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Abstract

We consider a specific variant of the survivable network design problem suitable to model real world

scenarios occurring in the extension of fiber optic networks. In this article, two mixed integer programming

models, which can be solved by branch-and-price, are discussed and compared to existing approaches

theoretically as well as by a computational study. We further discuss the usage of alternative dual-optimal

solutions to stabilize our approaches and significantly reduce the computational times needed to solve the

linear relaxations of our models. The obtained computational results show that both branch-and-price

approaches are suitable for solving small to medium sized problem instances to proven optimality.
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1 Introduction

The bmax-Survivable Network Design Problem (bmax-SNDP) is a real-world communication network design

problem which arises for instance in the expansion of fiber optic networks. Recently, fiber-to-the-home has

become economically feasible for individual households in urban areas. However, covering larger districts with

such networks requires enormous financial resources from an operators point of view. Since customers are

usually not willing to pay significantly more than for existing lower bandwidth connections, good algorithms

for finding cost-efficient network layouts are crucial.

bmax-SNDP considers the problem of augmenting an existing network infrastructure by additional links

and switches in order to connect additional customer nodes. Here, we distinguish between standard (type-1)

customer nodes for which a single link connection suffices and type-2 customer nodes representing business

customers who require a more reliable connection, ensuring connectivity even when a single link or routing



node fails. Since offering full redundancy to each type-2 customer often is too expensive and does not pay off

from an economic point of view, we consider a problem variant where the redundancy condition for type-2

customers is relaxed in the sense that a connection is allowed via a final non-redundant branch line that does

not exceed a certain length bmax. Thus, we restrict the length of the non-redundant part of a connection

taking a compromise between reliability and construction costs.

The remainder of this article is organized as follows. After formally introducing bmax-SNDP in Section 2

and reviewing previous and related work in Section 3 we present two mixed integer programming approaches

– a directed and an undirected one – for solving bmax-SNDP to proven optimality. These are based on an

exponential number of so-called connection variables and can be solved by branch-and-price. As one main

contribution within this section, we show how to significantly speed up the solution of the linear relaxation of

these models by using alternative dual-optimal solutions in the pricing subproblem. Theoretical comparisons

of the corresponding polyhedra of those two as well two previously existing formulations are given in Section 6.

Test instances for benchmarking the approaches and computational results are discussed in Sections 7 and

8, respectively, before we finally draw conclusions and outline potential future work in Section 9.

This article significantly extends our previous work [33, 32] in various ways. We additionally propose the

usage of alternative dual-optimal solutions in the pricing problem also for the directed model in Section 5

and compare our models to existing ones theoretically by a polyhedral study. Furthermore, an additional

variant for generating alternative dual-optimal solutions as well as a new transformation to the elementary

shortest path problem with resource constraints are considered for the pricing subproblem of the directed

model. Finally, both models are embedded in a branch-and-price framework, more computational results are

given, and most parts are described in more detail.

2 Problem Definition

Formally, we are given a connected undirected graph Go = (V o, Eo) representing the spatial topology of

the surrounding area of potential customers. Each edge e = (u, v) ∈ Eo corresponding to a possible cable

route between its end points u, v ∈ V o is given with its length le ≥ 0 and costs co
e ≥ 0 for installing the

corresponding fiber optic link. The node set V o = S ∪ C ∪ VI is the disjoint union of customer nodes C,

spatial nodes S (switches, possible Steiner nodes) and nodes of the already existing network infrastructure VI.

The set of customers C = C1 ∪C2 is partitioned into type-1 customer nodes C1 without specific redundancy

requirements and type-2 customer nodes C2 that need to be redundantly connected by means of two node

disjoint paths to the existing infrastructure. Each customer node k ∈ C further has associated a prize

pk ≥ 0 modeling the expected return on investment when supplying customer k. Finally, the already existing

network infrastructure is represented by the subgraph (VI, EI), VI ( V o, EI ( Eo, see Figure 1.
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Figure 1: An instance of bmax-SNDP.
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Figure 2: The instance of bmax-SNDP from Figure 1 after shrinking the existing infrastructure.

In a first preprocessing step, we create a reduced graph G = (V,E) by shrinking the whole existing network

infrastructure into a single root node r ∈ V . From all edges (u, v) ∈ Eo connecting a node u ∈ V o \ VI to

the existing infrastructure – i.e. v ∈ VI – only the cheapest edge (r, u) from the root node to u is included in

E. Formally, G = (V,E) is defined by its node set V = {r} ∪ S ∪ C, and its edge set E = {(u, v) | u, v ∈

V ∧ (u, v) ∈ Eo} ∪ {(r, v) | ∃(u, v) ∈ Eo ∧ u ∈ VI ∧ v ∈ V o \ VI}, see Figure 2. Customers with associated

prizes and edge lengths are adopted from the original graph Go = (V o, Eo). Since we include one edge (r, v)

for all original edges connecting v with some node of the existing infrastructure w ∈ VI, edge costs ce, are

defined as follows:

ce =















co
e, if u, v /∈ VI

min{co
f | f = (w, v) ∈ Eo : w ∈ VI} otherwise

,∀e = (u, v) ∈ E.

Let G′ = (V ′, E′), V ′ ⊆ V , E′ ⊆ E, represent a solution network to an instance of bmax-SNDP. The

following conditions specify how customer nodes are to be connected:

• Simple connection:

A type-1 customer node k ∈ C1 is feasibly connected iff there exists a path from node r to k.

• Redundant connection:
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Figure 3: A feasible connection to k ∈ C2 with bmax(k) = 0.
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first path
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Figure 4: A feasible connection to k ∈ C2 with bmax(k) > 0.

A customer node k ∈ C2 is feasibly connected iff there exist two node (and edge) disjoint paths from

node r to k, see Figure 3.

• bmax-redundant connection:

Occasionally, the biconnectivity condition for the nodes in set C2 is relaxed in the sense that such a

node k ∈ C2 may be connected to any biconnected (Steiner or customer) node j ∈ V (the branch node

of k) via a single path of maximum total length bmax(k) > 0. This (optional) single path is called

branch line and bmax(k) the maximum branch line length for customer k, see Figure 4. We denote the

set of potential branch nodes for a customer k ∈ C2, i.e. the nodes from which paths to k no longer

than bmax(k) exist, by B(k) ⊆ V .

Since each type-2 customer is a potential branch node of itself whereas k is the only potential branch

node if bmax(k) = 0, k ∈ B(k) holds for all type-2 customers k ∈ C2 independent of a concrete problem

instance and a given maximum branch line length.

Note that we assume r /∈ B(k), ∀k ∈ C2, since above mentioned shrinking of the existing infrastructure

into the root node r might influence the optimal solution value otherwise.

Regarding the objective, we distinguish between two alternative goals:

• In the Operative Planning Task (OPT) we focus on finding a minimum-cost subgraph G′ feasibly

connecting all customers C, with the total costs being

(1) oOPT(G′) =
∑

e∈E′

ce.

This case can be considered a generalization of the classical Steiner tree problem on a graph (STP)
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Figure 5: An exemplary solution to the OPT variant of bmax-SNDP with bmax(k) = 0, ∀k ∈ C2.
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Figure 6: An exemplary solution to the SST variant of bmax-SNDP with bmax(k) 6= 0, ∀k ∈ C2.

where a special form of redundancy is required for the nodes in C2.

• In the Strategic Simulation Task (SST) customers’ prizes are also considered, and the objective is to

determine a subset C ′ ⊆ C of customers which are connected so that the costs for building the network

minus the earned prizes are minimized. In order to always have positive total costs, which eases some

parts of our algorithms and notations, we perform a simple transformation by adding the constant

∑

k∈C pk to the objective function, yielding

(2) oSST(G′) =
∑

e∈E′

ce −
∑

k∈C′

pk +
∑

k∈C

pk =
∑

e∈E′

ce +
∑

k∈C\C′

pk.

This problem variant is a generalization of the prize-collecting Steiner tree problem (PCSTP).

Figure 5 depicts an exemplary solution to the OPT variant of bmax-SNDP without considering bmax-

redundancy – i.e. bmax(k) = 0, ∀k ∈ C2 – while Figure 6 shows an exemplary solution to the SST variant

including bmax-redundancy.

As already the classical Steiner tree problem on a graph is NP-hard [28], this obviously also holds for

both of our problem variants. In the following presentation of our solution approaches, we primarily consider

the more complex SST case if not explicitly stated and assume pk = ∞, ∀k ∈ C, to include the OPT case.
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3 Related Work

bmax-SNDP has been introduced by Bachhiesl et al. [3]. Ljubić [34] introduced its name1 and pointed out

the relation to {0, 1, 2}-SNDP [29] which corresponds to bmax-SNDP with bmax(k) = 0, ∀k ∈ C2.

Wagner et al. [45] presented mixed integer programming (MIP) approaches for bmax-SNDP based on multi-

commodity flows. With the general purpose ILP-solver CPLEX [25], instances with up to 190 total nodes, 377

edges but only 6 customer nodes could be solved to proven optimality, and instances up to 2804 nodes, 3082

edges and 12 customer nodes could be solved with a final LP gap of about 7%. Unfortunately, this approach

turned out to be unsuitable for larger instances and/or in particular instances with larger number of customer

nodes, as already solving the linear programming (LP) relaxation of the MIP requires too much time due

to the huge number of variables involved. In [44], the same authors approached bmax-SNDP with a different

formulation based on connectivity constraints. While this formulation involves only a reasonable number of

variables, the number of inequalities is exponentially large. By using a branch-and-cut algorithm, this model

could be solved relatively well, and they were able to find proven optimal solutions for instances with up to

190 nodes, 377 edges, and 13 customer nodes. For larger, practical instances this approach unfortunately

still is not applicable at all or finds quite poor solutions with huge LP-gaps only. The current authors

heuristically approached medium-sized instances of bmax-SNDP by means of Lagrangian decomposition (LD),

variable neighborhood search, a greedy randomized adaptive search procedure (GRASP), as well as by hybrid

methods combining LD with variable neighborhood descent (VND) [31].

Modeling redundant connections by pairs of reversely oriented paths, Chimani et al. [13, 12] further came

up with strong formulations for {0, 1, 2}-SNDP based on multi-commodity flows and directed connection

cuts, theoretically dominating those of Wagner et al. [45, 44] for the case of bmax(k) = 0, ∀k ∈ C2. Their

formulations were able to solve larger instances and to consider a greater number of customer nodes than

the approaches of Wagner et al. However, their directed model cannot be easily adapted to consider bmax-

redundancy, too.

The classical Steiner tree problem (STP) on graphs has been considered by many authors, see e.g. [47] for

a survey. Among the various authors that considered integer programming models for the STP, Koch and

Martin [30] described an effective branch-and-cut method based on directed connectivity cuts. More recently,

Bahiense et al. [4] presented a Lagrangian Further well known heuristic methods have e.g. been described by

Takahashi and Matsuyama [41] and Duin and Voß [17].

The prize collecting Steiner tree problem (PCSTP) was introduced by Segev [38] who considered the

node weighted STP, which is a special version of the PCSTP. The term “prize collecting” has first been

used by Balas [5] for the prize collecting traveling salesman problem. Ljubić et al. [35] presented an exact

1Ljubić used the name kmax-SNDP.
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method for the PCSTP based on directed connection cuts. Other successful mathematical programming

based approaches include a relax-and-cut by Cunha et al. [14] and a cutting plane method by Lucena et

al. [37]. Canuto et al. [9] described an effective multi-start local search based on perturbation of the nodes’

prizes, where path-relinking and variable neighborhood search are used to further improve the obtained

solutions. Preprocessing conditions for reducing the number of nodes and edges of a PCSTP instance have

been described by Uchoa [42], whereas Chapovska et al. [11] discuss the complexity of several special variants

of the PCSTP and corresponding solution methods.

Other related problems are the various variants of the survivable network design problem (SNDP) [21].

Among these, especially the “low connectivity” variants such as above mentioned {0, 1, 2}-SNDP are relevant

for bmax-SNDP, see e.g. [29, 39] for surveys.

4 The Undirected Connection Formulation for bmax-SNDP

To model bmax-SNDP as a mixed integer program (MIP) we consider the set of all possible feasible connections

Fk for each customer k ∈ C. For type-1 customers k ∈ C1, Fk corresponds to the set of all paths from the

root node r to k, i.e.

Fk = {p ⊆ E | p forms a path from r to k},

while for type-2 customers k ∈ C2, Fk can be expressed as follows:

Fk = {p ⊆ E | p forms two node disjoint paths from r to some node j ∈ B(k) and

one path from j to k whose length does not exceed bmax(k)}.

We formulate the SST variant of bmax-SNDP by the following integer master problem (Col) using variables

fk
p ∈ {0, 1}, ∀k ∈ C, ∀p ∈ Fk, to indicate whether a corresponding connection p ∈ Fk is realized (fk

p = 1)

or not (fk
p = 0), decision variables xe ∈ {0, 1}, ∀e ∈ E, to specify whether an edge e is part of the solution

(xe = 1) or not (xe = 0), and variables yk ∈ {0, 1}, ∀k ∈ C, to denote whether a feasible route to customer

k is installed (yk = 1) or not (yk = 0). Variables yk are fixed to one in the OPT variant.
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(Col) z = min
∑

e∈E

cexe +
∑

k∈C

pk(1 − yk)(3)

s.t.
∑

p∈Fk

fk
p − yk ≥ 0 ∀k ∈ C(4)

xe −
∑

p∈Fk|e∈p

fk
p ≥ 0 ∀k ∈ C, ∀e ∈ E(5)

xe ∈ {0, 1} ∀e ∈ E(6)

0 ≤ yk ≤ 1 ∀k ∈ C(7)

fk
p ≥ 0 ∀k ∈ C, ∀p ∈ Fk(8)

Constraints (4) ensure that a customer’s prize can only be earned if it is feasibly connected to r, while

constraints (5) link connection variables to edge variables. We define only lower and upper bounds for

variables yk and only lower bounds for variables fk
p in inequalities (7) and (8). If all edge variables xe,

∀e ∈ E, are integral, each set of potentially existing fractional connections to some customer k ∈ C can

be replaced by an integral connection without including additional edges and thus without modifying the

solution’s objective value. Since customer prizes reduce the objective value, variables yk, ∀k ∈ C, we further

conclude that they will automatically become integer.

The linear relaxation of (Col) – the linear master problem (Col)
LP

– is given by substituting the integrality

constraints (6) by

xe ≥ 0 ∀e ∈ E(9)

Let µk ≥ 0, ∀k ∈ C, be the dual variables associated to the convexity constraints (4) and πk,e ≥ 0,

∀k ∈ C, ∀e ∈ E, be the dual variables associated to the coupling constraints (5).

Furthermore, let F = {fk
p | k ∈ C, p ∈ Fk} be the set of all fk

p variables representing columns in (Col)
LP

.

Since F consists of an exponential number of variables we cannot solve (Col)
LP

directly, but use column

generation [6, 15]. We define the restricted master problem (Col)
RMP

using only a small subset of connection

variables F̃ ( F ; otherwise (Col)
RMP

corresponds to (Col)
LP

.

When solving (Col)
RMP

we obtain optimal dual variable values µ∗
k and π∗

k,e, defining reduced prices c̄k,p

for variables fk
p ∈ F \ F̃ :
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ck,p = −µ∗
k +

∑

e∈p

π∗
k,e

The pricing problem is now to find (k∗, p∗) = argmink∈C,p∈Fk
{ck,p}. If ck∗,p∗ ≥ 0 we have obtained an

optimal solution to (Col)
LP

. Otherwise, we add at least one column with negative reduced costs and resolve

(Col)
RMP

.

More generally speaking, in the pricing subproblem we have to find a feasible connection for some k ∈ C

yielding negative reduced costs ck,p = −µ∗
k +

∑

e∈p π∗
k,e or prove that no such connection exists. For this

purpose we need to determine a cheapest feasible connection on graph G = (V,E) with modified edge costs

πk,e ≥ 0, ∀e ∈ E, for each customer node k ∈ C. When the costs of such a connection are less then µk, we

have found an appropriate connection, i.e. the corresponding variable fk
p can be added to (Col)

RMP
.

While for type-1 customers k ∈ C1 finding the cheapest feasible connection is a simple shortest path

calculation from r to k, we have to find a cheapest pair of node-disjoint paths from r to k for type-2 customers

(without yet considering bmax-redundancy). Suurballe and Tarjan [40] (see also [27]) presented an algorithm

to efficiently compute a shortest arc-disjoint pair of paths between two nodes in time O(|E| + |V | log |V |).

By applying this algorithm on the split graph of the original graph we can compute a shortest node-disjoint

pair of paths. The split graph is obtained by replacing each node v ∈ V by a pair of nodes v′ and v′′. For

each such pair, we add an arc (v′, v′′) with zero costs. Each edge e = (u, v) of G is replaced by two directed

arcs (u′′, v′), (v′′, u′) having costs ce.

In case of bmax-redundancy, the above algorithm must further be extended. We consider each node

v ∈ B(k) in the bmax-neighborhood of node k ∈ C2 and determine a cheapest pair of paths to this node.

Furthermore, a cheapest length constrained shortest path from node k to each potential branch node must

be computed. The overall cheapest combination is the final result. Since, computing a (length) constrained

cheapest path is NP-hard [22] relaxing the biconnectivity constraints by means of bmax-redundancy turns out

to significantly increase the subproblem’s complexity not only from a computational but also from a theoretic

point of view. However, several pseudo-polynomial algorithms for solving constrained shortest path problems

have been proposed, see e.g. [7, 18]. In our work, we use the approach described by Gouveia et al. [24] which

solves this problem for a customer k ∈ C2 in O(bmax(k)|E(k)|), where E(k) = {e = (u, v) ∈ E | u, v ∈ B(k)}.

Since bmax(k) and thus |E(k)| is typically rather small, we are able to solve this NP-hard problem by above

mentioned dynamic programming based approach without increasing the computational effort too much.
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4.1 Analyzing the Restricted Dual Problem

It is well known that (simplex based) column generation approaches often suffer from inefficiency resulting

in a large number of required pricing iterations as well as long computation times. Vanderbeck [43] describes

five major efficiency issues of simplex based column generation.

Several stabilization techniques to reduce their effects have been proposed, see e.g. [16] or [36] for reviews

on those methods. From the issues described by Vanderbeck preliminary tests showed that primal degeneracy

as well as the heading-in effect are mainly relevant in our case. The occurrence of primal degeneracy is based

on the fact that typically only very few connection and edge variables will have nonzero values in a solution

of (Col)
RMP

.

Instead of using a problem-independent stabilization approach we analyze the dual of (Col)
RMP

to take

advantage of problem specific characteristics. Let λk ≤ 0 denote the dual variables associated to inequalities

(7). As mentioned before F̃ ( F denotes the set of variables representing connections to customers in

(Col)
RMP

. The dual of the restricted master problem (Col)
RMP

– i.e. the restricted dual problem – for the

SST variant is given by model (10)–(16).

max
∑

k∈C

λk + pk(10)

∑

k∈C

πk,e ≤ ce ∀e ∈ E(11)

µk −
∑

e∈p

πk,e ≤ 0 ∀k ∈ C, ∀p ∈ Fk|∃fk
p ∈ F̃(12)

− µk + λk ≤ −pk ∀k ∈ C(13)

πk,e ≥ 0 ∀k ∈ C, ∀e ∈ E(14)

µk ≥ 0 ∀k ∈ C(15)

λk ≤ 0 ∀k ∈ C(16)

Let E′′ ⊆ E denote the subset of edges which are not part of any so far included connection, i.e. E′′ =
{

e ∈ E | ∄fk
p ∈ F̃ : e ∈ p

}

. For edges e ∈ E′′, only inequalities (11) are relevant. Thus all values πk,e ≥ 0,

∀k ∈ C, ∀e ∈ E′′, are dual optimal as long as
∑

k∈C πk,e ≤ ce holds.

Since almost the complete edge set E will not be in any included connection in the beginning of our

column generation procedure, dual variable values πk,e used as edge costs in the pricing subproblem will not

be meaningful. Furthermore, in order to be able to solve (Col)
LP

efficiently, we aim at keeping the number
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of included connection variables as well as the set E \ E′′ as small as possible.

Generally speaking, the structure of model (10)–(16) imposes the generation of many irrelevant columns

having identical reduced prices. This observation explains the occurrence of the heading in effect. This effect

is even intensified by the fact that CPLEX [25] – which we use for solving the linear relaxation of our model

– generates minimal dual-optimal values for all dual variables, i.e. most of them will be zero.

4.2 Alternative Dual-Optimal Solutions

In the following, we detail our stabilization procedure for generating meaningful dual variable values in the

pricing problem. Hereby, we exploit different dual-optimal solutions to improve the convergence properties

of our column generation algorithm. This approach can be interpreted as a stabilization technique that

“centers” an actual LP solution.

Let D∗ = (λ∗, µ∗, π∗) be an optimal solution to the restricted dual problem (10)–(16). As shown in the

previous section, for edges e ∈ E′′ all values πk,e ≥ 0, ∀k ∈ C, are dual optimal as long as
∑

k∈C πk,e ≤ ce.

Furthermore, for edges e ∈ E \ E′′, we may increase the sum of dual variable values
∑

k∈C πk,e by δe =

ce −
∑

k∈C πk,e.

As mentioned earlier CPLEX [25] generates minimal values for dual variables (i.e. πk,e = 0, ∀k ∈ C, ∀e ∈

E′′; usually δe > 0 for some edges e ∈ E \ E′′). For creating more meaningful dual variable values and thus

keeping the set of edges and connection variables that will be finally included relatively small, we aim to

increase variable values πk,e, ∀k ∈ C, ∀e ∈ E, while maintaining dual optimality.

The probably simplest and most obvious strategy is to use the alternative dual optimal solution D′ =

(λ∗, µ∗, π′) with π′
k,e = ce

|C| , ∀k ∈ C, ∀e ∈ E′′ and π′
k,e = π∗

k,e + δe

|C| , ∀k ∈ C, ∀e ∈ E \ E′′. However, as will

be illustrated by our computational results we can do even better by initially using different dual-optimal

solutions D(k,d) =
(

λ∗, µ∗, π(k,d)
)

, for all k ∈ C – controlled by parameter d (1 ≤ d ≤ |C|) – which finally

converge to D′ for d = |C|. When considering client k ∈ C in the pricing problem, we use dual values

π
(k,d)
k,e = ce

d
, ∀e ∈ E′′, and π

(k,d)
k,e = π∗

k,e + δe

d
, ∀e ∈ E \ E′′. Note that assuming π

(k,d)
k′,e = 0, ∀k′ 6= k ∈ C,

∀e ∈ E′′, and π
(k,d)
k′,e = π∗

k,e, ∀k′ 6= k ∈ C, ∀e ∈ E \E′′ we again only use dual optimal solutions when solving

the pricing problem. Parameter d is initially set to one and gradually incremented up to |C| in case no

column with negative reduced cost could be priced in and reset to one in case columns including new edges

have been added to (Col)
RMP

. Since we essentially use D′ if d = |C| we can terminate the column generation

process if no column with negative reduced costs could be found for d = |C|.

We further apply a simpler variant of D(k,d) where d is initially set to one and set to |C| in case no

connection yielding negative reduced costs could be identified. In this strategy – we refer to the resulting
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dual optimal solutions by D(k,d′) – d will not be decreased any more.

While the above mentioned strategies are feasible for both the SST as well as the OPT variant of bmax-

SNDP, we further consider a fourth approach for the SST variant that also takes each customer’s prize into

consideration. For each edge e ∈ E, we add a value corresponding to its prize relative to the sum of all prizes,

i.e. for all customers k ∈ C we set π
(p)
k,e = ce

pk
P

l∈C
pl

if e ∈ E′′ and π
(p)
k,e = π∗

k,e + δe
pk

P

l∈C
pl

otherwise. The

resulting alternative dual optimal solution is denoted by D(p) =
(

λ∗, µ∗, π(p)
)

.

5 The Directed Connection Formulation for bmax-SNDP

Since directed formulations are in many cases theoretically stronger than undirected ones and frequently also

outperform those from a computational point of view, it is natural to ask whether it is possible to replace

the undirected formulation (Col) presented in the previous section by a directed one.

Chimani et al. [13] showed that any feasible solution to {0, 1, 2}-SNDP can be transformed into a directed

graph with a simple path from r to each connected type-1 customer and two oppositely directed, internally

node disjoint paths between r and any connected type-2 customer k ∈ C2. Interpreting a feasible connection

to some customer k ∈ C2 with bmax(k) > 0 as two independent connections – a non-redundant one from r

to k and a fully redundant connection to its branching node v ∈ B(k) – the orientability of any solution to

bmax-SNDP follows from the result of Chimani et al.

In this section, we introduce model (dCol), resembling a directed variant of model (Col), which exploits

the orientability of solutions to bmax-SNDP. Let A = {(u, v), (v, u) | e = (u, v) ∈ E} consist of two oppositely

directed arcs for each original edge e ∈ E. To model bmax-SNDP we utilize binary variables au,v ∈ {0, 1},

∀(u, v) ∈ A, indicating whether or not arc (u, v) ∈ A is part of the (oriented) solution (au,v = 1) or not

(au,v = 0). As for model (Col), variables yk ∈ {0, 1}, ∀k ∈ C, specify whether a customer is feasibly

connected according to its redundancy requirements or not. We further use variables hk
p ∈ {0, 1}, ∀k ∈ C,

∀p ∈ Hk, where Hk is the set of all feasible directed connections for customer k ∈ C, indicating whether the

corresponding connection is realized (hk
p = 1) or not (hk

p = 0).

Analogously to (Col), for type-1 customers k ∈ C1, Hk corresponds to the set of all directed paths from

the root node r to k, i.e.

Hk = {p ⊆ A | p forms a directed path from r to k},

while for type-2 customers k ∈ C2, Hk can be expressed as follows:
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Hk = {p ⊆ A | p forms two oppositely directed, internally node disjoint paths

between r and some node j ∈ B(k) and a directed path from

j to k whose length does not exceed bmax(k)}.

Using directed arc costs cu,v = ce, ∀(u, v) ∈ A, e = (u, v) ∈ E, we can express bmax-SNDP by the following

model (dCol).

(dCol) z = min
∑

(u,v)∈A

cu,vau,v +
∑

k∈C

pk(1 − yk)(17)

s.t.
∑

p∈Hk

hk
p − yk ≥ 0 ∀k ∈ C(18)

au,v −
∑

p∈Hk|(u,v)∈p

hk
p ≥ 0 ∀k ∈ C, ∀(u, v) ∈ A(19)

au,v + av,u ≤ 1 ∀e = (u, v) ∈ E(20)

au,v ∈ {0, 1} ∀(u, v) ∈ A(21)

0 ≤ yk ≤ 1 ∀k ∈ C(22)

hk
p ≥ 0 ∀k ∈ C, ∀p ∈ Hk(23)

Constraints (18) ensure that a customer’s prize can only be earned if it is feasibly connected to r, while

constraints (19) link connection variables to arc variables. Inequalities (20) guarantee that at most one out

of each pair of oppositely directed arcs is used in a solution. Note that for variables yk and hk
p only bounds

are defined in (22) and (23), as they will automatically become integer by the same arguments as for model

(Col).

As in model (Col), there are exponentially many variables H = {hk
p | k ∈ C ∧ p ∈ Hk} corresponding

to feasible directed connections. Thus, we cannot directly solve the linear relaxation (dCol)
LP

of model

(17)–(23) which is given by substituting inequalities (21) by

au,v ≥ 0 ∀(u, v) ∈ A.(24)

We apply column generation [6, 15] for solving (dCol)
LP

analogously to the undirected connection for-

13



s1 t1

s2t2

. . .

s1 t1

s2t2

s t
. . .

Figure 7: Transformation of 2DP on (s1, t1), (s2, t2) into ODP on (s, t).

mulation presented in the last section. Again, we start with a small subset of connection variables H̃ ( H

considered in the restricted master problem (dCol)
RMP

and dynamically add further variables h ∈ H \ H̃ by

iteratively solving the pricing problem.

Let νk ≥ 0, ∀k ∈ C, be the dual variables associated to constraints (18) and ωk,u,v ≥ 0, ∀k ∈ C,

∀(u, v) ∈ A, denote the dual variables associated to constraints (19). Then, when solving (dCol)
RMP

reduced

prices ck,p for connection variables hk
p ∈ H \ H̃ can be computed by

ck,p = −νk +
∑

(u,v)∈p

ωk,u,v.

In the pricing problem, we need to find (k∗, p∗) = argmink∈C,p∈Hk
{ck,p}. As long as at least one variable

with negative reduced costs does exist, we add it to H̃ and resolve (dCol)
RMP

.

In other words, in the pricing problem we need to determine a cheapest directed connection to each

customer k ∈ C in D = (V,A) with arc costs ωk,u,v ≥ 0, ∀(u, v) ∈ A. If the total costs of such a connection

are smaller than νk, the corresponding connection variable has negative reduced costs and is included in

(dCol)
RMP

. Since arc costs are non-negative we can efficiently solve the pricing problem for type-1 customers

by simple cheapest path calculations. For customers k ∈ C2 with bmax(k) = 0 we need to compute the

cheapest pair of oppositely directed, internally node disjoint paths (ODP) between the root node r and k.

As shown in Figure 7 any instance of the directed disjoint pair of paths problem (2DP) for two source-

destination pairs (s1, t1), (s2, t2), which is known to be NP-hard [20], can be transformed into an instance

of ODP for s, t by adding nodes s, t and arcs {(s, s1), (t2, s), (t1, t), (t, s2)}. We conclude that ODP as well

as the pricing problem for the more general case of customers k ∈ C2 with bmax(k) > 0 are NP-hard.

While, several algorithms for solving the directed disjoint pair of paths problem have been proposed

for special cases such as planar graphs or dual arc costs [23], its general case has gained surprisingly few

consideration so far. In the following we present two alternatives for solving our pricing problem: First, by

mixed integer programming and second by modeling it as an elementary shortest path problem with resource

constraints.
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5.1 Solving the Pricing Problem by Mixed Integer Programming

We solve the pricing problem for each customer k ∈ C2 using the MIP (25)–(38), where A(k) = {(u, v) ∈

A | u, v ∈ B(k)} denotes the set of potential edges in the customer’s branch line. Each feasible connection

is represented by a directed cycle containing r and at least one potential branching node w ∈ B(k) and a

path from r to k using arcs not on this cycle for the branch line only. The directed cycle containing r and

the finally selected branch node is described by variables qu,v ∈ {0, 1}, ∀(u, v) ∈ A. Variables su,v ∈ {0, 1},

∀(u, v) ∈ A, indicate whether an arc is part of the non-redundant path from the root to k, while variables

bu,v ∈ {0, 1}, ∀(u, v) ∈ A(k), denote whether an arc is part of the connection’s branch line, i.e. those arcs

that are on the non-redundant path described by variables su,v but not on the cycle described by variables

qu,v.

min
∑

(u,v)∈A

ωk,u,vqu,v +
∑

(u,v)∈A(k)

ωk,u,vbu,v(25)

s.t.
∑

(u,v)∈A

qu,v −
∑

(v,w)∈A

qv,w = 0 ∀v ∈ V(26)

∑

(r,v)∈A

qr,v = 1(27)

qu,v + qv,u ≤ 1 ∀(u, v) ∈ E(28)

∑

(u,v)∈A

qu,v ≤ 1 ∀v ∈ V \ {r}(29)

∑

v∈B(k)

∑

(u,v)∈A

qu,v ≥ 1(30)

∑

(u,v)∈A

su,v −
∑

(v,w)∈A

sv,w =































−1 if v = r

1 if v = k

0 otherwise

∀v ∈ V(31)

su,v + sv,u ≤ 1 ∀(u, v) ∈ E(32)

su,v ≤ qu,v ∀(u, v) ∈ A \ A(k)(33)

bu,v ≥ su,v − qu,v ∀(u, v) ∈ A(k)(34)

∑

(u,v)∈A(k)

lu,vbu,v ≤ bmax(k)(35)
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qu,v ∈ {0, 1} ∀(u, v) ∈ A(36)

su,v ∈ {0, 1} ∀(u, v) ∈ A(37)

0 ≤ bu,v ≤ 1 ∀(u, v) ∈ A(k)(38)

The flow conservation constraints (26) ensure that the arcs (u, v) on which qu,v = 1 form a directed cycle.

Constraints (28) avoid the simultaneous usage of two oppositely directed arcs and constraints (29) prevent

the repetition of nodes on the cycle. These constraints, in conjunction with constraints (27) and (30) which

force the cycle to contain r and at least one potential branch node, ensure that the final cycle corresponds

to two oppositely directed, internally node disjoint paths between r and some branch node. Due to the flow

conservation constraints (31) together with constraints (32), variables su,v, ∀(u, v) ∈ A, describe a directed

path from r to k. Furthermore, constraints (33) force this path to use arcs part of the above mentioned

cycle outside the bmax-neighborhood of k. Finally, constraints (34) ensure that variables bu,v, ∀(u, v) ∈ A(k),

indicate the arcs forming the branch line, whereas constraints (35) restrict the branch line’s length. For

variables bu,v, it suffices to define lower and upper bounds in (38) as they will automatically become integral

in feasible solutions.

5.2 Modeling the Pricing Problem as an Elementary Shortest Path Problem

with Resource Constraints

Without yet considering bmax-redundancy, the pricing problem for a customer k ∈ C2 can be interpreted as

finding a cheapest cycle containing r and k. Finding negative cost cycles is a problem which frequently occurs

as pricing problem in branch-and-price approaches from the context of vehicle routing and crew scheduling.

There, algorithms for solving the (elementary) shortest path problem with resource constraints (ESPPRC)

are frequently used for solving the pricing subproblem, see e.g. [26]. As a consequence, ESPPRC which is

NP-hard, has recently gained great attention and several methods for solving it have been proposed [19, 10].

We transform the pricing subproblem for a customer k ∈ C2 into an instance of the ESPPRC on graph

G′
k = (V ′

k, A′
k) with the root node r being the source and destination node. The transformed graph – see

Figure 8 for an example – is defined by its node set V ′
k = V ∪ {k′} and its arc set A′

k = {(u, v) ∈ A | u 6=

k} ∪ {(k′, v) | ∃(k, v) ∈ A} ∪ {(k, k′)}. Here, we augment the node set by a duplicate of k, called k′, and

connect these two nodes by an arc (k, k′). Each arc (k, v) ∈ A emanating from k, is replaced by an arc

(k′, v) ∈ A′
k going out from k′. We call k′ the split node of k while we refer to arc (k, k′) as split arc of k.

Since k has only one outgoing arc, each non-trivial path in G′
k containing k which does not end at node k

must also contain the split arc (k, k′).
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r
k ∈ C2

r
k

k′

a) Original graph: G = (V,A) b) Transformed graph: G′ = (V ′, A′)

Figure 8: Transformation to ESPPRC for k ∈ C2, with bmax(k) = 0.

Arc costs c′u,v, are defined as

c′u,v =































−νk if u = k and v = k′

ωk,k,v if u = k′

ωk,u,v otherwise

∀(u, v) ∈ A′
k.

As (k, k′) ∈ A′
k is the only arc with negative costs c′k,k′ = −νk in G′

k = (V ′
k, A′

k) and each pair of oppositely

directed internally node-disjoint paths between r and k must have costs smaller than νk to price out favorably,

we conclude that there is a one-to-one correspondence between the set of elementary shortest paths from r

to itself with negative costs in G′
k = (V ′

k, A′
k) and the set of oppositely directed internally node-disjoint paths

between r and k yielding negative reduced costs. As discussed by Boland et al. [8], node disjointness can be

ensured by additionally adding one resource for each node v ∈ V ′
k with a maximum resource consumption of

one for each individual node resource.

Next, we slightly adapt the above described transformation, in order to generalize it to the case of type-2

customer nodes k ∈ C2 with bmax(k) > 0. We split each potential branch node v ∈ B(k) into nodes v and

v′ and add an arc (v, v′) between each of those pairs. In case a path in G′
k corresponding to a feasible

connection between r and k uses an arc between some potential branch node v and its split node v′, v will

be the branch node of the resulting connection. Since each potential branch node v ∈ B(k) except k can

be used either as a connection’s branch node or as a standard node of a connection to k, G′
k contains arcs

(u, v) and (u, v′) for each arc (u, v) ∈ A, v ∈ B(k), where v 6= k. Arcs (v, w) ∈ A going out from v ∈ B(k)

are replaced by arcs (v′, w) ∈ A′
k. Formally the transformed graph G′

k = (V ′
k, A′

k) is thus defined by its node

set V ′
k = V ∪ {v′ | ∃v ∈ B(k)} and its arc set A′

k = {(u, v) ∈ A | u 6= B(k)} ∪ {(u′, v) | ∃(u, v) ∈ A ∧ u ∈

B(k)} ∪ {(u, u′) | u ∈ B(k)} ∪ {(u, v′) | ∃(u, v) ∈ A ∧ v ∈ B(k) ∧ v 6= k}, see Figure 9.

Let ĉu ≥ 0, ∀u ∈ B(k), denote the costs of the precomputed branch line between u and k when using

node u as branch node of the connection between r and k with respect to arc costs ωk,u,w, ∀(u, v) ∈ A(k).
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r
k ∈ C2

u ∈ B(k)

v ∈ B(k)

r
k

k′

b) Transformed graph: G′ = (V ′, A′)

u

u′

v

v′

a) Original graph: G = (V,A)

Figure 9: Transformation to ESPPRC for k ∈ C2, with bmax(k) > 0.

Then arc costs c′u,v are defined as

c′u,v =















































−νk + ĉu if u ∈ B(k)

ωk,u,w if v is the split node of w

ωk,w,v if u is the split node of w

ωk,u,v otherwise

∀(u, v) ∈ A′
k.

Since only split arcs (u, u′) ∈ A′
k, ∀u ∈ B(k), might eventually have negative costs c′u,u′ = −νk + ĉu, and

due to the above introduced transformation, there is a one-to-one correspondence between the set of feasible

connections p ∈ Hk that price out favorably and the set of elementary shortest paths from r to itself with

negative costs in G′
k = (V ′

k, A′
k) using exactly one split arc.

Thus, by associating a resource of value one to each split arc, we can model the pricing problem for cus-

tomer k ∈ C as an elementary shortest path problem with resource constraints (ESPPRC) with a maximum

resource consumption of one. Furthermore, above mentioned node resources for ensuring node disjointness

need to be additionally considered.

5.3 Analyzing the Restricted Dual Problem

In accordance with Section 4.1, we analyze the dual problem of (dCol)
RMP

to see whether we may expect the

same issues as for model (Col) when solving the linear relaxation of (dCol). If this is the case, we are interested

if we can pursue a similar stabilization approach as proposed for the undirected model in Section 4.2.

Let γe ≤ 0, ∀e ∈ E, denote the dual variable values associated to constraints (20) and ρk ≤ 0, ∀k ∈ C,

denote the dual variable values associated to constraints (22). Then the restricted dual problem – i.e. the

dual of the restricted master problem (dCol)
RMP

– for the SST variant of bmax-SNDP is given by formulation
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(39)–(46).

max
∑

k∈C

ρk + pk +
∑

e∈E

γe(39)

∑

k∈C

ωk,u,v + γe ≤ cu,v ∀(u, v) ∈ A, e = (u, v) ∈ E(40)

νk −
∑

(u,v)∈p

ωk,u,v ≤ 0 ∀k ∈ C, ∀p ∈ Hk|∃hk
p ∈ H̃(41)

− νk + ρk ≤ −pk ∀k ∈ C(42)

ωk,u,v ≥ 0 ∀k ∈ C, ∀(u, v) ∈ A(43)

νk ≥ 0 ∀k ∈ C(44)

γe ≤ 0 ∀e ∈ E(45)

ρk ≤ 0 ∀k ∈ C(46)

Let A′′ = {(u, v) ∈ A | ∄hk
p ∈ H̃ : (u, v) ∈ p} denote the set of arcs not included in any connection of

(dCol)
RMP

. As only inequalities (40) are relevant for arcs (u, v) ∈ A′′ and γe ≤ 0, ∀e ∈ E, any variable values

ωk,u,v ≥ 0, ∀k ∈ C, ∀(u, v) ∈ A′′, e = (u, v) ∈ E, are optimal with respect to model (39)–(46) as long as

∑

k∈C ωk,u,v ≤ cu,v − γe. In particular, it is easy to see that if (u, v), (v, u) ∈ A′′, an optimal solution with

γe = 0, e = (u, v) ∈ E, and ωk,u,v = ωk,v,u = 0, ∀k ∈ C, does exist. Thus, next to the issue of degeneracy

based upon the fact that only few arc and connection variables will be nonzero in any solution to (dCol)
RMP

,

we observe that edge costs used in the pricing subproblems are in general not meaningful.

5.4 Alternative Dual-Optimal Solutions

Let (γ∗, ρ∗, ν∗, ω∗) be an optimal solution to the restricted dual problem (39)–(46). As motivated for the

undirected model in Section 4.2 we focus on increasing dual variable values ω∗ used as arc costs in the pricing

problem. Thus, the costs for individual connections will rise and we expect that less connections are finally

included in (dCol)
RMP

. As inequalities (40) are the only constraints imposing upper bounds for dual variables

ω, we only need to consider these constraints when increasing the values.

Let δu,v = cu,v − γe −
∑

k∈C ωk,u,v, ∀(u, v) ∈ A, e = (u, v) ∈ E, denote the total amount by which we

may increase the sum of dual variable values ω on arc (u, v). It is easy to see that δu,v = cu,v, ∀(u, v) ∈

A : (u, v), (v, u) ∈ A′′, where A′′ ⊆ A denotes the subset of arcs which are not part of any so far included

connection2. Generally, δu,v will also be greater than zero at least for some arcs (u, v) ∈ A \ A′′.

2Since CPLEX [25] will compute dual variable values equal to zero in this case.
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As in Section 4.2 we pursue four strategies for generating alternative dual optimal solutions. For D′ =

(γ∗, ρ∗, ν∗, ω′), we set ω′
k,u,v = ω∗

k,u,v+
δu,v

|C| , ∀k ∈ C, ∀(u, v) ∈ A. As
∑

k∈C ω′
k,u,v−ω∗

k,u,v =
∑

k∈C

δu,v

|C| = δu,v,

∀(u, v) ∈ A, D′ is feasible for the restricted dual problem in the OPT as well as in the SST case. Furthermore,

since the objective value does not change due to our adaptation, D′ is dual optimal.

We further apply the parameterized approach, where dual optimal solutions D(k,d) = (γ∗, ρ∗, ν∗, ω(k,d))

with ω
(k,d)
k,u,v = ω∗

k,u,v+
δu,v

d
, ∀k ∈ C, ∀(u, v) ∈ A, are used. Here, we initialize d to be equal to one and gradually

increment d up to |C| if no column could be priced in and reset d to one in case a column including new arcs

has been added. Also, we consider the simpler variant where d is immediately set to |C| if no connection

variable prices out favorably and d will not be decremented anymore. We refer to the corresponding dual

optimal solutions by D(k,d′). All above mentioned strategies are valid for both, the SST as well as the OPT

variant of our problem. Finally in our last strategy which is feasible for the SST variant only we use dual

optimal solutions D(p) = (γ∗, ρ∗, ν∗, ω(p)) with ω
(p)
k,u,v = ω∗

k,u,v + δu,v
pk

P

l∈C
pl

, ∀k ∈ C, ∀(u, v) ∈ A.

6 Polyhedral Comparison

In this section, we theoretically compare the undirected and directed connection formulation to each other

as well as to previous formulations introduced by Wagner et al. [45, 44] based on multi-commodity flows

[45] and connectivity cuts [44], respectively. Hereby, we denote by Pcol the polyhedron corresponding to

the set of feasible solutions to the linear relaxation of model (Col). Similarly, Pdcol denotes the polyhedron

induced by the LP relaxation of model (dCol), Pmcf those of the multi-commodity flow (MCF) formulation

from [45], and Pcut the polyhedron corresponding to the cut formulation from [44]. By projx,y(P) we refer

to the projection of a polyhedron P into the space of x and y variables only. As a prerequisite, we are also

reviewing the MCF and cut formulations in this section.

In their MCF formulation, Wagner et al. [45] used arc set Ar = {(r, j) ∈ E | j ∈ S} denoting all arcs

connecting r with Steiner nodes, the set of edges ES(k) = {(i, j) | i, j ∈ V \ {r, k}} connecting two Steiner

nodes with respect to customer k ∈ C, as well as the corresponding arc set AS(k) = {(i, j), (j, i) | i, j ∈

V \ {r, k}}. Furthermore, A(k) = {(i, k) | (i, j) ∈ E} denotes the set of arcs to customer k ∈ C, and

A′(k) = Ar ∪AS(k)∪A(k) the set of all arcs relevant for a customer k. Finally, B(k) denotes the set of arcs

(i, j) ∈ A′(k), with i, j ∈ B(k), i.e. those arcs that are potentially used in a branch line of a connection to

customer k. In formulation (47)–(65) introduced by Wagner et al. [45] variables xi,j ∈ {0, 1}, ∀(i, j) ∈ E,

indicate whether edge (i, j) is used (xi,j = 1) in a solution or not (xi,j = 0). Flow variables 0 ≤ mk
i,j ≤ 1,

∀k ∈ C, ∀(i, j) ∈ A′(k), and 0 ≤ nk
i,j ≤ 1, ∀k ∈ C2, (i, j) ∈ A′(k), model the connection to a customer

node k. Here, the second set of flow variables is used to achieve redundancy for type-2 customers. Variables

0 ≤ qk
i,j ≤ 1, ∀k ∈ C2, ∀(i, j) ∈ B(k), indicate the edges used in the branch line to node k. Finally, variables
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yk ∈ {0, 1}, ∀k ∈ C, indicate in the SST variant whether customer node k is connected (yk = 1) or not

(yk = 0). In the OPT variant, these variables are fixed to one. Using these sets and variables, bmax-SNDP is

stated by the following MIP:

(MCF) min
∑

(i,j)∈E

ci,jxi,j +
∑

k∈C

pk(1 − yk)(47)

s.t.
∑

(i,j)∈A′(k)

mk
i,j −

∑

(j,i)∈A′(k)

mk
j,i =































−yk if j = r

yk if j = k

0 otherwise

∀k ∈ C, ∀j ∈ V(48)

∑

(i,j)∈A′(k)

nk
i,j −

∑

(j,i)∈A′(k)

nk
j,i =































−yk if j = r

yk if j = k

0 otherwise

∀k ∈ C2, ∀j ∈ V(49)

mk
i,j ≤ xi,j ∀k ∈ C, ∀(i, j) ∈ Ar ∪ A(k)(50)

mk
i,j + mk

j,i ≤ xi,j ∀k ∈ C, ∀(i, j) ∈ ES(k)(51)

nk
i,j ≤ xi,j ∀k ∈ C2, ∀(i, j) ∈ Ar ∪ A(k)(52)

nk
i,j + nk

j,i ≤ xi,j ∀k ∈ C2, ∀(i, j) ∈ ES(k)(53)

mk
i,j + nk

j,i ≤ xi,j ∀k ∈ C2, ∀(i, j) ∈ AS(k)(54)

mk
i,j + nk

i,j ≤ xi,j ∀k ∈ C2, ∀(i, j) ∈ A′(k) \ B(k)(55)

mk
i,j + nk

i,j − qk
i,j ≤ xi,j ∀k ∈ C2, ∀(i, j) ∈ B(k)(56)

qk
i,j ≤ mk

i,j ∀k ∈ C2, ∀(i, j) ∈ B(k)(57)

qk
i,j ≤ nk

i,j ∀k ∈ C2, ∀(i, j) ∈ B(k)(58)

∑

(i,j)∈B(k)

(mk
i,j + nk

i,j − qk
i,j)+

+
∑

(i,j)∈A′(k)\B(k)

(mk
i,j + nk

i,j) ≤ 1 ∀k ∈ C2, ∀i ∈ V \ {r, k},(59)

∑

(i,j)∈B(k)

li,jq
k
i,j ≤ bmax(k) ∀k ∈ C2(60)

xi,j ∈ {0, 1} ∀(i, j) ∈ E(61)

yk ∈ {0, 1} ∀k ∈ C(62)

0 ≤ mk
i,j ≤ 1 ∀k ∈ C, ∀(i, j) ∈ A′(k)(63)
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Figure 10: An exemplary instance of bmax-SNDP with a single customer node.
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Figure 11: A feasible solution of Pmcf for the instance given in Figure 10.

0 ≤ nk
i,j ≤ 1 ∀k ∈ C2, ∀(i, j) ∈ A′(k)(64)

0 ≤ qk
i,j ≤ 1 ∀k ∈ C2, ∀(i, j) ∈ B(k)(65)

Lemma 1 The multi-commodity flow formulation (47)–(65) from [45] does not dominate (Col), i.e.

projx,y(Pmcf) * projx,y(Pcol).

Proof Consider the instance of bmax-SNDP illustrated in Figure 10. Obviously, the optimal solution to

(Col)
LP

does not connect customer j ∈ C2 since it does not pay off, i.e. all variables will be set to zero and

thus the objective value is equal to five. Pmcf , however, does contain the solution depicted in Figure 11,

where both types of flows – i.e. m and n – to j ∈ C2 each of which of value 0.5 are routed over the same

arcs. Thus, by setting yj = 0.5 and the resulting edge variables xr,h and xh,j to one, the costs for connecting

customer j in such a way are lower than the resulting profit. The objective value of the solution depicted in

Figure 11 is equal to 4.5.

Lemma 2 Let k be an arbitrary customer k ∈ C connected in some – potentially fractional – solution

G′ ∈ Pcol and yk denote its variable value in G′. Furthermore, let xe ≥
∑

p∈Fk|e∈p fk
p , ∀e ∈ E, denote the

values of all edge variables induced by the (fractional) connections to k due to constraints (5).

Then, variable values xe, ∀e ∈ E, allow for describing a feasible connection to customer k of value yk in

Pmcf .
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Proof Let fk
p ∈ Fk be an arbitrary connection variable corresponding to connection p ⊆ Fk. Since fk

contains only feasible connections to customer k, we can derive a feasible flow (mk, nk) of value fk
p by

orienting each edge e ∈ p towards k. Furthermore, as the length constraints with respect to the branch line

are met by the definition of fk, we conclude that each undirected connection p ∈ fk can be represented as a

set of flow variables corresponding to a feasible connection of value fk
p in model (47)–(65).

As
∑

p∈Fk|e∈p fk
p ≤ xe, ∀e ∈ E, holds due to constraints (5), we can simply use above mentioned equivalence

between connections and feasible flows for each connection individually, yielding feasible flow variable values

(mk, nk) that allow for setting the customer variable yk to
∑

p∈Fk
fk

p ≥ yk in model (47)–(65).

Theorem 3 The undirected connection formulation (Col) strictly dominates the multi-commodity flow for-

mulation (47)–(65) from [45], i.e. projx,y(Pcol) ( projx,y(Pmcf).

Proof Due to Lemma 1 it is enough to show that any feasible solution to (Col)
LP

, can be projected

into a feasible solution of formulation (47)–(65) with identical objective value, i.e. with identical values for

xe, ∀e ∈ E, and yk, ∀k ∈ C. Since no constraint of formulation (47)–(65) considers multiple customers

simultaneously, we can take into account each customer individually. Thus, Theorem 3 follows due to

Lemma 2.

In their second formulation based on connectivity cuts, Wagner et al. [44] used variables xi,j ∈ {0, 1},

∀(i, j) ∈ E, indicating edges being part of a solution. Variables ai,j ∈ {0, 1}, ∀(i, j) ∈ AD, are defined on

the arc set AD, containing one arc going out of r and two oppositely directed arcs for the remaining edges.

Variables yk ∈ {0, 1}, ∀k ∈ C, which are fixed to one in the OPT variant, specify whether a customer k is

connected or not. Binary variables zi ∈ {0, 1}, ∀i ∈ V , indicate whether a node i has two node-disjoint paths

to r and variables bk
j ∈ {0, 1}, ∀k ∈ C2, ∀j ∈ B(k), denote whether j is the branching node of customer

k. Finally, variables qk
i,j ∈ {0, 1}, ∀k ∈ C2, ∀(i, j) ∈ B(k), describe the branch line of the connection to

customer k.

(Cut) min
∑

(i,j)∈E

ci,jxi,j +
∑

k∈C

pk(1 − yk)(66)

s.t. a(δ−(S)) ≥ yk ∀k ∈ C, ∀S ⊆ V \ {r} | k ∈ S(67)

a(δ−(S)) ≥ 2zi ∀i ∈ V \ {r}, ∀S ⊆ V \ {r} | i ∈ S(68)

a(δ−
V \{v}(S)) ≥ zi ∀i ∈ V \ {r}, ∀v ∈ V \ {r, i},

∀S ⊆ V \ {r, v} | i ∈ S(69)
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Figure 12: A feasible solution of Pcut for the instance given in Figure 10.

∑

j∈B(k)

bk
j = yk k ∈ C2(70)

bk
j ≤ zj ∀k ∈ C2,∀j ∈ B(k)(71)

qk
i,j ≤ ai,j ∀k ∈ C2, ∀(i, j) ∈ B(k)(72)

qk(δ−B(k)(S)) ≥ bk
j ∀k ∈ C2, ∀j ∈ B(k) \ {k},

∀S ⊆ B(k) \ {j} | k ∈ S(73)

∑

(i,j)∈B(k)

li,jq
k
i,j ≤ bmax(k) ∀k ∈ C2(74)

ai,j ≤ xi,j ∀(i, j) ∈ AD(75)

aj,i ≤ xi,j ∀(i, j) ∈ AD(76)

xi,j ∈ {0, 1} ∀(i, j) ∈ E(77)

ai,j ∈ {0, 1} ∀(i, j) ∈ AD(78)

yk ∈ {0, 1} ∀k ∈ C(79)

zi ∈ {0, 1} ∀i ∈ V(80)

bk
j ∈ {0, 1} ∀k ∈ C2, ∀j ∈ B(k)(81)

qk
i,j ∈ {0, 1} ∀k ∈ C2, ∀(i, j) ∈ B(k)(82)

Lemma 4 The cut formulation (66)–(82) from [44] does not dominate (Col), i.e. projx,y(Pcut) *

projx,y(Pcol).

Proof Consider the instance given in Figure 10 with an optimal solution value to the LP relaxation of (Col)

equal to five, where all variable values are set to zero. As the multi-commodity flow formulation, the cut

model (66)–(82) does allow for “half-connecting” customer j ∈ C2 via a single path where the corresponding

arc and edge variables are set to one, see Figure 12.

Lemma 5 Let k be an arbitrary customer k ∈ C connected in some – potentially fractional – solution

G′ ∈ Pcol and yk denote its variable value in G′. Furthermore, let xe ≥
∑

p∈Fk|e∈p fk
p , ∀e ∈ E, denote the
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variable values of all edge variables induced by the (fractional) connections to k due to constraints (5).

Then, variables values xe, ∀e ∈ E, allow for describing a feasible connection of value yk in Pcut.

Proof As already observed by Chimani et al. [13] model (66)–(82) uses directed variables ai,j , ∀(i, j) ∈ AD,

but is equivalent to an undirected model since constraints (75) and (76) allow for simultaneously using

oppositely directed arcs corresponding to a single edge without increasing the cost function, i.e. ai,j = aj,i =

xi,j , ∀(i, j) ∈ E, i 6= r, j 6= r.

Let p ∈ Fk be an arbitrary connection to customer k. Due to constraints (5), p induces variable values

x
(p)
e ≥ fk

p . By definition of Fk, p is a feasible connection to k and thus setting ai,j = aj,i = x
(p)
e , ∀e ∈ p,

allows for supplying customer k with a value of fk
p in model (66)–(82). Due to constraints (4), yk ≤

∑

p∈Fk
fk

p

holds and thus Lemma 5 follows.

Theorem 6 The undirected connection formulation (Col) strictly dominates the cut formulation (66)–(82)

from [44], i.e. projx,y(Pcol) ( projx,y(Pcut).

Proof Since model (66)–(82) considers each customer individually, Theorem 6 follows due to Lemmas 4

and 5.

Theorem 7 The directed connection formulation (dCol) strictly dominates the undirected variant (Col), i.e.

projx,y(Pdcol) ( projx,y(Pcol).

Proof It is easy to see that projx,y(Pdcol) ⊆ projx,y(Pcol) holds, if projx,y(Pdcol) denotes the obvious

projection of Pdcol into the space of Pcol, i.e. xe = ai,j + aj,i, ∀e = (i, j) ∈ E.

Consider the instance given in Figure 13 and the optimal solution G′
col of (Col)

LP
to this instance as shown

in Figure 14. Here, each type-1 customer is connected via two connections. The corresponding edges are

also used for connecting the type-2 customer j ∈ C2. Thus, it is possible to set yh = yi = 1 and yj = 0.5,

while all edge variables are set to 0.5. The objective value of the shown solution is o(G′
col) = 6.5. On the

other hand, the optimal oriented solution G′
dcol of (dCol)

LP
does not connect any customers, i.e. yk = 0,

∀k ∈ {h, i, j}, and au,v = 0, ∀(u, v) ∈ A. We conclude that (dCol) strictly dominates its undirected variant,

i.e. projx,y(Pdcol) ( projx,y(Pcol).
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Figure 13: Another exemplary instance of bmax-SNDP.
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Figure 14: A feasible solution of Pcol for the instance given in Figure 13.

7 Test Instances and Environment

Real world instances from a German city [2] have been used to test our approaches. Table 1 details the

characteristics of the five instance sets, listing the number of instances (#), the graph size, numbers of

customers, and for all considered values of bmax the number of potential branching nodes and edges. Note

that in each experiment the value of bmax is identical for each type-2 customer node and we write bmax = 30

instead of bmax(k) = 30, ∀k ∈ C2, in the following.

All computational experiments have been performed on a single core of an Intel Xeon E5540 with 2.53GHz.

IBM CPLEX 12.1 [25] has been used to solve the multi-commodity flow model (MCF) from Wagner et al. [45]

as well as its linear relaxation (MCF)
LP

. We used SCIP 1.2.0 [1, 48] with IBM CPLEX 12.1 [25] as embedded

LP solver for solving (Col) and (dCol) as well as their linear relaxations (Col)
LP

and (dCol)
LP

, respectively.

Table 1: Instance set characteristics.

bmax = 30 bmax = 50 bmax = 100

Set # |V | |E| |C| |C| |C1| |C1| |C2| |C2| B(k) E(k) B(k) E(k) B(k) E(k)
ClgSE-I1 25 190 377 5-8 5.9 3-5 3.8 2-3 2.1 12.93 17.07 26.23 41.43 86.54 144.30
ClgSE-I2 15 190 377 11-17 13.8 7-12 8.9 4-7 4.9 10.23 12.58 29.47 42.33 131.01 235.36
ClgSE-I3 15 190 377 8-12 9.6 5-8 6.0 3-6 3.6 10.62 13.29 32.84 47.51 119.54 210.67
ClgN1B-I1 20 2804 3082 11-14 11.8 8-11 8.5 3-4 3.3 10.47 9.82 23.20 24.10 68.89 77.59
ClgN1B-I2 19 2804 3082 7-11 9.0 3-6 4.1 4-6 5.0 7.92 6.94 15.04 14.10 40.53 40.24
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Note that CPLEX 12.1 is roughly three times faster than SCIP 1.2.0 with CPLEX 12.1 as an embedded LP

solver3. An absolute time limit of 7200 CPU-seconds has been used for all experiments.

8 Computational Results

In the following we summarize all obtained computational results. First, a detailed comparison of the proposed

exact models (Col), (dCol), and the MCF formulation of Wagner et al. [45] is given.

Since preliminary tests indicated identical trends for the OPT and SST variants of bmax-SNDP, we pri-

marily concentrate on the more complex SST in the following. Furthermore, to analyze the influence of the

size of the bmax-neighborhood, we consider different values for bmax for each instance set.

When solving (Col) we initialize F̃ by all variables corresponding to connections obtained by applying

the minimum spanning tree augmentation heuristic (MSTAH) [31] plus connections obtained from a single

run of the variable neighborhood descent (VND) from [31]. For (dCol) we pursue the same strategy, but

additionally need to orient each of the obtained connections. Using the method described by Chimani et

al. [13] we initially orient the solutions obtained by MSTAH and VND, respectively, and afterwards adopt

the oriented connections obtained in this way.

Solving (Col) and (dCol) has been further configured as follows. For (Col) we add the cheapest connection

to each customer k ∈ C to the restricted master problem in each pricing iteration if it has negative reduced

costs. Unfortunately, preliminary tests showed that solving the pricing subproblem for (dCol) by algorithms

for the elementary shortest path problem with resource constraints – as discussed in Section 5.2 – is too

time consuming already for relatively small instances. Too many labels need to be considered for each

node and thus, this approach turned out to perform much worse than the MIP based approach discussed

in Section 5.1. Hence, we only consider the MIP based approach in the following. To speed-up the pricing

for type-2 customers, we return the first found solution that prices out favorably instead of trying to find

a proven optimal solution in each execution. Thus, as for (Col) we add at most one connection for every

customer in each pricing iteration.

As opposed to our problem definition in Section 2, we allow for the root node r being a potential branching

node of some type-2 customer k ∈ C2. Otherwise, we would restrict ourself to a too small set of feasible

values of bmax. Since the MIP for solving the pricing subproblem of (dCol) does not allow this case, we

additionally apply a directed variant of the length constrained shortest path algorithm from [24] in this case.

3http://scip.zib.de
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Table 2: Relative LP relaxation values and corresponding standard deviations in % for (MCF), (Col), and
(dCol).

Variant Set (Col)LP−(MCF)LP

(MCF)LP [%] (dCol)LP−(MCF)LP

(MCF)LP [%] (dCol)LP−(Col)LP

(Col)LP [%]

OPT, bmax = 0

ClgSE-I1 0.00 (0.00) 1.63 (2.38) 1.63 (2.38)
ClgSE-I2 0.00 (0.00) 8.84 (4.08) 8.84 (4.08)
ClgSE-I3 0.00 (0.00) 5.53 (4.55) 5.53 (4.55)
ClgN1B-I1 0.00 (0.00) 2.78 (2.32) 2.78 (2.32)
ClgN1B-I2 0.00 (0.00) 0.95 (0.89) 0.95 (0.89)

SST, bmax = 0

ClgSE-I1 0.05 (0.23) 1.68 (2.35) 1.63 (2.38)
ClgSE-I2 0.14 (0.55) 9.30 (5.07) 9.13 (4.65)
ClgSE-I3 0.88 (2.47) 8.02 (5.31) 7.09 (4.84)
ClgN1B-I1 3.07 (6.67) 5.29 (7.1) 2.58 (2.29)
ClgN1B-I2 2.12 (5.05) 3.09 (4.7) 1.36 (1.47)

SST, bmax = 30

ClgSE-I1 7.06 (5.07) 8.81 (5.65) 1.75 (2.36)
ClgSE-I2 5.66 (2.63) 19.39 (5.95) 12.99 (4.66)
ClgSE-I3 4.80 (2.89) 12.2 (5.07) 7.07 (4.01)
ClgN1B-I1 5.88 (7.08) 9.07 (7.68) 2.72 (1.42)
ClgN1B-I2 4.03 (5.52) 5.76 (5.44) 1.58 (1.89)

SST, bmax = 50

ClgSE-I1 9.61 (8.98) 11.88 (10.14) 2.17 (3.05)
ClgSE-I2 5.85 (3.48) 24.17 (6.81) 17.32 (5.31)
ClgSE-I3 6.53 (3.78) 13.04 (6.42) 6.08 (3.95)
ClgN1B-I1 2.45 (3.16) 5.53 (3.35) 2.97 (2.00)
ClgN1B-I2 4.21 (6.16) 5.72 (6.36) 1.65 (1.91)

SST, bmax = 100

ClgSE-I1 8.10 (11.94) 10.77 (13.70) 2.07 (2.58)
ClgSE-I2 3.39 (2.57) 23.24 (7.27) 19.14 (4.88)
ClgSE-I3 2.75 (2.56) 13.10 (8.16) 10.29 (6.57)
ClgN1B-I1 2.37 (3.95) 6.07 (4.95) 3.55 (2.28)
ClgN1B-I2 1.06 (2.03) 1.87 (1.01) 1.49 (1.18)

8.1 Linear Programming Relaxations

Table 2 depicts the average improvement and corresponding standard deviations in percent of the LP relax-

ation values of (Col) and (dCol) over (MCF). Furthermore, these values are additionally given for (dCol)

compared to (Col).

The results from Table 2 confirm the results of our theoretical comparison from Section 6. While the LP

relaxation values of (MCF) and (Col) are – for the considered instances – equal for the OPT variant without

considering bmax-redundancy – i.e. bmax(k) = 0, ∀k ∈ C2 – the values obtained from solving (Col)
LP

are

significantly better for all other configurations and instance sets. Furthermore, the LP relaxation values of

(dCol) clearly dominate those of (Col)
LP

.

Tables 3 and 4 analyze the efficiency of the various approaches for using alternative dual-optimal solutions

in the pricing subproblems of (Col) as proposed in Section 4.2. As previously described, D∗ simply uses the

obtained dual variable values without any modification, while D′ equally splits the potential increase for

each edge over all |C| subproblems. D(k,d) refers to the fine-grained variant controlled by parameter d, while

D(k,d′) is the compromise between D(k,d) and D′ where d is never decreased. Finally, D(p) which is valid for

the SST variant only, denotes the strategy considering each customer’s prize.

From Table 3, we conclude that all variants are able to solve the linear relaxations of the smaller ClgS
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Table 3: Median CPU-times for solving the LP relaxation of (MCF) and the various variants of (Col). Best
values are marked bold.

(Col)
LP

Variant Set (MCF)
LP

D∗ D′ D(k,d′) D(k,d) D(p)

OPT, bmax = 0

ClgSE-I1 0.09 0.55 0.16 0.11 0.13 -
ClgSE-I2 0.34 5.26 2.83 2.10 1.03 -
ClgSE-I3 0.20 3.30 0.40 0.34 0.40 -
ClgN1B-I1 43.55 94.48 21.57 11.98 13.48 -
ClgN1B-I2 58.27 203.53 41.52 14.05 12.19 -

SST, bmax = 0

ClgSE-I1 0.10 0.58 0.20 0.12 0.13 0.24
ClgSE-I2 0.35 5.99 4.15 1.12 1.11 2.79
ClgSE-I3 0.19 1.15 0.41 0.22 0.36 0.40
ClgN1B-I1 42.82 116.25 19.26 10.90 16.04 25.32
ClgN1B-I2 79.55 137.68 66.10 13.32 15.24 51.76

SST, bmax = 30

ClgSE-I1 0.15 0.86 0.51 0.30 0.38 0.45
ClgSE-I2 0.86 6.45 4.34 2.62 2.38 3.79
ClgSE-I3 0.33 2.48 1.00 0.58 1.03 1.11
ClgN1B-I1 190.48 124.61 32.63 20.85 31.28 41.04
ClgN1B-I2 1070.66 291.45 76.64 30.09 34.72 93.97

SST, bmax = 50

ClgSE-I1 0.18 1.11 0.49 0.40 0.53 0.39
ClgSE-I2 0.82 6.26 4.20 3.13 4.31 4.18
ClgSE-I3 0.41 3.60 1.28 1.11 2.01 1.42
ClgN1B-I1 212.07 220.80 39.01 24.70 54.66 39.99
ClgN1B-I2 1144.86 391.44 103.83 40.02 55.76 136.04

SST, bmax = 100

ClgSE-I1 0.15 3.04 0.95 0.74 1.28 1.21
ClgSE-I2 0.58 23.80 11.29 8.63 15.78 10.80
ClgSE-I3 0.37 9.40 2.97 1.97 4.94 3.48
ClgN1B-I1 214.67 540.45 98.94 59.61 125.14 105.93
ClgN1B-I2 1281.95 652.77 296.17 78.53 104.47 338.19

instances quite efficiently. On the one hand, (MCF)
LP

usually can be solved slightly faster than (Col)
LP

for

these instances. On the other hand the obtained bounds due to (Col)
LP

are better than those of (MCF)
LP

.

For larger instances, (Col)
LP

can be additionally solved more efficiently than (MCF)
LP

, especially when using

alternative dual-optimal solutions according to D′, D(k,d′), D(k,d), or D(p). Among these, D(k,d′) performs

better than the other three. Furthermore, we conclude that considering bmax-redundancy yields an enormous

increase in terms of necessary CPU-time for (MCF)
LP

, while the overhead in (Col)
LP

is only moderate.

Table 4 compares the relative number of needed pricing iterations to solve (Col)
LP

, i.e. the relative number

of times the restricted master problem needs to be solved, using D′ as a basis. In consistency with the median

CPU-times from Table 3, we conclude that using D′, D(k,d′), D(k,d), or D(p) significantly reduces the number

of needed pricing iterations. As for the CPU-times, slight advantages of D(k,d′) over the other approaches

can be observed. Note that already applying D′ instead of simply using the standard dual-optimal variable

values – i.e. using D∗ – yields a major improvement. We conclude that D′, D(k,d′), D(k,d), and D(p) are able

to find meaningful connections already at the beginning of the column generation process and thus allow for

efficiently solving the linear relaxation of (Col).

Tables 5 and 6 analyze the efficiency of the various approaches using alternative dual-optimal solutions

for the directed connection formulation (dCol). As described in Section 5.4, the interpretations of D′, D(k,d′),
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Table 4: Absolute and average relative number of pricing iterations and corresponding standard deviations
for solving the LP relaxation of (Col) with various variants of alternative dual-optimal solutions. Best values
are marked bold.

# of pricing iterations

Variant Set D′ D∗

D′

D(k,d′)

D′

D(k,d)

D′

D(p)

D′

OPT, bmax = 0

ClgSE-I1 85.76 (77.39) 3.45 (1.53) 0.99 (0.35) 1.02 (0.57) - (-)
ClgSE-I2 307.87 (230.09) 1.97 (1.02) 0.99 (0.34) 0.69 (0.41) - (-)
ClgSE-I3 232.8 (333.95) 3.73 (1.74) 1.01 (0.36) 0.85 (0.52) - (-)
ClgN1B-I1 381.65 (472.32) 5.83 (2.97) 0.85 (0.56) 0.76 (0.46) - (-)
ClgN1B-I2 250.16 (212.13) 4.56 (2.25) 0.81 (0.38) 0.81 (0.61) - (-)

SST, bmax = 0

ClgSE-I1 101.24 (78.41) 2.31 (1.02) 0.79 (0.31) 0.84 (0.46) 1.25 (0.53)
ClgSE-I2 327.53 (227.09) 1.63 (0.83) 0.61 (0.24) 0.62 (0.38) 1.13 (0.29)
ClgSE-I3 280.93 (412.87) 3.12 (1.30) 0.77 (0.36) 0.81 (0.46) 0.98 (0.29)
ClgN1B-I1 332.4 (397.04) 7.61 (5.33) 0.73 (0.32) 0.80 (0.45) 1.49 (0.98)
ClgN1B-I2 254.37 (174.53) 3.87 (1.87) 0.64 (0.37) 0.67 (0.29) 1.08 (0.35)

SST, bmax = 30

ClgSE-I1 91.88 (84.91) 2.34 (0.70) 0.81 (0.34) 0.93 (0.37) 1.08 (0.3)
ClgSE-I2 266.53 (133.01) 1.46 (0.37) 0.78 (0.32) 0.65 (0.21) 1.00 (0.32)
ClgSE-I3 137.27 (177.27) 3.20 (1.43) 0.83 (0.33) 0.98 (0.46) 1.29 (0.42)
ClgN1B-I1 622.65 (1015.9) 8.34 (9.49) 0.66 (0.44) 0.77 (0.48) 1.26 (0.53)
ClgN1B-I2 232.79 (115.87) 4.68 (1.96) 0.62 (0.24) 0.66 (0.23) 1.15 (0.31)

SST, bmax = 50

ClgSE-I1 67.56 (58.34) 2.62 (1.09) 0.89 (0.31) 1.02 (0.39) 0.99 (0.27)
ClgSE-I2 191.6 (96.62) 1.50 (0.55) 0.81 (0.34) 0.79 (0.26) 0.96 (0.22)
ClgSE-I3 81.8 (62.1) 3.77 (1.70) 0.92 (0.32) 1.15 (0.41) 1.21 (0.43)
ClgN1B-I1 361.8 (503.84) 5.82 (4.53) 0.70 (0.45) 0.94 (0.69) 1.15 (0.71)
ClgN1B-I2 239.26 (113.94) 4.43 (2.59) 0.59 (0.19) 0.62 (0.23) 1.24 (0.52)

SST, bmax = 100

ClgSE-I1 49.04 (21.06) 2.95 (1.45) 0.99 (0.31) 1.23 (0.32) 1.16 (0.35)
ClgSE-I2 119.20 (49.23) 2.24 (0.92) 0.99 (0.27) 1.16 (0.33) 1.04 (0.27)
ClgSE-I3 72.53 (45.00) 3.96 (1.54) 0.88 (0.27) 1.24 (0.54) 1.24 (0.45)
ClgN1B-I1 546.05 (853.58) 6.61 (6.63) 0.75 (0.46) 0.92 (0.61) 1.06 (0.45)
ClgN1B-I2 280.58 (103.76) 3.61 (1.58) 0.55 (0.18) 0.53 (0.19) 1.10 (0.35)

D(k,d), and D(p) correspond to the undirected case, although some calculations are slightly different.

As expected the CPU-time overhead for solving (dCol)
LP

due the NP-hard pricing subproblems for type-

2 customers k ∈ C2 is not negligible. However, similar to the previous discussion for (Col) we can observe

that D′, D(k,d′), D(k,d), and D(p) substantially speed-up the solution of (dCol)
LP

. Furthermore, the relative

additional effort for solving (dCol)
LP

compared to (MCF)
LP

decreases when considering larger instances and

bmax-redundancy, i.e. if bmax(k) 6= 0, ∀k ∈ C2. Since the LP relaxation values of (dCol) are much tighter than

those of the other models, (dCol) might nevertheless outperform them due to a significantly smaller number

of nodes that need to be considered in the branch-and-bound tree.

Table 6 details the relative number of pricing iterations needed to solve (dCol)
LP

for D(k,d′), D(k,d),

and D(p) in comparison to D′. Here, only those instances are considered where (dCol)
LP

could be solved

within the given time limit of 7200 CPU-seconds when using D′. We do not report on D∗, since it could solve

(dCol)
LP

for very few instances only. As for the undirected model, we conclude that the advanced adaptation

strategies often significantly reduce the number of needed pricing iterations, and D(k,d′) is the best option

for solving (dCol)
LP

, too.
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Table 5: Median CPU-times for solving the LP relaxation of (MCF) and the diverse variants of (dCol). Best
values are marked bold.

(dCol)
LP

Variant Set (MCF)
LP

D∗ D′ D(k,d′) D(k,d) D(p)

OPT, bmax = 0

ClgSE-I1 0.09 28.44 5.66 5.74 6.36 -
ClgSE-I2 0.34 92.30 50.30 57.87 62.16 -
ClgSE-I3 0.20 70.45 9.79 8.64 19.43 -
ClgN1B-I1 43.55 7200.00 3677.30 1805.73 2838.3 -
ClgN1B-I2 58.27 7200.00 7200.00 7200.00 7200.00 -

SST, bmax = 0

ClgSE-I1 0.10 23.31 6.36 4.12 7.10 7.46
ClgSE-I2 0.35 114.82 125.52 61.06 63.80 82.06
ClgSE-I3 0.19 61.93 8.51 7.95 25.98 9.37
ClgN1B-I1 42.82 7200.00 1342.96 800.41 2795.7 4410.18
ClgN1B-I2 79.55 7200.00 6968.09 2884.42 6499.98 7200.00

SST, bmax = 30

ClgSE-I1 0.15 49.61 10.81 7.11 14.03 11.49
ClgSE-I2 0.86 174.55 69.01 52.68 95.22 59.10
ClgSE-I3 0.33 111.91 27.69 13.05 35.06 28.10
ClgN1B-I1 190.48 7200.00 1457.13 791.07 3715.07 3055.81
ClgN1B-I2 1070.66 7200.00 6821.66 3331.36 7200.00 7200.00

SST, bmax = 50

ClgSE-I1 0.18 38.77 8.90 7.73 16.11 9.19
ClgSE-I2 0.82 179.41 39.57 36.78 113.35 83.53
ClgSE-I3 0.41 98.76 12.39 11.53 35.63 13.71
ClgN1B-I1 212.07 7200.00 1171.84 842.75 4493.58 1568.81
ClgN1B-I2 1144.86 7200.00 7200.00 4782.36 6739.93 7200.00

SST, bmax = 100

ClgSE-I1 0.15 50.03 4.72 4.48 17.64 6.17
ClgSE-I2 0.58 950.35 36.38 41.88 117.71 23.65
ClgSE-I3 0.37 589.65 10.66 18.40 81.27 10.90
ClgN1B-I1 214.67 7200.00 802.08 726.16 2841.21 1132.12
ClgN1B-I2 1281.95 7200.00 7200.00 4463.8 7200.00 7200.00

Table 6: Absolute and average relative number of pricing iterations and corresponding standard deviations
for solving the LP relaxation of (dCol) with various variants of alternative dual-optimal solutions. Best values
are marked bold.

# of pricing iterations

Variant Set D′ D(k,d′)

D′

D(k,d)

D′

D(p)

D′

OPT, bmax = 0

ClgSE-I1 135.13 (107.25) 0.91 (0.32) 0.86 (0.46) - (-)
ClgSE-I2 417.6 (287.62) 1.04 (0.42) 0.69 (0.38) - (-)
ClgSE-I3 122.07 (72.18) 0.83 (0.15) 1.06 (0.35) - (-)
ClgN1B-I1 160.69 (69.88) 0.88 (0.22) 1.59 (0.51) - (-)
ClgN1B-I2 185.89 (88.07) 1.16 (0.38) 1.25 (0.49) - (-)

SST, bmax = 0

ClgSE-I1 126.64 (85.87) 0.89 (0.37) 0.87 (0.49) 1.05 (0.30)
ClgSE-I2 496.57 (283.48) 0.73 (0.39) 0.56 (0.36) 1.08 (0.54)
ClgSE-I3 137.93 (104.35) 0.94 (0.19) 1.04 (0.46) 1.25 (0.61)
ClgN1B-I1 153.21 (43.33) 0.84 (0.14) 1.37 (0.28) 1.48 (0.38)
ClgN1B-I2 258.5 (117.52) 0.67 (0.35) 1.27 (0.92) 1.39 (0.47)

SST, bmax = 30

ClgSE-I1 205.68 (286.75) 0.77 (0.3) 0.83 (0.43) 1.06 (0.44)
ClgSE-I2 423.67 (564.89) 0.80 (0.34) 0.73 (0.27) 1.13 (0.44)
ClgSE-I3 159.40 (103.11) 0.77 (0.36) 0.86 (0.45) 1.22 (0.34)
ClgN1B-I1 153.60 (91.40) 0.96 (0.24) 1.67 (0.55) 1.34 (0.44)
ClgN1B-I2 267.20 (91.16) 0.54 (0.25) 0.83 (0.39) 0.66 (0.28)

SST, bmax = 50

ClgSE-I1 88.72 (54.75) 0.90 (0.39) 1.00 (0.37) 1.06 (0.29)
ClgSE-I2 264.00 (226.09) 0.89 (0.54) 0.96 (0.64) 1.26 (0.45)
ClgSE-I3 104.20 (58.63) 0.82 (0.28) 0.92 (0.38) 0.99 (0.56)
ClgN1B-I1 145.89 (71.02) 0.82 (0.22) 1.43 (0.48) 1.15 (0.53)
ClgN1B-I2 238.00 (100.27) 0.66 (0.20) 0.90 (0.39) 1.12 (0.25)

SST, bmax = 100

ClgSE-I1 50.83 (30.24) 0.96 (0.29) 1.16 (0.39) 1.19 (0.59)
ClgSE-I2 91.20 (43.69) 1.08 (0.38) 1.33 (0.44) 1.08 (0.48)
ClgSE-I3 113.43 (185.62) 1.46 (1.19) 1.29 (0.62) 1.36 (0.59)
ClgN1B-I1 112.44 (51.13) 0.94 (0.27) 1.72 (0.47) 1.29 (0.45)
ClgN1B-I2 232.00 (107.13) 0.68 (0.25) 0.97 (0.37) 0.81 (0.25)
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Table 7: Average optimality gaps and corresponding standard deviations after 7200 CPU-seconds for instances
where (dCol)

LP
could be solved when using D(k,d′). Best values are marked bold.

Variant Set # (MCF) (Col) (dCol)

OPT, bmax = 0

ClgSE-I1 25 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
ClgSE-I2 14 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
ClgSE-I3 15 0.00 (0.00) 0.10 (0.39) 0.00 (0.00)
ClgN1B-I1 13 0.00 (0.00) 0.99 (0.94) 0.00 (0.00)
ClgN1B-I2 9 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

SST, bmax = 0

ClgSE-I1 25 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
ClgSE-I2 15 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
ClgSE-I3 15 0.00 (0.00) 0.08 (0.31) 0.00 (0.00)
ClgN1B-I1 16 0.02 (0.06) 0.95 (0.96) 0.00 (0.00)
ClgN1B-I2 17 0.00 (0.00) 0.09 (0.25) 0.00 (0.00)

SST, bmax = 30

ClgSE-I1 25 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
ClgSE-I2 15 0.00 (0.00) 0.31 (1.21) 0.00 (0.00)
ClgSE-I3 15 0.00 (0.00) 0.12 (0.46) 0.00 (0.00)
ClgN1B-I1 15 0.32 (0.68) 1.11 (1.20) 0.00 (0.00)
ClgN1B-I2 17 0.41 (1.10) 0.14 (0.32) 0.00 (0.00)

SST, bmax = 50

ClgSE-I1 25 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
ClgSE-I2 15 0.00 (0.00) 0.64 (1.50) 0.00 (0.00)
ClgSE-I3 15 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
ClgN1B-I1 18 0.20 (0.58) 1.41 (1.66) 0.00 (0.00)
ClgN1B-I2 13 0.26 (0.95) 0.16 (0.38) 0.00 (0.00)

SST, bmax = 100

ClgSE-I1 24 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
ClgSE-I2 15 0.00 (0.00) 0.76 (1.61) 0.00 (0.00)
ClgSE-I3 14 0.00 (0.00) 0.13 (0.40) 0.00 (0.00)
ClgN1B-I1 18 1.14 (1.48) 1.78 (2.05) 0.00 (0.00)
ClgN1B-I2 14 0.14 (0.54) 0.17 (0.45) 0.00 (0.00)

8.2 Solutions and Optimality Gaps

In the following, computational results for solving (Col) and (dCol) by branch-and-price are presented.

Branching is performed on edge variables for (Col) and on arc variables for (dCol), respectively. We do not

use any problem specific branching rules, but trust on the branching decisions as performed by SCIP. All

results for (Col) and (dCol) have been computed using D(k,d′) for adapting dual variable values, which has

been shown to outperform the other variants. To allow for a meaningful comparison, we only report on those

instances where the LP relaxation of (dCol) could be solved within the given time limit of 7200 CPU-seconds

when using D(k,d′). The corresponding number of considered instances is additionally stated in each table.

Table 7 shows average gaps as well as corresponding standard deviations in percent for each considered

instance set and setting. We conclude that (dCol) could be solved to proven optimality whenever its linear

relaxation was solved. The undirected connection formulation (Col), however, failed to find a proven optimal

solution within two hours for some instances and performs slightly worse than the multi-commodity flow

formulation of Wagner et al. [45] with respect to this criterion. Although the LP relaxation values of (Col)

are better than those of model (MCF) and the root relaxation gaps are already quite small, a too large

number of nodes needs to be considered in the branch-and-bound tree for further improving the obtained

lower bound in order to proof optimality of a solution.
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Table 8: Median CPU-times for instances where (dCol)
LP

could be solved when using D(k,d′). Best values
are marked bold.

Variant Set # (MCF) (Col) (dCol)

OPT, bmax = 0

ClgSE-I1 25 0.25 0.28 5.74
ClgSE-I2 14 3.92 177.88 54.46
ClgSE-I3 15 0.87 2.25 8.64
ClgN1B-I1 13 643.28 7200.01 1109.79
ClgN1B-I2 9 136.03 241.72 3191.45

SST, bmax = 0

ClgSE-I1 25 0.30 0.32 4.12
ClgSE-I2 15 3.63 81.82 61.06
ClgSE-I3 15 0.76 2.25 7.95
ClgN1B-I1 16 519.06 7200.00 728.73
ClgN1B-I2 17 237.52 211.20 2500.98

SST, bmax = 30

ClgSE-I1 25 1.43 0.48 7.11
ClgSE-I2 15 23.87 329.06 52.68
ClgSE-I3 15 2.06 4.41 13.05
ClgN1B-I1 15 1524.24 7200.00 752.98

ClgN1B-I2 17 2322.39 261.72 3185.55

SST, bmax = 50

ClgSE-I1 25 1.37 0.70 7.73
ClgSE-I2 15 191.69 585.37 36.78

ClgSE-I3 15 2.78 6.18 11.53
ClgN1B-I1 18 2788.23 7200.00 818.78

ClgN1B-I2 13 2210.25 339.64 3151.63

SST, bmax = 100

ClgSE-I1 24 1.70 1.65 4.34
ClgSE-I2 15 46.93 4000.79 41.88

ClgSE-I3 14 4.00 19.41 16.25
ClgN1B-I1 18 7156.75 7200.00 672.97

ClgN1B-I2 14 2419.23 557.36 2445.72

Table 8 reports median CPU-times for solving (MCF), (Col), and (dCol), respectively. We conclude that

the performance of both connection based formulations improves in comparison to the MCF formulation

when considering bmax-redundancy. When taking into account that SCIP 1.2.0 with CPLEX 12.1 is slower

than CPLEX 12.1 alone roughly by a factor of three4, (dCol) can be considered the most effective method

on larger instances when bmax(k) 6= 0, ∀k ∈ C2. The undirected formulation (Col) is, however, typically the

fastest approach for those larger instances where the branch-and-bound tree only has a moderate number of

nodes, e.g. on the set ClgN1B-I2.

Since, we observed from Table 7 that (dCol) could be solved to proven optimality whenever its linear

relaxation (dCol)
LP

was solved, we further analyzed for how many instances the solution to its linear relax-

ation is integral, i.e. is an optimal solution to the corresponding instance. As detailed in Table 9, solving

(dCol)
LP

yields a proven optimal solution to (dCol) for almost all considered instances and settings. On the

contrary, most solutions of (MCF)
LP

and (Col)
LP

contain fractional variables.

Overall, we conclude that both connection based formulations have their individual advantages. While

the LP relaxation of (Col) is tighter than the one of (MCF) and can be solved efficiently, sometimes a too

large number of nodes in the branch-and-bound tree needs to be considered. Thus (Col) sometimes fails

to prove optimality of a solution within reasonable time. The resulting gaps are, however, relatively tight

4http://scip.zib.de
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Table 9: Number of instances per set where the solution to the linear relaxation is integral. Only those
instances are considered where (dCol)

LP
could be solved withing 7200 CPU-seconds using D(k,d′).

Variant Set # (MCF)
LP

(Col)
LP

(dCol)
LP

OPT, bmax = 0

ClgSE-I1 25 3 3 25
ClgSE-I2 14 0 0 14
ClgSE-I3 15 0 0 15
ClgN1B-I1 13 0 0 11
ClgN1B-I2 9 3 3 9

SST, bmax = 0

ClgSE-I1 25 2 3 25
ClgSE-I2 15 0 0 15
ClgSE-I3 15 0 0 15
ClgN1B-I1 16 0 0 15
ClgN1B-I2 17 1 3 17

SST, bmax = 30

ClgSE-I1 25 0 1 25
ClgSE-I2 15 0 0 14
ClgSE-I3 15 0 0 14
ClgN1B-I1 15 0 0 14
ClgN1B-I2 17 0 2 17

SST, bmax = 50

ClgSE-I1 25 0 2 25
ClgSE-I2 15 0 0 14
ClgSE-I3 15 0 0 14
ClgN1B-I1 18 0 0 18
ClgN1B-I2 13 1 2 13

SST, bmax = 100

ClgSE-I1 24 0 0 24
ClgSE-I2 15 0 0 14
ClgSE-I3 14 0 0 13
ClgN1B-I1 18 0 0 18
ClgN1B-I2 14 0 1 14

already after solving the root node. With respect to model (dCol), we conclude that its LP relaxation is

extremely tight and in particular turned out to be integral for almost all used test instances and settings.

While the computational effort for solving it is not negligible, it nevertheless outperforms the other methods

on medium sized instances. Both models perform bad, when simply using the dual variable values obtained

by the used LP solver. Above computational results clearly show that the usage of alternative dual-optimal

solutions as described in Sections 4.2 and 5.4, respectively, substantially reduces the time necessary for solving

(Col) and (dCol). We further conclude that the performance of (MCF) heavily decreases then considering

bmax-redundancy. For (Col) and (dCol) the additional computational effort increases only moderately.

9 Conclusions and Future Work

In this article, two mixed integer programming approaches for solving the bmax-Survivable Network Design

Problem (bmax-SNDP) have been considered. These are based on an exponential number of so-called connec-

tion variables and can be solved by branch-and-price. We showed how to significantly speed up the solution

of both models by using alternative dual-optimal solutions in the pricing subproblems. Using a polyhedral

comparison we further showed that both proposed models theoretically dominate existing ones and that the

second model, which is a directed variant of the first one, dominates its undirected counterpart.
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Computational results show that both branch-and-price approaches perform reasonably well on medium

sized instances. While, the undirected model yields tight optimality gaps already after relatively short time, it

sometimes has problems to further raise the obtained lower bounds in order to prove optimality of a solution.

For solving the linear relaxation of its directed counterpart much more computational effort is needed. The

obtained solutions are, however, already integral and thus proven optimal solutions in the majority of test

cases.

Interesting areas for further research include the development of methods based on the multilevel approach;

see e.g. [46] for a survey. These might use the methods proposed in this article for solving smaller subproblems

and can be used to tackle very large scale instances of bmax-SNDP. Furthermore, considering additional

algorithms and methods for solving the NP-hard pricing subproblems of the directed connection formulation

might allow for solving even larger instances to proven optimality.
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design problem. In M. G. Scutellà et al., editors, Proceedings of the International Network Optimization

Conference 2009, 2009.
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