
Favoritenstraße 9-11 / E186, A-1040 Wien, Austria
Tel. +43 (1) 58801-18601, Fax +43 (1) 58801-18699
www.cg.tuwien.ac.at

Forschungsbericht / Technical Report

TECHNISCHE UNIVERSITÄT WIEN
Institut für Computergraphik und Algorithmen

On Stabilized Branch-and-Price

for Constrained Tree Problems

Markus Leitner and Mario Ruthmair and

Günther R. Raidl

TR–186–1–11–01

September 30, 2011

On Stabilized Branch-and-Price for Constrained Tree Problems

Markus Leitner Mario Ruthmair Günther R. Raidl

Institute of Computer Graphics and Algorithms

Vienna University of Technology, Austria

{leitner,ruthmair,raidl}@ads.tuwien.ac.at

Abstract

We consider a rather generic class of network design problems in which a set or subset of given

terminal nodes must be connected to a dedicated root node by simple paths and a variety of resource

and/or quality of service constraints must be respected. These extensions of the classical Steiner tree

problem on a graph can be well modeled by a path formulation in which individual variables are used

for all feasible paths. To solve this formulation in practice, branch-and-price is used. It turns out,

however, that a naive implementation of column generation suffers strongly from certain degeneracies

of the pricing subproblem, leading to excessive running times. After analyzing these computational

problems, we propose two methods for stabilizing column generation by using alternative dual-optimal

solutions. This stabilized branch-and-price is practically tested on the rooted delay-constrained Steiner

tree problem and a quota-constrained version of it. Results indicate that the new stabilization methods

in general speed up the solution process dramatically, far more than a piecewise linear stabilization to

which we compare. Furthermore, our stabilized branch-and-price exhibits on most test instances a better

performance than a so far leading mixed integer programming approach based on a layered graph model

and branch-and-cut. As the new stabilization technique utilizing alternative dual-optimal solutions is

generic in the sense that it easily adapts to the inclusion of a large variety of further constraints and

different objective functions, the proposed method is highly promising for a large class of network design

problems.

Keywords: branch-and-price, integer linear programming, network design, stabilized column generation,

Steiner tree

1

1 Introduction

Network design problems in which a dedicated root node must be connected to a given set or subset of terminal

nodes, possibly via optional intermediate nodes and respecting diverse resource and quality-of-service (QoS)

constraints, represent a highly important class of combinatorial optimization problems. Applications appear

in various fields, but most prominently and obviously in the construction of communication networks, where

the root node represents a central server and terminals potential clients.

In the simplest case, such a problem can be modeled as an efficiently solvable spanning tree problem, but

additional options like possibly includable intermediate nodes, delay, length and/or more general resource

constraints, and different objectives make these kind of problems most of the time NP-hard, and moderate

to large instances are frequently very difficult to solve to proven optimality in practice. As long as aspects

like redundant connections to terminals in order to achieve higher connectivity and robustness to failure are

excluded, solutions have tree structure, and such problems can be modeled as extensions of the Steiner tree

problem on a graph (STP).

If considering a problem variant in which all terminals need to be connected obligatorily one usually

aims to identify a solution yielding overall minimal costs for establishing the network. On the contrary, in

many real world applications the primary goal is to maximize the net profit, which is the profit earned by

connecting customers reduced by the investment to build the network. Such scenarios are frequently called

prize collecting network design problems.

Over the last decades, many variants of such problems have been studied and a large variety of exact and

approximate solution techniques have been suggested. Most of the proposed works, however, are targeted

towards very specific problem variants, special features of these are rigorously exploited, and well working

solution techniques cannot at all or can only with a high effort be adapted to similar but slightly different

problem variants. This is, for example, frequently the case with leading branch-and-cut approaches but also

for many implementations of metaheuristics.

An in principle more generally applicable concept comes from the Dantzig-Wolfe decomposition and is

based on column generation. Many if not most network design problems of the above described class can

be addressed by path models using mixed integer linear programming (MIP), in which any feasible path

to a terminal is represented by an own variable (column). In the process of solving such a model, column

generation is used to introduce new paths/variables not yet considered in order to possibly improve a current

state. In this way, the consideration of many specific constraints and other aspects is effectively delegated to

the pricing subproblem, and the main algorithm stays more general.

Such solution approaches based on column generation and branch-and-price are, however, often believed

2

as not competitive to other state-of-the-art methods. This is somewhat in contrast to other domains like

cutting and packing, where column generation based methods are applied with much more success. One of

the main problems of column generation in the network design domain are diverse sorts of degeneracy, which

lead to many iterations and long running times.

In this article we describe the application of column generation stabilization based on alternative dual-

optimal solutions to overcome the computational problems of branch-and-price approaches in the domain

of network design. Furthermore, we show that the proposed stabilization approach allows for additionally

including many real world relevant side constraints. Hence the obtained stabilized branch-and-price approach

can be used to model realistic network design problems involving multiple side constraints. Computational

experiments document that our stabilization approach yields a substantial improvement and clearly outper-

forms an alternative stabilization method based on piecewise linear penalty terms. We further show that due

to the achieved speed-up the resulting branch-and-price is competitive to a state-of-the-art branch-and-cut

approach based on layered graphs.

Problem Definition. More precisely, we consider here the class of rooted prize collecting network design

problems where (i) each terminal (customer node) may be connected by installing a single path from the

dedicated root node to it, (ii) each such path must respect some QoS constraint(s) according to some resource

function(s) defined on potential edges, and (iii) the overall solution must form a tree.

Formally, we start with the following basic scenario. Given are an undirected graph G = (V,E) with node

set V , edge set E, and a dedicated root node s ∈ V . Each edge e ∈ E is associated with costs ce ∈ Z+ and a

resource value re ∈ Z+, respectively. Furthermore, we are given node profits (prizes) pi ∈ N0, ∀i ∈ V , earned

when connecting node i to the root node in a feasible way. These profits partition the node set V \ {s} into

terminal nodes T = {i ∈ V \ {s} : pi > 0} and Steiner nodes S = V \ (T ∪ {s}). Finally, we are given a

resource bound B ≥ 0 and a potentially empty set T ′ ⊆ T of terminal nodes that need to be connected to

the root node obligatorily.

A feasible solution to this problem is a Steiner tree GS = (VS , ES), VS ⊆ V , ES ⊆ E, containing the root

node, i.e. s ∈ VS , and all mandatory terminals, i.e. T ′ ⊆ VS . Furthermore, the total resource usage along the

unique path from the root node to each connected terminal t ∈ (T ∩ VS) may not exceed the resource bound

B. Formally, if pS(t) ⊆ ES denotes the edge set of the path from s to terminal t ∈ T , then
∑

e∈pS(t) re ≤ B

must hold for all connected terminals t ∈ (T ∩ VS). Depending on the concrete problem variant an optimal

solution G∗
S = (V ∗

S , E
∗
S) is a feasible solution with either minimal costs

∑

e∈E∗

S
ce or maximal net profit

∑

t∈T∩V ∗

S
pt −

∑

e∈E∗

S
ce, respectively. In the following, we primarily consider the latter, more general prize

collecting case and highlight necessary adaptations to the cost minimization variant where necessary. For a

3

more uniform notation, we do, however, use the equivalent minimization form in which we add the sum of

all potential profits to ensure non-negativity:

p(G∗
S) = min

∑

e∈E∗

S

ce −
∑

t∈T∩V ∗

S

pt +
∑

t∈T

pt = min
∑

e∈E∗

S

ce +
∑

t/∈(T∩V ∗

S
)

pt

The remainder of this article is organized as follows: After discussing previous and related work in Section 2

we describe the details of our branch-and-price approach in Section 3, including the pricing subproblem and

the issue of branching. Section 4 introduces stabilization approaches based on alternative dual-optimal

solutions. In Section 5 we discuss four classes of practically important, additional constraints in a general

context and show that all main observations from Section 4.1 as well as the proposed stabilization approaches

remain valid when including them in our model. Sections 6.1 and 6.2 contain a computational study on

the rooted delay-constrained Steiner tree problem (RDCSTP) and a variant additionally involving quota

constraints, respectively. Finally, we conclude in Section 7 where we also discuss potential aspects that may

be considered in future work.

2 Previous and Related Work

The Steiner tree problem on graphs has been introduced by Dreyfus and Wagner in 1971 [14] and since

then many variants of this problem with additional constraints emerged in literature. Practical applications,

e.g. multimedia content distribution and VoIP, ask for QoS constraints such as limiting the communication

delay between server and clients. Therefore, two problem variants particularly increased in popularity, the

already mentioned RDCSTP (also known as multicast routing problem) and the hop-constrained Steiner tree

problem (HCSTP) where re = 1, ∀e ∈ E, modeling the fact that in many cases only the number of distribution

and routing nodes in an end-to-end connection is relevant.

The RDCSTP is introduced and proven to be NP-hard by Kompella et al. [27] who also presented a

construction heuristic. Manyem and Stallmann [37] showed that the RDCSTP and HCSTP are not in APX

even when considering the spanning tree variants. There are lots of recent publications dealing with these

problems and related variants, see e.g. [41, 50, 51] for recent metaheuristic approaches. Metaheuristics for

the spanning tree variant with T ′ = V \ {s} are presented by Ruthmair and Raidl [44, 45] who also discussed

effective preprocessing methods to reduce the size of a given instance graph. The latter are also applied

in this work, extended by a simple test removing Steiner nodes that cannot be part of a delay-constrained

tree. Construction and local search heuristics for the HCSTP have been described by Voß [48], Fernandes et

al. [17], and Gouveia et al. [20].

4

Exact methods for the RDCSTP are dominated by mixed integer programming (MIP) methods. Leggieri

et al. [28] presented a compact extended node-based formulation using lifted Miller-Tucker-Zemlin inequal-

ities yielding rather weak linear programming (LP) relaxation bounds. Hence, they further tightened the

formulation adding directed connection inequalities in a typical branch-and-cut way. Further MIP approaches

for the spanning tree variant are introduced by Gouveia et al. in [21] first stating a path formulation for the

problem and then solving it in three different ways. Unstabilized delayed column generation turned out to

be computationally inefficient whereas Lagrangian relaxation dualizing the constraints linking path and edge

variables combined with an efficient primal heuristic yields better results.

In the third approach of [21] the constrained shortest path problem for each node is modeled on a

layered graph and solved by a multi commodity flow (MCF) formulation. Each layer in this extended

graph corresponds to a specific path delay from the root node. Original nodes are then duplicated on each

layer modeling the visit of a node exactly at the corresponding path delay. Each edge in G is copied in a

similar way skipping a number of layers that corresponds to the edge’s delay. Thus, delays are implicitly

encoded in the layered structure and therefore do not have to be considered explicitly anymore in a solution

approach. Obviously, the size of the layered graph and therefore the efficiency of an according MIP model

strongly depends on the number of achievable discrete delay values making this approach only usable for

instances in which this number is relatively low. Additionally, MCF models frequently suffer in practice

from the huge amount of used flow variables, altogether leading to a slow and memory-intensive solving

process. Nevertheless, solving these layered graph models turned out to be highly effective on certain classes

of instances. In [46] the approach of [21] is extended such that not just the constrained shortest path

problems for each terminal but the whole RDCSTP is modeled on a layered graph which reduces to solving

the classical STP on this graph. The definition of the layered graph implies its acyclicity allowing to prevent

cycles with a polynomial number of connectivity constraints without additional variables, see [19]. However,

additionally including directed cut inequalities yields a tighter or at least equal LP bound than all other

known formulations for the RDCSTP. This result was shown by Gouveia et al. [22] for the HCSTP and can

be generalized to the RDCSTP in a natural way. To overcome the issue of an excessive number of layers in

case of a larger number of achievable delay values, a so-called Adaptive Layers Framework (ALF) based on

iteratively solving smaller layered graphs is presented in [46] yielding lower and upper bounds to the optimal

solution costs. By successively extending these smaller graphs appropriately, the bounds are tightened to

finally converge to an optimal solution. In practice, this approach usually yields very small gaps even on

instances where the directed cut formulation on the layered graph is not able to derive an optimal LP value.

Recently, we proposed stabilized column generation and branch-and-price approaches for the RDCSTP

[32]. The current article significantly extends this publication by formalizing and generalizing these methods

5

to a broader range of constrained tree problems discussing several families of constraints. Furthermore, we

provide additional experimental results on the quota-constrained variant of the RDCSTP. To the best of

our knowledge no work has been published tackling the RDCSTP in a prize-collecting or quota-constrained

fashion. Related work on stabilizing delayed column generation is discussed in Section 4 and further problem

variants of the STP are considered in Section 5.

3 Branch-and-Price Approach

In this section we first introduce a branch-and-price approach based on an MIP model utilizing variables

corresponding to feasible paths. We further address the pricing subproblem as well as the issue of branching

in branch-and-price.

3.1 Path Model

Our path based MIP model is a rather straightforward adaptation of similar models previously proposed, see

e.g. [21]. Since directed formulations are usually tighter than undirected ones, it utilizes a directed arc set A

containing an arc (s, j) for each edge incident to the root and two oppositely directed arcs for all remaining

edges, i.e. A = {(s, j) | {s, j} ∈ E} ∪ {(i, j), (j, i) | {i, j} ∈ E, i, j 6= s}.

We assume the edge cost and resource functions to be correspondingly defined on arc set A, i.e. cij = ce,

rij = re, ∀(i, j) ∈ A, e = {i, j} ∈ E. A solution to the integer master problem (IMP) defined by (1)–(8) is

represented by an outgoing arborescence rooted at s. The IMP utilizes decision variables xij , ∀(i, j) ∈ A, and

yi, ∀i ∈ V , on arcs and nodes, respectively. Furthermore, path variables λg ∈ {0, 1}, ∀g ∈ P are used, where

P =
⋃

t∈T Pt, and Pt ⊆ 2A is the set of all feasible paths from the root node s to terminals t ∈ T represented

by their set of arcs;
∑

(i,j)∈g rij ≤ B must hold for each path g ∈ P. We also introduce corresponding dual

variables in parentheses in formulation (1)–(8) as they will be needed for explaining the pricing problem as

well as for discussing the dual problem in Section 4.1.

6

min
∑

(i,j)∈A

cijxij +
∑

i∈V

pi(1− yi) (1)

s.t.
∑

g∈Pt

λg − yt ≥ 0 (µt) ∀t ∈ T (2)

xij −
∑

g∈Pt|(i,j)∈g

λg ≥ 0 (πt
ij) ∀t ∈ T, ∀(i, j) ∈ A (3)

yj −
∑

(i,j)∈A

xij = 0 (γj) ∀j ∈ V \ {s} (4)

yt = 1 (ρt) ∀t ∈ T ′ ∪ {s} (5)

yi ∈ {0, 1} ∀i ∈ V \ (T ′ ∪ {s}) (6)

xij ∈ {0, 1} ∀(i, j) ∈ A (7)

λg ≥ 0 ∀g ∈ P (8)

As previously defined the objective function (1) minimizes the sum of costs of realized arcs and not gained

node profits. Constraints (2) ensure that profits can only be earned if the corresponding terminal node is

connected to the root node by a feasible path, while Constraints (3) link path variables to arcs used by them.

Equations (4) link arc with node variables and hence ensure that the maximum indegree of each node is one.

This together with the fact that the solution obviously is connected since each path contains the root node

guarantees that each solution is a tree. Finally, Constraints (5) ensure that all mandatory nodes will be

connected; Constraints (6) and (7) are the integrality constraints on node and arc variables. Path variables

for which only lower bounds are imposed by Inequalities (8) will automatically become integral due to the

other constraints.

Note that variables yi could be easily removed for Steiner nodes i ∈ S. We do, however, include them

since branching on node variables first frequently turns out to yield better performance than branching on

arc variables only.

The number of feasible paths and hence the total number of variables of the IMP may be exponentially

large for each terminal. Thus, we cannot solve the IMP directly, but apply branch-and-price, i.e. embed

delayed column generation in a branch-and-bound approach, cf. [5, 12]. For each node of the branch-and-

bound tree we then need to solve the restricted master problem (RMP) using delayed column generation.

This RMP is defined by replacing the integrality constraints (6)–(7) by (9)–(11) and additionally considering

only a small subset P̃t ⊆ Pt, ∀t ∈ T , of path variables, which must not be empty for obligatory terminals,

i.e. P̃t 6= ∅, ∀t ∈ T ′.

7

yi ≤ 1 (ρi) ∀t ∈ V \ (T ′ ∪ {s}) (9)

yi ≥ 0 ∀i ∈ V \ (T ′ ∪ {s}) (10)

xij ≥ 0 ∀(i, j) ∈ A (11)

In the following we formally introduce the pricing subproblem and discuss the issue of branching in branch-

and-price. Details on the algorithm used for solving the pricing subproblem will be given in Section 6.1 where

we also describe which variables are added in each iteration.

3.2 Pricing Subproblem

When solving a node of the branch-and-price tree by column generation, we need to repeatedly identify path

variables with negative reduced costs and add at least one of them to the RMP, which in turn needs to be

resolved. This process is repeated until no more variables with negative reduced costs exist. The reduced

costs cp of any not yet included path variable λg, g ∈ Pt \ P̃t, t ∈ T , are given by cg = −µt +
∑

(i,j)∈g π
t
ij ,

where µt ≥ 0, ∀t ∈ T , and πt
ij ≥ 0, ∀t ∈ T , ∀(i, j) ∈ A.

In order to prove that no more negative reduced cost variables do exist, we need to compute the path

variable yielding minimal reduced costs. Thus the pricing subproblem is formally defined as

(t∗, g∗) = argmint∈T,g∈Pt
− µt +

∑

(i,j)∈g

πt
ij . (12)

This problem can be solved by computing a cheapest path g from the root node s to each terminal t ∈ T

using arc costs πt
ij , which does not violate the given resource bound, i.e.

∑

(i,j)∈g rij ≤ B. In case the total

costs
∑

(i,j)∈g π
t
ij of such a path are smaller than µt, variable λg has negative reduced costs and may be

added to the current RMP.

It is well known that the problem of finding a minimum cost resource-constrained shortest path with

non-negative arc costs is NP-hard in the weak sense, cf. [18], and can be solved in pseudo-polynomial time.

Recently, algorithms based on dynamic programming with computational complexity of O(B · |A|) have been

described for solving practical instances of this problem quite efficiently, see e.g. [16, 21].

3.3 Branching in Branch-and-Price

Depending on the concrete model used, branching in branch-and-price in a meaningful way may be nontrivial.

On the one hand, one should ensure that branching decisions do not change the structure of the pricing

8

subproblem. On the other hand it is important to avoid branching on the exponentially large set of variables,

i.e. the path variables λg in our case. Fixing such a variable to zero usually has no or little impact while

fixing it to one dramatically reduces the search space, cf. [5, 13]. Hence, such branching rules usually yield a

highly asymmetric partitioning of the search space leading to rather poor overall performance.

In our case, however, branching can simply be performed on fractional node and arc variables. Note that

while it would be sufficient to restrict only arc variables to be integral, we additionally consider branching on

node variables since fixing a node influences variables of adjacent arcs and thus often has a stronger impact

than just fixing a single arc variable.

4 Column Generation Stabilization

Branch-and-price and column generation algorithms often suffer from computational instabilities leading to

excessive runtimes. Following the classification by Vanderbeck [47] these include the generation of irrelevant

columns in the beginning due to poor dual information (heading-in effect), slow convergence (tailing-off

effect), and multiple optimal solutions in the dual problem (primal degeneracy) leading to relatively slow

re-optimization after adding new columns.

Different stabilization techniques have been proposed to overcome these problems by reducing the impacts

of these negative effects, see e.g. [35, 36] for recent reviews including many other aspects of column generation.

For example, the boxstep method [38] restricts each dual variable to a trust region around a current stability

center. Based on this idea several approaches have been introduced that penalize deviations from the current

stability center, which is finally updated as long as the obtained solution does not lie within the trust

region; cf. [2, 15]. Amor et al. [4] compared various possibilities and concluded that piecewise linear penalty

functions generally work well and hence are a good option, in particular as the resulting model remains linear.

Quadratic penalty terms as used in bundle methods would in principle be favorable. Hence they may become

more attractive in future in case the efficiency of quadratic programming solvers significantly increases [7].

Weighted Dantzig-Wolfe decomposition [40, 49] does not modify the RMP but tries to obtain a better

column using a convex combination of current dual prices and those generating the best Lagrangian dual

bound so far. Other approaches include trying to obtain solutions inside the dual space [43] or adding valid

inequalities to the dual [3, 11].

Stabilization using alternative dual-optimal solutions has been introduced by the current authors in the

context of survivable network design [29, 30, 31]. We further showed its applicability to the RDCSTP [32, 33]

and highlighted that it usually yields a significant speed-up and reduces the numbers of necessary pricing

iterations and finally included variables. In the following, we review the concept of alternative dual-optimal

9

solutions and put the main results on a more formal basis allowing to finally show its general applicability

for many network design problems in Section 5.

4.1 Alternative Dual-Optimal Solutions

Stabilization based on alternative dual-optimal solutions exploits the fact that due to primal degeneracy

multiple solutions to the dual of the RMP, i.e. the restricted dual problem (RDP), exist. Given some optimal

solution D∗ to the RDP it aims to generate a different optimal solution D′ that facilitates the generation of

more relevant variables early in the column generation process in order to reduce the heading-in effect. We

will further argue that our approach also helps to reduce the tailing-off effect and hence further reduces the

total runtime. These arguments are strongly supported by our computational results in Sections 6.1 and 6.2,

respectively. Additionally, we consider the fact that these alternative solutions are only used to solve the

pricing subproblem and hence we do not need to modify the RMP another main advantage.

Before showing how to construct alternative optimal solutions, we introduce the RDP (13)–(20) and make

some important observations; corresponding primal variables are given in parentheses.

max
∑

i∈V

(ρi + pi) (13)

s.t.
∑

t∈T

πt
ij − γj ≤ cij (xij) ∀(i, j) ∈ A (14)

µt −
∑

(i,j)∈g

πt
ij ≤ 0 (λg) ∀t ∈ T, ∀g ∈ P̃t (15)

− µt + γt + ρt ≤ −pt (yt) ∀t ∈ T (16)

γi + ρi ≤ 0 (yi) ∀i ∈ V \ (T ∪ {s}) (17)

µt ≥ 0 ∀t ∈ T (18)

πt
ij ≥ 0 ∀t ∈ T, ∀(i, j) ∈ A (19)

ρi ≤ 0 ∀i ∈ V \ (T ′ ∪ {s}) (20)

Our primary interest concerns variables πt
ij , ∀t ∈ T , ∀(i, j) ∈ A, since they are used as arc costs in

the pricing subproblem and hence are of major importance. We observe that Inequalities (14) are capacity

constraints imposing upper bounds on the sum of these variables
∑

t∈T π
t
ij for each arc (i, j) ∈ A. These

variables are additionally only included in Constraints (15) which ensure that the corresponding sum over

all arcs of each path to some terminal t is at least µt. These considerations allow to further analyze some

10

properties of optimal solutions more formally.

Theorem 1. Assume (13)–(20) has a feasible solution and let (i, j) ∈ A be an arc that is not contained in

any path g ∈ P̃ =
⋃

t∈T P̃t, i.e. ∄g ∈ P̃ : (i, j) ∈ g. Then there exists an optimal solution to (13)–(20) such

that πt
ij = 0, ∀t ∈ T .

Proof. If the RDP has a feasible solution it also has an optimal solution D∗ = (µ∗, π∗, γ∗, ρ∗). Let (i, j) ∈ A

be an arc not contained in any so far included path and πt
ij

∗
≥ 0 the corresponding optimal solution value

for some arbitrarily chosen terminal t ∈ T . Obviously, setting πt
ij

∗
to zero does not violate the capacity

constraint (14). Since arc (i, j) is by assumption not contained in any path g ∈ P̃, variable πt
ij is not

contained in any coupling constraint (15) and hence we obtain another feasible solution. Since the objective

value remains constant, this new solution also is optimal. In this way, any πt
ij

∗
> 0 is independently replaced

by zero for all t ∈ T .

In particular we can state the following corollary which immediately follows from Theorem 1.

Corollary 1. If (13)–(20) has a feasible solution then there also exists an optimal solution such that πt
ij = 0,

∀t ∈ T , ∀(i, j) ∈ A′ = {(u, v) ∈ A | ∄g ∈ P̃ : (u, v) ∈ g}.

This observation has direct implications in practice, and we can now explain why in particular the heading-

in effect is very pronounced and has typically dramatic consequences w.r.t. the number of pricing iterations

and thus running time: Most if not all state-of-the-art implementations of LP solvers yield optimal solutions

with each variable has a minimal value, i.e., exactly a solution as proven to exist by Corollary 1. Especially

in the early iterations of column generations, most arcs (i, j) will not be part of any so far included paths,

i.e. (i, j) ∈ A′, and consequently πt
ij = 0. Hence most arc costs in the pricing subproblem are zero, and there

is almost no guiding information for creating meaningful paths. As a consequence, many irrelevant columns

are priced in in the beginning until column generation converges to more meaningful dual variable values.

Based on the following definition introducing the concept of dual slack of arcs, we can define an alterna-

tive class of always existing optimal solutions in Theorem 2, which appear to be more promising from the

beginning on.

Definition 1 (Dual Slack). Let D∗ = (µ∗, π∗, γ∗, ρ∗) be an optimal solution to the RDP. Then the dual slack

∆ij of arc (i, j) ∈ A with respect to (13)–(20) is defined as

∆ij = cij + γ∗j −
∑

t∈T

πt
ij

∗
. (21)

11

Theorem 2. If (13)–(20) has a feasible solution than there exists an optimal solution such that all capacity

constraints (14) are binding.

Proof. Let D∗ = (µ∗, π∗, γ∗, ρ∗) be an optimal solution of the RDP and ∆ij ≥ 0, ∀(i, j) ∈ A, be the

corresponding dual slack values. We first observe that increasing variable values πt
ij

∗
does not change the

objective value and since Constraints (15) impose only lower bounds on them may not violate any other

constraints than the capacity Constraints (14). Furthermore, since each capacity constraint refers to a

different arc we can consider them independently of each other. Hence, by increasing
∑

t∈T π
t
ij by the dual

slack ∆ij for all arcs (i, j) ∈ A we obtain an optimal solution to RDP in which all capacity constraints are

binding.

The following corollary follows from the proof of Theorem 2 and reveals our basic strategy to construct

an alternative dual-optimal solution.

Corollary 2. Given an optimal solution D∗ = (µ∗, π∗, γ∗, ρ∗) to the RDP we can construct a possibly

different optimal solution D̄ = (µ̄, π̄, γ̄, ρ̄) such that µ̄ = µ∗, γ̄ = γ∗, ρ̄ = ρ∗, and π̄t
ij = πt

ij
∗
+

∆ij

|T | , ∀t ∈ T ,

∀(i, j) ∈ A, and all capacity constraints (14) are binding.

Corollary 3 finally, introduces the necessary formal basis for a more fine grained approach in which

different dual variable values are iteratively tried. It turned out to be beneficial in our previous work [31, 32].

Corollary 3. Given an optimal solution D∗ = (µ∗, π∗, γ∗, ρ∗) to the RDP, a terminal t′, an integer Q > 1,

and a parameter q, 1 ≤ q ≤ Q, respectively, we can construct a possibly different optimal solution D̂t′,q =

(µ̂t′,q, π̂t′,q, γ̂t
′,q, ρ̂t

′,q) such that µ̂t′,q = µ∗, γ̂t
′,q = γ∗, ρ̂t

′,q = ρ∗, and

π̂
t′,q
ij =















πt
ij

∗
+

∆ij

|T | +
Q−q
Q−1

(

∆ij −
∆ij

|T |

)

if t = t′

πt
ij

∗
otherwise

, ∀t ∈ T, ∀(i, j) ∈ A. (22)

While we simply equally distribute the dual slack of each arc over all relevant variables to obtain an alter-

native solution D̄ in our basic strategy, the approach following Corollary 3 utilizes an exogenous parameter

Q ≥ 2 denoting a total number of major iterations. Parameter q is initially set to one and incremented in

case no negative reduced cost path could be found when solving the pricing subproblem using D̂t,q, ∀t ∈ T ;

it thus indicates the current major iteration. The dual solution D̂t,q used for solving the pricing problem

now further depends on the terminal t ∈ T considered and hence we use different dual solutions for different

terminals. Note that, while the individual solutions used are optimal as argued in Corollary 3, the dual cost

vector formed by the union of actually used arc costs in the pricing subproblems together is infeasible for

12

the RDP as long as q < Q. Hence, we increase q and resolve the pricing subproblem using the resulting

different dual solutions if no more path variables yielding negative reduced costs with respect to D̂t,q exist

for all terminals t ∈ T .

Proposition 1 reveals that we essentially use D̄ when q = Q and thus can terminate column generation at

the current node of the branch-and-price tree if no negative reduced cost variables do exist for all terminals

and when q = Q.

Proposition 1. If q = Q, then π̂t,q
ij = π̄t

ij, ∀t ∈ T , ∀(i, j) ∈ A.

Informally speaking, the approach divides the interval
[

∆ij

|T | ,∆ij

]

into Q − 1 equally sized sub-intervals

defining the dual variable values used for each iteration q = 1, . . . , Q. In the beginning the whole dual slack

is added to the dual variables corresponding to the currently considered terminal. In successive iterations,

the relative amount of dual slack added to the current terminal is decreased down to
∆ij

|T | .

To summarize, both approaches generate alternative dual-optimal solutions such that all variable values

are frequently greater than or at least equal to the ones of the solution computed by traditional LP solvers,

which in particular set πt
ij = 0, ∀t ∈ T , for all arcs (i, j) ∈ A′ not part of any so far included paths. Especially

in the beginning of column generation, our alternative variable values reflect to some degree original edge

costs cij and therefore guide the construction of new paths in much more meaningful ways. More promising

columns are consequently priced in from the beginning, reducing the heading-in effect.

Further note that any path variable yielding negative reduced costs with respect to D̄ or D̂t,q, respectively,

would also have negative reduced costs with respect to the dual solution computed by the used LP solver. The

opposite is, however, not generally true. Thus, increasing dual variable values should also help to decrease

the tailing-off effect.

5 Additional Constraints

Next to Quality-of-Service aspects that can be modeled by independent restrictions on feasible paths such

as the resource (length or delay) constraints already considered in our basic model, several other real world

relevant constraints have been used in network design models. In the following, we highlight four types

of constraints in a general setting and discuss concrete examples of them that have appeared in literature.

We then show that all results obtained in Section 4.1 remain valid for path models additionally involving

an arbitrary number of these constraints. Hence, we prove that stabilization based on alternative dual-

optimal solutions can be applied to realistic network design problems involving multiple side constraints

simultaneously, i.e. to rich network design problems. Dual variable values are again annotated in parentheses.

13

Constraints on Arc Variables. We first consider a set of Constraints (23) that impose upper bounds on

used arcs over all paths according to some additional resource functions wl
ij , ∀l ∈ R, ∀(i, j) ∈ A, and resource

bounds wl, ∀l ∈ R. Obviously, we can use them to also model similar constraints involving only certain subsets

of arcs using a correspondingly defined resource function with zero weights for all not relevant arcs. Such

constraints have been used for the weight-constrained STP, cf. [42], as well as the budget-constrained STP,

cf. [10, 26], restricting the sum of costs of realized arcs by an upper bound.

∑

(i,j)∈A

wl
ijxij ≤ wl (ζl) ∀l ∈ R (23)

Constraints on Node Variables. Similarly, we can consider Constraints (24) involving nodes included

in a solution. As opposed to arc constraints these constraints impose lower bounds rq, ∀q ∈ Q, according

to additional revenue functions rqi , ∀q ∈ Q, ∀i ∈ V \ {s}. We note that these type of constraints has

been used to ensure a certain amount of revenues to be collected by any feasible solution in variants of the

quota-constrained STP, cf. [23, 24].

∑

i∈V \{s}

r
q
i yi ≥ rq (ηq) ∀q ∈ Q (24)

Obviously, we could also impose corresponding upper bounds in the very same way.

Constraints on Node and Arc Variables. Another type of constraints that is frequently encountered

in the literature combines variables of nodes with those of incident arcs. They can e.g. be used to include

degree constraints restricting the number of links incident to a node, cf. [6, 39]. Since due to the directed

tree structure of our solutions there may be at most one ingoing arc in our setting, we restrict corresponding

constraints to emanating arcs. Constraints (25) generalize this idea by considering weights wij ≥ 0, ∀(i, j) ∈

A, and restricting the total weight of emanating arcs to Di, ∀i ∈ V .

Diyi −
∑

(i,j)∈A

wijxij ≥ 0 (δi) ∀i ∈ V (25)

Capacity Constraints. Finally, we consider capacity constraints on arcs which are of particular interest

in many real world applications, cf. [9, 25]. Constraints (26) assume that each terminal node t ∈ T has some

demand dt ≥ 0 that shall be satisfied by the path connecting the terminal, while the maximum total demand

14

routed along arc (i, j) ∈ A may not exceed a given capacity Cij ≥ 0.

Cijxij −
∑

t∈T

∑

g∈Pt:(i,j)∈g

dtλg ≥ 0 (νij) ∀(i, j) ∈ A (26)

Since Constraints (26) involve path variables, we also need to consider potential changes of the pricing

subproblem. Formally, the pricing subproblem for the IMP including Constraints (26) is defined as

(t∗, g∗) = argmint∈T,g∈Pt
− µt +

∑

(i,j)∈g

(

πt
ij + dtνij

)

. (27)

Hence, the general structure remains identical, i.e. we need to solve a minimum cost resource-constrained

shortest path problem for each terminal t ∈ T , just the arc costs have changed to πt
ij + dtνij , ∀(i, j) ∈ A.

As νij ≥ 0, ∀(i, j) ∈ A, these arc costs are strictly nonnegative and we can use the same pseudo-polynomial

algorithms than for solving the original pricing subproblem (12).

Analysis of the Resulting Dual Problem. To show that stabilization using alternative dual-optimal

solutions is still possible in the previously described way when including all the additional Constraints (23)

to (26) in the IMP, we first derive the correspondingly extended restricted dual problem RDP+:

15

max
∑

i∈V

(ρi + pi) +
∑

l∈R

wlζl +
∑

q∈Q

rqηq (28)

s.t.
∑

t∈T

πt
ij − γj +

∑

l∈R

wl
ijζl − wijδi + Cijνij ≤ cij (xij) ∀(i, j) ∈ A (29)

µt −
∑

(i,j)∈g

(πt
ij + dtνij) ≤ 0 (λg) ∀t ∈ T, ∀g ∈ P̃t (30)

− µt + γt + ρt +
∑

q∈Q

r
q
t ηq +Dtδt ≤ −pt (yt) ∀t ∈ T (31)

γi + ρi +
∑

q∈Q

r
q
i ηq +Diδi ≤ 0 (yi) ∀i ∈ V \ (T ∪ {s}) (32)

µt ≥ 0 ∀t ∈ T (33)

πt
ij ≥ 0 ∀t ∈ T, ∀(i, j) ∈ A (34)

ρi ≤ 0 ∀i ∈ V \ (T ′ ∪ {s}) (35)

ζl ≤ 0 ∀l ∈ R (36)

ηq ≥ 0 ∀q ∈ Q (37)

δi ≥ 0 ∀i ∈ V (38)

νij ≥ 0 ∀(i, j) ∈ A (39)

We observe that while RDP+ contains more variables than RDP the general structure remains identical. In

particular lower bounds greater than zero for variables νij , ∀(i, j) ∈ A, are only imposed if the corresponding

arc is contained in at least one already included path variable. The latter is important since these variables

are additionally included as arc costs in the pricing subproblem. Hence we can easily transfer our results

from Section 4.1.

Theorem 3. Equivalent versions of Theorem 1 and Corollary 1 do hold for variables πt
ij, ∀t ∈ T , ∀(i, j) ∈ A,

and νij, ∀(i, j) ∈ A, of RDP+.

Proof. We can prove Theorem 3 using the same arguments as in the proof of Theorem 1. Given some optimal

solution to RDP+, we can obviously reduce variable values πt
ij for all arcs that are not contained in any path

g ∈ P̃ and all terminals since these variables are not contained in further constraints and hence only restricted

to be nonnegative. The same arguments hold for variables νij .

16

Corresponding to Definition 1, we define the dual slack ∆ij of arc (i, j) ∈ A with respect to RDP+ as

∆ij = cij + γ∗j −
∑

l∈R

wl
ijζ

∗
l + wijδ

∗
i − Cijν

∗
ij −

∑

t∈T

πt
ij

∗
. (40)

In the following we assume that D∗, D̄, and D̂t,q denote dual solutions of RDP+, i.e. in comparison to

those introduced in Section 4.1 they are correspondingly extended to additionally include variables ζl, ηq,

and νij , respectively. It is then easy to see that Theorem 2, Corollaries 2 and 3, as well as Proposition 1

are valid for RDP+, too. Hence we conclude that both approaches introduced in Section 4.1, i.e. equally

distributing the slack to obtain alternative dual-optimal solutions as well as initially using different solutions,

remain feasible for RMP+, i.e. for RMP additionally including Constraints (23) to (26).

6 Computational Results

We implemented all described variants of the branch-and-price approach in C++ using ZIB SCIP 2.0.2 [1]

with IBM CPLEX 12.2 as embedded LP solver. Furthermore, a pure column generation solely using CPLEX

has been implemented to analyze the impacts of stabilization on a pure LP basis without influence of other

parts of a MIP framework like branching or primal heuristics. In the following subsections we refer by BP to

the full branch-and-price approach, while CG denotes the column generation approach solving LP relaxations

only.

Each computational experiment has been performed on a single core of an Intel Xeon E5540 processor

with 2.53 GHz in a multi-core system where eight cores share 24GB RAM and an absolute limit of 10 000

CPU-seconds has been applied to each experiment. The dual simplex algorithm has been used for solving

LPs in CG and BP, since it turned out to significantly outperform other options (primal simplex, barrier)

in preliminary tests. For BP, we further deactivated presolving and separation of general purpose cutting

planes (as recommended) and set parameter “fastmip” to one. Apart from that default settings and plugins

of SCIP have been used.

6.1 Experiments on the Rooted Delay-Constrained Steiner Tree Problem

We first tested our approach on the RDCSTP using benchmark instances originally proposed by Gouveia et

al. [21] for the spanning tree variant of the RDCSTP, i.e. T ′ = V \ {s}, focusing on the subsets C and E with

Euclidean costs and the root node placed near the center (C) and near the border (E), respectively. Each

instance set consists of five complete input graphs with 41 nodes and a specific range of possible discrete

edge delay values, e.g. C100 denotes the set of instances where re ∈ {1, . . . , 100}, ∀e ∈ E. Note that we

do not consider the instance sets from [21] with a very restricted range of delays, i.e. C2, E2, C5, and E5,

17

since most of them can be solved almost instantly by BP as well as by the layered graph approach from [46].

Additionally instance sets Tα [32] consisting of 30 randomly generated complete graphs with |V | = 100 and

|T ′| = α have been used. All delays and costs are uniformly distributed in {1, . . . , 99}. For reducing the input

graphs we applied the preprocessing methods described in [45] prior to solving. Resulting average numbers

of nodes (|V |) and edges (|E|) of each instance set are reported in Table 3.

We used a simple heuristic which iteratively adds delay-constrained shortest paths from the root node to

terminal nodes while dissolving possible cycles to build an initial set of paths for CG and BP if T 6= V \{s}. For

spanning tree instances the Kruskal-based heuristic followed by variable neighborhood descent as introduced

in [44] has been applied.

When solving the pricing subproblem, we potentially add multiple path variables for a single terminal

in each iteration following an approach originally proposed by Gouveia et al. [21] since this method turned

out to outperform the variant of adding at most one path variable per terminal in our previous work [32].

Their method iterates all nodes i ∈ V adjacent to the currently considered terminal t ∈ T and all delay

values b = 0, . . . , B − rit for which a path from s to i in conjunction with arc (i, t) is feasible. In case such

a shortest path p to i of total delay b exists and p′ = p ∪ {(i, t)} yields negative reduced costs, the variable

corresponding to p′ is added to the RMP.

As an additional improvement, we avoid zero arc costs in the pricing subproblem by using arc costs ε

instead, where ε corresponds to the numerical precision of the used LP solver. This strategy turned out to

be in particular helpful for standard column generation without stabilization.

6.1.1 Stabilization Based on Alternative Dual-Optimal Solutions

In our first set of experiments we aim at analyzing the overall efficiency of stabilization by alternative dual-

optimal solutions as well as the influence of parameter Q in the approach initially using different dual-optimal

solutions for different terminals. While large values of Q obviously may introduce a significant overhead for

relatively easy instances, they turned out to be beneficial for hard instances in our previous work [32, 33].

Table 1 compares standard column generation D∗ to stabilized approaches using alternative dual-optimal

solutions for different instance sets and delay bounds. Here D̄ denotes the approach equally distributing the

dual slack over all relevant variables and D̂ the more fine grained approach utilizing parameter Q. Next

to numbers of solved instances (#solved) and median CPU-times in seconds (ttotal) we also report the times

needed for finding the correct LP value (tbest) in order to analyze a potential tailing-off effect. Best results

are marked bold in Table 1 as well as all further ones. Additionally, we use dashes in all tables to indicate

when the majority of instances for some setting could not be solved within the given time limit of 10 000

seconds or to denote the maximum optimality gap of 100%.

18

Table 1: Numbers of solved instances, median CPU-times in seconds, and median CPU-times for reaching
the LP value for CG.

#solved ttotal [s] tbest [s]

dual solution D∗ D̄ D̂ D∗ D̄ D̂ D∗ D̄ D̂

Set B \ Q - - 10 20 30 - - 10 20 30 - - 10 20 30

C100 100 5 5 5 5 5 13 6 8 9 11 11 4 3 3 4
150 5 5 5 5 5 25 11 12 13 15 13 7 3 2 2

200 5 5 5 5 5 62 15 15 14 17 41 7 2 2 2

250 5 5 5 5 5 344 11 14 13 14 124 7 2 2 2

E100 100 5 5 5 5 5 97 30 13 18 17 97 16 5 6 6
150 4 5 5 5 5 2350 222 26 26 28 1380 112 11 11 10

200 1 5 5 5 5 - 2407 73 80 93 - 2406 44 57 80
250 2 5 5 5 5 - 7215 129 68 68 - 4302 71 53 51

C1000 1000 5 5 5 5 5 9 5 11 15 16 5 3 2 2 2

1500 5 5 5 5 5 41 11 23 22 26 18 6 2 2 2

2000 5 5 5 5 5 164 28 24 27 32 132 16 3 3 3

2500 5 5 5 5 5 374 29 28 27 32 355 14 4 4 4

E1000 1000 5 5 5 5 5 80 27 18 23 29 58 15 5 5 6
1500 5 5 5 5 5 1013 151 40 41 51 951 131 10 12 12
2000 3 5 5 5 5 3395 796 106 91 60 2201 286 13 13 10

2500 1 5 5 5 5 - 2672 157 81 67 - 1535 11 8 9

T30 16 30 30 30 30 30 1 1 2 3 4 0 0 1 1 1
30 30 30 30 30 30 7 4 7 10 12 3 1 1 2 2
50 30 30 30 30 30 36 11 15 20 23 20 4 2 3 4

100 30 30 30 30 30 326 34 29 37 43 118 9 3 5 5
T50 16 30 30 30 30 30 2 2 4 6 8 1 1 2 2 2

30 30 30 30 30 30 19 9 15 21 23 11 5 4 6 7
50 30 30 30 30 30 99 36 31 40 49 33 13 6 7 8

100 25 30 30 30 30 1305 167 94 92 95 1173 54 9 12 17
T70 16 30 30 30 30 30 3 3 7 10 12 2 2 2 3 4

30 30 30 30 30 30 33 18 24 31 38 25 13 8 7 9
50 30 30 30 30 30 186 60 58 63 75 129 30 12 15 17

100 23 30 30 30 30 2007 318 185 195 170 1371 186 25 39 37
T99 16 30 30 30 30 30 6 4 12 15 17 4 3 4 4 3

30 30 30 30 30 30 69 39 43 50 59 51 24 15 15 21
50 30 30 30 30 30 331 86 99 118 120 296 52 24 26 29

100 21 29 30 30 30 4044 880 373 288 290 3609 540 60 55 61

From Table 1 we conclude that stabilization using alternative dual-optimal solutions significantly outper-

forms standard column generation for all but a few rather trivial instance sets, i.e. whenever the median time

of standard column generation exceeds ten seconds. Moreover, all three reported settings of D̂ successfully

solved the LP relaxations of all tested instances to optimality within the given time limit. Especially for

the hardest instance sets these variants clearly outperform the simpler approach D̄. Sometimes the required

CPU-time is even reduced by more than one order of magnitude compared to D̄, yielding a reduction of

two orders of magnitude between D̂ and D∗. We further observe that D̂ usually needs the smallest relative

amount of time tbest

ttotal
to first reach the final LP value.

Figures 1 and 2 show relative median CPU-times and numbers of average pricing iterations and finally

included path variables for D̂ and various settings of Q using the corresponding values of D̄ as baseline. We

report on all instance sets where the median CPU-time exceeded 20 seconds when using D̄.

We observe that for the hardest instances larger values of Q are beneficial while they sometimes introduce

a moderate overhead for instances that could be solved relatively fast using D̄. Since the absolute overhead

19

0

20

40

60

80

100

120

140

2 4 6 8 10 15 20 25 30 50

re
la
ti
ve

m
ed
ia
n
C
P
U
-t
im

e
in

%

Q

100

150

200

250

300

350

400

450

500

550

600

2 4 6 8 10 15 20 25 30 50

re
la
ti
ve

av
er
ag
e
p
ri
ci
n
g
it
er
at
io
n
s
in

%

Q

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 15 20 25 30 50

re
la
ti
ve

av
g.

n
u
m
b
er

of
p
at
h
va
ri
ab

le
s
in

%

Q

E100, B=100
E100, B=150
E100, B=200
E100, B=250

C1000, B=2000
C1000, B=2500
E1000, B=1000
E1000, B=1500
E1000, B=2000
E1000, B=2500

Figure 1: Median CPU-times, average pricing iterations, and average numbers of included path variables for
D̂ and different values of Q in % relative to D̄ on spanning tree instances from [21].

is not too high in these cases and further increasing Q does not seem to have a significant positive impact, we

conclude that choosing Q from the interval [10, 30] generally seems to be a good compromise. Interestingly,

the number of total pricing iterations, i.e. the number of times we need to resolve the RMP, increases for

larger Q while the number of finally added path variables decreases. We conclude that for D̂ less variables

are included in each iteration and thus resolving the RMP needs less time. Nevertheless, finally necessary

variables are typically added already early in the column generation process. Overall, a huge reduction of

the needed CPU-time and the size of the final model in terms of included variables could be achieved. This

observation is further supported by Figure 3 plotting the relative average gap in percent of the current value

of the RMP to the LP solution value of the instance over the used CPU-time. Here, we exemplarily report

on D∗, D̄, and D̂ with Q = 10 using the instance set E1000 with B = 2000 and B = 2500, respectively, as

these turned out to be particularly hard.

While D̄ and especially D∗ need a considerable amount of time to significantly reduce the objective

value of the RMP and even exhibit quite long plateaus in doing this, D̂ identifies relevant columns early

20

20

40

60

80

100

120

140

160

180

200

220

2 4 6 8 10 15 20 25 30 50

re
la
ti
ve

m
ed
ia
n
C
P
U
-t
im

e
in

%

Q

100

200

300

400

500

600

700

2 4 6 8 10 15 20 25 30 50

re
la
ti
ve

av
ge
ra
ge

p
ri
ci
n
g
it
er
at
io
n
s
in

%

Q

50

55

60

65

70

75

80

85

90

95

100

2 4 6 8 10 15 20 25 30 50

re
la
ti
ve

av
g.

n
u
m
b
er

of
p
at
h
va
ri
ab

le
s
in

%

Q

T30, B=100
T50, B=50
T50, B=100
T70, B=50
T70, B=100
T99, B=30
T99, B=50
T99, B=100

Figure 2: Median CPU-times, average pricing iterations, and average numbers of included path variables for
D̂ and different values of Q in % relative to D̄ on random instances from [32].

0

5

10

15

20

25

0 20 40 60 80 100

ga
p
in

%

CPU-time [s]

E1000, B=2000

0

2

4

6

8

10

12

14

0 20 40 60 80 100

ga
p
in

%

CPU-time [s]

E1000, B=2500

D∗

D
D̂, Q = 10

D∗

D
D̂, Q = 10

Figure 3: Relative gap in % to final LP value over time.

21

h(β)

βι(l)ξ(l)

χ

χ+ ψ

β(l)

k(β)

βι(l)

χ

β(l)

Figure 4: Piecewise linear dual penalty functions h(β) and k(β).

and since resolving is much faster it rapidly finds the final LP value. We further observed that there is

often no significant difference between D̄ and D̂ when analyzing the current objective values over the so far

performed iterations. Thus, the major advantage of D̂ over D̄ is its success in focusing on a smaller set of

really important variables.

6.1.2 Comparison to Stabilization using Piecewise Linear Penalty Functions

We also compare our approaches to an alternative stabilization that penalizes deviations from a current

stability center by adding piecewise linear penalty functions to the dual problem, cf. [2]. Our previous

results [32, 33] indicate that penalizing only small dual variable values seems to perform better than penalizing

deviations in both directions. Since this result is also supported by our analysis of the dual problem in

Section 4.1 as well as by the huge reduction of CPU-time achieved using alternative dual-optimal solutions,

we will focus on that case in the following. In each major iteration l ∈ Z+ we define a current stability center

β(l) ∈ Rm, where m = |T | · (|A|+ 1)+ |V |−1 denotes the total number of constraints, i.e. the number of dual

variables, that should be stabilized. Deviations from a current stability center are then penalized by adding

a stabilization term to the primal problem, which corresponds to a penalty function in the dual. We tested

two approaches using penalty functions h(β) and k(β), respectively, as shown in Figure 4. Dual variable

values outside the current trust region
[

ι(l),∞
[

are penalized according to χ and ψ. If all dual variable values

are in the non-penalized region after the column generation process terminates at major iteration l we have

solved the LP relaxation of the current node. Otherwise, we update the stability center according to the

current dual solution. As has been shown previously [2] this process will terminate after finitely many major

iterations.

We used identical penalty slopes and trust region radii for all dimensions and tested different slope values

χ and ψ, respectively, as well as various trust region radii ri = β(l) − ι(l) and ro = β(l) − ξ(l). Starting with a

good initial stability center in order to avoid too many updates of it is crucial for the overall performance on

the one hand. On the other hand, it is not trivial to obtain such a good initial center in advance. We first

solved the LP relaxation of each instance and stored the finally obtained dual solution D′ ∈ Rm and initially

set β
(1)
i = D′

i + ri, ∀i = 0, . . . ,m− 1. In this way, we completely avoided updates of the stability center for

22

Table 2: Median CPU-times in seconds for CG utilizing piecewise linear stabilization, standard CG, and two
approaches using alternative dual-optimal solutions.

stabilization D∗ D̄ D̂, Q = 10 h(β) k(β)
(ri, ro) - - - (0.1, 0.5) (0.5, 1.0) (0.1,−)

Set B \ (χ, ψ) - - - (0.3, 1.0) (0.5, 1.5) (0.3, 1.0) (0.5, 1.5) (1.3,−) (2.0,−)

C1000 1000 9 5 11 8 8 9 9 8 8
1500 41 11 23 22 22 26 21 27 28
2000 164 28 24 90 120 142 131 115 125
2500 374 29 28 264 213 239 206 182 191

E1000 1000 80 27 18 38 37 70 29 41 33
1500 1013 151 40 211 207 351 213 180 145
2000 3395 796 106 713 407 848 803 390 348
2500 - 2672 157 2040 2030 2869 4268 1616 2594

T30 16 1 1 2 1 1 1 1 1 1

30 7 4 7 7 7 8 8 6 7
50 36 11 15 33 32 37 38 30 34

100 326 34 29 282 309 270 291 252 230
T50 16 2 2 4 2 2 2 2 2 2

30 19 9 15 15 14 16 14 12 12
50 99 36 31 70 86 84 71 59 63

100 1305 167 94 673 489 643 527 455 495

all experiments reported in Table 21. Our approach based on piecewise linear penalty functions thus uses

an initially optimal stability center, which is in real applications not available. This positive discrimination

obviously is unfair, but gives us an idea on how this approach may work in the best case.

From Table 2 we conclude that column generation based on piecewise linear penalty functions is able

to successfully reduce the necessary CPU-time compared to standard column generation and using the cho-

sen positive discrimination is partly competitive to alternative dual-optimal solutions when simply equally

distributing the dual slack (D̄). It is, however, clearly outperformed by the more sophisticated approach

initially using different dual-optimal solutions (D̂). Since it is generally not possible to know optimal dual

values in advance we conclude that stabilization by alternative dual-optimal solutions is better suited for

the considered type of optimization problems. Furthermore, additional main advantages of the latter are the

facts that one does not need to choose too many parameters and that it does not add further constraints or

variables to the RMP.

6.1.3 Comparison to Branch-and-Cut Approach based on Layered Graphs

Table 3 compares the numbers of solved instances (#solved), average optimality gaps (gap) in %, and median

CPU-times (ttotal) in seconds for branch-and-price approaches (BP) utilizing standard column generation

as well as different variants of stabilized column generation based on alternative dual-optimal solutions to

variants of the branch-and-cut from [46] based on layered graphs. For the latter we introduced variables

for each node in the layered graph to be able to model the prize-collecting variant. Since the branch-and-

1For two instances an unnecessary update shifting the center by ε has been performed in the last iteration due to numerical
issues. The additional time can, however, be neglected.

23

cut is likely to benefit from the generally better performance of CPLEX compared to SCIP we further

re-implemented it using SCIP. In Table 3 LG
(+)
C denotes the pure CPLEX implementation while LG

(+)
S refers

to the conceptually identical re-implementation using SCIP with CPLEX as LP solver.

In [32] we observed that the adaptive strategy ALF [46] indeed outperforms the pure layered graph

approaches when the set of achievable resource values is large, but it nevertheless is not able to compete with

our stabilized branch-and-prize. Furthermore, an improved variant of ALF is still ongoing work for which

reasons we excluded it from experimental comparison here.

LGC and LGS use a compact MIP model including a polynomial number of connectivity inequalities,

cf. [19], enough to guarantee a feasible solution, while connectivity cuts are additionally separated to

strengthen the dual bounds for LG+
C and LG+

S , respectively. Probing has been deactivated for CPLEX

and SCIP since it often needed too much time and memory, slowing down the overall process. As for BP, we

further set parameter “fastmip” to one for SCIP. Apart from that standard settings have been used.

For the branch-and-price approach using dual solutions D̂ we do not reinitialize parameter q after branch-

ing. Reinitializing q did not significantly change the overall performance in our preliminary tests since most

variables are usually generated in the root node of the branch-and-price tree. Hence, D̄ is used in all further

branching nodes.

As anticipated from the results in the previous subsections, we first observe that D̂ clearly outperforms

D̄ and D∗ with respect to all measured quantities. Regarding the number of solved instances, we conclude

that D̂, i.e. the stabilization using different dual-optimal solutions, also outperformed the layered graph

approaches for all three tested settings. Irrespective whether Q = 10, Q = 20, or Q = 30, D̂ could solve

at least as many instances to proven optimality as the best layered graph approach for all but two settings:

For set E10 with B = 25, D̂ with Q = 30 could solve only four instances, while LG+
C and two other settings

of D̂ could solve all five instances. Furthermore, for instance set T99 with B = 100, LGC could solve one

more instance than the three best stabilized branch-and-price approaches which in turn solved more instances

than LG+
C , LGS, and LG+

S , respectively. The average remaining optimality gap of all three variants using D̂,

however, is slightly smaller than the one of LGC even for this setting.

We further observe that the SCIP implementation of the layered graph approach is significantly slower

than the one solely using CPLEX, often by a factor between five and ten. Despite these advantages of CPLEX,

BP outperforms LGC and LG+
C , respectively, with respect to CPU-time on the majority of the spanning tree

instances from [21] and several of the larger random instances for the Steiner tree variant. The layered graph

approaches have advantages when the delays are distributed in a small interval, e.g. on sets C10 and E10,

and sometimes when the delay bound is particularly tight. LGS and LG+
S are clearly outperformed by BP

on all but some rather easy instances.

24

Overall we conclude that the proposed stabilized branch-and-price approach utilizing alternative dual-

optimal solutions outperforms the layered graph approach whenever the delay bound is not too strict and

if the number of achievable delays is not too small. Furthermore, even for the few cases that could not be

solved to proven optimality by the branch-and-price in the given time the resulting gap is very small while

the branch-and-cut approach may yield quite large gaps if too many layers need to be considered.

6.2 Experiments on the Quota-Constrained Rooted Delay-Constrained Steiner

Tree Problem

We now consider the Quota-Constrained Rooted Delay-Constrained Steiner Tree Problem (QRDCSTP), a

variant of the RDCSTP where T ′ = ∅, i.e. there are no mandatory terminals, and prizes pt ≥ 0 are given

for all terminals t ∈ T . The objective is to identify a solution yielding minimum total costs, while the sum

of prizes of connected terminal nodes must be at least equal to a given quota value Θ. To the best of our

knowledge, this problem variant has not been considered before.

We created sets QC and QD of benchmark instances using sets C and D of preprocessed instances for the

prize collecting STP [34] originally created by Canuto et al. [8], respectively. Instances from subset A where

terminal prizes have been originally created randomly from the interval [1, 10] have been used.

For each original instance I, three different QRDCSTP instances I-α have been derived with edge delays

re chosen uniformly at random from [1, α] with α = 10, α = 100, and α = 1000, respectively, for all edges

e ∈ E. The Steiner node with the smallest index is used as root node.

Reasonable lower and upper bounds Bmin and Bmax for B are determined as follows: Bmin =

max {Bmin(t) : t ∈ T} where Bmin(t) is the minimum delay of any path connecting the root node with

terminal t. On the contrary, Bmax = max {Bmax(t) : t ∈ T} where Bmax(t) is the delay of a minimum cost

path to terminal t.

Tables 4 and 5 compare median CPU-times in seconds (ttotal) and relative optimality gaps in percent for

branch-and-price with and without stabilization and for branch-and-cut on the layered graph.

Both approaches differ from the ones used for the RDCSTP only by the quota constraint that has been

added. As in Section 6.1.3 we report results for CPLEX and SCIP implementations of the branch-and-cut

approach with and without additionally separating directed connectivity cuts, respectively. For each instance,

we consider two different delay bounds B = ⌈br · (Bmax − Bmin) + Bmin⌉ with br ∈ {0.3, 0.6}, and for each

delay bound two different quota values Θ = ⌈θr ·
∑

i∈T pi⌉ with θr ∈ {0.3, 0.6}.

From Tables 4 and 5 we first observe that the layered graph approach is rather efficient on instances

where the maximum delay of an edge is ten. On these instances, the CPLEX implementation frequently

25

outperforms all branch-and-price variants. Looking at the fairer comparison of LGS and LG+
S to different

variants of BP, the picture is not so clear anymore on these instances where the number of layers is relatively

small. The performance of the layered graph approach heavily suffers from an increasing number of layers, i.e.

when using instances I-100 and I-1000, respectively. Here, BP clearly outperforms the two branch-and-cut

approaches using SCIP and is often competitive or superior to the CPLEX variants.

Comparing the different variants of branch-and-price, we observe that the performance trends between

them are not as clear as in our experiments for the RDCSTP anymore. For some settings, BP without

stabilization outperforms the other variants. We argue that the number of feasible paths may be quite

restricted for particularly these instances and settings, since the corresponding graphs are significantly sparser

than the ones used for the RDCSTP. Hence, already the minimal guiding using ε edge costs, i.e. choosing

paths with a smaller number of edges, rather than zeros in D∗ has a significant positive effect. Another hint

supporting this argument is the relatively small difference between the layered graph approaches with and

without directed connectivity cuts, respectively. We also note that branch-and-price obviously performs best

for problems with rather tight restrictions, i.e. if the number of potential variables is small. In these cases,

however, we clearly cannot hope to gain too much using stabilization techniques.

Nevertheless, stabilized branch-and-price utilizing alternative dual-optimal solutions clearly outperforms

the standard approach in the majority of cases. Whether D̄ or D̂ performs better heavily depends on the

considered instance and setting. Considering the particularly hard instances, however, the approaches based

on D̂ were able to solve slightly more instances to proven optimality in the given time. Also the number of

cases where the remaining optimality gap exceeds ten percent is smaller for all approaches based on D̂ than

for D̄.

Regarding the instances that could not be solved by all or most approaches within the given time limit, we

further observe that the resulting optimality gap of BP is usually rather small. The layered graph approaches

often fail to derive any meaningful primal and dual bounds yielding a gap of 100% for many of these cases.

Overall we conclude that branch-and-price utilizing alternative dual-optimal solutions usually outperforms

standard branch-and-price and outperforms the layered graph approach whenever the delay range of edges

is not too restricted.

7 Conclusions and Future Work

In this article we described a branch-and-price approach based on a path formulation for a generic gener-

alization of the Steiner tree problem on graphs with additional quality-of-service requirements for realized

connections. As a naive column generation suffers greatly from degeneracy, our primary focus was on sta-

bilizing this approach using alternative dual-optimal solutions. Two concrete variants have been introduced

26

and shown to easily generalize also when considering rich problem variants involving diverse types of side

constraints simultaneously. Performing a computational study on different instance sets of the RDCSTP and

a quota-constrained variant, the positive impacts of our stabilization technique could be clearly observed.

We analyzed and discussed major reasons of the huge speed-up and showed the general superiority over

an alternative stabilization technique utilizing piecewise linear penalty functions in the considered domain.

We further proved that due to the achieved speed-up, stabilized branch-and-price based on alternative dual-

optimal solutions allows to solve hard instances and outperforms a layered graph approach on many occasions.

It is thus at least competitive to state-of-the-art methods for the considered type of network design problems.

It should be not too difficult to generalize our results to further classes of network design problems. In

particular, problems additionally considering redundancy issues or variants where no fixed root node is given

but more general commodities between arbitrary node pairs shall be satisfied appear promising to look at.

Utilizing alternative dual-optimal solutions, stabilized branch-and-price approaches may have the potential

to yield state-of-the-art results in these areas, too.

Acknowledgements

Günther R. Raidl is supported by the Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF),

project number ICT10-027. Markus Leitner wants to thank Jacques Desrosiers for suggesting to use an

optimal initial stability center in the piecewise linear stabilization approach for comparison reasons.

27

Table 3: Numbers of solved instances, average optimality gaps, and median CPU-times for branch-and-price compare to layered graph approaches.
#solved gap % ttotal [s]

LGC LG+

C
LGS LG+

S
D∗ D̄ D̂ LGC LG+

C
LGS LG+

S
D∗ D̄ D̂ LGC LG+

C
LGS LG+

S
D∗ D̄ D̂

Set B |V | |E| \ Q - - - - - - 10 20 30 - - - - - - 10 20 30 - - - - - - 10 20 30
C10 10 41 431 5 5 5 5 5 5 5 5 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 2 1 3 2 4 5 6

15 41 484 5 5 5 5 5 5 5 5 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 2 11 9 10 5 7 7 7
20 41 484 5 5 5 5 5 5 5 5 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 16 79 50 26 7 9 11 12
25 41 484 5 5 5 5 5 5 5 5 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 102 32 254 103 62 29 18 13 15

E10 10 41 566 5 5 5 5 5 5 5 5 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 1 10 10 8 6 8 10 10
15 41 670 5 5 5 5 4 5 5 5 5 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 18 24 112 104 257 76 66 53 59
20 41 670 5 5 5 5 3 5 5 5 5 0.0 0.0 0.0 0.0 20.2 0.0 0.0 0.0 0.0 803 257 2340 562 7527 1574 697 618 461
25 41 670 3 5 1 5 1 3 5 5 4 1.9 0.0 3.1 0.0 60.3 1.2 0.0 0.0 0.2 6091 908 - 1369 - 3953 1105 1340 1617

C100 100 41 561 5 5 5 5 5 5 5 5 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 38 46 200 353 12 8 9 11 12
150 41 572 5 5 5 4 5 5 5 5 5 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 379 888 1777 4458 30 14 14 14 16
200 41 572 3 3 2 1 5 5 5 5 5 2.8 2.6 2.8 10.9 0.0 0.0 0.0 0.0 0.0 5227 3056 - - 69 16 17 14 20
250 41 572 1 2 2 0 5 5 5 5 5 4.8 6.6 4.8 33.2 0.0 0.0 0.0 0.0 0.0 - - - - 284 26 27 22 15

E100 100 41 651 5 5 5 5 5 5 5 5 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 394 419 1539 1892 104 55 16 23 20
150 41 672 0 2 0 0 4 5 5 5 5 6.9 1.8 8.7 16.3 0.2 0.0 0.0 0.0 0.0 - - - - 1184 176 51 59 58
200 41 672 0 0 0 0 1 4 4 5 5 10.9 16.5 13.7 17.1 80.0 0.3 0.1 0.0 0.0 - - - - - 3446 261 196 146

250 41 672 0 0 0 0 1 3 5 5 5 13.0 22.5 12.0 41.2 80.0 20.0 0.0 0.0 0.0 - - - - - 9322 491 169 307
C1000 1000 41 572 5 4 4 2 5 5 5 5 5 0.0 0.8 2.1 9.8 0.0 0.0 0.0 0.0 0.0 523 730 6344 - 10 8 11 16 15

1500 41 589 1 0 0 0 5 5 5 5 5 4.6 12.4 48.7 30.9 0.0 0.0 0.0 0.0 0.0 - - - - 51 22 23 22 24
2000 41 589 0 0 0 0 5 5 5 5 5 10.5 14.8 15.7 48.9 0.0 0.0 0.0 0.0 0.0 - - - - 180 71 62 50 54
2500 41 589 0 0 0 0 5 5 5 5 5 67.6 32.9 - 81.7 0.0 0.0 0.0 0.0 0.0 - - - - 332 64 29 31 33

E1000 1000 41 632 2 2 1 0 5 5 5 5 5 6.5 15.4 6.8 25.9 0.0 0.0 0.0 0.0 0.0 - - - - 71 41 18 20 26
1500 41 668 0 0 0 0 4 5 5 5 5 12.5 26.4 28.7 28.4 0.1 0.0 0.0 0.0 0.0 - - - - 706 137 34 40 36
2000 41 668 0 0 0 0 3 5 5 5 5 19.1 25.3 55.2 38.4 40.0 0.0 0.0 0.0 0.0 - - - - 3730 631 139 71 55

2500 41 668 0 0 0 0 0 4 5 5 5 - 85.7 85.7 - 80.2 0.2 0.0 0.0 0.0 - - - - - 4125 1004 194 213

T10 16 96 469 30 30 30 30 30 30 30 30 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 1 1 1
30 100 932 30 30 30 30 30 30 30 30 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 1 9 7 3 2 2 3 4
50 100 1269 30 30 30 30 30 30 30 30 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 7 63 58 9 2 4 5 6

100 100 1695 29 30 30 30 30 30 30 30 30 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99 102 667 692 38 4 6 7 9
T30 16 98 482 30 30 30 30 30 30 30 30 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 2 2 3 4 4

30 100 932 30 30 30 30 30 30 30 30 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 2 10 9 11 7 11 13 16
50 100 1269 30 30 30 30 30 30 30 30 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16 16 127 178 54 21 21 23 30

100 100 1695 28 27 28 24 28 30 30 30 30 0.5 2.4 0.8 5.3 0.1 0.0 0.0 0.0 0.0 144 442 1300 1519 485 60 41 42 56
T50 16 99 486 30 30 30 30 30 30 30 30 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 4 3 6 6 8

30 100 932 30 30 30 30 30 30 30 30 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3 5 21 20 26 15 22 23 38
50 100 1269 30 30 30 30 30 30 30 30 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20 14 170 262 105 56 47 51 66

100 100 1695 28 22 25 19 22 29 29 30 29 0.2 7.0 1.5 11.4 16.9 0.0 0.0 0.0 0.1 300 1129 1590 4110 2711 225 134 155 145
T70 16 99 487 30 30 30 30 30 30 30 30 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 1 6 5 8 11 14

30 100 932 30 30 30 30 30 30 30 30 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3 5 17 17 36 27 30 37 58
50 100 1269 30 30 30 30 30 30 30 30 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20 40 158 208 259 130 75 81 93

100 100 1695 27 24 26 21 22 27 28 29 29 4.0 10.3 1.0 8.0 20.2 0.3 0.1 0.1 0.1 338 854 1841 5114 1811 464 356 415 446
T99 16 100 490 30 30 30 30 30 30 30 30 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 1 1 7 8 12 15 20

30 100 932 30 30 30 30 30 30 30 30 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3 6 37 31 83 74 73 77 105
50 100 1269 30 30 30 30 28 30 30 30 30 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 25 32 311 428 422 368 110 107 200

100 100 1695 29 25 25 22 19 27 28 28 28 0.3 8.5 1.0 17.8 30.1 3.4 0.2 0.2 0.2 262 525 1403 6646 4650 836 685 542 640

28

Table 4: Optimality gaps and median CPU-times for the QRDCSTP on QC instances.
gap % ttotal [s]

LGC LG+

C
LGS LG+

S
D∗ D̄ D̂ LGC LG+

C
LGS LG+

S
D∗ D̄ D̂

Instance B |V | |E| |T | θr \ Q - - - - - - 10 20 30 - - - - - - 10 20 30
QC12-10 21 451 1953 9 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 0 7 4 6 5 6 5 5

60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 1 14 9 13 10 10 11 12
27 483 2177 9 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 1 25 31 135 46 67 59 48

60 0.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 3 5 93 - 73 20 17 15 19
QC12-100 171 451 1892 9 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4 3 41 37 6 5 5 7 7

60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3 2 46 61 14 15 15 16 19
214 479 2143 9 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 29 17 498 514 62 20 29 28 36

60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20 28 1483 1503 61 30 26 26 40
QC12-1000 1907 472 2107 9 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 80 58 2129 2214 48 20 22 34 24

60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 68 68 3053 2677 12 12 13 17 12

2436 482 2169 9 30 0.0 0.0 - - 0.0 0.0 0.0 0.0 0.0 877 740 - - 213 71 85 84 86
60 0.0 0.0 - - 0.0 0.0 0.0 0.0 0.0 1233 1117 - - 64 23 26 26 33

QC13-10 27 471 2108 70 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16 10 271 50 140 141 155 131 184
60 0.0 0.0 0.0 0.0 0.9 0.9 0.9 0.9 0.9 25 10 55 120 - - - - -

37 472 2112 70 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 39 72 281 721 9605 234 4561 4568 3911
60 0.0 0.0 0.0 0.0 1.0 1.0 2.0 1.0 1.0 84 71 219 561 - - - - -

QC13-100 228 472 2109 70 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 178 117 2270 9940 1981 1134 4875 1089 1457
60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 235 268 1089 2497 143 94 128 166 175

348 472 2109 70 30 0.0 24.0 9.8 88.4 2.5 0.0 0.0 2.5 0.0 2449 - - - - 6895 6039 - 4303
60 0.0 58.1 4.0 70.4 0.0 0.0 0.0 0.0 0.0 3522 - - - 585 456 357 428 378

QC13-1000 2444 472 2106 70 30 - - - - 0.0 0.0 0.0 0.0 0.0 - - - - 5115 1831 4944 9583 9573
60 68.1 68.1 - - 0.0 0.0 0.0 0.0 0.0 - - - - 2395 2204 7672 7943 3567

3726 472 2106 70 30 - - - - 2.6 2.6 2.6 2.6 2.6 - - - - - - - - -
60 - - - - 1.0 0.0 0.0 1.0 1.0 - - - - - 9094 8783 - -

QC14-10 23 465 2068 100 30 0.0 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 4 3 82 108 4997 - 4721 352 5179
60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4 4 68 90 574 142 126 1061 828

33 466 2074 100 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25 18 73 80 530 205 193 219 220
60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26 21 69 337 407 246 248 303 275

QC14-100 203 466 2073 100 30 0.0 0.0 0.0 0.0 0.0 2.4 0.0 4.7 0.0 40 22 827 1439 5669 - 2368 - 6362
60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37 26 274 258 105 114 135 144 143

298 466 2075 100 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 337 328 260 232 978 652 717 527 184

60 0.0 0.0 5.9 5.9 0.0 0.0 0.0 0.0 0.9 725 626 - - 270 164 1502 3877 -
QC14-1000 2088 466 2074 100 30 0.0 0.0 - - 0.0 2.3 0.0 0.0 0.0 1868 5294 - - 2043 - 135 216 227

60 0.0 0.0 - 71.5 0.0 0.0 0.0 0.0 0.0 5084 6969 - - 231 202 205 234 259
3153 466 2074 100 30 - - - - 0.0 0.0 0.0 0.0 0.0 - - - - 1789 1749 1129 2974 2661

60 - - - - 0.0 0.0 0.0 0.0 0.0 - - - - 1213 701 474 571 562
QC15-10 23 406 1868 166 30 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 6 8 36 - 1507 1804 1416 1251 922

60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 9 186 162 1021 1343 165 1626 1458
29 406 1868 166 30 0.0 0.0 0.0 0.0 2.1 0.0 2.1 2.1 2.1 48 28 190 202 - 6610 - - -

60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 84 118 459 632 1063 497 349 4582 3818
QC15-100 218 406 1860 166 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 198 196 549 2782 4535 4496 1983 1772 2491

60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 108 62 373 202 203 426 160 229 1416
311 406 1860 166 30 0.0 0.0 0.0 91.0 0.0 0.0 0.0 0.0 2.2 1831 3344 3900 - 3202 2285 8711 9082 -

60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 763 1322 5599 4166 628 397 276 330 364
QC15-1000 2481 406 1859 166 30 - - - - 0.0 0.0 0.0 0.0 0.0 - - - - 262 221 1936 2460 5293

60 - - - - 0.0 0.0 0.0 0.0 0.0 - - - - 288 333 218 280 220
3562 406 1859 166 30 - - - - 0.0 0.0 0.0 0.0 0.0 - - - - 5198 3290 8142 3140 3931

60 - - - - 0.0 0.0 0.0 0.0 0.0 - - - - 4817 1193 544 622 580
QC17-10 16 494 4351 8 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3 2 14 9 114 59 51 60 43

60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 2 36 14 169 187 128 240 92
23 498 4607 8 30 0.0 0.0 0.0 25.0 0.0 0.0 0.0 0.0 0.0 79 20 764 - 956 249 286 233 217

60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96 30 1319 536 1657 1120 761 596 843
QC17-100 128 497 4294 8 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 81 87 1173 1520 241 72 87 65 73

60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 141 183 1698 2866 598 207 110 141 158
204 498 4607 8 30 0.0 0.0 - 78.3 0.0 0.0 0.0 0.0 0.0 2236 1789 - - 1905 318 263 493 530

60 0.0 50.0 0.0 60.9 0.0 0.0 0.0 0.0 0.0 1418 - 9673 - 5710 443 1140 920 2995
QC17-1000 1201 498 4206 8 30 0.0 0.0 - - 0.0 0.0 0.0 0.0 0.0 2481 2009 - - 171 59 65 59 55

60 0.0 29.4 64.3 64.3 0.0 0.0 0.0 0.0 0.0 3891 - - - 909 357 302 426 465
1997 498 4606 8 30 - - - - 0.0 0.0 0.0 0.0 0.0 - - - - 1203 441 382 487 311

60 - - - - 0.0 0.0 0.0 0.0 0.0 - - - - 6111 1423 2899 2345 1162

QC18-10 14 469 4251 52 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 2 17 17 288 296 258 274 212
60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 2 14 21 811 504 501 451 431

19 469 4403 52 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 5 68 66 896 429 316 402 403
60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 5 165 193 209 186 170 258 223

QC18-100 154 469 4396 52 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 167 132 2699 2582 396 386 268 509 607
60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 257 292 892 8531 2527 746 1868 2144 1059

234 469 4401 52 30 0.0 0.0 - - 0.0 0.0 0.0 0.0 0.0 304 319 - - 1391 1380 988 1308 358
60 0.0 0.0 - - 0.0 0.0 0.0 0.0 0.0 2498 3379 - - 366 376 371 419 451

QC18-1000 1269 469 3727 52 30 0.0 0.0 - 14.3 0.0 0.0 0.0 0.0 0.0 462 358 - - 154 153 134 174 176
60 0.0 0.0 - - 0.0 0.0 0.0 0.0 0.0 1095 1654 - - 121 96 128 164 178

1816 469 4397 52 30 - - - - 0.0 0.0 0.0 0.0 0.0 - - - - 747 539 426 366 462
60 - - - - 0.0 0.0 0.0 0.0 0.0 - - - - 194 366 278 402 306

QC19-10 14 429 3522 55 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 1 2 3 52 46 46 43 35
60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 2 60 33 109 63 91 108 81

19 430 3771 55 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 4 9 7 43 50 37 54 44
60 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 12 4 113 134 4802 - 4209 6733 6099

QC19-100 114 429 3126 55 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31 20 51 50 35 36 38 39 38
60 0.0 0.0 0.0 14.3 0.0 0.0 0.0 0.0 0.0 157 399 3147 - 222 244 530 612 516

164 430 3666 55 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 237 187 385 252 48 68 40 62 50
60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 683 748 7923 6641 138 154 137 143 162

QC19-1000 1141 430 3286 55 30 0.0 0.0 - 0.0 0.0 0.0 0.0 0.0 0.0 1849 2006 - 1536 38 52 41 54 39
60 0.0 54.2 - 88.9 0.0 0.0 0.0 0.0 0.0 5256 - - - 794 1387 1036 755 1768

1788 430 3709 55 30 - - - - 0.0 0.0 0.0 0.0 0.0 - - - - 52 48 42 50 61
60 - - - - 10.0 10.0 0.0 10.0 10.0 - - - - - - 7407 - -

29

Table 5: Optimality gaps and median CPU-times for the QRDCSTP on QD instances.
gap % ttotal [s]

LGC LG+

C
LGS LG+

S
D∗ D̄ D̂ LGC LG+

C
LGS LG+

S
D∗ D̄ D̂

Instance B |V | |E| |T | θr \ Q - - - - - - 10 20 30 - - - - - - 10 20 30
QD12-10 23 951 4373 9 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 1 31 21 30 15 15 18 23

60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3 1 63 89 169 64 76 103 113
34 991 4631 9 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16 12 255 465 175 32 28 38 50

60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 47 62 1694 1886 1540 538 199 425 180
QD12-100 214 977 4544 9 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22 20 19 26 32 13 13 13 17

60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 29 25 3642 2652 123 58 44 63 82
325 991 4633 9 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 911 748 1139 1244 102 29 23 24 40

60 0.0 0.0 - 53.2 0.0 0.0 0.0 0.0 0.0 4715 2389 - - 1788 107 614 226 490
QD12-1000 1652 879 3770 9 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18 18 266 343 30 21 13 19 18

60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30 26 155 177 17 20 22 21 26
2286 987 4611 9 30 0.0 0.0 - - 0.0 0.0 0.0 0.0 0.0 1439 1759 - - 63 34 25 46 36

60 0.0 - - 26.6 0.0 0.0 0.0 0.0 0.0 1250 - - - 24 19 21 39 21
QD13-10 30 966 4569 143 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26 17 207 360 3860 2982 2790 4322 4533

60 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5 32 68 160 470 - - - - -
41 966 4569 143 30 0.0 0.0 0.0 0.0 2.8 4.2 0.0 2.8 2.8 171 92 347 3488 - - 1896 - -

60 0.0 0.0 0.0 0.0 1.1 1.1 0.6 1.1 0.0 117 97 1004 1358 - - - - 9598
QD13-100 228 965 4561 143 30 0.0 0.0 88.8 88.8 1.3 1.3 0.0 1.3 0.0 618 1285 - - - - 2611 - 6750

60 0.0 0.0 0.0 9.8 0.0 0.5 0.5 0.5 0.0 1148 1686 5819 - 4522 - - - 9512
342 966 4566 143 30 0.0 61.5 - - 0.0 0.0 0.0 0.0 0.0 5201 - - - 2033 7263 1288 1166 1621

60 70.4 70.4 - - 1.1 1.1 1.1 1.1 1.1 - - - - - - - - -
QD13-1000 2230 966 4558 143 30 - - - - 0.0 0.0 0.0 0.0 0.0 - - - - 2935 1611 1873 2330 2689

60 - - - - 0.0 0.0 0.0 0.0 0.0 - - - - 961 729 803 925 1196
3409 966 4558 143 30 - - - - 2.8 2.8 2.8 2.8 2.8 - - - - - - - - -

60 - - - - 0.0 0.0 1.7 0.0 0.0 - - - - 9183 2839 - 3296 9971
QD14-10 29 946 4493 207 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 72 52 502 527 1384 1327 998 1251 1573

60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 92 352 327 3540 2986 3090 7907 2470 2577
41 946 4493 207 30 0.0 0.0 0.0 0.0 35.3 0.0 0.0 0.0 0.0 525 2094 1426 4324 - 4880 4649 3307 4906

60 0.0 0.0 0.0 0.0 - 1.4 1.4 1.4 0.0 281 327 2872 5224 - - - - 8053
QD14-100 260 946 4492 207 30 0.0 59.8 8.0 88.9 0.0 0.0 0.9 0.0 0.0 2930 - - - 7070 7064 - 8492 7816

60 0.0 0.0 - 73.4 0.0 0.4 0.0 0.0 0.0 2381 4844 - - 7943 - 3515 3777 3944
381 946 4492 207 30 - 88.8 - - 1.1 1.1 1.1 1.1 1.1 - - - - - - - - -

60 - - - - - - 0.4 - 0.4 - - - - - - - - -
QD14-1000 2209 946 4492 207 30 - - - - 0.0 0.0 0.0 0.0 0.0 - - - - 369 455 702 841 998

60 - - - - 0.0 0.0 0.0 0.0 0.4 - - - - 1409 7380 3718 3357 -
3194 946 4492 207 30 - - - - 1.1 1.1 8.0 1.1 8.0 - - - - - - - - -

60 - - - - 0.9 0.0 0.9 0.4 0.9 - - - - - 9753 - - -
QD15-10 26 832 4165 348 30 0.0 0.0 0.0 0.0 27.2 27.2 27.7 27.2 - 45 148 187 1015 - - - - -

60 0.0 0.0 0.0 0.0 0.0 6.2 - 0.0 3.0 69 83 193 539 6291 - - 1960 -
37 832 4165 348 30 0.0 0.0 0.0 0.0 - 11.8 58.0 0.0 0.0 456 522 1233 5685 - - - 4108 3172

60 0.0 18.7 0.0 - - - 7.3 - - 1408 - 7901 - - - - - -
QD15-100 218 832 4161 348 30 0.0 48.8 - 91.0 - 3.5 49.5 6.0 6.8 1587 - - - - - - - -

60 0.0 0.0 0.0 0.7 1.7 7.1 6.1 4.3 4.3 882 3559 7280 - - - - - -
323 832 4161 348 30 - - - - - 17.1 - - - - - - - - - - - -

60 - 75.0 - - - - - 26.9 - - - - - - - - - -
QD15-1000 2415 832 4160 348 30 - - - - 0.0 17.5 0.0 0.0 - - - - - 1454 - 2931 1609 -

60 - - - - - 6.7 0.4 0.4 0.4 - - - - - - - - -
3385 832 4160 348 30 - - - - - - 0.0 2.0 0.0 - - - - - - 6575 - 4319

60 - - - - - - 1.1 7.4 7.4 - - - - - - - - -
QD17-10 14 970 7712 9 30 0.0 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 - 6 6 153 88 64 59 82

60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 1 24 37 122 81 62 61 76
19 999 10412 9 30 0.0 0.0 0.0 12.5 0.0 0.0 0.0 0.0 0.0 12 9 293 - 1060 224 267 266 428

60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 12 886 342 327 309 90 324 119
QD17-100 96 986 6438 9 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51 62 626 873 179 124 158 145 159

60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 57 142 874 967 945 399 458 599 531
145 999 10379 9 30 0.0 0.0 30.0 30.0 0.0 0.0 0.0 0.0 0.0 138 157 - - 583 396 118 99 141

60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 510 312 2298 8512 154 72 72 99 134
QD17-1000 1396 999 10355 9 30 - - - - 0.0 0.0 0.0 0.0 0.0 - - - - 134 53 75 88 83

60 - - - - 0.0 0.0 0.0 0.0 0.0 - - - - 336 69 105 133 115
2178 999 10391 9 30 - - - - 0.0 0.0 0.0 0.0 0.0 - - - - 9398 1835 2028 4884 1251

60 - - - - 0.0 0.0 0.0 0.0 0.0 - - - - 952 127 108 174 170
QD18-10 18 944 9726 111 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 15 1092 1168 751 754 936 1028 862

60 0.0 0.0 0.0 0.0 23.2 23.2 0.0 0.0 0.0 49 67 488 1655 - - 1217 1351 2106
27 944 9726 111 30 0.0 0.0 0.0 0.0 0.0 0.0 7.1 7.1 7.1 450 1719 3042 7056 5734 3913 - - -

60 0.0 41.5 0.0 20.0 - - - - - 584 - 3376 - - - - - -
QD18-100 139 944 9700 111 30 0.0 0.0 0.0 94.3 0.0 0.0 0.0 12.5 0.0 2630 3728 5684 - 3262 5384 4682 - 4699

60 0.0 42.3 5.2 77.6 - 17.4 1.7 1.7 1.7 1392 - - - - - - - -
222 944 9711 111 30 - - - - 97.5 7.1 95.5 0.0 95.5 - - - - - - - 9484 -

60 - - - - - - - - - - - - - - - - - -
QD18-1000 1315 944 9706 111 30 - - - - 0.0 0.0 0.0 0.0 0.0 - - - - 511 635 756 764 919

60 - - - - 9.7 1.8 1.8 1.8 1.8 - - - - - - - - -
2143 944 9726 111 30 - - - - 0.0 23.5 23.5 0.0 23.5 - - - - 6462 - - 2905 -

60 - - - - - - - - - - - - - - - - - -
QD19-10 17 897 9234 147 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16 12 727 2834 7396 9799 7982 6557 7379

60 0.0 0.0 0.0 0.0 62.6 75.8 1.6 1.6 1.6 48 40 440 1419 - - - - -
25 897 9234 147 30 0.0 0.0 0.0 68.9 0.0 88.3 0.0 88.4 88.3 648 761 1688 - 7249 - 2444 - -

60 0.0 54.0 0.0 77.6 - - - - - 1578 - 6649 - - - - - -
QD19-100 169 897 9197 147 30 16.7 51.6 - - 5.9 0.0 93.2 93.8 93.2 - - - - - 3106 - - -

60 65.1 56.4 - 78.9 - - - 8.7 63.4 - - - - - - - - -
274 897 9197 147 30 - - - - - - - - 92.5 - - - - - - - - -

60 - - - - - - - - - - - - - - - - - -
QD19-1000 1474 897 9150 147 30 - - - - 88.5 6.3 16.7 11.8 16.7 - - - - - - - - -

60 - - - - - - 4.3 4.3 0.0 - - - - - - - - 5440

2296 897 9171 147 30 - - - - - 6.7 6.7 6.7 6.7 - - - - - - - - -
60 - - - - - - - - - - - - - - - - - -

30

References

[1] T. Achterberg. SCIP: Solving constraint integer programs. Mathematical Programming Computation,

1(1):1–41, 2009.

[2] H. B. Amor and J. Desrosiers. A proximal trust-region algorithm for column generation stabilization.

Computers & Operations Research, 33:910–927, 2006.

[3] H. B. Amor, J. Desrosiers, and J. M. V. Carvalho. Dual-optimal inequalities for stabilized column

generation. Operations Research, 54(3):454–463, 2006.

[4] H. B. Amor, J. Desrosiers, and A. Frangioni. On the choice of explicit stabilizing terms in column

generation. Discrete Applied Mathematics, 157:1167–1184, 2009.

[5] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance. Branch-and-price:

Column generation for solving huge integer programs. Operations Research, 46:316–329, 1998.

[6] F. Bauer and A. Varma. Degree-constrained multicasting in point-to-point networks. In INFOCOM ’95.

Fourteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Bringing

Information to People. Proceedings. IEEE, pages 369–376 vol.1, 1995.

[7] O. Briant, C. Lemaréchal, P. Meurdesoif, S. Michel, N. Perrot, and F. Vanderbeck. Comparison of

bundle and classical column generation. Mathematical Programming, 113(2):299–344, 2008.

[8] S. A. Canuto, M. G. C. Resende, and C. C. Ribeiro. Local search with perturbations for the prize-

collecting Steiner tree problem in graphs. Networks, 38(1):50–58, 2001.

[9] A. Costa, J. Cordeau, and B. Gendron. Benders, metric and cutset inequalities for multicommodity

capacitated network design. Computational Optimization and Applications, 42:371–392, 2009.

[10] A. M. Costa, J. Cordeau, and G. Laporte. Steiner tree problem with profits. INFOR, 44:99–115, 2006.

[11] J. M. V. de Carvalho. Using extra dual cuts to accelerate convergence in column generation. INFORMS

Journal on Computing, 17(2):175–182, 2005.

[12] G. Desaulniers, J. Desrosiers, and M. M. Solomon, editors. Column Generation. Springer, 2005.

[13] J. Desrosiers and M. E. Lübbecke. Branch-price-and-cut algorithms. In J. J. Cochran et al., editors,

Wiley Encyclopedia of Operations Research and Management Science. Wiley, 2011.

[14] S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks, 1:195–207, 1971.

31

[15] O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column generation. Discrete

Mathematics, 194(1–3):229–237, 1999.

[16] I. Dumitrescu and N. Boland. Improved preprocessing, labeling and scaling algorithms for the weight-

constrained shortest path problem. Networks, 42(3):135–153, 2003.

[17] M. Fernandes, L. Gouveia, and S. Voß. Determining hop-constrained spanning trees with repetitive

heuristics. In Proceedings of 6th International Conference on Decision Support for Telecommunications

ands Information Society, Warsaw, Poland, 2007.

[18] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman, New York, 1979.

[19] L. Gouveia. Using hop-indexed models for constrained spanning and Steiner tree models. In B. Sanso and

P. Soriano, editors, Telecommunications Network Planning, pages 21–32. Kluwer Academic Publishers,

1999.

[20] L. Gouveia, A. Paias, and D. Sharma. Local search heuristics for the hop-constrained minimum spanning

tree problem. In B. Fortz, editor, Proceedings of International Network Optimization Conference, Spa,

Belgium, 2007.

[21] L. Gouveia, A. Paias, and D. Sharma. Modeling and solving the rooted distance-constrained minimum

spanning tree problem. Computers & Operations Research, 35(2):600–613, 2008.

[22] L. Gouveia, L. Simonetti, and E. Uchoa. Modeling hop-constrained and diameter-constrained mini-

mum spanning tree problems as Steiner tree problems over layered graphs. Mathematical Programming,

128(1):123–148, 2011.

[23] M. Haouari, S. B. Jayeb, and H. D. Sherali. The prize collecting Steiner tree problem: Models and

Lagrangian dual optimization approaches. Computational Optimization and Applications, 40(1):13–39,

2008.

[24] M. Haouari and J. C. Siala. A hybrid Lagrangian genetic algorithm for the prize collecting Steiner tree

problem. Computers & Operations Research, 33:1274–1288, 2006.

[25] K. Holmberg and D. Yuan. A Lagrangian heuristic based branch-and-bound approach for the capacitated

network design problem. Operations Research, 48(3):461–481, 2000.

32

[26] D. S. Johnson, M. Minkoff, and S. Phillips. The prize collecting Steiner tree problem: Theory and

practice. In Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms, pages 760–769,

2000.

[27] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Multicasting for multimedia applications. In IN-

FOCOM ’92. Eleventh Annual Joint Conference of the IEEE Computer and Communications Societies,

IEEE, pages 2078–2085, 1992.

[28] V. Leggieri, M. Haouari, and C. Triki. An exact algorithm for the Steiner tree problem with delays.

Electronic Notes in Discrete Mathematics, 36:223–230, 2010.

[29] M. Leitner and G. R. Raidl. Strong lower bounds for a survivable network design problem. Electronic

Notes in Discrete Mathematics, 36:295–302, 2010.

[30] M. Leitner, G. R. Raidl, and U. Pferschy. Accelerating column generation for a survivable network

design problem. In M. G. Scutellà et al., editors, Proceedings of the International Network Optimization

Conference 2009, Pisa, Italy, 2009.

[31] M. Leitner, G. R. Raidl, and U. Pferschy. Branch-and-price for a survivable network design problem.

Technical Report TR 186–1–10–02, Vienna University of Technology, Vienna, Austria, 2010. submitted

to Networks.

[32] M. Leitner, M. Ruthmair, and G. R. Raidl. Stabilized branch-and-price for the rooted delay-constrained

Steiner tree problem. In J. Pahl et al., editors, Network Optimization: 5th International Conference,

INOC 2011, volume 6701 of LNCS, pages 124–138, Hamburg, Germany, 2011. Springer.

[33] M. Leitner, M. Ruthmair, and G. R. Raidl. Stabilized column generation for the rooted delay-constrained

Steiner tree problem. In Proceedings of the VII ALIO/EURO – Workshop on Applied Combinatorial

Optimization, pages 250–253, Porto, Portugal, 2011.

[34] I. Ljubić, R. Weiskircher, U. Pferschy, G. Klau, P. Mutzel, and M. Fischetti. An algorithmic framework

for the exact solution of the prize-collecting Steiner tree problem. Mathematical Programming, Series

B, 105(2–3):427–449, 2006.

[35] M. E. Lübbecke. Column generation. In J. J. Cochran et al., editors, Wiley Encyclopedia of Operations

Research and Management Science. Wiley, 2011.

[36] M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations Research,

53(6):1007–1023, 2005.

33

[37] P. Manyem and M. Stallmann. Some approximation results in multicasting. Technical Report TR-96-03,

North Carolina State University, 1996.

[38] R. E. Marsten, W. W. Hogan, and J. W. Blankenship. The BOXSTEP method for large-scale optimiza-

tion. Operations Research, 23(3):389–405, 1975.

[39] S. C. Narula and C. A. Ho. Degree-constrained minimum spanning tree. Computers & Operations

Research, 7(4):239–249, 1980.

[40] A. Pessoa, E. Uchoa, M. de Aragão, and R. Rodrigues. Exact algorithm over an arc-time-indexed formu-

lation for parallel machine scheduling problems. Mathematical Programming Computation, 2(3):259–290,

2010.

[41] R. Qu, Y. Xu, and G. Kendall. A variable neighborhood descent search algorithm for delay-constrained

least-cost multicast routing. In T. Stützle, editor, Learning and Intelligent Optimization, volume 5851

of LNCS, pages 15–29. Springer, 2009.

[42] M. B. Rosenwein and R. T. Wong. A constrained Steiner tree problem. European Journal of Operational

Research, 81(2):430–439, 1995.

[43] L.-M. Rousseau, M. Gendreau, and D. Feillet. Interior point stabilization for column generation. Oper-

ations Research Letters, 35(5):660–668, 2007.

[44] M. Ruthmair and G. R. Raidl. A kruskal-based heuristic for the rooted delay-constrained minimum span-

ning tree problem. In R. Moreno-Dı́az et al., editors, Proceedings of the 12th International Conference

on Computer Aided Systems Theory, volume 5717 of LNCS, pages 713–720. Springer, 2009.

[45] M. Ruthmair and G. R. Raidl. Variable neighborhood search and ant colony optimization for the rooted

delay-constrained minimum spanning tree problem. In R. Schaefer et al., editors, Proceedings of the

11th International Conference on Parallel Problem Solving from Nature: Part II, volume 6239 of LNCS,

pages 391–400. Springer, 2010.

[46] M. Ruthmair and G. R. Raidl. A layered graph model and an adaptive layers framework to solve

delay-constrained minimum tree problems. In O. Günlük and G. Woeginger, editors, Proceedings of the

15th Conference on Integer Programming and Combinatorial Optimization (IPCO XV), volume 6655 of

LNCS, pages 376–388. Springer, 2011.

[47] F. Vanderbeck. Implementing mixed integer column generation. In Desaulniers et al. [12], pages 331–358.

34

[48] S. Voß. The Steiner tree problem with hop constraints. Annals of Operations Research, 86(0):321–345,

1999.

[49] P. Wentges. Weighted Dantzig-Wolfe decomposition for linear mixed-integer programming. International

Transactions in Operational Research, 4(2):151–162, 1997.

[50] Y. Xu and R. Qu. A GRASP approach for the delay-constrained multicast routing problem. In Pro-

ceedings of the 4th Multidisplinary International Scheduling Conference, pages 93–104, Dublin, Ireland,

2009.

[51] Y. Xu and R. Qu. A hybrid scatter search meta-heuristic for delay-constrained multicast routing prob-

lems. Applied Intelligence, pages 1–13, 2010.

35

