
Favoritenstraße 9-11 / E186, A-1040 Wien, Austria
Tel. +43 (1) 58801-18601, Fax +43 (1) 58801-18699
www.cg.tuwien.ac.at

Forschungsbericht / Technical Report

TECHNISCHE UNIVERSITÄT WIEN
Institut für Computergraphik und Algorithmen

Branch-and-Cut-and-Price for

Capacitated Connected Facility

Location

Markus Leitner and Günther R. Raidl

TR–186–1–10–01

May 27, 2010

Noname manuscript No.
(will be inserted by the editor)

Branch-and-Cut-and-Price for Capacitated Connected

Facility Location

Markus Leitner · Günther R. Raidl

Received: dd.mm.yyyy / Accepted: dd.mm.yyyy

Abstract We consider a generalization of the Connected Facility Location problem

(ConFL), suitable to model real world network extension scenarios such as fiber-to-

the-curb. In addition to choosing a set of facilities and connecting them by a Steiner

tree as in ConFL, we aim to maximize the resulting profit by potentially supplying

only a subset of all customers. Furthermore, capacity constraints on potential facilities

need to be considered. We present two mixed integer programming based approaches

which are solved using branch-and-cut and branch-and-cut-and-price, respectively. By

studying the corresponding polyhedra we analyze both approaches theoretically and

show their advantages over previously presented models. Furthermore, using a compu-

tational study we are able to additionally show significant advantages of our models

over previously presented ones from a practical point of view.

Keywords connected facility location · network design · branch-and-cut · branch-

and-cut-and-price · mixed integer programming

Mathematics Subject Classification (2000) 90C10 · 90C11 · 90C57 · 90C90

M. Leitner · G. R. Raidl
Institute of Computer Graphics and Algorithms
Vienna University of Technology, Vienna, Austria
E-mail: leitner@ads.tuwien.ac.at, raidl@ads.tuwien.ac.at

2

1 Introduction

We consider a real-world network design problem with additional location aspects which

occurs when extending existing fiber-optic networks. Nowadays, telecommunication

companies are often confronted with rising bandwidth requirements of customers while

especially in smaller cities and rural areas realizing connections entirely with fiber-optic

routes (i.e. fiber-to-the-home) is often too expensive and does not pay off economically.

In such situations, providers need to make a compromise between the bandwidth offered

to individual customers and the resulting construction costs.

Frequently, these companies deal with such situations by extending the fiber-

optic infrastructure by new routes to so-called mediation points that bridge the high-

bandwidth network with an older lower-bandwidth network. While the original network

is still used between a customer and its assigned mediation point, the newly installed

high-bandwidth routes are used in the remaining network. Ensuring that the maximum

distance between a customer and its mediation point is not too high, the bandwidth

available for each customer can be significantly increased while avoiding too high con-

struction costs. Depending on the network used between these mediation points and

the customers, these scenarios are typically referred to as fiber-to-the-curb in case of

a traditional copper network or powerline in case of using electric power transmission

lines.

From an optimization point of view these scenarios can be modeled as variants of

the Connected Facility Location Problem (ConFL) [26], where new facilities, which cor-

respond to the above mentioned mediation points, need to be installed and connected

with each other and customer nodes need to be assigned to them. However, the classical

ConFL often cannot be used to model and solve real-world scenarios since it neglects

real-world constraints such as those imposed by individual client bandwidth demands

and corresponding maximum assignable demands to individual facilities. Furthermore,

telecommunication providers are usually interested in upgrading not necessarily all but

only the most profitable subset of potential customers by additionally considering the

expected return on investment for individual customers.

To overcome these shortages, our model to which we refer as the Rooted Prize

Collecting Capacitated Connected Facility Location Problem (CConFL) resembles a

prize collecting variant of ConFL and additionally considers capacity constraints on

potential facility locations.

After formally introducing CConFL in Section 2, we review previous and related

work in Section 3. Afterwards, we present a branch-and-cut approach based on directed

connectivity cuts in Section 4 and a branch-and-cut-and-price approach involving an

exponential number of so-called pattern variables in Section 5. Theoretical compar-

isons of the corresponding polyhedra of these two formulations as well as to previously

proposed formulations are given in Section 6. After describing the used test instances

in Section 7, computational results are given in Section 8, before we finally draw con-

clusions and outline potential future work in Section 9.

2 Problem Definition

Formally, an instance of CConFL is given by an undirected connected graph Go =

(V o, Eo) with a connected subgraph GI = (VI, EI), VI (V o, EI (Eo representing the

existing fiber-optic infrastructure, see Figure 1.

3

Steiner node
facility node

customer node

infrastructure node

existing route

potential route

potential assignment

Fig. 1 Original problem instance.

root node

Steiner node
facility node

customer node
potential route

potential assignment

Fig. 2 Rooted problem instance.

Each edge e = (u, v) ∈ Eo has associated costs coe ≥ 0 corresponding to the costs of

installing a new route between u and v. Potential facility locations (mediation points)

F o ⊆ V o \ VI are given with associated costs fi ≥ 0 for installing them (opening

costs) and maximum assignable demands Di ∈ N0, ∀i ∈ F o. All remaining nodes

v ∈ V o \ (VI ∪ F o) are Steiner nodes that may be used in a solution. Note that each

facility node might also be used as a Steiner node when no customer is assigned to it,

in which case its opening costs need not to be paid. Furthermore, we are given a set of

potential customers Co with individual demands dk ∈ N0 and prizes pk ≥ 0, ∀k ∈ Co,

the latter corresponding to the expected profit when supplying customer k. Finally,

costs ai,k ≥ 0 for assigning the complete demand of customer k ∈ Co to a potential

facility location i ∈ F o are given (assignment costs). If a client k cannot be assigned

to facility i we assume here for simplicity ai,k = ∞.

During preprocessing we shrink the existing fiber-optic infrastructure GI = (VI, EI)

into a single root node r, yielding a reduced graph G = (V, E) with node set V =

(V o ∪ {r}) \ VI and edge set E = {(u, v) ∈ Eo | u, v /∈ EI} ∪ {(r, v) | ∃(u, v) ∈ Eo : u ∈

VI ∧ v /∈ VI}; see Figure 2 for such a rooted problem instance. Edge costs ce ≥ 0 are

defined as

ce =

(

coe if u, v ∈ V o \ VI

minf=(w,v)∈Eo|w∈VI
cof otherwise

∀e = (u, v) ∈ E.

Furthermore, we remove all possibly existing assignment possibilities between cus-

tomers k ∈ Co and facilities i ∈ F o where ai,k ≥ pk by setting ai,k = ∞. In case strict

inequality holds – i.e. ai,k > pk – such an a assignment cannot be part of an optimal

4

root node

Steiner node
facility node

customer node
potential route

potential assignment

realized route
realized assignment

Fig. 3 An exemplary solution to CConFL.

solution as it does not pay off, while at least one optimal solution not including the

assignment between i and k exists if ai,k = pk.

Customers with no remaining assignment possibilities are entirely removed. Sim-

ilarly, some potential facilities i ∈ F o that cannot be profitable can be identified by

solving a 0–1 knapsack problem for each facility with knapsack size Di, and an item

with weight dk and profit pk − ai,k for each assignable customer. A facility can be

removed if the profit of the optimal solution to this knapsack problem does not exceed

the facility’s opening costs fi. If solving these knapsack problems for all the facilities is

too time-consuming, an option is to only solve the corresponding linear programming

relaxations and to use the hereby obtained upper bounds to the optimal solutions’

profits.

We denote by C ⊆ Co and F ⊆ F o (F ⊆ V) the resulting, possibly reduced sets

of potential customers and facility locations, respectively. Furthermore, Ci = {k ∈ C |

ai,k < pk} denotes the set of customers that may be assigned to facility i ∈ F and

Fk = {i ∈ F | k ∈ Ci} the set of potential facilities a customer k ∈ C may be assigned

to.

As depicted in Figure 3, a solution to CConFL S = (RS , TS , FS , CS , αS) consists

of a set of opened facilities FS ⊆ F connected to each other as well as to the root

node r by a Steiner tree (RS , TS), RS ⊆ V , TS ⊆ E. CS ⊆ C is the set of customers

feasibly (i.e. respecting the capacity constraints) assigned to facilities FS , whereas the

actual mapping between customers and facilities is described by αS : CS → FS . Each

customer may be assigned to at most one facility. The objective function of CConFL

can be stated as

c(S) =
X

e∈TS

ce +
X

i∈FS

fi +
X

k∈CS

aαS(k),k +
X

k∈C

pk −
X

k∈CS

pk (1)

=
X

e∈TS

ce +
X

i∈FS

fi +
X

k∈CS

aαS(k),k +
X

k∈C\CS

pk (2)

An optimal solution S∗ (i.e. a most profitable one) has minimal objective value,

i.e. c(S∗) ≤ c(S) for all feasible solutions S. Note that we add the profits lost –

i.e. the profits of uncovered customers – instead of subtracting the collected profits

in equation (2), ensuring a nonnegative objective value for any feasible solution. Since

CConFL combines the (prize collecting) Steiner tree problem (STP) on a graph with the

single source capacitated facility location problem (SSCFLP), which are both strongly

NP-hard [18,7], CConFL is strongly NP-hard as well.

5

3 Related Work

Karger and Minkoff [17] considered the so-called maybecast problem which can be mod-

eled as a connected facility location problem and described a constant factor approx-

imation for their problem. The name connected facility location has been introduced

by Gupta et al. [14] in their work on virtual private networks.

Since then several authors proposed approximation algorithms for diverse variants

of ConFL. Swamy and Kumar [32] presented a primal-dual algorithm with an approxi-

mation ratio of 8.55 which is also a factor 4.55 approximation for the so-called rent-or-

buy problem, a variant of ConFL where no opening costs are given and facilities may

be opened at all nodes. By considering a linear programming (LP) rounding technique,

Hasan et al. [15] improved their method to a factor 8.29 approximation algorithm for

the case of edge costs obeying the triangle inequality and a factor seven approximation

in case all opening costs are equal. Recently, a randomized approximation algorithm

with an expected approximation ratio of four, which can be derandomized with a re-

sulting approximation factor of 4.23, has been presented by Eisenbrand et al. [9].

Ljubić [26] described a branch-and-cut approach based on directed connection cuts

as well as a hybrid metaheuristic combining variable neighborhood search (VNS) with

reactive tabu search for the rooted variant of ConFL. Tomazic and Ljubić [33] consid-

ered the unrooted version of ConFL and presented a greedy randomized adaptive search

procedure. Furthermore, they transformed the problem into the minimum Steiner ar-

borescence problem and solved it by an exact branch-and-cut method. Ten different

integer programming formulations for ConFL have been presented by Gollowitzer and

Ljubić [13]. Next to computational results on their models, they further ranked them

by comparing the various polyhedra. The same authors subsequently discussed a large

number of models for a hop constrained variant of ConFL [27,28]. Bardossy and Ragha-

van [31,3] combined dual ascent with local search to derive lower and upper bounds

for a more general variant of ConFL.

The current authors presented two VNS variants for a version of CConFL with-

out assignment and opening costs in [23]. Subsequently, we proposed a Lagrangian

relaxation based approach which has been hybridized with local search and very large

scale neighborhood search as well as two mixed integer programming models based on

multi-commodity flows [24,25].

A closely related problem is the Steiner tree star (STS) problem, where opening

costs for facilities included in the Steiner tree must be paid even if no customers are

assigned to them. Exact methods for the STS problem have been described by Lee et

al. [22,21], while Xu et al. [35] presented a tabu search metaheuristic. A generalized

variant of the STS problem, where customer nodes and potential facilities are not

necessarily disjoint, has been described by Khuller and Zhu [19].

Furthermore, literature on the (prize collecting) Steiner tree problem on a graph

(STP), as well as on the (single source) capacitated facility location problem (SSCFLP)

can be considered as relevant, since CConFL is composed of these two problems; see

e.g. [34] for a survey on the STP and [2] for a recent work on the SSCFLP including a

comprehensive list of further references on that topic.

6

4 Branch-and-Cut for CConFL

In this section we present an exact approach for CConFL. The underlying integer

programming model dCut involves an exponential number of constraints and can be

solved by dynamically including them on demand at each node of the branch-and-bound

search tree, i.e. by branch-and-cut. dCut is based on so-called directed connection cuts.

It is well known that such models often outperform multi-commodity flow based models

like the ones presented in our previous work [24,25] from a computational point of view.

As will be shown in Section 6, our directed cut model dCut is also theoretically stronger

than both previously presented flow models.

For model dCut we define a directed extended graph (V ′, A′) combining G with

all potential customers, i.e. V ′ = V ∪ C. Its arc set A′ consists of one arc going out of

the root node for each edge in G adjacent to r, while all other edges of G are replaced

by two oppositely directed arcs. Furthermore, A′ contains one assignment arc (i, k) for

each potential assignment between a facility i ∈ F and a customer k ∈ Ci. Arc costs

c′u,v , ∀(u, v) ∈ A′, are defined as

c′u,v =

(

ce if e = (u, v) ∈ E

au,v otherwise.
(3)

Model dCut uses variables zi ∈ {0, 1}, ∀i ∈ F , indicating whether or not a facility

is opened, variables yk ∈ {0, 1}, ∀k ∈ C, denoting if a customer is supplied or not, and

variables xi,j ∈ {0, 1}, ∀(i, j) ∈ A′, specifying whether or not an arc is used.

(dCut) min
X

(u,v)∈A′

c′u,vxu,v +
X

i∈F

fizi +
X

k∈C

pk(1 − yk) (4)

s.t. xu,v + xv,u ≤ 1 ∀e = (u, v) ∈ E | u, v 6= r (5)

xi,k ≤ zi ∀i ∈ F, ∀k ∈ Ci (6)
X

i∈Fk

xi,k ≥ yk ∀k ∈ C (7)

X

k∈Ci

dkxi,k ≤ Dizi ∀i ∈ F (8)

X

(u,v)∈δ+(W)

xu,v ≥ zi ∀i ∈ F, ∀W (V | r ∈ W ∧ i /∈ W (9)

X

(u,v)∈δ+(W)

xu,v +
X

i∈Fk∩W

xi,k ≥ yk ∀k ∈ C, ∀W (V | r ∈ W (10)

xu,v ∈ {0, 1} ∀(u, v) ∈ A′ (11)

zi ∈ {0, 1} ∀i ∈ F (12)

yk ∈ {0, 1} ∀k ∈ C (13)

Due to using (V ′, A′), assignment costs are represented as arc costs in the ob-

jective function (4). Constraints (5) ensure that no more than one out of each

pair of oppositely directed arcs between two nodes is chosen, linking constraints (6)

guarantee that an assignment arc may only be used if the corresponding facility is

opened, while inequalities (7) ensure that a customer’s prize can only be earned

7

if it is assigned to a facility by an assignment arc. Constraints (8) are the capac-

ity constraints for each facility. In inequalities (9) and (10) which resemble the di-

rected connection inequalities for facilities and customers, respectively, we denote by

δ+(W) = {(u, v) ∈ A′ | u, v ∈ V ∧ u ∈ W ∧ v /∈ W} the set of arcs going out of node

set W , i.e. the cutset of W . Since customer nodes have only incoming arcs, we need

not consider other customer nodes than k for the directed connection constraints to

k ∈ C in (10). Note that the directed connection inequalities for customers (10) only

strengthen the LP relaxation of model dCut, but omitting them would also yield a

valid model for CConFL.

Since the number of connectivity constraints (9) and (10) is exponentially large, we

dynamically identify inequalities violated by a current solution to the LP relaxation

as cutting planes during runtime. Computing a cut of minimum capacity between two

nodes u and v is equivalent to determining a maximum flow between these nodes. Thus,

we use an implementation of the push-relabel method for the maximum flow problem

by Cherkassky and Goldberg [6] for identifying violated connectivity inequalities.

5 Branch-and-Cut-and-Price for CConFL

Model dBCP presented in this section considers whole profitable assignment patterns

between customers and facilities instead of taking into account each potential assign-

ment individually. We consider the set of all feasible and profitable assignment patterns

Ωi for facility i ∈ F and denote by Ω =
S

i∈F Ωi the total set of such assignment pat-

terns. By Ω(k) ⊆ Ω, k ∈ C, we denote the set of patterns connecting customer k.

Each pattern ω ∈ Ω assigns a set of customers C(ω) = {k ∈ C | ω ∈ Ω(k)} to a

dedicated facility F(ω) ∈ F , with F(ω) = i ∈ F ⇔ ω ∈ Ωi. Furthermore, let Ω

only contain valid and profitable patterns, i.e. C(ω) ⊆ CF(ω),
P

k∈C(ω) dk ≤ DF(ω),

and
P

k∈C(ω) pk − aF(ω),k > fF(ω), ∀ω ∈ Ω. As dCut, model dBCP uses variables

zi ∈ {0, 1}, ∀i ∈ F , indicating opened respectively closed facilities, and variables

yk ∈ {0, 1}, ∀k ∈ C, denoting if a customer is connected. Variables γω ∈ {0, 1},
∀ω ∈ Ω, denote whether a pattern is realized or not. Since these pattern variables

implicitly model assignments between facilities and customers, we need not further

consider corresponding assignment arcs of the graph and thus, variables xu,v ∈ {0, 1},

∀(u, v) ∈ A = {(u, v), (v, u) | (u, v) ∈ E ∧ u, v 6= r} ∪ {(r, v) | (r, v) ∈ E} indicate

whether an arc is used in the Steiner tree connecting open facilities and the root node.

(dBCP) min
X

(u,v)∈A

c′u,vxu,v +
X

i∈F

fizi +
X

k∈C

pk(1 − yk)+

+
X

ω∈Ω

X

k∈C(ω)

aF(ω),kγω (14)

s.t.
X

ω∈Ωi

γω ≤ zi ∀i ∈ F (15)

X

ω∈Ω(k)

γω ≥ yk ∀k ∈ C (16)

xu,v + xv,u ≤ 1 ∀(u, v) ∈ E | u, v 6= r (17)
X

(u,v)∈δ+(W)

xu,v ≥ zi ∀i ∈ F, ∀W (V | r ∈ W ∧ i /∈ W (18)

8

X

(u,v)∈δ+(W)

xu,v+

+
X

i∈Fk∩W

X

ω∈Ωi∩Ω(k)

γω ≥ yk ∀k ∈ C, ∀W (V | r ∈ W (19)

zi ∈ {0, 1} ∀i ∈ F (20)

yk ∈ {0, 1} ∀k ∈ C (21)

xu,v ∈ {0, 1} ∀(u, v) ∈ A (22)

γω ∈ {0, 1} ∀ω ∈ Ω (23)

Constraints (15) and (16) are the coupling constraints between assignment patterns

and facilities respectively customers. As for model dCut, constraints (17) ensure that no

more than one arc of each pair of oppositely directed arcs can be used, while constraints

(18) are the directed connection inequalities for facilities. Constraints (19) – which are

again only included to strengthen the LP relaxation of model dBCP – resemble the

directed connectivity inequalities for customers. They need to be partly expressed in

terms of pattern variables, since no variables explicitly modeling assignments between

facilities and customers are included in dBCP.

As for model dCut, connectivity cuts for facilities as well as for customers are added

as cutting planes to the model on demand only. Note that variables zi, ∀i ∈ F , as well

as yk, ∀k ∈ C, are declared as binary due to our branching strategy – see Section 5.1

– while defining them as continuous would also yield a valid model.

Since Ω contains exponentially many variables, we cannot solve dBCP directly by

branch-and-cut but additionally have to apply column generation. See e.g. [4,8] for

general introductions to column generation and branch-and-price. As usual in such

approaches we consider the reduced master problem (RMP) containing only a small

subset of variables Ω̃ (Ω where constraints (20)–(23) are replaced by their continuous

relaxations. After solving this RMP, we search for new pattern variables that price out

favorably in the pricing problem. If at least one such column is found, it is added to

RMP, which in turn is resolved. This process is repeated until no further columns can

be added.

Let µi ≤ 0, ∀i ∈ F , be the dual variables associated to constraints (15), πk ≥ 0,

∀k ∈ C, the dual variables associated to constraints (16), and λk,W ≥ 0, ∀k ∈ C, ∀W (
V | r ∈ W , the dual variables associated to the customers’ connection inequalities (19).

Let W (i, k) = {W ⊆ V | r, i ∈ W}, ∀i ∈ F, ∀k ∈ Ci, denote the set of all subsets of V

including the root node and at least one facility to which a customer k can be assigned.

When solving RMP, we obtain optimal dual variable values µ∗
i , π∗

k, and λ∗
k,W ,

defining reduced costs c̄ω for variables ω ∈ Ω \ Ω̃:

c̄ω =
X

k∈C(ω)

aF(ω),k − µF(ω) −
X

k∈C(ω)

πk −
X

k∈C(ω)

X

Q∈W (F(ω),k)

λk,Q (24)

= −µF(ω) −
X

k∈C(ω)

0

@πk − aF(ω),k +
X

Q∈W (F(ω),k)

λk,Q

1

A . (25)

9

The pricing problem is to find a pattern ω∗ ∈ Ω \ Ω̃ yielding minimum reduced

costs, i.e.

ω∗ = argmin
ω∈Ω\Ω̃

{c̄ω}.

In other words, we need to find a feasible assignment ω between some customers

C(ω) and a facility F(ω) yielding negative reduced costs c̄ω or prove that no such

assignment exists.

Thus, we need to solve a binary knapsack problem for each facility i ∈ F , with

one item for each customer k ∈ Ci assignable to i, demand dk, and profit πk − ai,k +
P

Q∈W (i,k) λk,Q, where we obviously need not consider items with negative or zero

profit. The total capacity of the knapsack is Di. If |µi| is smaller than the total profit

of the optimal solution to such a knapsack problem, the corresponding pattern variable

has negative reduced costs, in which case it is added to RMP.

5.1 Branching in Branch-and-Price

Branching on the exponentially large set of variables γω, ∀ω ∈ Ω, is not a viable option

since it would lead to strong asymmetries in the partitioning of the search space. Thus,

next to variables zi, ∀i ∈ F , variables xu,v, ∀(u, v) ∈ A, and variables yk, ∀k ∈ C, we

accomplish branching by decisions on assignments between facilities and customers.

Integrality on one such assignment between a facility i ∈ F and a customer k ∈ Ci

can be achieved by adding either branching constraint (26) or (27) to the model if
P

ω∈Ω̃(k)∩Ω̃i
γω is fractional.

X

ω∈Ω̃(k)∩Ω̃i

γω = 0 (26)

X

ω∈Ω̃(k)∩Ω̃i

γω = 1 (27)

For each included branching constraint, we need to consider its dual variable value

in the pricing problem when solving a knapsack problem with an item corresponding

to an assignment fixed due to an already included branching constraint. Adding such

additional terms in the pricing problem eventually modifies an item’s profit but does

not affect the structure of the pricing problem, i.e. the approach is robust.

Lemma 1 proves that any solution S′ to the LP relaxation of dBCP (denoted

by dBCPLP) for which – according to above mentioned branching rules – no further

branching can be accomplished represents a feasible solution to CConFL, i.e. eventually

existing pattern variables with fractional values can be replaced by pattern variables

with integral values while maintaining all assignments between facilities and customers.

Lemma 1 Consider a solution S′ to dBCPLP and an arbitrary facility i ∈ F . Let

Ω′ = {ω ∈ Ω̃i | γLP
ω 6= 0} denote the set of active patterns for i in S′, and C′ = {k ∈

C | ∃ω ∈ Ω′(k)} denote the set of customers assigned to i in S′. Furthermore, assume

that
P

ω∈Ω′(k) γω = 1, ∀k ∈ C′. Then ζ ∈ Ωi exists such that C′ = C(ζ).

Proof Let ζ ∈ Ωi denote the single variable replacing all variables ω ∈ Ω′, i.e. C(ζ) =

C′. Due to the implicit integrality of each assignment between i and a customer k ∈
C′ we only need to prove that ζ does not violate the capacity constraints. Due to

constraints (15) the following inequality holds:

10

Dζ =
X

k∈C′

dk =
X

ω∈Ω′

γLP
ω

X

k∈C(ω)

dk ≤
X

ω∈Ω′

γLP
ω Di = Di

X

ω∈Ω′

γLP
ω ≤ Di.

6 Polyhedral Comparison

In this section, we compare the polyhedra corresponding to the sets of feasible solutions

of the LP relaxations of dCut and dBCP as well as the two previously presented directed

multi-commodity flow based formulations dMCFf and dMCFc [25]. Models dMCFf and

dMCFc mainly differ by means of the target nodes of their correspondingly defined

flows, which are potential facility nodes for dMCFf and customer nodes for dMCFc.

In the following, we denote by PdMCFf
the polyhedron corresponding to the set of

feasible solutions to the LP relaxation of model dMCFf . Similarly, PdMCFc
denotes the

polyhedron induced by the LP relaxation of model dMCFc, PdCut the one of model

dCut, and PdBCP the one model dBCP. Furthermore, superscript LP denotes the

linear programming relaxation of a model, e.g. dMCFf
LP denotes the LP relaxation of

model dMCFf . By projx,y,z(P) we refer to the projection of a polyhedron P into the

space of x, y, z variables only. As a prerequisite, we are also reviewing the two MCF

formulations from [25] in this section.

Model dMCFf presented in [25] which is based on sending one unit of flow to

each potential facility location uses the directed extended graph (V ′, A′) as defined

in Section 4, the undirected edge set E′ = E ∪ {(i, k) | i ∈ F ∧ k ∈ Ci}, and the

corresponding undirected edge cost function

c′′e =

(

ce if e ∈ E

ai,k otherwise
∀e = (i, k) ∈ E′.

Ai = A′ \ {(j, k) ∈ A′ | j ∈ F ∧ k ∈ Cj}, ∀i ∈ F , is the set of arcs relevant for

connecting a facility i ∈ F to the root node r. In model dMCFf decision variables

xe ∈ {0, 1}, ∀e ∈ E′, indicating whether an edge is used in a solution (in which case

xe = 1) or not and variables yk ∈ {0, 1}, ∀k ∈ C, to specify whether a customer is

feasibly assigned to an opened facility (yk = 1) or not are used. Furthermore, to specify

whether an arc is used in the connection to a potential facility we use flow variables

si
u,v ∈ {0, 1}, ∀i ∈ F , ∀(u, v) ∈ Ai, and design variables zi ∈ {0, 1}, ∀i ∈ F , to indicate

if a potential facility is opened (zi = 1).

(dMCFf) min
X

e∈E′

c′′e xe +
X

i∈F

fizi +
X

k∈C

pk(1 − yk) (28)

s.t.
X

(u,v)∈Ai

si
u,v −

X

(v,u)∈Ai

si
v,u =

8

>

<

>

:

−zi if v = r

zi if v = i

0 otherwise

∀i ∈ F, ∀v ∈ V (29)

si
u,v + si

v,u ≤ xe ∀i ∈ F, ∀e = (u, v) ∈ E | u, v 6= r (30)

si
r,v ≤ xe ∀i ∈ F, ∀e = (r, v) ∈ E (31)

xe ≤ zi ∀e = (i, k) ∈ E′ | k ∈ C (32)

11

X

e=(i,k)∈E′\E

dkxe ≤ Dizi ∀i ∈ F (33)

X

e=(i,k)∈E′\E

xe ≥ yk ∀k ∈ C (34)

0 ≤ si
u,v ≤ 1 ∀i ∈ F, ∀(u, v) ∈ Ai (35)

0 ≤ zi ≤ 1 ∀i ∈ F (36)

xe ∈ {0, 1} ∀e ∈ E′ (37)

yk ∈ {0, 1} ∀k ∈ C (38)

Model dMCFc sends one unit of flow to each potential customer, but otherwise is

similar to model dMCFf . We define the set of relevant arcs for each customer k ∈ C as

Ak = A′ \ {(i, k′) ∈ A′ | k′ ∈ C ∧ k′ 6= k} and similar to dMCFf use decision variables

xe ∈ {0, 1}, ∀e ∈ E′, for indicating used edges, variables yk ∈ {0, 1}, ∀k ∈ C, to specify

supplied customers, variables zi ∈ {0, 1}, ∀i ∈ F , to indicate if a potential facility is

opened, and flow variables sk
u,v, ∀k ∈ C, ∀(u, v) ∈ Ak, to specify if an arc is used to

connect customer k.

(dMCFc) min
X

e∈E′

c′′exe +
X

i∈F

fizi +
X

k∈C

pk(1 − yk) (39)

s.t.
X

(u,v)∈Ak

sk
u,v −

X

(v,u)∈Ak

sk
v,u =

8

>

<

>

:

−yk if v = r

yk if v = k

0 otherwise

∀k ∈ C, ∀v ∈ E′ (40)

sk
u,v + sk

v,u ≤ xe ∀k ∈ C, ∀e = (u, v) ∈ E′ | u, v 6= r (41)

sk
r,v ≤ xe ∀k ∈ C, ∀e = (r, v) ∈ E (42)

xe ≤ zi ∀e = (i, k) ∈ E′ | k ∈ C (43)
X

e=(i,k)∈E′\E

dkxe ≤ Dizi ∀i ∈ F (44)

0 ≤ sk
u,v ≤ 1 ∀k ∈ C, ∀(u, v) ∈ Ak (45)

0 ≤ zi ≤ 1 ∀i ∈ F (46)

xe ∈ {0, 1} ∀e ∈ E′ (47)

yk ∈ {0, 1} ∀k ∈ C (48)

Lemma 2 dCut dominates dMCFf , i.e. projx,y,z(PdCut) ⊆ projx,y,z(PdMCFf
).

Proof dMCFf differs from dCut by modeling connections to facilities by multi-

commodity flow constraints instead of directed connection inequalities (9), whereas

dCut additionally contains directed connection inequalities for customers (10). The

max-flow min-cut theorem [10] implies that for an arbitrary facility i ∈ F with
P

(u,v)∈δ+(W) xLP
u,v ≥ zLP

i , ∀W (V | r ∈ W ∧ i /∈ W , a feasible flow of value zLP
i

from the root node to i exists; compare [29]. Thus, when projecting solutions into the

domain of x, y, and z variables only, any solution to dCutLP is also valid for dMCFf
LP.

Lemma 3 dCut dominates dMCFc, i.e. projx,y,z(PdCut) ⊆ projx,y,z(PdMCFc
).

12

Proof dMCFc differs from dCut by modeling connections to customers by multi-

commodity flow constraints instead of directed connection inequalities (10) whereas

dCut additionally contains directed connection inequalities for facilities. Thus, as for

Lemma 2 the max-flow min-cut argument also holds for the flow to customers.

Theorem 1 dCut strictly dominates dMCFf and dMCFc, i.e. projx,y,z(PdCut) (
projx,y,z(PdMCFf

) and projx,y,z(PdCut) (projx,y,z(PdMCFc
).

Proof Since none of the multi-commodity flow formulations dominates the

other [25], i.e. projx,y,z(PdMCFc
) * projx,y,z(PdMCFf

) and projx,y,z(PdMCFf
) *

projx,y,z(PdMCFc
), Theorem 1 follows from Lemmas 2 and 3.

Theorem 2 dBCP strictly dominates dCut, i.e. projx,y,z(PdBCP) (
projx,y,z(PdCut).

arc (u, v) with LP value xu,v = 1

arc (u, v) with LP value xu,v = 0.75z1 = 1
y1 = 0.75

y2 = 0.75

root node r

facility node 1 with D1 = 3, f1 = 1.1

customer node k, with dk = 2, pk = 1, ∀k ∈ {1, 2}

Fig. 4 Feasible LP solution of dCut which is infeasible for dBCP.

Proof Consider a fractional solution S′ according to the example given in Figure 4

assuming zero costs for all included arcs. As can be easily seen S′ is valid for dCutLP.

For describing S′ in the space of dBCP, each assignment pattern ω can only contain

one of the customers. However, since those patterns do not pay off – i.e. the collected

profit is smaller than the facilities’ opening costs f1 – ω /∈ Ω and thus S′ /∈ dBCPLP.

Now, we consider a solution Sbcp ∈ dBCPLP and denote by γbcp
ω , ∀ω ∈ Ω, xbcp

u,v ,

∀(u, v) ∈ A, zbcp
i , ∀i ∈ F , and ybcp

k
, ∀k ∈ C, the values of all variables of Sbcp. Using

equations (49)–(52) we transform these values to the space of dCut, where superscript

cut denotes a value with respect to dCutLP and Scut the corresponding solution to

dCutLP.

zcut
i = zbcp

i ∀i ∈ F (49)

ycut
k = ybcp

k
∀k ∈ C (50)

xcut
u,v = xbcp

u,v ∀(u, v) ∈ A (51)

xcut
i,k =

X

ω∈Ωi∩Ω(k)

γbcp
ω ∀i ∈ F, ∀k ∈ Ci (52)

To show that Scut ∈ dCutLP and thus dBCPLP ⊆ dCutLP we consider each set of

constraints from dCut in turn. Scut obviously does not violate constraints (5), since

(17) identically models them in dBCP. Validity of constraints (6) follows from above

mentioned transformation rules and constraints (15):

13

xcut
i,k =

X

ω∈Ωi∩Ω(k)

γbcp
ω ≤

X

ω∈Ωi

γbcp
ω ≤ zbcp

i = zcut
i .

Using our transformation rules and constraints (16) the following inequality ensures

that Scut does not violate constraints (7):

ycut
k = ybcp

k
≤

X

ω∈Ω(k)

γbcp
ω =

X

i∈Fk

X

ω∈Ωi∩Ω(k)

γbcp
ω =

X

i∈Fk

xcut
i,k .

Using constraints (15) and the fact that the total demand of a single pattern ω ∈ Ωi

does not exceed the maximum assignable demand Di of its facility i ∈ F , the validity

of the capacity constraints (8) is ensured as follows:

X

k∈Ci

dkxcut
i,k =

X

k∈Ci

dk

X

ω∈Ωi∩Ω(k)

γbcp
ω =

X

ω∈Ωi

γbcp
ω

X

k∈C(ω)

dk ≤

≤
X

ω∈Ωi

γbcp
ω Di ≤ Diz

bcp
i = Diz

cut
i .

Since directed connection cuts for facilities are identically included in both for-

mulations and the validity of customer connection cuts (10) immediately follows by

substituting
P

ω∈Ωi∩Ω(k) γω by xi,k in the customer connection cuts (19) of dBCP,

we conclude that Scut ∈ dCutLP.

7 Test Instances and Environment

For ConFL, Ljubić [26] combined benchmark instances for the STP with instances for

uncapacitated facility location. Similarly, we created instances for CConFL in [24]1 by

combining STP instances from the OR-library2 with instances for the SSCFLP created

with the instance generator of Kratica et al. [20]3.

The node with index one in the STP instance is selected as root node, while |F |
other nodes are randomly chosen as potential facility locations. Customers with as-

sociated demands, assignment costs as well the maximum assignable demands and

opening costs for each facility are given by the SSCFLP instance. Next, we need to

choose reasonable customer prizes, high enough to ensure that some customers will

be supplied while avoiding to create relatively easy instances by setting these values

too high. For each customer k ∈ C, we randomly choose its prize pk ∈ N0 from the

interval
ˆ

a(k), amax(k) + f
˜

, where a(k) =

P

i∈Fk
ai,k

|Fk|
denotes the average assignment

costs of customer k, amax(k) = maxi∈Fk
{ai,k} the maximum assignment costs of cus-

tomer k, and f =
P

i∈F fi

|F |
the average facility opening costs. This ensures that each

customer may be assigned to the majority of potential facilities in a profitable way. In

particular it turned out that no customers or facilities are completely removed from an

instance during preprocessing. Finally, degree-one and degree-two filtering [5] is applied

1 available at http://www.ads.tuwien.ac.at/people/mleitner/cconfl/instances.tar.gz
2 http://people.brunel.ac.uk/˜mastjjb/jeb/orlib/steininfo.html
3 http://alas.matf.bg.ac.yu/˜kratica/instances/splp gen w32.zip

14

to remove some Steiner nodes and edges. A more detailed description of the individual

characteristics of all resulting instances is given in Tables 1 and 2.

We performed all computational experiments on a single core of an Intel Core 2

Quad with 2.83GHz and 8GB RAM. IBM CPLEX 12.1 [16] has been used for di-

rectly solving dMCFf , dMCFf , and dCut as well as their LP relaxations dMCFc
LP,

dMCFf
LP, and dCutLP. SCIP 1.2.0 [1,36] with IBM CPLEX 12.1 [16] as embedded

LP solver has been used for solving dBCP and its LP relaxation dBCPLP.

We used the single threaded variant of CPLEX to allow for a fair comparison. A

CPU-time limit of 7200 seconds has been applied in all experiments.

8 Computational Results

In the following the obtained computational results are summarized. First, results on

the exact models dCut, and dBCP are given and compared to dMCFf which has shown

to outperform dMCFc in our previous work [25]. After evaluating their LP relaxation

values and corresponding runtimes, we further analyze obtained bounds and optimality

gaps after 7200 CPU-seconds. Finally, the most promising model is compared to the

Lagrangian relaxation / very large scale neighborhood search hybrid from [25], denoted

here by LDV.

When solving dCut and dBCP, we separate directed connection cuts for customers

only if no further violated connection cuts for facilities can be found. For dBCP, we

initially set Ω̃ = ∅ and accomplish branching by considering variables zi, ∀i ∈ F , xu,v,

∀(u, v) ∈ A, and yk, ∀k ∈ C, in this order before considering assignments between

facilities and customers. For each set of variables, branching is performed on a most

fractional variable; ties are broken at random. We did not implement problem specific

primal heuristics to speed-up the solution of our models, but simply trust on the

built-in heuristics of CPLEX and SCIP, respectively. We use the Combo algorithm4 of

Martello et al. [30] for solving the binary knapsack problems occurring in the pricing

subproblems of dBCP.

Computational results for the LP relaxations of dMCFf , dCut, and dBCP are

summarized in Table 1 for instances with |F | = |C| and in Table 2 for instances with

|F | 6= |C|. These tables also detail the used test instances. For each considered instance,

its number of potential facility locations |F |, its number of customers |C|, as well as its

number of nodes |V | and edges |E| are given. All further tables will refer to an instance

by its number only, which is given in the first column of Tables 1 and 2, respectively.

We conclude that in addition to their theoretical advantages and thus better LP

relaxation values, the necessary CPU times to solve the linear relaxations of dCut

and dBCP are significantly smaller for all tested instances than for dMCFf . Moreover,

dBCPLP can be solved much faster than dCutLP for almost all instances.

Results on best obtained lower and upper bounds as well as corresponding gaps and

needed CPU times for dMCFf , dCut, and dBCP are presented in Table 3 for instances

with |F | = |C| and in Table 4 for instances with |F | 6= |C|. Since dMCFf could not

solve any instance to proven optimality, we do not report its runtime which is equal to

the time limit of 7200 seconds in each run. All lower and upper bounds are rounded to

the first decimal place.

4 http://www.diku.dk/˜pisinger/codes.html

15

Table 1 Comparison of LP relaxation values and corresponding CPU-times in seconds for
dMCFf , dCut, and dBCP (time limit 7200s) on instances with |F | = |C|. Best values are
marked bold.

Instance LP value CPU time [s]
Nr Name |F | |C| |V | |E| dMCFf

LP dCutLP dBCPLP dMCFf
LP dCutLP dBCPLP

1 c10-mo75 75 75 408 908 2878.7 2912.5 2914.8 94 7 5

2 c10-mq75 75 75 405 905 7095.2 7116.2 7119.9 116 5 3

3 c10-ms75 75 75 407 907 9506.3 9533.8 9536.7 194 11 3

4 c15-mo75 75 75 500 2500 2747.5 2766.8 2767.9 877 94 26

5 c15-mq75 75 75 500 2500 7466.5 7489.0 7493.3 1567 30 12

6 c15-ms75 75 75 500 2500 9354.6 9368.5 9371.0 2040 16 5

7 d10-mo75 75 75 771 1770 2772.6 2800.5 2802.8 484 19 11

8 d10-mq75 75 75 775 1774 7295.0 7328.2 7332.7 167 16 4

9 d10-ms75 75 75 781 1780 10069.3 10112.7 10115.1 1103 31 9

10 d15-mo75 75 75 1000 5000 2641.8 2662.0 2664.1 2402 61 21

11 d15-mq75 75 75 1000 5000 - 7395.5 7401.7 7200 90 27

12 d15-ms75 75 75 1000 5000 - 9256.0 9258.4 7200 136 31

13 c10-mo100 100 100 406 906 3330.9 3363.0 3365.3 217 22 15

14 c10-mq100 100 100 406 906 9352.6 9397.7 9403.5 367 17 8

15 c10-ms100 100 100 416 916 11740.1 11781.9 11788.7 166 10 8

16 c15-mo100 100 100 500 2500 3422.6 3449.7 3454.3 2809 37 15

17 c15-mq100 100 100 500 2500 9120.5 9141.2 9149.0 4008 23 8

18 c15-ms100 100 100 500 2500 11277.0 11301.3 11306.1 5204 46 13

19 d10-mo100 100 100 788 1787 3376.7 3411.3 3414.9 435 26 13

20 d10-mq100 100 100 778 1777 9179.2 9216.7 9223.8 581 28 13

21 d10-ms100 100 100 783 1782 11049.0 11093.1 11096.8 603 49 17

22 d15-mo100 100 100 1000 5000 - 3330.7 3335.0 7200 80 29

23 d15-mq100 100 100 1000 5000 - 9183.3 9192.4 7200 104 34

24 d15-ms100 100 100 1000 5000 - 11358.2 11362.1 7200 102 19

25 c10-mo200 200 200 433 933 7116.2 7180.3 7184.8 353 47 50
26 c10-mq200 200 200 428 928 19270.3 19326.2 19332.2 579 38 47
27 c10-ms200 200 200 431 931 25190.6 25254.2 25257.1 1040 178 71

28 c15-mo200 200 200 500 2500 - 7169.8 7173.4 7200 137 59

29 c15-mq200 200 200 500 2500 - 19220.9 19227.9 7200 149 61

30 c15-ms200 200 200 500 2500 - 24717.7 24720.2 7200 238 60

31 d10-mo200 200 200 816 1815 7194.1 7249.0 7251.6 3273 127 94

32 d10-mq200 200 200 814 1813 18789.0 18866.7 18872.6 3791 229 131

33 d10-ms200 200 200 806 1805 24509.6 24567.1 24571.2 6624 192 70

34 d15-mo200 200 200 1000 5000 - 7201.6 7206.4 7200 795 231

35 d15-mq200 200 200 1000 5000 - 19528.9 19536.4 7200 469 240

36 d15-ms200 200 200 1000 5000 - 24085.2 24088.5 7200 429 124

We conclude that the lower bounds obtained by dCut and dBCP are better than

those of dMCFf for all test instances. With respect to primal solution quality, we

observe that dCut only found the trivial upper bound given by connecting none of the

customers in 18 and dBCP in two out of 60 test instances. In these instances the upper

bounds due to dMCFf , which failed to find any primal solution for four instances and

additionally found the trivial solution only for another eight instances, are eventually

better than or equal to those of dCut and dBCP, respectively. For all other instances,

the upper bounds and resulting optimality gaps of dCut and dBCP are better than

those of dMCFf . Thus, both dCut and dBCP significantly outperform dMCFf .

Model dBCP solved 44 out of 60 test instances to proven optimality, while dCut

could only solve 14 instances. For the remaining instances, the resulting optimality

gap of dBCP exceeded 0.01% for only three instances. Thus we conclude that, next to

16

Table 2 Comparison of LP relaxation values and corresponding CPU-times in seconds for
dMCFf , dCut, and dBCP (time limit 7200s) on instances with |F | 6= |C|. Best values are
marked bold.

Instance LP value CPU time [s]
Nr Name |F | |C| |V | |E| dMCFf

LP dCutLP dBCPLP dMCFf
LP dCutLP dBCPLP

37 c10-mo 75 200 404 904 8153.5 8206.0 8209.6 713 72 39

38 c10-mp 75 200 403 903 14917.4 14969.5 14972.1 228 10 17
39 c10-mq 75 200 403 903 20717.2 20786.4 20789.4 328 16 22
40 c15-mo 75 200 500 2500 - 7971.9 7975.6 7200 42 25

41 c15-mp 75 200 500 2500 14493.1 14526.4 14529.2 5533 45 30

42 c15-mq 75 200 500 2500 21570.7 21611.9 21615.1 3574 40 33

43 d10-mo 75 200 775 1775 8228.0 8293.9 8296.9 2166 55 49

44 d10-mp 75 200 775 1774 14836.9 14909.7 14911.2 2265 45 40

45 d10-mq 75 200 774 1773 20834.2 20893.6 20896.3 1001 31 27

46 d15-mo 75 200 1000 5000 - 8179.8 8184.1 7200 221 93

47 d15-mp 75 200 1000 5000 - 14771.5 14775.3 7200 134 54

48 d15-mq 75 200 1000 5000 - 21459.0 21461.7 7200 189 66

49 c10-mo 200 75 435 935 2957.0 2981.7 2984.5 6229 285 111

50 c10-mp 200 75 428 928 5444.6 5480.4 5483.7 3439 78 28

51 c10-mq 200 75 430 930 8093.5 8124.2 8129.2 1930 37 10

52 c15-mo 200 75 500 2500 - 2962.3 2965.8 7200 67 26

53 c15-mp 200 75 500 2500 - 5171.1 5174.8 7200 243 37

54 c15-mq 200 75 500 2500 - 7683.2 7689.8 7200 62 11

55 d10-mo 200 75 811 1810 - 3069.6 3073.0 7200 421 276

56 d10-mp 200 75 809 1808 5377.7 5407.7 5410.5 5608 39 16

57 d10-mq 200 75 820 1819 7698.7 7735.8 7740.0 3620 166 49

58 d15-mo 200 75 1000 5000 - 2978.9 2982.6 7200 727 384

59 d15-mp 200 75 1000 5000 - 5415.1 5419.7 7200 748 383

60 d15-mq 200 75 1000 5000 - 7590.8 7594.3 7200 187 27

its theoretical strength and tight lower bounds, dBCP allows for deriving high quality

primal solutions relatively easily and significantly outperforms all other considered

models. Furthermore, one can observe that the instances with |F | = 200 and |C| = 50

– i.e. instances 49–60 – seem to be particularly hard. While dBCP is able to provide

reasonable results on most of them, dMCFf and dCut often fail to compute meaningful

primal solutions already for those instances where the underlying STP instance is

relatively small. Finally, we need to mention that due to numerical issues (differences

between the used solvers) the obtained optimal solution values of dCut and dBCP

slightly differ for three instances in the last shown digit (instances 30, 42, and 43).

Furthermore, solving dBCP for instance 58 has been interrupted since the memory

limit was reached.

In the following, the performance of dBCP and LDV – the Lagrangian relaxation

/ very large scale neighborhood search hybrid from [25] – which showed to outperform

the other Lagrangian methods will be compared. Relative upper bounds and runtimes

of dBCP and LDV are given in Tables 5 and 6, respectively. Here, instances are grouped

by the size of the underlying SSCFLP instance in Table 5 and by the size of the original

STP instance in Table 6.

Since dBCP successfully solved the majority of instances to proven optimality it

dominates LDV with respect to obtained upper bounds. Thus, the gaps due to LDV

are usually larger than those of dBCP, but exceeded 4.4% only for three instances with

|F | = 200 and |C| = 75, which seem to be particularly hard and are smaller than or

equal to 2% for 70% of all tested instances. When the instances get larger, dBCP often

17

Table 3 Comparison of solution values and corresponding CPU-times in seconds for dMCFf ,
dCut, and dBCP (time limit 7200s) on instances with |F | = |C|. Best values are marked bold.

lower bound upper bound gap in % CPU time [s]
Nr dMCFf dCut dBCP dMCFf dCut dBCP dMCFf dCut dBCP dCut dBCP
1 2880.1 2915.8 2919.6 2944.2 2923.7 2919.6 2.227 0.268 0.000 7200 501

2 7105.2 7126.0 7128.8 7171.3 7129.3 7128.9 0.930 0.047 0.002 7200 7200
3 9509.5 9536.9 9536.9 9578.1 9536.9 9536.9 0.721 0.000 0.000 35 5

4 2748.7 2767.7 2771.2 2833.3 2788.6 2771.2 3.076 0.755 0.000 7200 1035

5 7469.7 7493.8 7495.9 7966.2 7497.8 7495.9 6.646 0.053 0.000 7200 195

6 9357.7 9373.1 9373.1 10918.9 9373.1 9373.1 16.684 0.000 0.000 1627 38

7 2776.3 2804.9 2807.0 2842.2 2815.6 2807.0 2.374 0.382 0.000 7200 107

8 7299.7 7334.0 7338.9 7373.0 7351.6 7338.9 1.004 0.239 0.000 7200 243

9 10073.9 10115.0 10118.0 10233.6 10144.7 10118.0 1.585 0.293 0.000 7200 277

10 2645.0 2664.4 2666.1 3397.2 8496.0 2666.2 28.439 218.868 0.002 7200 7200
11 7380.2 7401.7 7401.7 8528.6 7401.7 7401.7 15.561 0.000 0.000 164 310
12 9237.4 9258.6 9259.0 11007.6 9355.5 9259.0 19.164 1.048 0.000 7200 284

13 3333.0 3364.9 3367.0 3380.0 3371.6 3367.0 1.409 0.199 0.000 7200 135

14 9359.0 9405.0 9404.9 9473.7 9405.0 9405.0 1.226 0.000 0.002 3829 7200
15 11746.0 11789.3 11789.3 11855.1 11789.3 11789.3 0.929 0.000 0.000 383 13

16 3426.5 3453.9 3455.3 3933.8 3467.8 3455.3 14.803 0.403 0.000 7200 98

17 9125.1 9149.3 9149.2 9739.6 9149.4 9149.4 6.735 0.000 0.002 940 7200
18 11281.4 11307.3 11308.5 12722.2 11308.8 11308.5 12.771 0.013 0.000 7200 243

19 3380.7 3415.5 3417.3 3483.2 3418.3 3417.3 3.031 0.083 0.000 7200 250

20 9185.4 9225.0 9226.2 9258.9 9226.4 9226.2 0.800 0.015 0.000 7200 119

21 11055.0 11098.1 11098.1 11197.6 11098.1 11098.1 1.290 0.000 0.000 533 34

22 3314.0 3333.6 3336.0 3862.1 3338.6 3336.2 16.537 0.149 0.004 7200 7200
23 - 9191.8 9194.4 23780.0 23780.0 9194.4 - 158.708 0.000 7200 889

24 11332.4 11362.1 11363.9 12715.9 11391.5 11363.9 12.208 0.259 0.000 7200 414

25 7123.0 7184.7 7185.2 7329.4 7208.3 7185.2 2.898 0.328 0.000 7200 66

26 19279.8 19332.4 19335.1 19539.8 19340.7 19335.1 1.349 0.043 0.000 7200 854

27 25197.3 25256.6 25258.9 25327.2 77024.0 25258.9 0.516 204.966 0.000 7200 647

28 7139.0 7173.4 7174.3 8383.9 7196.4 7174.3 17.437 0.321 0.000 7200 1880

29 19191.4 19227.6 19229.4 21455.8 56699.0 19229.4 11.799 194.884 0.000 7200 378

30 24683.6 24720.7 24721.1 26764.0 24721.0 24721.1 8.428 0.001 0.000 7200 563

31 7197.4 7251.5 7252.6 8021.9 7263.5 7252.6 11.455 0.165 0.000 7200 941

32 18796.9 18870.8 18875.5 21247.5 18916.3 18875.5 13.037 0.241 0.000 7200 4515

33 24517.3 24571.6 24571.6 27880.1 24571.6 24571.6 13.716 0.000 0.000 6209 141

34 - 7206.0 7207.2 - 23975.0 7207.2 - 232.710 0.000 7200 5606

35 - 19535.2 19537.5 - 19544.5 19537.7 - 0.048 0.001 7200 7200
36 - 24088.3 24090.7 73434.0 73434.0 24090.7 - 204.853 0.000 7200 3742

needed longer than LDV and completely failed to compute meaningful solutions for

two out of 60 instances.

Thus, while dBCP has the potential to compute superior solutions, LDV can be

regarded as the more stable and – if the instances get more difficult – also faster

approach. Overall, dBCP can be recommended for small to medium sized instances

when enough runtime is allowed, while LDV should be used to approximately solve even

larger instances or when keeping the runtime small is more important than reducing

the optimality gap by a few percent.

9 Conclusions and Outlook

In this article, we considered a generalized variant of the rooted connected facility

location problem with capacity constraints and customer prizes where only the most

profitable client subset shall be supplied.

Two new mixed integer programming models for solving CConFL to proven opti-

mality have been presented. The first model involves an exponential number of so-called

18

Table 4 Comparison of solution values and corresponding CPU-times in seconds for dMCFf ,
dCut, and dBCP (time limit 7200s) on instances with |F | 6= |C|. Best values are marked bold.

lower bound upper bound gap in % CPU time [s]
Nr dMCFf dCut dBCP dMCFf dCut dBCP dMCFf dCut dBCP dCut dBCP
37 8158.2 8209.2 8212.0 9181.3 8286.8 8212.2 12.541 0.945 0.002 7200 7200
38 14924.5 14973.3 14973.3 15056.9 14973.3 14973.3 0.887 0.000 0.000 1624 96

39 20725.5 20791.3 20791.4 20915.4 20791.4 20791.4 0.916 0.000 0.000 4017 277

40 7948.0 7975.7 7976.4 9634.2 7989.4 7976.8 21.215 0.173 0.005 7200 7200
41 14497.5 14529.1 14529.8 15722.6 14557.0 14530.1 8.450 0.192 0.002 7200 7200
42 21576.2 21615.3 21615.4 22973.5 21615.3 21615.4 6.476 0.000 0.000 1536 42

43 8234.7 8297.4 8297.5 8511.6 8297.4 8297.5 3.362 0.000 0.000 1375 1238

44 14842.5 14911.1 14912.6 15075.2 38988.0 14912.6 1.568 161.470 0.000 7200 324

45 20839.4 20896.9 20896.9 21044.1 20896.9 20896.9 0.982 0.000 0.000 1811 82

46 - 8183.5 8185.2 20610.0 20610.0 8185.2 - 151.847 0.000 7200 2838

47 14731.9 14774.9 14776.2 15760.3 41720.0 14776.4 6.981 182.371 0.001 7200 7200
48 - 21461.4 21462.1 57923.0 57923.0 21462.3 - 169.894 0.001 7200 7200
49 2957.0 2982.6 2989.7 7209.0 7163.0 3016.6 143.794 140.156 0.898 7200 7200
50 5448.9 5482.5 5486.9 5517.8 13672.0 5486.9 1.265 149.376 0.000 7200 320

51 8098.0 8130.1 8130.1 8203.5 8130.1 8130.1 1.304 0.000 0.000 520 35

52 2948.5 2965.1 2969.6 7189.0 3047.3 2969.6 143.817 2.773 0.000 7200 1453

53 5150.7 5174.2 5179.2 12693.0 12693.0 5179.4 146.433 145.311 0.005 7200 7200
54 7667.3 7690.1 7693.2 10212.3 7719.7 7693.2 33.193 0.386 0.000 7200 443

55 3040.5 3070.5 3076.5 7500.0 7405.0 7405.0 146.667 141.168 140.699 7200 7200
56 5381.4 5409.9 5414.6 5598.2 5497.5 5414.6 4.029 1.620 0.000 7200 874

57 7702.2 7738.8 7743.7 10753.2 21242.0 7743.9 39.612 174.489 0.003 7200 7200
58 - 2980.7 2983.5 - 7226.0 7185.6 - 142.423 140.844 7200 6446

59 - 5418.6 5423.0 13849.0 13849.0 5423.0 - 155.583 0.000 7200 4603

60 - 7593.9 7598.9 - 18640.0 7598.9 - 145.461 0.000 7200 3795

Table 5 Relative solution values and corresponding CPU-times for dBCP and LDV grouped
by SSCFLP instance size (12 instances per set).

relative upper bound relative CPU-time

Instance Set LDV−dBCP
dBCP

in % LDV
dBCP

Nr. |F | |C| minimum median maximum minimum median maximum
1–12 75 75 0.12 0.53 1.25 0.01 0.65 35.65

13–24 100 100 0.38 0.65 1.28 0.02 1.30 19.29
25–36 200 200 0.19 0.52 1.69 0.69 6.77 33.32
37–48 75 200 0.22 0.54 1.57 0.14 0.97 52.12
49–60 200 75 -54.96 1.21 6.31 0.05 0.13 13.09

Table 6 Relative solution values and corresponding CPU-times for dBCP and LDV grouped
by STP instance size (15 instances per set).

relative upper bound relative CPU-time

Instance Set LDV−dBCP
dBCP

in % LDV
dBCP

Name |V o| |Eo| minimum median maximum minimum median maximum
c10-* 500 1000 0.18 0.58 1.97 0.01 5.31 35.65
c15-* 500 2500 0.12 0.62 6.31 0.02 0.9 52.12
d10-* 1000 2000 -48.34 0.54 3.32 0.05 1.15 33.32
d15-* 1000 5000 -54.96 0.59 1.69 0.04 0.47 1.62

19

connectivity constraints and can efficiently be solved by branch-and-cut. Furthermore,

an alternative model incorporating an exponential number of constraints and variables

has been proposed and its solution by branch-and-cut-and-price has been discussed in

detail. A polyhedral comparison showed that this model dominates the former, while

both new models are theoretically stronger than so far existing ones.

Computational results show that the branch-and-cut-and-price approach based on

the theoretically strongest exact model significantly outperforms all other existing in-

teger programming approaches. It could solve the majority of test instances to proven

optimality relatively fast, and the resulting optimality gaps are usually extremely small

in case the computation is aborted due to the given time limit. The branch-and-cut-and-

price approach has further been compared to a previously proposed hybrid Lagrangian

decomposition approach involving VLSN search. Here, the obtained computational re-

sults indicate clear advantages for the branch-and-cut-and-price approach for small and

medium sized instances.

Interesting areas for further research include the development of pure (meta-)

heuristic methods for CConFL. Such metaheuristics can be used to better tackle very

large scale instances and might include the methods presented in this article for solv-

ing smaller subproblems. It might also be possible to further strengthen the proposed

exact models by considering additional cutting planes, e.g. from the multiple knapsack

polytope [11,12].

References

1. Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, Technische Universität
Berlin (2007)

2. Ahuja, R.K., Orlin, J.B., Pallottino, S., Scaparra, M.P., Scutella, M.G.: A multi-exchange
heuristic for the single-source capacitated facility location problem. Management Science
50(6), 749–760 (2004)

3. Bardossy, M.G., Raghavan, S.: Dual-based local search for the connected facility location
and related problems. Tech. rep., Smith School of Business and Institute for Systems
Research, University of Maryland (2009)

4. Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.: Branch-
and-price: Column generation for solving huge integer programs. Operations Research
46(3), 316–329 (1998). DOI http://dx.doi.org/10.1287/opre.46.3.316

5. Beasley, J.E.: An algorithm for the Steiner problem in graphs. Networks 14(1), 147–159
(1984)

6. Cherkassky, B.V., Goldberg, A.V.: On implementing the push-relabel method for the max-
imum flow problem. Algorithmica 19(4), 290–410 (1997)

7. Cornuejols, G., Nemhauser, G.L., Wolsey, L.A.: The uncapacitated facility location prob-
lem. In: P.B. Mirchandani, R.L. Francis (eds.) Discrete Location Theory, pp. 119–171.
Wiley (1990)

8. Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.): Column Generation. Springer (2005)
9. Eisenbrand, F., Grandoni, F., Rothvoß, T., Schäfer, G.: Approximating connected facil-

ity location problems via random facility sampling and core detouring. In: ACM-SIAM
Symposium on Discrete Algorithms, pp. 1174–1183 (2008)

10. Elias, P., Feinstein, A., Shannon, C.: A note on the maximum flow through a network.
IRE Transactions on Information Theory 2(4), 117–119 (1956)

11. Ferreira, C.E., Martin, A., Weismantel, R.: Facets for the multiple knapsack polytope.
Tech. Rep. SC 93-04, Konrad-Zuse Zentrum für Informationstechnik (1993)

12. Ferreira, C.E., Martin, A., Weismantel, R.: Solving multiple knapsack problems by cutting
planes. SIAM Journal on Optimization 6, 858–877 (1996)

13. Gollowitzer, S., Ljubić, I.: MIP models for connected facility location: A theoretical and
computational study. Tech. Rep. 2009–07, University of Vienna (2009)

20

14. Gupta, A., Kleinberg, J., Kumar, A., Rastogi, R., Yener, B.: Provisioning a virtual private
network: a network design problem for multicommodity flow. In: Proceedings of the 33rd
annual ACM symposium on theory of computing, pp. 389–398 (2001)

15. Hasan, M.K., Jung, H., Chwa, K.: Approximation algorithms for connected facility location
problems. Journal of Combinatorial Optimization 16(2), 155–172 (2008)

16. IBM: CPLEX 12.1. http://www-01.ibm.com/software/integration/optimization/cplex-
optimizer

17. Karger, D.R., Minkoff, M.: Building Steiner trees with incomplete global knowledge. In:
Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp.
613–623. IEEE Computer Society (2000)

18. Karp, R.M.: Reducibility among combinatorial problems. In: E. Miller, J.W. Thatcher
(eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)

19. Khuller, S., Zhu, A.: The general Steiner tree-star problem. Information Processing Letters
84(4), 215–220 (2002)

20. Kratica, J., Tosic, D., Filipovic, V., Ljubić, I.: Solving the simple plant location problem
by genetic algorithm. RAIRO Operations Research 35, 127–142 (2001)

21. Lee, Y., Chiu, S.Y., Ryan, J.: A branch and cut algorithm for a Steiner tree-star problem.
INFORMS Journal on Computing 8(3), 194–201 (1996)

22. Lee, Y., Lu, L., Qiu, Y., Glover, F.: Strong formulations and cutting planes for designing
digital data service networks. Telecommunication Systems 2(1), 261–274 (1993)

23. Leitner, M., Raidl, G.R.: Variable neighborhood search for a prize collecting capacity
constrained connected facility location problem. In: Proceedings of the 2008 International
Symposium on Applications and the Internet, pp. 233–236. IEEE Computer Society (2008)

24. Leitner, M., Raidl, G.R.: A Lagrangian decomposition based heuristic for capacitated con-
nected facility location. In: S. Voß, M. Caserta (eds.) Proceedings of the 8th Metaheuristic
International Conference (MIC 2009). Hamburg, Germany (2009)

25. Leitner, M., Raidl, G.R.: Combining Lagrangian decomposition with very large scale neigh-
borhoood search for capacitated connected facility location. In: Post-Conference Book of
the Eight Metaheuristics International Conference – MIC 2009 (accepted 2010)

26. Ljubić, I.: A hybrid VNS for connected facility location. In: T. Bartz-Beielstein, et al.
(eds.) Hybrid Metaheuristics, 4th International Workshop, HM 2007, LNCS, vol. 4771,
pp. 157–169. Springer (2007)

27. Ljubić, I., Gollowitzer, S.: Hop constrained connected facility location. Tech. Rep. 2009–09,
University of Vienna (2009)

28. Ljubić, I., Gollowitzer, S.: Modelling the hop constrained connected facility location prob-
lem on layered graphs. In: International Symposium on Combinatorial Optimization (ISCO
2010). Hammamet, Tunisia (2010). To appear

29. Magnanti, T.L., Wolsey, L.A.: Optimal trees. In: M.O. Ball, T.L. Magnanti, C.L. Monma,
G.L. Nemhauser (eds.) Handbooks in Operations Research and Management Science,
vol. 7, pp. 503–615. Elsevier (1995)

30. Martello, S., Pisinger, D., Toth, P.: Dynamic programming and strong bounds for the 0-1
knapsack problem. Management Science 45(3), 414–424 (1999)

31. Raghavan, S., Bardossy, M.G.: Dual based heuristics for the connected facility location
problem. In: M.G. Scutellà, et al. (eds.) Proceedings of the International Network Opti-
mization Conference 2009 (2009)

32. Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location problems.
Algorithmica 40(4), 245–269 (2004)

33. Tomazic, A., Ljubić, I.: A GRASP algorithm for the connected facility location problem.
In: Proceedings of the 2008 International Symposium on Applications and the Internet,
pp. 257–260. IEEE Computer Society (2008)

34. Winter, P.: Steiner problem in networks: a survey. Networks 17(2), 129–167 (1987)
35. Xu, J., Chiu, S.Y., Glover, F.: Tabu search for dynamic routing communications network

design. Telecommunication Systems 8(1), 55–77 (1997)
36. ZIB: SCIP 1.2.0. http://scip.zib.de

