynomial time, since we are solving
the compact flow-based models. All variables with negative reduced costs are
inserted into the restricted master problem at once, and the process is repeated
as long as edges with negative reduced costs can be found.

Column generation for the path-based formulations. For each s ∈ R, t ∈ T ′ \ {s}
and each e = {i, j} ∈ E, let μst and πst

ij be the dual variables associated to

constraints (11) and (12), respectively. Then, for UPath the reduced costs c̄p for
variable λst

p corresponding to a path p ∈ Wst, s ∈ R, t ∈ T ′ \ {s} are defined as

c̄p = −μst −
∑

e={i,j}∈E

πst
ij . (19)

It is not difficult to see that the variable yielding minimum reduced costs can be
obtained by solving a hop constrained shortest path problem (HCSPP) between
each root s ∈ R and each relevant terminal t ∈ T ′ \ {s} on a graph with nonneg-
ative edge costs πst

ij . Hence, the pricing subproblem of UPath can be solved in

polynomial time as well. For UPathB, we need to additionally consider the dual
variable values of constraints (14), while for UPathD and UPathDI we replace
variables πst

ij by the dual variables of constraints (17) defined on the directed arc
set A. In both cases, however, the general structure of the pricing subproblem
remains identical, i.e. we need to solve HCSPPs between root and terminal nodes
on a graph with nonnegative arc costs.

Following an approach proposed by Gouveia et al. [9] for the distance con-
strained minimum spanning tree problem, we add multiple path variables for
each root terminal pair when solving the pricing subproblem within branch-and-
price. Here, we first solve the HCSPP for the current root s ∈ R and terminal
t ∈ T ′, s �= t, and then consider all nodes i ∈ V adjacent to terminal t and
each hop value h = 0, . . . , H − 1. If a path g from s to i with h hops has been
computed, that is if g is cheaper than all paths from s to i with less than h hops,
and p = g ∪ {(i, t)} yields negative reduced costs, p is added to the restricted
master problem. A set of initial paths is generated using the same procedure but
original edge costs instead dual variable values. In case this strategy does not
yield a feasible LP, artificial path variables (with very large cost) each consisting
of an empty edge set are added between each root and relevant terminal.

Branching. We apply branching on fractional node, edge, and disaggregated
arc variables, respectively, in our branch-and-price approaches, since this simple
branching rules do not alter the structure of the pricing subproblem.
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5 Computational Results

We used benchmark instance sets TR and TC from [8], each consisting of five
complete graphs containing 31 or 41 nodes and either random (TR) or euclidean
(TC) edge costs, respectively. For each instance, the first |T | nodes are used as
terminals and the last |R| nodes as root nodes. Furthermore, we used sparse
instances from the OR-Library originally proposed for the Steiner tree problem
in graphs [4]. Six concrete instances from class B that turned out to be nontrivial
and to allow for feasible solutions in a reasonable range of H have been chosen.
For these instances a subset of nodes is already defined as terminals. Among the
latter, we choose the first |R| to be roots (|R| ∈ {2, 4}), while the remaining
original terminals define the set of terminals of the resulting instance of the
HCSTPMR.

Our computational study has been performed on a multi-core system where
each eight cores share 24GB RAM. Each run has been performed on a single core
of an Intel Xeon E5540 processor with 2.53 GHz using a C++ implementation
based on SCIP 2.0.2 [1] with CPLEX 12.2 as embedded LP solver. When solving
path models by branch-and-price, we configured SCIP to use the dual simplex
as LP solver since this option outperformed alternative approaches. Parameter
“fastmip” has been set to one and presolving has been disabled for all branch-
and-price approaches. We applied a memory limit of 4GB to each individual
experiment and an absolute time limit of 3 600 CPU-seconds for solving LP-
relaxations and of 7 200 CPU-seconds for solving the MIP models, respectively.
Apart from that, default settings and plugins of SCIP have been used.

Figure 3 summarizes our computational results on instance sets TC and TR.
We conclude that, in particular for TR instances, the LP bounds of the path
models are significantly tighter than the ones of the flow models. These results
are consistent with the results given in [8] for the single root case. Since using
bidirectional commodity-pair forcing constraints yields higher CPU-times but
worse LP bounds than the disaggregated models with node-degree constraints,
we did not consider the former when solving the integer models. We note that
for these instances, solving the LP relaxations of the path models usually takes
longer than solving the one of the weaker flow models. Regarding total CPU-
times for solving the integer models as shown in Figure 3e and 3f, we conclude
that this additional effort clearly pays off if the hop limit is not too loose or
if the difference in terms of LP bounds is not too small, i.e. the path models
outperform the flow models for all cases except for instances TC with H = 5.
Notice that for some settings, the LP relaxations could not be solved within the
given time limit. This explains, smaller average relative LP bound improvements
of UFlowB than of UFlow in Figures 3c and 3d, respectively.

Results for instances from the OR-Library are summarized in Table 1. Here we
directly use the compact flow models instead of applying branch-and-price based
on edge variables since the overhead of the latter did not pay off for these sparse
instances. We observe that UFlow and UFlowDI usually exhibit a significant gap
between LP and MIP objective value, while in particular UPathDI successfully
closes this gap for the majority of test cases. We conclude that UPathDI exhibits
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Table 1. Relative difference between LP bound vLP(.) and optimal IP value opt in %
and CPU-times in seconds for solving MIP models on Steinlib instances

(opt− vLP(.))/opt [%] CPU-time [s]

Inst. |V | |E| |R| |T | H UFlow UFlowDI UPath UPathDI UFlow UFlowDI UPath UPathDI

B10 75 150 2 11 5 4.26 2.96 0.38 0.00 32 59 0 0
B10 75 150 2 11 6 4.25 3.47 0.00 0.00 13 11 0 1
B10 75 150 2 11 7 1.85 1.41 0.00 0.00 11 6 0 1
B10 75 150 2 11 8 1.93 1.35 0.86 0.00 18 3 2 2
B10 75 150 2 11 9 1.30 0.91 0.57 0.00 1 4 2 2
B10 75 150 4 9 6 14.27 12.73 3.48 0.00 148 1291 6 12
B10 75 150 4 9 7 1.33 0.99 0.00 0.00 23 11 2 13
B10 75 150 4 9 8 2.44 2.22 1.11 0.00 44 31 5 22
B10 75 150 4 9 9 1.21 0.91 0.00 0.00 3 13 5 23

B11 75 150 2 17 5 18.20 13.06 7.49 0.34 4128 1541 26 4
B11 75 150 2 17 6 19.77 16.18 10.64 4.55 2318 2523 307 65
B11 75 150 2 17 7 6.01 2.76 0.44 0.00 106 87 10 8
B11 75 150 2 17 8 3.28 0.82 0.57 0.00 98 28 12 21
B11 75 150 2 17 9 1.94 0.00 0.28 0.00 41 7 12 23
B11 75 150 4 15 6 24.64 20.63 13.76 6.05 7200 7200 1395 563
B11 75 150 4 15 7 5.99 2.76 0.35 0.00 259 859 27 112
B11 75 150 4 15 8 3.28 0.82 0.55 0.00 344 222 28 106
B11 75 150 4 15 9 1.84 0.00 0.28 0.00 89 20 34 153

B12 75 150 2 36 6 9.93 8.37 6.14 2.48 7200 7200 2649 193
B12 75 150 2 36 7 4.39 3.15 1.60 0.00 2068 3256 71 22
B12 75 150 2 36 8 2.47 1.45 0.97 0.00 1057 852 74 36
B12 75 150 2 36 9 2.53 1.80 1.46 0.00 1808 2446 591 69
B12 75 150 4 34 6 9.83 7.28 4.10 0.00 7200 7200 345 124
B12 75 150 4 34 7 5.23 3.44 2.25 0.00 7200 7200 310 142
B12 75 150 4 34 8 4.11 2.86 2.39 0.00 7200 7200 582 511
B12 75 150 4 34 9 6.64 5.68 5.19 3.39 7200 7200 7200 1740

B16 100 200 2 15 7 10.18 7.76 4.50 0.00 1087 1461 34 9
B16 100 200 2 15 8 4.58 2.49 0.00 0.00 111 105 6 16
B16 100 200 2 15 9 4.54 3.32 0.03 0.00 181 74 18 28
B16 100 200 4 13 7 7.78 5.60 3.33 0.00 1192 7200 152 86
B16 100 200 4 13 8 4.48 2.41 0.00 0.00 311 322 31 200
B16 100 200 4 13 9 4.49 3.30 0.00 0.00 599 307 56 290

B17 100 200 2 23 6 6.50 4.15 2.67 0.00 292 568 5 1
B17 100 200 2 23 7 5.79 2.66 1.77 0.00 368 240 4 5
B17 100 200 2 23 8 5.43 1.84 2.94 0.00 317 332 15 8
B17 100 200 2 23 9 4.39 1.18 2.63 0.00 227 40 15 16
B17 100 200 4 21 8 9.47 4.56 6.67 0.89 7200 7200 1589 3245
B17 100 200 4 21 9 7.35 3.46 4.75 0.00 7200 7200 693 582

B18 100 200 2 48 6 5.13 4.08 2.43 0.00 7200 7200 196 29
B18 100 200 2 48 7 4.45 3.29 1.36 0.00 7200 7200 432 57
B18 100 200 2 48 8 2.23 0.61 0.48 0.00 1969 472 101 89
B18 100 200 2 48 9 2.80 1.09 1.56 0.22 6736 2292 1001 328
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Fig. 3. a),b),c),d) Average relative improvement of LP bound vLP over UFlow, i.e.
(vLP(.) − vLP(UFlow))/vLP(UFlow), in % and e), f) median CPU-times in seconds
(MIP) for various values of (|R|, |T |, |T ′|)

the best overall performance and outperforms the other options proposed in
this paper. Moreover, both path models significantly outperform the flow mod-
els on sparse instances, while the observed difference in their performance was
considerably smaller on the complete instance sets.
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6 Conclusion

In this paper, we introduced a generalization of the hop constrained minimum
Steiner tree problem on a graph involving multiple root nodes. Since, due to
multiple hop-constraints, it is not straightforward to orient feasible solutions,
we introduced undirected flow and path MIP formulations which have been fur-
ther strengthened using bidirectional commodity-pair forcing constraints and
disaggregation of design variables. We further proposed branch-and-price ap-
proaches for our models. Computational results show that the branch-and-price
approaches based on path formulations outperform the flow formulations if the
hop limit is not too loose. Furthermore, the relative performance difference be-
tween path and flow models significantly increases when the instance graphs are
sparse. Our future work on the HCSTPMR includes studying the possibilities to
model the problem over layered graphs and the development of corresponding
branch-and-cut approaches.
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