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ABSTRACT

We consider the rooted delay-constrained Steiner tree problem
which arises for example in the design of centralized multicasting
networks where quality of service constraints are of concern.
We present a path based integer linear programming formulation
which has already been considered in the literature for the
spanning tree variant. Solving its linear relaxation by column
generation has so far been regarded as not competitive due to
long computational times needed. In this work, we show how to
significantly accelerate the column generation process using two
different stabilization techniques. Computational results indicate
that due to the achieved speed-up our approach outperforms so-far
proposed methods.
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1. INTRODUCTION

When designing a communication network with a central server
broadcasting or multicasting information to all or some of the par-
ticipants of the network, some applications such as video confer-
ences require a limitation of the maximal delay from the server
to each client. Beside this delay-constraint minimizing the cost
of establishing the network is in most cases an important design
criterion. As another example, consider a package shipment orga-
nization with a central depot guaranteeing its customers a delivery
within a specified time horizon. Naturally the organization aims
at minimizing the transportation costs but at the same time has to
hold its promise of being in time. Such network design problems
can be modeled as rooted delay-constrained Steiner tree problem
(RDCSTP), which is an NP-hard combinatorial optimization prob-
lem [1]. The objective is to find a minimum cost Steiner tree of
a given graph with the additional constraint that the total delay
along each path from a specified root node to any other required
node must not exceed a given delay bound.

More formally, we are given an undirected graph G = (V,E) with
a set V of n nodes, a fixed root node s ∈V , a set T ⊆V \{s} of ter-
minal or required nodes, a set S =V \(T ∪{s}) of optional Steiner
nodes, a set E of m edges, a cost function c : E → Z+, a delay
function d : E→ Z+, and a delay bound B ∈ Z+. A feasible solu-
tion to the RDCSTP is a Steiner tree GS = (VS,ES), s ∈ VS, T ⊆
VS ⊆V, ES ⊆ E satisfying the constraints ∑e∈PS(t) de ≤ B, ∀t ∈ T ,
where PS(t)⊆ E denotes the edge set of the unique path from root
s to terminal t. An optimal solution G∗S is a feasible solution with
minimum costs c(G∗S) = ∑e∈ES

ce.

2. PREVIOUS & RELATED WORK

There are many recent publications dedicated to this problem and
its more special variants. Several metaheuristics have been applied
to the RDCSTP, such as GRASP [2, 3], path-relinking [4] and vari-
able neighborhood search [3]. More heuristic approaches can be
found for the spanning tree variant with T =V \{s}, e.g. GRASP
and variable neighborhood descent (VND) in [5] and ant colony
optimization and variable neighborhood search in [6]. Further-
more, preprocessing methods are presented in [6] to reduce the size
of the graph significantly in order to speed up the solving process.
Exact methods based on integer linear programming (ILP) have
been explored by Leggieri et al. [7] who describe a compact ex-
tended node-based formulation using lifted Miller-Tucker-Zemlin
inequalities. Since the used Big-M inequalities usually yield rather
low linear programming (LP) relaxation bounds this formulation
is improved by separating directed connection cuts. Several ILP
approaches for the spanning tree variant have been examined by
Gouveia et al. in [8] based on a path formulation solved by two
different methods. Standard column generation (CG) turns out to
be computationally inefficient while a Lagrangian relaxation ap-
proach together with a fast primal heuristic exhibits better per-
formance. A third approach reformulates the constrained short-
est path problem on a layered graph and solves it using a multi
commodity flow (MCF) formulation. Since the size of the layered
graph and therefore the efficiency of the according model heav-
ily depends on the number of achievable discrete delay values this
approach can in practice only be used for instances with a quite re-
stricted set of achievable delay values. Additionally a MCF model
usually suffers from the huge amount of flow variables used al-
together leading to a slow and memory-intensive solving process.
Nevertheless solving these layered graph models turned out to be
very effective on certain classes of instances.

3. PATH FORMULATION

In this section we present a path based ILP formulation for the
RDCSTP which is a straightforward modification of the model
discussed by Gouveia et al. [8] for the spanning tree variant of
the RDCSTP. In our directed formulation we use arc set A con-
taining an arc (s, j) for each edge {s j} ∈ E incident to the root
node and two oppositely directed arcs (i, j), ( j, i) for all other
edges {i j} ∈ E, i, j 6= s. We further assume the edge cost and
delay functions to be defined on the set of arcs too, i.e. ci j = ce
and di j = de, ∀(i, j) ∈ A,e = {i j} ∈ E. The integer master prob-
lem (IMP) defined by (1)–(6) is based on variables xi j ∈ {0,1},
∀(i, j) ∈ A, which indicate arcs included in the directed solution.
We further use path variables λp ∈ {0,1}, ∀p∈P=

⋃
t∈T Pt , where

Pt ⊆ 2A is the set of feasible paths from the root node s to terminal
t. Each path is represented by its arc set. A path p ∈ Pt to termi-
nal t ∈ T is feasible if and only if it satisfies the delay bound, i.e.
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∑(i, j)∈p di j ≤ B. Variable λp is set to one if path p ∈ P is realized.

(IMP) min ∑
(i, j)∈A

ci jxi j (1)

s.t. ∑
p∈Pt

λp ≥ 1 ∀t ∈ T (2)

xi j− ∑
p∈Pt |(i, j)∈p

λp ≥ 0 ∀t ∈ T, ∀(i, j) ∈ A (3)

∑
(i, j)∈A

xi j ≤ 1 ∀ j ∈V (4)

xi j ∈ {0,1} ∀(i, j) ∈ A (5)
λp ∈ {0,1} ∀p ∈ P (6)

Since the number of feasible paths for each terminal t ∈ T and
thus the total number of variables in the model is in general ex-
ponentially large, we apply CG – see e.g. [9, 10] – to solve the
LP relaxation. We start with a small subset P̃t ⊆ Pt , ∀t ∈ T , of
path variables λp in the restricted master problem (RMP) where
the integrality conditions on arcs (5) and paths (6) are replaced by
(7) and (8), respectively. Further variables are added on demand
according to the solution of the pricing subproblem.

xi j ≥ 0 ∀(i, j) ∈ A (7)
λp ≥ 0 ∀p ∈ P (8)

Let µt ≥ 0, ∀t ∈ T , denote the dual variables associated to the
convexity constraints (2) and πt

i j ≥ 0, ∀t ∈ T , ∀(i, j) ∈ A, denote
the dual variables associated to the coupling constraints (3). Then
the pricing subproblem is defined as

(t∗, p∗) = argmint∈T,p∈Pt
−µt + ∑

(i, j)∈p
πt

i j. (9)

Hence we need to solve a resource constrained shortest path prob-
lem on a graph (V,A) with nonnegative arc costs πt

i j, ∀(i, j) ∈ A,
for each terminal t ∈ T . We solve each such problem in pseudo-
polynomial time O(B · |A|) using the dynamic programming based
algorithm from [8]. As long as path variables λp, p∈Pt , t ∈ T with
negative reduced costs c̄ =−µt +∑(i, j)∈p πt

i j exist, we need to add
at least one of them and resolve the RMP. This process is repeated
until no further variable with negative reduced costs exists.

In each iteration we add for each terminal t ∈ T multiple path vari-
ables using the approach from [8]: We consider all nodes v∈V that
are adjacent to terminal t and all delay bounds b = 0, . . . ,B− dvt
for which a path from s to v in conjunction with arc (v, t) is a fea-
sible path to t. In case a shortest path p to v of total delay b,
b = 0, . . . ,B− dvt , exists and p′ = p∪{(v, t)} yields negative re-
duced costs, the corresponding variable is added to the RMP.

4. COLUMN GENERATION STABILIZATION

It is well known that basic CG approaches typically suffer from
computational instabilities such as degeneracy or the tailing-off
effect [11] which often increase the needed computational effort
for solving them dramatically. Stabilization techniques to re-
duce the effects of these instabilities are usually classified into
problem specific approaches such as the usage of dual-optimal
inequalities [12, 13] and problem independent approaches, see
e.g. [14, 15]. The latter are often based on the concept of stability
centers and deviations from a current stability center are penal-
ized, e.g. by using piecewise linear penalty functions. Recently,
we showed how to significantly accelerate the CG process for a
survivable network design problem without modifying the RMP
by choosing alternative dual optimal solutions when solving the
pricing subproblem [16, 17, 18]. In the following we will adapt
this technique for the RDCSTP before we discuss an alternative
stabilization approach based on piecewise linear penalty functions.

4.1. Alternative Dual Optimal Solutions

Let γ j ≤ 0, ∀ j ∈ V , be the dual variables associated to constraints
(4) and P̃ =

⋃
t∈T P̃t denote the set of paths for which correspond-

ing variables have already been included in the RMP. Then the dual
of the RMP is given by (10)–(15).

max ∑
t∈T

µt + ∑
j∈V

γ j (10)

s.t. ∑
t∈T

πt
i j + γ j ≤ ci j ∀(i, j) ∈ A (11)

µt − ∑
(i, j)∈p

πt
i j ≤ 0 ∀t ∈ T, ∀p ∈ P̃t (12)

µt ≥ 0 ∀t ∈ T (13)

πt
i j ≥ 0 ∀t ∈ T, ∀(i, j) ∈ A (14)

γ j ≤ 0 ∀ j ∈V (15)

Let (µ∗,π∗,γ∗) denote the current dual solution computed by the
used LP solver when solving the RMP. It is easy to see that for
arcs A′ not part of any so far included path – i.e. A′ = {(i, j) ∈
A | @p ∈ P̃ : (i, j) ∈ p} – any values for the dual variables πi j are
optimal as long as ∑t∈T πt

i j
∗+ γ j

∗ ≤ ci j, ∀(i, j) ∈ A′, since they
do not occur in inequalities (12). Dual variable values πt

i j
∗, t ∈ T ,

may also be increased for arcs (i, j) ∈ A\A′ if inequalities (11) are
not binding. We conclude that any values πt

i j ≥ πt
i j
∗, ∀(i, j) ∈ A,

∀t ∈ T , are dual optimal if ∑t∈T πt
i j ≤ ∑t∈T πt

i j
∗+ δi j, ∀(i, j) ∈ A

holds, where δi j = ci j + |γ j| −∑t∈T πt
i j
∗, ∀(i, j) ∈ A. Note that

state-of-the-art LP solvers such as IBM CPLEX, which we use in
our implementation, usually choose minimal optimal dual variable
values, i.e. πt

i j
∗ = 0, ∀t ∈ T , ∀(i, j) ∈ A′.

On the contrary to most other stabilization approaches we do not
modify the RMP. Instead we aim to choose alternative dual op-
timal solutions which facilitate the generation of those path vari-
ables relevant for solving the LP relaxation of the IMP by increas-
ing the dual variable values used as arc costs in the pricing sub-
problem. Obviously, we can simply split the potential increase δi j
equally to all relevant dual variables, i.e. use alternative dual vari-
ables π̄t

i j = πt
i j
∗+ δi j

|T | , ∀t ∈ T , ∀(i, j) ∈ A. In our previous work
for a survivable network design problem [16, 17, 18], however, it
turned out to be beneficial to initially use different dual optimal
solutions, one for each terminal t, which finally converge towards
π̄t

i j, ∀t ∈ T , ∀(i, j) ∈ A. Hence, we consider two additional vari-
ants whose correspondingly used dual variables will be denoted as
π̃t

i j and π̂t
i j, ∀t ∈ T , ∀(i, j) ∈ A, respectively. Equation (16) defines

dual variable values π̃t ′
i j used in the pricing subproblem when con-

sidering terminal t ′ ∈ T . Parameter q ∈ N, 1≤ q≤ |T |, is initially
set to one and gradually incremented by max{1, |T |10 } in case no
negative reduced cost path has been found. After at most ten such
major steps π̃t ′

i j = π̄t ′
i j, for each terminal t ′. Thus, we can terminate

the CG process if q = |T | and no path variables have been added.

π̃t ′
i j =

{
πt

i j
∗+ δi j

q if t = t ′

πt
i j
∗ otherwise

,∀(i, j) ∈ A. (16)

Dual variable values π̂t
i j correspond to π̃t

i j except for the fact that
q is directly set to |T | once no new negative reduced cost path can
be found when using q = 1.

4.2. Piecewise Linear Stabilization

As mentioned above other successful stabilization techniques are
often based on penalizing deviations from a current stability cen-
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Figure 1: Piecewise linear dual penalty function g(π).

ter by adding piecewise linear penalty functions to the dual prob-
lem. Among these, especially five-piecewise linear function have
shown to frequently yield good results if all parameters are chosen
carefully; compare [19]. In our case, however, preliminary tests
with various settings and concrete parameter values showed that
due to a large number of relatively time consuming updates of the
stability center this concept does not seem to pay off. Since high
dual variable values facilitate the generation of good path variables
it is reasonable to penalize only small dual variable values. Hence
we use a modified version of the approach from [14] where in each
major iteration l ∈N, l ≥ 1, only dual variable values smaller than
the current stability center π(l) ∈ R|T |·|A|+ are penalized accord-

ing to vectors δ (l),γ(l) ∈ R|T |·|A|+ , see Figure 1. Let πt
i j
∗, ∀t ∈ T ,

∀(i, j) ∈ A, denote the dual variable values after the CG approach
on the penalized model at major iteration l terminates. If there ex-
ists at least one dual variable value in the penalized region – i.e. if
∃t ∈ T ∧ (i, j) ∈ A : πt

i j
∗ < δ t

i j
(l) – we need to update the stability

center according to the current dual solution – i.e. π(l+1) = π∗

– and correspondingly set δ (l+1) and γ(l+1) and continue the CG
process. As has been shown previously [14] this process, which
needs to be repeated until each dual variable value lies within an
unpenalized region, terminates yielding the LP relaxation value of
the IMP after finitely many steps.

According to preliminary tests, the following settings have been
chosen for our computational experiments. We set ε = 0.3 and
ζ = 1, the size of the inner trust region T (l) = π(l)−δ (l) = 1 while
π(l)− γ(l) = 5 ·T (l) for all dimensions, i.e. ∀t ∈ T , ∀(i, j) ∈ A. Let
A′ denote the set of arcs used by the paths included in the initial
model. We set πt

i j
(1) = πt

i j
∗+ δi j , ∀t ∈ T , ∀(i, j) ∈ A′, πt

i j
(1) =

πt
i j
∗+ δi j

|T | , ∀t ∈ T ,∀(i, j) /∈ A′.

5. COMPUTATIONAL RESULTS

All computational experiments have been performed on a single
core of a multi-core system consisting of Intel Xeon E5540 pro-
cessors with 2.53 GHz and 3 GB RAM per core. We used IBM
CPLEX 12.2 as LP solver and applied an absolute time limit of
10000 CPU-seconds to all experiments. All preprocessing meth-
ods mentioned in [6] are used to reduce the input graphs prior
to solving. To build an initial set of paths a simple construction
heuristic is applied on Steiner tree instances: the delay constrained
shortest paths to all terminal nodes are iteratively added to the tree
dissolving possible cycles. On instances where T = V \ {s} we
apply the Kruskal-based heuristic followed by a VND both in-
troduced in [5]. Tables (1) and (2) report average CPU-times in
seconds and needed iterations for different instance sets. In both
tables π∗ denotes the unstabilized CG approach, and π̄ , π̂ , and
π̃ refer to the three strategies discussed in Section 4.1 for using
alternative dual optimal solutions in the pricing subproblem. The
piecewise linear stabilization approach from Section 4.2 is denoted
by PL, LagG and CGG denote the Lagrangian and CG approach
from [8], respectively. The results of the latter two have, however,
been computed on a different hardware using an older CPLEX ver-
sion for the CG approach and are thus not directly comparable.

CPU time [s] Iterations
Set B LagG CGG π∗ π̄ π̂ π̃ PL CGG π∗ π̄ π̂ π̃ PL

r,100 100 493 4752 314 13 15 10 72 1041 189 25 39 92 115
150 639 8215 111 10 8 8 48 12561 357 26 42 98 144
200 288 10001 123 4 4 8 46 18736 904 28 41 102 238
250 526 10001 261 5 4 9 71 24881 1676 32 44 115 325

c,100 100 809 10026 38 10 9 12 78 480 176 31 44 96 171
150 544 10034 135 26 15 18 142 329 346 41 56 118 187
200 711 10061 1151 50 37 21 367 314 697 58 69 123 311
250 1066 10076 3779 43 27 25 500 327 2702 68 78 141 444

e,100 100 976 10033 481 90 75 25 598 239 208 40 64 115 307
150 1817 10106 3980 705 356 66 2927 193 364 52 84 138 403
200 2972 10096 9297 5148 2670 177 8607 209 397 92 123 172 459
250 4008 10104 10000 7013 3489 142 9090 195 357 98 160 203 339

r,1000 1000 971 8064 25 7 6 11 25 891 119 22 39 96 84
1500 1744 8538 112 12 10 16 60 4240 253 27 43 112 118
2000 869 10002 220 11 11 20 70 15600 716 28 42 114 125
2500 790 10007 535 14 12 20 89 18233 1527 34 48 124 156

c,1000 1000 668 8186 60 26 24 18 82 869 91 26 38 84 109
1500 942 10024 112 30 25 33 111 418 163 37 46 104 122
2000 2389 10037 788 68 57 34 235 451 401 36 58 109 188
2500 1256 10037 1272 70 44 48 425 437 953 53 62 122 261

e,1000 1000 2846 10065 137 52 34 25 474 615 129 34 56 107 165
1500 3041 10031 4540 711 378 71 2787 469 266 53 70 130 296
2000 5882 10083 8423 1814 897 134 6418 396 254 71 95 172 443
2500 5726 10070 10000 4583 2222 183 9468 385 176 88 136 181 439

Table 1: Results for instance sets from [8] consisting of five com-
plete graphs with 41 nodes, T =V \{s}, different graph structures
(r, c, e), delay ranges (100, 1000), and bounds B.

CPU time [s] Iterations
|T |
|V\{s}| B π∗ π̄ π̂ π̃ PL π∗ π̄ π̂ π̃ PL

0.3 30 19 6 6 10 36 143 30 36 92 84
50 139 15 16 23 55 413 41 50 124 102

100 2849 97 89 55 509 1345 44 55 149 194
0.7 30 77 29 29 34 171 142 32 46 93 198

50 727 112 107 80 1091 561 51 62 130 475
100 7942 819 923 253 7557 1361 79 92 182 958

1.0 30 213 77 62 67 630 184 34 54 98 797
50 1807 302 328 172 5769 614 56 81 142 2039

100 9615 2615 2196 837 10000 851 86 123 214 694

Table 2: Results for 30 randomly generated complete graphs with
|V | = 100, different sets of terminal nodes, delays and costs uni-
formly distributed in [1,99] and delay bounds B.

We conclude that all stabilization methods based on alternative
dual-optimal solutions lead to an enormous reduction of the nec-
essary CPU-time. While π̂ performs best for easier instances, π̃
clearly outperforms all other approaches on harder instances, i.e.
on those which generally need more time. Stabilization based on
piecewise linear penalty functions outperforms unstabilized CG in
the majority of cases, but is clearly not competitive to our three ap-
proaches based on alternative dual-optimal solutions. We further
observe that our unstabilized CG variant needs significantly less
iterations than the conceptually identical one discussed by Gou-
veia et al. [8]. We believe that next to a different CPLEX version,
these differences are mainly based on choosing a better set of ini-
tial path variables, more sophisticated graph preprocessing, and
the fact that we use the dual simplex algorithm which turned out to
perform better than the primal one in our case. Comparing the rel-
ative computational times of the Lagrangian approach from [8] to
their CG approach with the speed-up achieved by our stabilization
methods, we conclude that the proposed stabilized CG method also
outperforms this method. All approaches based on dual-optimal
solutions terminated before the time limit was met in all but one of
the experiments reported in Table 1, while both unstabilized CG
variants and the piecewise linear stabilization approach failed to
do so for a number of experiments.
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6. CONCLUSIONS & FUTURE WORK

In this paper we showed how to significantly accelerate a column
generation approach based on a path formulation for the RDC-
STP using alternative dual-optimal solutions in the pricing sub-
problem. We conclude that this method does further outperform
a stabilization method based on piecewise linear penalty functions
as well as a previously presented approach based on Lagrangian
relaxation [8]. We are currently extending the presented stabilized
column generation towards a branch-and-price approach in order
to compute proven optimal solutions to medium sized instances of
the RDCSTP. In future, we also plan to consider additional pricing
strategies – e.g. by restricting the total number of path variables to
be included in each pricing iteration – and want to compare our ap-
proach to further stabilization techniques such as e.g. interior point
stabilization [15]. Finally, we also want to study the impact of
choosing better initial columns computed by metaheuristics which
may lead to further significant speed-up as well as implement the
Lagrangian relaxation approach from [8] for a fair comparison.
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