
Favoritenstraße 9-11 / E186, A-1040 Wien, Austria
Tel. +43 (1) 58801-18601, Fax +43 (1) 58801-18699
www.cg.tuwien.ac.at

Forschungsbericht / Technical Report

TECHNISCHE UNIVERSITÄT WIEN
Institut für Computergraphik und Algorithmen

Combining Lagrangian

Decomposition with Very Large

Scale Neighborhood Search for

Capacitated Connected Facility

Location

Markus Leitner and Günther R. Raidl

TR–186–1–09–02

October 01, 2009

Combining Lagrangian Decomposition with Very

Large Scale Neighborhood Search for

Capacitated Connected Facility Location

Markus Leitner and Günther R. Raidl

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Favoritenstraße 9–11
1040, Vienna, Austria

{leitner|raidl}@ads.tuwien.ac.at

Abstract. We consider a generalized version of the rooted Connected
Facility Location problem (ConFL) which occurs when extending exist-
ing communication networks in order to increase the available bandwidth
for customers. In addition to choosing facilities to open and connecting
them by a Steiner tree as in the classic ConFL, we have to select a subset
of all potential customers and assign them to open facilities respecting
given capacity constraints in order to maximize profit. We present two
exact mixed integer programming formulations and a Lagrangian decom-
position (LD) based approach which uses the volume algorithm. Feasi-
ble solutions are derived using a Lagrangian heuristic. Furthermore, we
present two hybrid variants combining LD with local search and a very
large scale neighborhood search. By applying those improvement meth-
ods only to the most promising solutions, we are able to compute much
better solutions without increasing the necessary runtime too much. As
documented by our computational results, our hybrid approaches com-
pute high quality solutions with tight optimality gaps in relatively short
time.

Key words: Connected facility location, network design, Lagrangian decompo-
sition, very large scale neighborhood search, mixed integer programming.

1 Introduction

We consider a real-world network design problem which occurs when extending
existing fiber-optic networks. Nowadays, telecommunication companies are often
confronted with rising bandwidth requirements of customers while especially in
smaller cities and rural areas realizing connections entirely with fiber-optic routes
(i.e. fiber-to-the-home) is often too expensive. Frequently, these companies deal
with such situations by extending the fiber-optic infrastructure by new routes
to so-called mediation points that bridge the high-bandwidth network with an
older lower-bandwidth network. While the old network is still used between a

2 Markus Leitner, Günther R. Raidl

customer and its correspondingly assigned mediation point the use of the newly
installed high-bandwidth routes in the remaining network results in an increased
bandwidth for most customers. Depending on the network used between those
mediation points and the customers, those scenarios are typically referred to as
fiber-to-the-curb in case of a traditional copper network or powerline in case of
using electric power transmission lines.

From an optimization point of view those scenarios can be modeled as vari-
ants of the Connected Facility Location Problem (ConFL) where new facilities,
which correspond to the above mentioned mediation points, need to be installed
and connected with each other and customer nodes need to be assigned to them.
However, the classical ConFL often cannot be used to model and solve real-world
scenarios since it does neglect real-world constraints such as those imposed by
individual client bandwidth demands and corresponding maximum assignable
demands to individual facilities. Furthermore, telecommunication providers are
usually interested in supplying not necessarily all but only the most profitable
subset of potential customers by additionally considering the expected return
of invest for individual customers. As formally described in the following, our
model to which we refer as the rooted Price Collecting Capacitated Connected
Facility Location Problem (CConFL) overcomes those shortages of ConFL.

After formally defining CConFL in Section 2 and discussing previous and
related work in Section 3 we present two mixed integer programming (MIP)
formulations for solving small instances of CConFL to proven optimality in Sec-
tion 4. For larger instances, Section 5 describes a new Lagrangian decomposition
(LD) approach based on one of those MIP formulations. A Lagrangian heuris-
tic to derive feasible solutions as well as methods for improving those solution
in order to obtain tight optimality gaps between the lower and upper bounds
within reasonable time are presented in Sections 6 and 7. Test instances and
computational results are discussed in Section 8, before drawing conclusions in
Section 9.

This article significantly extends our previous work [1] by proposing an ad-
ditional MIP formulation in Section 4 and a new very large scale neighborhood
search procedure in Section 7.3; more computational results are given, and the
remaining parts are more detailed.

2 Problem Definition

Formally, an instance of CConFL is given by an undirected connected graph
Go = (V o, Eo) with a connected subgraph GI = (VI, EI), VI (V o, EI (Eo

representing the existing fiber-optic infrastructure, see Figure 1. Each edge e =
(u, v) ∈ Eo has associated costs co

e ≥ 0 corresponding to the costs of installing
a new route between u and v. Potential facility locations (mediation points)
F o ⊆ V o \ VI are given with associated costs fi ≥ 0 for installing them (opening
costs) and maximum assignable demands Di ∈ N0, ∀i ∈ F o. Furthermore, we
are given a set of potential customers Co with individual demands dk ∈ N0 and
prizes pk ≥ 0, ∀k ∈ Co, the latter corresponding to the expected return of invest

Lagrangian Decomposition for Capacitated Connected Facility Location 3

when supplying customer k. Finally, costs ai,k ≥ 0 for assigning the complete
demand of customer k ∈ Co to a potential facility location i ∈ F o are given
(assignment costs). If a client k cannot be assigned to facility i we assume here
for simplicity ai,k = ∞.

During preprocessing we shrink the existing fiber-optic infrastructure GI =
(VI, EI) into a single root node 0, yielding a reduced graph G = (V,E) with node
set V = (V o ∪ {0}) \ VI and edge set E = {(u, v) ∈ Eo | u, v /∈ EI} ∪ {(0, v) |
∃(u, v) ∈ Eo : u ∈ VI ∧ v /∈ VI}; see Figure 2 for such a rooted problem instance.
Edge costs ce ≥ 0 are defined as

ce =

(

co
e if u, v ∈ V o \ VI

minf=(w,v)∈Eo|w∈VI
co

f otherwise
∀e = (u, v) ∈ E.

Furthermore, we remove all eventually existing assignment possibilities be-
tween customers k ∈ Co and facilities i ∈ F o where ai,k ≥ pk by setting ai,k = ∞,
since those assignments cannot be part of an optimal solution as they do not pay
off. Customers with no remaining assignment possibilities are entirely removed.
Similarly, some potential facilities i ∈ F o that cannot be profitable can be iden-
tified by solving a 0–1 knapsack problem for each facility with knapsack size Di,
and an item with weight dk and profit pk − ai,k for each assignable customer.
A facility can be removed if the profit of the optimal solution to this knapsack
problem does not exceed the facility’s opening costs fi. If solving these knap-
sack problems for all the facilities is too time-consuming, an option is to only
solve the corresponding linear programming relaxations and to use the hereby
obtained upper bounds to the optimal solutions’ profits.

We denote by C ⊆ Co and F ⊆ F o (F ⊆ V) the resulting, possibly reduced
sets of potential customers and facility locations. Furthermore, Ci = {k ∈ C |
ai,k ≤ pk} denotes the set of customers that may be assigned to facility i ∈ F
and Fk = {i ∈ F | k ∈ Ci} the set of potential facilities a customer k ∈ C may
be assigned to.

As depicted in Figure 3, a solution to CConFL S = (RS , TS , FS , CS , αS)
consists of a set of opened facilities FS ⊆ F connected to each other as well as
to the root node 0 by a Steiner tree (RS , TS), RS ⊆ V , TS ⊆ E. CS ⊆ C is
the set of customers feasibly (i.e. respecting the capacity constraints) assigned
to facilities FS , whereas the concrete mapping between customers and facilities
is described by αS : CS → FS . Since we are considering a single source variant
of the connected facility location problem, each customer may be assigned to at
most one facility. The objective function of CConFL can be stated as

c(S) =
X

e∈TS

ce +
X

i∈FS

fi +
X

k∈CS

aαS(k),k +
X

k∈C\CS

pk (1)

An optimal solution S∗ (i.e. a most profitable one) is given by the minimal
objective value, i.e. c(S∗) ≤ c(S) for all feasible solutions S. Since CConFL
combines the (Price Collecting) Steiner Tree Problem (STP) on a graph with
the Single Source Capacitated Facility Location Problem (SSCFLP) which are
both strongly NP-hard [2, 3], CConFL is strongly NP-hard, too.

4 Markus Leitner, Günther R. Raidl

Fig. 1. Original Problem instance. Fig. 2. Rooted Problem instance.

Fig. 3. Exemplary solution.

root node

Steiner node

facility node

customer node

infrastructure node

existing route

potential route

customer assignment

3 Related Work

Karger and Minkoff [4] considered the maybecast problem which can be mod-
eled as a connected facility location problem and described a constant factor
approximation for their problem. The name connected facility location has been
introduced by Gupta et al. [5] in their work on virtual private networks.

Since then several authors proposed approximation algorithms for diverse
variants of ConFL. Swamy and Kumar [6] presented a primal-dual algorithm
with an approximation ratio of 8.55 which is also a factor 4.55 approximation
for the so called rent-or-buy problem, a variant of ConFL where no opening
costs are given and facilities may be opened at all nodes. By considering the
LP rounding technique, Hasan et al. [7] improved their method to a factor 8.29
approximation algorithm for the case of edge costs obeying the triangle inequality
and a factor 7 approximation in case all opening costs are equal. Recently, a
randomized approximation algorithm with an expected approximation ratio of
4, which can be derandomized with a resulting approximation factor of 4.23, has
been presented by Eisenbrand et al. [8].

Ljubić [9] described a branch-and-cut approach based on directed connection
cuts as well as a hybrid metaheuristic combining variable neighborhood search
(VNS) with reactive tabu search for the rooted variant of ConFL. Tomazic and
Ljubić [10] considered the unrooted version of ConFL and presented a greedy ran-
domized adaptive search procedure. Furthermore, they transformed the problem

Lagrangian Decomposition for Capacitated Connected Facility Location 5

to the minimum Steiner arborescence problem and solved it by an exact branch-
and-cut method. Bardossy and Raghavan [11] combined dual ascent with local
search to derive lower and upper bounds for ConFL. The current authors pre-
sented in [12] two VNS variants for a version of CConFL without assignment
and opening costs. To the best of our knowledge our concrete variant of the con-
nected facility location problem, which contains most of the previously discussed
problem variants as special cases, has not been considered so far.

Other related problems are the Steiner tree star problem, where opening costs
for facilities included in the Steiner tree must be paid even if no customers are
assigned to them, as well as its generalized version [13], where customer nodes
and potential facilities are not necessarily disjoint.

Furthermore, literature on the (price collecting) Steiner tree problem on
graphs (STP), as well as the (single source) capacitated facility location problem
(SSCFLP) can be considered as relevant, since CConFL is composed from these
two problems, see e.g. [14] for a survey on the STP and [15] for a recent work
on the SSCFLP with a comprehensive list of further references on that topic.

4 Multi-Commodity Flow Formulations

CConFL can be modeled as a mixed integer program (MIP) based on directed
multi-commodity flows in two rather obvious ways. While our first model dMCF f

presented in Section 4.1 is based on sending one unit of flow to each potential
facility location, model dMCF c presented in Section 4.2 sends flow to each po-
tential customer.

For an easier presentation we define an extended graph G′ = (V ′, E′) combin-
ing G with the set of potential customers C as additional nodes and potential
assignments between facilities and customers as additional edges (assignment
edges). Formally, G′ is given by its node set V ′ = V ∪ C and its edge set
E′ = E ∪ {(i, j) | i ∈ F ∧ j ∈ Ci}. Edge costs c′e ≥ 0 are defined by

c′e =

(

ce if e ∈ E

ai,k otherwise
∀e = (i, k) ∈ E′.

4.1 Facility oriented model

Let A0 = {(0, v) | (0, v) ∈ E} denote the set of directed edges, i.e. arcs, going
out from the root node 0 and A′

i = {(u, v), (v, u) | (u, v) ∈ E ∧ u, v /∈ {0, i}},
∀i ∈ F , the set containing two oppositely directed arcs for each pair of nodes
u, v ∈ V \{0, i} that are connected by an edge in G. Let A−

i = {(v, i) | (v, i) ∈ E}
be the set of ingoing arcs for each facility i ∈ F . We can now define the set of arcs
relevant for connecting a facility i ∈ F to the root node as Ai = A0∪A′

i∪A−
i . In

model dMCF f (2)–(11) we use decision variables xe ∈ {0, 1}, ∀e ∈ E′, indicating
whether an edge is used in a solution (in which case xe = 1) or not and variables
yk ∈ {0, 1}, ∀k ∈ C, to specify whether a customer is feasibly assigned to

6 Markus Leitner, Günther R. Raidl

an opened facility (yk = 1) or not. Furthermore, to specify whether an arc is
used in the connection to a potential facility we use flow variables si

u,v ∈ [0, 1],
∀i ∈ F, ∀(u, v) ∈ Ai, and design variables zi ∈ [0, 1], ∀i ∈ F , to indicate if a
potential facility is opened (zi = 1).

(dMCF f) min
X

e∈E′

c′exe +
X

i∈F

fizi +
X

k∈C

pk(1 − yk) (2)

s.t.
X

(u,v)∈Ai

si
u,v −

X

(v,u)∈Ai

si
v,u =

8

>

<

>

:

−zi if v = 0

zi if v = i

0 otherwise

∀i ∈ F, ∀v ∈ V (3)

si
u,v + si

v,u ≤ xu,v ∀i ∈ F, ∀(u, v) ∈ E (4)

xi,k ≤ zi ∀(i, k) ∈ E′ | k ∈ C (5)
X

k∈Ci

dkxi,k ≤ Dizi ∀i ∈ F (6)

X

i∈Fk

xi,k ≥ yk ∀k ∈ C (7)

0 ≤ si
u,v ≤ 1 ∀i ∈ F, ∀(u, v) ∈ Ai (8)

0 ≤ zi ≤ 1 ∀i ∈ F (9)

xe ∈ {0, 1} ∀e ∈ E′ (10)

yk ∈ {0, 1} ∀k ∈ C (11)

The objective function (2) unifies assignment and edge costs by using the
concept of the extended graph G′ but otherwise corresponds to function (1).
Constraints (3) are the usual flow conservation constraints, inequalities (4) link
variables si

u,v and xe, and inequalities (5) ensure that a facility is opened if an
incident assignment edge is used. Inequalities (6) are the capacity constraints
for each facility i ∈ F , while inequalities (7) ensure that a customer’s prize can
only be earned if the customer is connected to a facility.

4.2 Customer oriented model

Model dMCF c (12)–(20) sends one unit of flow to each potential customer, but
otherwise is similar to model dMCF f . Thus we define the set of relevant arcs
Ak = A0 ∪ A′ ∪ A−

k for each customer k ∈ C, where A0 is the set of arcs going
out from the root node as defined in Section 4.1, A′ = {(u, v), (v, u) | (u, v) ∈
E ∧ u, v 6= 0}, and A−

k = {(i, k) | (i, k) ∈ E′}.

Lagrangian Decomposition for Capacitated Connected Facility Location 7

(dMCF c) min
X

e∈E′

c′exe +
X

i∈F

fizi +
X

k∈C

pk(1 − yk) (12)

s.t.
X

(u,v)∈Ak

sk
u,v −

X

(v,u)∈Ak

sk
v,u =

8

>

<

>

:

−yk if v = 0

yk if v = k

0 otherwise

∀k ∈ C, ∀v ∈ E′ (13)

sk
u,v + sk

v,u ≤ xu,v ∀(u, v) ∈ E′ (14)

xi,k ≤ zi ∀i ∈ F, ∀k ∈ Ci (15)
X

k∈Ci

dkxi,k ≤ Dizi ∀i ∈ F (16)

0 ≤ sk
u,v ≤ 1 ∀k ∈ C, ∀(u, v) ∈ Ak (17)

0 ≤ zi ≤ 1 ∀i ∈ F (18)

xe ∈ {0, 1} ∀e ∈ E′ (19)

yk ∈ {0, 1} ∀k ∈ C (20)

Here, constraints (13) resemble the flow conservation constraints for each cus-
tomer k ∈ C and similarly to dMCF f inequalities (14) and (15) link variables x
with y and x with z, respectively. While the capacity constraints (16) are iden-
tical to those of formulation dMCF f , we do not need explicit linking constraints
between variables x and y in model dMCF c since those are implicitly included
in the flow conservation constraints.

4.3 Polyhedral Analysis

In the following, we compare the set of feasible fractional solutions of the LP
relaxations dMCFLP

f and dMCFLP
c of models dMCF c and dMCF f .

Theorem 1. None of the formulations dMCF c and dMCF f strictly dominates

the other, i.e. dMCFLP
c * dMCFLP

f and dMCFLP
f * dMCFLP

c .

We prove each direction individually.

Lemma 1. dMCF f does not dominate dMCF c, i.e. dMCFLP
c * dMCFLP

f .

Proof. Consider a fractional solution S′ = (R′
S , T ′

S , F ′
S , C ′

S , α′
S) corresponding to

the example given in Figure 4. S′ can be feasibly described in the LP relaxation
of our facility oriented model using the variable values as indicated in the figure,
i.e. S′ ∈ dMCFLP

f . Here, the corresponding flow to each facility with value 1
3

is routed over two disjoint paths. However S′ /∈ dMCFLP
c since each flow to

customer k ∈ C ′
S must be rooted over arcs going out from the root node 0, i.e.

∑

(0,u)∈Ak
sk
0,u ≤ yk. Since yk = 1, ∀k ∈ {1, 2, 3}, in S′ but

∑

(0,u)∈Ak
sk
0,u = 1

3 ,

S′ /∈ dMCFLP
c .

8 Markus Leitner, Günther R. Raidl

z1 = 1
3

z3 = 1
3

y1 = 1

y2 = 1

y3 = 1

xi,k = 1
3
, ∀i, k ∈ {1, 2, 3}

root node 0

facility node i, with Di = 1, ∀i ∈ {1, 2, 3}

customer node k, with dk = 1, ∀k ∈ {1, 2, 3}

s1
u,v = 1

6

z2 = 1
3

s2
u,v = 1

6

z3 = 1
3

s3
u,v = 1

6

z2 = 1
3

z1 = 1
3

Fig. 4. Feasible LP solution of dMCF f which is infeasible for dMCF c.

z1 = 1

z2 = 1

y1 = 1

y2 = 1

sk
u,v = 1

2
, ∀k ∈ {1, 2}

root node 0
facility node i, with Di = 1, ∀i ∈ {1, 2}

customer node k, with dk = 1, ∀k ∈ {1, 2}

Fig. 5. Feasible LP solution of dMCF c which is infeasible for dMCF f .

Lemma 2. dMCF c does not dominate dMCF f , i.e. dMCFLP
f * dMCFLP

c .

Proof. Here, we consider a fractional solution S′′ = (R′′
S , T ′′

S , F ′′
S , C ′′

S , α′′
S) cor-

responding to Figure 5. Since the capacity constraints as well as all linking
constraints are met and the corresponding flow to each of the two customer
is routed over two disjoint paths, where each fractional value sk

u,v is set to 1
2 ,

S′′ ∈ dMCFLP
c . For feasible solutions of model dMCFLP

f ,
∑

(u,i)∈Ai
si

u,i ≤ zi

must hold due to the flow conservation constraints. Since
∑

(u,i)∈Ai
si

u,i = 1
2 but

zi = 1 we conclude that S′′ /∈ dMCFLP
f .

Theorem 1 immediately follows due to Lemmas 1 and 2.

5 Lagrangian Decomposition

Since Lagrangian relaxation based approaches have proven to be quite successful
for the Steiner tree problem [16] as well as for the Capacitated Facility location
problem [17] and CConFL is composed of these two problems it is quite natural to
decompose CConFL by means of Lagrangian relaxation. Model (21)–(29) which
we will relax in the following is a more abstractly written, undirected variant of

Lagrangian Decomposition for Capacitated Connected Facility Location 9

model dMCF c. As previously, binary variables xe, ∀e ∈ E′, indicate if an edge e
is part of the solution, variables zi ∈ [0, 1], ∀i ∈ F , specify if a facility i is opened
and variables yk, ∀k ∈ C, if a customer k is feasibly assigned to an open facility.
Similarly to the flow variables of model dMCF c, we use variables sk

e ∈ {0, 1},
∀k ∈ C, ∀e ∈ E′, to indicate if an edge e ∈ E′ is part of the unique path from
the root node 0 to a connected customer k. Finally Pk ∈ {0, 1}|E

′| denotes the
set of incidence vectors corresponding to those simple paths from 0 to k ∈ C
using exactly one assignment edge (i, k) ∈ E′ \ E.

min
X

e∈E′

c′exe +
X

i∈F

fizi +
X

k∈C

pk(1 − yk) (21)

s.t. sk
e ≤ xe ∀k ∈ C, ∀e ∈ E′ (22)

sk ∈ Pk if yk = 1 ∀k ∈ C (23)

xi,k ≤ zi ∀i ∈ F, ∀k ∈ Ci (24)
X

k∈Ci

dkxi,k ≤ Dizi ∀i ∈ F (25)

sk
e ∈ {0, 1} ∀k ∈ C, ∀e ∈ E′ (26)

xe ∈ {0, 1} ∀e ∈ E′ (27)

zi ∈ {0, 1} ∀i ∈ F (28)

yk ∈ {0, 1} ∀k ∈ C (29)

We relax inequalities (22) linking variables s and x in a classical Lagrangian
fashion by adding corresponding terms weighted with nonnegative Lagrangian
multipliers πk,e ≥ 0, ∀k ∈ C, ∀e ∈ E′, to the objective function. This yields the
parameterized model LD(π). See for example [18] for a general introduction to
Lagrangian relaxation.

(LD(π)) min
X

e∈E′

c′exe +
X

i∈F

fizi +
X

k∈C

pk(1 − yk) +
X

k∈C

X

e∈E′

πk,e · (s
k
e − xe) =

=
X

k∈C

pk +
X

k∈C

X

e∈E′

πk,es
k
e − pkyk

!

+
X

e∈E′

c′e −
X

k∈C

πk,e

!

xe +
X

i∈F

fizi

s.t. (23)–(29)

LD(π) decomposes into independent subproblems LDs,y(π) for determining
variables sk

e , ∀k ∈ C, ∀e ∈ E′ and yk, ∀k ∈ C, subproblem LDx (π) for determin-
ing variables xe, ∀e ∈ E, and subproblem LDx ,z (π) to determine variables xe,
∀e ∈ E′ \E, and zi, ∀i ∈ F . We consider these subproblems and their solving in
the following in detail.

10 Markus Leitner, Günther R. Raidl

(LDs,y(π)) min
X

k∈C

pk +
X

k∈C

X

e∈E′

πk,es
k
e − pkyk

!

(30)

s.t. sk ∈ Pk if yk = 1 ∀k ∈ C (31)

sk
e ∈ {0, 1} ∀k ∈ C, ∀e ∈ E′ (32)

yk ∈ {0, 1} ∀k ∈ C (33)

LDs,y(π) consists of |C| independent cheapest path problems. Thus it can
be solved for customer k ∈ C by computing the cheapest path w.r.t. edge costs
πk,e from the root to customer node k which includes exactly one assignment
edge (i, k) ∈ E′ \E, i.e. we need to determine the corresponding incidence vector
q ∈ Pk. If the total costs of this path are smaller than the customers prize pk,
yk as well as the corresponding path variables sk

e , ∀e ∈ E′ | qe = 1, are set
to one. Since, all edge costs πk,e are nonnegative we use |C| runs of Dijkstras’
algorithm [19], resulting in a total time-complexity of O(|C|(|E| + |V |) log |V |)
for solving LDs,y(π) when using the binary heap implementation of Dijkstras’
algorithm.

(LDx (π)) min
X

e∈E

ce −
X

k∈C

πk,e

!

xe (34)

s.t. xe ∈ {0, 1} ∀e ∈ E (35)

LDx (π), can be trivially solved by inspection in time O(|C||E|). Variables
xe, ∀e ∈ E, are set to one if ce <

∑

k∈C πk,e, and to zero otherwise.

(LDx ,z (π)) min
X

i∈F

fizi +
X

e=(i,k)∈E′|
i∈F∧k∈Ci

c′i,k −
X

k∈C

πk,e

!

xi,k (36)

s.t.
X

k∈Ci

dkxi,k ≤ Dizi ∀i ∈ F (37)

xi,k ≤ zi ∀i ∈ F, ∀k ∈ Ci (38)

zi ∈ {0, 1} ∀i ∈ F (39)

xe ∈ {0, 1} ∀e ∈ E′ \ E (40)

Model (LDx ,z (π)) resembles |F | 0–1 knapsack problems, one for each facility
i ∈ F . In such a knapsack problem for facility i ∈ F , we are given the total
knapsack capacity Di, and one item for each potential assignment e = (i, k) ∈
E′ \ E, with profit

∑

k∈C πk,e − c′e and weight dk. Obviously, we can neglect all
items with negative or zero profit. Let χ∗

i denote the optimal solution to the
knapsack problem of facility i ∈ F , and o(χ∗

i) the according objective value (i.e.

Lagrangian Decomposition for Capacitated Connected Facility Location 11

the total profit). zi and all variables xe corresponding to items used in χ∗
i are

set to one if o(χ∗
i) > fi. Although the knapsack problem is weakly NP-hard [20],

several algorithms capable of solving large instances relatively quickly are known.
In our implementation we use the Combo algorithm1 of Martello et al. [21]. Since
LDx ,z (π) does not possess the integrality property, we may be able to determine
better lower bounds than by a simpler LP relaxation of model (21)–(29).

In the Lagrangian dual problem, we aim at maximizing the resulting lower
bound by determining optimal Lagrangian multipliers π∗. Since this maximiza-
tion problem is convex and piecewise linear, we can approximately solve it using
subgradient-like methods. We use the volume algorithm [22], which is an ex-
tension of the classic subgradient method [23], for solving the Lagrangian dual.
Preliminary tests in our scenario indicated that it usually yields better lower
bounds than the classic method, and it also has been reported to be more effi-
cient in a number of other applications [16, 24].

6 Primal Heuristic

Applying the volume algorithm [22] to approximately solve the Lagrangian dual
problem, we compute integer values for variables sk

e , xe, zi, and yk in each
iteration. The solution to LDs,y(π) does connect a subset of customers with
the root node, however the subgraph induced by those paths might contain
redundant edges or violate capacity constraints. On the other hand, the solution
to LDx ,z (π) does open some facilities and assigns customers to them respecting
the capacity constraints, but does not take into account whether those facilities
are connected to the root node. Furthermore, customers may be assigned to
multiple facilities due to LDx ,z (π).

To create a feasible solution S = (RS , TS , FS , CS , αS) using the solutions
to LDs,y(π) and LDx ,z (π) we apply the Lagrangian heuristic (LH) presented in
Algorithm 1.

Algorithm 1 initially declares all facilities as open whose corresponding nodes
are part of a path to some customer k ∈ C due to the actual solution to LDs,y(π),
i.e. FS = {i ∈ F | ∃k ∈ C : sk

i,k = 1}.
In a second phase the Steiner tree (RS , FS) connecting those facilities i ∈ FS

is created. Let Wi,k = {e ∈ E | sk
e = 1}, ∀k ∈ C ′

i, with C ′
i = {k ∈ C | sk

i,k = 1}
be the set of customers connected to the root node 0 via facility i, and Wi =
argminWi,k|k∈C′

i
{
∑

e∈Wi,k
ce} be the shortest of those subpaths for each open

facility i ∈ FS . After initializing the Steiner tree to consist of the root node only
– i.e. RS = {0}, TS = ∅ – all facilities i ∈ FS are considered in increasing order
w.r.t. the costs

∑

e∈Wi
ce of the cheapest path Wi connecting them. We connect

each considered facility i ∈ F to the so far constructed Steiner tree by adding
the necessary subpath W ′ ⊆ Wi with W ′ = {(v0 = i, v1), (v1, v2), . . . (vl, vm)},
(va, vb) ∈ Wi, 0 ≤ a, b ≤ m, vi /∈ RS , 0 ≤ i ≤ l, vm ∈ RS , to the Steiner tree, i.e.
RS = RS ∪ {v0, v1 . . . , vl}, and TS = TS ∪ W ′.

1 http://www.diku.dk/˜pisinger/codes.html

12 Markus Leitner, Günther R. Raidl

Algorithm 1: Primal Heuristic(Solution S′, variable values sk
e , xe, zi, yk)

// Phase 1: open facilities
FS = {i ∈ F | ∃k ∈ C : sk

i,k = 1}
// Phase 2: construct Steiner tree (RS , TS) and assign initial customers
RS = {0}
TS = ∅
forall i ∈ FS do

C′
i = {k ∈ C | sk

i,k = 1}

Wi,k = {e ∈ E | sk
e = 1}, ∀k ∈ C′

i

Wi = argminWi,k|k∈C′
i
{
P

e∈Wi,k
ce}

forall i ∈ FS in increasing order of
P

e∈Wi
ce do

if
P

k∈C′
i
dk ≤ Di then

C′′
i = C′

i

else
determine optimal assignable subset C′′

i ⊆ C′
i using Combo algorithm

CS = CS ∪ C′′
i

αS(k) = i, ∀k ∈ C′′
i

// Phase 3: assign additional customers
A = {(i, k) | i ∈ FS ∧ k ∈ C \ CS ∧ xi,k = 1}

forall (i, k) ∈ A in decreasing order w.r.t. efficiency
pk−c′i,k

dk
do

if k /∈ CS ∧ dk +
P

k′∈CS |αS(k′)=i dk′ ≤ Di then
CS = CS ∪ k
αS(k) = i

A′ = {(i, k) | i ∈ FS ∧ k ∈ C \ CS ∧ xi,k = 0}

forall (i, k) ∈ A′ in decreasing order w.r.t. efficiency
pk−c′i,k

dk
do

if k /∈ CS ∧ dk +
P

k′∈CS |αS(k′)=i dk′ ≤ Di then
CS = CS ∪ k
αS(k) = i

// Phase 4: primal improvement
if c(S) ≤ c(S′) then

S′ = S
Primal Improvement(S) // see Algorithm 2

After connecting facility i ∈ FS the optimal subset of customers C ′′
i ⊆ C ′

i

which are connected by paths via i is assigned to facility i. If assigning all those
customers C ′

i would exceed the maximum demand Di assignable to i, we use the
Combo algorithm [21] again to solve the corresponding 0–1 knapsack problem,
while simply all customers k ∈ C ′

i might be assigned to i if
∑

k∈C′
i
dk ≤ Di.

In the third phase of Algorithm 1 the so far created solution is further im-
proved by assigning additional customers. Thus we first consider the set of as-
signments A between customers and open facilities i ∈ FS from the solution to
LDx ,z (π), i.e. A = {(i, k) | i ∈ FS ∧ k ∈ C ∧ xi,k = 1}, in decreasing order w.r.t.

Lagrangian Decomposition for Capacitated Connected Facility Location 13

Algorithm 2: Primal Improvement(Solution S)

Key Path Improve(S) // see Algorithm 3
switch improvement mode do

case simple:
Customer Swap Improve(S) // see Algorithm 4

case advanced:
Very Large Scale Neighborhood Search(S) // see Algorithm 5

prune solution

their efficiency values
pk−c′i,k

dk
. Each considered assignment (i, k) is added to S if

the corresponding customer has not yet been assigned, i.e. k /∈ CS , and the facil-
ity’s capacity constraint will not be exceeded, i.e. dk +

∑

k′∈CS |αS(k′)=i dk′ ≤ Di.
Subsequently, further assignments are added to S using an identical greedy strat-
egy for all remaining possible assignments to facilities i ∈ FS .

Finally, we further improve the obtained solution S using the neighborhood
structures described in Section 7 in case S is better than the so far best solution
S′ derived by LH before applying these improvements.

7 Solution Improvement

Representing solutions by means of open facilities and computing the Steiner tree
connecting them as well as assigning customers to them during the solution de-
coding process has been the usual approach taken in metaheuristics for variants
of ConFL so far [12, 9, 10]. In our case, modifying the set of open facilities is quite
expensive w.r.t. computational time, since determining the optimal connecting
Steiner tree as well as assigning the optimal clients are NP-hard problems. Using
some heuristic for decoding a solution after adapting the set of open facilities
and subsequently trying to improve those aspects is an interesting approach for
a pure metaheuristic but is likely to be also too time consuming in case of our
intertwined approach in which the primal improvement procedure is repeatedly
applied to solutions derived within the course of the volume algorithm.

We therefore decided to concentrate on improving a solution by means of
its Steiner tree and its assigned customers, but do not modify the set of open
facilities generated by our Lagrangian heuristic. Diversity by means of open fa-
cilities is ensured in our approach due to the fact that we generate one initial
solution in each iteration of the volume algorithm. As shown by Algorithm 2,
we use one neighborhood structure for each of the remaining solution aspects:
a path exchange neighborhood – see Section 7.1 – for reducing the costs of the
connecting Steiner tree and either a simple swap neighborhood – see Section 7.2
– or a very large scale neighborhood – see Section 7.3 – for improving facility cus-
tomer assignments. Both neighborhoods are searched using a best improvement
strategy. Finally, we remove non-profitable parts from S using strong pruning as
described in [25].

14 Markus Leitner, Günther R. Raidl

It is further worth mentioning that since the improved solution aspects are
independent one could easily apply the corresponding neighborhoods in parallel
instead of our sequential approach to reduce the total runtime.

7.1 Key Path Improvement

For the Steiner tree problem in graphs, the concept of so called key nodes – also
called crucial nodes – of a solution, which are all customer nodes as well as all
Steiner nodes of degree greater than or equal to three is well known. Voß [26]
was the first who considered representing a solution to STP by those key nodes
– although he did not yet use the term key nodes – and trying to improve it by
means of replacing the paths between those key nodes. Since then this type of
neighborhood structure has been successfully used in several approaches for the
STP – see e.g. [27, 28] – as well as some of its generalizations, e.g. [29].

For a solution S to CConFL the set of key nodes K = {0} ∪ FS ∪ {v ∈ RS |
degS(v) ≥ 3} is given by the root node, all open facilities as well as all Steiner
nodes of degree greater than or equal to three in S. A key path (V, E) of solution
S is a non-empty path in S between two key nodes u, v ∈ K containing no other
key node, i.e. V ∩ K = {u, v}. Our Key-Path Improvement procedure as given
in Algorithm 3 considers each such key path (V, E) ∈ P̃ (S) from the set of all
key paths P̃ (S) of solution S and replaces it by the shortest connection between
its end nodes using the remaining solution edges as infrastructure (i.e. zero edge
costs are assumed for them); see Figure 6 for an exemplary move.

Algorithm 3: Key Path Improvement (Solution S)

repeat

c′e =

(

0 if e ∈ T

ce else
, ∀e ∈ E

δ = 0
forall key paths P = (V, E) ∈ P̃ (S) do

// key (end) nodes of P are u and v
c′e = ce, ∀e ∈ E
find shortest path P ′ = (V ′, E ′) between u and v w.r.t. c′

δ′ =
P

e∈E′ c′e −
P

e∈E ce

if δ′ < δ then
δ = δ′

store replacement of P by P ′ as best move

c′e = 0, ∀e ∈ E

if δ < 0 then
apply best move

until δ ≥ 0

Lagrangian Decomposition for Capacitated Connected Facility Location 15

u

v

u

v

Fig. 6. An exemplary key path exchange move between key nodes u and v.

7.2 Customer Swap Neighborhood

The Customer Swap Neighborhood focuses on realized assignments between fa-
cilities and customers. It consists of all solutions S′ differing from a solution
S by swapping the assignment of exactly two customer nodes. Formally, each
swap move transforms a solution S with αS(k) = i and αS(l) = j for customers
k, l ∈ CS and facilities i, j ∈ FS , into a solution S′ where αS′(k) = j and
αS′(l) = i; see Figure 7 for an exemplary move. This customer swap neighbor-
hood can be searched in O(|CS |

2) by Algorithm 4. It has already been used by
Contreras et al. [30] for the SSCFLP.

Algorithm 4: Customer Swap (Solution S)

repeat
δ = 0
ri = Di −

P

j∈C′|αS(j)=i dj , ∀i ∈ FS

forall l ∈ CS do
forall k ∈ CS do

if αS(l) 6= αS(k) then
if dl ≤ rαS(k) + dk ∧ dk ≤ rαS(l) + dl then

δ′ = −aαS(k),k − aαS(l),l + aαS(k),l + aαS(l),k

if δ′ < δ then
δ = δ′

store current move as best

if δ < 0 then
apply best move

until δ ≥ 0

7.3 Very Large Scale Neighborhood Search

Small neighborhoods as the customer swap neighborhood described above can be
searched relatively fast but often yield rather poor local optima only. Recently,

16 Markus Leitner, Günther R. Raidl

k

l

αS(k)

αS(l) αS′(k)

αS′(l)

k

l

Fig. 7. An exemplary move swapping the assignments of customers k and l.

Very Large Scale Neighborhood (VLSN) search approaches have been considered
for various problems to overcome limitations of simple standard neighborhood
structures. If such large neighborhoods can be efficiently searched they often lead
to superior solutions, since they allow for covering larger areas of a problem’s
search space; see e.g. [31, 32] for surveys on this topic.

Ahuja et al. [15] proposed very large scale neighborhoods for the Single Source
Capacitated Facility Location Problem (SSCFLP) based on the exchange of an
arbitrary number of customers and showed how to efficiently search them via
shortest path calculations on a so-called improvement graph. Since CConFL
contains a special variant of SSCFLP where some customers may be unassigned,
in the following we generalize their work on single-customer multi-exchanges to
be applicable to our problem variant.

To formally introduce those single-customer cyclic and path exchanges, we
define the remaining capacity of each facility i ∈ F w.r.t. a solution S as

rS(i) =

(

Di −
P

k∈CS |αS(k)=i dk if i ∈ FS

Di otherwise
, ∀i ∈ F.

Furthermore, by F(k) ∈ FS , ∀k ∈ CS , we denote the facility i ∈ FS customer
k is assigned to in S.

Analogously to Ahuja et al. [15], we define a single-customer cyclic exchange
w.r.t. solution S as a sequence R = (k1, k2, . . . , kq), ki 6= kj ∈ C, 1 ≤ i 6= j ≤ q,
such that each pair of currently assigned customers k, t ∈ FS , k 6= t, from R is
assigned to different facilities, i.e. F(k) 6= F(t). Furthermore, no two consecutive
customers of R may be currently unassigned, i.e. ki ∈ CS ∨ ki+1 ∈ CS , i =
1, . . . , q − 1, and k1 ∈ CS ∨ kq ∈ CS .

Each such sequence R defines a move from an actual solution S to a solution
S′ by releasing each assigned customer ki ∈ CS from its facility F(ki), 1 ≤ i ≤ q,
and subsequently assigning ki to the facility of its successor ki+1 in case ki+1 ∈
CS , 1 ≤ i ≤ q − 1. Finally, kq is assigned to F(k1) if k1 ∈ CS . A single-customer
cyclic exchange is feasible if customers may be assigned to the corresponding
facilities and all capacity conditions are not exceeded.

Similarly a single-customer path exchange w.r.t. a solution S is a sequence
P = (k1, k2, . . . , kq−1, w) of customers ki ∈ C, 1 ≤ i ≤ q − 1, and one facility

Lagrangian Decomposition for Capacitated Connected Facility Location 17

w ∈ F as last element of the sequence with w 6= F(ki) 6= F(kj), ki, kj ∈ CS ,
1 ≤ i 6= j ≤ q − 1. Thus, as for cyclic exchanges, each assigned customer
ki ∈ CS , i = 1, . . . , q − 1, is released and customers kj , j = 1, . . . , q − 2 are
assigned to their successors’ facilities F(kj+1) if kj+1 ∈ CS . Finally, instead of
interpreting the sequence as a cycle by eventually assigning the last customer to
the first customer’s original facility, kq−1 is simply assigned to w. As for cyclic
exchanges, a path exchange is feasible, if all assignment rules as well as capacity
constraints are respected.

Since applying a path exchange move might induce opening a facility and/or
closing one, we also need to determine corresponding changes in the costs w.r.t.
the Steiner tree in order to decide whether the corresponding move is actually
improving solution S. Since computing the exact additional costs or savings
would mean to re-compute a Steiner tree for each facility k ∈ F , we apply a faster
shortest path heuristic that returns an upper bound for additional costs and a
lower bound for savings, respectively. Thus, using those heuristic values ζ(i), ∀i ∈
F , we might miss some improving moves but can be sure that no non-improving
moves are considered as improving. To determine, ζ(i), ∀i ∈ F , we compute the
shortest path tree from 0 treating all solution edges as infrastructure, i.e. we
use modified edge costs c′e = 0, ∀e ∈ TS and c′e = ce, ∀e ∈ E \ TS . Thus, for
facilities i ∈ F \ FS , ζ(i) =

∑

e∈Q(i) c′e, where Q(i) denotes the edge set of the

cheapest path from 0 to i w.r.t. edge costs c′, is obviously an upper bound for the
additional connection costs of facility i. Furthermore, for open facilities i ∈ FS we
set ζ(i) = −

∑

e∈Q(i)\
“

S

j∈FS\{i} Q(j)
” ce, since we can obviously remove all edges

e ∈ Q(i)\
(

⋃

j∈FS\{i} Q(j)
)

from a solution after closing facility i. For SSCFLP,

Ahuja et al. [15] showed that improving path and cyclic exchanges correspond to
negative subset disjoint cycles in a correspondingly defined improvement graph.
Thus, in the following we show how to maintain this correlation between cycles
and improving moves for our problem variant, i.e. how to define the improvement
graph.

Improvement Graph: For each solution S to CConFL, we define the cor-
responding improvement graph I(S) = (N(S), M(S)). The node set N(S) =
Na(S) ∪ Nu(S) ∪ Np(S) ∪ {0} is the disjoint union of assigned regular nodes
uk ∈ Na(S), ∀k ∈ CS , unassigned regular nodes vk ∈ Nu(S), ∀k ∈ C \ CS ,
pseudo nodes wi ∈ Np(S), ∀i ∈ F , and an origin node o. The origin node o and
its adjacent arcs are included to model path exchanges by means of cycles in
I(S), see also [15].

The set of arcs M(S) is the disjoint union of
– arcs M (a,a)(S) between assigned regular nodes,
– arcs M (a,u)(S) from assigned to unassigned regular nodes,
– arcs M (u,a)(S) from unassigned to assigned regular nodes,
– arcs M (a,p)(S) from assigned regular to pseudo nodes,
– arcs M (u,p)(S) from unassigned regular to pseudo nodes,

18 Markus Leitner, Günther R. Raidl

– arcs M (p,o)(S) from pseudo nodes to the origin,
– arcs M (o,a)(S) from the origin to assigned regular nodes, and
– arcs M (o,u)(S) from the origin to unassigned regular nodes.

Next, we will describe these arcs as well as their costs γi,j , ∀(i, j) ∈ M(S),
corresponding to the resulting changes of the objective value formally as well as
w.r.t. their interpretation.

Arcs (uk, ul) ∈ M (a,a)(S) denote releasing customer l ∈ CS from i = F(l)
and in turn assigning customer k ∈ CS to facility i, leading to arc costs γuk,ul

=
ai,k − ai,l. Since, we must ensure that k can be assigned to F(l) as well as
that capacity constraints are respected, the corresponding arc set is defined as
M (a,a)(S) = {(uk, ul) | uk, ul ∈ Na(S) : F(l) ∈ Fk∧F(k) 6= F(l)∧rS(F(l))+dl ≥
dk}. Each arc (uk, vl) ∈ M (a,u)(S) = {(uk, vl) | uk ∈ Na(S), vl ∈ Nu(S)},
with corresponding costs γuk,vl

= pk from an assigned to an unassigned regular
node, models releasing customer k. Arcs (vk, ul) ∈ M (u,a)(S) = {(vk, ul) | vk ∈
Nu(S), ul ∈ Na(S) : F(l) ∈ Fk ∧ rS(F(l)) + dl ≥ dk} with costs γuk,vl

=
aF(l),k−aF(l),l−pk indicate releasing l from i = F(l) and subsequently assigning
the previously unassigned customer k to facility i ∈ FS .

M (a,p) consists of one arc (uk, wi) from each each assigned regular node to
each pseudo node if the corresponding customer k can be assigned to facility i,
i.e. M (a,p)(S) = {(uk, wi) | uk ∈ Na(S), wi ∈ Np(S) : i 6= F(k)∧i ∈ Fk∧rS(i) ≥
dk}. Since eventually occurring facility opening costs will be considered by arcs
going out of wi, costs γuk,wi

= ai,k are given by the costs of assigning customer
k to facility i. To allow for assigning currently unassigned customers k ∈ F \FS

to some facility i ∈ F without previously releasing another customer from i,
we include arcs (vk, wi) ∈ M (u,p)(S) = {(vk, wi) | vk ∈ Nu(S), wi ∈ Np(S) :
i ∈ Fk ∧ rS(i) ≥ dk}. As we additionally earn a customers prize here, arc
(vk, wi) ∈ M (u,p)(S) has costs γvk,wi

= ai,k − pk.
To model path exchanges as cycles in the graph, we further need to include

arcs from each pseudo node to the origin and arcs from the origin to assigned
as well as unassigned regular nodes. Arcs M (p,o)(S) = {(wi, 0) | wi ∈ Np(S)}
model eventually occurring opening and connection costs of facility i ∈ F , i.e.

γwi,o =

(

0 if i ∈ FS

fi + ζi otherwise
, ∀(wi, o) ∈ M (p,o).

Using an arc (o, uk) ∈ M (o,a)(S) = {(o, uk) | uk ∈ Na(S)} from the origin
node o to some assigned regular node uk releases customer k from its facility,
yielding arc costs

γo,uk
=

(

−aF(k),k if ∃l 6= k ∈ CS : F(k) = F(l)

−aF(k),k − fF(k) + ζF(k) otherwise
, ∀(o, uk) ∈ M (o,a).

Finally, arcs (o, vk) ∈ M (o,u)(S) = {(o, vk) | vk ∈ Nu(S)} from the origin to
some unassigned regular node are included for allowing to assign a new customer
without previously releasing another one. Consequently, those arcs have zero
costs, i.e. γo,vk

= 0, ∀(o, vk) ∈ M (o,u).

Lagrangian Decomposition for Capacitated Connected Facility Location 19

Searching for improving moves: Generalizing the definition given in [15]
we call a directed cycle (u1, . . . , uq), ui ∈ N(S), i = 1, . . . , q, of I(S) subset
disjoint, if each of its assigned regular nodes and pseudo nodes are associated
with different facility locations. If the total edge costs of such a cycle are negative,
it is called negative cost subset disjoint. Since only feasible arcs w.r.t. assignment
rules and capacity conditions are included in I(S), and edge costs reflect changes
in the objective value those negative cost subset disjoint cycles correspond to
improving path and cyclic exchange moves. However, if such a cycle does induce
opening facility i ∈ F \ FS as well as closing a facility j ∈ FS , a cycle’s cost
might not be equal to the actual cost changes when applying the move since the
additional costs/savings ζ due to adapting the Steiner tree have been computed
independently for each facility. Since opening and connecting a new facility and
assigning only one customer to it does only rarely pay off, this special case
is rather unlikely to occur in practice. Therefore, we simply check whether a
found cycle does simultaneously open and close two facilities and add eventually
occurring additional connection costs before deciding whether this cycle is an
improving one.

Thomson and Orlin [33] proved that deciding whether a graph contains a
negative subset disjoint cycle is NP-hard. Subsequently, Ahuja et al. [34] pro-
posed an effective heuristic for finding negative cost subset disjoint cycles based
on the label correcting algorithm for the shortest path problem. This heuristic
has already been used for the SSCFLP [15] and in practice rarely fails to find
existing negative cost subset disjoint cycles if started once from each regular
node. As shown in Algorithm 5, we search the neighborhood defined by the set
of single customer path and cyclic exchanges using a best improvement strategy,
adopting the heuristic of Ahuja et al. [15] to find negative subset disjoint cycles
which is also started from every regular node.

Figure 9 depicts an exemplary improvement graph I(S) = (N(S), M(S))
with respect to a solution S as shown in Figure 8 assuming that each clients
demant is equal to one, while each facilities maximum assignable demand is two.
Figure 10 shows an exemplary feasible cyclic exchange R = (k1, k4, k5, k2) with
respect to solution S. Thus after applying R, customer k2 will be assigned to
facility h, k1 to i, k4 to j, and finally k5 will be unassigned. Since k3 /∈ R it will
still be assigned to facility i. An exemplary path exchange P = (k2, k1, k4, j) is
shown in Figure 11. Here, k2 will be assigned to facility h, k1 to i, and k4 to j
after applying the corresponding move, while k3 and k5 will remain assigned to
their facilities i and j since k3, k5 /∈ P . Note that the origin node o is duplicated
in Figures 9, 10, and 11 to keep them simple.

8 Computational Results

For ConFL, Ljubić combined benchmark instances for the STP with instances for
uncapacitated facility location. Similarly, we created instances for CConFL2 by

2 available at http://www.ads.tuwien.ac.at/people/mleitner/cconfl/instances.tar.gz

20 Markus Leitner, Günther R. Raidl

Algorithm 5: Very Large Scale Neighborhood Search(Solution S)

repeat
δ = 0
construct improvement graph
forall k ∈ C do

heuristically find negative cost subset disjoint cycle C
δ =

P

(u,v)∈C γu,v

if C induces closing facility i ∈ FS and opening j ∈ F \ FS then

Q = Q(i) \
“

S

l∈FS\{i} Q(l)
”

δ = δ +
P

e∈Q∩Q(j) ce

if δ < δ′ then
δ = δ′

store current cycle as best move

if δ < 0 then
apply best move

until δ ≥ 0

k1 k2

k3
k4

k5

h

i j

Fig. 8. An exemplary Solution S.

u4

v2

u3 u1

u5

wh

wi

wj

oo

Fig. 9. Improvement graph I(S) =
(N(S), M(S)).

u4

v2

u3 u1

u5

wh

wi

wj

oo

Fig. 10. An exemplary cyclic exchange
R = (k1, k4, k5, k2).

u4

v2

u3 u1

u5

wh

wi

wj

oo

Fig. 11. An exemplary path exchange
P = (k2, k1, k4, j).

combining STP instances from the OR-library3 with instances for the SSCFLP
created with the instance generator4 of Kratica et al. [35].

3 http://people.brunel.ac.uk/˜mastjjb/jeb/orlib/steininfo.html
4 http://alas.matf.bg.ac.yu/˜kratica/instances/splp gen w32.zip

Lagrangian Decomposition for Capacitated Connected Facility Location 21

The node with index one in the STP instance is chosen as root node, while
|F | other nodes are randomly chosen as potential facility locations. Customers
with associated demands, assignment costs as well the maximum assignable de-
mands and opening costs for each facility are given by the SSCFLP instance.
Next, we need to choose reasonable customer prizes, high enough to ensure that
some customers will be supplied while avoiding creating relatively easy instances
by setting them too high. For each customer k ∈ C, we randomly select its prize

pk ∈ N0 from the interval
[

a(k), amax(k) + f
]

, where a(k) =
P

i∈F ai,k

|Fk|
denotes

the average assignment costs of customer k, amax(k) = maxi∈Fk
{ai,k} the max-

imum assignment costs of customer k, and f =
P

i∈F fi

|F | the average facility

opening costs. This ensures that each customer may be assigned to the major-
ity of potential facilities in a profitable way. In particular it turned out that
no customers or facilities are completely removed from an instance during pre-
processing. Finally, degree-one and degree-two filtering [36] is applied to remove
some Steiner nodes and edges.

We performed all computational experiments on a single core of an Intel
Core 2 Quad with 2.83GHz and 8GB RAM. ILOG CPLEX 12.1 has been used
for directly solving dMCF f , dMCF c as well as their LP relaxations dMCF f

LP

and dMCF c
LP. To allow for a fair comparison to our Lagrangian decomposition

based approaches, we used the single threaded variant of CPLEX.

Table 1 compares LP relaxation values of dMCF f and dMCF c for small test
instances using a time limit of 14400 seconds. We conclude that, although none of
the formulations theoretically dominates the other, dMCF f is on our instances
far more efficient from a computational perspective. Thus, we only consider
dMCF f for all further experiments. Further computational results for instances
where |F | = |C| are summarized in Table 2, and in Table 3 for instances with
|F | 6= |C|. Here, we apply a CPU-time limit of 7200 seconds. LD denotes the pure
Lagrangian decomposition approach applying the Lagrangian heuristic presented
in Section 6 without any further primal improvement, while LDS corresponds
to the variant applying the simpler primal improvement, i.e. considering the key
path and customer swap neighborhoods, and LDV applies the VLSN search
instead of the customer swap improvement, see also Algorithm 2. Since dMCF f

could not solve any instance to proven optimality within the given time limit,
we do not report its runtime in Tables 2 and 3.

We use the volume algorithm as described by Haouari and Siala [24] with
the following settings for approximately solving the Lagrangian dual problem.
Lagrangian multipliers are initialized by πk,e = c′e for assignment edges e ∈ E′\E
and by πk,e = ce/|C| for edges e ∈ E. The target value T is initially set to 1.2
and multiplied by 1.1 in case zLB > 0.9zUB where zUB and zLB denote the
so far best upper and lower bounds, respectively. ρ is initialized with 0.1 and
multiplied by 0.67 after 20 non-improving iterations in case ρ > 10−4 and by
1.5 in each improving iteration if ρ < 5 and if v̄ · vt ≥ 0. Instead of computing
λOPT as suggested in [24], we always use λ = λMAX which we initialize with 0.01.
After every 100 iterations we multiply λMAX by 0.85 in case the lower bound did

22 Markus Leitner, Günther R. Raidl

Table 1. Comparison of LP relaxation values and corresponding CPU-times (in sec-
onds) for dMCF f and dMCF c on small instances (time limit 14400s).

Instance dMCF f
LP dMCF c

LP

Name |F | |C| |V | |E| obj. time obj. time

c10-mo75 75 75 408 908 2878.7 94 2852.2 3272
c10-mq75 75 75 405 905 7095.2 116 7077.3 1386
c10-ms75 75 75 407 907 9506.3 194 9479.4 4487
d10-mo75 75 75 771 1770 2772.6 484 - 14400
d10-mq75 75 75 775 1774 7295.0 167 7278.9 3458
d10-ms75 75 75 781 1780 10069.3 1103 - 14400

c10-mo 75 200 404 904 8153.5 713 8118.2 6450
c10-mp 75 200 403 903 14917.4 228 - 14400
c10-mq 75 200 403 903 20717.2 328 - 14400

c10-mo 200 75 435 935 2957.0 6229 - 14400
c10-mp 200 75 428 928 5444.6 3439 5432.0 11206
c10-mq 200 75 430 930 8093.5 1931 8076.6 10748

improve less than 1% and if λMAX > 10−5. The volume algorithm is terminated
after 250 consecutive non-improving iterations or if the time limit is reached.

Comparing Tables 1, 2, and 3 with respect to the lower bounds, we con-
clude that dMCF f does generate the best lower bounds if given enough time,
while the lower bounds of our Lagrangian decomposition approaches are ap-
proximately equal to those of dMCFLP

c , at least for those small instances where
dMCFLP

c could be solved. However, for larger instances solving dMCFLP
f often

requires longer than applying the Lagrangian decomposition approaches which
generate a slightly worse lower bound but additionally compute feasible solu-
tions to CConFL. LDV clearly outperforms the other approaches with respect
to the primal solution quality, i.e. the resulting upper bounds. For instances with
|F | = |C|, see Table 2, LDV produced the best results for 27 out of 36 instances,
while LDS is the winner on six, and dMCF f on only three instances. Similarly,
for instances with |F | 6= |C|, LDV produced better upper bounds than the other
approaches in 20 out of 22 cases, while LDS as well as dMCF f performed best
with respect to primal solution quality on only a single instance each.

Although its lower bounds are worse than those of model dMCF f , LDV
also outperforms the other approaches with respect to the resulting relative
gaps between upper and lower bounds. While LDV yielded the smallest gaps
for 18, dMCF f for 13, and LDS for six out of 36 instances if |F | = |C|, LDV
even performs better compared to the other approaches if |F | 6= |C|. Here,
dMCF f won in two, LDS in one, and LDV in 10 out of 12 cases. Furthermore,
while dMCF f sometimes produces enormous gaps or even completely fails, all
Lagrangian approaches are relatively stable with respect to the resulting gaps.
Except for three instances with |F | = 200 and |C| = 75, which seem to be
particularly hard, the LDV’s gaps between lower and upper bounds never exceed
4.4% and are smaller than or equal to 2% for 70% of all tested instances.

Lagrangian Decomposition for Capacitated Connected Facility Location 23

Finally, we observe from Tables 2 and 3 that, especially for larger instances,
all Lagrangian approaches usually need significantly less CPU time than solving
the LP relaxation of model dMCF f . Due to applying primal improvement only
to a relatively small, but highly promising subset of candidate solutions derived
by our Lagrangian heuristic, the overhead of LDS and LDV usually is only
moderate. Sometimes LDS or LDV are even faster than LD since a better
upper bound eventually found in an early iteration of the volume algorithm
does influence Lagrangian multipliers and the whole process of approximately
solving the Lagrangian dual. Even though LDV tends to need more time than
LDS for larger instances, no clear advantages with respect to runtime can be
observed for one of those two approaches.

9 Conclusions and Outlook

In this article we considered a generalized variant of the rooted connected facil-
ity location problem with capacity constraints and customer prizes where only
the most profitable client subset shall be supplied. We presented two mixed inte-
ger programming formulations for CConFL based on multi-commodity flows and
showed that neither of those dominates the other one. Furthermore, we proposed
an approach based on Lagrangian relaxation decomposing CConFL, into three
types of independent subproblems. Using a Lagrangian heuristic we derive feasi-
ble solutions in each iteration of the volume algorithm which we use for solving
the Lagrangian dual. Furthermore, we discussed two hybrid methods combin-
ing the Lagrangian approach with local search and VLSN search. Experimental
results indicated that especially the approach using VLSN is able to generate
high quality solutions with tight gaps. By applying those primal improvements
to highly promising solutions only, the additionally needed computational time
is relatively small. It may be possible to further reduce the required time, by
using alternative algorithms for solving the negative subset disjoint cycle prob-
lem [37] within our VLSN approach. We argue that our approach is feasible for
solving even larger instances, since it can be easily parallelized as the various
subproblems of our relaxed model are completely independent of each other.
Furthermore, our primal improvement approach is naturally composed out of
two independent subproblems, i.e. a Steiner tree problem and a single source
capacitated facility location problem.

We are currently working on exact approaches for medium sized instances
of CConFL based on branch-and-cut and branch-cut-and-price. Furthermore,
we plan to develop fast metaheuristics for solving very large scale instances of
CConFL within reasonable time.

Acknowledgements

This work is supported by the Austrian Research Promotion Agency (FFG) un-
der grant 811378 and by the Austrian Science Fund (FWF) under grant P20342-
N13.

2
4

M
a
rk

u
s

L
ei

tn
er

,
G

ü
n
th

er
R

.
R

a
id

l

Table 2. Results on instances with |F | = |C|.
Instance lower bound upper bound gap in % CPU-time [s]

Name |F | |C| |V | |E| dMCF f
LP dMCF f LD LDS LDV dMCF f LD LDS LDV dMCF f

LP LD LDS LDV dMCF f
LP LD LDS LDV

c10-mo75 75 75 408 908 2878.7 2880.1 2851.9 2851.7 2852.1 2944.2 2988.2 2962.4 2938.4 2.2 4.8 3.9 3.0 94 107 106 81
c10-mq75 75 75 405 905 7095.2 7105.2 7079.2 7078.4 7076.9 7171.3 7239.1 7177.4 7158.0 0.9 2.3 1.4 1.1 116 130 101 73
c10-ms75 75 75 407 907 9506.3 9509.5 9479.9 9478.9 9479.9 9578.1 9629.8 9581.1 9554.5 0.7 1.6 1.1 0.8 194 194 106 175
c15-mo75 75 75 500 2500 2747.5 2748.7 2737.5 2738.2 2738.3 2833.3 2855.2 2815.3 2793.4 3.1 4.3 2.8 2.0 877 133 155 127
c15-mq75 75 75 500 2500 7466.5 7469.7 7457.2 7457.6 7456.8 7966.2 7576.1 7541.4 7505.3 6.6 1.6 1.1 0.6 1567 169 177 143
c15-ms75 75 75 500 2500 9354.6 9357.7 9341.7 9342.1 9343.0 10918.9 9487.5 9408.6 9390.8 16.7 1.6 0.7 0.5 2040 302 185 202
d10-mo75 75 75 771 1770 2772.6 2776.3 2741.6 2741.8 2741.5 2842.2 2921.9 2849.3 2830.7 2.4 6.6 3.9 3.3 484 224 228 244
d10-mq75 75 75 775 1774 7295.0 7299.7 7280.9 7281.5 7281.3 7373.0 7432.9 7358.7 7359.5 1.0 2.1 1.1 1.1 167 175 184 216
d10-ms75 75 75 781 1780 10069.3 10073.9 10019.0 10018.9 10018.9 10233.6 10257.3 10213.2 10167.4 1.6 2.4 1.9 1.5 1103 242 218 158
d15-mo75 75 75 1000 5000 2641.8 2645.0 2636.6 2636.9 2636.8 3397.2 2743.2 2697.1 2699.6 28.4 4.0 2.3 2.4 2402 251 268 306
d15-mq75 75 75 1000 5000 - 7380.2 7370.8 7370.1 7369.0 8528.6 7473.5 7433.8 7445.2 15.6 1.4 0.9 1.0 7200 380 239 147
d15-ms75 75 75 1000 5000 - 9237.4 9221.6 9222.2 9221.1 11007.6 9334.3 9292.5 9311.3 19.2 1.2 0.8 1.0 7200 298 549 237

c10-mo100 100 100 406 906 3330.9 3333.0 3303.2 3297.7 3302.3 3380.0 3486.1 3437.3 3406.3 1.4 5.5 4.2 3.1 217 222 470 300
c10-mq100 100 100 406 906 9352.6 9359.0 9322.5 9322.6 9322.5 9473.7 9610.5 9491.5 9460.4 1.2 3.1 1.8 1.5 367 250 234 228
c10-ms100 100 100 416 916 11740.1 11746.0 11697.9 11693.2 11696.8 11855.1 11979.1 11896.3 11899.4 0.9 2.4 1.7 1.7 166 288 207 243
c15-mo100 100 100 500 2500 3422.6 3426.5 3413.8 3413.6 3413.7 3933.8 3562.4 3542.6 3493.6 14.8 4.4 3.8 2.3 2809 314 295 209
c15-mq100 100 100 500 2500 9120.5 9125.1 9118.6 9113.3 9117.2 9739.6 9331.9 9214.8 9192.4 6.7 2.3 1.1 0.8 4008 270 205 173
c15-ms100 100 100 500 2500 11277.0 11281.4 11264.0 11263.6 11264.6 12722.2 11533.2 11426.2 11379.1 12.8 2.4 1.4 1.0 5204 412 329 386
d10-mo100 100 100 788 1787 3376.7 3380.7 3337.8 3339.6 3340.2 3483.2 3540.9 3474.6 3461.1 3.0 6.1 4.0 3.6 435 358 465 253
d10-mq100 100 100 778 1777 9179.2 9185.4 9129.6 9128.1 9130.3 9258.9 9406.5 9374.9 9261.6 0.8 3.0 2.7 1.4 581 400 278 486
d10-ms100 100 100 783 1782 11049.0 11055.0 11000.4 11001.3 11000.7 11197.6 11348.6 11234.3 11161.8 1.3 3.2 2.1 1.5 603 330 292 247
d15-mo100 100 100 1000 5000 - 3314.0 3297.8 3298.6 3298.8 3862.1 3454.6 3424.1 3369.8 16.5 4.8 3.8 2.2 - 704 551 404
d15-mq100 100 100 1000 5000 - - 9149.5 9150.4 9149.8 23780.0 9422.2 9232.0 9256.4 - 3.0 0.9 1.2 - 457 373 492
d15-ms100 100 100 1000 5000 - 11332.4 11309.2 11307.7 11307.3 12715.9 11549.3 11398.4 11413.0 12.2 2.1 0.8 0.9 - 522 645 370

c10-mo200 200 200 433 933 7116.2 7123.0 7052.9 7053.3 7052.5 7329.4 7440.1 7325.2 7269.6 2.9 5.5 3.9 3.1 354 4302 7200 2174
c10-mq200 200 200 428 928 19270.3 19279.8 19211.7 19213.2 19211.8 19539.8 19673.0 19574.3 19436.1 1.3 2.4 1.9 1.2 579 3978 4409 5856
c10-ms200 200 200 431 931 25190.6 25197.3 25115.3 25114.6 25115.1 25327.2 25680.7 25627.1 25306.5 0.5 2.3 2.0 0.8 1040 7200 4354 4327
c15-mo200 200 200 500 2500 - 7139.0 7108.8 7105.5 7106.8 8383.9 7427.4 7450.5 7252.3 17.4 4.5 4.9 2.0 7200 3797 3142 4129
c15-mq200 200 200 500 2500 - 19191.4 19171.1 19171.0 19171.0 21455.8 19495.3 19326.5 19290.1 11.8 1.7 0.8 0.6 7200 3459 4961 4823
c15-ms200 200 200 500 2500 - 24683.6 24654.4 24655.8 24655.2 26764.0 25302.2 25003.3 24854.6 8.4 2.6 1.4 0.8 7200 4662 4197 4899
d10-mo200 200 200 816 1815 7194.1 7197.4 7107.3 7106.9 7107.9 8021.9 7599.7 7448.3 7331.6 11.5 6.9 4.8 3.1 3273 5498 4613 7200
d10-mq200 200 200 814 1813 18789.0 18796.9 18720.8 18720.9 18720.5 21247.5 19214.6 19025.8 18971.6 13.0 2.6 1.6 1.3 3791 5900 4770 3119
d10-ms200 200 200 806 1805 24509.6 24517.3 24426.7 24425.9 24426.9 27880.1 24856.3 24730.5 24696.9 13.7 1.8 1.2 1.1 6624 6681 4340 4686
d15-mo200 200 200 1000 5000 - - 7129.0 7126.9 7127.8 - 7448.1 7381.0 7329.1 - 4.5 3.6 2.8 7200 5159 5822 5174
d15-mq200 200 200 1000 5000 - - 19457.0 19455.3 19457.1 - 19880.4 19772.2 19606.4 - 2.2 1.6 0.8 7200 4743 5081 7200
d15-ms200 200 200 1000 5000 - - 24007.7 24008.3 24009.4 73434.0 24539.0 24201.9 24198.9 - 2.2 0.8 0.8 7200 4666 5835 6050

L
a
g
ra

n
g
ia

n
D

eco
m

p
o
sitio

n
fo

r
C

a
p
a
cita

ted
C

o
n
n
ected

F
a
cility

L
o
ca

tio
n

2
5

Table 3. Results on instances with |F | 6= |C|.
Instance lower bound upper bound gap in % CPU time [s]

Name |F | |C| |V | |E| dMCF f
LP dMCF f LD LDS LDV dMCF f LD LDS LDV dMCF f

LP LD LDS LDV dMCF f
LP LD LDS LDV

c10-mo 75 200 404 904 8153.5 8158.2 8117.6 8118.5 8116.9 9181.3 8630.1 8442.8 8258.6 12.5 6.3 4.0 1.7 713 591 736 1458
c10-mp 75 200 403 903 14917.4 14924.5 14882.6 14881.6 14882.2 15056.9 15407.4 15225.5 15059.9 0.9 3.5 2.3 1.2 228 707 651 1672
c10-mq 75 200 403 903 20717.2 20725.5 20681.3 20681.6 20681.1 20915.4 21150.6 20957.2 20844.9 0.9 2.3 1.3 0.8 328 901 1387 1468
c15-mo 75 200 500 2500 - 7948.0 7935.1 7935.4 7935.3 9634.2 8166.6 8068.3 8049.9 21.2 2.9 1.7 1.4 7200 870 839 1609
c15-mp 75 200 500 2500 14493.1 14497.5 14483.2 14483.2 14483.2 15722.6 14809.9 14643.5 14608.0 8.5 2.3 1.1 0.9 5533 919 952 977
c15-mq 75 200 500 2500 21570.7 21576.2 21561.4 21561.4 21561.3 22973.5 21940.2 21770.5 21662.6 6.5 1.8 1.0 0.5 3575 931 984 2183
d10-mo 75 200 775 1775 8228.0 8234.7 8183.6 8181.9 8182.7 8511.6 8717.3 8604.5 8427.4 3.4 6.5 5.2 3.0 2166 853 791 1421
d10-mp 75 200 775 1774 14836.9 14842.5 14779.3 14778.0 14779.4 15075.2 15271.8 15181.1 14975.6 1.6 3.3 2.7 1.3 2265 915 857 1532
d10-mq 75 200 774 1773 20834.2 20839.4 20766.9 20766.6 20767.2 21044.1 21221.4 21081.6 21009.1 1.0 2.2 1.5 1.2 1001 1052 1035 2476
d15-mo 75 200 1000 5000 - - 8127.5 8128.2 8128.5 20610.0 8451.4 8401.2 8262.5 - 4.0 3.4 1.6 7200 1528 1325 2268
d15-mp 75 200 1000 5000 - 14731.9 14717.0 14717.6 14718.5 15760.3 15115.2 14893.5 14839.6 7.0 2.7 1.2 0.8 7200 1164 1202 1090
d15-mq 75 200 1000 5000 - - 21407.6 21407.0 21407.8 57923.0 21741.0 21588.7 21526.7 - 1.6 0.8 0.6 7200 1419 1672 1329

c10-mo 200 75 435 935 2957.0 2957.0 2952.0 2951.1 2949.8 7209.0 3321.4 3179.6 3044.6 143.8 12.5 7.7 3.2 6229 484 434 509
c10-mp 200 75 428 928 5444.6 5448.9 5434.5 5434.9 5434.9 5517.8 5668.1 5638.7 5506.6 1.3 4.3 3.7 1.3 3439 556 502 579
c10-mq 200 75 430 930 8093.5 8098.0 8080.2 8080.3 8080.9 8203.5 8208.3 8189.2 8290.7 1.3 1.6 1.3 2.6 1931 438 494 460
c15-mo 200 75 500 2500 - 2948.5 2947.3 2946.0 2947.4 7189.0 3312.9 3187.0 3156.9 143.8 12.4 8.2 7.1 7200 475 437 350
c15-mp 200 75 500 2500 - 5150.7 5153.6 5152.6 5151.3 12693.0 5446.2 5296.4 5262.2 146.4 5.7 2.8 2.2 7200 561 627 455
c15-mq 200 75 500 2500 - 7667.3 7666.4 7668.3 7668.4 10212.3 7837.4 7810.8 7789.5 33.2 2.2 1.9 1.6 7200 509 533 398
d10-mo 200 75 811 1810 - 3040.5 3026.3 3028.4 3028.5 7500.0 3887.1 3971.5 3825.4 146.7 28.4 31.1 26.3 7200 461 454 381
d10-mp 200 75 809 1808 5377.7 5381.4 5361.8 5361.9 5360.9 5598.2 5777.4 5657.6 5594.5 4.0 7.8 5.5 4.4 5608 628 540 558
d10-mq 200 75 820 1819 7698.7 7702.2 7675.5 7676.7 7676.4 10753.2 8127.2 7890.6 7827.8 39.6 5.9 2.8 2.0 3620 449 533 546
d15-mo 200 75 1000 5000 - - 2950.1 2951.6 2951.1 - 3633.4 3265.0 3236.2 - 23.2 10.6 9.7 7200 776 722 500
d15-mp 200 75 1000 5000 - - 5387.3 5387.8 5387.2 13849.0 5828.8 5625.1 5486.3 - 8.2 4.4 1.8 7200 680 730 621
d15-mq 200 75 1000 5000 - - 7564.3 7563.6 7571.7 - 8040.7 7805.4 7704.4 - 6.3 3.2 1.8 7200 663 599 471

26 Markus Leitner, Günther R. Raidl

References

1. Leitner, M., Raidl, G.R.: A lagrangian decomposition based heuristic for capaci-
tated connected facility location. In Voß, S., Caserta, M., eds.: Proceedings of the
8th Metaheuristic International Conference (MIC 2009), Hamburg, Germany (July
2009)

2. Karp, R.M.: Reducibility among combinatorial problems. In Miller, E., Thatcher,
J.W., eds.: Complexity of Computer Computations. Plenum Press (1972) 85–103

3. Cornuejol, G., Nemhauser, G.L., Wolsey, L.A.: The uncapacitated facility location
problem. In Mirchandani, P.B., Francis, R.L., eds.: Discrete Location Theory.
Wiley (1990) 119–171

4. Karger, D.R., Minkoff, M.: Building Steiner trees with incomplete global knowl-
edge. In: Proceedings of the 41st Annual Symposium on Foundations of Computer
Science, IEEE Computer Society (2000) 613–623

5. Gupta, A., Kleinberg, J., Kumar, A., Rastogi, R., Yener, B.: Provisioning a virtual
private network: a network design problem for multicommodity flow. In: Proceed-
ings of the 33rd annual ACM symposium on theory of computing. (2001) 389–398

6. Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location
problems. Algorithmica 40(4) (2004) 245–269

7. Hasan, M.K., Jung, H., Chwa, K.: Approximation algorithms for connected facility
location problems. Journal of Combinatorial Optimization 16(2) (2008) 155–172

8. Eisenbrand, F., Grandoni, F., Rothvoß, T., Schäfer, G.: Approximating connected
facility location problems via random facility sampling and core detouring. In:
ACM-SIAM Symposium on Discrete Algorithms. (2008) 1174–1183

9. Ljubić, I.: A hybrid VNS for connected facility location. In Bartz-Beielstein, T.,
et al., eds.: Hybrid Metaheuristics, 4th International Workshop, HM 2007. Volume
4771 of LNCS., Springer (2007) 157–169

10. Tomazic, A., Ljubić, I.: A GRASP algorithm for the connected facility location
problem. In: Proceedings of the 2008 International Symposium on Applications
and the Internet, IEEE Computer Society (2008) 257–260

11. Raghavan, S., Bardossy, M.G.: Dual based heuristics for the connected facility
location problem. In Scutellà, M.G., et al., eds.: Proceedings of the International
Network Optimization Conference 2009. (2009)

12. Leitner, M., Raidl, G.R.: Variable neighborhood search for a prize collecting ca-
pacity constrained connected facility location problem. In: Proceedings of the
2008 International Symposium on Applications and the Internet, IEEE Computer
Society (2008) 233–236

13. Khuller, S., Zhu, A.: The general steiner tree-star problem. Information Processing
Letters 84(4) (2002) 215–220

14. Winter, P.: Steiner problem in networks: a survey. Networks 17(2) (1987) 129–167
15. Ahuja, R.K., Orlin, J.B., Pallottino, S., Scaparra, M.P., Scutella, M.G.: A multi-

exchange heuristic for the single-source capacitated facility location problem. Man-
agement Science 50(6) (2004) 749–760

16. Bahiense, L., Barahona, F., Porto, O.: Solving steiner tree problems in graphs with
lagrangian relaxation. Journal of Combinatorial Optimization 7(3) (2003) 259–282

17. Holmberg, K., Rönnqvist, M., Yuan, D.: An exact algorithm for the capacitated
facility location problems with single sourcing. European Journal of Operational
Research 113 (1999) 544–559

18. Beasley, J.E.: Lagrangean relaxation. In Reeves, C.R., ed.: Modern heuristic tech-
niques in combinatorial problems., Blackwell Scientific Publications (1993) 243–303

Lagrangian Decomposition for Capacitated Connected Facility Location 27

19. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1 (1959) 269–271

20. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co. (1979)

21. Martello, S., Pisinger, D., Toth, P.: Dynamic programming and strong bounds for
the 0-1 knapsack problem. Management Science 45(3) (1999) 414–424

22. Barahona, F., Anbil, R.: The volume algorithm: producing primal solutions with
a subgradient method. Mathematical Programming 87(3) (2000) 385–399

23. Fisher, M.L.: The Lagrangian relaxation method for solving integer programming
problems. Management Science 27(1) (1981) 1–18

24. Haouari, M., Siala, J.C.: A hybrid Lagrangian genetic algorithm for the prize
collecting Steiner tree problem. Computers and Operations Research 33(5) (2006)
1274–1288

25. Minkoff, M.: The prize collecting Steiner tree problem. Master’s thesis, Mas-
sachusetts Institute of Technology (2000)

26. Voß, S.: Steiner’s problem in graphs: heuristic methods. Discrete Applied Mathe-
matics 40 (1992) 45–72

27. Martins, S.L., Resende, M.G.C., Ribeiro, C.C., Pardalos, P.M.: A parallel GRASP
for the Steiner tree problem in graphs using a hybrid local search strategy. Journal
of Global Optimization 17(1-4) (2000) 267–283

28. Verhoeven, M.G.A., Severens, M.E.M.: Parallel local search for steiner trees in
graphs. Annals of Operations Research 90 (1999) 185–202

29. Leitner, M., Raidl, G.R.: Lagrangian decomposition, metaheuristics, and hybrid
approaches for the design of the last mile in fiber optic networks. In Blesa, M.J.,
et al., eds.: Hybrid Metaheuristics 2008. Volume 5296 of LNCS., Springer (2008)
158–174

30. Contreras, I.A., Diaz, J.A.: Scatter search for the single source capacitated facility
location problem. Annals of Operations Research 157(1) (2008) 73–89

31. Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale
neighborhood search techniques. Discrete Applied Mathematics 123(1-3) (2002)
75–102

32. Chiarandini, M., Dumitrescu, I., Stützle, T.: Very large-scale neighborhood search:
Overview and case. In Blum, C., Aquilera, M.J.B., Roli, A., Sampels, M., eds.:
Hybrid Metaheuristics, An Emerging Approach to Optimization. Volume 114 of
Studies in Computational Intelligence. Springer (2008)

33. Thompson, P.M., Orlin, J.B.: The theory of cyclic transfers. Technical Report OR
200-89, Massachusetts Institute of Technology, Operations Research Center (1989)

34. Ahuja, R.K., Orlin, J.B., Sharma, D.: Multi-exchange neighborhood structures
for the capacitated minimum spanning tree problem. Mathematical Programming
91(1) (2001) 71–97

35. Kratica, J., Tosic, D., Filipovic, V., Ljubić, I.: Solving the simple plant location
problem by genetic algorithm. RAIRO Operations Research 35 (2001) 127–142

36. Beasley, J.E.: An algorithm for the Steiner problem in graphs. Networks 14(1)
(1984) 147–159

37. Dumitrescu, I.: Constrained Path and Cycle Problems. PhD thesis, University of
Melbourne (2002)

