
D I S S E R T A T I O N

Solving Two Network Design Problems by

Mixed Integer Programming and

Hybrid Optimization Methods

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften unter der Leitung von

ao. Univ.-Prof. Dipl.-Ing. Dr. Günther R. Raidl
Institut für Computergraphik und Algorithmen

Technische Universität Wien

und

ao. Univ.-Prof. Dipl.-Ing. Dr. Ulrich Pferschy
Institut für Statistik und Operations Research

Karl-Franzens-Universität Graz

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

Dipl.-Ing. Markus Leitner
Matrikelnummer 0025315

Palffygasse 27/11, 1170 Wien

Wien, am 28. Mai 2010

Markus Leitner

ii

Kurzfassung

Diese Dissertation behandelt zwei NP-schwere kombinatorische Optimierungsprob-
leme aus dem Bereich Netzwerkdesign. Derartige Netzwerkdesignprobleme treten
in vielen praktischen Anwendungen, wie etwa dem Design von Telekommunika-
tionsnetzen, auf. Die beiden in dieser Arbeit behandelten Probleme erlauben
die Modellierung von Szenarien welche beispielsweise bei der Planung von Glas-
fasernetzwerken auftreten. Aufgrund gestiegener Kundenanforderungen hinsichtlich
verfügbarer Bandbreite sind Telekommunikationsfirmen gezwungen ihre Netze zu
erweitern bzw. existierende Kupferverbindungen sukzessive duch Glasfaser zu er-
setzen. Im Allgemeinen sind Kunden jedoch nicht bereit wesentlich höhere Preise
für schnellere Breitbandanschlüsse zu bezahlen. Aus diesem Grund sind gute Al-
gorithmen zur kosteneffizienten Planung derartiger Netzwerke von entscheidender
Bedeutung.

Das bmax-Survivable Network Design Problem (bmax-SNDP) betrachtet die Aufgabe
der effizienten Erweiterung von Fiber-to-the-home Netzwerken. Hierbei sind neben
sogenannten Standardkunden mit einfachen Anbindungsanforderungen, welche auch
als Typ-1 oder C1 Kunden bezeichnet werden, zusätzlich Typ-2 (oder C2) Kunden
gegeben. Für diese muss die Verbindung an das Netzwerk redundant ausgeführt
werden, sodass deren Konnektivität im Fall eines einfachen Fehlers garantiert wer-
den kann. Nachdem diese Art der redundanten Anbindung jedoch häufig zu teuer
ist, erlaubt das bmax-SNDP eine Relaxierung dieser Anforderung. In diesem Fall darf
das letzte Stück des Anschlusses eines C2 Kunden nichtredundant ausgeführt sein.
Diese nichtredundante branch-line darf jedoch eine vordefinierte Länge bmax nicht

iii

Kurzfassung

überschreiten. In dieser Arbeit werden zwei, hinsichtlich der Zielfunktion unter-
schiedliche, Varianten des Problems behandelt. Während beim sogenannten “Oper-
ative Planning Task” (OPT) alle gegebenen Kunden möglichst kostengünstig an ein
bestehendes Netzwerk angeschlossen werden sollen, wird beim “Strategic Simulation
Task” (SST) eine möglichst profitable Lösung gesucht, in welcher eventuell nur eine
Teilmenge aller Kunden versorgt wird.

Zur Lösung des Problems werden zwei auf gemischt-ganzzahliger linearer Program-
mierung beruhende Modelle vorgeschlagen. Diese können mittels Branch-and-Price
gelöst werden und liefern beweisbar optimale Lösungen für kleine und mittelgroße
Probleminstanzen. Eine Spezialität hierbei ist die Verwendung von alternativen
dualen Lösungen im sogenannten Pricing Problem, wodurch die Lösung der lin-
earen Relaxierung beider Modelle mittels Spaltengenerierung enorm beschleunigt
wird. Weiters werden ein hybrider Optimierungsansatz, welcher auf Lagranger Re-
laxierung beruht, sowie metaheuristische Methoden zur näherungsweisen Lösung von
sehr großen Instanzen von bmax-SNDP vorgeschlagen. Die erzielten Testergebnisse
belegen die Effektivität der vorgestellten Lösungsansätze.

Speziell in ländlichen Gebieten sind Fiber-to-the-home Netzwerke häufig nicht prof-
itabel. In solchen Fällen wird oft eine Fiber-to-the-curb Strategie verfolgt. Hier wird
das neue Netz nicht bis zum Kunden, sondern nur bis zu Übergabepunkten errichtet.
Sind diese Übergabepunkte (facilities) nahe genug an den jeweils zugewiesenen
Kunden, kann dennoch eine beträchtliche Steigerung der verfügbaren Bandbrei-
te erzielt werden. Derartige Szenarien können als Varianten des Connected Fa-
cility Location Problems (ConFL), bei dem eine Menge an Facilities ausgewählt
und miteinander verbunden werden sollen, modelliert werden. Zusätzlich müssen
die Kunden noch diesen Facilities zugeordnet werden. Der zweite Teil dieser Ar-
beit beschäftigt sich mit dem Capacitated Connected Facility Location Problem
(CConFL), welches ConFL um wichtige Nebenbedingungen erweitert. Dazu zählen
etwa Kapazitätsbeschränkungen für Facilities aufgrund individueller Bandbreitenan-
forderungen von Kunden. Das Ziel der Optimierung ist es eine möglichst profitable
Lösung zu berechnen bei der nicht zwangsweise alle potentiellen Kunden versorgt
werden.

Es werden vier auf gemischt-ganzzahliger linearer Programmierung beruhende Ver-
fahren vorgestellt mit welchen beweisbar optimale Lösungen für CConFL berechnet
werden können. Diese werden anhand ihrer zugrundeliegenden Polyeder aus theo-
retischer Sicht verglichen. Weiters wird ein auf Lagranger Relaxierung basierender
Ansatz vorgestellt, welcher im Anschluss mit lokaler Suche sowie “very large scale
neighborhood search” hybridisiert wird. Die Ergebnisse der durchgeführten compu-
tationalen Studie zeigen klare Vorteile für zwei der vorgestellten Lösungsansätze.

iv

Abstract

This thesis considers two NP-hard combinatorial optimization problems (COPs)
from the domain of network design. Network design problems (NDPs) arise in a mul-
titude of real world applications such as the design of telecommunication networks.
The NDPs addressed in this thesis are suitable to model certain real-world scenarios
occurring in the extension of communication networks on the last mile. Nowadays,
telecommunication companies need to upgrade and extend existing networks due to
the rising bandwidth requirements of customers. Customers are, however, not usu-
ally willing to pay significantly more than for existing lower bandwidth connections.
Thus good algorithms for finding cost-efficient network layouts are crucial.

The bmax-Survivable Network Design Problem (bmax-SNDP), which allows for mod-
eling fiber-to-the-home scenarios, aims to efficiently extend an existing network to
supply new customers. Here, two sets of customers are given. Standard customers
which are denoted as type-1 or C1 customers need to be connected by simple routes,
while type-2 (or C2) customers need a more reliable connection. For the latter, con-
nectivity needs to be ensured even when a single link or routing node fails, i.e. pairs
of node-disjoint paths are required. Furthermore, these redundancy requirements
are occasionally relaxed by allowing a connection via a final non-redundant branch
line that does not exceed a certain length bmax. In this thesis, two different variants
with respect to the objective of bmax-SNDP are considered. In the operative plan-
ning task (OPT) a cheapest network feasibly connecting all given customers needs to
be identified, while in the strategic simulation task (SST) return-on-investments are
additionally considered. Here, the objective is to identify a most profitable solution
supplying only a subset of all customers.

v

Abstract

Two mixed integer programming models, which can be solved by branch-and-price,
are discussed and compared to existing approaches theoretically as well as by a
computational study. They are suitable for solving small and medium sized instances
of bmax-SNDP to proven optimality. One main contribution within this section is
the usage of alternative dual-optimal solutions in the pricing subproblem, which
significantly accelerates the solution of the linear relaxation of both models.

Furthermore, a new hybrid optimization approach based on Lagrangian relaxation
as well as metaheuristic methods for approximately solving large instances are de-
scribed. Computational results demonstrate the efficiency of the proposed solution
approaches.

Especially in rural districts covering larger areas by fiber optic networks often does
not pay off economically. Thus, a compromise between the bandwidth offered to in-
dividual customers and the resulting network construction costs has to be made. In
such situations the fiber-optic infrastructure is typically extended to so-called medi-
ation points that bridge the high-bandwidth network with an older lower-bandwidth
network, i.e. fiber-to-the-curb. From an optimization point of view such scenarios
can be modeled as variants of the Connected Facility Location Problem (ConFL)
where new facilities, which correspond to the above mentioned mediation points,
need to be installed and connected to each other. Furthermore, customer nodes
need to be assigned to them.

The Capacitated Connected Facility Location Problem (CConFL), which is addressed
in the second part of this thesis, extends ConFL by considering additional real world
constraints such as those imposed by the individual bandwidth demands of customers
and given maximum assignable demands for each potential facility location (medi-
ation point). Furthermore, CConFL aims to determine a most profitable network
instead of simply minimizing the resulting costs while mandatorily supplying all
customers.

Four new mixed integer programming models for solving instances of CConFL to
proven optimality are presented and their solution is discussed in detail. Subse-
quently, a theoretical comparison of the polyhedra corresponding to these four mod-
els is given. Furthermore, a Lagrangian relaxation method which is hybridized with
local search and very large scale neighborhood search is described. The results ob-
tained from a computational study indicate clear advantages for two of the proposed
solution methods.

vi

Acknowledgments

First of all I want to thank Prof. Günther Raidl who gave me the opportunity to do
my PhD in his group and introduced me into the field of combinatorial optimization.
Thank you for your outstanding support and for providing ideas and guidance when-
ever I was facing difficulties during my research. I am also very grateful to Prof.
Ulrich Pferschy, who agreed to be my second supervisor. His valuable comments
and suggestions improved all parts of this thesis.

I also owe gratitude to all my current and former colleagues from the Algorithms
and Data Structures Group of the Vienna University of Technology. Thank you
for exchanging scientific ideas and providing helpful suggestions, but also for great
private discussions. It is a pleasure working with you.

Many thanks to my former colleagues from the Carinthia University of Applied
Sciences for giving me the possibility to work in an applied research project, but
still providing enough time to concentrate on basic models and algorithms.

Special thanks to all members of my family and all my friends for all their support
during the last years.

Last but not least I want to thank my wife Romana for her continuous love and
support. Thank you for your patience and encouragement. This thesis would not
have been possible without you. I love you.

vii

viii

Contents

1 Introduction 1
1.1 Combinatorial Optimization Problems 3
1.2 Considered Problems . 3
1.3 Overview of the Thesis . 5

2 Methodologies 9
2.1 Exact Methods . 9

2.1.1 Linear Programming . 10
2.1.2 Integer Linear Programming 17
2.1.3 LP based Branch-and-Bound 19
2.1.4 Cutting Plane Methods and Branch-and-Cut 20
2.1.5 Column Generation and Branch-and-Price 21
2.1.6 Branch-and-Cut-and-Price . 24
2.1.7 Lagrangian Relaxation . 24

2.2 Heuristic Methods . 27
2.2.1 Constructive Heuristics . 28
2.2.2 Approximation Algorithms 28
2.2.3 Local Search . 29
2.2.4 Metaheuristics . 30

2.3 Hybrid Methods . 33

3 The bmax-Survivable Network Design Problem 35
3.1 Introduction . 35
3.2 Problem Definition . 36
3.3 Related Work . 41

ix

Contents

3.4 Individual Optimal Connections . 42
3.4.1 Optimal Connections to Type-1 Customers 42
3.4.2 Optimal Connections to Type-2 Customers 43

3.5 The Undirected Connection Formulation for bmax-SNDP 44
3.5.1 Analyzing the Restricted Dual Problem 46
3.5.2 Alternative Dual-Optimal Solutions 48

3.6 The Directed Connection Formulation for bmax-SNDP 49
3.6.1 Solving the Pricing Problem by Mixed Integer Programming 53
3.6.2 Modeling the Pricing Problem as an Elementary Shortest Path

Problem with Resource Constraints 55
3.6.3 Analyzing the Restricted Dual Problem 57
3.6.4 Alternative Dual-Optimal Solutions 59

3.7 Polyhedral Comparison . 60
3.8 Lagrangian Decomposition . 66

3.8.1 Theoretical Comparison to the MCF Formulation 69
3.9 Neighborhood Structures for Improving Primal Solutions 69

3.9.1 Connection Exchange Neighborhood 70
3.9.2 Key-Path Exchange Neighborhood 72
3.9.3 Connection Remove Neighborhood 73
3.9.4 Restricted two Connection Remove Neighborhood 74

3.10 Metaheuristics . 76
3.10.1 Minimum Spanning Tree Augmentation Heuristic 76
3.10.2 Variable Neighborhood Search 77
3.10.3 Greedy Randomized Adaptive Search Procedure 79

3.11 Combining Lagrangian Decomposition and Variable Neighborhood
Descent . 79

3.12 Test Instances and Environment . 80
3.13 Computational Results . 81

3.13.1 Results on Exact Models . 82
3.13.2 Lagrangian Decomposition Approaches 90
3.13.3 Metaheuristics . 93
3.13.4 Overall Comparison . 95

3.14 Conclusions and Future Work . 96

4 The Capacitated Connected Facility Location Problem 99
4.1 Introduction . 99
4.2 Problem Definition . 101
4.3 Related Work . 103
4.4 Multi-Commodity Flow Formulations for CConFL 105

4.4.1 A Facility Oriented Model . 105
4.4.2 A Customer oriented model 106

x

Contents

4.5 Branch-and-Cut for CConFL . 107
4.6 Branch-and-Cut-and-Price for CConFL 109

4.6.1 Branching in Branch-and-Price 112
4.7 Polyhedral Comparison . 113
4.8 Lagrangian Decomposition . 117
4.9 Primal Heuristic . 120
4.10 Solution Improvement . 123

4.10.1 Key Path Improvement . 124
4.10.2 Customer Swap Neighborhood 125
4.10.3 Very Large Scale Neighborhood Search 125

4.11 Test Instances and Environment . 132
4.12 Computational Results . 133

4.12.1 Results on Exact Models . 133
4.12.2 Lagrangian Decomposition Approaches 139
4.12.3 Overall Comparison . 142

4.13 Conclusions and Outlook . 143

5 Conclusions 145

Bibliography 147

A Curriculum Vitae 161

xi

xii

Chapter 1

Introduction

This thesis is concerned with network design problems (NDPs), which form a large
and important subclass of combinatorial optimization problems (COPs). Network
design problems arise in a multitude of real world applications such as the design of
communication networks. Well known NDPs are for instance the minimum spanning
tree (MST) problem where all nodes of a graph need to be connected to each other
in a cost efficient way, and the Steiner tree problem (STP) on a graph where only a
subset of all given nodes (terminals) need to be included in the resulting network,
while the others are not mandatory. The STP has been used to model real world
problems such as the cost efficient design of telecommunication networks or the
planning and extension of heating networks, see e.g. [124].

Other NDPs such as the survivable network design problem (SNDP) or the bounded
diameter minimum spanning tree problem (BDMST) are also concerned with ensur-
ing a certain quality of service level. The SNDP is an extension of the STP where
each terminal node has individual redundancy requirements ensuring connectivity
in case of failures. The BDMST respects maximum transmission delays by imposing
a bound on the maximum number of nodes (i.e. routers) between any two nodes.
Next to respecting each problem’s individual side constraints, the solutions should
also ensure that the costs for constructing the resulting networks are as small as
possible. A broad overview on NDPs occurring in the area of telecommunication is
e.g. given in [160].

Furthermore, several problems from other domains such as transportation and lo-
gistics can be modeled as NDPs. One example is the traveling salesman problem
(TSP), arguably one of the most prominent and well analyzed COPs. Here, given a

1

Chapter 1 Introduction

graph the objective is to find a cost-minimal round trip visiting each node exactly
once.

Often NDPs can be modeled on a graph G = (V,E) with a cost function c : E → R
on the edges. A solution is then given by some subgraph G′ = (V ′, E′), V ′ ⊆ V ,
E′ ⊆ E, respecting the problem’s side constraints. The cost function c assigns an
objective value c(G′) =

∑
e∈E′ ce, to each feasible solution G′ and the objective

usually is to identify an optimal solution, which is feasible and has minimal (or
maximal) objective value, compare [95]. Furthermore, a solution’s objective value
might also depend on its node set V ′, e.g. if the estimated profit due to connecting
some node is also considered.

While the MST problem can be solved efficiently by the the classic algorithms of
Prim [149] or Kruskal [113], most practically relevant network design problems are
NP-hard [69]. Thus, no efficient algorithm – that is an algorithm whose runtime is
polynomially bounded on the input size – for solving instances of such a problem
to optimality is currently known and it is likely that no efficient algorithms for
NP-hard problems do exist.

Nevertheless, due to their practical relevance it is very desirable to solve NDPs as
good as possible. For instance, better algorithmic methods for cost-efficiently de-
signing fiber-optic networks on the last mile might reduce the estimated costs to
construct such a network. These savings might decide whether or not building a
network does make sense from an economic perspective. Thus, developing better so-
lution methods for COPs generally does not only improve the business opportunities
of companies, but influences the life of everyone profiting from new infrastructure
that potentially would not have been created otherwise.

During the last decades great progress in solving COPs has been made. Methods
like dynamic programming [20], constraint programming [161], and especially the
methods from (integer) linear programming such as branch-and-cut or branch-and-
cut-and-price [16, 143] have shown to be able to solve moderately sized instances of
difficult COPs to proven optimality.

Furthermore, heuristics and metaheuristics such as tabu search [74], simulated an-
nealing [109], evolutionary algorithms [10], variable neighborhood search [82], or ant
colony optimization [38] can be used to compute good but not necessarily optimal
solutions for instances which cannot be solved by above mentioned exact methods
in reasonable time.

More recently, so-called hybrid optimization methods aim to combine different op-
timization methods to profit from their different advantages while avoiding their
individual drawbacks. A special class of hybrid approaches are matheuristics, which

2

1.1 Combinatorial Optimization Problems

combine metaheuristic approaches with mathematical programming based exact
methods [151, 157].

1.1 Combinatorial Optimization Problems

As implicitly introduced above, a combinatorial optimization problem (COP) is
a problem where some optimum solution is searched from a finite set of feasible
solutions according to some function assigning a numerical objective value to each
feasible solution. The following definitions are due to Aarts and Lenstra [1].

Definition 1 A combinatorial optimization problem is specified by a set of problem
instances and is either a minimization or a maximization problem.

Definition 2 An instance of a combinatorial optimization problem is a pair (S, c),
where S is the set of feasible solutions and the cost or profit function c is a mapping
c : S → R. The problem is to find a globally optimal solution x∗ ∈ S. In case of a
minimization problem this is a solution such that

c(x∗) ≤ c(x)

holds for all feasible solutions x ∈ S, while for a maximization problem

c(x∗) ≥ c(x)

must hold.

1.2 Considered Problems

This thesis considers two NDPs suitable to model different variants of the extension
of real world communication networks.

The bmax-Survivable Network Design Problem (bmax-SNDP), which can be used to
model fiber-to-the-home scenarios, aims to efficiently extend an existing network
to supply new customers. Here, next to standard customers, which are denoted as
type-1 or C1 customers and need to be connected by simple routes, a second set
of type-2 (or C2) customers is given, which need a more reliable connection. For
these type-2 customers, connectivity needs to be ensured even when a single link or
routing node fails, i.e. pairs of node-disjoint paths are required. Furthermore, these

3

Chapter 1 Introduction

root node

C1 customer

C2 customer

spatial node

potential route

realized route

Figure 1.1: An exemplary solution to bmax-SNDP.

redundancy requirements are occasionally relaxed by allowing a connection via a
final non-redundant branch line that does not exceed a certain length.

In this thesis two different variants with respect to the objective of bmax-SNDP are
considered. On the one hand, in the operative planning task (OPT) a cheapest
network feasibly connecting all given customers needs to be identified. On the other
hand, in the strategic simulation task (SST) we are interested in identifying a most
profitable solution supplying a subset of all customers only.

Figure 1.1 depicts an exemplary solution for the SST variant of bmax-SNDP, con-
necting several customers of each type to the root node which models some existing
network.

bmax-SNDP is NP-hard, since it corresponds to the NP-hard Steiner tree problem
(STP) on a graph [103] if only type-1 customers are considered.

Especially in rural areas, covering larger areas by fiber optic networks often does
not pay off economically. To make a compromise between the bandwidth offered
to individual customers and the resulting network construction costs providers fre-
quently implement a fiber-to-the-curb strategy. Here, the fiber-optic network is
extended to so-called mediation points that bridge the new network with an already
existing lower-bandwidth network. While the original network is still used between
a customer and its correspondingly assigned mediation point, the newly installed
high-bandwidth routes are used in the remaining network. In this way, the band-
width available for each customer can be significantly increased while the costs for
constructing the network are typically much smaller compared to a fiber-to-the-home
scenario.

Depending on additional side constraints that need to be considered, such scenar-
ios can be modeled as different variants of the connected facility location problem

4

1.3 Overview of the Thesis

root node
Steiner node
facility node
customer node
potential route
potential assignment
realized route
realized assignment

Figure 1.2: A solution to CConFL.

(ConFL) [125]. In ConFL, a set of facilities (mediation points) supplying the given
customers needs to be installed and connected by a Steiner tree. In this thesis, the
Capacitated Connected Facility Location Problem (CConFL) which extends ConFL
by additionally considering capacity constraints on facilities and estimated prof-
its due to customers prizes is considered. As for the SST variant of bmax-SNDP,
CConFL aims to identify a most profitable solution instead of mandatorily supply-
ing all customers.

Figure 1.2 depicts an exemplary solution to CConFL.

CConFL is NP-hard, since it is a combination of the STP [103] and the single source
capacitated facility location problem (SSCFLP) [42] which are both NP-hard.

1.3 Overview of the Thesis

The remainder of this thesis is organized as follows. First an overview of solution
methods for COPs and their relevant theoretical background is presented in Chap-
ter 2. Next to an introduction to exact methods based on (integer) linear program-
ming, a short overview on (meta-) heuristics and hybrid optimization approaches is
given.

Chapter 3 discusses solution approaches for the bmax-SNDP. First two exact models
which can be solved by branch-and-price are discussed and theoretically compared
to existing approaches. Afterwards, a hybrid optimization approach for bmax-SNDP
based on Lagrangian relaxation as well as metaheuristic methods for approximately
solving large instances are presented. Finally, test instances are described and com-
putational results are given before conclusions are drawn.

Earlier versions of various parts of Chapter 3 have been published in

5

Chapter 1 Introduction

Markus Leitner, Günther R. Raidl, and Ulrich Pferschy. Branch-and-
Price for a Survivable Network Design Problem. Technical Report TR
186-1-10-02, Institute of Computer Graphics and Algorithms, Vienna
University of Technology, 2010.

Markus Leitner and Günther R. Raidl. Strong Lower Bounds for a
Survivable Network Design Problem. In Proceedings of International
Symposium on Combinatorial Optimization (ISCO 2010), Hammamet,
Tunisia, March 2010.

Markus Leitner, Günther R. Raidl, and Ulrich Pferschy. Accelerating
Column Generation for a Survivable Network Design Problem. In M. G.
Scutellá et al., editors, Proceedings of the International Network Opti-
mization Conference 2009, Pisa, Italy, April 2009.

Markus Leitner and Günther R. Raidl. Lagrangian Decomposition,
Metaheuristics, and Hybrid Approaches for the Design of the Last Mile
in Fiber Optic Networks. In M. J. Blesa et al., editors, Hybrid Meta-
heuristics 2008, volume 5296 of LNCS, pages 158-174, Malaga, Spain,
October 2008. Springer-Verlag Berlin Heidelberg.

Furthermore, a talk on preliminary results has been given at the Austrian workshop
on metaheuristics 5.

Markus Leitner. A Lagrangian Relaxation Approach for the Design of
the Last Mile in Real-World Fiber Optic Networks. Joint Workshop:
Austrian Workshop on Metaheuristics 5 (AWM 5 ’07) & Experimental
Economics (EXLab), Graz, Austria, November 27, 2007.

Chapter 4 is devoted to CConFL. Here, four models for solving instances of CConFL
to proven optimality are presented and theoretically compared. Furthermore, a
Lagrangian relaxation method which is subsequently hybridized with local search
and very large scale neighborhood search is proposed. After describing the used test
instances, computational results are presented, before finally some conclusions are
drawn.

Earlier versions of parts of Chapter 4 have been published in

Markus Leitner and Günther R. Raidl. Branch-and-Cut-and-Price for
Capacitated Connected Facility Location. Technical Report TR 186-1-
10-01, Institute of Computer Graphics and Algorithms, Vienna Univer-
sity of Technology, 2010.

6

1.3 Overview of the Thesis

Markus Leitner and Günther R. Raidl. Combining Lagrangian Decom-
position with Very Large Scale Neighborhood Search for Capacitated
Connected Facility Location, Post-Conference Book of the Eight Meta-
heuristics International Conference MIC 2009, accepted 2010.

Markus Leitner and Günther R. Raidl. A Lagrangian Decomposition
Based Heuristic for Capacitated Connected Facility Location. In S. Voß
and M. Caserta, editors, Proceedings of the 8th Metaheuristic Interna-
tional Conference (MIC 2009), Hamburg, Germany, July 2009.

Furthermore, a hybrid variable neighborhood search approach for a slightly different
version of CConFL has been published in

Markus Leitner and Günther R. Raidl. Variable Neighborhood Search
for a Prize Collecting Capacity Constrained Connected Facility Location
Problem. In Proceedings of the 2008 International Symposium on Appli-
cations and the Internet, SAINT 2008, pages 233-236, Turku, Finland,
2008. IEEE Computer Society.

Finally, in Chapter 5 overall conclusions are drawn.

7

8

Chapter 2

Methodologies

This chapter reviews concepts and approaches for solving combinatorial optimiza-
tion problems. Following the usual classification into exact and heuristic methods,
first a brief overview on exact methods is presented. Given an instance of some com-
binatorial optimization problem, these approaches aim to derive a proven optimal
solution, that is an optimal solution of a considered instance together with a proof
that no better feasible solution does exist.

However for NP-hard problems, applying exact methods might involve an expo-
nential number of steps, unless P=NP. Thus, solving instances of realistic size
to proven optimality often turns out to be too time consuming in practice. Here,
heuristic methods which will be reviewed in the second part of this chapter turn out
to be useful. They can be used to generate good, but not necessarily optimal solu-
tions with reasonable computational effort. Finally, the third part of this chapter
is devoted to hybrid approaches which try to combine the advantages of different
optimization methods while avoiding the drawbacks of each individual method.

2.1 Exact Methods

Whenever the considered instances and the available computational resources allow
for, one should try to solve instances of a considered combinatorial optimization
problem to proven optimality by applying exact methods.

Many COPs can be modeled as (mixed) integer linear programs (MIPs) and the
solution methods proposed for solving MIPs have proven to be usually a good choice

9

Chapter 2 Methodologies

when solving moderately sized instances of COPs. In the following a brief summary
of important concepts from the field of (mixed integer) linear programming, focusing
on those methods that will be used in the remaining chapters, is given. Afterwards,
Lagrangian relaxation, a method which usually does not compute optimal solutions,
but generates tight dual bounds of an optimal solution’s value is discussed.

This section is based on the books of Bertsimas and Tsitsiklis [23], Bertsimas and
Weismantel [24], Dantzig [45], Nemhauser and Wolsey [143], and Schrijver [162].

2.1.1 Linear Programming

As will be described in Section 2.1.2, for solving integer linear programs (IPs), it
is usually necessary to repeatedly solve linear programs (LPs). Thus, this section
is devoted to linear programming, which means to optimize over a linear objective
function subject to a set of side constraints modeled as linear inequalities.

Formally, an LP in minimization form is defined by model (2.1)–(2.3), where A is
an m × n matrix with rational entries, c is a rational vector of dimension n, and b
a rational vector of size m.

zLP = min cTx (2.1)
s.t. Ax ≥ b (2.2)

x ∈ Rn
+ (2.3)

Note that it is possible to describe any LP by an equivalent model where all side
constraints are written as equalities instead of inequalities by adding so-called slack
and surplus variables. Furthermore, any minimization problem can be transformed
into an equivalent maximization problem and vice versa. However, since all prob-
lems considered in this thesis are minimization problems, this section considers the
minimization variant only.

Each LP can be alternatively written in a more compact way in the form

zLP = min{cTx : Ax ≥ b, x ∈ Rn
+}. (2.4)

10

2.1 Exact Methods

Duality

In the following, the concept of duality in linear programming and some of its im-
plications are introduced. For any primal LP (2.1)–(2.3), we can state its dual LP
(2.5)–(2.7).

wLP = max uTb (2.5)

s.t. uTA ≤ cT (2.6)
u ∈ Rm

+ (2.7)

Let (P) denote the primal LP (2.4). Then its dual (D) can be stated in a compact
way as:

(D) wLP = max{uTb : uTA ≤ cT, u ∈ Rm
+}. (2.8)

The following proposition unveils that it is in fact not important which of the LPs
we denote as the primal and which as the dual.

Proposition 1 The dual of the dual problem is the primal problem.

A vector x∗ ∈ Rn
+ is called primal feasible, if it satisfies all side constraints of the

primal problem, i.e. if Ax∗ ≥ b does hold. Analogously, a vector u∗ ∈ Rm
+ is called

dual feasible if (u∗)TA ≤ cT. Using the concepts of primal and dual feasibility, we
can state the weak duality theorem, see e.g. [143].

Theorem 1 (Weak Duality) Let (P) denote a primal LP and (D) its correspond-
ing dual problem. Then, cTx∗ ≥ zLP ≥ wLP ≥ (u∗)Tb holds if x∗ is primal feasible
and u∗ is dual feasible.

In particular the weak duality theorem implies that if a primal problem (P) is
unbounded – i.e. zLP = −∞ in case of a minimization problem – then its dual
(D) is infeasible.

The strong duality theorem shows that if for any primal dual pair of linear programs,
either the primal or the dual has a finite optimal solution, then the optimal solution
to the other is finite too and has the same objective value.

11

Chapter 2 Methodologies

Theorem 2 (Strong Duality) If either zLP or wLP is finite, then both (P) and
(D) have finite optimal solution values and zLP = wLP.

Corollary 1 For any primal dual pair of LPs (P) and (D) there are exactly four
possibilities

• both (P) and (D) have finite and equal optimal solution values, i.e. zLP = wLP

• (P) is unbounded – i.e. zLP = −∞ – and (D) is infeasible

• (D) is unbounded – i.e. wLP =∞ – and (P) is infeasible

• both (P) and (D) are infeasible

Another important relation between primal and dual solutions is given by the com-
plementary slackness conditions.

Proposition 2 If x∗ is an optimal solution of (P) and u∗ is an optimal solution of
(D), then

x∗j
(
(u∗)TA− cT

)
j

= 0 for all j, and

u∗i (b−Ax)i = 0 for all i

One important theorem that can be proved using LP-duality and complementary
slackness is the max-flow min-cut theorem [58]. It states, that given a directed
graph D = (V,A) with capacities on the arcs, the maximum flow between two nodes
r, s ∈ V is equivalent to the minimum capacity of an r-s-cut, compare [162].

Geometric Interpretation of Linear Programs

This section discusses important concepts and definitions with respect to the ge-
ometric interpretation of linear programs. These form the basis of the simplex
algorithm for solving LPs and for further properties that will be relevant in the
following sections.

The presentation of this part follows Nemhauser and Wolsey [143].

Definition 3 A polyhedron P ⊆ Rn is a set of points that satisfy a finite number
of linear inequalities, i.e. P = {x ∈ Rn : Ax ≥ b} where A is an m× n matrix and
b is vector in Rm.

12

2.1 Exact Methods

Since the side constraints of any LP (2.4) can be described in the form Ax ≥ b,
the set of feasible solutions to (2.4) obviously is a polyhedron. Each polyhedron
can be either infinitely large (unbounded) or bounded, in which case it is called a
polytope.

Definition 4 A polyhedron P ⊆ Rn is bounded if there exists a scalar ω ∈ R+ such
that P ⊆ {x ∈ Rn : −ω ≤ xj ≤ ω for j ∈ 1, . . . , n}. A bounded polyhedron is called
polytope.

Another property, which will turn out to be important is that a polyhedron is a
convex set.

Definition 5 T ⊆ Rn is a convex set if x, y ∈ T implies that λx + (1 − λ)y ∈ T ,
for all 0 ≤ λ ≤ 1.

Proposition 3 A polyhedron is a convex set.

For the following, we assume that A does not contain redundant equations, i.e.
rank(A) = m ≤ n and to be given an LP with equality constraints only, i.e.

min{cTx : Ax = b, x ∈ Rn
+}. (2.9)

As already mentioned any LP can be transformed into an equivalent LP correspond-
ing to (2.9) by adding slack and surplus variables. Hence, above assumption can be
taken without loss of generality.

Let aj , 1 ≤ j ≤ n, be the j-th column of A. Then A contains a nonsingular m×m
submatrix AB = (aB1 , . . . , aBm) = (B1, . . . , Bm). By reordering the columns of A,
we can write A as A = (AB, AN) such that ABxB + ANxN = b with x = (xB, xN).
Then a solution to (2.9) is given by xB = A−1

B b and xN = 0.

Definition 6 Let AB be nonsingular m ×m submatrix of A which is called basis.
Then x = (xB, xN), xB = A−1

B b, xN = 0, is a basic solution of the system Ax = b,
where xB is the vector of basic variables and xN the vector of nonbasic variables.
If A−1

B b ≥ 0, (xB, xN) is called a basic primal feasible solution and AB is called a
primal feasible basis.

13

Chapter 2 Methodologies

For the presentation of the simplex algorithm the definitions of adjacent basic solu-
tions and degeneracy are further relevant [143].

Definition 7 Two bases AB, AB′ are adjacent if they differ in only one column. If
AB and AB′ are adjacent, the two basic solutions they define are said to be adjacent.

Definition 8 A primal basic feasible solution x = (xB, xN), xN = 0, is degenerate
if (xB)i = 0, for some i.

Before being able to show that the set of basic feasible solution of an LP corresponds
to the set of vertices of its corresponding polyhedron, a few more definitions including
the important concept of valid inequalities are necessary.

Definition 9 A polyhedron P is of dimension k if the number of affinely indepen-
dent points in P is k + 1, which is denoted as dim(P) = k.

Definition 10 The inequality aTx ≥ bj is called a valid inequality for a set P if it
is satisfied by all points in x ∈ P.

Definition 11 If aTx ≥ bj is a valid inequality for P and F = {x ∈ P | aTx = bj},
F is called a face of P.

Definition 12 A face F of P is a facet of P if dim(F) = dim(P)− 1.

Definition 13 Let P be a polyhedron. A vector x ∈ P is an extreme point of P if
we cannot find two vectors y, z ∈ P, x 6= y, x 6= z, and a scalar 0 ≤ λ ≤ 1, such
that x = λy + (1− λ)z.

Note that one could alternatively characterize an extreme point of P as a zero-
dimensional face.

Corollary 2 Each polyhedron has only a finite number of extreme points.

Definition 14 Let P be a polyhedron. A vector x ∈ P is a vertex of P if there
exists some vector c such that cTx ≤ cTy holds for all y ∈ P, y 6= x.

14

2.1 Exact Methods

Theorem 3 Let P be a nonempty polyhedron and let x∗ ∈ P. Then the following
are equivalent:

• x∗ is a vertex

• x∗ is an extreme point

• x∗ is a basic feasible solution

From Corollary 2 and Theorem 3 we conclude that the number of basic feasible
solutions is finite for any LP and due to Theorem 4 at least one of them is an
optimal solution.

Theorem 4 Consider the linear programming problem of minimizing cTx over a
polyhedron P. Suppose that P has at least one extreme point and that there exists
an optimal solution. Then, there exists an optimal solution which is an extreme
point of P.

Theorem 5 A nonempty and bounded polyhedron is the convex hull of its extreme
points.

Comparing Linear Programming Formulations

To theoretically evaluate and compare different LP formulations for a problem, usu-
ally their corresponding polyhedra are compared. However, since different formula-
tions often involve different design variables one needs to project each of the poly-
hedra onto some common subspace, typically defined by the variables used in all
formulations that should be compared.

Definition 15 Let P = {(x, y) : Dx+By ≥ d} be a polyhedron. The projection of
P on the set of x-variables is defined as

projx(P) = {x | there exists some y with (x, y) ∈ P}

Using Definition 15 we can define the concept of domination between polyhedra.

Definition 16 Given two LP formulations P and P ′ with associated polyhedra P
and P ′, respectively. Let furthermore x be a set of variables included in both P and
P ′. Then P dominates P ′ if projx(P) ⊆ projx(P ′) and strictly dominates P ′ if
projx(P) (projx(P ′).

15

Chapter 2 Methodologies

It is also common to say P is stronger (or tighter) than P ′ if P strictly dominates
P ′.

However, the concepts of dominance and strict dominance can also be established
for LP formulations P , P ′ that do not involve a common subset of variables. In this
case P dominates P ′ if there exists a transformation that maps any feasible solution
of P into a feasible solution of P ′. If on the contrary, no such transformation from
P ′ to P exists, P strictly dominates P ′.

Solving Linear Programs

Linear programs can be solved in polynomial time using the ellipsoid method [107]
or interior point methods [102]. Although it might involve an exponential number
of steps [23], the simplex algorithm proposed by Dantzig in 1947 [44] is still widely
used due to its good practical performance.

The main idea of the simplex algorithm is to start from an initial basic feasible
solution and to iteratively move from one basic feasible solution to an adjacent one
in the so-called pivoting step. Given a basic feasible solution x = (xB, xN), in the
pivoting step, exactly one basic variable xi ∈ xB leaves the basis and one nonbasic
variable xj ∈ xN enters the basis, compare Definition 7. For deciding which of the
variables should leave and enter the basis, the reduced costs c̄j of each variable xj ∈ x
are considered.

Definition 17 Let x be a basic solution, B its associated basis matrix, and cB the
vector of costs of the basic variables. For each j, we define the reduced costs cj of
the variable xj as

cj = cj − cT
BB
−1Aj .

While the reduced costs of all basis variables are obviously equal to zero, Theorem 6
defines conditions for a basic feasible solution to be optimal.

Theorem 6 Let c̄ be the vector of reduced costs corresponding to a basic feasible
solution x and its associated basis matrix B.

• If c̄j ≥ 0, ∀j, then x is optimal.

• If x is optimal and non-degenerate, then c̄j ≥ 0, ∀j.

16

2.1 Exact Methods

If x is non-degenerate, by exchanging a basic variable by a nonbasic variable with
negative reduced costs, we obtain a basic feasible solution x′ whose cost is less than
those of x. Since the number of basic feasible solutions is finite, the simplex algorithm
will terminate after a finite number of pivoting steps in the non-degenerated case.

Note that, Theorem 6 allows for negative reduced costs for some variable in an
optimal but degenerated solution. However, similar optimality criterions consider-
ing degeneracy do exist. Nevertheless, in presence of degeneracy – i.e. if at least
one basis variable is equal to zero – a pivoting step might not modify the solution
and thus cycling might occur. To always ensure the termination of the simplex
method, one has to prevent cycling by considering so-called pivoting rules such as
the lexicographic pivoting rule or the smallest subscript rule, also known as Bland’s
rule.

Geometrically speaking, the simplex algorithm starts by a vertex of the polyhedron
corresponding to the given LP and iteratively moves to a neighboring vertex with
better objective value. Since, we are optimizing over a convex set (see Theorem 5)
the simplex algorithm terminates in a vertex – i.e. in a basic feasible solution –
corresponding to a global optimal solution.

Thus, if the simplex algorithm starts by an initial feasible solution, it will terminate
with an optimal solution after a finite number of steps. By solving an auxiliary
linear program involving additional artificial variables in its first phase, the so-called
two-phase simplex method guarantees to find an initial basic feasible solution if it
exists. The two-phase simplex then proceeds with the standard simplex method as
presented above in its second phase.

A more detailed description of the simplex method can for instance be found
in [23].

2.1.2 Integer Linear Programming

In many COPs arising in real world applications, decision variables need to have
integral values rather than continuous ones as assumed in the previous section.
These usually can be modeled as concrete instances of the following integer linear
program (IP)

(IP) zIP = min{cTx : x ∈ X} (2.10)

17

Chapter 2 Methodologies

where X = P ∩Zn+ and P = {x ∈ Rn | Ax ≥ b}. As for the LP (2.4), A is an m× n
matrix, c a vector of dimension n, and b a vector of dimension m, each of which
having rational data. Alternatively, we can write (2.10) as (2.11)–(2.13).

zIP = min cTx (2.11)
s.t. Ax ≥ b (2.12)

x ∈ Zn+ (2.13)

Further important formulations for modeling real world problems include mixed inte-
ger programs (MIPs) where only some design variables are restricted to be integral
and so-called 0-1 integer problems which are also called binary integer problems
(BIPs) where all variables are restricted to be binary, i.e. xi ∈ {0, 1}, 1 ≤ i ≤ n.

However, for simplicity we concentrate on pure integer linear programs (IPs) in the
following.

Note that the LP (2.4) corresponds to the IP (2.10) when removing the integrality
conditions. Thus, (2.4) is called the linear programming relaxation (LP relaxation) of
(2.10). Obviously, any feasible solution of (2.10) is feasible for (2.4) too. Furthermore
for any IP, the optimal solution value of its LP relaxation is a lower bound of its
optimal solution value, i.e. zLP ≤ zIP.

The following theorem shows a further important relation between LPs and IPs.

Theorem 7 Let P = {x ∈ Rn
+ : Ax ≥ b}, where A is a rational m × n matrix and

b is a rational vector of dimension m and X = P ∩Zn+. Then conv(X) is a rational
polyhedron.

Theorem 7 in particular implies that we can solve the IP (2.10), by solving the LP

min{cTx | x ∈ conv(X)}

However, finding a (compact) description of conv(X) is difficult for NP-hard com-
binatorial optimization problems. Thus other solution methods for solving IPs are
needed. Note that in general solving IPs is NP-hard.

18

2.1 Exact Methods

2.1.3 LP based Branch-and-Bound

Branch-and-bound is based on intelligent, restricted enumeration of an IPs feasible
solutions [144]. Given some IP F , branch-and-bound is based on successively parti-
tioning the search space into easier subproblems (branching) and the computation
of lower bounds zi for each considered subproblem Fi, i.e. bounding. Furthermore,
a global upper bound U is maintained and updated due to found feasible solutions.
Hence, after solving a subproblem Fi the following cases are possible:

• zi = U : The optimal solution to Fi has been computed.

• zi > U : The lower bound is higher than the global upper bound. Thus, Fi
does not contain a new best solution and can be pruned.

• zi < U : Fi might contain a new best solution and thus needs to be further
partitioned.

As summarized in Algorithm 2.1, in LP based branch-and-bound the LP relaxation
of a current subproblem is solved to generate lower bounds for a subproblem.

Algorithm 2.1: Generic LP based branch-and-bound algorithm
U =∞ // global upper bound
L = {F} // list of unprocessed subproblems
while L 6= ∅ do

choose a subproblem Fi ∈ L
L = L \ {Fi}
solve the LP relaxation of Fi to obtain its solution xLP

i and zi
if Fi is infeasible then

prune

if zi > U then
prune

if xLP
i is integer then
U = zi
new incumbent solution x∗ = xLP

i

prune

else
create subproblems F (1)

i , . . .F (k)
i of Fi

L = L ∪ {F (j)
i | 1 ≤ j ≤ k}

x∗ is the optimal solution of F

19

Chapter 2 Methodologies

Branching

An important design aspect of branch-and-bound approaches is how to break a prob-
lem Fi into subproblems. While in general any meaningful number of subproblems
can be generated, most approaches used in practice generate two subproblems only
by rounding a single fractional variable. If xj is a variable, for which its optimal solu-
tion x∗j to the LP relaxation of Fi is not integral, two subproblems can be generated
by adding the two constraints

xj ≤ bx∗jc and xj ≥ dx∗je, respectively.

Thus, F (1)
i = {x | x ∈ Fi ∧ xj ≤ bx∗jc} and F (2)

i = {x | x ∈ Fi ∧ xj ≥ dx∗je}.
Which among all fractional variables to chose best is a difficult question. Common
strategies are most infeasible, pseudocost, and strong branching [3].

Subproblem Selection

Finally, one needs to define which among the currently open subproblems to con-
sider next. Common rules that a priory define an order include depth first search
and breadth first search [24] while best upper bound and best estimate additionally
consider each subproblems bounds, see e.g. [143] for a more detailed discussion.

2.1.4 Cutting Plane Methods and Branch-and-Cut

Theorem 7 shows that any IP can be described as a corresponding LP. However, as
already mentioned finding such a description is usually not possible in practice for
NP-hard problems. In the following, cutting plane methods and their embedding
in branch-and-bound methods are discussed.

Cutting Plane Methods

Cutting plane methods are based on the concept of valid inequalities as introduced
by Definition 10. As shown by Algorithm 2.2 one way to solve the IP (2.10) is
to iteratively solve its linear relaxation and subsequently identify and add valid
inequalities for IP violated by the current LP solution in the separation problem as
long as the optimal LP solution x∗ is not integral.

20

2.1 Exact Methods

Definition 18 Given an IP (2.10) and x∗ ∈ Rn
+, x∗ /∈ conv(X). Then the separa-

tion problem is to find a valid inequality aTx ≥ bj that is violated by x∗.

Algorithm 2.2: Generic cutting plane algorithm
solve the LP relaxation (LP) of the IP (2.10)
Let x∗ be an optimal solution to (LP)
while x∗ is not feasible for the IP (2.10) do

find a valid inequality for (2.10) which is violated by x∗

add this inequality to (LP)
resolve (LP)

In general the number of valid inequalities that need to be added can be exponen-
tially large and one might need to terminate Algorithm 2.2 before finding an integer
solution. In this case a – often extremely tight – lower bound x∗ instead of an
optimal solution is generated by Algorithm 2.2.

Branch-and-Cut

LP based branch-and-bound approaches often perform relatively bad since too many
branching nodes need to be considered. In branch-and-cut methods, cutting planes
are generated at each node of the branch-and-bound tree to tighten the lower
bounds.

2.1.5 Column Generation and Branch-and-Price

As opposed to cutting plane methods which start with a small set of constraints and
subsequently identify and add valid inequalities, in column generation one dynami-
cally generates variables on demand only.

Column Generation

If a linear program involves a too large number of variables, its linear relaxation can-
not be solved directly. Formulations based on a (exponentially) large set of variables
occur for instance after reformulating an existing model by applying Dantzig-Wolfe
decomposition [46] to tighten its LP relaxation.

For solving an LP involving too many variables, delayed column generation as sum-
marized by Algorithm 2.3 is typically used. Instead of initially considering a subset

21

Chapter 2 Methodologies

of all constraints, in column generation one starts with a small subset of variables
and iteratively adds new variables to the model determined by solving the pricing
subproblem.

Column generation has been first used by Gilmore and Gomory [71, 72] for the
cutting stock problem and has been applied to a large number of problems since
then, see e.g. [16, 49, 130] for recent and comprehensive surveys.

Consider the linear program (2.14)–(2.16) to which we denote as the (linear) master
problem (MP).

(MP) min
∑
j∈J

cjxj (2.14)

s.t.
∑
j∈J

Ajxj ≥ b (2.15)

xj ≥ 0 ∀j ∈ J (2.16)

If J is too large, we cannot solve (MP) directly. Thus we define the so-called re-
stricted master problem (RMP) (2.17)–(2.19) where we consider only a small subset
of variables xj , j ∈ J̃ (J , otherwise (RMP) corresponds to (MP).

(RMP) min
∑
j∈J̃

cjxj (2.17)

s.t.
∑
j∈J̃

Ajxj ≥ b (2.18)

xj ≥ 0 ∀j ∈ J̃ (2.19)

According to Theorem 6, one needs to consider additional variables xj , j ∈ J \ J̃ ,
as long as at least one such variable has negative reduced costs. Given the vector
u ≥ 0 of dual variable values, the reduced costs for a variable xj , j ∈ J , are

cj = cj − uTaj . (2.20)

The pricing problem is to find at least one variable xj , j ∈ J \ J̃ , yielding negative
reduced costs, or to prove that no such variable exists.

Next to the classical Dantzig rule, in which the variable with the most negative
reduced cost is added in each iteration, various other schemes like full, partial, or
multiple pricing have been considered [37].

22

2.1 Exact Methods

Algorithm 2.3: General column generation algorithm.

choose a subset of variables xj , j ∈ J̃ ⊆ J , defining the RMP
solve RMP
while a variable xj , j ∈ J \ J̃ with cj < 0 exists do

determine a variable xj , j ∈ J \ J̃ , with negative reduced costs cj
add xj to RMP
resolve RMP

Despite the elegant idea, solving large scale linear programs by column generation
often involves computational difficulties. Vanderbeck [172] describes five major effi-
ciency problems that often occur in simplex based column generation. These include
the generation of irrelevant columns in the beginning (heading-in effect), primal de-
generacy leading to the plateau effect, and slow convergence (tailing-off effect).

Different approaches – to which typically is referred to as stabilization techniques –
have been proposed to overcome these problems, see e.g. [130] for a review. Problem
independent approaches include bounding the dual variable values [4], the use of
the boxstep method [134, 135], and the more flexible concept of stabilized column
generation [22, 53]. Ben Amor et. al [22] suggested the use of so-called dual optimal
inequalities to accelerate and speed-up the solution process and applied this concept
to the cutting stock problem. This problem specific concept has also been applied
to the three-stage two-dimensional bin packing problem by Puchinger et al. [152].

Branch-and-Price

Similar to branch-and-cut, which is the combination of branch-and-bound and the
generation of cutting planes at each node of the branch-and-bound tree, branch-and-
price combines column generation with branch-and-bound. Here, column generation
is used for solving each subproblem’s LP relaxation.

Special care must be taken with respect to branching decisions. In general branching
should be performed on the original design variables – i.e. before reformulating the
problem – since branching on the – potentially exponentially – large set of variables
usually leads to strong asymmetries in the search space resulting in a large amount
of branching nodes that need to be considered. Additional constraints imposed by
branching decisions might, however, complicate the pricing subproblem. Branch-
and-price approaches in which the pricing subproblems structure does not change
due to branching decisions are usually referred to as robust.

23

Chapter 2 Methodologies

2.1.6 Branch-and-Cut-and-Price

As suggested by its name, branch-and-cut-and-price refers to approaches where the
generation of cutting planes is performed together with column generation at each
node of a branch-and-bound search, see e.g. [15, 16]. The combination of row and
column generation was probably first used by Nemhauser and Park [142] for the edge
coloring problem. In their approach, however, the structure of the pricing subprob-
lem does change due to additionally generated cutting planes. More recently, several
successful so-called robust branch-and-cut-and-price algorithms have been proposed
where the pricing subproblems structure does not change due to cut generation, see
e.g. [48, 171].

2.1.7 Lagrangian Relaxation

Instead of computing an optimal solution to a given instance of a COP, Lagrangian
relaxation (LR) is a technique that can be used to derive lower bounds of the optimal
objective value. As will be discussed in the following, these lower bounds might be
tighter than a models LP relaxation.

Lagrangian relaxation whose name has been introduced by Geoffrion [70] has been
first applied to the traveling salesman problem by Held and Karp [90, 91]. Due to
the efficiency of some of the early approaches, the method has received considerable
attention since then, see e.g. [65] for a survey. Typically, Lagrangian relaxation
based approaches are not only used to derive dual bounds but additionally incor-
porate Lagrangian heuristics to derive primal feasible solutions during the course of
solving the so-called Lagrangian dual problem. Frequently, Lagrangian relaxation
approaches are hybridized with metaheuristic methods [86, 146] to further improve
the obtained primal solutions or incorporated into a branch-and-bound framework
to compute proven optimal solutions, see e.g. [94].

Consider the IP given by model (2.21)–(2.24) whose m side constraints consist of m1

“relatively easy” constraints Bx ≥ d and m2 = m−m1 “nasty” constraints Dx ≥ f
which significantly complicate the solution of the model.

zIP = min cTx (2.21)
s.t. Bx ≥ d (2.22)

Dx ≥ f (2.23)
x ∈ Zn+ (2.24)

24

2.1 Exact Methods

The Lagrangian relaxation (LR(λ)) of model (2.21)–(2.24) with respect to con-
straints (2.23) is defined by model (2.25)–(2.27). Here, model (2.21)–(2.24) is re-
laxed by dropping the complicating constraints (2.23) and a corresponding term
λ (f −Dx), which penalizes violations of these constraints is added to the objective
function. Vector λT ∈ Rm2

+ consists of the so-called Lagrangian multipliers λi ≥ 0,
1 ≤ i ≤ m2.

(LR(λ)) zLR(λ) = min cTx+ λT (f −Dx) (2.25)
s.t. Bx ≥ d (2.26)

x ∈ Zn+ (2.27)

Model (LR(λ)) is a relaxation of model (2.21)–(2.24) since any feasible solution x∗ to
(2.21)–(2.24) obviously is feasible for model (2.25)–(2.27), too. Furthermore, zLR(λ)
is a lower bound of zIP if λ > 0.

The Lagrangian dual problem (LDP) describes the resulting optimization problem
which is to find the best possible lower bound, i.e.

(LDP) zLDP = maxλ≥0z
LR(λ). (2.28)

It can be shown that the lower bounds obtained by solving (LDP) are tighter than
those of the simpler linear relaxation of model (2.21)–(2.24) if and only if model
(LR(λ)) does not possess the integrality property.

Definition 19 An IP has the integrality property if its optimal solution is equal to
the optimal solution of its linear relaxation.

Thus, when applying Lagrangian relaxation one should generally try to relax a set
of constraints such that the resulting formulation does not possess the integrality
property. However, it is also important that, given some Lagrangian multipliers λ,
model (LR(λ)) can be solved more efficiently than the original model.

25

Chapter 2 Methodologies

Solving the Lagrangian Dual Problem

For solving the Lagrangian dual problem (LDP) one needs to determine optimal
Lagrangian multipliers λ∗ such that zLR(λ∗) ≥ zLR(λ), ∀λ ≥ 0. Since zLR(λ) is
piecewise linear and convex, subgradient based methods are well suited for approx-
imately solving it [18]. Among different variants, the volume algorithm [13] has
proven to outperform other methods on a number of occasions, see e.g. [11, 86].
However, it sometimes might converge too quickly in which case it has been outper-
formed by other variants, see e.g. [29, 85].

Lagrangian Heuristic

When solving (LDP) by some subgradient based algorithm, one derives values for
all variables x in each iteration. However, these variable values usually do not cor-
respond to a primal feasible solution, since some of the problem’s constraints have
been relaxed. As mentioned earlier, Lagrangian relaxation approaches often incor-
porate so-called Lagrangian heuristics which usually try to derive primal feasible
solutions based on the actual variable values. Thus, both lower and upper bounds
are generated and when embedded in a branch-and-bound procedure, Lagrangian
relaxation can even be used for computing proven optimal solutions.

Lagrangian Decomposition

Lagrangian decomposition (LD) is a special form of Lagrangian relaxation where a
problem is decomposed into several subproblems by duplicating some variables and
adding corresponding coupling constraints – which are subsequently relaxed again –
to the model, compare [86].

To decompose model (2.21)–(2.24) additional variables y ∈ Zn+ and corresponding
coupling constraints (2.31) are included, yielding model (2.29)–(2.34).

zIP = min cTx (2.29)
s.t. Bx ≥ d (2.30)

x = y (2.31)
Dy ≥ f (2.32)
x ∈ Zn+ (2.33)
y ∈ Zn+ (2.34)

26

2.2 Heuristic Methods

Relaxing constraints (2.31) in the usual Lagrangian way and associating nonnegative
Lagrangian multipliers λ to them, yields the relaxed model (LD(λ)).

(LD(λ)) zLD(λ) = min cTx+ λT(y − x) (2.35)
s.t. Bx ≥ d (2.36)

Dy ≥ f (2.37)
x ∈ Zn+ (2.38)
y ∈ Zn+ (2.39)

Obviously, (LD(λ)) decomposes into two subproblems (2.40)–(2.42) and (2.43)–
(2.45), respectively, which can be solved independently.

min cTx− λTx (2.40)
s.t. Bx ≥ d (2.41)

x ∈ Zn+ (2.42)

min λTy (2.43)
s.t. Dy ≥ f (2.44)

y ∈ Zn+ (2.45)

Lagrangian decomposition is sometimes also used to denote Lagrangian relaxation
approaches where the constraints coupling the various subproblems are already
present in the original model, i.e. no additional artificial variables need to be in-
troduced.

2.2 Heuristic Methods

Realistic instances of NP-hard COPs often cannot be solved to proven optimal-
ity due to the available computational resources. In such situations, heuristic ap-
proaches which provide good but not necessarily optimal solutions often turn out to
be the only possible choice. The remainder of this section is organized as follows.
First the concept of constructive heuristics which aim to generate initial feasible
solutions from scratch is introduced, before considering approximation algorithms
additionally providing bounds on the maximum gap to an optimal solution. After
introducing local search, finally metaheuristic methods are discussed.

27

Chapter 2 Methodologies

2.2.1 Constructive Heuristics

Constructive heuristics build a solution to some COP from scratch. Typically, they
start from an empty solution and iteratively add certain solution components af-
terwards, until a feasible solution has been computed. Often, the decision which
component to add next is based on some weighting function and simply the compo-
nent with the smallest weight is taken. This yields the family of greedy heuristics.
While typically being relatively fast, the solutions obtained due to such heuristics
might not meet the requirements [27].

2.2.2 Approximation Algorithms

A particular class of heuristics are approximation algorithms that allow to a priori
state a bound of a solutions quality in the worst case. The following is due to
Kellerer et al. [104].

Let c∗(I) denote the optimal solution value of some instance I and cA(I) denote the
solution value computed by some algorithm A for some minimization problem.

Definition 20 An algorithm A is an approximation algorithm with absolute per-
formance guarantee k, k > 0, if

cA(I)− c∗(I) ≤ k
for all problem instances I.

Definition 21 An algorithm A is an approximation algorithm with relative perfor-
mance guarantee k if

cA(I)
c∗(I)

≤ k

for all problem instances I.

If its relative performance guarantee can be adjusted by means of a parameter ε, A
is usually called an ε-approximation scheme.

Definition 22 An algorithm A is an ε-approximation scheme if for every input ε,
0 < ε < 1,

cA(I)
c∗(I)

≤ 1 + ε

holds for all problem instances I.

28

2.2 Heuristic Methods

If the running time of an ε-approximation scheme is polynomial in the instance
size, A is called a polynomial time approximation scheme (PTAS), while it is called
fully polynomial time approximation scheme (FPTAS) if its runtime is additionally
polynomial in 1

ε .

More detailed reviews of approximation algorithms can be found in the books of
Vazirani [173] and Kellerer et al. [104].

2.2.3 Local Search

Starting from some initial feasible solution x ∈ S, local search [26, 144] searches for
better solutions in some neighborhood N(x) ⊆ S and replaces x by a better solution
x′ ∈ N(x) if one could be found. As detailed in Algorithm 2.4 this procedure is
repeated until some termination criterion is met, e.g. no better solution could be
found in N(x) or due to some maximum runtime bound.

Definition 23 A neighborhood structure is a function N : S → 2S which assigns
a set of neighbors N(x) ∈ S to each feasible solution x ∈ S.

Definition 24 Let x ∈ S be a feasible solution to an instance of some combinatorial
optimization problem and c(x) its objective value. Then x is called a local optimum
with respect to some neighborhood structure N if and only if c(x) ≤ c(x′), ∀x′ ∈
N(x).

Obviously a global optimum is a local optimum with respect to all neighborhood
structures.

Algorithm 2.4: Basic Local Search
x← initial solution
repeat

select x′ ∈ N(x)
if c(x′) ≤ c(x) then

x← x′

until termination condition is met

Concerning the method used to compute a neighbor solution x′ ∈ N(x) one usually
distinguishes random improvement where x′ is chosen randomly, next improvement
where N(x) is searched in a fixed order and the first solution better than x is taken,
and best improvement where the best solution x′ ∈ N(x) is taken.

29

Chapter 2 Methodologies

2.2.4 Metaheuristics

The term metaheuristic was introduced by Glover [73] and refers to a class of algo-
rithms which aim to efficiently and effectively explore a problem’s search space [27].
According to Voß [176], a metaheuristic can be defined as follows:

“A metaheuristic is an iterative master process that guides and modi-
fies the operations of subordinate heuristics to efficiently produce high-
quality solutions. It may manipulate a complete (or incomplete) single
solution or a collection of solutions at each iteration. The subordinate
heuristics may be high (or low) level procedures, or a simple local search,
or just a construction method for example.”

Two important classes of metaheuristic methods are local search based approaches
which extend the simple local search approach to escape from local optima and
nature inspired methods originating from analogies from nature.

In the following, variable neighborhood descent (VND), variable neighborhood
search (VNS), and greedy randomized adaptive search procedures (GRASP) are
discussed in more detail, as they will be used in the following chapters. Afterwards,
a short overview on further local search based methods as well as on nature inspired
metaheuristics is given.

Variable Neighborhood Descent

Variable neighborhood descent (VND) [82, 83, 84] is based on the observation that
a local optimum with respect to some neighborhood structure is not necessarily a
local optimum for another neighborhood structure, while a global optimum is a local
optimum for all neighborhood structures.

As detailed in Algorithm 2.5 the simple but effective idea of VND is to systematically
search a set of different neighborhood structures Nl, 1 ≤ l ≤ lmax, yielding a solution
that is a local optimum for all considered neighborhood structures.

Next to selecting a set of neighborhoods Nl(x), 1 ≤ l ≤ lmax, one needs to define the
order in which they are applied. Since choosing a good sequence is not always obvi-
ous, approaches based on dynamically deciding during runtime which neighborhood
structure to consider next have been proposed. Relaxation guided VND [153] con-
siders relaxations of each neighborhood to estimate the profit obtained by searching
it, while self-adaptive VND [97] dynamically reorders the neighborhood structures
based their success rates and execution times.

30

2.2 Heuristic Methods

Algorithm 2.5: Variable neighborhood descent(Solution x).

l = 1
while l ≤ lmax do

find the best neighbor x′ ∈ Nl(x)
if c(x′) < c(x) then

x = x′

l = 1

else
l = l + 1

return x

Variable Neighborhood Search

The various variants of variable neighborhood search (VNS) [82, 83, 84] are based on
the same observations as VND. Basic VNS, uses a set of k, 1 ≤ k ≤ kmax, shaking
neighborhood structures, which are usually larger than the VND’s neighborhood
structures, to escape from a local optimum generated by some local search method
which is applied after each shaking move. Another variant of VNS is general VNS,
which uses VND as a local improvement subordinate [84], see Algorithm 2.6. In this
case the set of shaking neighborhood structures must be different from those used
in the VND subordinate.

Algorithm 2.6: General variable neighborhood search (Solution x).

repeat
k = 1
while k ≤ kmax do

select x′ ∈ Nk(x) randomly // shaking
x′ = VND(x′) // local search by VND
if c(x′) < c(x) then

// new so far best local optimum
x = x′

k = 1

else
k = k + 1

until termination condition is met
return x

31

Chapter 2 Methodologies

Greedy Randomized Adaptive Search Procedure

A greedy randomized adaptive search procedure (GRASP) is a multi-start method
based on generating a feasible solution in a first phase and improving this solution by
local search in its second phase [64]. It has been first used by Feo and Resende [60],
see also [61] for a survey on GRASP by the same authors. As its name suggests,
the construction phase of GRASP is based on randomizing some greedy heuristic.
Here, instead of always adding the most promising solution component, a restricted
candidate list (RCL) of promising solution components is generated, among the one
to add is chosen at random.

Algorithm 2.7 gives a high-level description of GRASP. For applying GRASP to some
problem, next to defining a problem specific randomized greedy heuristic and some
local improvement method, one has to decide how to organize the RCL. Common
strategies include simply fixing its absolute size or dynamically adapting its size due
the difference between the currently best and worst potential solution component to
add.

Algorithm 2.7: Greedy randomized adaptive search procedure
initialize best solution x
repeat

x′ = ∅
while x′ is not a complete solution do

build RCL
select component xi from RCL randomly
x′ = x′ ∪ {xi}

improve x′

if c(x′) < c(x) then
x = x′

until termination condition is met
return x

Further Local Search based Metaheuristics

Beside the metaheuristics mentioned so far, several other local search based methods
utilizing different strategies to escape from local optima have been proposed. These
methods include simulated annealing [109], tabu search [74, 75], and iterated local
search [129]. In simulated annealing [109] solutions worse than a current one are
probabilistically accepted considering an acceptance criterion which is based on the

32

2.3 Hybrid Methods

simulation of a cooling process in metallurgy. Tabu search [74, 75] generally accepts
the best solution in the neighborhood of a current solution but restricts this neigh-
borhood by forbidding certain moves leading to just visited solutions. Iterated local
search [129] randomly perturbs reached local optimal solutions in order to continue
the search and escape the current bounds of attraction.

Nature inspired Metaheuristics

Another important strategy which is frequently used to develop metaheuristics is to
mimic successful behavior from nature. As opposed to the methods discussed above,
the resulting approaches often operate on a whole set of solutions, called population,
rather than on single solutions only. An important class of nature inspired methods
are evolutionary algorithms [10] which imitate the theory of evolution as described
by Darwin [47] and Mendel [139]. Here, new candidate solutions are created by
selecting parental solutions and inheriting their properties on a random basis. In
analogy to mutation in nature, these offsprings are further randomly modified to a
small degree. Concrete variants of this concept include evolution strategies [159],
evolutionary programming [66], and genetic algorithms [92].

A further important variant of evolutionary algorithms which additionally incorpo-
rates local search to further improve promising candidate solutions is called memetic
algorithms [141].

Another important stream of nature inspired metaheuristics are methods that try to
simulate cooperative behavior of individuals instead of their competition as described
above. Prominent methods in this area include the diverse variants of ant colony
optimization [38, 51] and the simulation of swarm intelligence such as particle swarm
optimization [105].

More complete and thorough overviews on above mentioned and further metaheuris-
tics can be found in the books of Dreo et al. [52] or Glover and Kochenberger [76].

2.3 Hybrid Methods

Each of the methods presented in the previous sections have their individual advan-
tages and drawbacks. While (meta-) heuristics are normally able to generate feasible
solutions relatively fast, usually no information on the gap to an optimal solution is
available. On the contrary, exact methods are in principle able to compute proven

33

Chapter 2 Methodologies

optimal solutions. However, due to their dramatical runtime and resource usage
increase if the problem sizes get larger, they might terminate yielding a huge opti-
mality gap or even no feasible solution at all after their maximum allowed runtime.
Thus, many successful hybrid methods trying to avoid the drawbacks of individual
methods have been proposed recently, see e.g. [25, 133, 158].

Hybrid methods can be classified into collaborative combinations where algorithms
exchange information but are not part of each other and integrative combinations,
where one method is used as a subordinate of another. In the collaborative approach
one can further distinguish between sequential, intertwined, and parallel approaches
depending on the execution order of the different methods [151, 156, 157].

Another important distinction can be made between approaches combining different
metaheuristic methods on the one hand and approaches combining exact methods
and metaheuristics on the other hand. In particular, combinations of metaheuristics
and mathematical programming techniques turned out to often be very fruitful [133];
such hybrids are also frequently called matheuristics.

Combinations of different metaheuristics have been successfully used in many ap-
plications. Prominent examples are memetic algorithms [141] or the integration
of local search based methods in population based metaheuristics such as EAs and
ACO approaches. See e.g. [25] for an overview on and several successful applications
of hybrid metaheuristics.

Using exact methods as subordinates of metaheuristic methods often allows for find-
ing extremely good solutions. In very large scale neighborhood search (VLSN) [5],
subproblems of appropriate size are frequently solved by exact methods. Successful
applications of this concept include dynasearch [39, 40] where dynamic program-
ming is used to explore large neighborhoods or the embedding of IP techniques
within VNS approaches [96, 148].

Other successful approaches are based on using metaheuristics within IP based meth-
ods. Those include the metaheuristic generation of cutting planes [80] as well as the
use of metaheuristics for solving the pricing subproblem in column generation meth-
ods, see e.g. [145, 150, 152].

Finally, another frequently used combination is the use of metaheuristics to obtain
tighter upper bounds within Lagrangian relaxation based methods, see e.g. [116,
146].

An extensive survey on combinations of integer programming techniques with meta-
heuristics can also be found in [154].

34

Chapter 3

The bmax-Survivable Network
Design Problem

3.1 Introduction

The bmax-Survivable Network Design Problem (bmax-SNDP) is a real-world commu-
nication network design problem which arises for instance in the expansion of fiber
optic networks. Recently, fiber-to-the-home has become economically feasible for
individual households in urban areas. However, covering larger districts with such
networks requires enormous financial resources from an operators point of view.
Since customers are usually not willing to pay significantly more than for exist-
ing lower bandwidth connections, good algorithms for finding cost-efficient network
layouts are crucial.

bmax-SNDP considers the problem of augmenting an existing network infrastructure
by additional links and switches in order to connect additional customer nodes.
Here, we distinguish between standard (type-1) customer nodes for which a single
link connection suffices and type-2 customer nodes representing business customers
which require a more reliable connection, ensuring connectivity even when a single
link or routing node fails. Since offering full redundancy to each type-2 customer
often is too expensive and does not pay off from an economic point of view, we
consider a problem variant where the redundancy condition for type-2 customers is
relaxed in the sense that a connection is allowed via a final non-redundant branch
line that does not exceed a certain length bmax. Thus, we restrict the length of the

35

Chapter 3 The bmax-Survivable Network Design Problem

non-redundant part of a connection taking a compromise between reliability and
construction costs.

In this chapter, we formally introduce bmax-SNDP in Section 3.2 and review previous
and related work in Section 3.3. Afterwards, we present two new mixed integer
programming approaches for solving bmax-SNDP to proven optimality based on an
exponential number of so-called connection variables which can be solved by branch-
and-price. As one main contribution within this section, we show how to significantly
speed up the solution of the linear relaxation of these models by using alternative
dual-optimal solutions in the pricing subproblem. Theoretical comparisons of the
corresponding polyhedra of those two as well to previously existing formulations are
given in Section 3.7.

Section 3.8 details a Lagrangian decomposition (LD) approach, while Section 3.9
introduces neighborhood structures for bmax-SNDP. In Section 3.10, we present a
heuristic for generating feasible solutions to bmax-SNDP as well as two metaheuris-
tic approaches based on variable neighborhood search (VNS) and greedy randomized
adaptive search (GRASP), respectively. The details of hybrid approaches combin-
ing Lagrangian decomposition with variable neighborhood descent (VND) are given
in Section 3.11. Test instances for benchmarking our various approaches and com-
putational results are discussed in Sections 3.12 and 3.13, before we finally draw
conclusions and outline potential future work in Section 3.14.

The approaches presented in this chapter have been previously published in [116,
122, 120, 123].

3.2 Problem Definition

Formally, we are given a connected undirected graph Go = (V o, Eo) representing
the spatial topology of the surrounding area of potential customers. Each edge e =
(u, v) ∈ Eo corresponding to a possible cable route between its end points u, v ∈ V o

is given with its length le ≥ 0 and costs co
e ≥ 0 for installing the corresponding fiber

optic link. The node set V o = S ∪C ∪ VI is the disjoint union of customer nodes C,
spatial nodes S (switches, possible Steiner nodes) and nodes of the already existing
network infrastructure VI. The set of customers C = C1∪C2 is partitioned into type-
1 customer nodes C1 without specific redundancy requirements and type-2 customer
nodes C2 that need to be redundantly connected by means of two node disjoint paths
to the existing infrastructure. Each customer node k ∈ C further has associated a
prize pk ≥ 0 modeling the expected return on investment when supplying customer

36

3.2 Problem Definition

C1 customer

C2 customer

spatial node

infrastructure node

potential route

existing route

Figure 3.1: An instance of bmax-SNDP.

k. Finally, the already existing network infrastructure is represented by the subgraph
(VI, EI), VI (V o, EI (Eo, see Figure 3.1.

In a first preprocessing step, we create a reduced graph G = (V,E) by shrinking
the whole existing network infrastructure into a single root node r ∈ V . From all
edges (u, v) ∈ Eo connecting a node u ∈ V o \ VI to the existing infrastructure – i.e.
v ∈ VI – only the cheapest edge (r, u) from the root node to u is included in E.
Formally, G = (V,E) is defined by its node set V = {r} ∪ S ∪ C, and its edge set
E = {(u, v) | u, v ∈ V ∧ (u, v) ∈ Eo} ∪ {(r, v) | ∃(u, v) ∈ Eo ∧ u ∈ VI ∧ v ∈ V o \ VI},
see Figure 3.2. Customers with associated prizes and edge lengths are adopted from
the original graph Go = (V o, Eo). Since we include one edge (r, v) for each original
edge connecting v with some node of the existing infrastructure u ∈ VI, edge costs
ce, are defined as follows:

ce =

{
co
e, if u, v /∈ VI

min{co
f | f = (w, v) ∈ Eo : w ∈ VI} otherwise

,∀e = (u, v) ∈ E.

Let G′ = (V ′, E′), V ′ ⊆ V , E′ ⊆ E, represent a solution network to an instance
of bmax-SNDP. The following conditions specify how customer nodes are to be con-
nected:

• Simple connection:
A type-1 customer node k from C1 is feasibly connected iff there exists a path
from node r to k.

• Redundant connection:
A customer node k from C2 is feasibly connected iff there exist two node (and
edge) disjoint paths from node r to k, see Figure 3.3.

37

Chapter 3 The bmax-Survivable Network Design Problem

root node

C1 customer

C2 customer

spatial node

potential route

Figure 3.2: The instance of bmax-SNDP from Figure 3.1 after shrinking the existing
infrastructure.

r k ∈ C2

first path

second path

Figure 3.3: A feasible connection to k ∈ C2 with bmax(k) = 0.

• bmax-redundant connection:
Occasionally, the biconnectivity condition for the nodes in set C2 is relaxed
in the sense that such a node k ∈ C2 may be connected to any biconnected
(Steiner or customer) node j ∈ V (the branch node of k) via a single path
of maximum total length bmax(k) > 0. This (optional) single path is called
branch line and bmax(k) the maximum branch line length for customer k, see
Figure 3.4. We denote the set of potential branch nodes for a customer k ∈ C2,
by B(k) ⊆ V .
Since each type-2 customer is a potential branch node of itself whereas k is
the only potential branch node if bmax(k) = 0, k ∈ B(k) holds for all type-2
customers k ∈ C2 independent of a concrete problem instance and a given
maximum branch line length.

Note that, we assume r /∈ B(k), ∀k ∈ C2, since above mentioned shrinking of the
existing infrastructure into the root node r might influence the optimal solution
value otherwise.

Regarding the objective, we distinguish between two alternative goals:

• In the Operative Planning Task (OPT) we focus on finding a minimum-cost

38

3.2 Problem Definition

r k ∈ C2

first path

second path

branch line

branch node

Figure 3.4: A feasible connection to k ∈ C2 with bmax(k) > 0.

subgraph G′ feasibly connecting all customers C, with the total costs being

oOPT(G′) =
∑
e∈E′

ce. (3.1)

This case can be considered a generalization of the classical Steiner tree prob-
lem on a graph (STP) where a special form of redundancy is required for the
nodes in C2.

• In the Strategic Simulation Task (SST) customers’ prizes are also considered,
and the objective is to determine a subset C ′ ⊆ C of customers which are
connected so that the costs for building the network minus the earned prizes
are minimized. In order to always have positive total costs, which eases some
parts of our algorithms and notations, we perform a simple transformation by
adding the constant

∑
k∈C pk to the objective function, yielding

oSST(G′) =
∑
e∈E′

ce −
∑
k∈C′

pk +
∑
k∈C

pk =
∑
e∈E′

ce +
∑

k∈C\C′
pk. (3.2)

This problem variant is a generalization of the prize-collecting Steiner tree
problem (PCSTP).

Figure 3.5 depicts an exemplary solution to the OPT variant of bmax-SNDP without
considering bmax-redundancy – i.e. bmax(k) = 0, ∀k ∈ C2 – while Figure 3.6 shows
an exemplary solution to the SST variant including bmax-redundancy.

As already the classical Steiner tree problem on a graph is NP-hard [103], this
obviously also holds for both of our problem variants. In the following presentation
of our solution approaches, we primarily consider the more complex SST case if not
explicitly stated and assume pk =∞, ∀k ∈ C, to include the OPT case.

39

Chapter 3 The bmax-Survivable Network Design Problem

root node

C1 customer

C2 customer

spatial node

potential route

realized route

Figure 3.5: An exemplary solution to the OPT variant of bmax-SNDP with bmax(k) =
0, ∀k ∈ C2.

root node

C1 customer

C2 customer

spatial node

potential route

realized route

Figure 3.6: An exemplary solution to the SST variant of bmax-SNDP with bmax(k) 6=
0, ∀k ∈ C2.

40

3.3 Related Work

3.3 Related Work

bmax-SNDP has been introduced by Bachhiesl et al. [9]. Ljubić [124] introduced its
name1 and pointed out the relation to {0, 1, 2}-SNDP [106] which corresponds to
bmax-SNDP if bmax(k) = 0, ∀k ∈ C2.

Wagner et al. [178] presented mixed integer programming (MIP) approaches for
bmax-SNDP based on multi-commodity flows. With the general purpose ILP-solver
CPLEX 10.0, instances with up to 190 total nodes, 377 edges but only 6 customer
nodes could be solved to proven optimality, and instances up to 2804 nodes, 3082
edges and 12 customer nodes could be solved with a final LP gap of about 7%. Un-
fortunately, this approach turned out to be unsuitable for larger instances and/or
in particular instances with larger number of customer nodes, as already solving
the linear programming (LP) relaxation of the MIP requires too much time due
to the huge number of variables involved. In [177], the same authors approached
bmax-SNDP with a different formulation based on connectivity constraints. While
this formulation involves only a reasonable number of variables, the number of in-
equalities is exponentially large. By using a branch-and-cut algorithm, this model
could be solved relatively well, and they were able to find proven optimal solutions
for instances with up to 190 nodes, 377 edges, and 13 customer nodes. For larger,
practical instances this approach unfortunately still is not applicable at all or finds
quite poor solutions with huge LP-gaps only.

Modeling redundant connections by pairs of reversely oriented paths, Chimani et
al. [36, 35] further came up with strong formulations for {0, 1, 2}-SNDP based on
multi-commodity flows and directed connection cuts, theoretically dominating those
of Wagner et al. [178, 177] for the case of bmax(k) = 0, ∀k ∈ C2. Their formulations
were able to solve larger instances and to consider a greater number of customer
nodes than the approaches of Wagner et al. However, their directed model cannot
be easily adapted to consider bmax-redundancy too.

The classical Steiner tree problem (STP) on graphs has been considered by many
authors, see e.g. [180] for a survey. Among the various authors that considered
integer programming models for the STP, Koch and Martin [110] described an ef-
fective branch-and-cut method based on directed connectivity cuts. More recently,
Bahiense et al. [11] presented a Lagrangian relaxation based approach which often
yields near-optimal solutions. Well known problem specific heuristic methods have
e.g. been described by Takahashi and Matsuyama [167] and Duin and Voß [54].

1Ljubić used the name kmax-SNDP.

41

Chapter 3 The bmax-Survivable Network Design Problem

The prize collecting Steiner tree problem (PCSTP) was introduced by Segev [163]
who considered the node weighted STP, which is a special version of the PCSTP.
The term “prize collecting” has first been used by Balas [12] for the prize collect-
ing traveling salesman problem. Ljubić et al. [128] presented an exact method for
the PCSTP based on directed connection cuts. Other successful mathematical pro-
gramming based approaches include a relax-and-cut by Cunha et al. [43] and a
cutting plane method by Lucena et al. [131]. Canuto et al. [30] described an ef-
fective multi-start local search approach based on perturbation of the nodes prizes,
where path-relinking and variable neighborhood search are used to further improve
the obtained solutions. Tests to reduce the number of nodes and edges that need
to be considered in an instance of the PCSTP have been described by Uchoa [170],
whereas Chapovska et al. [32] discuss complexity of and solution methods for several
variants of the PCSTP.

Other related problems are the various variants of the survivable network design
problem (SNDP) [68]. Among these, especially the “low connectivity” variants such
as above mentioned {0, 1, 2}-SNDP are relevant for bmax-SNDP, see e.g. [106, 164]
for relevant surveys.

3.4 Individual Optimal Connections

Most of the algorithms and approaches presented in this chapter require at some
point to solve the subproblem of computing the cheapest feasible connection from
the root node r to a single customer node k ∈ C. In this section, the correspond-
ing algorithms to efficiently solve these subproblems are detailed for each customer
type.

3.4.1 Optimal Connections to Type-1 Customers

Given, nonnegative edge costs c′e ≥ 0, ∀e ∈ E, the problem of computing the
cheapest connection between the root node r and some customer node k ∈ C1

can obviously be solved by a simple cheapest path calculation. Among the various
existing algorithms for computing cheapest paths – see e.g. [50, 21, 87, 88] – we use
a binary heap implementation of Dijkstra’s’ algorithm [50], resulting in a worst case
time complexity of O(|E|+ |V | log |V |).

42

3.4 Individual Optimal Connections

3.4.2 Optimal Connections to Type-2 Customers

Without yet considering bmax-redundancy, computing the cheapest connection to a
type-2 customer k ∈ C2 means to find a cheapest node disjoint pair of paths between
the root node r and k. Suurballe and Tarjan [165] showed how to compute a cheapest
arc-disjoint pair of paths between two nodes s and t on a directed graph (V,A) with
arc costs c′i,j ≥ 0, ∀(i, j) ∈ A, efficiently in time O(|A|+ |V | log |V |); see also [100].

Their algorithm consists of the following main steps:

1. Determine a shortest path tree from node s. Let d(i) represent the costs of a
cheapest path from node s to node i. We replace the costs of arc (i, j) with
c′i,j − d(j) + d(i).

2. Determine a shortest path P1 from s to t. Reverse all arcs on P1 and leave all
costs as computed in step one (= residual graph).

3. Solve the cheapest path problem between nodes s and t on this new graph
with the new edge costs. Let P2 represent this shortest path.

4. If any of the reversed P1 arcs belong to P2, eliminate these arcs from P1 and
P2 to form arc sets P ′1 and P ′2. The set P ′1 ∪P ′2 corresponds to a cheapest pair
of arc-disjoint paths between s and t.

Since G = (V,E) is undirected, we define a corresponding directed graph (V,A), by
replacing each edge e = (u, v) ∈ E by two oppositely directed arcs (u, v), (v, u) ∈ A.
Given nonnegative costs c′e ≥ 0, ∀e ∈ E, arc costs c′u,v, ∀(u, v) ∈ A, are given by
c′u,v = c′v,u = c′e, ∀e = (u, v) ∈ E.

The algorithm of Suurballe and Tarjan [165] can be used to compute a node-disjoint
pair of paths by applying it to the split graph of the original graph. The split graph
is obtained by replacing each node v ∈ V by a pair of nodes v′ and v′′. For each such
pair, we add an arc (v′, v′′) with zero costs, while we include arcs (u′′, v′), (v′′, u′) –
with arc costs c′u′′,v′ = c′u,v, c

′
v′′,u′ = c′v,u – for each pair of oppositely directed arcs

(u, v), (v, u) ∈ A.

It is obvious that a shortest pair of edge-disjoint paths from s′′ to t′ is also node-
disjoint, since each node v′ has only one outgoing arc and each node v′′ has only one
ingoing arc.

In case of bmax-redundancy, the above algorithm must further be extended. A naive
approach considers each node v ∈ B(k) in the bmax-neighborhood of node k ∈ C2 and
determines a cheapest pair of paths to this node. Furthermore, a cheapest length con-
strained shortest path from node k to each potential branch node must be computed.

43

Chapter 3 The bmax-Survivable Network Design Problem

The overall cheapest combination is the final result. Since, computing a (length)
constrained cheapest path is NP-hard [69] relaxing the biconnectivity constraints
by means of bmax-redundancy turns out to significantly increase the subproblem’s
complexity not only from a computational but also from a theoretic point of view.
However, several pseudo-polynomial algorithms for solving constrained shortest path
problems have been proposed, see e.g. [19, 56]. In our work, we use the approach
described by Gouveia et al. [79] which solves this problem for a customer k ∈ C2

in O(bmax(k)|E(k)|), where E(k) = {e = (u, v) ∈ E | u, v ∈ B(k)}. Since bmax(k)
and thus |E(k)| is typically rather small, we are able to solve this NP-hard problem
by above mentioned dynamic programming based approach without increasing the
computational effort too much.

Suurballe and Tarjan [165] further presented an algorithm for computing cheapest
arc disjoint pair of paths from a single source node to all other nodes with the same
worst case complexity as for the single destination variant. Here, the necessary
shortest path calculations on the various residual graphs – which are closely related
to each other – are combined into a single calculation.

However, since the allowed branch line lengths’ will be relatively small in all relevant
scenarios, the number of potential branching nodes |B(k)| can be regarded as a
constant for all type-2 customers k ∈ C2. Thus, above mentioned naive algorithm
is used in the following to compute optimal connections to type-2 customers k ∈ C2

with bmax(k) > 0.

3.5 The Undirected Connection Formulation for
bmax-SNDP

To model bmax-SNDP as a mixed integer program (MIP) we consider the set of all
possible feasible connections Fk for each customer k ∈ C. For type-1 customers
k ∈ C1, Fk corresponds to the set of all paths from the root node r to k, i.e.

Fk = {p ⊆ E | p forms a path from r to k},

while for type-2 customers k ∈ C2, Fk can be expressed as follows:

Fk = {p ⊆ E | p forms two node disjoint paths from r to some node j ∈ B(k) and
one path from j to k whose length does not exceed bmax(k)}.

44

3.5 The Undirected Connection Formulation for bmax-SNDP

We formulate the SST variant of bmax-SNDP by the following integer master problem
(Col) using variables 0 ≤ fkp ≤ 1, ∀k ∈ C, ∀p ∈ Fk, to indicate whether a corre-
sponding connection p ∈ Fk is realized (fkp = 1) or not (fkp = 0), decision variables
xe ∈ {0, 1}, ∀e ∈ E, to specify whether an edge e is part of the solution (xe = 1) or
not (xe = 0), and variables 0 ≤ yk ≤ 1, ∀k ∈ C, to denote whether a feasible route
to customer k is installed (yk = 1) or not (yk = 0). Variables yk are fixed to one in
the OPT variant.

(Col) z = min
∑
e∈E

cexe +
∑
k∈C

pk(1− yk) (3.3)

s.t.
∑
p∈Fk

fkp − yk ≥ 0 ∀k ∈ C (3.4)

xe −
∑

p∈Fk|e∈p

fkp ≥ 0 ∀k ∈ C, ∀e ∈ E (3.5)

xe ∈ {0, 1} ∀e ∈ E (3.6)
0 ≤ yk ≤ 1 ∀k ∈ C (3.7)

fkp ≥ 0 ∀k ∈ C, ∀p ∈ Fk (3.8)

Constraints (3.4) ensure that a customer’s prize can only be earned if it is feasibly
connected to r, while constraints (3.5) link connection variables to edge variables.
We define only lower and upper bounds for variables yk, and fkp in inequalities (3.7)
and (3.8). However, if all edge variables xe, ∀e ∈ E, are integral, each set of poten-
tially existing fractional connections to some customer k ∈ C can be replaced by a
integral connection without including additional edges and thus without modifying
the solutions objective value. Since customers prizes reduce the objective value,
variables yk, ∀k ∈ C, we further conclude that they will automatically become inte-
ger.

The linear relaxation of (Col) – the linear master problem (Col)LP – is given by
substituting the integrality constraints (3.6) by

xe ≥ 0 ∀e ∈ E (3.9)

Let µk ≥ 0, ∀k ∈ C, be the dual variables associated to the convexity constraints
(3.4) and πk,e ≥ 0, ∀k ∈ C, ∀e ∈ E, be the dual variables associated to the coupling
constraints (3.5).

45

Chapter 3 The bmax-Survivable Network Design Problem

Furthermore, let F = {fkp | k ∈ C, p ∈ Fk} be the set of all fkp variables representing
columns in (Col)LP. Since F consists of an exponential number of variables we
cannot solve (Col) directly, but use column generation [16, 49] for solving its linear
relaxation (Col)LP. Here, we define the restricted master problem (Col)RMP using
only a small subset of connection variables F̃ (F . Otherwise (Col)RMP corresponds
to (Col)LP.

When solving (Col)RMP we obtain optimal dual variable values µ∗k and π∗k,e, defining
reduced prices c̄k,p for variables fkp ∈ F \ F̃ :

ck,p = −µ∗k +
∑
e∈p

π∗k,e

The pricing problem is now to find (k∗, p∗) = argmink∈C,p∈Fk
{ck,p}. If ck∗,p∗ ≥ 0

we have obtained an optimal solution to (Col)LP. Otherwise, we add at least one
column with negative reduced costs and resolve (Col)RMP.

More generally speaking, in the pricing subproblem we have to find a feasible connec-
tion for some k ∈ C yielding negative reduced costs ck,p = −µ∗k +

∑
e∈p π

∗
k,e or prove

that no such connection exists. For this purpose we need to determine a cheapest
feasible connection on graph G = (V,E) with modified edge costs πk,e ≥ 0, ∀e ∈ E,
for each customer node k ∈ C. When the costs of such a connection are less then
µk, we have found an appropriate connection, i.e. the corresponding variable fkp can
be added to (Col)RMP. Since, we have strictly nonnegative edge costs, we can use
the algorithms explained in Section 3.4 for solving the pricing subproblem.

3.5.1 Analyzing the Restricted Dual Problem

It is well known that (simplex based) column generation approaches often suffer
from inefficiency resulting in a large number of required pricing iterations as well as
long computation times. Vanderbeck [172] describes five major efficiency issues of
simplex based column generation.

Several stabilization techniques to reduce their effects have been proposed, see
e.g. [53] or [130] for reviews on those methods. From the issues described by Van-
derbeck preliminary tests showed that primal degeneracy as well as the heading-in
effect are mainly relevant in our case, compare also Section 2.1.5. The occurrence of
primal degeneracy is based on the fact that typically only very few connection and
edge variables will have nonzero values in a solution of (Col)RMP.

46

3.5 The Undirected Connection Formulation for bmax-SNDP

Instead of using a problem-independent stabilization approach we analyze the dual of
(Col)RMP to take advantage of problem specific characteristics. Let λk ≤ 0 denote
the dual variables associated to inequalities (3.7). As mentioned before F̃ (F
denotes the set of variables representing connections to customers in (Col)RMP. Then
the dual of the restricted master problem (Col)RMP – i.e. the restricted dual problem
– for the SST variant is given by model (3.10)–(3.16).

max
∑
k∈C

λk + pk (3.10)∑
k∈C

πk,e ≤ ce ∀e ∈ E (3.11)

µk −
∑
e∈p

πk,e ≤ 0 ∀k ∈ C, ∀p ∈ Fk|∃fkp ∈ F̃ (3.12)

− µk + λk ≤ −pk ∀k ∈ C (3.13)
πk,e ≥ 0 ∀k ∈ C, ∀e ∈ E (3.14)
µk ≥ 0 ∀k ∈ C (3.15)
λk ≤ 0 ∀k ∈ C (3.16)

Let E′′ ⊆ E denote the subset of edges which are not part of any so far included
connection, i.e. E′′ =

{
e ∈ E | @fkp ∈ F̃ : e ∈ p

}
. For edges e ∈ E′′, only inequalities

(3.11) are relevant. Thus all values πk,e ≥ 0, ∀k ∈ C, ∀e ∈ E′′, are dual optimal as
long as

∑
k∈C πk,e ≤ ce holds.

Since almost the complete edge set E will not be in any included connection in the
beginning of our column generation procedure, dual variable values πk,e used as edge
costs in the pricing subproblem will not be meaningful. Furthermore, in order to be
able to solve (Col)LP efficiently, we aim to keep the number of included connection
variables as well as the set E \ E′′ as small as possible.

Generally speaking, the structure of model (3.10)–(3.16) imposes the generation of
many irrelevant columns having identical reduced prices. This observation explains
the occurrence of the heading in effect. This effect is even intensified by the fact
that CPLEX [98] – which we use for solving the linear relaxation of our model –
generates minimal dual-optimal values for all dual variables, i.e. most of them will
be zero.

For the OPT variant, the dual of (Col)RMP is given by model (3.17)–(3.21).

47

Chapter 3 The bmax-Survivable Network Design Problem

max
∑
k∈C

µk (3.17)∑
k∈C

πk,e ≤ ce ∀e ∈ E (3.18)

µk −
∑
e∈p

πk,e ≤ 0 ∀k ∈ C, ∀p ∈ Fk|∃fkp ∈ F̃ (3.19)

πk,e ≥ 0 ∀k ∈ C, ∀e ∈ E (3.20)
µk ≥ 0 ∀k ∈ C (3.21)

Although model (3.17)–(3.21) slightly differs from formulation (3.10)–(3.16) for the
SST case, the main observations about primal degeneracy and non-meaningful dual
variable values – especially for edges not part of any so far included connection –
remain valid.

3.5.2 Alternative Dual-Optimal Solutions

In the following, we detail our stabilization procedure for generating meaningful
dual variable values in the pricing problem. Here, we exploit different dual-optimal
solutions to improve the convergence properties of our column generation algorithm.
This approach can be interpreted as a stabilization technique that “centers” an
actual LP solution.

Let D∗ = (λ∗, µ∗, π∗) be an optimal solution to the restricted dual problem (3.10)–
(3.16). As shown in the previous section, for edges e ∈ E′′ all values πk,e ≥ 0, ∀k ∈ C,
are dual optimal as long as

∑
k∈C πk,e ≤ ce. Furthermore, for edges e ∈ E \ E′′, we

can increase the sum of dual variable values
∑

k∈C πk,e by δe = ce −
∑

k∈C πk,e.

As mentioned earlier CPLEX [98] generates minimal values for dual variables (i.e.
πk,e = 0, ∀k ∈ C, ∀e ∈ E′′; usually δe > 0 for some edges e ∈ E \ E′′). For creating
meaningful dual variable values and thus keeping the set of edges and connection
variables that will be finally included relatively small, we aim to increase variable
values πk,e, ∀k ∈ C, ∀e ∈ E, while maintaining dual optimality.

The probably simplest and most obvious strategy is to use the alternative dual
optimal solution D′ = (λ∗, µ∗, π′) with π′k,e = ce

|C| , ∀k ∈ C, ∀e ∈ E′′ and π′k,e = π∗k,e+
δe
|C| , ∀k ∈ C, ∀e ∈ E\E′′. However, as will be illustrated by our computational results

we can do even better by initially using different dual-optimal solutions D(k,d) =

48

3.6 The Directed Connection Formulation for bmax-SNDP

(
λ∗, µ∗, π(k,d)

)
, for all k ∈ C – controlled by parameter d (1 ≤ d ≤ |C|) – which

finally converge to D′ for d = |C|. When considering client k ∈ C in the pricing
problem, we use dual values π(k,d)

k,e = ce
d , ∀e ∈ E′′, and π(k,d)

k,e = π∗k,e+ δe
d , ∀e ∈ E \E′′.

Note that assuming π(k,d)
k′,e = 0, ∀k′ 6= k ∈ C, ∀e ∈ E′′, and π(k,d)

k′,e = π∗k,e, ∀k′ 6= k ∈ C,
∀e ∈ E \ E′′ we again only use dual optimal solutions when solving the pricing
problem. As shown in Algorithm 3.1 parameter d is initially set to one and gradually
incremented up to |C| in case no column with negative reduced cost could be priced in
and reset to one in case columns including new edges have been added to (Col)RMP.
Since we essentially use D′ if d = |C| we can terminate the column generation process
if no column with negative reduced costs could be found for d = |C|.

We further apply a simpler variant of D(k,d) where d is initially set to one and set to
|C| in case no connection yielding negative reduced costs could be identified. In this
strategy – we refer to the resulting dual optimal solutions by D(k,d′) – d will not be
decreased any more.

While the above mentioned strategies are feasible for both the SST as well as the
OPT variant of bmax-SNDP, we further consider a fourth approach for the SST
variant taking each customer’s prize into consideration. For each edge e ∈ E, we add
a value corresponding to its prize relative to the sum of all prizes, i.e. for all customers
k ∈ C we set π(p)

k,e = ce
pkP

l∈C pl
if e ∈ E′′ and π

(p)
k,e = π∗k,e + δe

pkP
l∈C pl

otherwise. The

resulting alternative dual optimal solution is denoted by D(p) =
(
λ∗, µ∗, π(p)

)
.

3.6 The Directed Connection Formulation for bmax-SNDP

Since directed formulations are in many cases theoretically stronger than undirected
ones, and frequently also outperform those from a computational point of view it
is natural to ask whether it is possible to replace the undirected formulation (Col)
presented in the previous section by a directed one.

Chimani et al. [36] showed that any feasible solution to {0, 1, 2}-SNDP can be trans-
formed into a directed graph with a simple path from r to each connected type-1 cus-
tomer and two oppositely directed, internally node disjoint paths between r and any
connected type-2 customer k ∈ C2. Interpreting a feasible connection to some cus-
tomer k ∈ C2 with bmax(k) > 0 as two independent connections – a non-redundant
from r to k and a fully redundant connection to its branching node v ∈ B(k) – the
orientability of any solution to bmax-SNDP follows from the result of Chimani et
al.

49

Chapter 3 The bmax-Survivable Network Design Problem

Algorithm 3.1: Column generation for (Col).

d = 1
create and add set of initial columns F̃
E′′ = {e ∈ E | @fkp ∈ F̃ : e ∈ p}
m = true
while m do

m = false

solve (Col)RMP

δe =
(
ce −

∑
k∈C πk,e

)
/d, ∀e ∈ E \ E′′

forall the k ∈ C do

c′e =

{
ce/d if e ∈ E′′,
πk,e + δe else.

∀e ∈ E

p = shortest connection to k using edge costs c′

Ep = {e ∈ E | e ∈ p}
if
∑

e∈Ep
c′e < µk then

add corresponding variable fkp to (Col)RMP

if Ep * E′′ then
d = 1

E′′ = E′′ \ (Ep ∩ E′′)
m = true

if m == false ∧ d < |C| then
m = true
d+ +

50

3.6 The Directed Connection Formulation for bmax-SNDP

In this section, we introduce model (dCol), resembling a directed variant of
model (Col), which exploits the orientability of solutions to bmax-SNDP. Let A =
{(u, v), (v, u) | e = (u, v) ∈ E} consist of two oppositely directed arcs for each orig-
inal edge e ∈ E. To model bmax-SNDP we utilize binary variables au,v ∈ {0, 1},
∀(u, v) ∈ A, indicating whether or not arc (u, v) ∈ A is part of the (oriented) solu-
tion (au,v = 1) or not (au,v = 0). As for model (Col), variables 0 ≤ yk ≤ 1, ∀k ∈ C,
specify whether a customer is feasibly connected according to its redundancy re-
quirements or not. We further use variables 0 ≤ hkp ≤ 1, ∀k ∈ C, ∀p ∈ Hk, where
Hk is the set of all feasible directed connections for customer k ∈ C, indicating
whether the corresponding connection is realized (hkp = 1) or not (hkp = 0).

Analogously to (Col), for type-1 customers k ∈ C1, Hk corresponds to the set of all
directed paths from the root node r to k, i.e.

Hk = {p ⊆ A | p forms a directed path from r to k},

while for type-2 customers k ∈ C2, Hk can be expressed as follows:

Hk = {p ⊆ A | p forms two oppositely directed, internally node disjoint paths
between r and some node j ∈ B(k) and a directed path from
j to k whose length does not exceed bmax(k)}.

Using directed arc costs cu,v = ce, ∀(u, v) ∈ A, e = (u, v) ∈ E, we can model
bmax-SNDP as model (dCol) described by (3.22)–(3.28).

(dCol) z = min
∑

(u,v)∈A

cu,vau,v +
∑
k∈C

pk(1− yk) (3.22)

s.t.
∑
p∈Hk

hkp − yk ≥ 0 ∀k ∈ C (3.23)

au,v −
∑

p∈Hk|(u,v)∈p

hkp ≥ 0 ∀k ∈ C, ∀(u, v) ∈ A (3.24)

au,v + av,u ≤ 1 ∀e = (u, v) ∈ E (3.25)
au,v ∈ {0, 1} ∀(u, v) ∈ A (3.26)
0 ≤ yk ≤ 1 ∀k ∈ C (3.27)

hkp ≥ 0 ∀k ∈ C, ∀p ∈ Hk (3.28)

51

Chapter 3 The bmax-Survivable Network Design Problem

Constraints (3.23) ensure that a customer’s prize can only be earned if it is feasibly
connected to r, while constraints (3.24) link connection variables to arc variables.
Inequalities (3.25) guarantee that at most one out of each pair of oppositely directed
arcs is used in a solution. Note that for variables yk and hkp only lower and upper
bounds are defined in (3.27) and (3.28). They will automatically become integer by
the same arguments as for model (Col).

As for model (Col), there are exponentially many variables H = {hkp | k ∈ C, p ∈
Hk} corresponding to feasible directed connections. Thus, we cannot directly solve
the linear relaxation (dCol)LP of model (3.22)–(3.28) which is given by substituting
inequalities (3.26) by

au,v ≥ 0 ∀(u, v) ∈ A. (3.29)

We apply column generation [16, 49] for solving (dCol)LP analogously to the undi-
rected connection formulation presented in the last section. Again, we start with
a small subset of connection variables H̃ (H considered in the restricted master
problem (dCol)RMP, and dynamically add further variables h ∈ H \ H̃ by iteratively
solving the pricing problem.

Let νk ≥ 0, ∀k ∈ C, be the dual variables associated to constraints (3.23) and
ωk,u,v ≥ 0, ∀k ∈ C, ∀(u, v) ∈ A, denote the dual variables associated to constraints
(3.24). Then, when solving (dCol)RMP reduced prices ck,p for connection variables
hkp ∈ H \ H̃ can be computed by

ck,p = −νk +
∑

(u,v)∈p

ωk,u,v.

In the pricing problem, we need to find (k∗, p∗) = argmink∈C,p∈Hk
{ck,p}. As long

as at least one variable with negative reduced costs does exist, we add it to H̃ and
resolve (dCol)RMP.

In other words, in the pricing problem we need to determine a cheapest directed
connection to each customer k ∈ C in D = (V,A) with arc costs ωk,u,v ≥ 0, ∀(u, v) ∈
A. If the total costs of such a connection are smaller than νk, the corresponding
connection variable has negative reduced costs and can be included in (dCol)RMP.
Since arc costs are non-negative we can efficiently solve the pricing problem for
type-1 customers, by simple cheapest path calculations. For customers k ∈ C2 with

52

3.6 The Directed Connection Formulation for bmax-SNDP

s1 t1

s2t2

. . .

s1 t1

s2t2

s t
. . .

Figure 3.7: Transformation of 2DP on (s1, t1), (s2, t2) into ODP on (s, t).

bmax(k) = 0 we need to compute the cheapest pair of oppositely directed, internally
node disjoint paths (ODP) between the root node r and k.

As shown in Figure 3.7 any instance of the directed disjoint pair of paths problem
(2DP) for two source-destination pairs (s1, t1), (s2, t2), which is known to be NP-
hard [67], can be transformed into an instance of ODP for s, t by adding nodes
s, t and arcs {(s, s1), (t2, s), (t1, t), (t, s2)}. We conclude that ODP as well as the
pricing problem for the more general case of customers k ∈ C2 with bmax(k) > 0 are
NP-hard.

While, several algorithms for solving the directed disjoint pair of paths problem
have been proposed for special cases such as planar graphs or dual arc costs [78], its
general case has gained surprisingly few consideration so far.

3.6.1 Solving the Pricing Problem by Mixed Integer Programming

We solve the pricing problem for each customer k ∈ C2 using the MIP (3.30)–(3.43),
where A(k) = {(u, v) ∈ A | u, v ∈ B(k)} denotes the set of potential edges in
the customer’s branch line. Each feasible connection is represented by a directed
cycle containing r and at least one potential branching node w ∈ B(k) and a path
from r to k using arcs not on this cycle for the branch line only. The directed
cycle containing r and the finally selected branch node is described by variables
qu,v ∈ {0, 1}, ∀(u, v) ∈ A. Variables su,v ∈ {0, 1}, ∀(u, v) ∈ A, indicate whether an
arc is part of the non-redundant path from the root to k, while variables 0 ≤ bu,v ≤ 1,
∀(u, v) ∈ A(k), denote whether an arc is part of the connections branch line, i.e.
those arcs that are on the non-redundant path described by variables su,v but not
on the cycle described by variables qu,v.

53

Chapter 3 The bmax-Survivable Network Design Problem

min
∑

(u,v)∈A

ωk,u,vqu,v +
∑

(u,v)∈A(k)

ωk,u,vbu,v (3.30)

s.t.
∑

(u,v)∈A

qu,v −
∑

(v,w)∈A

qv,w = 0 ∀v ∈ V (3.31)

∑
(r,v)∈A

qr,v = 1 (3.32)

qu,v + qv,u ≤ 1 ∀(u, v) ∈ E (3.33)∑
(u,v)∈A

qu,v ≤ 1 ∀v ∈ V \ {r} (3.34)

∑
v∈B(k)

∑
(u,v)∈A

qu,v ≥ 1 (3.35)

∑
(u,v)∈A

su,v −
∑

(v,w)∈A

sv,w =

−1 if v = r

1 if v = k

0 otherwise

∀v ∈ V (3.36)

su,v + sv,u ≤ 1 ∀(u, v) ∈ E (3.37)
su,v ≤ qu,v ∀(u, v) ∈ A \ A(k) (3.38)
bu,v ≥ su,v − qu,v ∀(u, v) ∈ A(k) (3.39)∑
(u,v)∈A(k)

lu,vbu,v ≤ bmax(k) (3.40)

qu,v ∈ {0, 1} ∀(u, v) ∈ A (3.41)
su,v ∈ {0, 1} ∀(u, v) ∈ A (3.42)
0 ≤ bu,v ≤ 1 ∀(u, v) ∈ A(k) (3.43)

The flow conservation constraints (3.31) ensure that the arcs (u, v) on which qu,v =
1 form a directed cycle. Constraints (3.33) avoid the simultaneous usage of two
oppositely directed arcs and constraints (3.34) prevent the repetition of nodes on
the cycle. These constraints, in conjunction with constraints (3.32) and (3.35) which
force the cycle to contain r and at least one potential branch node, ensure that the
final cycle corresponds to two oppositely directed, internally node disjoint paths
between r and some branch node. Due to the flow conservation constraints (3.36)
together with constraints (3.37), variables su,v, ∀(u, v) ∈ A, describe a directed path
from r to k. Furthermore, constraints (3.38) force this path to use arcs part of
the above mentioned cycle outside the bmax-neighborhood of k. Finally, constraints
(3.39) ensure that variables bu,v, ∀(u, v) ∈ A(k), indicate the arcs forming the branch
line, whereas constraints (3.40) restrict the branch line’s length.

54

3.6 The Directed Connection Formulation for bmax-SNDP

r
k ∈ C2

r
k

k′

a) Original graph: G = (V,A) b) Transformed graph: G′ = (V ′, A′)

Figure 3.8: Transformation to ESPPRC for k ∈ C2, with bmax(k) = 0.

3.6.2 Modeling the Pricing Problem as an Elementary Shortest Path
Problem with Resource Constraints

Without yet considering bmax-redundancy, the pricing problem for a customer k ∈
C2 can be interpreted as finding a cheapest cycle containing r and k. Finding
negative cost cycles is a problem which frequently occurs as pricing problem in
branch-and-price approaches from the context of vehicle routing and crew scheduling
problems. Here, algorithms for solving the (elementary) shortest path problem with
resource constraints (ESPPRC) are usually used for solving the pricing subproblem,
see e.g. [99]. Thus, ESPPRC which is NP-hard has recently gained great attention
and several methods for solving it have been proposed [31, 59].

We transform the pricing subproblem for a customer k ∈ C2 into an instance of
the ESPPRC on graph G′k = (V ′k, A

′
k) with the root node r being the source and

destination node. The transformed graph – see Figure 3.8 for an example – is defined
by its node set V ′k = V ∪ {k′} and its arc set A′k = {(u, v) ∈ A | u 6= k} ∪ {(k′, v) |
∃(k, v) ∈ A} ∪ {(k, k′)}. Here, we replace node k by two nodes k and k′ connected
by an arc (k, k′). Each arc (k, v) ∈ A emanating from k, is replaced by an arc
(k′, v) ∈ A′k going out from k′. We call k′ the split node of k while we refer to arc
(k, k′) as split arc of k. Since k has only one outgoing arc, each non-trivial path in
G′k containing k which does not end at node k must also contain the split arc (k, k′)
between k and its split node k′.

Arc costs c′u,v, are defined as

c′u,v =

−νk if u = k and v = k′

ωk,k,v if u = k′

ωk,u,v otherwise

∀(u, v) ∈ A′k.

55

Chapter 3 The bmax-Survivable Network Design Problem

r
k ∈ C2

u ∈ B(k)

v ∈ B(k)

r
k

k′

b) Transformed graph: G′ = (V ′, A′)

u

u′

v

v′

a) Original graph: G = (V,A)

Figure 3.9: Transformation to ESPPRC for k ∈ C2, with bmax(k) > 0.

As (k, k′) ∈ A′k is the only arc with negative costs c′k,k′ = −νk in G′k = (V ′k, A
′
k)

and each pair of oppositely directed internally node-disjoint paths between r and
k must have costs smaller than νk to price out favorably, we conclude that there
is a one-to-one correspondence between the set of elementary shortest paths from
r to itself with negative costs in G′k = (V ′k, A

′
k) and the set of oppositely directed

internally node-disjoint paths between r and k yielding negative reduced costs. As
discussed by Boland et al. [28], node disjointness can be ensured by additionally
adding one resource for each node v ∈ V ′k with a maximum resource consumption of
one for each individual node resource.

In the following, we slightly adapt the above mentioned transformation, in order to
generalize it to the case of type-2 customer nodes k ∈ C2 with bmax(k) > 0. Here,
we split each potential branch node v ∈ B(k) into nodes v, v′ and add an arc (v, v′)
between each pair of nodes corresponding to one original node. In case, a path in
G′k corresponding to a feasible connection between r and k uses an arc between
some potential branch node v and its split node v′, v will be the branch node of the
resulting connection. Since each potential branch node v ∈ B(k) except k can be used
either as a connection’s branch node or as a standard node of a connection to k, G′k
contains arcs (u, v) and (u, v′) for each arc (u, v) ∈ A, v ∈ B(k), where v 6= k. Arcs
(v, w) ∈ A going out from v ∈ B(k) are replaced by arcs (v′, w) ∈ A′k. Formally the
transformed graph G′k = (V ′k, A

′
k) is defined by its node set V ′k = V ∪{v′ | ∃v ∈ B(k)}

and its arc set A′k = {(u, v) ∈ A | u 6= B(k)} ∪ {(u′, v) | ∃(u, v) ∈ A ∧ u ∈
B(k)} ∪ {(u, u′) | u ∈ B(k)} ∪ {(u, v′) | ∃(u, v) ∈ A ∧ v ∈ B(k) ∧ v 6= k}, see
Figure 3.9.

Let ĉu ≥ 0, ∀u ∈ B(k), denote the costs of the precomputed branch line between u

56

3.6 The Directed Connection Formulation for bmax-SNDP

and k when using node u as branch node of the connection between r and k with
respect to arc costs ωk,u,w, ∀(u, v) ∈ A(k). Then arc costs c′u,v are defined as

c′u,v =

−νk + ĉu if u ∈ B(k)
ωk,u,w if v is the split node of w
ωk,w,v if u is the split node of w
ωk,u,v otherwise

∀(u, v) ∈ A′k.

Since only split arcs (u, u′) ∈ A′k, ∀u ∈ B(k), might eventually have negative costs
c′u,u′ = −νk + ĉu, and due to the above introduced transformation, there is a one-
to-one correspondence between the set of feasible connections p ∈ Hk that price out
favorably and the set of elementary shortest path from r to itself with negative costs
in G′k = (V ′k, A

′
k) using exactly one split arc.

Thus, by associating a resource of value one to each split arc, we can model the
pricing problem for customer k ∈ C as an elementary shortest path problem with
resource constraints (ESPPRC) with a maximum resource consumption of one. Fur-
thermore, above mentioned node resources for ensuring node disjointness need to be
additionally considered.

3.6.3 Analyzing the Restricted Dual Problem

In accordance with Section 3.5.1, we analyze the dual problem of (dCol)RMP to check
whether we need to expect the same issues as for model (Col) when solving the linear
relaxation of (dCol). If this is the case, we are interested if we can pursue a similar
stabilization approach as proposed for the undirected model in Section 3.5.2.

Let γe ≤ 0, ∀e ∈ E, denote the dual variable values associated to constraints (3.25)
and ρk ≤ 0, ∀k ∈ C, denote the dual variable values associated to constraints
(3.27). Then the restricted dual problem – i.e. the dual of the restricted master
problem (dCol)RMP – for the SST variant of bmax-SNDP is given by formulation
(3.44)–(3.51).

57

Chapter 3 The bmax-Survivable Network Design Problem

max
∑
k∈C

ρk + pk +
∑
e∈E

γe (3.44)∑
k∈C

ωk,u,v + γe ≤ cu,v ∀(u, v) ∈ A, e = (u, v) ∈ E (3.45)

νk −
∑

(u,v)∈p

ωk,u,v ≤ 0 ∀k ∈ C, ∀p ∈ Hk|∃hkp ∈ H̃ (3.46)

− νk + ρk ≤ −pk ∀k ∈ C (3.47)
ωk,u,v ≥ 0 ∀k ∈ C, ∀(u, v) ∈ A (3.48)
νk ≥ 0 ∀k ∈ C (3.49)
γe ≤ 0 ∀e ∈ E (3.50)
ρk ≤ 0 ∀k ∈ C (3.51)

Let A′′ = {(u, v) ∈ A | @hkp ∈ H̃ : (u, v) ∈ p} denote the set of arcs not included
in any connection of (dCol)RMP. As only inequalities (3.45) are relevant for arcs
(u, v) ∈ A′′ and γe ≤ 0, ∀e ∈ E, any variable values ωk,u,v ≥ 0, ∀k ∈ C, ∀(u, v) ∈
A′′, e = (u, v) ∈ E, are optimal with respect to model (3.44)–(3.51) as long as∑

k∈C ωk,u,v ≤ cu,v − γe. In particular, it is easy to see that if (u, v), (v, u) ∈ A′′, an
optimal solution with γe = 0, e = (u, v) ∈ E, and ωk,u,v = ωk,v,u = 0, ∀k ∈ C, does
exist.

Thus, next to the issue of degeneracy based upon the fact that only few arc and
connection variables will be nonzero in any solution to (dCol)RMP, we observe that
edge costs used in the pricing subproblems are not meaningful.

For the OPT variant the restrict dual problem is given by (3.52)–(3.57).

max
∑
k∈C

νk +
∑
e∈E

γe (3.52)∑
k∈C

ωk,u,v + γe ≤ cu,v ∀(u, v) ∈ A, e = (u, v) ∈ E (3.53)

νk −
∑

(u,v)∈p

ωk,u,v ≤ 0 ∀k ∈ C, ∀p ∈ Hk|∃hkp ∈ H̃ (3.54)

ωk,u,v ≥ 0 ∀k ∈ C, ∀(u, v) ∈ A (3.55)
νk ≥ 0 ∀k ∈ C (3.56)
γe ≤ 0 ∀e ∈ E (3.57)

58

3.6 The Directed Connection Formulation for bmax-SNDP

We conclude, that all relevant observations described above for the SST variant
remain valid for the slightly different formulation (3.52)–(3.57).

3.6.4 Alternative Dual-Optimal Solutions

Let (γ∗, ρ∗, ν∗, ω∗) be an optimal solution to the restricted dual problem (3.44)–
(3.51). As motivated for the undirected model in Section 3.5.2 we focus on increasing
dual variable values ω∗ used as arc costs in the pricing problem. Thus, the costs
for individual connections will rise and we expect that less connections are finally
included in (dCol)RMP. As inequalities (3.45) – respectively inequalities (3.53) – are
the only constraints imposing upper bounds for dual variables ω, we only need to
consider these constraints when increasing their values.

Let δu,v = cu,v − γe −
∑

k∈C ωk,u,v, ∀(u, v) ∈ A, e = (u, v) ∈ E, denote the total
amount by which we can increase the sum of dual variable values ω on arc (u, v). It
is easy to see that δu,v = cu,v, ∀(u, v) ∈ A : (u, v), (v, u) ∈ A′′, where A′′ ⊆ A denotes
the subset of arcs which are not part of any so far included connection2. Generally,
δu,v will also be greater than zero at least for some arcs (u, v) ∈ A \A′′.

As in Section 3.5.2 we pursue four strategies for generating alternative dual optimal
solutions. For D′ = (γ∗, ρ∗, ν∗, ω′), we set ω′k,u,v = ω∗k,u,v + δu,v

|C| , ∀k ∈ C, ∀(u, v) ∈ A.

As
∑

k∈C ω
′
k,u,v − ω∗k,u,v =

∑
k∈C

δu,v

|C| = δu,v, ∀(u, v) ∈ A, D′ is feasible for the
restricted dual problem in the OPT as well as in the SST case. Furthermore, since
the objective value does not change due to our adaptation, D′ is dual optimal.

We further apply the parameterized approach, where dual optimal solutions D(k,d) =
(γ∗, ρ∗, ν∗, ω(k,d)) with ω

(k,d)
k,u,v = ω∗k,u,v + δu,v

d , ∀k ∈ C, ∀(u, v) ∈ A, are used. Here,
we initialize d to be equal to one and gradually increment d up to |C| if no column
could be priced in and reset d to one in case a column including new arcs has been
added. We further apply its simpler variant where d is immediately set to |C| if no
connection variable prices out favorably and d will not be decremented any more.
We refer to the corresponding dual optimal solutions by D(k,d′). All above mentioned
strategies are valid for both, the SST as well as the OPT variant of our problem.

Finally in our last strategy which is feasible for the SST variant only we use dual
optimal solutions D(p) = (γ∗, ρ∗, ν∗, ω(p)) with ω

(p)
k,u,v = ω∗k,u,v + δu,v

pkP
l∈C pl

, ∀k ∈ C,
∀(u, v) ∈ A.

2Since CPLEX [98] will compute dual variable values equal to zero in this case.

59

Chapter 3 The bmax-Survivable Network Design Problem

3.7 Polyhedral Comparison

In this section, we theoretically compare the undirected and directed connection
formulation to each other as well as to previous formulations introduced by Wagner
et al. [178, 177] based on multi-commodity flows [178] and connectivity cuts [177],
respectively. Hereby, we denote by Pcol the polyhedron corresponding to the set of
feasible solutions to the linear relaxation of model (Col). Similarly, Pdcol denotes
the polyhedron induced by the LP relaxation of model (dCol), Pmcf those of the
multi-commodity flow formulation (3.58)–(3.76) from [178], and Pcut the polyhedron
corresponding to the cut formulation (3.77)–(3.93) from [177].

In their MCF formulation, Wagner et al. [178] used arc set Ar = {(r, j) ∈ E | j ∈ S}
denoting all arcs connecting r with Steiner nodes, the set of edges ES(k) = {(i, j) |
i, j ∈ V \ {r, k}} connecting two Steiner nodes with respect to customer k ∈ C,
as well as the corresponding arc set AS(k) = {(i, j), (j, i) | (i, j) ∈ V \ {r, k}}.
Furthermore, A(k) = {(i, k) | (i, j) ∈ E} denotes the set of arcs to customer k ∈ C,
and A′(k) = Ar ∪AS(k)∪A(k) the set of all arcs relevant for a customer k. Finally,
B(k) denotes the set of arcs (i, j) ∈ A′(k), with i, j ∈ B(k), i.e. those arcs that are
potentially used in a branch line of a connection to customer k.

In formulation (3.58)–(3.76) introduced by Wagner et al. [178] variables xi,j ∈ {0, 1},
∀(i, j) ∈ E, indicate whether edge (i, j) is used (xi,j = 1) in a solution or not
(xi,j = 0). Flow variables 0 ≤ mk

i,j ≤ 1, ∀k ∈ C, ∀(i, j) ∈ A′(k), and 0 ≤ nki,j ≤ 1,
∀k ∈ C2, (i, j) ∈ A′(k), model the connection to a customer node k. Here, the
second set of flow variables is used to achieve redundancy for type-2 customers.
Variables 0 ≤ qki,j ≤ 1, ∀k ∈ C2, ∀(i, j) ∈ B(k), indicate the edges used in the
branch line to node k. Finally, variables yk ∈ {0, 1}, ∀k ∈ C, indicate in the SST
variant whether customer node k is connected (yk = 1) or not (yk = 0). In the OPT
variant, these variables are fixed to one. Using these sets and variables, bmax-SNDP
can be described by the following MIP:

min
∑

(i,j)∈E

ci,jxi,j +
∑
k∈C

pk(1− yk) (3.58)

s.t.
∑

(i,j)∈A′(k)

mk
i,j −

∑
(j,i)∈A′(k)

mk
j,i =

−yk if j = r

yk if j = k

0 otherwise

∀k ∈ C, ∀j ∈ V (3.59)

60

3.7 Polyhedral Comparison

∑
(i,j)∈A′(k)

nki,j −
∑

(j,i)∈A′(k)

nkj,i =

−yk if j = r

yk if j = k

0 otherwise

∀k ∈ C2, ∀j ∈ V (3.60)

mk
i,j ≤ xi,j ∀k ∈ C, ∀(i, j) ∈ Ar ∪A(k) (3.61)

mk
i,j +mk

j,i ≤ xi,j ∀k ∈ C, ∀(i, j) ∈ ES(k) (3.62)

nki,j ≤ xi,j ∀k ∈ C2, ∀(i, j) ∈ Ar ∪A(k) (3.63)

nki,j + nkj,i ≤ xi,j ∀k ∈ C2, ∀(i, j) ∈ ES(k) (3.64)

mk
i,j + nkj,i ≤ xi,j ∀k ∈ C2, ∀(i, j) ∈ AS(k) (3.65)

mk
i,j + nki,j ≤ xi,j ∀k ∈ C2, ∀(i, j) ∈ A′(k) \B(k) (3.66)

mk
i,j + nki,j − qki,j ≤ xi,j ∀k ∈ C2, ∀(i, j) ∈ B(k) (3.67)

qki,j ≤ mk
i,j ∀k ∈ C2, ∀(i, j) ∈ B(k) (3.68)

qki,j ≤ nki,j ∀k ∈ C2, ∀(i, j) ∈ B(k) (3.69)∑
(i,j)∈B(k)

(mk
i,j + nki,j − qki,j)+

+
∑

(i,j)∈A′(k)\B(k)

(mk
i,j + nki,j) ≤ 1 ∀k ∈ C2, ∀i ∈ V \ {r, k}, (3.70)

∑
(i,j)∈B(k)

li,jq
k
i,j ≤ bmax(k) ∀k ∈ C2 (3.71)

xi,j ∈ {0, 1} ∀(i, j) ∈ E (3.72)
yk ∈ {0, 1} ∀k ∈ C (3.73)

0 ≤ mk
i,j ≤ 1 ∀k ∈ C, ∀(i, j) ∈ A′(k) (3.74)

0 ≤ nki,j ≤ 1 ∀k ∈ C2, ∀(i, j) ∈ A′(k) (3.75)

0 ≤ qki,j ≤ 1 ∀k ∈ C2, ∀(i, j) ∈ B(k) (3.76)

Lemma 8 The multi-commodity flow formulation (3.58)–(3.76) from [178] does not
dominate (Col), i.e. projx,y(Pmcf) * projx,y(Pcol).

Proof Consider the instance of bmax-SNDP given in Figure 3.10. Obviously, the
optimal solution to (Col)LP does not connect customer j ∈ C2 since it does not pay
off, i.e. all variables will be set to zero and thus the objective value is equal to five.
Pmcf , however, does contain the solution depicted in Figure 3.11, where both types
of flows – i.e. m and n – to j ∈ C2 each of which of value 0.5 are routed over the
same arcs. Thus, by setting yj = 0.5 and the resulting edge variables xr,h and xh,j to
one, the costs for connecting customer j in such a way are lower than the resulting

61

Chapter 3 The bmax-Survivable Network Design Problem

r j ∈ C2, pj = 5, bmax(j) = 0
cr,h = 1

cr,i = 10

ch,j = 1

ci,j = 10

h

i

Figure 3.10: An exemplary instance of bmax-SNDP with a single customer node.

yj = 1
2mj

r,h = 1
2

mj
h,j = 1

2

yj = 1
2nj

r,h = 1
2

nj
h,j = 1

2
yj = 1

2

xr,h = 1 xh,j = 1

⇒

Figure 3.11: A feasible solution of Pmcf for the instance given in Figure 3.10.

profit. Finally, the objective value of the solution depicted in Figure 3.11 is equal
to 4.5.

Lemma 9 Let k be an arbitrary customer k ∈ C connected in some – potentially
fractional – solution G′ ∈ Pcol and yk denote its variable value in G′. Furthermore,
let xe ≥

∑
p∈Fk|e∈p f

k
p , ∀e ∈ E, denote the variable values of all edge variables

induced by the (fractional) connections to k due to constraints (3.5).
Then, variable values xe, ∀e ∈ E, allow for describing a feasible connection to
customer k of value yk in Pmcf .

Proof Let fkp ∈ Fk be an arbitrary connection variable corresponding to connection
p ⊆ Fk. Since fk contains only feasible connections to customer k, we can derive a
feasible flow (mk, nk) of value fkp by orienting each edge e ∈ p towards k. Further-
more, as the length constraints with respect to the branch line are met by definition
of fk, we conclude that each undirected connection p ∈ fk can be represented as
a set of flow variables corresponding to a feasible connection of value fkp in model
(3.58)–(3.76).
As
∑

p∈Fk|e∈p f
k
p ≤ xe, ∀e ∈ E, holds due to constraints (3.5), we can simply use

above mentioned equivalence between connections and feasible flows for each con-
nection individually, yielding feasible flow variable values (mk, nk) that allow for
setting the customer variable yk to

∑
p∈Fk

fkp ≥ yk in model (3.58)–(3.76).

62

3.7 Polyhedral Comparison

Theorem 10 The undirected connection formulation (Col) strictly dominates the
multi-commodity flow formulation (3.58)–(3.76) from [178], i.e. projx,y(Pcol) (
projx,y(Pmcf).

Proof Due to Lemma 8, it is enough to show that any feasible solution to (Col)LP,
can be projected into a feasible solution to formulation (3.58)–(3.76) with identical
objective value, i.e. with identical values for xe, ∀e ∈ E, and yk, ∀k ∈ C. Since no
constraint of formulation (3.58)–(3.76) considers multiple customers simultaneously,
we can take into account each customer individually. Thus, Theorem 10 follows due
to Lemma 9.

In their second formulation based on connectivity cuts, Wagner et al. [177] used vari-
ables xi,j ∈ {0, 1}, ∀(i, j) ∈ E, indicating edges being part of a solution. Variables
ai,j ∈ {0, 1}, ∀(i, j) ∈ AD, are defined on the arc set AD, containing one arc going out
of r and two oppositely directed arcs for the remaining edges. Variables yk ∈ {0, 1},
∀k ∈ C, which are fixed to one in the OPT variant, specify whether a customer k
is connected or not. Binary variables zi ∈ {0, 1}, ∀i ∈ V , indicate whether a node i
has two node-disjoint paths to r and variables bkj ∈ {0, 1}, ∀k ∈ C2, ∀j ∈ B(k), de-
note whether j is the branching node of customer k. Finally, variables qki,j ∈ {0, 1},
∀k ∈ C2, ∀(i, j) ∈ B(k), describe the branch line of the connection to customer k.

min
∑

(i,j)∈E

ci,jxi,j +
∑
k∈C

pk(1− yk) (3.77)

s.t. a(δ−(S)) ≥ yk ∀k ∈ C, ∀S ⊆ V \ {r} | k ∈ S (3.78)
a(δ−(S)) ≥ 2zi ∀i ∈ V \ {r}, ∀S ⊆ V \ {r} | i ∈ S (3.79)
a(δ−V \{v}(S)) ≥ zi ∀i ∈ V \ {r}, ∀v ∈ V \ {r, i},

∀S ⊆ V \ {r, v} | i ∈ S (3.80)∑
j∈B(k)

bkj = yk k ∈ C2 (3.81)

bkj ≤ zj ∀k ∈ C2, ∀j ∈ B(k) (3.82)

qki,j ≤ ai,j ∀k ∈ C2, ∀(i, j) ∈ B(k) (3.83)

qk(δ−B(k)(S)) ≥ bkj ∀k ∈ C2, ∀j ∈ B(k) \ {k},
∀S ⊆ B(k) \ {j} | k ∈ S (3.84)∑

(i,j)∈B(k)

li,jq
k
i,j ≤ bmax(k) ∀k ∈ C2 (3.85)

63

Chapter 3 The bmax-Survivable Network Design Problem

yj = 1
2
, zj = 1

2

ar,h = 1 ah,j = 1

yj = 1
2

xr,h = 1 xh,j = 1

zh = 1
2

⇒

Figure 3.12: A feasible solution of Pcut for the instance given in Figure 3.10.

ai,j ≤ xi,j ∀(i, j) ∈ AD (3.86)
aj,i ≤ xi,j ∀(i, j) ∈ AD (3.87)
xi,j ∈ {0, 1} ∀(i, j) ∈ E (3.88)
ai,j ∈ {0, 1} ∀(i, j) ∈ AD (3.89)
yk ∈ {0, 1} ∀k ∈ C (3.90)
zi ∈ {0, 1} ∀i ∈ V (3.91)

bkj ∈ {0, 1} ∀k ∈ C2, ∀j ∈ B(k) (3.92)

qki,j ∈ {0, 1} ∀k ∈ C2, ∀(i, j) ∈ B(k) (3.93)

Lemma 11 The cut formulation (3.77)–(3.93) from [177] does not dominate (Col),
i.e. projx,y(Pcut) * projx,y(Pcol).

Proof Consider the instance given in Figure 3.10 with an optimal solution value to
the LP relaxation of (Col) equal to five, where all variable values are set to zero. As
the multi-commodity flow formulation, the cut model (3.77)–(3.93) does allow for
“half-connecting” customer j ∈ C2 via a single path where the corresponding arc
and edge variables are set to one, see Figure 3.12.

Lemma 12 Let k be an arbitrary customer k ∈ C connected in some – potentially
fractional – solution G′ ∈ Pcol and yk denote its variable value in G′. Furthermore,
let xe ≥

∑
p∈Fk|e∈p f

k
p , ∀e ∈ E, denote the variable values of all edge variables

induced by the (fractional) connections to k due to constraints (3.5).
Then, variables values xe, ∀e ∈ E, allow for describing a feasible connection of value
yk in Pcut.

Proof As already observed by Chimani et al. [36] model (3.77)–(3.93) uses di-
rected variables ai,j , ∀(i, j) ∈ AD, but is equivalent to an undirected model since
constraints (3.86) and (3.87) allow for simultaneously using oppositely directed arcs
corresponding to a single edge simultaneously without increasing the cost function,
i.e. ai,j = aj,i = xi,j , ∀(i, j) ∈ E, i 6= r, j 6= r.

64

3.7 Polyhedral Comparison

r

h ∈ C1, ph = 1

j ∈ C2, pj = 5, bmax(j) = 0

cr,h = 2

cr,i = 2

ch,j = 2

i ∈ C1, pi = 1

ci,j = 2

Figure 3.13: Another exemplary instance of bmax-SNDP.

Let p ∈ Fk be an arbitrary connection to customer k. Due to constraints (3.5), p
induces variable values x(p)

e ≥ fkp . By definition of Fk, p is a feasible connection to

k and thus setting ai,j = aj,i = x
(p)
e , ∀e ∈ p, allows for supplying customer k with a

value of fkp in model (3.77)–(3.93). Due to constraints (3.4), yk ≤
∑

p∈Fk
fkp holds

and thus Lemma 12 follows.

Theorem 13 The undirected connection formulation (Col) strictly dominates the
cut formulation (3.77)–(3.93) from [177], i.e. projx,y(Pcol) (projx,y(Pcut).

Proof Since model (3.77)–(3.93) considers each customer individually, Theorem 13
follows due to Lemmas 11 and 12.

Theorem 14 The directed connection formulation (dCol) strictly dominates the
undirected variant (Col), i.e. projx,y(Pdcol) (projx,y(Pcol).

Proof It is easy to see that projx,y(Pdcol) ⊆ projx,y(Pcol) holds, if projx,y(Pdcol)
denotes the obvious projection of Pdcol into the space of Pcol, i.e. xe = ai,j + aj,i,
∀e = (i, j) ∈ E.
Consider the instance given in Figure 3.13 and the optimal solution G′col of (Col)LP

to this instance as shown in Figure 3.14. Here, each type-1 customer is connected via
two connections. The corresponding edges are also used for connecting the type-2
customer j ∈ C2. Thus, it is possible to set yh = yi = 1 and yj = 0.5, while all
edge variables are set to 0.5. The objective value of the shown solution is o(G′col) =
6.5. On the other hand, the optimal oriented solution G′dcol of (dCol)LP does not
connect any customers, i.e. yk = 0, ∀k ∈ {h, i, j}, and au,v = 0, ∀(u, v) ∈ A. We
conclude that (dCol) strictly dominates its undirected variant, i.e. projx,y(Pdcol) (
projx,y(Pcol).

65

Chapter 3 The bmax-Survivable Network Design Problem

yh = 1

yj = 1
2

xr,h = 1
2

xr,i = 1
2

xh,j = 1
2

yi = 1
xi,j = 1

2

fh
1 = 1

2 fh
2 = 1

2

f i
1 = 1

2 f i
2 = 1

2

f j
1 = 1

2

⇒

Figure 3.14: A feasible solution of Pcol for the instance given in Figure 3.13.

3.8 Lagrangian Decomposition

In this section, we present a Lagrangian decomposition approach for bmax-SNDP
based on the abstract ILP model given by equations (3.94)–(3.98). Here, we utilize
decision variables xe ∈ {0, 1}, ∀e ∈ E, indicating whether or not edge e is part of
the solution, i.e. xe = 1 ↔ e ∈ E′. For customer nodes k ∈ C variables yk ∈ {0, 1}
denote whether or not feasible connections according to the customers’ types and
bmax(k) exist. Our model is based on the MCF formulation from [178], but all the
different types of flow variables for each customer k ∈ C on directed arcs are replaced
by simple variables fke ∈ {0, 1}, ∀e ∈ E, indicating whether or not edge e is part
of the single path (type-1) or pair of disjoint paths plus the eventual branch line
(type-2) for connecting customer k; fk denotes the vector of all these variables for
a customer k.

Let Fk, ∀k ∈ C, be the set of all incidence vectors on E corresponding to feasible
connections for customer k. We can now formulate the SST-variant of our problem
in the following abstract way:

66

3.8 Lagrangian Decomposition

min
∑
e∈E

cexe +
∑
k∈C

pk(1− yk) (3.94)

s.t. fke ≤ xe ∀k ∈ C, ∀e ∈ E (3.95)

fk ∈ Fk if yk = 1 ∀k ∈ C (3.96)

fke ∈ {0, 1} ∀k ∈ C, ∀e ∈ E (3.97)
xe ∈ {0, 1} ∀e ∈ E (3.98)

Inequalities (3.95) are called coupling constraints and enforce an edge to appear in
the solution when it is used for connecting at least one customer. Conditions (3.96)
ensure feasible connections for all selected customers (yk = 1). The OPT-variant of
the model is obtained by simply ignoring the second term in the objective function
and the conditions on yk in (3.96).

Note that in this form, the model is not yet a concrete ILP, as conditions (3.96) are
not expressed by means of linear inequalities. Ideally, we would substitute them by a
set of linear inequalities describing the convex hull conv(Fk) of all incidence vectors
of feasible connections for each customer k depending on variables yk. Unfortunately,
finding a (compact) set of such inequalities is not trivial. While this can be achieved
for simple (type-1) connections via a network flow formulation, this task is difficult
for the biconnected case involving branch lines (type-2).

The MCF model from [178] – see also Section 3.7 – represents a concrete instantiation
of this abstract model. As can be easily shown, however, it does not contain a
complete description of conv(Fk) but just a formulation that is valid for integer
solutions. We conclude that the MCF-formulation from [178] therefore is not as
strong as an “ideal” instantiation of the abstract model.

We relax the coupling constraints (3.95) of our abstract model in a classical La-
grangian fashion, i.e. by substituting them with corresponding penalty terms in the
objective function. This yields model (LR(λ)):

67

Chapter 3 The bmax-Survivable Network Design Problem

min
∑
e∈E

cexe +
∑
k∈C

pk(1− yk) +
∑
k∈C

∑
e∈E

λk,e · (fke − xe) = (3.99)

=
∑
k∈C

pk +
∑
e∈E

(
ce −

∑
k∈C

λk,e

)
xe +

∑
k∈C

(∑
e∈E

λk,ef
k
e − pkyk

)
(3.100)

s.t. fk ∈ Fk if yk = 1 ∀k ∈ C (3.101)

fke ∈ {0, 1} ∀k ∈ C, ∀e ∈ E (3.102)
xe ∈ {0, 1} ∀e ∈ E (3.103)

Parameters λk,e ≥ 0, ∀k ∈ C, ∀e ∈ E, are the Lagrangian multipliers, and for any
feasible instantiation of them an optimal solution of (LR(λ)) yields a lower bound
on the optimal solution value of our original abstract model [18].

For a specific selection of λ, this relaxation can be efficiently solved, since it decom-
poses into independent subproblems corresponding to models (3.104)–(3.106) and
(3.107)–(3.108), respectively.

min
∑
k∈C

pk +
∑
k∈C

(∑
e∈E

λk,ef
k
e − pkyk

)
(3.104)

s.t. fk ∈ Fk if yk = 1 ∀k ∈ C (3.105)

fke ∈ {0, 1} ∀k ∈ C, ∀e ∈ E (3.106)

Model (3.104)–(3.106) resembles |C| independent problems of determining individual
cheapest connections for each k ∈ C on a graph whose edge costs are λk,e. A
node k is finally connected (yk = 1) and the variables fke corresponding to the
identified connection are set to one if and only if the connection pays off, i.e. if∑

e∈E λk,ef
k
e ≤ pk. Otherwise, the connection is discarded by setting yk = 0 and

fke = 0, ∀e ∈ E.

min
∑
e∈E

(
ce −

∑
k∈C

λk,e

)
xe (3.107)

s.t. xe ∈ {0, 1} ∀e ∈ E (3.108)

Optimal values for variables xe, e ∈ E, are independently determined by simple
inspection, i.e. xe = 1 iff ce <

∑
k∈C λk,e, ∀e ∈ E.

68

3.9 Neighborhood Structures for Improving Primal Solutions

The Lagrangian dual problem is the challenge of finding an optimal vector of La-
grange multipliers λ∗ so that the lower bound obtained by (LR(λ∗)) becomes as
large as possible. As this maximization problem is convex and piecewise linear, sub-
gradient algorithms are well suited for this purpose [18]. While different variants of
such methods exist, the volume algorithm [13] has proven to be more effective than
several alternatives on various occasions [11, 86], and we therefore apply it here.
Also, our preliminary comparisons indicate the superiority of this algorithm over
the standard subgradient strategy as described in [18], see also Section 2.1.7.

3.8.1 Theoretical Comparison to the MCF Formulation

For each concrete instantiation of λ, all subproblems obtained by the Lagrangian
decomposition are always solved to optimality and integrality. Therefore, fk ∈
conv(Fk) holds for all k ∈ C, and the abstract constraints (3.96) of our model
(3.94)–(3.98) can be regarded as “ideally instantiated”. Assuming we would be able
to identify an optimal Lagrange vector λ∗, the lower bound obtained by (LR(λ∗)) is
at least as good as the lower bound determined by an LP relaxation of the model.
As already argued before, the MCF formulation from [178] is weaker than an “ideal”
instantiation of the abstract model, compare also Figure 3.11. We therefore conclude
that (LR(λ∗)) is stronger than the LP relaxation of the MCF formulation.

3.9 Neighborhood Structures for Improving Primal
Solutions

Our algorithms make use of three types of neighborhood structures. While the first
two aim to reduce the cost of a given solution, the last type consisting of two concrete
neighborhood structures tries to improve a solution by removing customers from a
candidate solution. Therefore, the latter is only applicable to the SST variant.

For our neighborhood structures, next to its node set V ′ ⊆ V and its edge set
E′ ⊆ E, each candidate solution G′ = (V ′, E′) is further represented by its set of
feasibly connected customers C ′ ⊆ C and the corresponding individual connections
X ′ = {E′k | k ∈ C ′}, where E′k denotes the set of edges used to connect customer
k. Note that there may exist multiple connections to a single customer node in a
solution G′ in which case we store only one of them.

Furthermore, for each connection E′k we maintain its internal structure consisting of
its branch node B(E′k) ∈ V ′, edge sets P (E′k), Q(E′k) ⊆ E′ of its two paths between
r and B(E′k) and finally the edge set of its branch line L(E′k) ⊆ E′. Note that we

69

Chapter 3 The bmax-Survivable Network Design Problem

root

C1 customer

C2 customer

e1
e2

e3

e4

e5

e6

e7

e14

e9

e10 e11

e12
e13

u

v

w

e8

b

E′
u = {e1, e2, e3} E′

v = {e4, e5, e6, e7, e8} E′
w = {e9, e10, e11, e12, e13, e14}

B(E′
u) = u B(E′

v) = b B(E′
w) = w

P (E′
u) = {e1, e2, e3} P (E′

v) = {e5, e6} P (E′
w) = {e9, e10, e11}

Q(E′
u) = ∅ Q(E′

v) = {e7, e8} Q(E′
w) = {e12, e13, e14}

L(E′
u) = ∅ L(E′

v) = {e4} L(E′
w) = ∅

spatial node

Figure 3.15: An exemplary candidate solution and the representation of its connec-
tions.

assume B(E′k) = k if bmax(k) = 0 or k ∈ C1 as well as define P (E′k) to be the “first”
path of a connection, i.e. P (E′k) is used for type-1 customers while Q(E′k) = L(E′k) =
∅ for type-1 customers, see Figure 3.15. Finally, to allow for efficient updates of a
solution with respect to connections, we maintain for each edge e ∈ E′ a list of the
customers that are connected via this edge: Me = {k ∈ C ′ | e ∈ E′k}.

3.9.1 Connection Exchange Neighborhood

The Connection Exchange Neighborhood (CEN) consists of all solutions differing
from the current solution G′ by exactly one connection E′k, see Algorithm 3.2. To
determine the best neighboring solution for a fixed customer k ∈ C ′, CEN calculates
the saving due to removing the corresponding connection E′k (which is the sum of all
edge costs exclusively used to connect k). The connection to k leading to minimum
additional costs is then determined by calculating the cheapest feasible connection
to k in a graph with edge costs c′e = 0, ∀e ∈ E′′ = E′ \ {e ∈ E′k | Me = {k}} and
c′e = ce, ∀e ∈ E \ E′′, see Figure 3.16 for an exemplary move.

For type-1 customer nodes as well as type-2 customer nodes with bmax(k) = 0,
the computational complexity of finding this new connection for one specific client
node k is bounded by O(|E|+ |V | log |V |), whereas the worst case complexity for a
single type-2 customer k with bmax(k) > 0 is O(bmax(k)|E(k)|+ |E|+ |V | log |V |), see

70

3.9 Neighborhood Structures for Improving Primal Solutions

Algorithm 3.2: Connection Exchange (Solution G′)

c′e = 0, ∀e ∈ E′
c′e = ce, ∀e ∈ E \ E′
dopt = 0
forall the k ∈ C ′ do

E′′ = {e ∈ E′k |Me = {k}}
c′e = ce, ∀e ∈ E′′
d =

∑
e∈E′′ ce

E′′k = shortest connection to k using edge costs c′

d =
∑

e∈E′′ ce −
∑

e∈E′′k
c′e

if d > dopt then
dopt = d
store solution G′ with E′′k replacing E′k as best solution

c′e = 0, ∀e ∈ E′′
return best solution

⇒k ∈ C2 k ∈ C2

Figure 3.16: An exemplary connection exchange for customer k ∈ C2.

71

Chapter 3 The bmax-Survivable Network Design Problem

Section 3.4. Thus, the overall complexity of completely searching CEN is bounded
by O(|C|(maxk∈C{bmax(k)|E(k)|}+ |E|+ |V | log |V |)).

3.9.2 Key-Path Exchange Neighborhood

A key-node of a solution G′ is a node v ∈ V ′ \ C ′ with node degree degG′(v) ≥ 3,
while a key-path is a path KP = (VP, EP) whose end nodes are either key-nodes,
connected customer nodes k ∈ C ′, or the root node r, while all other nodes are
Steiner nodes v ∈ V ′ \ (C ′ ∪ {r}) of degree two, i.e. degG′(v) = 2. This concept of
key-paths is well known for the STP and several metaheuristic methods utilizing a
key-path exchange neighborhood have been proposed, see e.g. [137]. The Key-Path
Exchange Neighborhood (KPEN) given in Algorithm 3.3 extends this concept by
exchanging key-paths while respecting node- as well as bmax-redundancy, see also
Figure 3.17 for a visualization of an exemplary path exchange.

Algorithm 3.3: Key-Path Exchange (Solution G′)

determine key-paths W
dopt = 0
forall the key-paths (VP, EP) ∈W do

// actual key-path connects its end nodes m,n
c′e = 0 ∀e ∈ E′ \ EP

c′e = ce ∀e ∈ EP ∪ (E \ E′)
choose e ∈ EP randomly
lmax =∞
forall the k ∈M ′e do

if e ∈ P (E′k) then
c′e =∞, ∀e ∈ E incident to a inner node of Q(E′k)

else if e ∈ Q(E′k) then
c′e =∞, ∀e ∈ E incident to a inner node of P (E′k)

else if e ∈ L(E′k) then
lmax = bmax(k)−∑e∈(L(E′k)\EP) le

(V ′P, E
′
P) = shortest path from m to n using c′e with max. length lmax

d =
∑

e∈EP
ce −

∑
e∈EP′

c′e
if d > dopt then

dopt = d
store solution G′ with (VP, EP) replacing (VP, EP) as best solution

return best solution

72

3.9 Neighborhood Structures for Improving Primal Solutions

⇒

k ∈ C2k ∈ C2

Figure 3.17: An exemplary key-path exchange between r and k.

KPEN of a candidate solution G′ consists of all feasible solutions that differ from
G′ by at most one key-path. To ensure feasibility, after exchanging a key-path KP,
three relevant cases need to be considered. If KP is used to connect type-1 customers
only, it may simply be replaced by any other path, while if it is used in a branch line
L(E′k) of a type-2 customer k ∈ C2, the maximum length of the new path may be at
most bmax(k)−∑e∈(L(E′k)\EP) le. Finally, if KP is used in the first path P (E′k) of a C2

customer k, all edges incident to “internal” nodes of its second path Q(E′k) may not
be used by the new key-path to guarantee node redundancy (and vice versa for the
alternate path Q(E′k)). All other edges e ∈ E′ are treated as pseudo-infrastructure,
i.e. c′e = 0.

It is obvious that the number of key-paths |W | of any solution G′ = (V ′, E′) is
smaller or equal to |E′|. Let B = max{bmax(k) : k ∈ C2} denote the maximum
value of bmax(k), ∀k ∈ C2, and E = max{|E(k)| : k ∈ C2} be the maximum number
of edges in the bmax-neighborhood of a type-2 customer node. Then, the worst
case complexity for finding the cheapest feasible path eventually replacing a key-
path (VP, EP) ∈W is O(max{B · E , |E|+ |V | log |V |}) and the overall complexity of
searching KPEN is O(|E′| (max{B · E , |E|+ |V | log |V |})).
However, despite its large worst case complexity, KPEN performs well in practice
since number of key-paths is usually relatively small in realistic solutions.

3.9.3 Connection Remove Neighborhood

Instead of exchanging a customer’s connection as in CEN, the Connection Remove
Neighborhood (CRN) – which is given in Algorithm 3.4 – removes the connection to
a single customer node k ∈ C ′.
CRN of a current solution G′ therefore consists of all solutions G′′ where exactly
one customer connected in C ′ is not connected anymore, i.e. C ′′ (C ′ such that

73

Chapter 3 The bmax-Survivable Network Design Problem

Algorithm 3.4: Connection Remove (Solution G′)

dopt = 0
forall the k ∈ C ′ do

d =
∑

e∈E′k|Me={k} ce − pk
if d > dopt then

dopt = d
store G′ without connection to k as best solution

return best solution

⇒k ∈ C2 k ∈ C2

Figure 3.18: An exemplary move, removing the connection to customer k.

|C ′ \ C ′′| = 1. As a customer’s connection may consist of O(|V |) edges only, CRN
consisting of |C ′| neighboring solutions can be searched in O(|C ′||V |) time. Fig-
ure 3.18 depicts an exemplary move, removing the connection to a type-2 customer
k ∈ C2.

3.9.4 Restricted two Connection Remove Neighborhood

CRN can be easily generalized to simultaneously remove multiple customer nodes.
However, removing the connections to l > 1 customers at once will result in |C ′|l
neighboring solutions and the computational effort of searching such a neighborhood
would be O(|C ′|l|V |). To limit the effort, we therefore concentrate on simultaneously
removing only pairs of customers i, j ∈ C ′, i 6= j, that share at least one edge
exclusively used by them, i.e. ∃e ∈ E′ | Me = {i, j}; see also Algorithm 3.5.
The Restricted two Connection Remove Neighborhood (R2CRN) can be searched in
O(|V |min(|E′|, |C ′|2)); see Figure 3.19 for an exemplary move.

74

3.9 Neighborhood Structures for Improving Primal Solutions

Algorithm 3.5: Restricted two Connection Remove Neighborhood (Solu-
tion G′).

P = {{u, v} | ∃e ∈ E′ : Me = {u, v}}
dopt = 0
forall the {u, v} ∈ P do

d =
∑

e∈E′k|Me∈{{u},{v},{u,v}} ce − pu − pv
if d > dopt then

dopt = d
store G′ without connection to u, v as best solution

restore best solution

⇒
k ∈ C2

k′ ∈ C2 k′ ∈ C2

k ∈ C2

Figure 3.19: An exemplary move, removing the connections to customers k and k′.

75

Chapter 3 The bmax-Survivable Network Design Problem

3.10 Metaheuristics

In this section we present metaheuristic approaches utilizing the neighborhood struc-
tures explained in Section 3.9 to compute feasible solutions. After describing a
construction heuristic in Section 3.10.1, we present a variable neighborhood search
(VNS) with embedded variable neighborhood descent (VND) in Section 3.10.2 and
– as an alternative – a GRASP/VND hybrid in Section 3.10.3.

3.10.1 Minimum Spanning Tree Augmentation Heuristic

We use a three-phase approach called Minimum Spanning Tree Augmentation
Heuristic (MSTAH) to construct a feasible solution for a given selection of cus-
tomers C ′ ⊆ C to be connected.

Initially, a Steiner tree is computed using the minimum spanning tree (MST) heuris-
tic from [111], see also [138]. This procedure determines a MST TD on the distance
network, which is the complete graph D = (C ′, C ′ × C ′) with node set C ′ and edge
costs d(u, v) corresponding to the costs of the cheapest paths between any u, v ∈ C ′
in G. A feasible solution G′′ to the Steiner tree problem is derived by further com-
puting a MST on G(TD) which is the subgraph of G induced by all edges part of
any cheapest path corresponding to an edge in TD.

In its second phase, MSTAH augments G′′ = (V ′′, E′′) by feasible connections to C2

customers. Such connections are determined by individually calculating the cheapest
feasible connection (compare Section 3.4) for all customers k ∈ C2 in random order.
All so far selected edges e ∈ E′′ are considered as pseudo-infrastructure, i.e. have
zero costs.

Finally, an edge minimal solution is extracted (i.e. no further edges can be deleted
without violating feasibility) by greedily removing unnecessary key-paths in random
order. A similar heuristic which does not consider bmax redundancy has been pre-
sented in [36]. Similar to MSTAH the heuristic from [36] uses the MST heuristic
[111, 138] to compute a Steiner tree. As opposed to MSTAH redundancy for C2

customers is ensured by adding a redundant route to each type-2 customer avoiding
any inner node of the existing primary path using so far selected edge as pseudo-
infrastructure.

76

3.10 Metaheuristics

Algorithm 3.6: Minimum Spanning Tree Augmentation Heuristic (Cus-
tomers C ′)

G′′ = (V ′′, E′′) = Steiner tree computed by MST heuristic
c′e = 0, ∀e ∈ E′′
c′e = ce, ∀e /∈ E′′
G′ = G′′

forall the k ∈ C2 ∩ C ′ do
fk = cheapest connection to k using edge costs c′

G′ = G′ ∪ fk
update c′ according to fk

make edge minimal
determine solution structure

3.10.2 Variable Neighborhood Search

We use the general VNS scheme with VND as embedded local improvement [82]
as described in Section 2.2.4. In VND, we alternate between CEN, KPEN, CRN,
R2CRN in this order, with the latter two considered only in the SST variant.

Our shaking algorithm used to escape local optima modifies a solution G′ by exclud-
ing a subset of its Steiner nodes as well as changing the set of connected customers
C ′ in the SST variant: A set of l = 1, . . . , lmax = b |C|2 c Steiner nodes VF ⊆ V ′ \ C
of the current solution G′ is randomly chosen for removal. Furthermore, we select
a set of l customer nodes VC ⊆ C at random. The set of customers C ′′ connected
in the new solution G′′ is C ′′ = C ′4VC, i.e. we add those customers of VC that are
currently unconnected while removing the so far connected ones. Finally, we apply
MSTAH using the following adapted edge costs c′ with a sufficiently large value for
M (M � maxe∈E ce).

c′e =

M if e is incident to a nodes v ∈ VF,

0 if e ∈ E′ and e not incident to a node v ∈ VF,

ce else.

Edge costs c′ ensure the creation of a new solution G′′ that is in general similar to
G′ while the Steiner nodes selected for exclusion will not be used unless there is no
other option to obtain a feasible solution G′′. Algorithm 3.7 summarizes the details
of the VND approach.

77

Chapter 3 The bmax-Survivable Network Design Problem

Algorithm 3.7: VND for bmax-SNDP.
l = 1
while l ≤ 4 do

switch l do
case 1:

x′ = CEN(x) // see Algorithm 3.2

case 2:
x′ = KPEN(x) // see Algorithm 3.3

case 3:
x′ = CRN(x) // see Algorithm 3.4

case 4:
x′ = R2CRN(x) // see Algorithm 3.5

if c(x′) < c(x) then
x = x′

l = 1

else
l = l + 1

return x

78

3.11 Combining Lagrangian Decomposition and Variable Neighborhood Descent

3.10.3 Greedy Randomized Adaptive Search Procedure

As an alternative to the general VNS, we also consider a GRASP in which local
search is again performed by the above mentioned VND, see Algorithm 3.7. A
similar approach utilizing node- and path-based neighborhoods has been already
proposed for the classical STP by Martins et al. [137]. They used a modified version
of the MST heuristic [111, 138] in the construction phase. Similarly, we modify our
construction heuristic MSTAH by randomizing Kruskal’s algorithm for computing
the MST on the distance networkD. Let dmax = max{d(u, v) | ∀(u, v) ∈ C ′×C ′} and
dmin = min{d(u, v) | ∀(u, v) ∈ C ′ × C ′} be the maximum and minimum distances,
respectively. Instead of always adding the cheapest feasible edge that connects two
yet unconnected components, the randomized spanning tree construction selects the
edge to be included next randomly from a restricted candidate list consisting of all
feasible edges (u, v) ∈ C ′×C ′ with d(u, v) ≤ dmin +α(dmax−dmin) with 0 < α ≤ 1.

3.11 Combining Lagrangian Decomposition and Variable
Neighborhood Descent

As described in Section 3.8 we solve the Lagrangian dual problem of determining
optimal Lagrangian multipliers λ∗ by the volume algorithm. In each iteration we
need to determine optimal xe variables as well as fke variables for the current set
of Lagrangian multipliers λ. The latter are computed by calculating individual
cheapest connections for each customer k ∈ C and eventually choosing to connect k
in case it pays off. Obviously, the graph G′ = (V ′, E′) induced by the set of edges
E′ = {e ∈ E | ∃k s.t. fke = 1} is a primal feasible solution. This offers multiple
ways of hybridizing the Lagrangian decomposition approach with metaheuristics in
order to obtain better primal solutions and reduce the gap between lower and upper
bounds.

Here, we pursue two alternatives: Either we immediately try to improve promising
solutions gained by the iterations of the volume algorithm, or we store the N best
solutions obtained by the volume algorithm and try to improve them after termina-
tion of the volume algorithm. In both cases, we use VND with CEN, KPEN, CRN,
and R2CRN in this order to generate a local optimum for a given candidate solution
(CRN and R2CRN are again only considered in the SST variant). According to the
classification of hybrid metaheuristics given in [156] the latter approach is a sequen-
tial hybridization with respect to the order of execution, while the former falls into
the category of interleaved hybridization, see also Section 2.3.

79

Chapter 3 The bmax-Survivable Network Design Problem

As the time for performing VND on a candidate solution is not negligible, it is
critical to apply it wisely on a well-chosen subset of candidate solutions only. In
the interleaved approach, we found the following self-adaptive strategy with the
exogenous parameters δ, γ, and βmax to work well. Let G′ and G′best be the current
and so far best solutions obtained by the volume algorithm, respectively. VND is
applied to G′ iff o(G′) ≤ (1 + β)o(G′best). Preliminary tests indicated that a good
value for β is not easy to find as it depends on the problem instance, and so we
automatically adapt it after every δ iterations as follows. Let z be the ratio of how
often VND has been applied during the last δ iterations of the volume algorithm. If
z < γ we set β = min(2β, βmax) while β = max(β/2, βmin) if z > γ. Concrete values
for all parameters will be given in Section 3.13.

3.12 Test Instances and Environment

Real world instances from a German city [8] have been used to test our approaches.
Table 3.1 details their individual characteristics, while Table 3.2 highlights the num-
ber of potential branching nodes and edges for all used values of bmax. Note that in
each experiment the value of bmax is identical for each type-2 customer node and we
write bmax = 30 instead of bmax(k) = 30, ∀k ∈ C2, in the following.

Table 3.1: Instance set characteristics.

Set # |V | |E| |C| |C| |C1| |C1| |C2| |C2|
ClgSE-I1 25 190 377 5-8 5.9 3-5 3.8 2-3 2.1
ClgSE-I2 15 190 377 11-17 13.8 7-12 8.9 4-7 4.9
ClgSE-I3 15 190 377 8-12 9.6 5-8 6.0 3-6 3.6
ClgN1B-I1 20 2804 3082 11-14 11.8 8-11 8.5 3-4 3.3
ClgN1B-I2 19 2804 3082 7-11 9.0 3-6 4.1 4-6 5.0
ClgME-I1 25 1757 3877 6-10 7.2 4-7 5.0 2-3 2.3
ClgME-I2 15 1523 3290 11-14 12.2 8-11 8.7 3-4 3.5

All computational experiments have been performed on a single core of an Intel
Xeon E5540 with 2.53GHz. IBM CPLEX 12.1 [98] has been used to solve the multi-
commodity flow model (MCF) from Wagner et al. [178] as well as its linear relaxation
(MCF)LP. We used SCIP 1.2.0 [2, 182] with IBM CPLEX 12.1 [98] as embedded LP
solver for solving (Col) and (dCol) as well as their linear relaxations (Col)LP and
(dCol)LP, respectively.

Note that CPLEX 12.1 is approximately three times faster than SCIP 1.2.0 with

80

3.13 Computational Results

Table 3.2: Average number of potential branching nodes and edges per instance set
for bmax(k) ∈ {30, 50, 100}, ∀k ∈ C2.

bmax = 30 bmax = 50 bmax = 100
Set B(k) E(k) B(k) E(k) B(k) E(k)
ClgSE-I1 12.93 17.07 26.23 41.43 86.54 144.30
ClgSE-I2 10.23 12.58 29.47 42.33 131.01 235.36
ClgSE-I3 10.62 13.29 32.84 47.51 119.54 210.67
ClgN1B-I1 10.47 9.82 23.20 24.10 68.89 77.59
ClgN1B-I2 7.92 6.94 15.04 14.10 40.53 40.24
ClgME-I1 17.70 28.10 39.08 70.11 120.93 243.47
ClgME-I2 12.29 18.64 24.96 42.54 63.93 120.93

CPLEX 12.1 as an embedded LP solver3. An absolute time limit of 7200 CPU-
seconds has been used for all experiments.

3.13 Computational Results

In the following we summarize all obtained computational results. First, a detailed
comparison of the proposed exact models (Col), (dCol), and the MCF formulation
of Wagner et al. [178] is given. Unfortunately, the undirected cut formulation from
the same authors [177] does not work properly when using CPLEX 12.1 and when
compiled with activated optimization flags on a 64 bit. Hence, a fair comparison to
the cut formulation is not possible and it is not considered in the following.

Afterwards, we compare the results of the Lagrangian decomposition approach from
Section 3.8 to its two hybrid variants as described in Section 3.11. A comparison of
the VND, VNS and GRASP approaches from Section 3.10 is given before we finally
compare the upper bounds obtained by each group’s individual best method.

Since preliminary tests indicated identical trends for the OPT variant, we primarily
concentrate on the more complex SST variant of bmax-SNDP in the following. Fur-
thermore, to analyze the influence of the size of the bmax-neighborhood, we consider
different values for bmax for each instance set.

3http://scip.zib.de

81

Chapter 3 The bmax-Survivable Network Design Problem

3.13.1 Results on Exact Models

When solving (Col) we initialize F̃ by all variables corresponding to connections
obtained by applying MSTAH plus connections obtained from a single run of VND.
For (dCol) we pursue the same strategy, but additionally need to orient each of the
obtained connections. Using the method described by Chimani et al. [36] we initially
orient the solutions obtained by MSTAH and VND, respectively, and afterwards
adopt the oriented connections obtained in this way.

Solving (Col) and (dCol) has been further configured as follows. For (Col) we add
the cheapest connection to each customer k ∈ C to the restricted master problem
in each pricing iterations if it has negative reduced costs.

Unfortunately, preliminary tests showed that solving the pricing subproblem for
(dCol) by algorithms for the elementary shortest path problem with resource con-
straints – as discussed in Section 3.6.2 – is too time consuming already for relatively
small instances. Too many labels need to be considered for each node and thus, this
approach turned out to perform much worse than the MIP based approach discussed
in Section 3.6.1. Hence, we do only consider the MIP based approach in the follow-
ing. To speed-up the pricing for type-2 customers, we return the first found solution
that prices out favorably instead of trying to find a proven optimal solution in each
execution. Thus, as for (Col) we add at most one connection for every customer in
each pricing iteration.

As opposed to our problem definition in Section 3.2, we allow for the root node r
being a potential branching node of some type-2 customer k ∈ C2. Otherwise, we
would restrict ourself to a too small set of feasible values of bmax. Since the MIP for
solving the pricing subproblem of (dCol) does not allow this case, we additionally
apply a directed variant of the length constrained shortest path algorithm in this
case; compare Section 3.4.

Linear Programming Relaxations

Table 3.3 depicts the average improvement and corresponding standard deviations in
percent of the LP relaxation values of (Col) and (dCol) over (MCF). Furthermore,
these values are additionally given for (dCol) compared to (Col).

The results from Table 3.3 confirm the results of our theoretical comparison from
Section 3.7. While the LP relaxation values of (MCF) and (Col) are – for the con-
sidered instances – equal for the OPT variant without considering bmax-redundancy

82

3.13 Computational Results

Table 3.3: Relative LP relaxation values and corresponding standard deviations in
% for (MCF), (Col), and (dCol).

Variant Set (Col)LP−(MCF)LP

(MCF)LP [%] (dCol)LP−(MCF)LP

(MCF)LP [%] (dCol)LP−(Col)LP

(Col)LP [%]

OPT, bmax = 0

ClgSE-I1 0.00 (0.00) 1.63 (2.38) 1.63 (2.38)
ClgSE-I2 0.00 (0.00) 8.84 (4.08) 8.84 (4.08)
ClgSE-I3 0.00 (0.00) 5.53 (4.55) 5.53 (4.55)
ClgN1B-I1 0.00 (0.00) 2.78 (2.32) 2.78 (2.32)
ClgN1B-I2 0.00 (0.00) 0.95 (0.89) 0.95 (0.89)

SST, bmax = 0

ClgSE-I1 0.05 (0.23) 1.68 (2.35) 1.63 (2.38)
ClgSE-I2 0.14 (0.55) 9.30 (5.07) 9.13 (4.65)
ClgSE-I3 0.88 (2.47) 8.02 (5.31) 7.09 (4.84)
ClgN1B-I1 3.07 (6.67) 5.29 (7.1) 2.58 (2.29)
ClgN1B-I2 2.12 (5.05) 3.09 (4.7) 1.36 (1.47)

SST, bmax = 30

ClgSE-I1 7.06 (5.07) 8.81 (5.65) 1.75 (2.36)
ClgSE-I2 5.66 (2.63) 19.39 (5.95) 12.99 (4.66)
ClgSE-I3 4.80 (2.89) 12.2 (5.07) 7.07 (4.01)
ClgN1B-I1 5.88 (7.08) 9.07 (7.68) 2.72 (1.42)
ClgN1B-I2 4.03 (5.52) 5.76 (5.44) 1.58 (1.89)

SST, bmax = 50

ClgSE-I1 9.61 (8.98) 11.88 (10.14) 2.17 (3.05)
ClgSE-I2 5.85 (3.48) 24.17 (6.81) 17.32 (5.31)
ClgSE-I3 6.53 (3.78) 13.04 (6.42) 6.08 (3.95)
ClgN1B-I1 2.45 (3.16) 5.53 (3.35) 2.97 (2.00)
ClgN1B-I2 4.21 (6.16) 5.72 (6.36) 1.65 (1.91)

SST, bmax = 100

ClgSE-I1 8.10 (11.94) 10.77 (13.70) 2.07 (2.58)
ClgSE-I2 3.39 (2.57) 23.24 (7.27) 19.14 (4.88)
ClgSE-I3 2.75 (2.56) 13.10 (8.16) 10.29 (6.57)
ClgN1B-I1 2.37 (3.95) 6.07 (4.95) 3.55 (2.28)
ClgN1B-I2 1.06 (2.03) 1.87 (1.01) 1.49 (1.18)

– i.e. bmax(k) = 0, ∀k ∈ C2 – the values obtained from solving (Col)LP are signif-
icantly better for all other configurations and instance sets. Furthermore, the LP
relaxation values of (dCol) clearly dominate those of (Col)LP.

Tables 3.4 and 3.5 analyze the efficiency of the various approaches for using alter-
native dual-optimal solutions in the pricing subproblems of (Col) as proposed in
Section 3.5.2. As previously described, D∗ simply uses the obtained dual variable
values without any modification, while D′ equally splits the potential increase for
each edge over all |C| subproblems. D(k,d) refers to the fine-grained variant controlled
by parameter d, while D(k,d′) is the compromise between D(k,d) and D′ where d is
never decreased. Finally, D(p) which is valid for the SST variant only, denotes the
strategy considering each customers prize.

From Table 3.4, we conclude that all variants are able to solve the linear relaxations

83

Chapter 3 The bmax-Survivable Network Design Problem

Table 3.4: Median CPU-times for solving the LP relaxation of (MCF) and the vari-
ous variants of (Col). Best values are marked bold.

(Col)LP

Variant Set (MCF)LP D∗ D′ D(k,d′) D(k,d) D(p)

OPT, bmax = 0

ClgSE-I1 0.09 0.55 0.16 0.11 0.13 -
ClgSE-I2 0.34 5.26 2.83 2.10 1.03 -
ClgSE-I3 0.20 3.30 0.40 0.34 0.40 -
ClgN1B-I1 43.55 94.48 21.57 11.98 13.48 -
ClgN1B-I2 58.27 203.53 41.52 14.05 12.19 -

SST, bmax = 0

ClgSE-I1 0.10 0.58 0.20 0.12 0.13 0.24
ClgSE-I2 0.35 5.99 4.15 1.12 1.11 2.79
ClgSE-I3 0.19 1.15 0.41 0.22 0.36 0.40
ClgN1B-I1 42.82 116.25 19.26 10.90 16.04 25.32
ClgN1B-I2 79.55 137.68 66.10 13.32 15.24 51.76

SST, bmax = 30

ClgSE-I1 0.15 0.86 0.51 0.30 0.38 0.45
ClgSE-I2 0.86 6.45 4.34 2.62 2.38 3.79
ClgSE-I3 0.33 2.48 1.00 0.58 1.03 1.11
ClgN1B-I1 190.48 124.61 32.63 20.85 31.28 41.04
ClgN1B-I2 1070.66 291.45 76.64 30.09 34.72 93.97

SST, bmax = 50

ClgSE-I1 0.18 1.11 0.49 0.40 0.53 0.39
ClgSE-I2 0.82 6.26 4.20 3.13 4.31 4.18
ClgSE-I3 0.41 3.60 1.28 1.11 2.01 1.42
ClgN1B-I1 212.07 220.80 39.01 24.70 54.66 39.99
ClgN1B-I2 1144.86 391.44 103.83 40.02 55.76 136.04

SST, bmax = 100

ClgSE-I1 0.15 3.04 0.95 0.74 1.28 1.21
ClgSE-I2 0.58 23.80 11.29 8.63 15.78 10.80
ClgSE-I3 0.37 9.40 2.97 1.97 4.94 3.48
ClgN1B-I1 214.67 540.45 98.94 59.61 125.14 105.93
ClgN1B-I2 1281.95 652.77 296.17 78.53 104.47 338.19

of the smaller ClgS instances quite efficiently. On the one hand, (MCF)LP usually
can be solved slightly faster then (Col)LP for these instances. On the other hand
the obtained bounds due to (Col)LP are better than those of (MCF)LP. For larger
instances, (Col)LP can be additionally solved more efficient than (MCF)LP, especially
when using alternative dual-optimal solutions according to D′, D(k,d′), D(k,d), or
D(p). Among these, D(k,d′) performs better than the other three.

Furthermore, we conclude that considering bmax-redundancy yields an enormous
increase in terms of necessary CPU-time for (MCF)LP, while the overhead of (Col)LP

is only moderate.

Table 3.5 compares the relative number of needed pricing iterations to solve (Col)LP,
i.e. the relative number of times the restricted master problem needs to be solved,
using D′ as a basis. In consistency with the median CPU-times from Table 3.4,

84

3.13 Computational Results

Table 3.5: Absolute and average relative number of pricing iterations and corre-
sponding standard deviations for solving the LP relaxation of (Col) with
various variants of alternative dual-optimal solutions. Best values are
marked bold.

of pricing iterations

Variant Set D′ D∗

D′
D(k,d′)

D′
D(k,d)

D′
D(p)

D′

OPT, bmax = 0

ClgSE-I1 85.76 (77.39) 3.45 (1.53) 0.99 (0.35) 1.02 (0.57) - (-)
ClgSE-I2 307.87 (230.09) 1.97 (1.02) 0.99 (0.34) 0.69 (0.41) - (-)
ClgSE-I3 232.8 (333.95) 3.73 (1.74) 1.01 (0.36) 0.85 (0.52) - (-)
ClgN1B-I1 381.65 (472.32) 5.83 (2.97) 0.85 (0.56) 0.76 (0.46) - (-)
ClgN1B-I2 250.16 (212.13) 4.56 (2.25) 0.81 (0.38) 0.81 (0.61) - (-)

SST, bmax = 0

ClgSE-I1 101.24 (78.41) 2.31 (1.02) 0.79 (0.31) 0.84 (0.46) 1.25 (0.53)
ClgSE-I2 327.53 (227.09) 1.63 (0.83) 0.61 (0.24) 0.62 (0.38) 1.13 (0.29)
ClgSE-I3 280.93 (412.87) 3.12 (1.30) 0.77 (0.36) 0.81 (0.46) 0.98 (0.29)
ClgN1B-I1 332.4 (397.04) 7.61 (5.33) 0.73 (0.32) 0.80 (0.45) 1.49 (0.98)
ClgN1B-I2 254.37 (174.53) 3.87 (1.87) 0.64 (0.37) 0.67 (0.29) 1.08 (0.35)

SST, bmax = 30

ClgSE-I1 91.88 (84.91) 2.34 (0.70) 0.81 (0.34) 0.93 (0.37) 1.08 (0.3)
ClgSE-I2 266.53 (133.01) 1.46 (0.37) 0.78 (0.32) 0.65 (0.21) 1.00 (0.32)
ClgSE-I3 137.27 (177.27) 3.20 (1.43) 0.83 (0.33) 0.98 (0.46) 1.29 (0.42)
ClgN1B-I1 622.65 (1015.9) 8.34 (9.49) 0.66 (0.44) 0.77 (0.48) 1.26 (0.53)
ClgN1B-I2 232.79 (115.87) 4.68 (1.96) 0.62 (0.24) 0.66 (0.23) 1.15 (0.31)

SST, bmax = 50

ClgSE-I1 67.56 (58.34) 2.62 (1.09) 0.89 (0.31) 1.02 (0.39) 0.99 (0.27)
ClgSE-I2 191.6 (96.62) 1.50 (0.55) 0.81 (0.34) 0.79 (0.26) 0.96 (0.22)
ClgSE-I3 81.8 (62.1) 3.77 (1.70) 0.92 (0.32) 1.15 (0.41) 1.21 (0.43)
ClgN1B-I1 361.8 (503.84) 5.82 (4.53) 0.70 (0.45) 0.94 (0.69) 1.15 (0.71)
ClgN1B-I2 239.26 (113.94) 4.43 (2.59) 0.59 (0.19) 0.62 (0.23) 1.24 (0.52)

SST, bmax = 100

ClgSE-I1 49.04 (21.06) 2.95 (1.45) 0.99 (0.31) 1.23 (0.32) 1.16 (0.35)
ClgSE-I2 119.20 (49.23) 2.24 (0.92) 0.99 (0.27) 1.16 (0.33) 1.04 (0.27)
ClgSE-I3 72.53 (45.00) 3.96 (1.54) 0.88 (0.27) 1.24 (0.54) 1.24 (0.45)
ClgN1B-I1 546.05 (853.58) 6.61 (6.63) 0.75 (0.46) 0.92 (0.61) 1.06 (0.45)
ClgN1B-I2 280.58 (103.76) 3.61 (1.58) 0.55 (0.18) 0.53 (0.19) 1.10 (0.35)

we conclude that using D′, D(k,d′), D(k,d), or D(p) significantly reduces the number
of needed pricing iterations. As for the CPU-times, slight advantages of D(k,d′)

over the other approaches can be observed. Note that already using D′ instead of
simply using the standard dual-optimal variable values – i.e. using D∗ – yields a
major improvement. We conclude that D′, D(k,d′), D(k,d), and D(p) are able to find
meaningful connections already in the beginning of the column generation process
and thus allow for efficiently solving the linear relaxation of (Col).

Tables 3.6 and 3.7 analyze the efficiency of the various approaches using alternative
dual-optimal solutions for the directed connection formulation (dCol). As described
in Section 3.6.4, the interpretations of D′, D(k,d′), D(k,d), and D(p) correlates to the
undirected case, although some calculations are slightly different.

85

Chapter 3 The bmax-Survivable Network Design Problem

Table 3.6: Median CPU-times for solving the LP relaxation of (MCF) and the diverse
variants of (dCol). Best values are marked bold.

(dCol)LP

Variant Set (MCF)LP D∗ D′ D(k,d′) D(k,d) D(p)

OPT, bmax = 0

ClgSE-I1 0.09 28.44 5.66 5.74 6.36 -
ClgSE-I2 0.34 92.30 50.30 57.87 62.16 -
ClgSE-I3 0.20 70.45 9.79 8.64 19.43 -
ClgN1B-I1 43.55 7200.00 3677.30 1805.73 2838.3 -
ClgN1B-I2 58.27 7200.00 7200.00 7200.00 7200.00 -

SST, bmax = 0

ClgSE-I1 0.10 23.31 6.36 4.12 7.10 7.46
ClgSE-I2 0.35 114.82 125.52 61.06 63.80 82.06
ClgSE-I3 0.19 61.93 8.51 7.95 25.98 9.37
ClgN1B-I1 42.82 7200.00 1342.96 800.41 2795.7 4410.18
ClgN1B-I2 79.55 7200.00 6968.09 2884.42 6499.98 7200.00

SST, bmax = 30

ClgSE-I1 0.15 49.61 10.81 7.11 14.03 11.49
ClgSE-I2 0.86 174.55 69.01 52.68 95.22 59.10
ClgSE-I3 0.33 111.91 27.69 13.05 35.06 28.10
ClgN1B-I1 190.48 7200.00 1457.13 791.07 3715.07 3055.81
ClgN1B-I2 1070.66 7200.00 6821.66 3331.36 7200.00 7200.00

SST, bmax = 50

ClgSE-I1 0.18 38.77 8.90 7.73 16.11 9.19
ClgSE-I2 0.82 179.41 39.57 36.78 113.35 83.53
ClgSE-I3 0.41 98.76 12.39 11.53 35.63 13.71
ClgN1B-I1 212.07 7200.00 1171.84 842.75 4493.58 1568.81
ClgN1B-I2 1144.86 7200.00 7200.00 4782.36 6739.93 7200.00

SST, bmax = 100

ClgSE-I1 0.15 50.03 4.72 4.48 17.64 6.17
ClgSE-I2 0.58 950.35 36.38 41.88 117.71 23.65
ClgSE-I3 0.37 589.65 10.66 18.40 81.27 10.90
ClgN1B-I1 214.67 7200.00 802.08 726.16 2841.21 1132.12
ClgN1B-I2 1281.95 7200.00 7200.00 4463.8 7200.00 7200.00

As expected the CPU-time overhead for solving (dCol)LP due the NP-hard pricing
subproblems for type-2 customers k ∈ C2 is not negligible. However, similar to
the previous discussion for (Col) we can observe that D′, D(k,d′), D(k,d), and D(p)

significantly speed-up the solution of (dCol)LP. Furthermore, the relative additional
effort for solving (dCol)LP compared to (MCF)LP decreases when considering larger
instances and bmax-redundancy, i.e. if bmax(k) 6= 0, ∀k ∈ C2.

Since the LP relaxation values of (dCol) are much tighter than those of the other
models, (dCol) might nevertheless outperform them due to a significantly smaller
number of nodes that need to be considered in the branch-and-bound tree.

Table 3.7 details the relative number of pricing iterations needed to solve (dCol)LP

for D(k,d′), D(k,d), and D(p) in comparison to D′. Here, only those instances are
considered where (dCol)LP could be solved within the given time limit of 7200 CPU-

86

3.13 Computational Results

Table 3.7: Absolute and average relative number of pricing iterations and corre-
sponding standard deviations for solving the LP relaxation of (dCol) with
various variants of alternative dual-optimal solutions. Best values are
marked bold.

of pricing iterations

Variant Set D′ D(k,d′)

D′
D(k,d)

D′
D(p)

D′

OPT, bmax = 0

ClgSE-I1 135.13 (107.25) 0.91 (0.32) 0.86 (0.46) - (-)
ClgSE-I2 417.6 (287.62) 1.04 (0.42) 0.69 (0.38) - (-)
ClgSE-I3 122.07 (72.18) 0.83 (0.15) 1.06 (0.35) - (-)
ClgN1B-I1 160.69 (69.88) 0.88 (0.22) 1.59 (0.51) - (-)
ClgN1B-I2 185.89 (88.07) 1.16 (0.38) 1.25 (0.49) - (-)

SST, bmax = 0

ClgSE-I1 126.64 (85.87) 0.89 (0.37) 0.87 (0.49) 1.05 (0.30)
ClgSE-I2 496.57 (283.48) 0.73 (0.39) 0.56 (0.36) 1.08 (0.54)
ClgSE-I3 137.93 (104.35) 0.94 (0.19) 1.04 (0.46) 1.25 (0.61)
ClgN1B-I1 153.21 (43.33) 0.84 (0.14) 1.37 (0.28) 1.48 (0.38)
ClgN1B-I2 258.5 (117.52) 0.67 (0.35) 1.27 (0.92) 1.39 (0.47)

SST, bmax = 30

ClgSE-I1 205.68 (286.75) 0.77 (0.3) 0.83 (0.43) 1.06 (0.44)
ClgSE-I2 423.67 (564.89) 0.80 (0.34) 0.73 (0.27) 1.13 (0.44)
ClgSE-I3 159.40 (103.11) 0.77 (0.36) 0.86 (0.45) 1.22 (0.34)
ClgN1B-I1 153.60 (91.40) 0.96 (0.24) 1.67 (0.55) 1.34 (0.44)
ClgN1B-I2 267.20 (91.16) 0.54 (0.25) 0.83 (0.39) 0.66 (0.28)

SST, bmax = 50

ClgSE-I1 88.72 (54.75) 0.90 (0.39) 1.00 (0.37) 1.06 (0.29)
ClgSE-I2 264.00 (226.09) 0.89 (0.54) 0.96 (0.64) 1.26 (0.45)
ClgSE-I3 104.20 (58.63) 0.82 (0.28) 0.92 (0.38) 0.99 (0.56)
ClgN1B-I1 145.89 (71.02) 0.82 (0.22) 1.43 (0.48) 1.15 (0.53)
ClgN1B-I2 238.00 (100.27) 0.66 (0.20) 0.90 (0.39) 1.12 (0.25)

SST, bmax = 100

ClgSE-I1 50.83 (30.24) 0.96 (0.29) 1.16 (0.39) 1.19 (0.59)
ClgSE-I2 91.20 (43.69) 1.08 (0.38) 1.33 (0.44) 1.08 (0.48)
ClgSE-I3 113.43 (185.62) 1.46 (1.19) 1.29 (0.62) 1.36 (0.59)
ClgN1B-I1 112.44 (51.13) 0.94 (0.27) 1.72 (0.47) 1.29 (0.45)
ClgN1B-I2 232.00 (107.13) 0.68 (0.25) 0.97 (0.37) 0.81 (0.25)

seconds when using D′. We do not report on D∗, since it could solve (dCol)LP for
very few instances only. As for the undirected model, we conclude that the ad-
vanced adaptation strategies often significantly reduce the number of needed pricing
iterations, and D(k,d′) is the best option for solving (dCol)LP too.

Solutions and Optimality Gaps

In the following, computational results for solving (Col) and (dCol) by branch-and-
price are presented. Branching is performed on edge variables for (Col) and on arc
variables for (dCol), respectively. We do not use any problem specific branching

87

Chapter 3 The bmax-Survivable Network Design Problem

rules, but trust on the branching decisions as performed by SCIP.

All results for (Col) and (dCol) have been computed using D(k,d′) for adapting dual
variable values, which has been shown to outperform the other variants. To allow for
a meaningful comparison, we only report on those instances where the LP relaxation
of (dCol) could be solved within the given time limit of 7200 CPU-seconds when
using D(k,d′). The corresponding number of considered instances is additionally
stated in each table.

Table 3.8 shows average gaps as well as corresponding standard deviations in percent
for each considered instance set and setting. We conclude that (dCol) could be solved
to proven optimality whenever its linear relaxation was solved. The undirected con-
nection formulation (Col), however, failed to find a proven optimal solution within
two hours for some instances and performs slightly worse than the multi-commodity
flow formulation of Wagner et al. [178] with respect to this criterion. Although the
LP relaxation values of (Col) are better than those of model (MCF) and the root
relaxation gaps are already quite small, a too large number of nodes needs to be
considered in the branch-and-bound tree for further improving the obtained lower
bound in order to proof optimality of a solution.

Table 3.9 reports median CPU-times for solving (MCF), (Col), and (dCol), respec-
tively, for those instances where (dCol)LP could be solved within the given time
limit using alternative dual-optimal solutions according to D(k,d′). We conclude
that the performance of both connection based formulations improves compared to
the MCF formulation when considering bmax-redundancy. When taking into account
that SCIP 1.2.0 with CPLEX 12.1 is slower than CPLEX 12.1 alone approximately
by a factor of three4, (dCol) can be considered as the most effective method on
larger instances when bmax(k) 6= 0, ∀k ∈ C2. The undirected formulation (Col) is,
however, typically the fastest approach for those larger instances where it needs to
consider only a reasonable number of nodes in the branch-and-bound tree, i.e. on
the set ClgN1B-I2.

Since, we observed from Table 3.8 that (dCol) could be solved to proven optimality
whenever its linear relaxation (dCol)LP was solved, we further analyzed for how
many instances the solution to its linear relaxation is integral, i.e. is an optimal
solution to the corresponding instance. As detailed in Table 3.10, solving (dCol)LP

yields a proven optimal solution to (dCol) for almost all considered instances and
settings. On the contrary, most solutions of (MCF)LP and (Col)LP include fractional
variables.

4http://scip.zib.de

88

3.13 Computational Results

Table 3.8: Average optimality gaps and corresponding standard deviations after
7200 CPU-seconds for instances where (dCol)LP could be solved when
using D(k,d′). Best values are marked bold.

Variant Set # (MCF) (Col) (dCol)

OPT, bmax = 0

ClgSE-I1 25 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
ClgSE-I2 14 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
ClgSE-I3 15 0.00 (0.00) 0.10 (0.39) 0.00 (0.00)
ClgN1B-I1 13 0.00 (0.00) 0.99 (0.94) 0.00 (0.00)
ClgN1B-I2 9 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

SST, bmax = 0

ClgSE-I1 25 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
ClgSE-I2 15 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
ClgSE-I3 15 0.00 (0.00) 0.08 (0.31) 0.00 (0.00)
ClgN1B-I1 16 0.02 (0.06) 0.95 (0.96) 0.00 (0.00)
ClgN1B-I2 17 0.00 (0.00) 0.09 (0.25) 0.00 (0.00)

SST, bmax = 30

ClgSE-I1 25 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
ClgSE-I2 15 0.00 (0.00) 0.31 (1.21) 0.00 (0.00)
ClgSE-I3 15 0.00 (0.00) 0.12 (0.46) 0.00 (0.00)
ClgN1B-I1 15 0.32 (0.68) 1.11 (1.20) 0.00 (0.00)
ClgN1B-I2 17 0.41 (1.10) 0.14 (0.32) 0.00 (0.00)

SST, bmax = 50

ClgSE-I1 25 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
ClgSE-I2 15 0.00 (0.00) 0.64 (1.50) 0.00 (0.00)
ClgSE-I3 15 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
ClgN1B-I1 18 0.20 (0.58) 1.41 (1.66) 0.00 (0.00)
ClgN1B-I2 13 0.26 (0.95) 0.16 (0.38) 0.00 (0.00)

SST, bmax = 100

ClgSE-I1 24 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
ClgSE-I2 15 0.00 (0.00) 0.76 (1.61) 0.00 (0.00)
ClgSE-I3 14 0.00 (0.00) 0.13 (0.40) 0.00 (0.00)
ClgN1B-I1 18 1.14 (1.48) 1.78 (2.05) 0.00 (0.00)
ClgN1B-I2 14 0.14 (0.54) 0.17 (0.45) 0.00 (0.00)

Overall, we conclude that both connection based formulations have their individual
advantages. While the LP relaxation of (Col) is tighter than the one of (MCF) and
can be solved efficiently, sometimes a too large number of nodes in the branch-and-
bound tree needs to be considered. Thus (Col) sometimes fails to prove optimality
of a solution within reasonable time. The resulting gaps are, however, relatively
tight already after solving the root node.

With respect to model (dCol), we conclude that its LP relaxation is extremely tight
and in particular turned out to be integral for almost all used test instances and
settings. While the computational effort for solving it is not negligible, it nevertheless
outperforms the other methods on medium sized instances.

Both models perform bad, when simply using the dual variable values obtained by
the used LP solver. Above computational results clearly show that the usage of alter-

89

Chapter 3 The bmax-Survivable Network Design Problem

Table 3.9: Median CPU-times for instances where (dCol)LP could be solved when
using D(k,d′). Best values are marked bold.

Variant Set # (MCF) (Col) (dCol)

OPT, bmax = 0

ClgSE-I1 25 0.25 0.28 5.74
ClgSE-I2 14 3.92 177.88 54.46
ClgSE-I3 15 0.87 2.25 8.64
ClgN1B-I1 13 643.28 7200.01 1109.79
ClgN1B-I2 9 136.03 241.72 3191.45

SST, bmax = 0

ClgSE-I1 25 0.30 0.32 4.12
ClgSE-I2 15 3.63 81.82 61.06
ClgSE-I3 15 0.76 2.25 7.95
ClgN1B-I1 16 519.06 7200.00 728.73
ClgN1B-I2 17 237.52 211.20 2500.98

SST, bmax = 30

ClgSE-I1 25 1.43 0.48 7.11
ClgSE-I2 15 23.87 329.06 52.68
ClgSE-I3 15 2.06 4.41 13.05
ClgN1B-I1 15 1524.24 7200.00 752.98
ClgN1B-I2 17 2322.39 261.72 3185.55

SST, bmax = 50

ClgSE-I1 25 1.37 0.70 7.73
ClgSE-I2 15 191.69 585.37 36.78
ClgSE-I3 15 2.78 6.18 11.53
ClgN1B-I1 18 2788.23 7200.00 818.78
ClgN1B-I2 13 2210.25 339.64 3151.63

SST, bmax = 100

ClgSE-I1 24 1.70 1.65 4.34
ClgSE-I2 15 46.93 4000.79 41.88
ClgSE-I3 14 4.00 19.41 16.25
ClgN1B-I1 18 7156.75 7200.00 672.97
ClgN1B-I2 14 2419.23 557.36 2445.72

native dual-optimal solutions as described in Sections 3.5.2 and 3.6.4, respectively,
significantly reduces the time necessary for solving (Col) and (dCol).

We further conclude that the performance of (MCF) heavily decreases then consid-
ering bmax-redundancy. For (Col) and (dCol) the additional computational effort
increases only moderately, however.

3.13.2 Lagrangian Decomposition Approaches

We use the volume algorithm as described by Haouari and Siala [86] for approx-
imately solving the Lagrangian dual problem, which is configured as follows. La-
grangian multipliers are initialized by λk,e = ce/|C|, ∀k ∈ C, ∀e ∈ E, ensuring
a positive lower bound already in the first iteration. The target value T is set to

90

3.13 Computational Results

Table 3.10: Number of instances per set where the solution to the linear relaxation
is integral. Only those instances are considered where (dCol)LP could
be solved withing 7200 CPU-seconds using D(k,d′).

Variant Set # (MCF)LP (Col)LP (dCol)LP

OPT, bmax = 0

ClgSE-I1 25 3 3 25
ClgSE-I2 14 0 0 14
ClgSE-I3 15 0 0 15
ClgN1B-I1 13 0 0 11
ClgN1B-I2 9 3 3 9

SST, bmax = 0

ClgSE-I1 25 2 3 25
ClgSE-I2 15 0 0 15
ClgSE-I3 15 0 0 15
ClgN1B-I1 16 0 0 15
ClgN1B-I2 17 1 3 17

SST, bmax = 30

ClgSE-I1 25 0 1 25
ClgSE-I2 15 0 0 14
ClgSE-I3 15 0 0 14
ClgN1B-I1 15 0 0 14
ClgN1B-I2 17 0 2 17

SST, bmax = 50

ClgSE-I1 25 0 2 25
ClgSE-I2 15 0 0 14
ClgSE-I3 15 0 0 14
ClgN1B-I1 18 0 0 18
ClgN1B-I2 13 1 2 13

SST, bmax = 100

ClgSE-I1 24 0 0 24
ClgSE-I2 15 0 0 14
ClgSE-I3 14 0 0 13
ClgN1B-I1 18 0 0 18
ClgN1B-I2 14 0 1 14

T = 1.1zUB with zUB being the actual upper bound unless the actual lower bound
zLB > 0.9T in which case T is multiplied by 1.1. We initially set ρ = 0.1 and
α = 0.01. After 20 consecutive non-improving iterations, ρ is multiplied by 0.67 in
case it is greater than 10−4 and by 1.1 in an improving iteration if ρ < 1. If zLB

did not improve by more than 1% within the last 100 iterations and if α > 10−5, we
multiply α by 0.85. The volume algorithm is terminated if dzLBe = zUB, after 250
consecutive non improving iterations, or if the maximum time limit is reached.

For the sequential hybrid Lagrangian method (SEQ) from Section 3.11, we set N =
30 and βmin = 0.01, βmax = 0.4, γ = 0.05, and δ = 100 for the interleaved hybrid
(INT) where β is initially set to β = 0.1.

Furthermore, we memorize hash-values of candidate solutions which have already

91

Chapter 3 The bmax-Survivable Network Design Problem

been used as starting solutions to avoid unnecessary runs of VND. These hash-values
are also used to ensure that the N solutions stored in the sequential approach are
pairwise different.

Table 3.11 details average relative gaps and corresponding standard deviations for
LD, SEQ, and INT, while Table 3.12 shows median values of their individual CPU-
times.

Table 3.11: Average gaps and corresponding standard deviations in % for LD, SEQ,
and INT for the SST variant of bmax-SNDP. Best values are marked bold.

Variant Set LD SEQ INT

SST, bmax = 0

ClgSE-I1 2.00 (2.62) 1.63 (2.38) 1.63 (2.38)
ClgSE-I2 15.37 (4.65) 9.13 (4.65) 9.13 (4.65)
ClgSE-I3 9.11 (4.84) 7.09 (4.84) 7.09 (4.84)
ClgN1B-I1 5.37 (5.76) 2.61 (2.21) 2.56 (2.18)
ClgN1B-I2 2.35 (2.34) 1.29 (1.46) 1.29 (1.46)

SST, bmax = 30

ClgSE-I1 2.53 (3.39) 1.92 (2.60) 1.75 (2.36)
ClgSE-I2 21.59 (4.78) 13.35 (4.78) 13.18 (4.82)
ClgSE-I3 10.92 (4.13) 7.19 (4.13) 7.08 (4.02)
ClgN1B-I1 6.76 (4.52) 3.36 (2.84) 2.91 (1.72)
ClgN1B-I2 3.74 (4.71) 1.54 (1.85) 1.54 (1.85)

SST, bmax = 50

ClgSE-I1 3.27 (4.80) 2.17 (3.05) 2.17 (3.05)
ClgSE-I2 23.58 (5.13) 16.96 (5.13) 16.59 (5.00)
ClgSE-I3 9.58 (4.01) 6.19 (4.01) 6.09 (3.97)
ClgN1B-I1 6.03 (3.63) 3.84 (2.57) 2.96 (1.95)
ClgN1B-I2 3.01 (3.75) 1.59 (1.83) 1.59 (1.83)

SST, bmax = 100

ClgSE-I1 2.93 (3.54) 2.23 (2.64) 2.22 (2.63)
ClgSE-I2 29.12 (7.13) 20.36 (7.13) 19.13 (4.96)
ClgSE-I3 14.51 (6.38) 10.40 (6.38) 10.33 (6.33)
ClgN1B-I1 7.48 (4.34) 4.84 (3.43) 3.65 (2.26)
ClgN1B-I2 2.76 (3.23) 1.79 (2.00) 1.79 (2.00)

We conclude that both SEQ as well as INT significantly reduce the resulting opti-
mality gap for all used settings and instance sets. Furthermore, the gaps obtained
by INT are always smaller than or equal to those of SEQ.

The average relative difference between the lower bounds of SEQ and INT, respec-
tively, compared to LD is strictly smaller than 0.07% except for the set ClgSE-I1 in
the SST variant with bmax(k) = 100, ∀k ∈ C2, where it is 0.18%. Since the relative
difference between the lower bounds obtained by SEQ and INT is always smaller
than 0.01% we conclude that a smaller gap implies the generation of better feasible
solutions.

From Table 3.12 we observe that both SEQ and INT significantly increase the neces-

92

3.13 Computational Results

Table 3.12: Median CPU-times for LD, SEQ, and INT for the SST variant of bmax-
SNDP. Best values are marked bold.

Variant Set LD SEQ INT

SST, bmax = 0

ClgSE-I1 0.8 1.1 1.4
ClgSE-I2 2.6 4.6 7.2
ClgSE-I3 1.7 2.3 3.0
ClgN1B-I1 30.1 107.7 88.6
ClgN1B-I2 38.6 67.5 83.2

SST, bmax = 30

ClgSE-I1 4.8 7.7 8.4
ClgSE-I2 26.6 32.3 85.3
ClgSE-I3 12.7 15.7 34.7
ClgN1B-I1 104.7 417.6 489.4
ClgN1B-I2 146.0 346.2 325.4

SST, bmax = 50

ClgSE-I1 9.7 13.7 20.0
ClgSE-I2 76.0 137.9 349.7
ClgSE-I3 22.1 49.8 69.1
ClgN1B-I1 209.5 714.9 807.2
ClgN1B-I2 254.3 388.2 631.3

SST, bmax = 100

ClgSE-I1 41.8 57.9 70.2
ClgSE-I2 423.2 797.3 2239.4
ClgSE-I3 118.9 296.5 384.3
ClgN1B-I1 493.3 2249.0 3043.4
ClgN1B-I2 714.1 1415.3 1729.3

sary CPU-time with SEQ usually being the fastest among these two. However, since
its overhead compared to SEQ is not too high, INT can be recommended among
the three Lagrangian variants to compute high quality solutions with relatively tight
bounds in reasonable time.

3.13.3 Metaheuristics

In the following, we compare the metaheuristic methods introduced in Section 3.10.
The VNS approach is terminated after 25 iterations of the outermost, largest shaking
move. For GRASP we chose α = 0.25 and generated 30 initial solutions. Further-
more, an absolute time limit of 7200 CPU-seconds has been used for all experi-
ments.

Table 3.13 depicts average relative improvements of the obtained solution values as
well as corresponding standard deviations for VNS and GRASP compared to the
simpler VND. Each experiment has been repeated 30 times. Table 3.14 reports on
average CPU-times and corresponding standard deviations.

93

Chapter 3 The bmax-Survivable Network Design Problem

Table 3.13: Average relative improvements over VND and corresponding standard
deviations in % for VNS and GRASP considering the SST variant of
bmax-SNDP for 30 runs per instance. Best values are marked bold.

Variant Set VND−GRASP
GRASP [%] VND−VNS

VNS [%]

SST, bmax = 0

ClgSE-I1 0.08 (0.45) 0.18 (0.42)
ClgSE-I2 1.76 (1.85) 1.39 (1.83)
ClgSE-I3 1.42 (2.72) 1.34 (2.74)
ClgN1B-I1 1.05 (3.22) 3.57 (8.33)
ClgN1B-I2 1.19 (4.61) 5.05 (9.59)
ClgME-I1 0.52 (1.13) 0.49 (0.98)
ClgME-I2 1.55 (3.56) 1.57 (3.60)

SST, bmax = 30

ClgSE-I1 -0.15 (1.40) 0.49 (0.99)
ClgSE-I2 2.22 (4.79) 2.90 (3.55)
ClgSE-I3 1.05 (3.24) 1.97 (2.46)
ClgN1B-I1 0.41 (6.36) 3.21 (7.88)
ClgN1B-I2 -0.81 (2.98) 3.64 (8.85)
ClgME-I1 -0.20 (1.38) 0.43 (0.79)
ClgME-I2 1.18 (3.71) 1.96 (3.45)

SST, bmax = 50

ClgSE-I1 1.22 (3.84) 2.12 (4.71)
ClgSE-I2 1.73 (3.86) 1.75 (2.32)
ClgSE-I3 1.07 (3.50) 1.92 (3.93)
ClgN1B-I1 0.86 (6.82) 3.90 (8.38)
ClgN1B-I2 -0.32 (3.15) 4.11 (10.61)
ClgME-I1 0.06 (2.34) 0.69 (2.18)
ClgME-I2 0.46 (3.95) 2.02 (3.35)

SST, bmax = 100

ClgSE-I1 2.71 (7.23) 1.52 (6.03)
ClgSE-I2 1.20 (2.64) 1.35 (2.47)
ClgSE-I3 0.32 (1.69) 0.59 (1.16)
ClgN1B-I1 2.67 (10.74) 3.89 (9.91)
ClgN1B-I2 -1.23 (4.82) 3.73 (10.55)
ClgME-I1 -0.40 (1.28) 0.39 (0.74)
ClgME-I2 2.04 (5.99) 3.45 (5.83)

We conclude that both metaheuristics outperform the simpler VND with respect
to the obtained solutions in the majority of cases. While the solutions obtained by
the GRASP approach are sometimes worse than those of VND, this is obviously
impossible for the VNS approach. With respect to the average improvement over
VND, the VNS clearly outperforms GRASP in 24 out of 28 cases while its runtime
is approximately equal.

94

3.13 Computational Results

Table 3.14: Average CPU-times in seconds and corresponding standard deviations
for GRASP and VNS for the SST variant of bmax-SNDP. 30 runs per
instance. Best values are marked bold.

Variant Set GRASP VNS

SST, bmax = 0

ClgSE-I1 0.16 (0.06) 0.16 (0.06)
ClgSE-I2 0.68 (0.23) 1.37 (0.70)
ClgSE-I3 0.39 (0.16) 0.57 (0.26)
ClgN1B-I1 7.30 (2.40) 12.17 (4.52)
ClgN1B-I2 14.30 (3.99) 11.51 (4.11)
ClgME-I1 5.45 (1.89) 4.82 (2.28)
ClgME-I2 6.98 (2.21) 13.05 (6.40)

SST, bmax = 30

ClgSE-I1 1.34 (0.54) 1.53 (0.91)
ClgSE-I2 5.55 (2.20) 13.84 (8.27)
ClgSE-I3 3.29 (1.35) 5.80 (3.25)
ClgN1B-I1 22.37 (7.81) 35.68 (17.82)
ClgN1B-I2 39.43 (11.69) 33.98 (14.59)
ClgME-I1 19.79 (7.11) 17.81 (7.90)
ClgME-I2 19.96 (8.50) 32.41 (14.37)

SST, bmax = 50

ClgSE-I1 2.22 (0.84) 2.90 (1.39)
ClgSE-I2 10.54 (4.39) 25.44 (13.34)
ClgSE-I3 5.90 (2.15) 10.83 (5.71)
ClgN1B-I1 37.48 (11.60) 60.72 (25.42)
ClgN1B-I2 65.49 (22.31) 60.27 (27.56)
ClgME-I1 36.29 (13.35) 34.77 (17.78)
ClgME-I2 33.66 (12.37) 61.73 (31.75)

SST, bmax = 100

ClgSE-I1 5.10 (2.13) 7.10 (3.22)
ClgSE-I2 24.58 (9.89) 65.17 (35.61)
ClgSE-I3 13.63 (5.33) 25.09 (10.71)
ClgN1B-I1 99.24 (38.98) 157.64 (92.94)
ClgN1B-I2 144.13 (40.86) 129.85 (53.71)
ClgME-I1 107.73 (39.54) 88.54 (40.68)
ClgME-I2 78.28 (35.64) 134.62 (69.91)

3.13.4 Overall Comparison

In the following, we compare the objective values of the solutions derived by INT
and VNS to those of (dCol) for a representative subset of the so far considered
configurations. Table 3.15 reports average relative objective values solutions as well
as corresponding standard deviations in percent.

Overall, we conclude that each method is able to compute high quality solutions.
The interleaved Lagrangian hybrid approach yields slightly better primal solutions
than VNS and has the advantage of additionally providing a lower bound and thus
a gap on the maximum distance to an optimal solution. VNS, however, can be used

95

Chapter 3 The bmax-Survivable Network Design Problem

Table 3.15: Average relative objective values for INT and VNS compared to (dCol)
and corresponding standard deviations in %.

Variant Set INT−(dCol)
(dCol) [%] VNS−(dCol)

(dCol) [%]

SST, bmax = 0

ClgSE-I1 0.000 (0.000) 0.059 (0.204)
ClgSE-I2 0.000 (0.000) 0.581 (0.757)
ClgSE-I3 0.000 (0.000) 0.556 (1.049)
ClgN1B-I1 0.000 (0.000) 0.051 (0.116)
ClgN1B-I2 0.000 (0.000) 0.538 (0.674)

SST, bmax = 30

ClgSE-I1 0.002 (0.010) 0.161 (0.657)
ClgSE-I2 0.104 (0.293) 0.998 (1.386)
ClgSE-I3 0.011 (0.032) 0.447 (0.663)
ClgN1B-I1 0.004 (0.016) 0.137 (0.226)
ClgN1B-I2 0.012 (0.049) 0.881 (0.840)

SST, bmax = 100

ClgSE-I1 0.104 (0.041) 2.334 (5.886)
ClgSE-I2 0.105 (0.216) 0.448 (0.512)
ClgSE-I3 0.102 (0.295) 0.236 (0.382)
ClgN1B-I1 0.015 (0.064) 0.183 (0.276)
ClgN1B-I2 0.000 (0.000) 2.945 (3.164)

for even larger instances as it generally computes feasible solutions close to optimal
ones in much shorter time than the other methods.

3.14 Conclusions and Future Work

In this chapter, the bmax-Survivable Network Design Problem (bmax-SNDP) which
aims to efficiently extend real-world communication networks has been considered.
In bmax-SNDP a subset of all customers is redundantly connected by means of two
node disjoint routes. These redundancy requirements are, however, occasionally
relaxed by allowing a connection via a final non-redundant branch line that does
not exceed a certain length bmax.

In a first section, two new mixed integer programming approaches for solving bmax-
SNDP to proven optimality based on an exponential number of so-called connection
variables have been presented. These can be solved by branch-and-price. One main
contribution within this section is the usage of alternative dual-optimal solutions in
the pricing subproblems to significantly speed up the solution of the linear relaxation
of both models. By a polyhedral comparison we subsequently showed that both
proposed models theoretically dominate existing ones. We further proved that the

96

3.14 Conclusions and Future Work

second model, which is a directed variant of the first one, dominates its undirected
counterpart.

In the second part of this chapter a Lagrangian decomposition approach for bmax-
SNDP based on an already existing multi-commodity flow formulation has been
introduced. The subproblems arising in the Lagrangian dual problem have been
subsequently discussed in great detail and some comments on the lower bounds that
can be obtained by this approach are given.

Afterwards, a constructive heuristic for computing initial feasible solutions to bmax-
SNDP as well as three types of neighborhood structures have been introduced. These
are used within a variable neighborhood search and a greedy randomized adaptive
search, respectively. Using these neighborhood structures, two hybrid method com-
bining above mentioned Lagrangian decomposition approach with variable neigh-
borhood descent have been finally discussed.

Computational results show that both branch-and-price approaches perform rea-
sonably well on medium sized instances. While, the undirected model yields tight
optimality gaps already after relatively short time, it sometimes has problems to
further raise the obtained lower bounds in order to prove optimality of a solution.
For solving the linear relaxation of its directed counterpart much more computa-
tional effort is needed. The obtained solutions are, however, already integral and
thus proven optimal solutions in the majority of test cases.

For the Lagrangian methods, both hybrid approaches turn out to outperform the
pure Lagrangian decomposition method with respect to the obtained upper bounds
and optimality gaps. The obtained upper bounds are usually optimal or close to an
optimal solutions value. Among the two metaheuristic methods, the VNS approach
which computes near optimal solutions very fast clearly outperforms the GRASP.

Which among the proposed methods should be used in practice depends on the
considered instances. Small and medium sized instances can be solved to proven
optimality in reasonable time. Thus, one of the two proposed exact methods can
be recommended. However, when considering larger instance or when the necessary
runtime should be kept relatively small these are not suitable. Here, if both lower
and upper bounds are needed, one of the Lagrangian methods can be used, while the
VNS can be recommended to compute high quality solutions for large scale instances
or when small computational times are needed.

Interesting areas for further research include the development of methods based on
the multilevel approach; see e.g. [179] for a survey. These might include the methods
proposed in this chapter for solving smaller subproblems and can be used to tackle

97

Chapter 3 The bmax-Survivable Network Design Problem

very large scale instances of bmax-SNDP. Furthermore, considering additional algo-
rithms and methods for solving the NP-hard pricing subproblems of the directed
connection formulation might allow for solving even larger instances to proven opti-
mality.

98

Chapter 4

The Capacitated Connected
Facility Location Problem

4.1 Introduction

We consider a real-world network design problem with additional location aspects
which occurs when extending existing fiber-optic networks. Nowadays, telecom-
munication companies are often confronted with rising bandwidth requirements of
customers while especially in smaller cities and rural areas realizing connections
entirely with fiber-optic routes (i.e. fiber-to-the-home) is often too expensive and
does not pay of economically. In such situations, providers need to make a com-
promise between the bandwidth offered to individual customers and the resulting
construction costs.

Frequently, these companies deal with such situations by extending the fiber-optic
infrastructure by new routes to so-called mediation points that bridge the high-
bandwidth network with an older lower-bandwidth network. While the original
network is still used between a customer and its assigned mediation point, the
newly installed high-bandwidth routes are used in the remaining network. Ensur-
ing that the maximum distance between a customer and its mediation point is not
too high, the bandwidth available for each customer can be significantly increased
while avoiding too high construction costs. Depending on the network used between
these mediation points and the customers, these scenarios are typically referred to
as fiber-to-the-curb in case of a traditional copper network or powerline in case of
using electric power transmission lines.

99

Chapter 4 The Capacitated Connected Facility Location Problem

From an optimization point of view these scenarios can be modeled as variants of
the Connected Facility Location Problem (ConFL) [125], where new facilities, which
correspond to the above mentioned mediation points, need to be installed and con-
nected with each other and customer nodes need to be assigned to them. However,
the classical ConFL often cannot be used to model and solve real-world scenar-
ios since it does neglect real-world constraints such as those imposed by individual
client bandwidth demands and corresponding maximum assignable demands to in-
dividual facilities. Furthermore, telecommunication providers are usually interested
in upgrading not necessarily all but only the most profitable subset of potential cus-
tomers by additionally considering the expected return on investment for individual
customers.

To overcome these shortages, our model to which we refer as the rooted Prize Collect-
ing Capacitated Connected Facility Location Problem (CConFL) resembles a prize
collecting variant of ConFL and additionally considers capacity constraints on po-
tential facility locations.

In this chapter, we formally introduce CConFL in Section 4.2 and review previous
and related work in Section 4.3. Afterwards, we present mixed integer program-
ming based approaches for solving CConFL to proven optimality based on multi-
commodity flows in Section 4.4, a branch-and-cut approach based on directed con-
nectivity cuts in Section 4.5, and a branch-and-cut-and-price approach additionally
involving an exponential number of so-called pattern variables in Section 4.6. Theo-
retical comparisons of the corresponding polyhedra of all presented formulations are
given in Section 4.7.

Furthermore, we describe a Lagrangian decomposition (LD) approach based on one
of the previously presented MIP formulations in Section 4.8 and detail a Lagrangian
heuristic to derive feasible solutions in Section 4.9. Section 4.10 is dedicated to
local search and very large scale neighborhood search based methods for improving
the obtained solutions. Test instances and computational results are discussed in
Sections 4.11 and 4.12, before we finally draw conclusions and outline potential
future work in Section 4.13.

The approaches presented in this chapter have been published in [118, 121, 119].
Furthermore, in [117], we presented a metaheuristic hybrid for CConFL but using a
slightly different objective function.

100

4.2 Problem Definition

Steiner node
facility node
customer node

infrastructure node

existing route

potential route
potential assignment

Figure 4.1: Original problem instance.

4.2 Problem Definition

Formally, an instance of CConFL is given by an undirected connected graph Go =
(V o, Eo) with a connected subgraph GI = (VI, EI), VI (V o, EI (Eo representing
the existing fiber-optic infrastructure, see Figure 4.1.

Each edge e = (u, v) ∈ Eo has associated costs co
e ≥ 0 corresponding to the costs

of installing a new route between u and v. Potential facility locations (mediation
points) F o ⊆ V o \ VI are given with associated costs fi ≥ 0 for installing them
(opening costs) and maximum assignable demands Di ∈ N0, ∀i ∈ F o. All remaining
nodes v ∈ V o \ (VI∪F o) are Steiner nodes that may be used in a solution. Note that
each facility node might also be used as a Steiner node when no customer is assigned
to it, in which case its opening costs need not to be paid. Furthermore, we are given
a set of potential customers Co with individual demands dk ∈ N0 and prizes pk ≥ 0,
∀k ∈ Co, the latter corresponding to the expected profit when supplying customer
k. Finally, costs ai,k ≥ 0 for assigning the complete demand of customer k ∈ Co to
a potential facility location i ∈ F o are given (assignment costs). If a client k cannot
be assigned to facility i we assume here for simplicity ai,k =∞.

During preprocessing we shrink the existing fiber-optic infrastructure GI = (VI, EI)
into a single root node r, yielding a reduced graph G = (V,E) with node set V =
(V o ∪ {r}) \ VI and edge set E = {(u, v) ∈ Eo | u, v /∈ EI} ∪ {(r, v) | ∃(u, v) ∈ Eo :
u ∈ VI ∧ v /∈ VI}; see Figure 4.2 for such a rooted problem instance. Edge costs
ce ≥ 0 are defined as

ce =

{
co
e if u, v ∈ V o \ VI

minf=(w,v)∈Eo|w∈VI
co
f otherwise

∀e = (u, v) ∈ E.

101

Chapter 4 The Capacitated Connected Facility Location Problem

root node
Steiner node
facility node
customer node
potential route
potential assignment

Figure 4.2: Rooted problem instance.

Furthermore, we remove all possibly existing assignment possibilities between cus-
tomers k ∈ Co and facilities i ∈ F o where ai,k ≥ pk by setting ai,k = ∞. In case
strict inequality holds – i.e. ai,k > pk – such an a assignment cannot be part of
an optimal solution as it does not pay off, while at least one optimal solution not
including the assignment between i and k does exist if ai,k = pk.

Customers with no remaining assignment possibilities are entirely removed. Sim-
ilarly, some potential facilities i ∈ F o that cannot be profitable can be identified
by solving a 0–1 knapsack problem for each facility with knapsack size Di, and an
item with weight dk and profit pk − ai,k for each assignable customer. A facility
can be removed if the profit of the optimal solution to this knapsack problem does
not exceed the facility’s opening costs fi. If solving these knapsack problems for
all the facilities is too time-consuming, an option is to only solve the corresponding
linear programming relaxations and to use the hereby obtained upper bounds to the
optimal solutions’ profits.

We denote by C ⊆ Co and F ⊆ F o (F ⊆ V) the resulting, possibly reduced sets of
potential customers and facility locations. Furthermore, Ci = {k ∈ C | ai,k < pk}
denotes the set of customers that may be assigned to facility i ∈ F and Fk = {i ∈
F | k ∈ Ci} the set of potential facilities a customer k ∈ C may be assigned to.

As depicted in Figure 4.3, a solution to CConFL S = (RS , TS , FS , CS , αS) consists of
a set of opened facilities FS ⊆ F connected to each other as well as to the root node r
by a Steiner tree (RS , TS), RS ⊆ V , TS ⊆ E. CS ⊆ C is the set of customers feasibly
(i.e. respecting the capacity constraints) assigned to facilities FS , whereas the actual
mapping between customers and facilities is described by αS : CS → FS .

Since we are considering a single source variant of the connected facility location
problem, each customer may be assigned to at most one facility. The objective
function of CConFL can be stated as

102

4.3 Related Work

root node
Steiner node
facility node
customer node
potential route
potential assignment
realized route
realized assignment

Figure 4.3: An exemplary solution to CConFL.

c(S) =
∑
e∈TS

ce +
∑
i∈FS

fi +
∑
k∈CS

aαS(k),k +
∑
k∈C

pk −
∑
k∈CS

pk (4.1)

=
∑
e∈TS

ce +
∑
i∈FS

fi +
∑
k∈CS

aαS(k),k +
∑

k∈C\CS

pk (4.2)

An optimal solution S∗ (i.e. a most profitable one) is given by the minimal objective
value, i.e. c(S∗) ≤ c(S) for all feasible solutions S. Note that we add the profits
lost – i.e. the profits of uncovered customers – instead of subtracting the collected
profits in equation (4.2), ensuring a nonnegative objective value for any feasible
solution. Since CConFL combines the (prize collecting) Steiner tree problem (STP)
on a graph with the single source capacitated facility location problem (SSCFLP),
which are both strongly NP-hard [103, 42], CConFL is strongly NP-hard, too.

4.3 Related Work

Karger and Minkoff [101] considered the so-called maybecast problem which can be
modeled as a connected facility location problem and described a constant factor
approximation for their problem. The name connected facility location has been
introduced by Gupta et al. [81] in their work on virtual private networks.

Since then several authors proposed approximation algorithms for diverse variants
of ConFL. Swamy and Kumar [166] presented a primal-dual algorithm with an ap-
proximation ratio of 8.55 which is also a factor 4.55 approximation for the so called
rent-or-buy problem, a variant of ConFL where no opening costs are given and facil-
ities may be opened at all nodes. By considering an LP rounding technique, Hasan

103

Chapter 4 The Capacitated Connected Facility Location Problem

et al. [89] improved their method to a factor 8.29 approximation algorithm for the
case of edge costs obeying the triangle inequality and a factor seven approximation
in case all opening costs are equal. Recently, a randomized approximation algo-
rithm with an expected approximation ratio of four, which can be derandomized
with a resulting approximation factor of 4.23, has been presented by Eisenbrand et
al. [57].

Ljubić [125] described a branch-and-cut approach based on directed connection cuts
as well as a hybrid metaheuristic combining variable neighborhood search (VNS)
with reactive tabu search for the rooted variant of ConFL. Tomazic and Ljubić [169]
considered the unrooted version of ConFL and presented a greedy randomized adap-
tive search procedure. Furthermore, they transformed the problem to the minimum
Steiner arborescence problem and solved it by an exact branch-and-cut method. Ten
different integer programming formulations for ConFL have been presented by Gol-
lowitzer and Ljubić [77]. Next to computational results on their models, they further
ranked them by comparing the various polyhedra. The same authors subsequently
discussed a large number of models for a hop constrained variant of ConFL [126, 127].
Bardossy and Raghavan [155, 14] combined dual ascent with local search to derive
lower and upper bounds for a more general variant of ConFL.

We presented two VNS variants for a version of CConFL without assignment and
opening costs in [117]. To the best of our knowledge our concrete variant of the
connected facility location problem, which contains many of the previously discussed
problem variants as special cases, has not been considered so far.

A closely related problem is the Steiner tree star (STS) problem, where opening
costs for facilities included in the Steiner tree must be paid even if no customers
are assigned to them. Exact methods for the STS problem have been described by
Lee et al. [115, 114], while Xu et al. [181] presented a tabu search metaheuristic.
A generalized variant of the STS problem, where customers nodes and potential
facilities are not necessarily disjoint, has been described by Khuller and Zhu [108].

Furthermore, literature on the (prize collecting) Steiner tree problem (STP) on a
graph, as well as on the (single source) capacitated facility location problem (SS-
CFLP) can be considered as relevant, since CConFL is composed from these two
problems, see e.g. [180] for a survey on the STP and [6] for a recent work on the
SSCFLP with a comprehensive list of further references on that topic.

104

4.4 Multi-Commodity Flow Formulations for CConFL

4.4 Multi-Commodity Flow Formulations for CConFL

CConFL can be modeled as a mixed integer program (MIP) based on directed multi-
commodity flows in two rather obvious ways. While our first model (dMCFf) pre-
sented in Section 4.4.1 is based on sending one unit of flow to each potential facility
location, model (dMCFc) presented in Section 4.4.2 sends flow to each potential
customer.

For an easier presentation we define an extended graph G′ = (V ′, E′) combining G
with the set of potential customers C as additional nodes and potential assignments
between facilities and customers as additional edges (assignment edges). Formally,
G′ is given by its node set V ′ = V ∪C and its edge set E′ = E∪{(i, j) | i ∈ F∧j ∈ Ci}.
Edge costs c′e ≥ 0 are defined by

c′e =

{
ce if e ∈ E
ai,k otherwise

∀e = (i, k) ∈ E′. (4.3)

4.4.1 A Facility Oriented Model

Let Ar = {(r, v) | (r, v) ∈ E} denote the set of directed edges, i.e. arcs, going out
from the root node r and A′i = {(u, v), (v, u) | (u, v) ∈ E ∧ u, v /∈ {r, i}}, ∀i ∈ F , the
set containing two oppositely directed arcs for each pair of nodes u, v ∈ V \ {r, i}
that are connected by an edge in G. Let A−i = {(v, i) | (v, i) ∈ E} be the set of
ingoing arcs for each facility i ∈ F . We can now define the set of arcs relevant for
connecting a facility i ∈ F to the root node as Ai = Ar∪A′i∪A−i . In model (dMCFf)
(4.4)–(4.14) we use decision variables xe ∈ {0, 1}, ∀e ∈ E′, indicating whether an
edge is used in a solution (in which case xe = 1) or not and variables yk ∈ {0, 1},
∀k ∈ C, to specify whether a customer is feasibly assigned to an opened facility
(yk = 1) or not. Furthermore, to specify whether an arc is used in the connection to
a potential facility we use flow variables siu,v ∈ [0, 1], ∀i ∈ F, ∀(u, v) ∈ Ai, and design
variables zi ∈ [0, 1], ∀i ∈ F , to indicate if a potential facility is opened (zi = 1).

105

Chapter 4 The Capacitated Connected Facility Location Problem

(dMCFf) min
∑
e∈E′

c′exe +
∑
i∈F

fizi +
∑
k∈C

pk(1− yk) (4.4)

s.t.
∑

(u,v)∈Ai

siu,v −
∑

(v,u)∈Ai

siv,u =

−zi if v = r

zi if v = i

0 otherwise

∀i ∈ F, ∀v ∈ V (4.5)

siu,v + siv,u ≤ xu,v ∀i ∈ F, ∀(u, v) ∈ E | u, v 6= r (4.6)

sir,v ≤ xr,v ∀i ∈ F, ∀(r, v) ∈ E (4.7)

xi,k ≤ zi ∀(i, k) ∈ E′ | k ∈ C (4.8)∑
k∈Ci

dkxi,k ≤ Dizi ∀i ∈ F (4.9)

∑
i∈Fk

xi,k ≥ yk ∀k ∈ C (4.10)

0 ≤ siu,v ≤ 1 ∀i ∈ F, ∀(u, v) ∈ Ai (4.11)

0 ≤ zi ≤ 1 ∀i ∈ F (4.12)
xe ∈ {0, 1} ∀e ∈ E′ (4.13)
yk ∈ {0, 1} ∀k ∈ C (4.14)

The objective function (4.4) unifies assignment and edge costs by using the concept
of the extended graph G′ but otherwise corresponds to function (4.2). Constraints
(4.5) are the usual flow conservation constraints, inequalities (4.6) and (4.7) link
variables siu,v and xe, and inequalities (4.8) ensure that a facility is opened if an
incident assignment edge is used. Inequalities (4.9) are the capacity constraints
for each facility i ∈ F , while inequalities (4.10) ensure that a customer’s prize can
only be earned if the customer is connected to a facility. Note that for variables zi
and siu,v only lower and upper bounds are defined in (4.11) and (4.12). They will
automatically become integer due to constraints (4.5), (4.6), and (4.8).

4.4.2 A Customer oriented model

Model (dMCFc) (4.15)–(4.24) sends one unit of flow to each potential customer,
but otherwise is similar to model (dMCFf). Thus we define the set of relevant arcs
Ak = Ar∪A′∪A−k for each customer k ∈ C, where Ar is the set of arcs going out from
the root node as defined in Section 4.4.1, A′ = {(u, v), (v, u) | (u, v) ∈ E ∧ u, v 6= r},
and A−k = {(i, k) | (i, k) ∈ E′}.

106

4.5 Branch-and-Cut for CConFL

(dMCFc) min
∑
e∈E′

c′exe +
∑
i∈F

fizi +
∑
k∈C

pk(1− yk) (4.15)

s.t.
∑

(u,v)∈Ak

sku,v −
∑

(v,u)∈Ak

skv,u =

−yk if v = r

yk if v = k

0 otherwise

∀k ∈ C, ∀v ∈ E′ (4.16)

sku,v + skv,u ≤ xu,v ∀k ∈ C, ∀(u, v) ∈ E′ | u, v 6= r (4.17)

skr,v ≤ xr,v ∀k ∈ C, ∀(r, v) ∈ E (4.18)

xi,k ≤ zi ∀i ∈ F, ∀k ∈ Ci (4.19)∑
k∈Ci

dkxi,k ≤ Dizi ∀i ∈ F (4.20)

0 ≤ sku,v ≤ 1 ∀k ∈ C, ∀(u, v) ∈ Ak (4.21)

0 ≤ zi ≤ 1 ∀i ∈ F (4.22)
xe ∈ {0, 1} ∀e ∈ E′ (4.23)
yk ∈ {0, 1} ∀k ∈ C (4.24)

Here, constraints (4.16) resemble the flow conservation constraints for each customer
k ∈ C and similarly to (dMCFf) inequalities (4.17), (4.18), and (4.19) link variables x
with y and x with z, respectively. While the capacity constraints (4.20) are identical
to those of formulation (dMCFf), we do not need explicit linking constraints between
variables x and y in model (dMCFc) since they are implicitly included in the flow
conservation constraints. Note that for variables zi and sku,v only lower and upper
bounds are defined in (4.21) and (4.22). They will automatically become integer by
the same arguments as for model (dMCFf).

4.5 Branch-and-Cut for CConFL

In this section we present another exact approach for CConFL. Model (dCut) in-
volves an exponential number of constraints and can be solved by dynamically in-
cluding them on demand at each node of the search tree, i.e. by branch-and-cut.
(dCut) is based on so-called directed connection cuts. It is well known that such
models often outperform multi-commodity flow based models like the ones presented
in the last two sections from a computational point of view. As will be shown in
Section 4.7 our directed cut model (dCut) is also theoretically stronger than both
previously presented flow models.

107

Chapter 4 The Capacitated Connected Facility Location Problem

Similarly to the extended graph introduced earlier, for model (dCut) we define a
directed extended graph (V ′, A′) combining G with all potential customers, i.e. V ′ =
V ∪C. Its arc set A′ consists of one arc going out of the root node for each edge in G
adjacent to r, while all other edges of G are replaced by two oppositely directed arcs.
Furthermore, A′ contains one assignment arc (i, k) for each potential assignment
between a facility i ∈ F and a customer k ∈ Ci. Arc costs c′u,v, ∀(u, v) ∈ A′, are
defined as

c′u,v =

{
ce if e = (u, v) ∈ E
au,v otherwise.

. (4.25)

Model (dCut) uses variables zi ∈ {0, 1}, ∀i ∈ F , indicating whether or not a facility
is opened, variables yk ∈ {0, 1}, ∀k ∈ C, denoting if a customer is supplied or not,
and variables xi,j ∈ {0, 1}, ∀(i, j) ∈ A′, specifying whether or not an arc is used.

(dCut) min
∑

(u,v)∈A′
c′u,vxu,v +

∑
i∈F

fizi +
∑
k∈C

pk(1− yk) (4.26)

s.t. xu,v + xv,u ≤ 1 ∀e = (u, v) ∈ E | u, v 6= r (4.27)
xi,k ≤ zi ∀i ∈ F, ∀k ∈ Ci (4.28)∑
i∈Fk

xi,k ≥ yk ∀k ∈ C (4.29)

∑
k∈Ci

dkxi,k ≤ Dizi ∀i ∈ F (4.30)

∑
(u,v)∈δ+(W)

xu,v ≥ zi ∀i ∈ F, ∀W (V | r ∈W ∧ i /∈W (4.31)

∑
(u,v)∈δ+(W)

xu,v +
∑

i∈Fk∩W
xi,k ≥ yk ∀k ∈ C, ∀W (V | r ∈W (4.32)

xu,v ∈ {0, 1} ∀(u, v) ∈ A′ (4.33)
zi ∈ {0, 1} ∀i ∈ F (4.34)
yk ∈ {0, 1} ∀k ∈ C (4.35)

Due to using (V ′, A′), assignment costs are represented as arc costs in the objective
function (4.26). Constraints (4.27) ensure that at most one out of each pair of
oppositely directed arcs between two nodes is chosen, linking constraints (4.28)
guarantee that an assignment arc might only be used if the corresponding facility is
opened, while inequalities (4.29) ensure that a customers prize can only be earned if

108

4.6 Branch-and-Cut-and-Price for CConFL

it is assigned to a facility by an assignment arc. Constraints (4.30) are the capacity
constraints for each facility. In inequalities (4.31) and (4.32) which resemble the
directed connection cuts for facilities and customers, respectively, we denote by
δ+(W) = {(u, v) ∈ A′ | u, v ∈ V ∧ u ∈W ∧ v /∈W} the set of arcs going out of node
set W , i.e. the cutset of W . Since customer nodes have only incoming arcs, we need
not consider other customer nodes than k for a directed connection cut to k ∈ C in
inequalities (4.32). Note that the directed connection cuts for customers (4.32) do
only strengthen the LP relaxation of model (dCut), i.e. removing inequalities (4.32)
would also yield a valid model for CConFL.

Since the number of connectivity constraints (4.31) and (4.32) is exponentially large,
we dynamically identify violated inequalities during runtime. As already mentioned
in Section 2.1.1 the minimum capacity of a cut between two nodes u and v is equiva-
lent to a maximum flow between them. Thus, we use an implementation of the push-
relabel method for the maximum flow problem by Cherkassky and Goldberg [33] for
identifying violated cut inequalities.

4.6 Branch-and-Cut-and-Price for CConFL

Model (dBCP) presented in this section considers whole profitable assignment pat-
terns between customers and facilities instead of taking into account each potential
assignment individually. We consider the set of all feasible and profitable assignment
patterns Ωi for facility i ∈ F and denote by Ω =

⋃
i∈F Ωi the total set of such assign-

ment patterns. By Ω(k) ⊆ Ω, k ∈ C, we denote the set of patterns connecting cus-
tomer k. Each pattern ω ∈ Ω assigns a set of customers C(ω) = {k ∈ C | ω ∈ Ω(k)}
to a dedicated facility F(ω) ∈ F , with F(ω) = i ∈ F ⇔ ω ∈ Ωi. Furthermore, Ω does
only contain valid and profitable patterns, i.e. C(ω) ⊆ CF(ω),

∑
k∈C(ω) dk ≤ DF(ω),

and
∑

k∈C(ω) pk − aF(ω),k > fF(ω), ∀ω ∈ Ω. As (dCut), model (dBCP) uses vari-
ables zi ∈ {0, 1}, ∀i ∈ F , indicating opened respectively closed facilities, and
variables yk ∈ {0, 1}, ∀k ∈ C, denoting if a customer is connected. Variables
γω ∈ {0, 1}, ∀ω ∈ Ω, denote whether a pattern is realized or not. Since these
pattern variables do implicitly model assignments between facilities and customers,
we need not consider corresponding assignment arcs in variables xu,v ∈ {0, 1},
∀(u, v) ∈ A = {(u, v), (v, u) | (u, v) ∈ E ∧ u, v 6= r} ∪ {(r, v) | (r, v) ∈ E}, which
indicate whether an arc is used in the Steiner tree connecting open facilities and the
root node.

109

Chapter 4 The Capacitated Connected Facility Location Problem

(dBCP) min
∑

(u,v)∈A

c′u,vxu,v +
∑
i∈F

fizi +
∑
k∈C

pk(1− yk)+

+
∑
ω∈Ω

∑
k∈C(ω)

aF(ω),kγω (4.36)

s.t.
∑
ω∈Ωi

γω ≤ zi ∀i ∈ F (4.37)

∑
ω∈Ω(k)

γω ≥ yk ∀k ∈ C (4.38)

xu,v + xv,u ≤ 1 ∀(u, v) ∈ E | u, v 6= r (4.39)∑
(u,v)∈δ+(W)

xu,v ≥ zi ∀i ∈ F, ∀W (V | r ∈W ∧ i /∈W (4.40)

∑
(u,v)∈δ+(W)

xu,v+

+
∑

i∈Fk∩W

∑
ω∈Ωi∩Ω(k)

γω ≥ yk ∀k ∈ C, ∀W (V | r ∈W (4.41)

zi ∈ {0, 1} ∀i ∈ F (4.42)
yk ∈ {0, 1} ∀k ∈ C (4.43)
xu,v ∈ {0, 1} ∀(u, v) ∈ A (4.44)
γω ∈ {0, 1} ∀ω ∈ Ω (4.45)

Constraints (4.37) and (4.38) are the coupling constraints between assignment pat-
terns and facilities respectively customers. As for model (dCut), constraints (4.39)
ensure that at most one arc of each pair of oppositely directed arcs can be used, while
constraints (4.40) are the directed connection cuts for facilities. Constraints (4.41) –
which are included to strengthen the LP relaxation of model (dBCP) – resemble the
directed connectivity cuts for customers. They need to be partly expressed in terms
of pattern variables, since no variables explicitly modeling assignments between fa-
cilities and customers are included in (dBCP).

As for model (dCut), connectivity cuts for facilities as well as for customers are added
as cutting planes to the model on demand only. Note that variables zi, ∀i ∈ F , as
well as yk, ∀k ∈ C, are declared as binary due to our branching strategy – see Section
4.6.1 – while defining them as continuous would also yield a valid model.

Since Ω contains exponentially many variables, we cannot solve (dBCP) directly by
branch-and-cut. Thus, as usual in column generation approaches – see e.g. [16, 49] for

110

4.6 Branch-and-Cut-and-Price for CConFL

introductions to column generation and branch-and-price – we consider the reduced
master problem (RMP) containing only a small subset of variables Ω̃ (Ω where
constraints (4.42)–(4.45) are replaced by their continuous relaxations. After solving
this RMP, we search for new pattern variables that price out favorably in the pricing
problem. If at least one such column is found, it is added to RMP which in turn is
resolved. This process is repeated until no further columns can be added.

Let µi ≤ 0, ∀i ∈ F , be the dual variables associated to constraints (4.37), πk ≥ 0,
∀k ∈ C, the dual variables associated to constraints (4.38), and λk,W ≥ 0, ∀k ∈
C, ∀W (V | r ∈ W , the dual variables associated to the customers connection
constraints (4.41). Let W (i, k) = {W ⊆ V | r, i ∈ W}, ∀i ∈ F, ∀k ∈ Ci, denote the
set of all subsets of V including the root node and at least one facility to which a
customer k can be assigned.

When solving RMP, we obtain optimal dual variable values µ∗i , π
∗
k, and λ∗k,W , defining

reduced costs c̄ω for variables ω ∈ Ω \ Ω̃:

c̄ω =
∑

k∈C(ω)

aF(ω),k − µF(ω) −
∑

k∈C(ω)

πk −
∑

k∈C(ω)

∑
Q∈W (F(ω),k)

λk,Q (4.46)

= −µF(ω) −
∑

k∈C(ω)

πk − aF(ω),k +
∑

Q∈W (F(ω),k)

λk,Q

 . (4.47)

The pricing problem is to find a pattern ω∗ ∈ Ω\ Ω̃ yielding minimum reduced costs,
i.e.

ω∗ = argminω∈Ω\Ω̃{c̄ω}.

In other words, we need to find a feasible assignment ω between some customers
C(ω) and a facility F(ω) yielding negative reduced costs c̄ω or prove that no such
assignment exists.

Thus, we need to solve a binary knapsack problem for each facility i ∈ F , with one
item for each customer k ∈ Ci assignable to i, demand dk, and profit πk − ai,k +∑

Q∈W (i,k) λk,Q, where we obviously need not consider items with negative or zero
profit. The total capacity of the knapsack is Di. If |µi| is smaller than the total
profit of the optimal solution to such a knapsack problem, the corresponding pattern
variable has negative reduced costs, in which case it is added to RMP.

111

Chapter 4 The Capacitated Connected Facility Location Problem

4.6.1 Branching in Branch-and-Price

Branching on the exponentially large set of variables γω, ∀ω ∈ Ω, is not a viable
option since it would lead to strong asymmetries in the partitioning of the search
space. Thus next to variables zi, ∀i ∈ F , variables xu,v, ∀(u, v) ∈ A, and variables
yk, ∀k ∈ C, we accomplish branching by decisions on assignments between facilities
and customers. Integrality on one such assignment between a facility i ∈ F and a
customer k ∈ Ci can be achieved by adding either branching constraint (4.48) or
(4.49) to the model if

∑
ω∈Ω̃(k)∩Ω̃i

γω is fractional.

∑
ω∈Ω̃(k)∩Ω̃i

γω = 0 (4.48)

∑
ω∈Ω̃(k)∩Ω̃i

γω = 1 (4.49)

For each included branching constraint, we need to consider its dual variable value in
the pricing problem when solving a knapsack problem with an item corresponding to
an assignment fixed due to an already included branching constraint. Adding such
additional terms in the pricing problem eventually modifies an item’s profit but does
not affect the structure of the pricing problem, i.e. the approach is robust.

Lemma 15 proves that any solution S′ to the LP relaxation of (dBCP) (denoted by
(dBCP)LP) for which – according to above mentioned branching rules – no further
branching can be accomplished represents a feasible solution to CConFL, i.e. even-
tually existing pattern variables with fractional values can be replaced by pattern
variables with integral values while maintaining all assignments between facilities
and customers.

Lemma 15 Consider a solution S′ to (dBCP)LP and an arbitrary facility i ∈ F .
Let Ω′ = {ω ∈ Ω̃i | γLP

ω 6= 0} denote the set of active patterns for i in S′, and C ′ =
{k ∈ C | ∃ω ∈ Ω′(k)} denote the set of customers assigned to i in S′. Furthermore,
assume that

∑
ω∈Ω′(k) γω = 1, ∀k ∈ C ′. Then ζ ∈ Ωi exists such that C ′ = C(ζ).

Proof Let ζ ∈ Ωi denote the single variable replacing all variables ω ∈ Ω′, i.e. C(ζ) =
C ′. Due to the implicit integrality of each assignment between i and a customer
k ∈ C ′ we only need to prove that ζ does not violate the capacity constraints. Due
to constraints (4.37) the following inequality holds:

112

4.7 Polyhedral Comparison

Dζ =
∑
k∈C′

dk =
∑
ω∈Ω′

γLP
ω

∑
k∈C(ω)

dk ≤
∑
ω∈Ω′

γLP
ω Di = Di

∑
ω∈Ω′

γLP
ω ≤ Di.

4.7 Polyhedral Comparison

In the following, we compare the polyhedra corresponding to the sets of feasible
solutions of the LP relaxations to the four models presented in the last sections.
Hereby, we denote by PdMCFf

the polyhedron corresponding to the set of feasible
solutions of the linear relaxation of model (dMCFf). Similarly, PdMCFc denotes the
polyhedron induced by the LP relaxation of model (dMCFc), PdCut those of model
(dCut), and PdBCP the polyhedron corresponding to the LP relaxation of model
(dBCP). Furthermore, superscript LP denotes the linear programming relaxation
of a model, e.g. (dMCFf)

LP denotes the LP relaxation of model (dMCFf).

Lemma 16 (dMCFf) does not dominate (dMCFc), i.e. projx,y,z(PdMCFf
) *

projx,y,z(PdMCFc).

Proof Consider a fractional solution S′ = (R′S , T
′
S , F

′
S , C

′
S , α

′
S) corresponding to the

example given in Figure 4.4. S′ can be feasibly described in the LP relaxation of our
facility oriented model using the variable values as indicated in the figure, i.e. S′ ∈
(dMCFf)

LP. Here, the corresponding flow to each facility with value 1
3 is routed over

two disjoint paths. For feasible solutions of model (dMCFc)
LP,

∑
(r,u)∈Ak

skr,u ≥ yk,
∀k ∈ C, must hold due to the flow conservation constraints. Since

∑
(r,u)∈Ak

skr,u ≤∑
(r,u)∈E xr,u = 1

3 , but yk = 1, ∀k ∈ {0, 1}, we conclude that S′ /∈ (dMCFc)
LP.

Lemma 17 (dMCFc) does not dominate (dMCFf), i.e. projx,y,z(PdMCFc) *
projx,y,z(PdMCFf

).

Proof We consider a fractional solution S′′ = (R′′S , T
′′
S , F

′′
S , C

′′
S , α

′′
S) corresponding

to Figure 4.5. Since the capacity constraints as well as all linking constraints are met
and the corresponding flow to each of the two customer is routed over two disjoint
paths, where each fractional value sku,v is set to 1

2 , S′′ ∈ (dMCFc)
LP. For feasible

solutions of model (dMCFf)
LP,

∑
(u,i)∈Ai

siu,i ≥ zi, ∀i ∈ F , must hold due to the
flow conservation constraints. Since

∑
(u,i)∈Ai

siu,i ≤
∑

(u,i)∈E xu,v = 1
2 but zi = 1,

∀i ∈ {0, 1}, we conclude that S′′ /∈ (dMCFf)
LP.

113

Chapter 4 The Capacitated Connected Facility Location Problem

z1 = 1
3

z3 = 1
3

y1 = 1

y2 = 1

y3 = 1

xi,k = 1
3
, ∀i, k ∈ {1, 2, 3}

root node r

facility node i, with Di = 1, ∀i ∈ {1, 2, 3}
customer node k, with dk = 1, ∀k ∈ {1, 2, 3}

s1
u,v = 1

6

z2 = 1
3

s2
u,v = 1

6

z3 = 1
3

s3
u,v = 1

6

z2 = 1
3

z1 = 1
3

Figure 4.4: Feasible LP solution of (dMCFf) which is infeasible for (dMCFc).

z1 = 1

z2 = 1

y1 = 1

y2 = 1

sk
u,v = 1

2
, ∀k ∈ {1, 2}

root node r
facility node i, with Di = 1, ∀i ∈ {1, 2}
customer node k, with dk = 1, ∀k ∈ {1, 2}

Figure 4.5: Feasible LP solution of (dMCFc) which is infeasible for (dMCFf).

114

4.7 Polyhedral Comparison

Theorem 18 None of the formulations (dMCFc) and (dMCFf) dominates the
other, i.e. projx,y,z(PdMCFc) * projx,y,z(PdMCFf

) and projx,y,z(PdMCFf
) *

projx,y,z(PdMCFc).

Proof Theorem 18 immediately follows due to Lemmas 16 and 17.

Lemma 19 (dCut) dominates (dMCFf), i.e. projx,y,z(PdCut) ⊆ projx,y,z(PdMCFf
).

Proof (dMCFf) differs from (dCut) by modeling connections to facilities by multi-
commodity flow constraints instead of directed connection cuts (4.31) whereas
(dCut) additionally contains directed connection cuts for customers (4.32). The
max-flow min-cut theorem [58] implies that for an arbitrary facility i ∈ F with∑

(u,v)∈δ+(W) x
LP
u,v ≥ zLP

i , ∀W (V | r ∈W ∧ i /∈W , a feasible flow of value zLP
i from

the root node to i exists; compare [132]. Thus any solution to (dCut)LP is valid for
(dMCFf)

LP.

Lemma 20 (dCut) dominates (dMCFc), i.e. projx,y,z(PdCut) ⊆ projx,y,z(PdMCFc).

Proof (dMCFc) differs from (dCut) by modeling connections to customers by
multi-commodity flow constraints instead of directed connection cuts (4.32) whereas
(dCut) additionally contains directed connection cuts for facilities. Thus, as for
Lemma 19 the max-flow min-cut argument also holds for the flow to customers.

Theorem 21 (dCut) strictly dominates (dMCFf) and (dMCFc), i.e.
projx,y,z(PdCut) (projx,y,z(PdMCFf

) and projx,y,z(PdCut) (projx,y,z(PdMCFc).

Proof Since none of the multi-commodity flow formulations dominates the
other, i.e. projx,y,z(PdMCFc) * projx,y,z(PdMCFf

) and projx,y,z(PdMCFf
) *

projx,y,z(PdMCFc), Theorem 21 follows from Lemmas 19 and 20.

Theorem 22 (dBCP) strictly dominates (dCut), i.e. projx,y,z(PdBCP) (
projx,y,z(PdCut).

115

Chapter 4 The Capacitated Connected Facility Location Problem

arc (u, v) with LP value xu,v = 1

arc (u, v) with LP value xu,v = 0.75z1 = 1
y1 = 0.75

y2 = 0.75

root node r
facility node 1 with D1 = 3, f1 = 1.1

customer node k, with dk = 2, pk = 1, ∀k ∈ {1, 2}

Figure 4.6: Feasible LP solution of (dCut) which is infeasible for (dBCP).

Proof Consider a fractional solution S′ according to the example given in Figure 4.6
assuming zero costs for all included arcs. As can be easily seen S′ is valid for
(dCut)LP. For describing S′ in the space of (dBCP), each assignment pattern ω can
only contain one of the customers. However, since those patterns do not pay off –
i.e. the collected profit is smaller than the facilities’ opening costs f1 – ω /∈ Ω and
thus S′ /∈ (dBCP)LP.

Now, we consider a solution Sbcp ∈ (dBCP)LP and denote by γbcp
ω , ∀ω ∈ Ω, xbcp

u,v ,
∀(u, v) ∈ A, zbcp

i , ∀i ∈ F , and ybcp
k , ∀k ∈ C, the values of all variables of Sbcp. Using

equations (4.50)–(4.53) we transform these values to the space of (dCut), where
superscript cut denotes a value with respect to (dCut)LP and Scut the corresponding
solution to (dCut)LP.

zcut
i = zbcp

i ∀i ∈ F (4.50)

ycut
k = ybcp

k ∀k ∈ C (4.51)

xcut
u,v = xbcp

u,v ∀(u, v) ∈ A (4.52)

xcut
i,k =

∑
ω∈Ωi∩Ω(k)

γbcp
ω ∀i ∈ F, ∀k ∈ Ci (4.53)

To show that Scut ∈ (dCut)LP and thus (dBCP)LP ⊆ (dCut)LP we consider each
set of constraints from (dCut) in turn. Scut obviously does not violate constraints
(4.27), since (4.39) identically models them in (dBCP). Validity of constraints (4.28)
follows from above mentioned transformation rules and constraints (4.37):

xcut
i,k =

∑
ω∈Ωi∩Ω(k)

γbcp
ω ≤

∑
ω∈Ωi

γbcp
ω ≤ zbcp

i = zcut
i .

Using our transformation rules and constraints (4.38) the following inequality en-
sures that Scut does not violate constraints (4.29):

116

4.8 Lagrangian Decomposition

ycut
k = ybcp

k ≤
∑

ω∈Ω(k)

γbcp
ω =

∑
i∈Fk

∑
ω∈Ωi∩Ω(k)

γbcp
ω =

∑
i∈Fk

xcut
i,k .

Using constraints (4.37) and the fact that the total demand of a single pattern ω ∈ Ωi

does not exceed the maximum assignable demand of its facility i ∈ F , the validity
of the capacity constraints (4.30) is ensured as follows:

∑
k∈Ci

dkx
cut
i,k =

∑
k∈Ci

dk
∑

ω∈Ωi∩Ω(k)

γbcp
ω =

∑
ω∈Ωi

γbcp
ω

∑
k∈C(ω)

dk ≤

≤
∑
ω∈Ωi

γbcp
ω Di ≤ Diz

bcp
i = Diz

cut
i .

Since directed connection cuts for facilities are identically included in both formu-
lations and the validity of customer connection cuts (4.32) immediately follows by
substituting

∑
ω∈Ωi∩Ω(k) γω by xi,k in the customer connection cuts (4.41) of (dBCP),

we conclude that Scut ∈ (dCut)LP.

4.8 Lagrangian Decomposition

Since Lagrangian relaxation based approaches have proven to be quite successful
for the Steiner tree problem [11] as well as for the capacitated facility location
problem [93] and CConFL is composed of these two problems it is quite natural to
decompose CConFL by means of Lagrangian relaxation. Model (4.54)–(4.62) which
we will relax in the following, is a more abstractly written, undirected variant of
model (dMCFc). As previously, binary variables xe, ∀e ∈ E′, indicate if an edge e is
part of the solution, variables zi ∈ {0, 1}, ∀i ∈ F , specify if a facility i is opened, and
variables yk ∈ {0, 1}, ∀k ∈ C, if a customer k is feasibly assigned to an open facility.
Similarly to the flow variables of model (dMCFc), we use variables ske ∈ {0, 1},
∀k ∈ C, ∀e ∈ E′, to indicate if an edge e ∈ E′ is part of the unique path from the
root node r to a connected customer k. Finally Pk ∈ {0, 1}|E′| denotes the set of
incidence vectors corresponding to these simple paths from r to k ∈ C using exactly
one assignment edge (i, k) ∈ E′ \ E.

117

Chapter 4 The Capacitated Connected Facility Location Problem

min
∑
e∈E′

c′exe +
∑
i∈F

fizi +
∑
k∈C

pk(1− yk) (4.54)

s.t. ske ≤ xe ∀k ∈ C, ∀e ∈ E′ (4.55)

sk ∈ Pk if yk = 1 ∀k ∈ C (4.56)
xi,k ≤ zi ∀i ∈ F, ∀k ∈ Ci (4.57)∑
k∈Ci

dkxi,k ≤ Dizi ∀i ∈ F (4.58)

ske ∈ {0, 1} ∀k ∈ C, ∀e ∈ E′ (4.59)
xe ∈ {0, 1} ∀e ∈ E′ (4.60)
zi ∈ {0, 1} ∀i ∈ F (4.61)
yk ∈ {0, 1} ∀k ∈ C (4.62)

Note that we use xe in the objective function (4.54) as well as in inequalities (4.55)
and (4.60) when considering graph as well as assignment edges, while xi,k is used to
denote assignment edges only in inequalities (4.57) and (4.58).

We relax inequalities (4.55) linking variables s and x in a classical Lagrangian fashion
by adding corresponding terms weighted with nonnegative Lagrangian multipliers
πk,e ≥ 0, ∀k ∈ C, ∀e ∈ E′, to the objective function. This yields the parameter-
ized model (LD(π)). See for example [18] for a general introduction to Lagrangian
relaxation.

(LD(π)) min
∑
e∈E′

c′exe +
∑
i∈F

fizi +
∑
k∈C

pk(1− yk) +
∑
k∈C

∑
e∈E′

πk,e · (ske − xe) =

=
∑
k∈C

pk +
∑
k∈C

(∑
e∈E′

πk,es
k
e − pkyk

)
+

+
∑
e∈E′

(
c′e −

∑
k∈C

πk,e

)
xe +

∑
i∈F

fizi

s.t. (4.56)–(4.62)

(LD(π)) decomposes into independent subproblems (LDs,y(π)) for determining vari-
ables ske , ∀k ∈ C, ∀e ∈ E′, and yk, ∀k ∈ C, subproblem (LDx(π)) for determin-
ing variables xe, ∀e ∈ E, and subproblem (LDx,z(π)) to determine variables xe,

118

4.8 Lagrangian Decomposition

∀e ∈ E′ \E, and zi, ∀i ∈ F . We consider these subproblems and their solving in the
following in detail.

(LDs,y(π)) min
∑
k∈C

pk +
∑
k∈C

(∑
e∈E′

πk,es
k
e − pkyk

)
(4.63)

s.t. sk ∈ Pk if yk = 1 ∀k ∈ C (4.64)

ske ∈ {0, 1} ∀k ∈ C, ∀e ∈ E′ (4.65)
yk ∈ {0, 1} ∀k ∈ C (4.66)

(LDs,y(π)) consists of |C| independent shortest path problems. Thus it can be solved
for customer k ∈ C by computing the cheapest path with respect to edge costs
πk,e from the root to customer node k which includes exactly one assignment edge
(i, k) ∈ E′ \E, i.e. we need to determine the corresponding incidence vector q ∈ Pk.
If the total costs of this path are smaller than the customers prize pk, yk as well as
the corresponding path variables ske , ∀e ∈ E′ | qe = 1, are set to one. Since, all edge
costs πk,e are nonnegative we use |C| runs of Dijkstras’ algorithm [50], resulting in a
total time-complexity of O(|C|(|E|+ |V | log |V |)) for solving (LDs,y(π)) when using
a binary heap implementation of Dijkstras’ algorithm.

(LDx(π)) min
∑
e∈E

(
ce −

∑
k∈C

πk,e

)
xe (4.67)

s.t. xe ∈ {0, 1} ∀e ∈ E (4.68)

(LDx(π)), can be trivially solved by inspection in time O(|C||E|). Variables xe,
∀e ∈ E, are set to one if ce <

∑
k∈C πk,e, and to zero otherwise.

(LDx,z(π)) min
∑
i∈F

fizi +
∑

e=(i,k)∈E′|
i∈F∧k∈Ci

(
c′i,k −

∑
k∈C

πk,e

)
xi,k (4.69)

s.t.
∑
k∈Ci

dkxi,k ≤ Dizi ∀i ∈ F (4.70)

xi,k ≤ zi ∀i ∈ F, ∀k ∈ Ci (4.71)
zi ∈ {0, 1} ∀i ∈ F (4.72)
xe ∈ {0, 1} ∀e ∈ E′ \ E (4.73)

119

Chapter 4 The Capacitated Connected Facility Location Problem

Model (LDx,z(π)) resembles |F | 0–1 knapsack problems, one for each facility i ∈ F .
In such a knapsack problem for facility i ∈ F , we are given the total knapsack
capacity Di, and one item for each potential assignment e = (i, k) ∈ E′ \ E, with
profit

∑
k∈C πk,e − c′e and weight dk. Obviously, we can neglect all items with

negative or zero profit. Let χ∗i denote the optimal solution to the knapsack problem
of facility i ∈ F , and o(χ∗i) the according objective value (i.e. the total profit). zi
and all variables xe corresponding to items used in χ∗i are set to one if o(χ∗i) >
fi. Although the knapsack problem is weakly NP-hard [69], several algorithms
capable of solving large instances relatively quickly are known, see e.g. [104, 147].
In our implementation we use the Combo algorithm1 of Martello et al. [136]. Since
(LDx,z(π)) does not possess the integrality property, we may be able to determine
better lower bounds than by a simpler LP relaxation of model (4.54)–(4.62).

In the Lagrangian dual problem, we aim to maximize the resulting lower bound by
determining optimal Lagrangian multipliers π∗. Since this maximization problem
is convex and piecewise linear, we can approximately solve it using subgradient-like
methods. We use the volume algorithm [13], which is an extension of the classic sub-
gradient method [65], for solving the Lagrangian dual. While the volume algorithm
has been reported to be more efficient in a number of other applications [11, 86], it
sometimes might converge too quickly – see e.g. [29] – thus leading to poorer lower
bounds than other subgradient-based algorithms. However, preliminary tests in our
scenario indicated that the volume algorithm usually yields better lower bounds
than the classic subgradient method. Therefore, even though a comparison of vari-
ous existing methods for solving the Lagrangian dual would be interesting in future,
we decided to focus on using the volume algorithm.

4.9 Primal Heuristic

Applying the volume algorithm [13] to approximately solve the Lagrangian dual
problem, we compute integer values for variables ske , xe, zi, and yk in each iteration.
The solution to (LDs,y(π)) does connect a subset of customers with the root node,
but the subgraph induced by these paths might contain redundant edges or violate
capacity constraints. The solution to (LDx,z(π)), however, does open some facilities
and assigns customers to them respecting the capacity constraints, but does not take
into account whether those facilities are connected to the root node. Furthermore,
customers may be assigned to multiple facilities due to (LDx,z(π)).

1http://www.diku.dk/˜pisinger/codes.html

120

4.9 Primal Heuristic

To create a feasible solution S = (RS , TS , FS , CS , αS) using the solutions to
(LDs,y(π)) and (LDx,z(π)) we apply the Lagrangian heuristic (LH) presented in
Algorithm 4.1.

Algorithm 4.1 initially declares all facilities as open whose corresponding nodes are
part of a path to some customer k ∈ C due to the actual solution to (LDs,y(π)), i.e.
FS = {i ∈ F | ∃k ∈ C : ski,k = 1}.

In a second phase the Steiner tree (RS , FS) connecting these facilities i ∈ FS is
created. Let Wi,k = {e ∈ E | ske = 1}, ∀k ∈ C ′i, with C ′i = {k ∈ C | ski,k = 1}
be the set of customers connected to the root node r via facility i, and Wi =
argminWi,k|k∈C′i{

∑
e∈Wi,k

ce} be the cheapest of these subpaths for each open facility
i ∈ FS . After initializing the Steiner tree to consist of the root node only – i.e. RS =
{r}, TS = ∅ – all facilities i ∈ FS are considered in increasing order w.r.t. the costs∑

e∈Wi
ce of the cheapest path Wi connecting them. We connect each considered

facility i ∈ F to the so far constructed Steiner tree by adding the necessary subpath
W ′ ⊆ Wi with W ′ = {(v0 = i, v1), (v1, v2), . . . (vl, vm)}, (va, vb) ∈ Wi, 0 ≤ a, b ≤ m,
vi /∈ RS , 0 ≤ i ≤ l, vm ∈ RS , to the Steiner tree, i.e. RS = RS ∪ {v0, v1 . . . , vl}, and
TS = TS ∪W ′.

After connecting facility i ∈ FS the optimal subset of customers C ′′i ⊆ C ′i which are
connected by paths via i is assigned to facility i. If assigning all these customers
C ′i would exceed the maximum demand Di assignable to i, we use the Combo al-
gorithm [136] to solve the corresponding 0–1 knapsack problem, while simply all
customers k ∈ C ′i are assigned to i if

∑
k∈C′i

dk ≤ Di.

In the third phase of Algorithm 4.1 the so far created solution is further improved
by assigning additional customers. Here, we first consider the set of assignments A
between customers and open facilities i ∈ FS from the solution to (LDx,z(π)), i.e.
A = {(i, k) | i ∈ FS ∧ k ∈ C ∧ xi,k = 1}, in decreasing order w.r.t. their efficiency

values
pk−c′i,k
dk

. Each considered assignment (i, k) is added to S if the corresponding
customer has not yet been assigned, i.e. k /∈ CS , and the facility’s capacity constraint
will not be exceeded, i.e. dk+

∑
k′∈CS |αS(k′)=i dk′ ≤ Di. Subsequently, further assign-

ments are added to S using an identical greedy strategy for all remaining possible
assignments to facilities i ∈ FS .

Finally, we further improve the obtained solution S using the neighborhood struc-
tures described in Section 4.10 in case S is better than the so far best solution S′

derived by LH before applying these improvements.

121

Chapter 4 The Capacitated Connected Facility Location Problem

Algorithm 4.1: Primal Heuristic (Solution S′, variable values ske , xe, zi, yk)

// Phase 1: open facilities
FS = {i ∈ F | ∃k ∈ C : ski,k = 1}
// Phase 2: construct Steiner tree (RS , TS) and assign initial customers
RS = {r}
TS = ∅
forall the i ∈ FS do

C ′i = {k ∈ C | ski,k = 1}
Wi,k = {e ∈ E | ske = 1}, ∀k ∈ C ′i
Wi = argminWi,k|k∈C′i{

∑
e∈Wi,k

ce}
forall the i ∈ FS in increasing order of

∑
e∈Wi

ce do
if
∑

k∈C′i
dk ≤ Di then

C ′′i = C ′i

else
determine optimal assignable subset C ′′i ⊆ C ′i using Combo algorithm

CS = CS ∪ C ′′i
αS(k) = i, ∀k ∈ C ′′i

// Phase 3: assign additional customers
A = {(i, k) | i ∈ FS ∧ k ∈ C \ CS ∧ xi,k = 1}
forall the (i, k) ∈ A in decreasing order w.r.t. efficiency

pk−c′i,k
dk

do
if k /∈ CS ∧ dk +

∑
k′∈CS |αS(k′)=i dk′ ≤ Di then

CS = CS ∪ {k}
αS(k) = i

A′ = {(i, k) | i ∈ FS ∧ k ∈ C \ CS ∧ xi,k = 0}
forall the (i, k) ∈ A′ in decreasing order w.r.t. efficiency

pk−c′i,k
dk

do
if k /∈ CS ∧ dk +

∑
k′∈CS |αS(k′)=i dk′ ≤ Di then

CS = CS ∪ {k}
αS(k) = i

// Phase 4: primal improvement
if c(S) ≤ c(S′) then

S′ = S
Primal Improvement(S) // see Algorithm 4.2

122

4.10 Solution Improvement

4.10 Solution Improvement

Representing solutions by means of open facilities and computing the Steiner tree
connecting them as well as assigning customers to them during the solution decoding
process has been the usual approach taken in metaheuristics for variants of ConFL so
far [117, 125, 169]. In our case, modifying the set of open facilities is quite expensive
w.r.t. computational time, since determining the optimal connecting Steiner tree as
well as assigning the optimal clients are NP-hard problems. Using some heuristic
for decoding a solution after adapting the set of open facilities and subsequently
trying to improve those aspects is an option for a pure metaheuristic but is likely to
be also too time consuming in case of an intertwined hybrid approach in which the
primal improvement procedure is repeatedly applied to solutions derived within the
course of the volume algorithm.

We therefore decided to concentrate on improving a solution by means of its Steiner
tree and its assigned customers, but do not modify the set of open facilities generated
by our Lagrangian heuristic. Diversity by means of open facilities is ensured in our
approach due to the fact that we generate one initial solution in each iteration of the
volume algorithm. As shown by Algorithm 4.2, we use one neighborhood structure
for each of the remaining solution aspects: a path exchange neighborhood – see Sec-
tion 4.10.1 – for reducing the costs of the connecting Steiner tree and either a simple
swap neighborhood – see Section 4.10.2 – or a very large scale neighborhood – see
Section 4.10.3 – for improving facility customer assignments. Both neighborhoods
are searched using a best improvement strategy. Finally, we remove non-profitable
parts from S using strong pruning as described in [140].

Algorithm 4.2: Primal Improvement(Solution S)

Key Path Improve(S) // see Algorithm 4.3
switch improvement mode do

case simple:
Customer Swap Improve(S) // see Algorithm 4.4

case advanced:
Very Large Scale Neighborhood Search(S) // see Algorithm 4.5

prune solution

It is further worth mentioning that since the improved solution aspects are indepen-
dent one could easily apply the corresponding neighborhoods in parallel instead of
our sequential approach to reduce the total runtime.

123

Chapter 4 The Capacitated Connected Facility Location Problem

4.10.1 Key Path Improvement

For the Steiner tree problem in graphs, the concept of so-called key nodes – also
called crucial nodes – of a solution, which are all customer nodes as well as all
Steiner nodes of degree greater than or equal to three is well known. Voß [175] was
the first who considered representing a solution to STP by its key nodes – although
he did not yet use the term key nodes – and trying to improve it by means of replacing
the paths between those key nodes. Since then this type of neighborhood structure
has been successfully used in several approaches for the STP – see e.g. [137, 174] –
as well as some of its generalizations, see e.g. [116].

For a solution S to CConFL the set of key nodes K = {r} ∪ FS ∪ {v ∈ RS |
degS(v) ≥ 3} is given by the root node, all open facilities as well as all Steiner nodes
of degree greater than or equal to three in S. A key path (V, E) of solution S is a
non-empty path in S between two key nodes u, v ∈ K containing no other key node,
i.e. V ∩ K = {u, v}. Our Key-Path Improvement procedure as given in Algorithm
4.3 considers each such key path (V, E) ∈ P̃ (S) from the set of all key paths P̃ (S)
of solution S and replaces it by the shortest connection between its end nodes using
the remaining solution edges as infrastructure (i.e. zero edge costs are assumed for
them); see Figure 4.7 for an exemplary move.

Algorithm 4.3: Key Path Improvement (Solution S)

repeat

c′e =

{
0 if e ∈ TS
ce else

, ∀e ∈ E

δ = 0
forall the key paths P = (V, E) ∈ P̃ (S) do

// key (end) nodes of P are u and v
c′e = ce, ∀e ∈ E
find shortest path P ′ = (V ′, E ′) between u and v w.r.t. c′

δ′ =
∑

e∈E ′ c
′
e −

∑
e∈E ce

if δ′ < δ then
δ = δ′

store replacement of P by P ′ as best move

c′e = 0, ∀e ∈ E
if δ < 0 then

apply best move

until δ ≥ 0

124

4.10 Solution Improvement

u

v

u

v

Figure 4.7: An exemplary key path exchange move between key nodes u and v.

k

l

αS(k)

αS(l) αS′(k)

αS′(l)

k

l

Figure 4.8: An exemplary move swapping the assignments of customers k and l.

4.10.2 Customer Swap Neighborhood

The Customer Swap Neighborhood focuses on realized assignments between facilities
and customers. It consists of all solutions S′ differing from a solution S by swapping
the assignment of exactly two customer nodes. Formally, each swap move transforms
a solution S with αS(k) = i and αS(l) = j for customers k, l ∈ CS and facilities
i, j ∈ FS , into a solution S′ where αS′(k) = j and αS′(l) = i; see Figure 4.8 for an
exemplary move. This customer swap neighborhood can be searched in O(|CS |2) by
Algorithm 4.4. It has already been used by Contreras et al. [41] for the SSCFLP.

4.10.3 Very Large Scale Neighborhood Search

Small neighborhoods as the customer swap neighborhood described above can be
searched relatively fast but often yield rather poor local optima only. Recently, very
large scale neighborhood (VLSN) search approaches have been considered for various
problems to overcome limitations of simple standard neighborhood structures. If

125

Chapter 4 The Capacitated Connected Facility Location Problem

Algorithm 4.4: Customer Swap (Solution S)

repeat
δ = 0
ri = Di −

∑
j∈C′|αS(j)=i dj , ∀i ∈ FS

forall the l ∈ CS do
forall the k ∈ CS do

if k ∈ CαS(l) ∧ l ∈ CαS(k) then
if αS(l) 6= αS(k) then

if dl ≤ rαS(k) + dk ∧ dk ≤ rαS(l) + dl then
δ′ = −aαS(k),k − aαS(l),l + aαS(k),l + aαS(l),k

if δ′ < δ then
δ = δ′

store current move as best

if δ < 0 then
apply best move

until δ ≥ 0

such large neighborhoods can be efficiently searched they often lead to superior
solutions, since they allow for covering larger areas of a problem’s search space; see
e.g. [5, 34] for surveys on this topic.

Ahuja et al. [6] proposed very large scale neighborhoods for the single source capac-
itated facility location problem (SSCFLP) based on the exchange of an arbitrary
number of customers and showed how to efficiently search them via shortest path
calculations on a so-called improvement graph. Since CConFL contains a special
variant of SSCFLP where some customers may be unassigned, in the following we
generalize their work on single-customer multi-exchanges to be applicable to our
problem variant.

To formally introduce single-customer cyclic and path exchanges, we define the
remaining capacity of each facility i ∈ F w.r.t. a solution S as

rS(i) =

{
Di −

∑
k∈CS |αS(k)=i dk if i ∈ FS

Di otherwise
, ∀i ∈ F.

Furthermore, by F(k) ∈ FS , ∀k ∈ CS , we denote the facility i ∈ FS customer k is
assigned to in S.

126

4.10 Solution Improvement

Analogously to Ahuja et al. [6], we define a single-customer cyclic exchange w.r.t.
solution S as a sequence R = (k1, k2, . . . , kq), ki 6= kj ∈ C, 1 ≤ i 6= j ≤ q, such
that each pair of currently assigned customers k, t ∈ CS , k 6= t, from R is assigned
to different facilities, i.e. F(k) 6= F(t). Furthermore, no two consecutive customers
of R may be currently unassigned, i.e. ki ∈ CS ∨ ki+1 ∈ CS , i = 1, . . . , q − 1, and
k1 ∈ CS ∨ kq ∈ CS .

Each such sequence R defines a move from an actual solution S to a solution S′

by releasing each assigned customer ki ∈ CS from its facility F(ki), 1 ≤ i ≤ q,
and subsequently assigning ki to the facility of its successor ki+1 in case ki+1 ∈ CS ,
1 ≤ i ≤ q − 1. Finally, kq is assigned to F(k1) if k1 ∈ CS . A single-customer cyclic
exchange is feasible if customers may be assigned to the corresponding facilities and
no capacity condition is exceeded.

Similarly a single-customer path exchange w.r.t. a solution S is a sequence P =
(k1, k2, . . . , kq−1, w) of customers ki ∈ C, 1 ≤ i ≤ q − 1, and one facility w ∈ F as
last element of the sequence with w 6= F(ki) 6= F(kj), ki, kj ∈ CS , 1 ≤ i 6= j ≤ q−1.
Thus, as for cyclic exchanges, each assigned customer ki ∈ CS , i = 1, . . . , q − 1, is
released and customers kj , j = 1, . . . , q− 2 are assigned to their successors’ facilities
F(kj+1) if kj+1 ∈ CS . Finally, instead of interpreting the sequence as a cycle by
eventually assigning the last customer to the first customer’s original facility, kq−1

is simply assigned to w. As for cyclic exchanges, a path exchange is feasible, if all
assignment rules as well as capacity constraints are respected.

Since applying a path exchange move might induce opening a facility and/or closing
one, we also need to determine corresponding changes in the costs w.r.t. the Steiner
tree in order to decide whether the corresponding move is actually improving solution
S. Since computing the exact additional costs or savings would mean to re-compute
a Steiner tree for each facility k ∈ F , we apply a faster shortest path heuristic
that returns an upper bound for additional costs and a lower bound for savings,
respectively. Thus, using these heuristic values ζ(i), ∀i ∈ F , we might miss some
improving moves but can be sure that no non-improving moves are considered as
improving. To determine, ζ(i), ∀i ∈ F , we compute the shortest path tree from r
treating all solution edges as infrastructure, i.e. we use modified edge costs c′e = 0,
∀e ∈ TS and c′e = ce, ∀e ∈ E \ TS . For facilities i ∈ F \ FS , ζ(i) =

∑
e∈Q(i) c

′
e,

where Q(i) denotes the edge set of the cheapest path from r to i w.r.t. edge costs
c′, is obviously an upper bound for the additional connection costs of facility i.
Furthermore, for open facilities i ∈ FS we set ζ(i) = −∑

e∈Q(i)\
“S

j∈FS\{i}
Q(j)

” ce,
since we can obviously remove all edges e ∈ Q(i) \

(⋃
j∈FS\{i}Q(j)

)
from a solution

after closing facility i.

127

Chapter 4 The Capacitated Connected Facility Location Problem

For SSCFLP, Ahuja et al. [6] showed that improving path and cyclic exchanges cor-
respond to negative subset disjoint cycles in a correspondingly defined improvement
graph. Thus, in the following we show how to maintain this correlation between cy-
cles and improving moves for our problem variant, i.e. how to define the improvement
graph.

Improvement Graph:

For each solution S to CConFL, we define the corresponding improvement graph
I(S) = (N(S),M(S)). The node set N(S) = Na(S) ∪Nu(S) ∪Np(S) ∪ {o} is the
disjoint union of assigned regular nodes uk ∈ Na(S), ∀k ∈ CS , unassigned regular
nodes vk ∈ Nu(S), ∀k ∈ C \ CS , pseudo nodes wi ∈ Np(S), ∀i ∈ F , and an origin
node o. The origin node o and its adjacent arcs are included to model path exchanges
by means of cycles in I(S), see also [6].

The set of arcs M(S) is the disjoint union of
• arcs M (a,a)(S) between assigned regular nodes,

• arcs M (a,u)(S) from assigned to unassigned regular nodes,

• arcs M (u,a)(S) from unassigned to assigned regular nodes,

• arcs M (a,p)(S) from assigned regular to pseudo nodes,

• arcs M (u,p)(S) from unassigned regular to pseudo nodes,

• arcs M (p,o)(S) from pseudo nodes to the origin,

• arcs M (o,a)(S) from the origin to assigned regular nodes, and

• arcs M (o,u)(S) from the origin to unassigned regular nodes.

Next, we will describe these arcs as well as their costs γi,j , ∀(i, j) ∈ M(S), corre-
sponding to the resulting changes of the objective value formally as well as w.r.t.
their interpretation.

Arcs (uk, ul) ∈M (a,a)(S) denote releasing customer l ∈ CS from i = F(l) and in turn
assigning customer k ∈ CS to facility i, leading to arc costs γuk,ul

= ai,k−ai,l. Since,
we must ensure that k can be assigned to F(l) as well as that capacity constraints
are respected, the corresponding arc set is defined as M (a,a)(S) = {(uk, ul) | uk, ul ∈
Na(S) : F(l) ∈ Fk ∧ F(k) 6= F(l) ∧ rS(F(l)) + dl ≥ dk}. Each arc (uk, vl) ∈
M (a,u)(S) = {(uk, vl) | uk ∈ Na(S), vl ∈ Nu(S)}, with corresponding costs γuk,vl

=
pk from an assigned to an unassigned regular node, models releasing customer k.
Arcs (vk, ul) ∈ M (u,a)(S) = {(vk, ul) | vk ∈ Nu(S), ul ∈ Na(S) : F(l) ∈ Fk ∧
rS(F(l)) + dl ≥ dk} with costs γuk,vl

= aF(l),k − aF(l),l − pk indicate releasing l from

128

4.10 Solution Improvement

i = F(l) and subsequently assigning the previously unassigned customer k to facility
i ∈ FS .

M (a,p) consists of one arc (uk, wi) from each each assigned regular node to each
pseudo node if the corresponding customer k can be assigned to facility i, i.e.
M (a,p)(S) = {(uk, wi) | uk ∈ Na(S), wi ∈ Np(S) : i 6= F(k) ∧ i ∈ Fk ∧ rS(i) ≥ dk}.
Since eventually occurring facility opening costs will be considered by arcs going out
of wi, costs γuk,wi = ai,k are given by the costs of assigning customer k to facility
i. To allow for assigning currently unassigned customers k ∈ F \ FS to some fa-
cility i ∈ F without previously releasing another customer from i, we include arcs
(vk, wi) ∈ M (u,p)(S) = {(vk, wi) | vk ∈ Nu(S), wi ∈ Np(S) : i ∈ Fk ∧ rS(i) ≥ dk}.
As we additionally earn a customers prize here, arc (vk, wi) ∈ M (u,p)(S) has costs
γvk,wi = ai,k − pk.
To model path exchanges as cycles in the graph, we further need to include arcs
from each pseudo node to the origin and arcs from the origin to assigned as well as
unassigned regular nodes. ArcsM (p,o)(S) = {(wi, o) | wi ∈ Np(S)}model eventually
occurring opening and connection costs of facility i ∈ F , i.e.

γwi,o =

{
0 if i ∈ FS
fi + ζi otherwise

, ∀(wi, o) ∈M (p,o).

Using an arc (o, uk) ∈ M (o,a)(S) = {(o, uk) | uk ∈ Na(S)} from the origin node o
to some assigned regular node uk releases customer k from its facility, yielding arc
costs

γo,uk
=

{
−aF(k),k if ∃l 6= k ∈ CS : F(k) = F(l)
−aF(k),k − fF(k) + ζF(k) otherwise

, ∀(o, uk) ∈M (o,a).

Finally, arcs (o, vk) ∈ M (o,u)(S) = {(o, vk) | vk ∈ Nu(S)} from the origin to some
unassigned regular node are included for allowing to assign a new customer with-
out previously releasing another one. Consequently, these arcs have zero costs, i.e.
γo,vk

= 0, ∀(o, vk) ∈M (o,u).

Searching for improving moves:

Generalizing the definition given in [6] we call a directed cycle (u1, . . . , uq), ui ∈
N(S), i = 1, . . . , q, of I(S) subset disjoint, if each of its assigned regular nodes and
pseudo nodes are associated with different facility locations. If the total edge costs of
such a cycle are negative, it is called negative cost subset disjoint. Since only feasible

129

Chapter 4 The Capacitated Connected Facility Location Problem

k1 k2

k3
k4

k5

h

i j

Figure 4.9: An exemplary solution S to CConFL.

arcs w.r.t. assignment rules and capacity conditions are included in I(S), and edge
costs reflect changes in the objective value, those negative cost subset disjoint cycles
correspond to improving path and cyclic exchange moves. However, if such a cycle
does induce opening facility i ∈ F \ FS as well as closing a facility j ∈ FS , a cycle’s
cost might not be equal to the actual cost changes when applying the move since
the additional costs/savings ζ due to adapting the Steiner tree have been computed
independently for each facility. Since opening and connecting a new facility and
assigning only one customer to it does only rarely pay off, this special case is rather
unlikely to occur in practice. Therefore, we simply check whether a found cycle does
simultaneously open and close two facilities and add eventually occurring additional
connection costs before deciding whether this cycle is an improving one.

Thomson and Orlin [168] proved that deciding whether a graph contains a negative
subset disjoint cycle is NP-hard. Subsequently, Ahuja et al. [7] proposed an effective
heuristic for finding negative cost subset disjoint cycles based on the label correcting
algorithm for the shortest path problem. This heuristic has already been used for
the SSCFLP [6] and in practice rarely fails to find existing negative cost subset
disjoint cycles if started once from each regular node. As shown in Algorithm 4.5,
we search the neighborhood defined by the set of single customer path and cyclic
exchanges using a best improvement strategy, adopting the heuristic of Ahuja et al.
[6] to find negative subset disjoint cycles which is also started from every regular
node.

Figure 4.10 depicts an exemplary improvement graph I(S) = (N(S),M(S)) with
respect to a solution S as shown in Figure 4.9 assuming that each clients demand is
equal to one, while each facility’s maximum assignable demand is two.

Figure 4.11 shows an exemplary feasible cyclic exchange R = (k1, k4, k5, k2) with
respect to solution S. Thus after applying R, customer k2 will be assigned to facility
h, k1 to i, k4 to j, and finally k5 will be unassigned. Since k3 /∈ R it will still be
assigned to facility i.

An exemplary path exchange P = (k2, k1, k4, j) is shown in Figure 4.12. Here, k2 will

130

4.10 Solution Improvement

Algorithm 4.5: Very Large Scale Neighborhood Search(Solution S)

repeat
δ = 0
construct improvement graph
forall the k ∈ C do

// start heuristic from regular node corresponding to k
heuristically find negative cost subset disjoint cycle C
δ =

∑
(u,v)∈C γu,v

if C induces closing facility i ∈ FS and opening j ∈ F \ FS then

Q = Q(i) \
(⋃

l∈FS\{i}Q(l)
)

δ = δ +
∑

e∈Q∩Q(j) ce

if δ < δ′ then
δ = δ′

store current cycle as best move

if δ < 0 then
apply best move

until δ ≥ 0

u4

v2

u3 u1

u5

wh

wi

wj

oo

Figure 4.10: Improvement graph I(S) = (N(S),M(S)) corresponding to the solution
given in Figure 4.9.

u4

v2

u3 u1

u5

wh

wi

wj

oo

Figure 4.11: An exemplary cyclic exchange R = (k1, k4, k5, k2).

131

Chapter 4 The Capacitated Connected Facility Location Problem

u4

v2

u3 u1

u5

wh

wi

wj

oo

Figure 4.12: An exemplary path exchange P = (k2, k1, k4, j).

be assigned to facility h, k1 to i, and k4 to j after applying the corresponding move,
while k3 and k5 will remain assigned to their facilities i and j since k3, k5 /∈ P .

Note that the origin node o is duplicated in Figures 4.10, 4.11, and 4.12 to keep
them simple.

4.11 Test Instances and Environment

For ConFL, Ljubić [125] combined benchmark instances for the STP with instances
for uncapacitated facility location. Similarly, we created instances for CConFL2

by combining STP instances from the OR-library3 with instances for the SSCFLP
created with the instance generator of Kratica et al. [112]4.

The node with index one in the STP instance is chosen as root node, while |F | other
nodes are randomly chosen as potential facility locations. Customers with associated
demands, assignment costs as well the maximum assignable demands and opening
costs for each facility are given by the SSCFLP instance. Next, we need to choose
reasonable customer prizes, high enough to ensure that some customers will be sup-
plied while avoiding creating relatively easy instances by setting them too high.
For each customer k ∈ C, we randomly select its prize pk ∈ N0 from the interval[
a(k), amax(k) + f

]
, where a(k) =

P
i∈Fk

ai,k

|Fk| denotes the average assignment costs of
customer k, amax(k) = maxi∈Fk

{ai,k} the maximum assignment costs of customer

k, and f =
P

i∈F fi

|F | the average facility opening costs. This ensures that each cus-
tomer may be assigned to the majority of potential facilities in a profitable way. In
particular it turned out that no customers or facilities are completely removed from
an instance during preprocessing. Finally, degree-one and degree-two filtering [17] is

2available at http://www.ads.tuwien.ac.at/people/mleitner/cconfl/instances.tar.gz
3http://people.brunel.ac.uk/˜mastjjb/jeb/orlib/steininfo.html
4http://alas.matf.bg.ac.yu/˜kratica/instances/splp gen w32.zip

132

4.12 Computational Results

applied to remove some Steiner nodes and edges. A more detailed description on the
individual characteristics of all resulting instances is given in Tables 4.2 and 4.3.

We performed all computational experiments on a single core of an Intel Core 2 Quad
with 2.83GHz. IBM CPLEX 12.1 [98] has been used for directly solving (dMCFf),
(dMCFf), and (dCut) as well as their LP relaxations (dMCFc)

LP, (dMCFf)
LP, and

(dCut)LP. SCIP 1.2.0 [2, 182] with IBM CPLEX 12.1 [98] as embedded LP solver
has been used for solving (dBCP) and its linear relaxation (dBCP)LP.

To allow for a fair comparison to our Lagrangian decomposition based approaches,
we used the single threaded variant of CPLEX. A time limit of 7200 CPU-seconds
has been applied whenever not explicitly mentioned.

4.12 Computational Results

In the following the obtained computational results are summarized. First, results
on the four exact IP models (dMCFc), (dMCFf), (dCut), and (dBCP) are given.
Here, we start by evaluating their LP relaxation values and corresponding runtimes,
before turning to obtained bounds and optimality gaps. Afterwards, the results
of three variants of the LD approach from Section 4.8 are analyzed. Finally, the
two most promising methods from these different fields are further discussed and
compared to each other.

4.12.1 Results on Exact Models

When solving (dCut) and (dBCP), we separate directed connection cuts for cus-
tomers only if no further violated connection cuts for facilities can be found. For
(dBCP), we initially set Ω̃ = ∅ and accomplish branching by considering variables
zi, ∀i ∈ F , xu,v, ∀(u, v) ∈ A, and yk, ∀k ∈ C, in this order before considering as-
signments between facilities and customers. For each set of variables, branching is
performed on the most fractional variable; ties are broken at random. We did not
implement problem specific primal heuristics to speed-up the solution of our models,
but simply trust on the built-in heuristics of CPLEX and SCIP, respectively.

Linear Programming Relaxations

Table 4.1 compares LP relaxation values of (dMCFf) and (dMCFc) for small test
instances using a CPU-time limit of 14400 seconds. As shown in Section 4.7, none of

133

Chapter 4 The Capacitated Connected Facility Location Problem

these two formulations theoretically dominates the other. However, as can be seen
in Table 4.1, (dMCFf) is on the used test instances far more efficient than (dMCFc)
from a computational perspective. Solving the LP relaxation of model (dMCFc)
often needs too much time already on relatively small instances. Thus, we do not
consider (dMCFc) in all further experiments.

Table 4.1: Comparison of LP relaxation values and corresponding CPU-times in sec-
onds for (dMCFf) and (dMCFc) on small instances (time limit 14400s).

Instance LP value CPU time [s]
Name |F | |C| |V | |E| (dMCFf)

LP (dMCFc)
LP (dMCFf)

LP (dMCFc)
LP

c10-mo75 75 75 408 908 2878.7 2852.2 94 3272
c10-mq75 75 75 405 905 7095.2 7077.3 116 1386
c10-ms75 75 75 407 907 9506.3 9479.4 194 4487
d10-mo75 75 75 771 1770 2772.6 - 484 14400
d10-mq75 75 75 775 1774 7295.0 7278.9 167 3458
d10-ms75 75 75 781 1780 10069.3 - 1103 14400

c10-mo 75 200 404 904 8153.5 8118.2 713 6450
c10-mp 75 200 403 903 14917.4 - 228 14400
c10-mq 75 200 403 903 20717.2 - 328 14400
c10-mo 200 75 435 935 2957.0 - 6229 14400
c10-mp 200 75 428 928 5444.6 5432.0 3439 11206
c10-mq 200 75 430 930 8093.5 8076.6 1931 10748

Computational results for the LP relaxations of (dMCFf), (dCut), and (dBCP) are
summarized in Table 4.2 for instances with |F | = |C| and in Table 4.3 for instances
with |F | 6= |C|. Tables 4.2 and 4.3 also detail the used test instances. For each
considered instance, its number of potential facility locations |F |, its number of
customers |C|, as well as the number of nodes |V | and edges |E| are given. All
further tables will refer to an instance by its number only, which is given in the first
column of Tables 4.2 and 4.3, respectively.

We conclude that in addition to their theoretical advantages and thus better LP
relaxation values, the necessary CPU time to solve the linear relaxations of (dCut)
and (dBCP) is significantly smaller for all tested instances. Moreover, (dBCP)LP

can be solved much faster than (dCut)LP for almost all instances.

Solutions and Optimality Gaps

Results on best obtained lower and upper bounds as well as corresponding gaps and
needed CPU times for (dMCFf), (dCut), and (dBCP) are presented in Table 4.4
for instances with |F | = |C| and in Table 4.5 for instances with |F | 6= |C|. Since
(dMCFf) could not solve any instance to proven optimality, we do not report its

134

4.12 Computational Results

Table 4.2: Comparison of LP relaxation values and corresponding CPU-times in sec-
onds for (dMCFf), (dCut), and (dBCP) (time limit 7200s) on instances
with |F | = |C|. Best values are marked bold.
Instance LP value CPU time [s]

Nr Name |F | |C| |V | |E| (dMCFf)
LP (dCut)LP (dBCP)LP (dMCFf)

LP (dCut)LP (dBCP)LP

1 c10-mo75 75 75 408 908 2878.7 2912.5 2914.8 94 7 5
2 c10-mq75 75 75 405 905 7095.2 7116.2 7119.9 116 5 3
3 c10-ms75 75 75 407 907 9506.3 9533.8 9536.7 194 11 3
4 c15-mo75 75 75 500 2500 2747.5 2766.8 2767.9 877 94 26
5 c15-mq75 75 75 500 2500 7466.5 7489.0 7493.3 1567 30 12
6 c15-ms75 75 75 500 2500 9354.6 9368.5 9371.0 2040 16 5
7 d10-mo75 75 75 771 1770 2772.6 2800.5 2802.8 484 19 11
8 d10-mq75 75 75 775 1774 7295.0 7328.2 7332.7 167 16 4
9 d10-ms75 75 75 781 1780 10069.3 10112.7 10115.1 1103 31 9

10 d15-mo75 75 75 1000 5000 2641.8 2662.0 2664.1 2402 61 21
11 d15-mq75 75 75 1000 5000 - 7395.5 7401.7 7200 90 27
12 d15-ms75 75 75 1000 5000 - 9256.0 9258.4 7200 136 31
13 c10-mo100 100 100 406 906 3330.9 3363.0 3365.3 217 22 15
14 c10-mq100 100 100 406 906 9352.6 9397.7 9403.5 367 17 8
15 c10-ms100 100 100 416 916 11740.1 11781.9 11788.7 166 10 8
16 c15-mo100 100 100 500 2500 3422.6 3449.7 3454.3 2809 37 15
17 c15-mq100 100 100 500 2500 9120.5 9141.2 9149.0 4008 23 8
18 c15-ms100 100 100 500 2500 11277.0 11301.3 11306.1 5204 46 13
19 d10-mo100 100 100 788 1787 3376.7 3411.3 3414.9 435 26 13
20 d10-mq100 100 100 778 1777 9179.2 9216.7 9223.8 581 28 13
21 d10-ms100 100 100 783 1782 11049.0 11093.1 11096.8 603 49 17
22 d15-mo100 100 100 1000 5000 - 3330.7 3335.0 7200 80 29
23 d15-mq100 100 100 1000 5000 - 9183.3 9192.4 7200 104 34
24 d15-ms100 100 100 1000 5000 - 11358.2 11362.1 7200 102 19
25 c10-mo200 200 200 433 933 7116.2 7180.3 7184.8 353 47 50
26 c10-mq200 200 200 428 928 19270.3 19326.2 19332.2 579 38 47
27 c10-ms200 200 200 431 931 25190.6 25254.2 25257.1 1040 178 71
28 c15-mo200 200 200 500 2500 - 7169.8 7173.4 7200 137 59
29 c15-mq200 200 200 500 2500 - 19220.9 19227.9 7200 149 61
30 c15-ms200 200 200 500 2500 - 24717.7 24720.2 7200 238 60
31 d10-mo200 200 200 816 1815 7194.1 7249.0 7251.6 3273 127 94
32 d10-mq200 200 200 814 1813 18789.0 18866.7 18872.6 3791 229 131
33 d10-ms200 200 200 806 1805 24509.6 24567.1 24571.2 6624 192 70
34 d15-mo200 200 200 1000 5000 - 7201.6 7206.4 7200 795 231
35 d15-mq200 200 200 1000 5000 - 19528.9 19536.4 7200 469 240
36 d15-ms200 200 200 1000 5000 - 24085.2 24088.5 7200 429 124

135

Chapter 4 The Capacitated Connected Facility Location Problem

Table 4.3: Comparison of LP relaxation values and corresponding CPU-times in sec-
onds for (dMCFf), (dCut), and (dBCP) (time limit 7200s) on instances
with |F | 6= |C|. Best values are marked bold.
Instance LP value CPU time [s]

Nr Name |F | |C| |V | |E| (dMCFf)
LP (dCut)LP (dBCP)LP (dMCFf)

LP (dCut)LP (dBCP)LP

37 c10-mo 75 200 404 904 8153.5 8206.0 8209.6 713 72 39
38 c10-mp 75 200 403 903 14917.4 14969.5 14972.1 228 10 17
39 c10-mq 75 200 403 903 20717.2 20786.4 20789.4 328 16 22
40 c15-mo 75 200 500 2500 - 7971.9 7975.6 7200 42 25
41 c15-mp 75 200 500 2500 14493.1 14526.4 14529.2 5533 45 30
42 c15-mq 75 200 500 2500 21570.7 21611.9 21615.1 3574 40 33
43 d10-mo 75 200 775 1775 8228.0 8293.9 8296.9 2166 55 49
44 d10-mp 75 200 775 1774 14836.9 14909.7 14911.2 2265 45 40
45 d10-mq 75 200 774 1773 20834.2 20893.6 20896.3 1001 31 27
46 d15-mo 75 200 1000 5000 - 8179.8 8184.1 7200 221 93
47 d15-mp 75 200 1000 5000 - 14771.5 14775.3 7200 134 54
48 d15-mq 75 200 1000 5000 - 21459.0 21461.7 7200 189 66
49 c10-mo 200 75 435 935 2957.0 2981.7 2984.5 6229 285 111
50 c10-mp 200 75 428 928 5444.6 5480.4 5483.7 3439 78 28
51 c10-mq 200 75 430 930 8093.5 8124.2 8129.2 1930 37 10
52 c15-mo 200 75 500 2500 - 2962.3 2965.8 7200 67 26
53 c15-mp 200 75 500 2500 - 5171.1 5174.8 7200 243 37
54 c15-mq 200 75 500 2500 - 7683.2 7689.8 7200 62 11
55 d10-mo 200 75 811 1810 - 3069.6 3073.0 7200 421 276
56 d10-mp 200 75 809 1808 5377.7 5407.7 5410.5 5608 39 16
57 d10-mq 200 75 820 1819 7698.7 7735.8 7740.0 3620 166 49
58 d15-mo 200 75 1000 5000 - 2978.9 2982.6 7200 727 384
59 d15-mp 200 75 1000 5000 - 5415.1 5419.7 7200 748 383
60 d15-mq 200 75 1000 5000 - 7590.8 7594.3 7200 187 27

runtime which is equal to the time limit of 7200 seconds in each run. All lower and
upper bounds are rounded to the first decimal place.

We conclude that the lower bounds obtained by (dCut) and (dBCP) are better than
those of (dMCFf) in all test instances. With respect to primal solution quality, we
observe that (dCut) only found the trivial upper bound given by connecting none of
the customers in 18 and (dBCP) in two out of 60 test instances. In these instances
the upper bounds due to (dMCFf), which failed to find any primal solution for four
instances and additionally found the trivial solution only for another eight instances,
are eventually better than or equal to those of (dCut) and (dBCP), respectively.
For all other instances, the upper bounds and resulting optimality gaps of (dCut)
and (dBCP) are better than those of (dMCFf). Thus, both (dCut) and (dBCP)
significantly outperform (dMCFf).

Model (dBCP) solved 44 out of 60 test instances to proven optimality, while (dCut)

136

4.12 Computational Results

Table 4.4: Comparison of solution values and corresponding CPU-times in seconds
for (dMCFf), (dCut), and (dBCP) (time limit 7200s) on instances with
|F | = |C|. Best values are marked bold.

lower bound upper bound gap in % CPU time [s]
Nr (dMCFf) (dCut) (dBCP) (dMCFf) (dCut) (dBCP) (dMCFf) (dCut) (dBCP) (dCut) (dBCP)

1 2880.1 2915.8 2919.6 2944.2 2923.7 2919.6 2.227 0.268 0.000 7200 501
2 7105.2 7126.0 7128.8 7171.3 7129.3 7128.9 0.930 0.047 0.002 7200 7200
3 9509.5 9536.9 9536.9 9578.1 9536.9 9536.9 0.721 0.000 0.000 35 5
4 2748.7 2767.7 2771.2 2833.3 2788.6 2771.2 3.076 0.755 0.000 7200 1035
5 7469.7 7493.8 7495.9 7966.2 7497.8 7495.9 6.646 0.053 0.000 7200 195
6 9357.7 9373.1 9373.1 10918.9 9373.1 9373.1 16.684 0.000 0.000 1627 38
7 2776.3 2804.9 2807.0 2842.2 2815.6 2807.0 2.374 0.382 0.000 7200 107
8 7299.7 7334.0 7338.9 7373.0 7351.6 7338.9 1.004 0.239 0.000 7200 243
9 10073.9 10115.0 10118.0 10233.6 10144.7 10118.0 1.585 0.293 0.000 7200 277

10 2645.0 2664.4 2666.1 3397.2 8496.0 2666.2 28.439 218.868 0.002 7200 7200
11 7380.2 7401.7 7401.7 8528.6 7401.7 7401.7 15.561 0.000 0.000 164 310
12 9237.4 9258.6 9259.0 11007.6 9355.5 9259.0 19.164 1.048 0.000 7200 284
13 3333.0 3364.9 3367.0 3380.0 3371.6 3367.0 1.409 0.199 0.000 7200 135
14 9359.0 9405.0 9404.9 9473.7 9405.0 9405.0 1.226 0.000 0.002 3829 7200
15 11746.0 11789.3 11789.3 11855.1 11789.3 11789.3 0.929 0.000 0.000 383 13
16 3426.5 3453.9 3455.3 3933.8 3467.8 3455.3 14.803 0.403 0.000 7200 98
17 9125.1 9149.3 9149.2 9739.6 9149.4 9149.4 6.735 0.000 0.002 940 7200
18 11281.4 11307.3 11308.5 12722.2 11308.8 11308.5 12.771 0.013 0.000 7200 243
19 3380.7 3415.5 3417.3 3483.2 3418.3 3417.3 3.031 0.083 0.000 7200 250
20 9185.4 9225.0 9226.2 9258.9 9226.4 9226.2 0.800 0.015 0.000 7200 119
21 11055.0 11098.1 11098.1 11197.6 11098.1 11098.1 1.290 0.000 0.000 533 34
22 3314.0 3333.6 3336.0 3862.1 3338.6 3336.2 16.537 0.149 0.004 7200 7200
23 - 9191.8 9194.4 23780.0 23780.0 9194.4 - 158.708 0.000 7200 889
24 11332.4 11362.1 11363.9 12715.9 11391.5 11363.9 12.208 0.259 0.000 7200 414
25 7123.0 7184.7 7185.2 7329.4 7208.3 7185.2 2.898 0.328 0.000 7200 66
26 19279.8 19332.4 19335.1 19539.8 19340.7 19335.1 1.349 0.043 0.000 7200 854
27 25197.3 25256.6 25258.9 25327.2 77024.0 25258.9 0.516 204.966 0.000 7200 647
28 7139.0 7173.4 7174.3 8383.9 7196.4 7174.3 17.437 0.321 0.000 7200 1880
29 19191.4 19227.6 19229.4 21455.8 56699.0 19229.4 11.799 194.884 0.000 7200 378
30 24683.6 24720.7 24721.1 26764.0 24721.0 24721.1 8.428 0.001 0.000 7200 563
31 7197.4 7251.5 7252.6 8021.9 7263.5 7252.6 11.455 0.165 0.000 7200 941
32 18796.9 18870.8 18875.5 21247.5 18916.3 18875.5 13.037 0.241 0.000 7200 4515
33 24517.3 24571.6 24571.6 27880.1 24571.6 24571.6 13.716 0.000 0.000 6209 141
34 - 7206.0 7207.2 - 23975.0 7207.2 - 232.710 0.000 7200 5606
35 - 19535.2 19537.5 - 19544.5 19537.7 - 0.048 0.001 7200 7200
36 - 24088.3 24090.7 73434.0 73434.0 24090.7 - 204.853 0.000 7200 3742

137

Chapter 4 The Capacitated Connected Facility Location Problem

Table 4.5: Comparison of solution values and corresponding CPU-times in seconds
for (dMCFf), (dCut), and (dBCP) (time limit 7200s) on instances with
|F | 6= |C|. Best values are marked bold.

lower bound upper bound gap in % CPU time [s]
Nr (dMCFf) (dCut) (dBCP) (dMCFf) (dCut) (dBCP) (dMCFf) (dCut) (dBCP) (dCut) (dBCP)
37 8158.2 8209.2 8212.0 9181.3 8286.8 8212.2 12.541 0.945 0.002 7200 7200
38 14924.5 14973.3 14973.3 15056.9 14973.3 14973.3 0.887 0.000 0.000 1624 96
39 20725.5 20791.3 20791.4 20915.4 20791.4 20791.4 0.916 0.000 0.000 4017 277
40 7948.0 7975.7 7976.4 9634.2 7989.4 7976.8 21.215 0.173 0.005 7200 7200
41 14497.5 14529.1 14529.8 15722.6 14557.0 14530.1 8.450 0.192 0.002 7200 7200
42 21576.2 21615.3 21615.4 22973.5 21615.3 21615.4 6.476 0.000 0.000 1536 42
43 8234.7 8297.4 8297.5 8511.6 8297.4 8297.5 3.362 0.000 0.000 1375 1238
44 14842.5 14911.1 14912.6 15075.2 38988.0 14912.6 1.568 161.470 0.000 7200 324
45 20839.4 20896.9 20896.9 21044.1 20896.9 20896.9 0.982 0.000 0.000 1811 82
46 - 8183.5 8185.2 20610.0 20610.0 8185.2 - 151.847 0.000 7200 2838
47 14731.9 14774.9 14776.2 15760.3 41720.0 14776.4 6.981 182.371 0.001 7200 7200
48 - 21461.4 21462.1 57923.0 57923.0 21462.3 - 169.894 0.001 7200 7200
49 2957.0 2982.6 2989.7 7209.0 7163.0 3016.6 143.794 140.156 0.898 7200 7200
50 5448.9 5482.5 5486.9 5517.8 13672.0 5486.9 1.265 149.376 0.000 7200 320
51 8098.0 8130.1 8130.1 8203.5 8130.1 8130.1 1.304 0.000 0.000 520 35
52 2948.5 2965.1 2969.6 7189.0 3047.3 2969.6 143.817 2.773 0.000 7200 1453
53 5150.7 5174.2 5179.2 12693.0 12693.0 5179.4 146.433 145.311 0.005 7200 7200
54 7667.3 7690.1 7693.2 10212.3 7719.7 7693.2 33.193 0.386 0.000 7200 443
55 3040.5 3070.5 3076.5 7500.0 7405.0 7405.0 146.667 141.168 140.699 7200 7200
56 5381.4 5409.9 5414.6 5598.2 5497.5 5414.6 4.029 1.620 0.000 7200 874
57 7702.2 7738.8 7743.7 10753.2 21242.0 7743.9 39.612 174.489 0.003 7200 7200
58 - 2980.7 2983.5 - 7226.0 7185.6 - 142.423 140.844 7200 6446
59 - 5418.6 5423.0 13849.0 13849.0 5423.0 - 155.583 0.000 7200 4603
60 - 7593.9 7598.9 - 18640.0 7598.9 - 145.461 0.000 7200 3795

could only solve 14 instances. For the remaining instances, the resulting optimality
gap of (dBCP) exceeded 0.01% for only three instances. Thus we conclude that,
next to its theoretical strength and tight lower bounds, (dBCP) allows for deriving
high quality primal solutions relatively easily and significantly outperforms all other
considered models. Furthermore, one can observe that the instances with |F | = 200
and |C| = 50 – i.e. instances 49–60 – seem to be particularly hard. While (dBCP)
is able to provide reasonable results on most of them, (dMCFf) and (dCut) often
fail to compute meaningful primal solutions already for those instances where the
underlying STP instance is relatively small.

Finally, we need to mention that due to numerical issues (differences between the
used solvers) the obtained optimal solution values of (dCut) and (dBCP) slightly
differ for three instances in the last shown digit (instances 30, 42, and 43). Further-

138

4.12 Computational Results

more, solving (dBCP) for instance 58 has been interrupted since the memory limit
was reached.

4.12.2 Lagrangian Decomposition Approaches

We use the volume algorithm as described by Haouari and Siala [86] with the fol-
lowing settings for approximately solving the Lagrangian dual problem. Lagrangian
multipliers are initialized by πk,e = c′e for assignment edges e ∈ E′ \ E and by
πk,e = ce/|C| for edges e ∈ E. The target value T is initially set to 1.2 and multi-
plied by 1.1 in case zLB > 0.9zUB where zUB and zLB denote the so far best upper
and lower bounds, respectively. ρ is initialized with 0.1 and multiplied by 0.67 after
20 non-improving iterations in case ρ > 10−4 and by 1.5 in each improving iteration
if ρ < 5 and if v̄ · vt ≥ 0. Instead of computing λOPT as suggested in [86], we always
use λ = λMAX which we initialize with 0.01. After every 100 iterations we multiply
λMAX by 0.85 in case the lower bound did improve less than 1% and if λMAX > 10−5.
The volume algorithm is terminated after 250 consecutive non-improving iterations
or if the time limit is reached.

Computational results comparing three variants of our Lagrangian decompositions
approach are summarized in Table 4.6 for instances with |F | = |C|, and in Table 4.7
for instances with |F | 6= |C|. Here, LD denotes the pure Lagrangian decomposi-
tion approach applying the Lagrangian heuristic presented in Section 4.9 without
any further primal improvement, while LDS corresponds to the variant applying
the simpler primal improvement, i.e. considering the key path and customer swap
neighborhoods, and LDV applies the VLSN search instead of the customer swap
improvement, see also Algorithm 4.2. Best obtained lower and upper bounds as well
as tightest gap values among the three variants are marked bold for each instance.
Values on bounds and gaps have been rounded to the first decimal place; no decimal
places are given for runtimes.

Comparing Tables 4.6 and 4.7 to Tables 4.1, 4.2, and 4.3 with respect to the lower
bounds, we conclude that the lower bounds of our LD approaches are usually slightly
better than or approximately equal to the LP relaxation values of (dMCFc), at least
for those small instances where (dMCFc)

LP could be solved. Thus, the lower bounds
of LD, LDS, and LDV which do not differ significantly, are usually worse than those
of (dMCFf), (dCut), and (dBCP).

LDV clearly outperforms LD and LDS with respect to the primal solution quality,
i.e. the resulting upper bounds. For instances with |F | = |C|, see Table 4.6, LDV
produced the best results for 29 out of 36 instances, while LDS is the winner on only
seven instances. Similarly, for instances with |F | 6= |C|, LDV produced better upper

139

Chapter 4 The Capacitated Connected Facility Location Problem

Table 4.6: Comparison of solution values and corresponding CPU-times in seconds
for LD, LDS, and LDV (time limit 7200s) on instances with |F | = |C|.
Best values are marked bold.

lower bound upper bound gap in % CPU time [s]
Nr LD LDS LDV LD LDS LDV LD LDS LDV LD LDS LDV

1 2851.9 2851.7 2852.1 2988.2 2962.4 2938.4 4.8 3.9 3.0 107 106 81
2 7079.2 7078.4 7076.9 7239.1 7177.4 7158.0 2.3 1.4 1.1 130 101 73
3 9479.9 9478.9 9479.9 9629.8 9581.1 9554.5 1.6 1.1 0.8 193 106 175
4 2737.5 2738.2 2738.3 2855.2 2815.3 2793.4 4.3 2.8 2.0 133 155 127
5 7457.2 7457.6 7456.8 7576.1 7541.4 7505.3 1.6 1.1 0.6 169 177 143
6 9341.7 9342.1 9343.0 9487.5 9408.6 9390.8 1.6 0.7 0.5 302 185 202
7 2741.6 2741.8 2741.5 2921.9 2849.3 2830.7 6.6 3.9 3.3 224 228 244
8 7280.9 7281.5 7281.3 7432.9 7358.7 7359.5 2.1 1.1 1.1 175 184 215
9 10019.0 10018.9 10018.9 10257.3 10213.2 10167.4 2.4 1.9 1.5 242 218 158

10 2636.6 2636.9 2636.8 2743.2 2697.1 2699.6 4.0 2.3 2.4 251 268 306
11 7370.8 7370.1 7369.0 7473.5 7433.8 7445.2 1.4 0.9 1.0 380 239 147
12 9221.6 9222.2 9221.1 9334.3 9292.5 9311.3 1.2 0.8 1.0 298 549 237
13 3303.2 3297.7 3302.3 3486.1 3437.3 3406.3 5.5 4.2 3.1 222 470 300
14 9322.5 9322.6 9322.5 9610.5 9491.5 9460.4 3.1 1.8 1.5 250 234 228
15 11697.9 11693.2 11696.8 11979.1 11896.3 11899.4 2.4 1.7 1.7 288 207 243
16 3413.8 3413.6 3413.7 3562.4 3542.6 3493.6 4.4 3.8 2.3 314 295 209
17 9118.6 9113.3 9117.2 9331.9 9214.8 9192.4 2.3 1.1 0.8 270 205 173
18 11264.0 11263.6 11264.6 11533.2 11426.2 11379.1 2.4 1.4 1.0 411 329 386
19 3337.8 3339.6 3340.2 3540.9 3474.6 3461.1 6.1 4.0 3.6 358 465 253
20 9129.6 9128.1 9130.3 9406.5 9374.9 9261.6 3.0 2.7 1.4 400 278 486
21 11000.4 11001.3 11000.7 11348.6 11234.3 11161.8 3.2 2.1 1.5 330 292 247
22 3297.8 3298.6 3298.8 3454.6 3424.1 3369.8 4.8 3.8 2.2 704 551 404
23 9149.5 9150.4 9149.8 9422.2 9232.0 9256.4 3.0 0.9 1.2 457 373 492
24 11309.2 11307.7 11307.3 11549.3 11398.4 11413.0 2.1 0.8 0.9 521 645 369
25 7052.9 7053.3 7052.5 7440.1 7325.2 7269.6 5.5 3.9 3.1 4302 7201 2174
26 19211.7 19213.2 19211.8 19673.0 19574.3 19436.1 2.4 1.9 1.2 3978 4409 5855
27 25115.3 25114.6 25115.1 25680.7 25627.1 25306.5 2.3 2.0 0.8 7201 4354 4327
28 7108.8 7105.5 7106.8 7427.4 7450.5 7252.3 4.5 4.9 2.0 3797 3142 4129
29 19171.1 19171.0 19171.0 19495.3 19326.5 19290.1 1.7 0.8 0.6 3459 4961 4823
30 24654.4 24655.8 24655.2 25302.2 25003.3 24854.6 2.6 1.4 0.8 4662 4197 4899
31 7107.3 7106.9 7107.9 7599.7 7448.3 7331.6 6.9 4.8 3.1 5498 4612 7201
32 18720.8 18720.9 18720.5 19214.6 19025.8 18971.6 2.6 1.6 1.3 5900 4770 3119
33 24426.7 24425.9 24426.9 24856.3 24730.5 24696.9 1.8 1.2 1.1 6681 4340 4686
34 7129.0 7126.9 7127.8 7448.1 7381.0 7329.1 4.5 3.6 2.8 5159 5822 5174
35 19457.0 19455.3 19457.1 19880.4 19772.2 19606.4 2.2 1.6 0.8 4743 5081 7201
36 24007.7 24008.3 24009.4 24539.0 24201.9 24198.9 2.2 0.8 0.8 4666 5835 6050

140

4.12 Computational Results

Table 4.7: Comparison of solution values and corresponding CPU-times in seconds
for LD, LDS, and LDV (time limit 7200s) on instances with |F | 6= |C|.
Best values are marked bold.

lower bound upper bound gap in % CPU time [s]
Nr LD LDS LDV LD LDS LDV LD LDS LDV LD LDS LDV
37 8117.6 8118.5 8116.9 8630.1 8442.8 8258.6 6.3 4.0 1.7 591 735 1458
38 14882.6 14881.6 14882.2 15407.4 15225.5 15059.9 3.5 2.3 1.2 707 651 1672
39 20681.3 20681.6 20681.1 21150.6 20957.2 20844.9 2.3 1.3 0.8 901 1387 1468
40 7935.1 7935.4 7935.3 8166.6 8068.3 8049.9 2.9 1.7 1.4 870 839 1609
41 14483.2 14483.2 14483.2 14809.9 14643.5 14608.0 2.3 1.1 0.9 919 952 977
42 21561.4 21561.4 21561.3 21940.2 21770.5 21662.6 1.8 1.0 0.5 931 984 2183
43 8183.6 8181.9 8182.7 8717.3 8604.5 8427.4 6.5 5.2 3.0 853 791 1421
44 14779.3 14778.0 14779.4 15271.8 15181.1 14975.6 3.3 2.7 1.3 915 857 1532
45 20766.9 20766.6 20767.2 21221.4 21081.6 21009.1 2.2 1.5 1.2 1052 1034 2476
46 8127.5 8128.2 8128.5 8451.4 8401.2 8262.5 4.0 3.4 1.6 1528 1325 2268
47 14717.0 14717.6 14718.5 15115.2 14893.5 14839.6 2.7 1.2 0.8 1164 1202 1090
48 21407.6 21407.0 21407.8 21741.0 21588.7 21526.7 1.6 0.8 0.6 1419 1672 1329
49 2952.0 2951.1 2949.8 3321.4 3179.6 3044.6 12.5 7.7 3.2 484 434 509
50 5434.5 5434.9 5434.9 5668.1 5638.7 5506.6 4.3 3.7 1.3 556 502 579
51 8080.2 8080.3 8080.9 8208.3 8189.2 8290.7 1.6 1.3 2.6 438 494 460
52 2947.3 2946.0 2947.4 3312.9 3187.0 3156.9 12.4 8.2 7.1 475 437 350
53 5153.6 5152.6 5151.3 5446.2 5296.4 5262.2 5.7 2.8 2.2 561 627 455
54 7666.4 7668.3 7668.4 7837.4 7810.8 7789.5 2.2 1.9 1.6 509 533 398
55 3026.3 3028.4 3028.5 3887.1 3971.5 3825.4 28.4 31.1 26.3 461 454 381
56 5361.8 5361.9 5360.9 5777.4 5657.6 5594.5 7.8 5.5 4.4 628 540 558
57 7675.5 7676.7 7676.4 8127.2 7890.6 7827.8 5.9 2.8 2.0 449 533 546
58 2950.1 2951.6 2951.1 3633.4 3265.0 3236.2 23.2 10.6 9.7 775 722 500
59 5387.3 5387.8 5387.2 5828.8 5625.1 5486.3 8.2 4.4 1.8 680 730 621
60 7564.3 7563.6 7571.7 8040.7 7805.4 7704.4 6.3 3.2 1.8 663 599 471

bounds than the other two approaches in 23 out of 24 cases, while LDS performed
best with respect to primal solution quality on a single instance only.

Due to applying primal improvement only to a relatively small, but highly promising
subset of candidate solutions derived by our Lagrangian heuristic, the overhead of
LDS and LDV usually is only moderate. Sometimes LDS or LDV are even faster
than LD since a better upper bound eventually found in an early iteration of the
volume algorithm does influence Lagrangian multipliers and the whole process of
approximately solving the Lagrangian dual. Even though LDV tends to need more
time than LDS for larger instances, no clear advantages with respect to runtime
can be observed for one of these two approaches. We conclude that LDS yields the
best results among the three variants based on Lagrangian relaxation and does not
require excessive runtimes.

141

Chapter 4 The Capacitated Connected Facility Location Problem

4.12.3 Overall Comparison

In the following, the performance of (dBCP) and LDV which showed to outper-
form the other methods from their area will be further investigated. A detailed
comparison of relative upper bounds and runtimes of (dBCP) and LDV is given in
Tables 4.8 and 4.9, respectively. Here, instances are grouped by the size of the un-
derlying SSCFLP instance in Tables 4.8 and by the size of the original STP instance
in Table 4.9.

Table 4.8: Relative solution values and corresponding CPU-times for (dBCP) and
LDV grouped by SSCFLP instance size (12 instances per set).

relative upper bound relative CPU-time
Instance Set LDV−(dBCP)

(dBCP) in % LDV
(dBCP)

Nr. |F | |C| minimum median maximum minimum median maximum
1–12 75 75 0.12 0.53 1.25 0.01 0.65 35.65

13–24 100 100 0.38 0.65 1.28 0.02 1.30 19.29
25–36 200 200 0.19 0.52 1.69 0.69 6.77 33.32
37–48 75 200 0.22 0.54 1.57 0.14 0.97 52.12
49–60 200 75 -54.96 1.21 6.31 0.05 0.13 13.09

Table 4.9: Relative solution values and corresponding CPU-times for (dBCP) and
LDV grouped by STP instance size (15 instances per set).

relative upper bound relative CPU-time
Instance Set LDV−(dBCP)

(dBCP) in % LDV
(dBCP)

Name |V o| |Eo| minimum median maximum minimum median maximum
c10-* 500 1000 0.18 0.58 1.97 0.01 5.31 35.65
c15-* 500 2500 0.12 0.62 6.31 0.02 0.9 52.12
d10-* 1000 2000 -48.34 0.54 3.32 0.05 1.15 33.32
d15-* 1000 5000 -54.96 0.59 1.69 0.04 0.47 1.62

Since (dBCP) successfully solved the majority of instances to proven optimality it
dominates LDV with respect to obtained upper bounds. Thus, the gaps due to LDV
are usually larger than those of (dBCP), but exceeded 4.4% only for three instances
with |F | = 200 and |C| = 75, which seem to be particularly hard and are smaller
than or equal to 2% for 70% of all tested instances. When the instances get larger
(dBCP) often needs longer than LDV and completely failed to compute meaningful
solutions for two out of 60 instances.

Thus, while (dBCP) has the potential to compute superior solutions, LDV can be
regarded as the more stable and if the instances get more difficult also faster ap-

142

4.13 Conclusions and Outlook

proach. Furthermore, if runtime is of special relevance LDV can be easily parallelized
by simply solving all independent subproblems of the Lagrangian dual in parallel.

Overall, (dBCP) can be recommended for medium sized instances given enough
runtime, while (a parallel variant of) LDV should be used to approximately solve
even larger instances or when keeping the runtime small is more important than
reducing the optimality gap by a few percent.

4.13 Conclusions and Outlook

In this chapter, we considered a generalized variant of the rooted connected facility
location problem with capacity constraints and customer prizes where only the most
profitable client subset shall be supplied.

In a first section, four different mixed integer programming models for solving
CConFL to proven optimality have been presented. While the first two are multi-
commodity flow based models including a polynomial number of constraints and
variables only, the third model involves an exponential number of so-called con-
nectivity constraints, but can efficiently be solved by branch-and-cut. Finally, an
alternative model incorporating an exponential number of constraints and variables
has been proposed and its solution by branch-and-cut-and-price has been discussed
in detail. A polyhedral comparison showed that this model is the theoretically
strongest among the four considered models.

In the second main part of this chapter a Lagrangian decomposition approach for
CConFL based on one of the above mentioned multi-commodity flow formulations
has been introduced. After discussing the subproblems arising while approximately
solving the Lagrangian dual problem, a Lagrangian heuristic to additionally ob-
tain feasible solutions during the course of solving the Lagrangian dual problem
has been discussed. Furthermore, we presented two hybrid methods combining the
Lagrangian approach with local search and VLSN search.

Computational results show that the branch-and-cut-and-price approach based on
the theoretically strongest exact model significantly outperforms the other three inte-
ger programming approaches. It could solve the majority of test instances to proven
optimality relatively fast, and the resulting optimality gaps are usually extremely
small in case the computation is aborted due to the given time limit.

For the Lagrangian methods, the hybrid approach involving VLSN search turns out
to outperform the others with respect to solution quality, while only moderately
increasing the necessary computation time.

143

Chapter 4 The Capacitated Connected Facility Location Problem

Whether the branch-and-cut-and-price approach or the hybrid Lagrangian/VLSN
method should be used in practice is a difficult question and depends on the con-
sidered instances. The branch-and-cut-and-price method is able to solve medium
sized instances to proven optimality. On these instances, the solutions and lower
bounds obtained by the LD/VLSN hybrid will typically be slightly worse. However,
the LD/VLSN approach is feasible for solving even larger instances, since it can be
easily parallelized as the various subproblems of the relaxed model are completely
independent of each other. Furthermore, the primal improvement approach is nat-
urally composed of two independent subproblems, i.e. a Steiner tree problem and
a single source capacitated facility location problem. Parallelizing the LD/VLSN
approach might in particular allow for solving real world instances, which tend to be
significantly larger than the instances considered in this chapter, but on the other
hand are likely to be more structured, since there will usually be a strong correlation
between a facility’s position and its assignable customers.

Interesting areas for further research include the development of pure metaheuris-
tic methods for CConFL. Such metaheuristics can be used to tackle very large scale
instances and might include the exact and hybrid approaches presented in this chap-
ter for solving smaller subproblems. It might also be possible to further strengthen
the proposed exact models by considering additional cutting planes, e.g. from the
multiple knapsack problem [62, 63] and to further speed-up the LD/VLSN hybrid
by considering alternative algorithms for solving the negative subset disjoint cycle
subproblem [55].

144

Chapter 5

Conclusions

This thesis considered the bmax-Survivable Network Design Problem (bmax-SNDP)
and the Capacitated Connected Facility Location Problem (CConFL). These two
NP-hard combinatorial optimization problems (COPs) are suitable to model certain
real world scenarios occurring when extending communication networks on the last
mile.

For solving instances of these problems, methods from different streams of combina-
torial optimization have been proposed, each of which having individual advantages
for instances of different sizes.

The bmax-Survivable Network Design Problem

Two mixed integer programming models for bmax-SNDP involving an exponential
number of variables have been developed and their superiority over existing formula-
tions from a theoretical point of view has been shown. From a computational point
of view, the solution of these models could be significantly accelerated by using al-
ternative dual-optimal solutions in the pricing subproblems while solving them by
branch-and-price. Both approaches are able to derive proven optimal solutions or
high quality solutions with small optimality gaps for mediums sized instances within
reasonable time. In particular, they are often able to solve these instance faster than
a previously existing method. Computational results further show that the linear
relaxations of both models are much tighter than those of the previous formulations.
In particular it turned out that solving the linear relaxation of the strongest among

145

Chapter 5 Conclusions

the newly proposed models yields integral and thus proven optimal solutions for the
majority of tested instances.

For approximately solving larger instances, while still deriving both lower and upper
bounds of an optimal solutions value a Lagrangian decomposition approach has been
suggested and subsequently hybridized with variable neighborhood descent. Here,
with respect to the execution order a sequential and an interleaved hybrid variant
has been proposed. The results from the performed computational study indicate
that both hybrid variants derive high quality solutions and good lower bounds within
reasonable time.

Finally, for solving large scale instances metaheuristic approaches have been con-
sidered. Based on three types of neighborhood structures, a greedy randomized
adaptive search as well as a general variable neighborhood search dominating the
GRASP with respect to the obtained solutions have been described.

The Capacitated Connected Facility Location Problem

Four new mixed integer programming models for CConFL have been proposed and
theoretically compared to each other. Next to two multi-commodity flow based
models, these include a model involving an exponential number of connectivity con-
straints which can be efficiently solved by branch-and-cut as well as an even stronger
model including an exponential number of constraints and variables. The latter can
be solved by branch-and-cut-and-price.

For large instances that cannot be solved to proven optimality, a Lagrangian decom-
position approach based on one of the multi-commodity flow formulations has been
suggested. After discussing a Lagrangian heuristic for deriving feasible solutions
during the course of solving the Lagrangian dual, two hybrid methods combining
the Lagrangian approach with local search and very large scale neighborhood search
have been proposed.

Computational results show that among the MIP based methods, the branch-and-
cut-and-price approach based on the theoretically strongest models could solve the
majority of test instances to proven optimality relatively fast. Furthermore, its
resulting optimality gaps are usually extremely small in case the computation is
aborted due to a given time limit. Thus, it significantly outperforms the other
three MIP based methods. Among the Lagrangian methods, the hybrid approach
involving VLSN search turns out to outperform the others with respect to solution
quality, while only moderately increasing the necessary computation time. Thus,
this approach turns out to be suitable for instances that are too large to be solved
to proven optimality by the branch-and-cut-and-price method.

146

Bibliography

[1] E. Aarts and J. K. Lenstra. Local Search in Combinatorial Optimization. John
Wiley and Sons, 1997.

[2] T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Uni-
versität Berlin, 2007.

[3] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations
Research Letters, 33(1):42–54, 2005.

[4] Y. Agarwal, K. Mathu, and H. M. Salkin. A set-partitioning-based exact
algorithm for the vehicle routing problem. Networks, 19(7):731–749, 1989.

[5] R. K. Ahuja, Ö. Ergun, J. B. Orlin, and A. P. Punnen. A survey of very
large-scale neighborhood search techniques. Discrete Applied Mathematics,
123(1-3):75–102, 2002.

[6] R. K. Ahuja, J. B. Orlin, S. Pallottino, M. P. Scaparra, and M. G. Scutella.
A multi-exchange heuristic for the single-source capacitated facility location
problem. Management Science, 50(6):749–760, 2004.

[7] R. K. Ahuja, J. B. Orlin, and D. Sharma. Multi-exchange neighborhood struc-
tures for the capacitated minimum spanning tree problem. Mathematical Pro-
gramming, 91(1):71–97, 2001.

[8] P. Bachhiesl. The OPT- and the SST-problems for real world access net-
work design – basic definitions and test instances. Working Report 01/2005,
Carinthia Tech Institute, Department of Telematics and Network Engineering,
Klagenfurt, Austria, 2005.

147

Bibliography

[9] P. Bachhiesl, M. Prossegger, G. Paulus, J. Werner, and H. Stögner. Simulation
and optimization of the implementation costs for the last mile of fibre optic
networks. Networks and Spatial Economics, 3(4):467–482, 2003.

[10] T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University
Press, 1996.

[11] L. Bahiense, F. Barahona, and O. Porto. Solving Steiner tree problems in
graphs with Lagrangian relaxation. Journal of Combinatorial Optimization,
7(3):259–282, 2003.

[12] E. Balas. The prize collecting traveling salesman problem. Networks,
19(6):621–636, 1989.

[13] F. Barahona and R. Anbil. The volume algorithm: producing primal solutions
with a subgradient method. Mathematical Programming, 87(3):385–399, 2000.

[14] M. G. Bardossy and S. Raghavan. Dual-based local search for the connected
facility location and related problems. Technical report, Smith School of Busi-
ness and Institute for Systems Research, University of Maryland, 2009.

[15] C. Barnhart, C. A. Hane, and P. H. Vance. Using branch-and-price-and-cut
to solve origin-destination integer multicommodity flow problems. Operations
Research, 48(2):318–326, 2000.

[16] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and
P. H. Vance. Branch-and-price: Column generation for solving huge integer
programs. Operations Research, 46(3):316–329, 1998.

[17] J. E. Beasley. An algorithm for the Steiner problem in graphs. Networks,
14(1):147–159, 1984.

[18] J. E. Beasley. Lagrangean relaxation. In C. Reeves, editor, Modern heuris-
tic techniques in combinatorial problems, pages 243–303. Blackwell Scientific
Publications, 1993.

[19] J. E. Beasley and N. Christofides. An algorithm for the resource constrained
shortest path problem. Networks, 19(4):379–394, 1989.

[20] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[21] R. E. Bellman. On a routing problem. Quarterly of Applied Mathematics,
16(1):87–90, 1958.

[22] H. Ben Amor, J. Desrosiers, and J. M. V. de Carvalho. Dual-optimal inequal-
ities for stabilized column generation. Operations Research, 54(3):454–463,
2006.

[23] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena
Scientific, 1997.

148

Bibliography

[24] D. Bertsimas and R. Weismantel. Optimization over Integers. Dynamic Ideas,
2005.

[25] C. Blum, M. J. B. Aquilera, A. Roli, and M. Sampels, editors. Hybrid Meta-
heuristics: An Emerging Approach to Optimization, volume 114 of Studies in
Computational Intelligence (SCI). Springer, 2008.

[26] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview
and conceptual comparision. ACM Computing Surveys, 35(3):268–308, 2003.

[27] C. Blum and A. Roli. Hybrid metaheuristics: An introduction. In C. Blum,
M. J. B. Aquilera, A. Roli, and M. Sampels, editors, Hybrid Metaheuristics: An
Emerging Approach to Optimization, volume 114 of Studies in Computational
Intelligence (SCI), pages 1–30. Springer, 2008.

[28] N. Boland, J. Dethridge, and I. Dumitrescu. Accelerated label setting algo-
rithms for the elementary resource constrained shortest path problem. Oper-
ations Research Letters, 34(1):58–68, 2006.

[29] M. A. Boschetti, A. Mingozzi, and S. Ricciardelli. A dual ascent procedure for
the set partitioning problem. Discrete Optimization, 5:735–747, 2008.

[30] S. A. Canuto, M. G. C. Resende, and C. C. Ribeiro. Local search with per-
turbations for the prize-collecting Steiner tree problem in graphs. Networks,
38:50–58, 2001.

[31] A. Chabrier. Vehicle routing problem with elementary shortest path based col-
umn generation. Computers & Operations Research, 33(10):2972–2990, 2006.

[32] O. Chapovska and A. P. Punnen. Variations of the prize-collecting Steiner
tree problem. Networks, 47(4):199–205, 2006.

[33] B. V. Cherkassky and A. V. Goldberg. On implementing the push-relabel
method for the maximum flow problem. Algorithmica, 19(4):290–410, 1997.

[34] M. Chiarandini, I. Dumitrescu, and T. Stützle. Very large-scale neighbor-
hood search: Overview and case studies on coloring problems. In C. Blum,
M. J. B. Aquilera, A. Roli, and M. Sampels, editors, Hybrid Metaheuristics, An
Emerging Approach to Optimization, volume 114 of Studies in Computational
Intelligence. Springer, 2008.

[35] M. Chimani, M. Kandyba, I. Ljubic, and P. Mutzel. Orientation-based models
for {0,1,2}-survivable network design: Theory and practice. Mathematical
Programming, Series B, 2009. accepted.

[36] M. Chimani, M. Kandyba, and P. Mutzel. A new ILP formulation for 2-
root-connected prize-collecting Steiner networks. In 15th Annual European
Symposium on Algorithms (ESA’07), volume 4698 of LNCS, pages 681–692.
Springer, 2007.

149

Bibliography

[37] V. Chvátal. Linear Programming. W. H. Freeman and Company, New York,
1983.

[38] A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization by ant
colonies. In F. Varela and P. Bourgine, editors, Proceedings of ECAL’91 -
First European Conference on Artifial Life, pages 134–142. Elsevier, 1992.

[39] R. K. Congram. Polynomially Searchable Exponential Neighbourhoods for Se-
quencing Problems in Combinatorial Optimization. PhD thesis, University of
Southampton, Faculty of Methematical Studies, UK, 2000.

[40] R. K. Congram, C. N. Pots, and S. L. van de Velde. An iterated dynasearch
algorithm for the single-machine total weighted tardiness scheduling problem.
INFORMS Journal on Computing, 14(1):52–67, 2002.

[41] I. A. Contreras and J. A. Diaz. Scatter search for the single source capacitated
facility location problem. Annals of Operations Research, 157(1):73–89, 2008.

[42] G. Cornuejols, G. L. Nemhauser, and L. A. Wolsey. The uncapacitated facility
location problem. In P. B. Mirchandani and R. L. Francis, editors, Discrete
Location Theory, pages 119–171. Wiley, 1990.

[43] A. S. da Cunha, A. Lucena, N. Maculan, and M. G. C. Resende. A relax-
and-cut algorithm for the prize-collecting Steiner problem in graph. Discrete
Applied Mathematics, 157(6):1198–1217, 2009.

[44] G. B. Dantzig. Maximization of a linear function of variables subject to linear
inequalities. In T. C. Koppmans, editor, Activity Analysis of Production and
Allocation, pages 339–347. Wiley, 1958.

[45] G. B. Dantzig. Linear Programming and Extensions. Princeton University
Press, 1998.

[46] G. B. Dantzig and P. Wolfe. The decomposition principle for linear programs.
Operations Research, 8(1):101–111, 1960.

[47] C. Darwin. On the origin of species by means of natural selection of the
preservation of favored races in the struggle for life. Murray, 1859.

[48] M. P. de Aragao and E. Uchoa. Integer program reformulation for robust
branch-and-cut-and-price algorithms. In Annals of Mathematical Program-
ming in Rio, pages 56–61, 2003.

[49] G. Desaulniers, J. Desrosiers, and M. M. Solomon, editors. Column Genera-
tion. Springer, 2005.

[50] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[51] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, 2004.

150

Bibliography

[52] J. Dréo, A. Pétrowski, P. Siarry, and E. Taillard. Metaheuristics for Hard
Optimization: Methods and Case Studies. Springer, 2006.

[53] O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column
generation. Discrete Mathematics, 194(1-3):229–237, 1999.

[54] C. W. Duin and S. Voß. Efficient path and vertex exchange in Steiner tree
algorithms. Networks, 29:89–105, 1997.

[55] I. Dumitrescu. Constrained Path and Cycle Problems. PhD thesis, University
of Melbourne, 2002.

[56] I. Dumitrescu and N. Boland. Improved preprocessing, labeling and scal-
ing algorithms for the weight-constrained shortest path problem. Networks,
42(3):135–153, 2003.

[57] F. Eisenbrand, F. Grandoni, T. Rothvoß, and G. Schäfer. Approximating
connected facility location problems via random facility sampling and core
detouring. In ACM-SIAM Symposium on Discrete Algorithms, pages 1174–
1183, 2008.

[58] P. Elias, A. Feinstein, and C. Shannon. A note on the maximum flow through
a network. IRE Transactions on Information Theory, 2(4):117–119, 1956.

[59] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for
the elementary shortest path problem with resource constraints: Application
to some vehicle routing problems. Networks, 44(3):216–229, 2004.

[60] T. Feo and M. Resende. A probabilistic heuristic for a computationally difficult
set covering problem. Operations Research Letters, 8(2):67–71, 1989.

[61] T. Feo and M. Resende. Greedy randomized adaptive search procedures. Jour-
nal of Global Optimization, 6(2):109–133, 1995.

[62] C. E. Ferreira, A. Martin, and R. Weismantel. Facets for the multiple knapsack
polytope. Technical Report SC 93-04, Konrad-Zuse Zentrum für Information-
stechnik, 1993.

[63] C. E. Ferreira, A. Martin, and R. Weismantel. Solving multiple knapsack
problems by cutting planes. SIAM Journal on Optimization, 6:858–877, 1996.

[64] P. Festa and M. G. C. Resende. GRASP: An annotated bibliography. In C. C.
Ribeiro and P. Hansen, editors, Essays and Surveys in Metaheuristics, pages
325–367. Kluwer Academic Publishers, 2002.

[65] M. L. Fisher. The Lagrangian relaxation method for solving integer program-
ming problems. Management Science, 27(1):1–18, 1981.

[66] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through
Simulated Evolution. Wiley, 1966.

151

Bibliography

[67] S. Fortune, J. Hopcroft, and H. Wyllie. The directed subgraph homeomor-
phism problem. Theoretical Computer Science, 10:111–121, 1980.

[68] B. Fortz and M. Labbé. Polyhedral approaches to the design of survivable
networks. In M. G. C. Resende and P. M. Pardolas, editors, Handbook of
Optimization in Telecommunications, pages 367–389. Springer, 2006.

[69] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[70] A. M. Geoffrion. Lagrangian relaxation for integer programming. Mathematical
Programming Study, 2:82–114, 1974.

[71] P. C. Gilmore and R. E. Gomory. A linear programming approach to the
cutting stock problem. Operations Research, 9(6):849–859, 1961.

[72] P. C. Gilmore and R. E. Gomory. A linear programming approach to the
cutting stock problem - part II. Operations Research, 11(6):863–888, 1963.

[73] F. Glover. Future paths for integer programming and links to artificial intel-
ligence. Computers & Operations Research, 13(5):533–549, 1986.

[74] F. Glover. Tabu search - part I. ORSA Journal on Computing, 1(3):190–206,
1989.

[75] F. Glover. Tabu search - part II. ORSA Journal on Computing, 2(1):4–32,
1990.

[76] F. Glover and G. Kochenberger, editors. Handbook of Metaheuristics, vol-
ume 57 of International Series in Operations Research & Management Science.
Kluwer Academic Publishers, Norwell, MA, 2003.

[77] S. Gollowitzer and I. Ljubić. MIP models for connected facility location: A
theoretical and computational study. Technical Report 2009–07, University of
Vienna, 2009.

[78] T. Gomes, J. Craveirinha, and L. Jorge. An effective algorithm for obtaining
the minimal cost pair of disjoint paths with dual arc costs. Computers &
Operations Research, 36:1670–1682, 2009.

[79] L. Gouveia, A. Paias, and D. Sharma. Modeling and solving the rooted
distance-constrained minimum spanning tree problem. Computers & Oper-
ations Research, 35(2):600–613, 2008.

[80] M. Gruber and G. R. Raidl. (Meta-)heuristic separation of jump cuts in
a branch&cut approach for the bounded diameter minimum spanning tree
problem. In V. Maniezzo, T. Stützle, and S. Voß, editors, Matheuristics - Hy-
bridizing Metaheuristics and Mathematical Programming, volume 10 of Annals
of Information Systems, pages 209–230. Springer, 2009.

152

Bibliography

[81] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yener. Provisioning a
virtual private network: a network design problem for multicommodity flow.
In Proceedings of the 33rd annual ACM symposium on theory of computing,
pages 389–398, 2001.

[82] P. Hansen and N. Mladenović. An introduction to variable neighborhood
search. In S. Voß, S. Martello, I. H. Osman, and C. Roucairol, editors, Meta-
heuristics, Advances and trends in local search paradigms for optimization,
pages 433–458. Kluwer Academic Publishers, 1999.

[83] P. Hansen and N. Mladenović. Variable neighborhood search: Principles and
applications. European Journal of Operational Research, 130(3):449–467, 2001.

[84] P. Hansen and N. Mladenović. A tutorial on variable neighborhood search.
Technical Report G-2003-46, Les Cahiers du GERAD, HEC Montreal and
GERAD, Canada, 2003.

[85] M. Haouari, S. B. Jayeb, and H. D. Sherali. The prize collecting Steiner tree
problem: Models and Lagrangian dual optimization approaches. Computa-
tional Optimization and Applications, 40(1):13–39, 2008.

[86] M. Haouari and J. C. Siala. A hybrid Lagrangian genetic algorithm for the
prize collecting Steiner tree problem. Computers and Operations Research,
33(5):1274–1288, 2006.

[87] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions of Systems Science
and Cybernetics, 4(2):100–107, 1968.

[88] P. E. Hart, N. J. Nilsson, and B. Raphael. Correction to ”a formal basis for the
heuristic determination of minimum cost paths”. SIGART Bulletin, 37:28–29,
1972.

[89] M. K. Hasan, H. Jung, and K. Chwa. Approximation algorithms for connected
facility location problems. Journal of Combinatorial Optimization, 16(2):155–
172, 2008.

[90] M. Held and R. M. Karp. The traveling salesman problem and minimum
spanning trees. Operations Research, 18:1138–1162, 1970.

[91] M. Held and R. M. Karp. The traveling salesman problem and minimum
spanning trees: Part II. Mathematical Programming, 1:6–25, 1971.

[92] J. H. Holland. Adaptation in natural and artificial systems. MIT Press, 1992.

[93] K. Holmberg, M. Rönnqvist, and D. Yuan. An exact algorithm for the ca-
pacitated facility location problems with single sourcing. European Journal of
Operational Research, 113:544–559, 1999.

153

Bibliography

[94] K. Holmberg and D. Yuan. A Lagrangian heuristic based branch-and-bound
approach for the capacitated network design problem. Operations Research,
48(3):461–481, 2000.

[95] B. Hu. Hybrid Metaheuristics for Generalized Network Design Problems. PhD
thesis, Vienna University of Technology, 2008.

[96] B. Hu, M. Leitner, and G. R. Raidl. Combining variable neighborhood search
with integer linear programming for the generalized minimum spanning tree
problem. Journal of Heuristics, 14(5):473–499, 2008.

[97] B. Hu and G. R. Raidl. Variable neighborhood descent with self-adaptive
neighborhood-ordering. In C. Cotta, A. J. Fernandez, and J. E. Gallardo,
editors, Proceedings of the 7th EU/MEeting on Adaptive, Self-Adaptive, and
Multi-Level Metaheuristics, 2006.

[98] IBM. CPLEX 12.1.

[99] S. Irnich and G. Desaulniers. Shortest path problems with resource constraints.
In G. Desaulniers, J. Desrosiers, and M. M. Solomon, editors, Column Gener-
ation, pages 33–65. Springer, 2005.

[100] K. Kar, M. Kodialam, and T. V. Lakshman. Routing restorable bandwidth
guaranteed connections using maximum 2-route flows. IEEE/ACM Transac-
tions on Networking, 11(5):772–781, 2003.

[101] D. R. Karger and M. Minkoff. Building Steiner trees with incomplete global
knowledge. In Proceedings of the 41st Annual Symposium on Foundations of
Computer Science, pages 613–623. IEEE Computer Society, 2000.

[102] N. Karmakar. A new polynomial-time algorithm for linear programming. Com-
binatorica, 4:373–395, 1984.

[103] R. M. Karp. Reducibility among combinatorial problems. In E. Miller and
J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–103.
Plenum Press, 1972.

[104] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer,
Heidelberg, 2004.

[105] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of
IEEE international conference on neural networks, pages 1942–1948. IEEE,
1995.

[106] H. Kerivin and A. R. Mahjoub. Design of survivable networks: A survey.
Networks, 46(1):1–21, 2005.

[107] L. Khachiyan. A polynomial algorithm in linear programming (english trans-
lation). Soviet Mathematics Doklady, 20:191–194, 1979.

154

Bibliography

[108] S. Khuller and A. Zhu. The general Steiner tree-star problem. Information
Processing Letters, 84(4):215–220, 2002.

[109] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated anneal-
ing. Science, 220(4598):671–680, 1983.

[110] T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality.
Networks, 32(3):207–232, 1998.

[111] L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees.
Acta Informatica, 15(2):141–145, 1981.

[112] J. Kratica, D. Tosic, V. Filipovic, and I. Ljubić. Solving the simple plant
location problem by genetic algorithm. RAIRO Operations Research, 35:127–
142, 2001.

[113] J. B. Kruskal. On the shortest spanning subtree and the traveling salesman
problem. In Proceedings of the American Mathematical Society, volume 7,
pages 48–50, 1956.

[114] Y. Lee, S. Y. Chiu, and J. Ryan. A branch and cut algorithm for a Steiner
tree-star problem. INFORMS Journal on Computing, 8(3):194–201, 1996.

[115] Y. Lee, L. Lu, Y. Qiu, and F. Glover. Strong formulations and cutting
planes for designing digital data service networks. Telecommunication Sys-
tems, 2(1):261–274, 1993.

[116] M. Leitner and G. R. Raidl. Lagrangian decomposition, metaheuristics, and
hybrid approaches for the design of the last mile in fiber optic networks. In
M. J. Blesa et al., editors, Hybrid Metaheuristics 2008, volume 5296 of LNCS,
pages 158–174. Springer, 2008.

[117] M. Leitner and G. R. Raidl. Variable neighborhood search for a prize collecting
capacity constrained connected facility location problem. In Proceedings of the
2008 International Symposium on Applications and the Internet, pages 233–
236. IEEE Computer Society, 2008.

[118] M. Leitner and G. R. Raidl. A Lagrangian decomposition based heuristic for
capacitated connected facility location. In S. Voß and M. Caserta, editors,
Proceedings of the 8th Metaheuristic International Conference (MIC 2009),
Hamburg, Germany, 2009.

[119] M. Leitner and G. R. Raidl. Branch-and-cut-and-price for capacitated con-
nected facility location. Technical Report TR 186–1–10–01, Vienna University
of Technology, Vienna, Austria, 2010.

[120] M. Leitner and G. R. Raidl. Strong lower bounds for a survivable network
design problem. In International Symposium on Combinatorial Optimization
(ISCO 2010), Hammamet, Tunisia, March 2010.

155

Bibliography

[121] M. Leitner and G. R. Raidl. Combining Lagrangian decomposition with very
large scale neighborhoood search for capacitated connected facility location.
In Post-Conference Book of the Eight Metaheuristics International Conference
– MIC 2009. accepted 2010.

[122] M. Leitner, G. R. Raidl, and U. Pferschy. Accelerating column generation
for a survivable network design problem. In M. G. Scutellà et al., editors,
Proceedings of the International Network Optimization Conference 2009, 2009.

[123] M. Leitner, G. R. Raidl, and U. Pferschy. Branch-and-price for a survivable
network design problem. Technical Report TR 186–1–10–02, Vienna Univer-
sity of Technology, Vienna, Austria, 2010.

[124] I. Ljubić. Exact and Memetic Algorithms for Two Network Design Problems.
PhD thesis, Vienna University of Technology, 2004.

[125] I. Ljubić. A hybrid VNS for connected facility location. In T. Bartz-Beielstein
et al., editors, Hybrid Metaheuristics, 4th International Workshop, HM 2007,
volume 4771 of LNCS, pages 157–169. Springer, 2007.

[126] I. Ljubić and S. Gollowitzer. Hop constrained connected facility location.
Technical Report 2009–09, University of Vienna, 2009.

[127] I. Ljubić and S. Gollowitzer. Modelling the hop constrained connected facility
location problem on layered graphs. In International Symposium on Com-
binatorial Optimization (ISCO 2010), Hammamet, Tunisia, March 2010. to
appear.

[128] I. Ljubić, R. Weiskircher, U. Pferschy, G. Klau, P. Mutzel, and M. Fischetti.
An algorithmic framework for the exact solution of the prize-collecting Steiner
tree problem. Mathematical Programming, Series B, 105(2–3):427–449, 2006.

[129] H. R. Lourenço, O. Martin, and T. Stützle. Iterated local search. In F. Glover
and G. Kochenberger, editors, Handbook of Metaheuristics, volume 57 of Inter-
national Series in Operations Research & Management Science, pages 321–353.
Kluwer Academic Publishers, Norwell, MA, 2003.

[130] M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Op-
erations Research, 53(6):1007–1023, 2005.

[131] A. Lucena and M. G. C. Resende. Strong lower bounds for the prize collecting
Steiner problem in graphs. Discrete Applied Mathematics, 141(1–3):277–294,
2004.

[132] T. L. Magnanti and L. A. Wolsey. Optimal trees. In M. O. Ball, T. L. Mag-
nanti, C. L. Monma, and G. L. Nemhauser, editors, Handbooks in Operations
Research and Management Science, volume 7, pages 503–615. Elsevier, 1995.

156

Bibliography

[133] V. Maniezzo, T. Stützle, and S. Voß, editors. Matheuristics: Hybridizing
Metaheuristics and Mathematical Programming, volume 10 of Annals of In-
formation Systems. Springer, 2009.

[134] R. E. Marsten. The use of the boxstep method in discrete optimization. Math-
ematical Programming Studies, 3:127–144, 1975.

[135] R. E. Marsten, W. W. Hogan, and J. W. Blankenship. The boxstep method
for large-scale optimization. Operations Research, 23(3):389405, 1975.

[136] S. Martello, D. Pisinger, and P. Toth. Dynamic programming and strong
bounds for the 0-1 knapsack problem. Management Science, 45(3):414–424,
1999.

[137] S. L. Martins, M. G. C. Resende, C. C. Ribeiro, and P. M. Pardalos. A
parallel GRASP for the Steiner tree problem in graphs using a hybrid local
search strategy. Journal of Global Optimization, 17(1-4):267–283, 2000.

[138] K. Mehlhorn. A faster approximation algorithm for the Steiner problem in
graphs. Information Processing Letters, 27(3):125–128, 1988.

[139] G. Mendel. Versuche über Panzen-Hybriden (Experiments on plant hybridiza-
tion). In Verhandlungen des naturforschenden Vereins Brünn (Proceedings of
the Natural History Society of Brünn), volume 4, pages 3–47, 1866.

[140] M. Minkoff. The prize collecting Steiner tree problem. Master’s thesis, Mas-
sachusetts Institute of Technology, 2000.

[141] P. Moscato. Memetic algorithms: A short introduction. In D. Corne et al.,
editors, New Ideas in Optimization, pages 219–234. McGraw Hill, 1999.

[142] G. L. Nemhauser and S. Park. A polyhedral approach to edge coloring. Op-
erations Research Letters, 10(6):315–322, 1991.

[143] G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization.
Wiley-Interscience, New York, NY, USA, 1988.

[144] C. H. Papdimitriou and K. Steiglitz. Combinatorial Optimization, Algorithms
and Complexity. Dover Publications Inc., 1998.

[145] S. Pirkwieser and G. R. Raidl. A column generation approach for the periodic
vehicle routing problem with time windows. In M. G. Scutellà et al., editors,
Proceedings of the International Network Optimization Conference 2009, 2009.

[146] S. Pirkwieser, G. R. Raidl, and J. Puchinger. A Lagrangian decomposi-
tion/evolutionary algorithm hybrid for the knapsack constrained maximum
spanning tree problem. In C. Cotta and J. van Hemert, editors, Recent Ad-
vances in Evolutionary Computation for Combinatorial Optimization, volume
153 of Studies in Computational Intelligence, pages 69–85. Springer, 2008.

157

Bibliography

[147] D. Pisinger. A minimal algorithm for the 0-1 knapsack problem. Operations
Research, 45(5):758–767, 1997.

[148] M. Prandtstetter and G. R. Raidl. An integer linear programming approach
and a hybrid variable neighborhood search for the car sequencing problem.
European Journal of Operational Research, 191(3):1004–1022, 2008.

[149] R. C. Prim. Shortest connection networks and some generalisations. Bell
System Technical Journal, 36:1389–1401, 1957.

[150] J. Puchinger and G. R. Raidl. An evolutionary algorithm for column genera-
tion in integer programming: an effective approach for 2D bin packing. In X.
Yao et. al, editor, Parallel Problem Solving from Nature - PPSN VIII, volume
3242 of LNCS, pages 642–651. Springer, 2004.

[151] J. Puchinger and G. R. Raidl. Combining metaheuristics and exact algorithms
in combinatorial optimization: A survey and classification. In Proceedings of
the First International Work-Conference on the Interplay Between Natural and
Artificial Computation, volume 3562 of LNCS, pages 41–53. Springer, 2005.

[152] J. Puchinger and G. R. Raidl. Models and algorithms for three-stage
two-dimensional bin packing. European Journal of Operational Research,
183(3):1304–1327, 2007.

[153] J. Puchinger and G. R. Raidl. Bringing order into the neighborhoods: Relax-
ation guided variable neighborhood search. Journal of Heuristics, 14(5):457–
472, 2008.

[154] J. Puchinger, G. R. Raidl, and S. Pirkwieser. Metaboosting: Enhancing integer
programming techniques by metaheuristics. In V. Maniezzo, T. Stützle, and
S. Voß, editors, Matheuristics: Hybridizing Metaheuristics and Mathematical
Programming, volume 10 of Annals of Information Systems, pages 71–102.
Springer, 2009.

[155] S. Raghavan and M. G. Bardossy. Dual based heuristics for the connected
facility location problem. In M. G. Scutellà et al., editors, Proceedings of the
International Network Optimization Conference 2009, 2009.

[156] G. R. Raidl. A unified view on hybrid metaheuristics. In F. Almeida et al.,
editors, Proceedings of the Hybrid Metaheuristics Workshop, volume 4030 of
LNCS, pages 1–12. Springer, 2006.

[157] G. R. Raidl and J. Puchinger. Combining (integer) linear programming tech-
niques and metaheuristics for combinatorial optimization. In C. Blum, M. J. B.
Aquilera, A. Roli, and M. Sampels, editors, Hybrid Metaheuristics: An Emerg-
ing Approach to Optimization, volume 114 of Studies in Computational Intel-
ligence (SCI), pages 31–62. Springer, 2008.

158

Bibliography

[158] G. R. Raidl, J. Puchinger, and C. Blum. Metaheuristic hybrids. In M. Gen-
dreau and J. Y. Potvin, editors, Handbook of Metaheuristics, 2nd edition.
Springer, 2010. to appear.

[159] I. Rechenberg. Cybernetic solution path of an experimental problem. Royal
Aircraft Establishment, Library Translation 1122, 1965.

[160] M. G. C. Resende and P. M. Pardolos, editors. Handbook of Optimization in
Telecommunications. Springer, 2006.

[161] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Pro-
gramming. Elsevier, 2006.

[162] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

[163] A. Segev. The node-weighted Steiner tree problem. Networks, 17(1):1–17,
1987.

[164] M. Stoer. Design of Survivable Networks, volume 1531 of LNCS. Springer,
1992.

[165] J. W. Suurballe and R. E. Tarjan. A quick method for finding shortest pairs
of disjoint paths. Networks, 14:325–335, 1984.

[166] C. Swamy and A. Kumar. Primal-dual algorithms for connected facility loca-
tion problems. Algorithmica, 40(4):245–269, 2004.

[167] H. Takahashi and A. Matsuyama. An approximated solution for the Steiner
tree problem in graphs. Math. Japonica, 24(6):573–577, 1980.

[168] P. M. Thompson and J. B. Orlin. The theory of cyclic transfers. Technical Re-
port OR 200-89, Massachusetts Institute of Technology, Operations Research
Center, 1989.

[169] A. Tomazic and I. Ljubić. A GRASP algorithm for the connected facility
location problem. In Proceedings of the 2008 International Symposium on
Applications and the Internet, pages 257–260. IEEE Computer Society, 2008.

[170] E. Uchoa. Reduction tests for the prize-collecting Steiner problem. Operations
Research Letters, 34(4):437–444, 2006.

[171] E. Uchoa, R. Fukasawa, J. Lysgaard, A. Pessoa, and M. P. de Aragao. Ro-
bust branch-cut-and-price for the capacitated minimum spanning tree problem
over a large extended formulation. Mathematical Programming, 12(2):443–472,
2008.

[172] F. Vanderbeck. Implementing mixed integer column generation. In G. De-
saulniers, J. Desrosiers, and M. M. Solomon, editors, Column Generation,
pages 331–358. Springer US, 2005.

[173] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

159

Bibliography

[174] M. G. A. Verhoeven and M. E. M. Severens. Parallel local search for Steiner
trees in graphs. Annals of Operations Research, 90:185–202, 1999.

[175] S. Voß. Steiner’s problem in graphs: heuristic methods. Discrete Applied
Mathematics, 40(1):45–72, 1992.

[176] S. Voß, S. Martello, I. H. Osman, and C. Roucairol, editors. Meta-Heuristics:
Advances and Trends in Local Search Paradigms for Optimization. Kluwer,
1999.

[177] D. Wagner, U. Pferschy, P. Mutzel, G. R. Raidl, and P. Bachhiesl. A directed
cut model for the design of the last mile in real-world fiber optic networks.
In B. Fortz, editor, Proceedings of the International Network Optimization
Conference 2007, pages 103/1–6, Spa, Belgium, 2007.

[178] D. Wagner, G. R. Raidl, U. Pferschy, P. Mutzel, and P. Bachhiesl. A multi-
commodity flow approach for the design of the last mile in real-world fiber
optic networks. In K.-H. Waldmann and U. M. Stocker, editors, Operations
Research Proceedings 2006, pages 197–202. Springer, 2007.

[179] C. Walshaw. Multilevel refinement for combinatorial optimisation: Boost-
ing metaheuristic performance. In C. Blum, M. J. B. Aquilera, A. Roli, and
M. Sampels, editors, Hybrid Metaheuristics: An Emerging Approach to Op-
timization, volume 114 of Studies in Computational Intelligence (SCI), pages
261–289. Springer, 2008.

[180] P. Winter. Steiner problem in networks: a survey. Networks, 17(2):129–167,
1987.

[181] J. Xu, S. Y. Chiu, and F. Glover. Tabu search for dynamic routing communi-
cations network design. Telecommunication Systems, 8(1):55–77, 1997.

[182] ZIB. SCIP 1.2.0. http://scip.zib.de.

160

Appendix A

Curriculum Vitae

Personal Information

• Name: Markus Leitner

• Date and place of birth: November 2, 1979, Ried im Innkreis, Austria

• Nationality: Austria

• Resident: Vienna, Austria

• Family status: Married to Mag. Romana Leitner, no children

• Languages: German (native), English (fluent)

Education

• since 10/2006:
PhD (Doctorate) studies in computer science at the Vienna University of Tech-
nology, Austria, under the supervision of Günther R. Raidl and Ulrich Pferschy.

• 10/2000 – 06/2006:
Studies of computer science at the Vienna University of Technology, Austria;
graduation to “Diplom-Ingenieur” (MSc equivalent) with distinction.

• 09/1994 – 06/1999:
Secondary College for Electronics (Special Training Focus Technical Computer
Science) Braunau am Inn, Austria; school leaving examination passed with
distinction.

161

Appendix A Curriculum Vitae

Professional Activities

• since 09/2009:
Research and teaching assistant, Algorithms and Data Structures Group, Insti-
tute of Computer Graphics and Algorithms, Vienna University of Technology,
Austria

• 07/2007 – 08/2009:
Research assistant, School of Telematics / Network Engineering, Carinthia
University of Applied Sciences, Klagenfurt, Austria; collaborating in the FFG
research project “Netquest”: Simulation and Optimization of Access Networks,
see http://www.fh-kaernten.at/netquest

• 10/2006 – 08/2009:
Research assistant, Algorithms and Data Structures Group, Institute of Com-
puter Graphics and Algorithms, Vienna University of Technology, Austria

• 08/2005 – 06/2007:
Part time employment, Siemens AG Austria (PSE), Vienna, Austria; collabo-
rating in the Celtic research project “Madeira”: Network Management based
on distributed paradigms, see http://www.celtic-madeira.org

• 2001 – 2004:
Various internships and part time jobs as programmer and tutor

• 10/1999 – 09/2000:
Compulsory community service (instead of military service) at “Lebenshilfe
Oberösterreich”, Regau, Austria

International Organisatorial Activities

• Reviewer for ICNAAM 2009, 7th International Conference on Numerical Anal-
ysis and Applied Mathematics

• Reviewer for Workshop Heuristic Problem Solving at Eurocast 2009 – 12th
International Conference on Computer Aided Systems Theory

• Program committee member of Workshop on Heuristic Methods for the Design,
Deployment, and Reliability of Networks (HEUNET 2008) at SAINT 2008 –
The IEEE/IPSJ Symposium on Applications and the Internet.

Honors and Awards

• 02/2008: Celtic excellence award for project “Madeira”.

162

List of Publications

Journal Articles

1. B. Hu, M. Leitner, and G. R. Raidl.
The Generalized Minimum Edge Biconnected Network Problem: Efficient
Neighborhood Structures for Variable Neighborhood Search. Networks,
55(3):257–275, 2010.

2. B. Hu, M. Leitner, and G. R. Raidl.
Combining Variable Neighborhood Search with Integer Linear Programming
for the Generalized Minimum Spanning Tree Problem. Journal of Heuristics,
14(5):473–499, 2008.

Book Chapters

3. M. Leitner, G. R. Raidl.
Combining Lagrangian Decomposition with Very Large Scale Neighborhood
Search for Capacitated Connected Facility Location. Post-Conference Book
of the Eight Metaheuristics International Conference - MIC 2009, accepted
2010.

Conference and Workshop Proceedings

4. M. Leitner and G. R. Raidl.
Strong Lower Bounds for a Survivable Network Design Problem. In Proceed-
ings of International Symposium on Combinatorial Optimization (ISCO 2010),
Hammamet, Tunisia, March 2010.

5. M. Leitner and G. R. Raidl.
A Lagrangian Decomposition Based Heuristic for Capacitated Connected Fa-
cility Location. In S. Voß and M. Caserta, editors, Proceedings of the 8th
Metaheuristic International Conference (MIC 2009), Hamburg, Germany, July
2009.

6. M. Leitner, G. R. Raidl, and U. Pferschy.
Accelerating Column Generation for a Survivable Network Design Problem.
In M. G. Scutellá et al., editors, Proceedings of the International Network
Optimization Conference 2009, Pisa, Italy, April 2009.

163

Appendix A Curriculum Vitae

7. M. Leitner and G. R. Raidl.
Lagrangian Decomposition, Metaheuristics, and Hybrid Approaches for the De-
sign of the Last Mile in Fiber Optic Networks. In M. J. Blesa et al., editors,
Hybrid Metaheuristics 2008, volume 5296 of LNCS, pages 158–174, Malaga,
Spain, October 2008. Springer-Verlag Berlin Heidelberg.

8. M. Leitner and G. R. Raidl.
Variable Neighborhood Search for a Prize Collecting Capacity Constrained
Connected Facility Location Problem. In Proceedings of the 2008 International
Symposium on Applications and the Internet, SAINT 2008, pages 233-236,
Turku, Finland, 2008. IEEE Computer Society.

9. G. Paulus, N. Prunner, C. Rauter, M. Prossegger, M. Leitner, J. Werner, and
K. Rossegger.
Entwicklung von kostenoptimierten räumlichen Szenarien für den strategischen
Ausbau der Glasfasernetz-Infrastruktur am Beispiel eines Multi-Utility Un-
ternehmens. 2. Forschungsforum der österreichischen Fachhochschulen (FFH
2008), 2008.

10. M. Leitner, B. Hu, and G. R. Raidl.
Variable Neighborhood Search for the Generalized Minimum Edge Biconnected
Network Problem. In B. Fortz, editor, Proceedings of the International Net-
work Optimization Conference 2007, pages 69/1–6, Spa, Belgium, 2007.

11. L. Fallon, D. Parker, M. Zach, M. Leitner, and S. Collins.
Self-Forming Network Management Topologies in the Madeira Management
System. In A. K. Bandara et al., editors, Inter-Domain Management, volume
4543 of LNCS, pages 61–72. Springer-Verlag Berlin Heidelberg, 2007.

12. M. Leitner, P. Leitner, M. Zach, S. Collins, and C. Fahy.
Fault Management based on peer-to-peer paradigms: A case study report from
the CELTIC project Madeira. Proceedings of the 10th IFIP/IEEE Symposium
on Integrated Management, pages 697–700, Munich, Germany, 2007.

13. B. Hu, M. Leitner, and G. R. Raidl.
Computing Generalized Minimum Spanning Trees with Variable Neighborhood
Search. In P. Hansen et al., editors, Proceedings of the 18th Mini Euro Con-
ference on Variable Neighborhood Search, Tenerife, Spain, 2005.

Thesis

14. M. Leitner.
Solving Two Generalized Network Design Problems with Exact and Heuristic

164

Methods. Master’s thesis, Vienna University of Technology, Institute of Com-
puter Graphics and Algorithms, May 2006; supervised by G. R. Raidl and B.
Hu.

Research Reports

15. M. Leitner, G. R. Raidl, and U. Pferschy
Branch-and-Price for a Survivable Network Design Problem. Technical Re-
port TR 186-1-10-02, Institute of Computer Graphics and Algorithms, Vienna
University of Technology, 2010.

16. M. Leitner and G. R. Raidl.
Branch-and-Cut-and-Price for Capacitated Connected Facility Location. Tech-
nical Report TR 186-1-10-01, Institute of Computer Graphics and Algorithms,
Vienna University of Technology, 2010.

17. M. Leitner and G. R. Raidl.
Combining Lagrangian Decomposition with Very Large Scale Neighborhood
Search for Capacitated Connected Facility Location. Technical Report TR 186-
1-09-02, Institute of Computer Graphics and Algorithms, Vienna University
of Technology, 2009.

18. B. Hu, M. Leitner, and G. R. Raidl.
The Generalized Minimum Edge Biconnected Network Problem: Efficient
Neighborhood Structures for Variable Neighborhood Search. Technical Report
TR 186-1-07-02, Institute of Computer Graphics and Algorithms, Vienna Uni-
versity of Technology, 2007.

19. B. Hu, M. Leitner, and G. R. Raidl.
Combining Variable Neighborhood Search with Integer Linear Programming for
the Generalized Minimum Spanning Tree Problem. Technical Report TR 186-
1-06-01, Institute of Computer Graphics and Algorithms, Vienna University
of Technology, 2006.

165

