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Abstract

We consider a generalization of the Prize Collecting Steiner Tree Problem on a graph
with special redundancy requirements on a subset of the customer nodes suitable to
model a real world problem occurring in the extension of fiber optic communication
networks. We strengthen an existing connection-based mixed integer programming
formulation involving exponentially many variables using a recent result with re-
spect to the orientability of two-node connected graphs. The linear programming
relaxation of this model is then solved by means of column generation. We show
that our new model is theoretically stronger than a previously described one and
present promising preliminary computational results.
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1 Introduction

We consider a generalization of the Prize Collecting Steiner Tree Problem
(PCSTP) on a graph suitable to model the extension of real world fiber optic

1 Email: leitner@ads.tuwien.ac.at
2 Email: raidl@ads.tuwien.ac.at



networks on the last mile. We are given an undirected graph G = (V, E)
in which the existing fiber optic infrastructure is represented by a single root
node r. Each edge e = (u, v) ∈ E corresponding to a potential fiber optic route
between its end points u, v ∈ V is given with its length le ≥ 0 and installation
cost ce ≥ 0. The node set V = S ∪ C ∪ {r} is the disjoint union of Steiner
nodes S, customer nodes C with associated prizes pk ≥ 0, ∀k ∈ C, – i.e. the
expected return of invest when supplying customer k – and the root node r.
The set of customers C = C1 ∪ C2 is partitioned into type-1 customer nodes
C1 without specific redundancy requirements and type-2 customer nodes C2

that need to be redundantly connected by means of two node disjoint paths
to the root node r. Since full redundancy is often too expensive and might
not pay off we are further given a maximum branch line length bmax(k) ≥ 0,
∀k ∈ C2, relaxing above mentioned redundancy requirements: We allow a non-
redundant, i.e. single path (branch line) from a type-2 customer k ∈ C2 to
some intermediate node v ∈ V (branch node) of maximum length bmax(k) while
v in turn must be redundantly connected to the root node. In the following
B(k) denotes the set of potential branch nodes for a customer k ∈ C2, i.e.
those nodes reachable from k by a path no longer than bmax(k), also including
node k itself. In the light of this special redundancy concept, we refer to our
problem as the bmax-Survivable Network Design Problem (bmax-SNDP).

A solution G′ = (V ′, E ′), V ′ ⊆ V , E ′ ⊆ E, to an instance of bmax-SNDP
is a connected subgraph of G feasibly – i.e. respecting the given redundancy
requirements – connecting a set of customers C ′ ⊆ C; see Figure 1 for an
exemplary solution. Similarly to the PCSTP, we aim at identifying the most
profitable solution eventually connecting only a subset of all customers, i.e. we
minimize o(G′) =

∑

e∈E′ ce +
∑

k∈C\C′ pk. bmax-SNDP obviously is NP-hard,
since the PCSTP is a special case of it.

2 Previous Work

bmax-SNDP has been introduced by Bachhiesl et al. [2]. Ljubić [10] pointed
out the relatedness to {0, 1, 2}-SNDP [7] which corresponds to bmax-SNDP
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Fig. 1. An exemplary solution to bmax-SNDP.



if bmax(k) = 0, ∀k ∈ C2. Wagner et al. presented mixed integer program-
ming (MIP) approaches for bmax-SNDP based on multicommodity flows [12]
and connection cuts [11]; they are, however, only suitable to solve relatively
small instances. The current authors heuristically approached medium-sized
instances of bmax-SNDP by means of Lagrangian decomposition (LD), variable
neighborhood search, greedy randomized adaptive search as well as by hybrid
methods combining LD with variable neighborhood descent [8]. Subsequently,
we presented a large MIP formulation involving variables for all feasible con-
nections of customers and showed how to efficiently solve its linear relaxation
using alternative dual optimal solutions during column generation [9]. Mod-
eling redundant connections by pairs of reversely oriented paths, Chimani et
al. [5,4] further came up with strong formulations for {0, 1, 2}-SNDP based on
multi-commodity flows and directed connection cuts, theoretically dominating
those of Wagner et al. [12,11] for the case of bmax(k) = 0, ∀k ∈ C2.

3 The Directed Connection Formulation

Chimani et al. [5] showed that any feasible solution to {0, 1, 2}-SNDP can be
transformed into a directed graph with a simple path from r to each connected
type-1 customer and two oppositely directed, internally node disjoint paths
between r and any connected type-2 customer k ∈ C2. Interpreting a feasible
connection to some customer k ∈ C2 with bmax(k) > 0 as two independent
connections – a non-redundant from r to k and a fully redundant connection
to its branching node v ∈ B(k) – the orientability of any solution to bmax-
SNDP follows from the result of Chimani et al. The model (dCol) introduced
in the following strengthens our previous connection-based model from [9] by
exploiting this orientability. Let A = {(u, v), (v, u) | (u, v) ∈ E} consist of
two oppositely directed arcs for each original edge (u, v) ∈ E. To model bmax-
SNDP we utilize variables xu,v ∈ {0, 1}, ∀(u, v) ∈ A, indicating whether or not
arc (u, v) ∈ A is part of the (oriented) solution. Variables yk ∈ {0, 1}, ∀k ∈ C,
specify whether a customer is feasibly connected according to its redundancy
requirements or not. We further use variables fk

p ∈ {0, 1}, ∀k ∈ C, ∀p ∈ Pk,
where Pk is the set of all feasible directed connections for customer k ∈ C, indi-
cating if the corresponding connection is realized or not. For type-1 customers
k ∈ C1, Pk simply corresponds to the set of all simple directed paths from the
root node r to k, i.e. Pk = {p ( A | p forms a directed path from r to k}.
For type-2 customers k ∈ C2, Pk is defined as Pk = {p ( A | p forms two op-
positely directed, internally node disjoint paths from r to some node v ∈ B(k)
and a directed path from v to k of maximum length bmax(k)}.



(dCol) z = min
∑

(u,v)∈A

cu,vxu,v +
∑

k∈C

pk(1 − yk)(1)

s.t.
∑

p∈Pk

fk
p ≥ yk ∀k ∈ C(2)

∑

p∈Pk|(u,v)∈p

fk
p ≤ xu,v ∀k ∈ C, ∀(u, v) ∈ A(3)

xu,v + xv,u ≤ 1 ∀(u, v) ∈ E(4)

0 ≤ xu,v ≤ 1 ∀(u, v) ∈ A(5)

0 ≤ yk ≤ 1 ∀k ∈ C(6)

fk
p ∈ {0, 1} ∀k ∈ C, ∀p ∈ Pk(7)

Constraints (2) ensure that a customer’s prize can only be earned if it
is feasibly connected to r, while constraints (3) link connection variables to
arc variables. Inequalities (4) guarantee that at most one out of each pair of
oppositely directed arcs is used in a solution. Note that for variables xu,v and
yk only lower and upper bounds are defined in (5) and (6), respectively, as
they will automatically become integer.

Since there are exponentially many variables corresponding to feasible con-
nections F = {fk

p | k ∈ C ∧p ∈ Pk}, we cannot solve (dCol) directly. As usual
in column generation – see e.g. [3] – we start with a small subset of connec-
tions F̃ ( F considered in the restricted master problem (RMP), where also
the integrality constraints (7) are replaced by their continuous relaxations,
and dynamically add further variables f ∈ F \ F̃ by iteratively solving the
pricing problem. Let µk ≥ 0, ∀k ∈ C, be the dual variables associated to
constraints (2) and πk,u,v ≤ 0, ∀k ∈ C, ∀(u, v) ∈ A, denote the dual variables
associated to constraints (3). Then, the pricing problem is to determine an
fk

p ∈ F \ F̃ corresponding to a connection p with minimum reduced costs
ck,p = −µk −

∑

(u,v)∈p πk,u,v. As long as at least one variable with negative

reduced costs exists, we add it to F̃ and resolve the RMP.

In other words, in the pricing problem we need to determine the cheapest
connection to each customer k ∈ C in D = (V, A) with arc costs |πk,u,v|,
∀(u, v) ∈ A. If the total costs of such a connection are smaller than µk, we
include it in the RMP. Since arc costs are non-negative we can efficiently solve
the pricing problem for type-1 customers, by simple shortest path calculations.
For customers k ∈ C2 with bmax(k) = 0 we need to compute the cheapest pair
of oppositely directed, internally disjoint paths (ODP) between r and k. As



shown in Figure 2 any instance of the directed disjoint pair of paths problem
(2DP) for two source-destination pairs (s1, t1), (s2, t2), which is known to be
NP-hard [6], can be transformed into an instance of ODP for s, t by adding
nodes s, t and arcs {(s, s1), (t2, s), (t1, t), (t, s2)}. We conclude that ODP as
well as the pricing problem for the more general case of customers k ∈ C2 with
bmax(k) > 0 are NP-hard.

s1 t1

s2t2

s t. . .

Fig. 2. Transformation of 2DP on (s1, t1), (s2, t2) into RDP on (s, t).

We solve the pricing problem for each customer k ∈ C2 using the MIP
(8)–(20), where A(k) = {(u, v) ∈ A | u, v ∈ B(k)} denotes the set of potential
edges in the customer’s branch line. Each feasible connection is represented
by a directed cycle containing r and at least one potential branching node
w ∈ B(k) and a path from r to k using arcs not on this cycle for the branch
line only. Constraints (9)–(13) ensure that variables qu,v ∈ {0, 1}, ∀(u, v) ∈ A,
describe such a cycle. Constraints (14)–(16) guarantee that variables su,v ∈
{0, 1}, ∀(u, v) ∈ A, form a path from r to k using arcs not on above mentioned
cycle for the branch line only. Finally, constraints (17) ensure that variables
bu,v ∈ [0, 1], ∀(u, v) ∈ A(k), indicate the arcs forming the branch line, whereas
constraints (18) restrict the branch line’s length.

min
∑

(u,v)∈A

|πk,u,v|qu,v +
∑

(u,v)∈A(k)

|πk,u,v|bu,v(8)

s.t.
∑

(u,v)∈A

qu,v −
∑

(v,w)∈A

qv,w = 0 ∀v ∈ V(9)

∑

(r,v)∈A

qr,v = 1(10)

qu,v + qv,u ≤ 1 ∀(u, v) ∈ E(11)
∑

(u,v)∈A

qu,v ≤ 1 ∀v ∈ V \ B(k)(12)

∑

v∈B(k)

∑

(u,v)∈A

qu,v >= 1(13)

∑

(u,v)∈A

su,v −
∑

(v,w)∈A

sv,w =











−1 if v = r

1 if v = k

0 otherwise

∀v ∈ V(14)



su,v + sv,u ≤ 1 ∀(u, v) ∈ E(15)

su,v ≤ qu,v ∀(u, v) ∈ A \ A(k)(16)

bu,v ≥ su,v − qu,v ∀(u, v) ∈ A(k)(17)
∑

(u,v)∈A(k)

lu,vbu,v ≤ bmax(k)(18)

qu,v, su,v ∈ {0, 1} ∀(u, v) ∈ A(19)

0 ≤ bu,v ≤ 1 ∀(u, v) ∈ A(k)(20)

4 Polyhedral Comparison

Let Pdcol denote the polyhedron corresponding to the set of feasible solutions
to the linear programming relaxation of model (dCol) and Pcol denote the
corresponding polyhedron of its undirected variant (Col) from [9]. Model
(Col) uses undirected edge variables x̃e, ∀e ∈ E, and undirected connection
variables f̃k

p , ∀k ∈ C, ∀p ∈ P̃k, but otherwise corresponds to (dCol). It is easy
to see that projx̃,f̃(Pdcol) ⊆ Pcol holds, if projx̃,f̃(Pdcol) denotes the obvious
projection of Pdcol into the space of Pcol. On the other hand, consider the
instance given in Figure 3. Its optimal undirected solution G′

col ∈ Pcol has an
objective value of o(G′

col) = 6.5 and variables values given by x̃e = 0.5, for
all shown edges e, yi = yh = 1, and yj = 0.5; however the optimal directed
solution G′

dcol ∈ Pdcol does not connect any customers. Thus, we conclude
that (dCol) dominates its undirected variant, i.e. projx̃,f̃(Pdcol) ( Pcol.

5 Preliminary Computational Results

Table 1 summarizes the results of our preliminary tests on small instances
constructed from real world data of a German city [1] which have already been
solved to proven optimality for {0, 1, 2}-SNDP [5,12,11] – denoted by RED –
while not all of them could be solved when using bmax(k) = 30, ∀k ∈ C2,
denoted as BMAX [11]. Here, LBrel denotes the average relative improvement

r

h ∈ C1, ph = 1

j ∈ C2, pj = 5, bmax(j) = 0

cr,h = 2

cr,i = 2

ch,j = 2

i ∈ C1, pi = 1

ci,j = 2

Fig. 3. An exemplary instance of bmax-SNDP.



of lower bounds compared to the undirected formulation from [9] in percent
and #opt the number of instances solved to proven optimality, i.e. where the
solution to the linear relaxation is integral. We conclude that the obtained
lower bounds are significantly better than those of the undirected formulation
from [9] and correspond to proven optimal solutions for all but one of the so far
tested instances. While this certainly will not be generally the case for larger
instances it indicates that significantly reducing the time needed for solving
the pricing problems for type-2 customers might allow for solving significantly
larger instances to proven optimality than so far existing approaches.

Table 1
Preliminary Computational Results.

Instance set characteristics RED BMAX

Set # |V | |E| C1 C2 LBrel [%] #opt LBrel [%] #opt

ClgS-I1 25 100 342 3.8 2.1 1.63 25 1.72 25

ClgS-I2 15 100 342 8.9 4.9 9.13 15 12.67 14

ClgS-I3 15 100 342 6.0 3.6 7.09 15 6.94 15

6 Conclusions and Outlook

We presented a new directed mixed integer programming formulation for a
generalization of the {0, 1, 2}-SNDP based on an orientability result by Chi-
mani et al. [5,4]. Our formulation is based on exponentially many so-called
connection variables and can be solved using column generation. We theoreti-
cally analyzed the pricing subproblems and compared our new formulation to
a previously proposed one. Preliminary computational results indicate that
the obtained lower bounds are tight. In future work we want to significantly
speed up the solution of the linear relaxation by developing heuristics for solv-
ing the NP-hard pricing subproblems. Furthermore, we plan to extend our
approach to a branch-and-price approach for solving medium sized instances
of bmax-SNDP to proven optimality.
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