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Abstract We consider the rooted delay-constrained Steiner tree problem which
arises for example in the design of centralized multicasting networks where quality
of service constraints are of concern. We present a mixed integer linear program-
ming formulation based on the concept of feasible paths which has already been
considered in the literature for the spanning tree variant. Solving its linear relax-
ation by column generation has, however, been regarded as computationally not
competitive. In this work, we study various possibilities to speed-up the solution of
our model by stabilization techniques and embed the column generation procedure
in a branch-and-price approach in order to compute proven optimal solutions. Com-
putational results show that the best among the resulting stabilized branch-and-price
variants outperforms so-far proposed methods.

1 Introduction

When designing a communication network with a central server broadcasting or
multicasting information to all or some of the participants of the network, some
applications such as video conferences require a limitation of the maximal delay
from the server to each client. Beside this delay-constraint minimizing the cost of
establishing the network is in most cases an important design criterion. As another
example, consider a package shipping organization with a central depot guaran-
teeing its customers a delivery within a specified time horizon. Naturally the or-
ganization aims at minimizing the transportation costs but at the same time has
to hold its promise of being in time. Such network design problems can be mod-
eled using an NP-hard combinatorial optimization problem called rooted delay-
constrained Steiner tree problem (RDCSTP) [14]. The objective is to find a min-
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imum cost Steiner tree on a given graph with the additional constraint that the total
delay along each path from a specified root node to any other required node must
not exceed a given delay bound.

More formally, we are given an undirected graph G = (V,E) with node set V ,
edge set E, a fixed root node s ∈V , a set T ⊆V \{s} of terminal or required nodes,
a set S = V \ (T ∪ {s}) of optional Steiner nodes, a cost function c : E → Z+, a
delay function d : E → Z+, and a delay bound B ∈ Z+. A feasible solution to the
RDCSTP is a Steiner tree GS = (VS,ES), s ∈ VS, T ⊂ VS ⊆ V, ES ⊆ E, satisfying
the constraints ∑e∈pS(t) de ≤ B, ∀t ∈ T , where pS(t) ⊆ E denotes the edge set of
the unique path from root s to terminal t. An optimal solution G∗S = (V ∗S ,E

∗
S ) is a

feasible solution with minimum costs c(G∗S) = ∑e∈E∗S
ce.

After discussing existing related work in Section 2 we describe a mixed integer
linear programming (MIP) formulation involving exponentially many path variables
as well as its solving by branch-and-price in Section 3. Section 4 details two differ-
ent column generation stabilization techniques. Our computational results in Sec-
tion 5 show that the best among the resulting stabilized branch-and-price variants
outperforms so-far proposed methods. Finally, we conclude in Section 6 and briefly
sketch potential future work.

2 Previous & Related Work

Kompella et al. [14] introduced the RDCSTP, proved its NP-hardness and presented
a construction heuristic based on the algorithm by Kou et al. [15] for the Steiner
tree problem (STP) on graphs. Manyem et al. [21] showed that the problem is
not in APX. There are many recent publications dedicated to this problem and its
more special variants. Several metaheuristics have been applied to the RDCSTP,
such as tabu-search [29], GRASP [30, 33], path-relinking [11], variable neighbor-
hood descent (VND) [24], and variable neighborhood search (VNS) [33]. A hy-
brid algorithm in [34] combines scatter search with tabu-search, VND, and path-
relinking. More heuristic approaches can be found for the spanning tree variant with
T = V \{s}, e.g. a GRASP and a VND in [26] and an ant colony optimization and
a VNS in [27]. Furthermore, preprocessing methods are presented in [27] to reduce
the size of the input graph significantly in order to speed up the solving process.

Exact methods based on integer linear programming (ILP) have been explored by
Leggieri et al. [16] who describe a compact extended node-based formulation using
lifted Miller-Tucker-Zemlin inequalities. Since the used Big-M inequalities usually
yield rather weak linear programming (LP) relaxation bounds this formulation is
improved by directed connection cuts. Several ILP approaches for the spanning tree
variant have been examined by Gouveia et al. in [12] based on a path formulation
solved by three different methods. Standard column generation turns out to be com-
putationally inefficient while a Lagrangian relaxation approach together with a fast
primal heuristic exhibits better performance. The third approach reformulates the
constrained shortest path problem for each node on a layered graph and solves it us-
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ing a multi commodity flow (MCF) formulation. Since the size of the layered graph
and therefore the efficiency of the according model heavily depends on the number
of achievable discrete delay values, this approach can in practice only be used for in-
stances in which this number is quite restricted. Additionally an MCF model usually
suffers in practice from the huge amount of flow variables used, altogether leading
to a slow and memory-intensive solving process. Nevertheless solving these layered
graph models turned out to be highly effective on certain classes of instances. In [28]
not just the constrained shortest path problem but the whole RDCSTP is modeled
on a layered graph which reduces to solving the classical STP on this graph. The
acyclicity of the layered graph allows to eliminate sub-tours using a compact formu-
lation for the STP without additional variables. However, the well-known directed
cut formulation on this graph with an exponential number of constraints yields a
tighter or at least equal LP bound than all other known formulations for the RDC-
STP. This result was shown by Gouveia et al. [13] for the hop-constrained minimum
spanning tree problem where de = 1, ∀e∈E, and can be generalized to the RDCSTP
in a natural way. To overcome the issue of an excessive number of layers in case of
a huge set of achievable delay values, a strategy based on iteratively solving smaller
layered graphs is presented in [28] obtaining lower and upper bounds to the optimal
costs. By successively extending these smaller graphs appropriately, the bounds are
tightened to finally converge to an optimal solution. In practice, this approach usu-
ally yields very small gaps even on instances where the directed cut formulation on
the layered graph is not able to derive an optimal LP value.

Recently, we [20] proposed stabilized column generation approaches for the RD-
CSTP. The current article significantly extends this work by embedding column
generation in a branch-and-bound approach to compute proven optimal solutions,
describing an additional pricing strategy and many other aspects in more detail. We
also present more extensive results including a comparison to the above mentioned
layered graph approaches.

3 Branch-and-Price

In this section we present the details of a branch-and-price approach for solving the
RDCSTP, which is based on a MIP formulation utilizing variables corresponding to
feasible paths for each terminal. This model is a straightforward modification of the
one discussed by Gouveia et al. [12] for the spanning tree variant of the RDCSTP,
i.e. for the case of T =V \{s}. Our directed formulation uses an arc set A containing
an arc (s, j) for each edge {s, j} ∈ E incident to the root node and two oppositely
directed arcs (i, j), ( j, i) for all other edges {i, j} ∈ E, i, j 6= s. Note that we assume
the edge cost and delay functions to be correspondingly defined on the set of arcs,
too, i.e. ci j = ce and di j = de, ∀(i, j) ∈ A, e = {i, j} ∈ E.

The integer master problem (IMP) defined by (1)–(6) is based on variables xi j ∈
{0,1}, ∀(i, j) ∈ A, indicating which arcs are included in the directed solution. Each
such directed solution must form an outgoing arborescence rooted at node s. We
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further use path variables λp ∈ {0,1}, ∀p ∈ P =
⋃

t∈T Pt , where Pt ⊆ 2A is the set of
feasible paths from the root node s to terminal t. A path p ∈ Pt to terminal t ∈ T ,
which is represented by its arc set, is feasible if and only if it satisfies the delay
bound, i.e. ∑(i, j)∈p di j ≤ B. Variable λp is set to one if path p ∈ P is realized. Dual
variables are given in parenthesis in model (1)–(6).

(IMP) min ∑
(i, j)∈A

ci jxi j(1)

s.t. ∑
p∈Pt

λp ≥ 1 (µt) ∀t ∈ T(2)

xi j− ∑
p∈Pt |(i, j)∈p

λp ≥ 0 (π t
i j) ∀t ∈ T, ∀(i, j) ∈ A(3)

∑
(i, j)∈A

xi j ≤ 1 (γ j) ∀ j ∈V(4)

xi j ∈ {0,1} ∀(i, j) ∈ A(5)
λp ≥ 0 ∀p ∈ P(6)

The convexity constraints (2) ensure that at least one path is realized for each
terminal, while the coupling constraints (3) link paths to the corresponding arc vari-
ables. Inequalities (4) restrict the in-degree of each node and thus together with
inequalities (2) and (3) ensure that the directed solution is an arborescence with root
s. Given strictly positive edge costs, removing inequalities (4) would also yield a
valid model. We did nevertheless include them to stay consistent with the model by
Gouveia et al. [12]. Further note that only lower bounds are given for variables λp,
∀p ∈ P, in inequalities (6). These variables will become automatically integral due
to the remaining inequalities.

Since the number of feasible paths for each terminal t ∈ T and thus the total
number of variables in the model is in general exponentially large, we cannot solve
the IMP directly. Hence we embed delayed column generation – see e.g. [5, 7]
– in a branch-and-bound procedure to solve the IMP, i.e. we apply branch-and-
price. Branching is performed on arc variables xi j, ∀(i, j) ∈ A. The restricted master
problem (RMP) which then needs to be solved in each node of the branch-and-bound
tree is defined by considering only a subset P̃t ⊆ Pt , P̃t 6= /0, ∀t ∈ T , of path variables
and by replacing the integrality conditions on arcs (5) by xi j ≥ 0, ∀(i, j)∈ A. Further
variables are added on demand according to the solution of the pricing subproblem
which will be discussed in the following.

3.1 The Pricing Subproblem

Let P̃ denote the set of paths for which corresponding variables have already been
included in the RMP. We further denote by µt ≥ 0, ∀t ∈ T , the dual variables asso-
ciated to the convexity constraints (2) and by π t

i j ≥ 0, ∀t ∈ T , ∀(i, j) ∈ A, the dual
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variables associated to the coupling constraints (3). In the pricing subproblem, we
need to identify at least one path variable λp, p ∈ P \ P̃, yielding negative reduced
costs c̄p =−µt +∑(i, j)∈p π t

i j or prove that no such variable exists.
Thus, the pricing subproblem is formally defined as

(7) (t∗, p∗) = argmint∈T,p∈Pt
−µt + ∑

(i, j)∈p
π

t
i j.

It can be solved by computing a resource constrained shortest path on a graph (V,A)
with non-negative arc costs π t

i j, ∀(i, j) ∈ A, for each terminal t ∈ T . Computing a
minimum cost resource constrained shortest path between two nodes is NP-hard
in the weak sense [10] and can thus be solved in pseudo-polynomial time, see [9]
for a survey. We use the dynamic programming based algorithm from [12] in our
implementation which has computational complexity O(B · |A|).

For solving the RMP of the currently considered branch-and-bound tree node,
we need to add path variables and resolve the RMP as long as at least one path vari-
able p∈ P with negative reduced costs c̄p exists. We compare two pricing strategies,
which both require a single run of the dynamic program from [12] for each terminal
t ∈ T . In the first approach we add the variable corresponding to the cheapest feasi-
ble path for each terminal in case it has negative reduced costs. Thus at most |T | path
variables are added in each pricing iteration. The second approach follows [12] and
potentially adds multiple path variables for a single terminal in each iteration: We
consider all nodes v∈V adjacent to terminal t and all delay values b = 1, . . . ,B−dvt
for which a path from s to v in conjunction with arc (v, t) is a feasible path to t. In
case a shortest path p to v of total delay b, 0< b≤B−dvt , exists and p′= p∪{(v, t)}
yields negative reduced costs, the corresponding variable is added to the RMP.

4 Column Generation Stabilization

It is well known that basic column generation based approaches typically suffer from
computational instabilities often leading to long running times. Vanderbeck [31]
describes five major causes of these instabilities including primal degeneracy, the
tailing-off, and the heading-in effect. In order to improve the efficiency of such
methods, several so-called column generation stabilization techniques aiming to re-
duce the effects of these problems have been proposed. These can be classified into
problem specific techniques, such as the usage of dual-optimal inequalities [3, 6] and
problem independent approaches, see e.g. [2, 25, 32, 23]. The latter are often based
on the concept of stability centers which are current estimates of good dual variable
values. The boxstep method [22] restricts each dual variable value to a small trust
region around its current stability center. Other methods penalize deviations from
the current stability center, e.g. by using piecewise linear penalty functions [3, 8].
Except for the weighted Dantzig-Wolfe decomposition approach, these so far pro-
posed stabilization methods, however, usually need to add additional constraints and
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variables to the RMP. Recently, we proposed a stabilization technique [18, 17, 19]
which does not modify the RMP, but is based on using alternative dual-optimal
solutions within the pricing subproblem. This method turned out to significantly ac-
celerate the column generation process for a survivable network design problem by
reducing the necessary number of iterations as well as the total number of included
variables.

In the following we will show how this technique can be applied to the RDCSTP
before we discuss two alternative stabilization approaches based on piecewise linear
penalty functions. The latter two will then be used to compare our method.

4.1 Alternative Dual-Optimal Solutions

In order to describe our stabilization approach, we briefly discuss the dual of the
RMP (8)–(13); primal variables are given in parenthesis.

max ∑
t∈T

µt + ∑
j∈V

γ j(8)

s.t. ∑
t∈T

π
t
i j + γ j ≤ ci j (xi j) ∀(i, j) ∈ A(9)

µt − ∑
(i, j)∈p

π
t
i j ≤ 0 (λp) ∀t ∈ T, ∀p ∈ P̃t(10)

µt ≥ 0 ∀t ∈ T(11)
π

t
i j ≥ 0 ∀t ∈ T, ∀(i, j) ∈ A(12)

γ j ≤ 0 ∀ j ∈V(13)

Inequalities (9) are capacity constraints imposing upper bounds on the sum of
dual values ∑t∈T π t

i j for each arc (i, j) ∈ A, while inequalities (10) ensure that the
sum of dual arc costs π t

i j along each included path is at least µt .
Let (µ∗,π∗,γ∗) denote the current dual solution computed by an LP solver for

the RMP and A′ = {(i, j) ∈ A | @p ∈ P̃ : (i, j) ∈ p} be the set of arcs which are not
used in any of the so far included path variables. Since only the capacity constraints
(9) are relevant for these arcs, any dual variable values π t

i j
∗ ≥ 0 are optimal as long

as ∑t∈T π t
i j
∗ ≤ ci j− γ j

∗, ∀(i, j) ∈ A′, holds. In case the capacity constraints are not
binding, it is further possible to increase dual variable values π t

i j
∗, t ∈ T , for arcs

(i, j) ∈ A\A′ while maintaining dual optimality.
Let δi j = ci j− γ j−∑t∈T π t

i j
∗, ∀(i, j) ∈ A, denote the slack of each capacity con-

straint (9). Then, obviously any values π t
i j ≥ π t

i j
∗, ∀(i, j) ∈ A, ∀t ∈ T , are dual-

optimal as long as ∑t∈T π t
i j ≤ ∑t∈T π t

i j
∗+ δi j, ∀(i, j) ∈ A, holds. Note that state-of-

the-art LP solvers usually yield minimal optimal dual variable values, i.e. π t
i j
∗ = 0,

∀t ∈ T , ∀(i, j) ∈ A′. Based on these observations our stabilization approach aims to
choose alternative dual-optimal solutions by distributing the slack δi j to the rele-



Stabilized Branch-and-Price for the RDCSTP 7

vant dual variables π t
i j
∗, ∀t ∈ T . We expect that increasing the dual variable values

resulting in higher arc costs in the pricing subproblem facilitates the generation of
meaningful path variables. One main advantage of choosing such alternative dual-
optimal solutions for solving the pricing subproblem is that on the contrary to most
other stabilization approaches we do not modify the RMP or increase its size by
adding further variables or constraints.

Our first strategy is based on simply distributing the potential increase δi j
equally among all relevant dual variables, i.e. we use alternative dual variables
π̄ t

i j = π t
i j
∗+ δi j

|T | , ∀t ∈ T , ∀(i, j) ∈ A. In our previous work for a survivable network
design problem [18, 17, 19], however, it turned out to be beneficial to initially use
different dual-optimal solutions, one for each terminal t, and let them finally con-
verge towards π̄ t

i j, ∀t ∈ T , ∀(i, j) ∈ A. Given an exogenous parameter Q ≥ 2, de-
noting a total number of major iterations, the approach is iterated with parameter
q = 1, . . . ,Q, indicating the current major iteration. Thus, parameter q is initially set
to one (first major iteration) and gradually incremented by one in case no negative
reduced cost path has been found. Let t ′ ∈ T be the terminal currently considered in
the pricing subproblem. Then the resulting dual variable values, which are denoted
by π̂ t

i j, ∀t ∈ T , ∀(i, j) ∈ A, are defined as follows:

(14) π̂
t
i j =

{
π t

i j
∗+ δi j

|T | +
Q−q
Q−1

(
δi j− δi j

|T |

)
if t = t ′

π t
i j
∗ otherwise

, ∀t ∈ T, ∀(i, j) ∈ A

This approach divides the interval
[

δi j
|T | ,δi j

]
into Q− 1 equally sized sub-intervals

defining the dual variable values used for each value of q, 1≤ q≤ Q. Note that for
each terminal t ∈ T the resulting vector π̂ is a dual-optimal solution. After Q major
iterations, i.e. if q = Q, π̂ t

i j = π̄ t
i j holds for each terminal t, i.e. we essentially use the

same dual solution for all terminals. Thus, we can terminate the column generation
process of the current node if q = Q and no path variables have been added. Since
most path variables are usually already generated in the root node of the branch-
and-bound tree, we do not reinitialize parameter q. Hence, dual variable values π̄ t

i j,
∀t ∈ T , ∀(i, j) ∈ A, are used in all further nodes of the branch-and-bound tree.

4.2 Piecewise Linear Stabilization

As mentioned before, successful stabilization techniques are often based on penal-
izing deviations from a current stability center by adding a stabilization term to the
primal problem, i.e. a penalty function to the dual problem. Amor et al. [4] com-
pared the performance of a Bundle-type approach and k-piecewise linear penalty
functions using three and five pieces, respectively. They concluded that using five-
piecewise linear penalty functions as originally proposed in [2] yields good results
if all parameters are chosen carefully. We also adopted this approach in order to
compare its performance to the previously described stabilization technique based
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−ε2
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Fig. 1 5-piecewise and 3-piecewise linear dual penalty functions g(π) and h(π).

on alternative dual-optimal solutions. Given the current stability center π l ∈ R|T |·|A|+

of major iteration l ∈N, l ≥ 1, and a correspondingly defined penalty function g(π)
– see Figure 1 – dual variable values outside the trust region

[
δ l

1,δ
l
2
]

are penalized
according to ζ1, ε1, ε2, and ζ2, respectively.

Let π t
i j
∗, ∀t ∈ T , ∀(i, j) ∈ A, denote the dual variable values when the column

generation approach on the penalized model at major iteration l terminates. If there
exists at least one dual variable value in the penalized region, we need to update the
stability center according to the current dual solution, i.e. π l+1 = π∗, correspond-
ingly set γ

l+1
1 , δ

l+1
1 , δ

l+1
2 , and γ

l+1
2 , and continue the column generation process. As

has been shown previously [2] this process, which needs to be repeated until each
dual variable value lies within an unpenalized region, terminates after finitely many
steps yielding the LP relaxation of the current branch-and-bound node.

In our case, however, preliminary tests with various settings showed that due
to a typically large number of relatively time consuming updates of the stability
center this concept does not seem to pay off. Since the analysis in Section 4.1 shows
that high dual variable values facilitate the generation of reasonable path variables,
we further apply a second variant of this concept where only dual variable values
smaller than δ l

1 are penalized using the penalty function h(π) shown in Figure 1.

5 Computational Results

All described variants of the branch-and-price approach – denoted by BP through-
out all tables – have been implemented in C++ using ZIB SCIP 2.0.1 [1] with IBM
CPLEX 12.2 as embedded LP solver. We further decided to additionally test corre-
sponding pure column generation – denoted by CG in the following – implemented
by solely using CPLEX in order to analyze an eventually existing overhead of SCIP
compared to CPLEX. Each computational experiment has been performed on a sin-
gle core of an Intel Xeon E5540 processor with 2.53 GHz and 3 GB RAM per core.
An absolute time limit of 10000 CPU-seconds has been applied to all experiments.

First, we tested our approaches on instances originally proposed by Gouveia et
al. [12] for the spanning tree variant of the RDCSTP, i.e. T = V \ {s}. The three
main instance sets R, C and E each have different graph structures defined by their
edge cost functions: R has random edge costs, C and E both have Euclidean costs
fixing the source s near the center and near the border, respectively. Each main
instance set consists of different subsets of five complete input graphs with 41 nodes
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varying in the number of possible discrete edge delay values; e.g. C100 denotes the
set of instances with 100 different integer delay values: de ∈ {1, . . . ,100},∀e ∈ E.
Additionally we ran tests on instance sets Tα consisting of 30 randomly generated
complete graphs with |V |= 100 where α denotes the number of terminal nodes |T |.
Here all delays and costs are uniformly distributed in {1, . . . ,99}. For each instance
set we tested our approaches on different delay bounds B. Since we do consider
these larger randomly generated instances Tα and since all instances with random
costs from [12] could be solved relatively fast, we do not report here our detailed
results for the latter due to space constraints. All preprocessing methods described
in [27] are used to reduce the input graphs prior to solving. To build an initial set of
paths a simple construction heuristic is applied on Steiner tree instances: the delay
constrained shortest paths from the root to all terminal nodes are iteratively added
to the tree dissolving possible cycles. On instances where T =V \{s} we apply the
Kruskal-based heuristic followed by VND as introduced in [26].

Table 1 details median CPU-times in seconds for determining the LP relaxation
of the IMP by unstabilized column generation, denoted by π∗, and when using sta-
bilization based on alternative dual-optimal solutions π̄ and π̂ , respectively. Here,
OPT denotes the first described pricing strategy where at most one path per termi-
nal is added in each iteration and MPT the one potentially adding multiple paths
for a single terminal, compare Section 3.1. We further report average numbers of
nodes |V | and edges |E| for each instance set after preprocessing. Finally, average
CPU-times in seconds for the conceptually identical column generation approach
by Gouveia et al. [12] – denoted as CGG – as well as the Lagrangian approach
LagG from the same authors are given in Table 1. The results of the latter two have,
however, been computed on a different hardware and are thus not directly compa-
rable. We observe that MPT outperforms OPT in almost all cases. Hence, we do
not consider OPT in all further experiments. We further conclude that all stabiliza-
tion strategies based on alternative dual-optimal solutions significantly outperform
standard column generation. Note that already our unstabilized column generation
variant needs significantly less iterations than the conceptually identical one dis-
cussed by Gouveia et al. [12]. We believe that next to different CPLEX versions
these differences mainly come from choosing a better set of initial path variables,
more sophisticated graph preprocessing, and the fact that we use the dual simplex
algorithm which turned out to perform better than the primal one in our case.

Table 2 shows more detailed results for the variants of column generation us-
ing alternative dual-optimal solutions. Next to median CPU times in seconds (ttotal),
numbers of pricing iterations (Iterations) and total number of included path vari-
ables (Variables) we also report median CPU times for finding the correct LP value
(tbest), i.e. the remaining time is needed for proving this value. We do not report on
our experiments for Q=2 in Table 2 since we already observed from Table 1 that
Q=2 is not competitive compared to Q=5 and Q=10, respectively. From these re-
sults we conclude that using π̂ clearly outperforms π̄ regarding the total CPU-time
as well as the time for finding the correct LP value. Especially for harder instances
– i.e. those requiring more time – Q=10 performs significantly better than the other
configurations. Using π̄ usually leads to a smaller number of total pricing iterations
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Table 1 Median CPU-times in seconds for CG with different pricing strategies and stabilization
techniques based on alternative dual-optimal solutions.

OPT MPT CGG LagG
dual solution π∗ π̄ π̂ π∗ π̄ π̂ - -

Set B |V | |E| - - Q=2 Q=5 Q=10 - - Q=2 Q=5 Q=10 - -
C2 3 41 279 1 1 1 2 2 0 0 1 1 1 2 4

5 41 321 7 4 5 5 6 3 2 2 3 4 173 46
7 41 321 25 7 8 6 8 11 3 4 4 5 3658 76
9 41 321 62 10 10 8 9 33 7 6 5 6 8367 64

E2 3 41 597 5 5 5 7 8 2 2 2 4 5 13 12
5 41 680 229 72 93 47 54 166 55 43 22 31 10045 208
7 41 680 10000 983 989 246 243 10000 1600 871 113 102 10149 205
9 41 680 10000 1326 1434 229 131 10000 3119 2142 657 110 10162 243

C100 100 41 561 173 36 35 31 31 41 9 10 9 12 10026 809
150 41 572 808 61 71 48 46 118 24 14 16 16 10034 544
200 41 572 3245 105 97 62 60 567 32 30 22 21 10061 711
250 41 572 8742 103 113 64 63 3137 40 24 17 21 10076 1066

E100 100 41 651 520 82 93 56 54 201 62 26 17 19 1033 976
150 41 672 3814 286 278 170 131 2911 376 227 126 67 10106 1817
200 41 672 10000 1869 1501 325 192 10000 4098 1626 238 158 10096 2972
250 41 672 10000 1589 1851 439 201 10000 10000 3453 734 159 10104 4008

C1000 1000 41 572 138 47 38 37 31 17 7 9 12 15 8186 668
1500 41 589 648 74 63 64 60 115 22 29 22 28 10024 942
2000 41 589 1730 136 144 131 90 599 80 47 38 36 10037 2389
2500 41 589 6952 141 145 96 91 1336 56 47 45 54 10037 1256

E1000 1000 41 632 387 82 74 66 58 183 58 41 28 27 10065 2846
1500 41 668 2830 268 343 268 148 2413 348 154 99 69 10031 3041
2000 41 668 10000 671 1038 265 177 10000 1516 765 232 180 10083 5882
2500 41 668 10000 863 1035 420 316 10000 4121 1365 315 278 10070 5726

T10 16 96 469 1 1 1 1 1 0 0 0 0 0 - -
30 100 932 23 6 6 6 6 3 1 1 1 2 - -
50 100 1269 188 17 18 18 16 15 1 1 2 2 - -

100 100 1695 2173 38 40 37 31 125 2 2 3 4 - -
T30 16 98 482 3 3 3 3 4 1 1 1 2 2 - -

30 100 932 68 26 25 24 24 17 4 4 6 8 - -
50 100 1269 663 97 92 88 77 118 13 12 14 15 - -

100 100 1695 9973 345 370 311 269 1906 32 38 27 28 - -
T50 16 99 486 7 6 5 6 7 3 2 2 4 5 - -

30 100 932 114 45 43 36 40 38 11 11 13 18 - -
50 100 1269 1128 159 167 135 140 249 30 28 31 38 - -

100 100 1695 10000 693 766 725 511 7739 192 106 112 92 - -
T70 16 99 487 11 8 8 9 12 4 3 4 6 8 - -

30 100 932 177 60 62 59 56 51 19 20 24 28 - -
50 100 1269 1706 247 250 193 171 438 67 68 70 67 - -

100 100 1695 10000 1179 1036 1041 822 9017 402 436 240 249 - -
T99 16 100 490 17 11 13 15 19 7 4 7 10 12 - -

30 100 932 320 108 98 83 93 147 49 42 45 50 - -
50 100 1269 2952 409 343 292 263 858 159 134 111 124 - -

100 100 1695 10000 1584 1759 1574 1275 10000 1166 1120 835 629 - -

than all variants of π̂ while the latter reduce the total number of included variables.
Hence, we observe that π̂ allows for finding more meaningful path variables al-
ready in the beginning of the column generation process. Since the best performing
variants – i.e. using π̂ and Q ∈ {5,10} – exhibit a quite significant tailing-off ef-
fect there is potential for further possible improvement e.g. by computing additional
(Lagrangian) bounds or performing early branching in branch-and-price.
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Table 2 Median CPU-times, median times for reaching the LP value, average pricing iterations,
and included path variables for CG and stabilization based on alternative dual-optimal solutions.

ttotal [s] tbest [s] Iterations Variables
dual solution π̄ π̂ π̄ π̂ π̄ π̂ π̄ π̂

Set B - Q=5 Q=10 - Q=5 Q=10 - Q=5 Q=10 - Q=5 Q=10
C2 3 0 1 1 0 0 0 10 32 48 697 648 641

5 2 3 4 1 1 2 29 63 89 2645 2024 1901
7 3 4 5 2 3 2 58 82 122 4812 3312 3014
9 7 5 6 2 1 1 104 106 130 7252 4700 3808

E2 3 2 4 5 1 2 2 18 46 74 1814 1639 1596
5 55 22 31 54 12 16 122 154 203 11413 7740 7186
7 1600 113 102 1597 100 86 383 342 365 36396 17908 13459
9 3119 657 110 2746 45 43 570 565 495 59749 33377 18123

C100 100 9 9 12 5 2 2 33 68 101 16788 12828 10783
150 24 16 16 16 3 3 48 79 113 33938 28465 23247
200 32 22 21 15 2 2 65 104 131 52273 39777 33140
250 40 17 21 17 2 2 63 89 132 56258 43697 40100

E100 100 62 17 19 34 8 9 43 90 127 27737 15702 12177
150 376 126 67 184 25 9 59 114 147 75041 40916 28441
200 4098 238 158 4069 71 82 89 149 194 142512 58547 45980
250 10000 734 159 7804 76 50 98 194 201 209531 99451 61488

C1000 1000 7 12 15 6 2 3 24 60 97 30898 26540 23374
1500 22 22 28 11 4 6 33 72 110 69064 59589 53193
2000 80 38 36 52 10 9 44 81 118 103734 86713 75027
2500 56 45 54 45 6 6 42 89 124 127440 112045 100876

E1000 1000 58 28 27 50 6 6 31 83 112 43492 29744 24004
1500 348 99 69 303 22 19 54 119 151 116867 78501 59886
2000 1516 232 180 740 13 14 83 141 162 239176 148387 113407
2500 4121 315 278 2128 18 19 92 136 190 334410 187341 156620

T10 16 0 0 0 0 0 0 11 28 43 348 306 290
30 1 1 2 0 0 0 19 37 59 1400 1221 1083
50 1 2 2 0 0 0 20 42 63 2427 2153 1894

100 2 3 4 0 1 1 20 42 66 3456 3249 2779
T30 16 1 2 2 0 0 1 14 39 61 982 852 787

30 4 6 8 2 1 1 29 61 88 4946 4300 3876
50 13 14 15 5 2 3 43 73 108 11489 10370 9303

100 32 27 28 13 4 5 44 81 120 23889 23430 20989
T50 16 2 4 5 1 2 2 15 44 69 1458 1239 1144

30 11 13 18 6 5 5 32 67 101 7271 6404 5566
50 30 31 38 15 5 6 50 86 122 18202 16611 15131

100 192 112 92 87 11 13 63 107 148 46145 43165 40350
T70 16 3 6 8 2 3 3 15 50 76 1864 1611 1492

30 19 24 28 14 7 10 30 74 109 9269 7999 7012
50 67 70 67 32 11 12 50 97 140 23640 22124 19302

100 402 240 249 263 34 33 74 127 173 65179 63348 57621
T99 16 4 10 12 3 4 3 16 52 76 2397 2049 1887

30 49 45 50 33 15 19 33 82 115 12063 9991 8717
50 159 111 124 91 20 28 54 110 153 33106 27500 24996

100 1166 835 629 750 73 67 88 160 202 99801 88283 78012

Next, we analyze and compare the performance of the two column generation
variants using piecewise linear stabilization terms. Table 3 reports median CPU-
times in seconds and performed updates of the stability centers for different instance
sets from both types. 3PL denotes the approach penalizing only small values and
5PL the full approach using a 5-piecewise linear penalty function. For both variants
the initial stability center is chosen according to the first strategy for using alterna-



12 Markus Leitner, Mario Ruthmair, and Günther R. Raidl

Table 3 Median total CPU-times and updates of the stability center for CG and piecewise linear
stabilization techniques.

3PL 5PL
ttotal [s] ttotal [s] Updates ttotal [s] Updates

π∗ sml lrg sml lrg sml lrg sml lrg
Set B - S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

C100 100 56 204 255 138 173 18 23 9 11 10000 10000 10000 10000 51 78 48 47
150 133 674 493 575 470 15 20 8 11 10000 10000 10000 10000 39 62 22 33
200 1056 2482 2554 3008 2728 18 20 10 11 10000 10000 10000 10000 24 40 14 22
250 3485 10000 9474 10000 7350 16 20 10 12 10000 10000 10000 10000 15 24 9 14

E100 100 463 692 627 522 639 19 24 10 12 10000 10000 10000 10000 35 62 18 29
150 4018 10000 10000 10000 10000 18 19 9 10 10000 10000 10000 10000 21 35 10 17
200 9137 10000 10000 10000 10000 7 7 4 4 10000 10000 10000 10000 14 25 6 11
250 9861 10000 10000 10000 10000 5 6 3 3 10000 10000 10000 10000 9 15 4 7

T10 30 4 6 6 5 5 3 3 2 2 52 79 21 34 26 50 11 20
50 17 24 28 21 22 3 3 2 2 242 322 102 137 29 56 12 22

T30 30 20 43 51 39 40 12 15 7 8 2281 2797 1250 1525 105 181 50 85
50 137 353 355 301 325 12 17 6 9 10000 10000 8409 9961 89 113 64 87

T50 30 49 132 135 98 117 22 29 11 16 10000 10000 6586 7294 87 126 84 136
50 364 986 957 695 856 24 33 12 17 10000 10000 10000 10000 28 47 18 29

tive dual-optimal solutions, i.e. π1 = π̄ , and we tested various settings of the inner
trust region radius π t

i j
l − δ t

i j
l
1
= δ t

i j
l
2
−π t

i j
l = ri

ci j
|T | and the outer trust region radius

π t
i j

l − γ t
i j

l
1
= γ t

i j
l
2
−π t

i j
l = ro

ci j
|T | , ∀t ∈ T , ∀(i, j) ∈ A, respectively. For 5PL we used

symmetric penalty functions, i.e. ε = ε1 = ε2 and ζ = ζ1 = ζ2, and identical penalty
slopes for all dimensions. Among the various tested configurations we report here
experiments with smaller (sml) and larger (lrg) trust region radii ri = 1, ro = 3 and
ri = 2, ro = 6, respectively. Furthermore, we tested penalty slopes S1 where ε = 0.3
and ζ = 1, and S2 where ε = 0.5 and ζ = 1.5.

In Table 3 we observe that 3PL and 5PL are clearly not competitive to all ap-
proaches based on alternative dual-optimal solutions. Although the number of up-
dates of the stability center was not too high, the additional overhead due to these up-
dates and the additional variables and constraints in the model lead to long running
times which are usually even higher than those of unstabilized column generation.
As we could not identify better parameter values in further tests we conclude that
using piecewise linear stabilization does not seem to be promising for the RDCSTP.

Table 4 compares number of instances solved to proven optimality, average re-
maining gaps, and median CPU-times in seconds for the full branch-and-price ap-
proach using alternative dual-optimal solutions π̂ and ten major iterations (Q=10)
to the theoretically stronger static (SL) and dynamic (DL) layered graph approach
from [28] (rerun with CPLEX 12.2). SL starts with the same primal solution as
BP whereas DL does not use any initial heuristics here. Directed connection cuts
are separated in SL and DL only for the instance sets from [12]; Tα instances are
solved faster when omitting them. We additionally report the average number of
considered branch-and-bound nodes, the average integrality gap at the root node
and the median time needed for solving the root node of the branch-and-bound tree
for BP as well as the corresponding CPU-time of the column generation approach.
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Table 4 Number of instances solved to proven optimality, average optimality gap, root node gap,
number of branching nodes, median total CPU-time, and median time for solving the root node for
BP compared to layered graph approaches SL and DL.

Σ Opt gap [%] ttotal [s] gaproot [%] Nodes troot [s]
Set B SL DL BP SL DL BP SL DL BP BP BP BP CG

C2 3 5 5 5 0.0 0.0 0.0 0 0 1 0.0 1.0 1 1
5 5 5 5 0.0 0.0 0.0 0 3 5 0.7 5.0 3 4
7 5 5 5 0.0 0.0 0.0 1 5 9 1.0 13.0 5 5
9 5 5 5 0.0 0.0 0.0 3 12 8 0.6 5.0 5 6

E2 3 5 5 5 0.0 0.0 0.0 0 1 4 0.0 1.0 4 5
5 5 5 5 0.0 0.0 0.0 3 31 34 2.5 5.2 25 31
7 5 5 5 0.0 0.0 0.0 18 522 743 2.3 14.2 122 102
9 5 5 4 0.0 0.0 0.1 48 893 914 2.3 7.6 149 110

C100 100 5 5 5 0.0 0.0 0.0 130 33 9 0.1 4.2 9 12
150 5 5 5 0.0 0.0 0.0 1383 208 18 0.0 1.0 18 16
200 3 5 5 0.9 0.0 0.0 7552 1219 21 0.1 3.8 21 21
250 1 5 5 10.7 0.0 0.0 10000 1415 35 0.1 2.2 20 21

E100 100 5 5 5 0.0 0.0 0.0 1212 766 22 0.9 2.4 20 19
150 0 3 5 6.8 0.3 0.0 10000 8299 122 0.3 4.6 70 67
200 0 0 4 13.1 2.6 0.1 10000 10000 453 0.8 9.0 361 158
250 0 0 4 12.2 3.0 0.1 10000 10000 993 0.9 8.0 303 159

C1000 1000 4 5 5 1.8 0.0 0.0 2509 20 13 0.0 1.0 13 15
1500 0 5 5 12.2 0.0 0.0 10000 175 40 0.2 2.6 33 28
2000 0 4 5 100.0 0.0 0.0 10000 5203 75 0.6 19.8 61 36
2500 0 5 5 100.0 0.0 0.0 10000 2163 53 0.0 3.0 53 54

E1000 1000 1 5 5 11.3 0.0 0.0 10000 1296 24 0.1 1.4 24 27
1500 0 3 5 34.8 0.7 0.0 10000 3127 63 0.3 4.2 63 69
2000 0 1 5 100.0 1.3 0.0 10000 10000 223 0.5 2.2 223 180
2500 0 1 4 100.0 2.2 0.1 10000 10000 1588 0.6 9.4 642 278

T10 16 30 30 30 0.0 0.0 0.0 0 0 0 0.1 1.3 0 0
30 30 30 30 0.0 0.0 0.0 3 4 1 0.1 1.5 1 2
50 30 30 30 0.0 0.0 0.0 16 16 2 0.2 1.2 2 2

100 30 30 30 0.0 0.0 0.0 106 44 3 0.0 1.1 3 4
T30 16 30 30 30 0.0 0.0 0.0 0 1 2 0.2 1.5 2 2

30 30 30 30 0.0 0.0 0.0 4 8 8 0.0 1.5 8 8
50 30 30 30 0.0 0.0 0.0 25 52 21 0.5 2.7 17 15

100 30 29 30 0.0 0.2 0.0 186 103 43 0.9 4.2 39 28
T50 16 30 30 30 0.0 0.0 0.0 0 1 4 0.1 1.6 5 5

30 30 30 30 0.0 0.0 0.0 5 15 17 0.5 6.3 15 18
50 30 30 30 0.0 0.0 0.0 34 67 52 0.8 6.1 39 38

100 29 27 28 0.2 0.2 0.1 319 505 217 0.9 6.6 151 92
T70 16 30 30 30 0.0 0.0 0.0 0 2 8 0.1 1.8 8 8

30 30 30 30 0.0 0.0 0.0 5 24 33 0.7 8.1 27 28
50 30 30 30 0.0 0.0 0.0 34 84 76 0.5 3.5 66 67

100 28 26 27 0.1 0.3 0.6 388 519 426 1.1 6.9 315 249
T99 16 30 30 30 0.0 0.0 0.0 1 2 11 0.5 4.0 11 12

30 30 30 30 0.0 0.0 0.0 7 26 54 0.9 14.6 42 50
50 30 30 29 0.0 0.0 0.1 36 76 167 0.5 7.4 117 124

100 28 28 26 0.3 0.2 0.3 298 675 867 0.8 4.5 516 629

We conclude that due to the stabilization based on alternative dual-optimal solu-
tions the proposed branch-and-price approach outperforms both layered graph ap-
proaches in many cases and performs particularly good when the delay bound is not
too strict as well as when the relative number of terminal nodes is not too high. Thus
we consider it a good complement to the layered graph approaches from [28].
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6 Conclusions and Future Work

In this paper we presented a branch-and-price approach for the RDCSTP. Column
generation stabilization methods based on alternative dual-optimal solutions and
piecewise linear penalty functions have been applied to accelerate the approach. We
further compared the performance of two different pricing strategies. We conclude
that when using stabilization based on alternative dual-optimal solutions our method
outperforms so-far proposed exact methods for the RDCSTP in many cases and al-
lows for computing proven optimal solutions solutions to medium sized instances
within reasonable time. In future, we want to compare our approach to further stabi-
lization techniques such as e.g. interior point stabilization [25] or weighted Dantzig-
Wolfe decomposition [32, 23] as well as combine promising aspects of different sta-
bilization techniques potentially yielding an additional speed-up. We further want
to study the impact of different possibilities for choosing an initial set of columns
as well as aim at reducing the tailing-off effect.
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