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1 Introduction

We consider a generalized version of the rooted Connected Facility Location Problem (ConFL) with
capacities and prizes on clients as well as capacity constraints on potential facilities. Furthermore,
we are interested in selecting and connecting the most profitable client subset (i.e. a prize collecting
variant) instead of mandatorily connecting all clients.
Connected Facility Location Problems occur for instance when increasing the bandwidth of existing
networks to meet growing bandwidth requirements of customers [12, 13]. In such scenarios new
routes are installed between some source and so called facilities acting as mediation points between
the so far existing and the newly installed network. Each facility is able to meet the demands of
several assigned customers up to some maximum available capacity (capacity constraints). Further-
more, next to costs for installing routes to facilities, facility installation costs (opening costs) as well
as costs for assigning a customer to a facility (assignment costs) might occur. On the other hand
for each supplied customer a return of invest (customer prize) is obtained.
Formally, we are given an undirected graph G = (V, E) with a dedicated root node 0 ∈ V and edge
costs ce ≥ 0, ∀e = (u, v) ∈ E, corresponding to the costs of installing a new route between u and v.
Furthermore, we are given a set of potential facility locations F ⊆ V with associated opening costs
fi ≥ 0 and maximum assignable demands Di ∈ N0, ∀i ∈ F , as well as clients C with individual
demands dk ∈ N0 and prizes pk ≥ 0, ∀k ∈ C, (i.e. the expected return on invest). Finally we are
given costs aik ≥ 0, ∀i ∈ F, ∀k ∈ C for assigning the complete demand of client k to facility i. If a
client k may not be assigned to a potential facility i we assume aik = ∞.
A solution to this Capacitated Connected Facility Location Problem (CConFL) S = (R, T, F ′, C ′, α)
consists of a Steiner tree (R, T ) with R ⊆ V , T ⊆ E connecting the set of opened facilities F ′ ⊆ F
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with the root node 0 as well as a of subset of clients C ′ ⊆ C and a mapping α : C ′ → F ′ feasibly
(i.e. respecting the capacity constraints) assigning clients c ∈ C ′ to open facilities i ∈ F ′. Each
client may be assigned to at most one facility (single source). Let αk ∈ F ′ denote the facility a
customer k ∈ C ′ is assigned to. The objective function of CConFL is given by

c(S) =
∑

e∈T

ce +
∑

i∈F ′

fi +
∑

k∈C′

aαk,k +
∑

k∈C\C′

pk

An optimal solution S∗ (i.e. a most profitable one) is given by the minimal objective value, i.e.
c(S∗) ≤ c(S) for all feasible solutions S. Figure 1 depicts an exemplary problem instance of CConFL
while Figure 2 visualizes a possible solution to this instance. Since CConFL combines the Steiner
Tree Problem (STP) on a graph with the Single Source Capacitated Facility Location Problem
(SSCFLP) which are both NP-hard, CConFL is NP-hard, too.

Figure 1: Problem instance. Figure 2: Exemplary solution.

root node

Steiner node

facility node

customer node

Preprocessing: In a preprocessing step we remove all non-profitable assignments of customers
k ∈ C to facilities i ∈ F (i.e. all assignments where aik ≥ pk). Furthermore, we identify and
remove all facilities that are obviously not part of an optimal solution by solving a fractional
knapsack problem for each facility i ∈ F with knapsack size Di, and one item with weight dk and
profit pk − aik for each assignable customer. Facilities i ∈ F can be removed if the profit of the
optimal solution to this knapsack problem is smaller than or equal to the facility opening costs fi.
For the remainder of this paper, we assume that the previously defined sets C and F represent the
corresponding sets after all preprocessing steps. Furthermore, we denote by Ci = {k ∈ C | aik ≤ pk}
the resulting set of customers that may be assigned to a facility i ∈ F and by Fk = {i ∈ F | k ∈ Ci}
the set of facilities a customer k ∈ C may be assigned to. For better readability we use (u, v) for
undirected as well as directed edges whenever the meaning is clear from the context.

We briefly sketch related work in Section 2 before presenting a detailed description of our
Lagrangian decomposition approach in Section 3. While Section 4 explains the Lagrangian heuristic
used to generate feasible solutions, Section 5 shows how these solutions are improved by local search
in order to reduce the resulting optimality gaps. An exact approach to CConFL is presented in
Section 6, computational results are given in Section 7 and we finally conclude in Section 8.

2 Related Work

Karger and Minkoff [10] motivated Connected Facility Location by the maybecast problem and
described a constant factor approximation. Since then several approximation results for different
versions of ConFL have been suggested. A factor 8.55 primal-dual approximation algorithm as well
as a factor 4.55 approximation for the rent-or-buy problem (no opening costs, facilities may be
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opened at all nodes) have been presented by Swamy and Kumar [17]. Recently, Hasan et al. [9]
described a factor 8.29 approximation for the case of edge costs obeying the triangle inequality based
on LP rounding and a factor 7 approximation in case all opening costs are equal. Eisenbrand et
al. [6] presented a randomized approximation algorithm for ConFL with an expected approximation
ratio of 4 and showed how their algorithm can be derandomized with a resulting approximation
factor of 4.23. Ljubic [13] described a Variable Neighborhood Search (VNS) approach as well as an
exact method based on directed connection cuts for the rooted CConFL, while Tomazic et al. [18]
suggested a Greedy Randomized Adaptive Search Procedure and an exact approach based on a
transformation to the Minimum Steiner Aborescence problem for an unrooted variant of ConFL.
In earlier work [12] we presented two VNS variants for a prize collecting version with capacity
constraints but which does not consider opening and assignment costs. To the best of our knowledge
our concrete variant of the Connected Facility Location Problem which contains those previously
discussed problem variants as special cases has not been considered so far.

3 Lagrangian Decomposition

To model CConFL by means of an Integer Linear Program (ILP), we define an extended graph
G′ = (V ′, E′) combining G with the set of customers C as additional nodes and potential assignments
between facilities and customers as additional edges (assignment edges). Formally, G′ is given by
its node set V ′ = V ∪ C and its edge set E′ = E ∪ {(i, j) | i ∈ F ∧ j ∈ Ci}. Edge costs c′e ≥ 0 are
defined as

c′e =

{

ce if e ∈ E

aik else
,∀e = (i, k) ∈ E′.

We model CConFL using binary variables xe, ∀e ∈ E′, indicating whether an edge e is part of the
solution (xe = 1). Variables zi ∈ {0, 1}, ∀i ∈ F , specify if a facility i is opened (fi = 1) while
variables yk ∈ {0, 1}, ∀k ∈ C, denote if a customer k is assigned to an opened facility (yk = 1).
Finally variables sk

e ∈ {0, 1}, ∀k ∈ C, ∀e ∈ E′ indicate whether an edge e ∈ E′ is part of the unique
path from the root node to a connected customer node k (sk

e = 1). By Pk ∈ {0, 1}|E
′| we denote all

incidence vectors corresponding to paths from 0 to customer k using exactly one assignment edge
(i, k) ∈ E′ \ E.

min
∑

e∈E′

c′exe +
∑

i∈F

fizi +
∑

k∈C

pk(1 − yk) (1)

s.t. sk
e ≤ xe ∀k ∈ C, ∀e ∈ E′ (2)

sk ∈ Pk if yk = 1 ∀k ∈ C (3)

xik ≤ zi ∀i ∈ F, ∀k ∈ Ci (4)
∑

k∈Ci

dkxik ≤ Dizi ∀i ∈ F (5)

sk
e ∈ {0, 1} ∀k ∈ C, ∀e ∈ E′ (6)

xe ∈ {0, 1} ∀e ∈ E′ (7)

zi ∈ {0, 1} ∀i ∈ F (8)

yk ∈ {0, 1} ∀k ∈ C (9)
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We relax the coupling constraints (2) in a classical Lagrangian fashion (see e.g. [4] for an intro-
duction to Lagrangian relaxation), yielding model LR(π) which is parametrized by the Lagrangian
multipliers πk,e ≥ 0, ∀k ∈ C, ∀e ∈ E′:

min
∑

e∈E′

c′exe +
∑

i∈F

fizi +
∑

k∈C

pk(1 − yk) +
∑

k∈C

∑

e∈E′

πk,e · (s
k
e − xe) =

=
∑

k∈C

pk +
∑

k∈C

(

∑

e∈E′

πk,es
k
e − pkyk

)

+
∑

e∈E′

(

c′e −
∑

k∈C

πk,e

)

xe +
∑

i∈F

fizi

s.t. (3) − (9)

Our model decomposes into two independent subproblems LDs,y(π) for determining variables sk
e ,

∀k ∈ C, ∀e ∈ E′ and yk, ∀k ∈ C, and LDx ,f (π) for determining variables xe, ∀e ∈ E′, and fi,
∀i ∈ F .

(LDs,y(π)) min
∑

k∈C

pk +
∑

k∈C

(

∑

e∈E′

πk,ef
k
e − pkyk

)

(10)

s.t. sk ∈ Pk if yk = 1 ∀k ∈ C (11)

(6), (9) (12)

LDs,y(π) can be solved by computing q ∈ Pk corresponding to a cheapest path to each customer
node k ∈ C including exactly one assignment edge (i, k) ∈ E′ \ E using edge costs πk,e. The
corresponding variables sk

e , ∀e ∈ E′ | qe = 1, and yk are set to one if the total costs of such a path
are smaller than pk.

(LDx ,f (π)) min
∑

e∈E

(

ce −
∑

k∈C

πk,e

)

xe+

+
∑

i∈F

fizi +
∑

e=(i,k)∈E′|
i∈F∧k∈Ci

(

c′ik −
∑

k∈C

πk,e

)

xik (13)

s.t.
∑

k∈Ci

dkxik ≤ Dizi ∀i ∈ F (14)

xik ≤ zi ∀i ∈ F, ∀k ∈ Ci (15)

(7), (8) (16)

For edges e ∈ E, LDx ,f (π) can be trivially solved by inspection (i.e. xe = 1 ⇔ ce <
∑

k∈C πk,e). To
determine variables xe for edges e ∈ E′ \ E and variables zi a knapsack problem for each facility
i ∈ F with knapsack size Di, items e = (i, k) with profits

∑

k∈C πk,e − c′e and weights dk need to
be solved. Obviously, we only need to consider items with positive profits in the resulting knapsack
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problems, which we solve in our implementation using the Combo algorithm1 [14]. If the objective
value of the optimal solution K∗ of such a knapsack problem exceeds fi, zi and all variables xe

corresponding to items used in K∗ are set to one. Note that, since LDx ,f (π) does not possess the
integrality property, better lower bounds may be determined than by the simpler LP relaxation of
model (1)–(9).

The Lagrangian dual problem which is to find the optimal Lagrangian multipliers π∗ maximizing
the obtained lower bound can be approximately solved using sugradient like methods (since this
maximization problem is convex and piecewise linear). Here, we use the volume algorithm [2] since
preliminary tests indicated that it generates better bounds than a standard subgradient method as
presented in [7].

4 Lagrangian Heuristic

While solving the Lagrangian dual problem using the volume algorithm [2] we do not only compute a
valid lower bound to a problem instance at each iteration but also derive integer values for variables
sk
e , xe, zi, and yk. Since those values usually do not describe a feasible solution to CConFL we

apply a Lagrangian heuristic (LH) to deduce feasible solutions using the information provided by
the actual solutions to LDs,y(π) and LDx ,f (π). A solution to LDs,y(π), represents a subgraph of
G′ connecting the root node with customers. This subgraph might contain redundant edges as well
as violated capacity constraints. A solution to LDx ,f (π) feasibly assigns a subset of customers to
opened facilities. However, those facilities may not be connected to the root node.

To create a feasible solution S = (RS, TS, FS, CS, αS) we set FS = {i ∈ F | ∃k ∈ C : sk
ik = 1}.

Let C ′
i = {k ∈ C | sk

ik = 1} be the set of customers connected to a facility i ∈ FS due to
LDs,y(π), Wi,k = {e ∈ E | sk

e = 1}, ∀k ∈ C ′
i, be the corresponding subpaths from 0 to i and

Wi = argminWi,k|k∈Ci
{
∑

e∈Wi,k
ce} denote the cheapest of those subpaths. We consider facilities

i ∈ FS by the costs of their cheapest individual connection to the root node Wi in increasing order.
We connect i to a partially created Steiner tree (RS, TS) – which initially consists only of the root
node 0 – by adding the necessary edge subset {(v0 = i, v1), (v1, v2), . . . (vl, vm)}, (va, vb) ∈ Wi,
0 ≤ a, b ≤ m, vi /∈ RS, 1 ≤ i ≤ l, vm ∈ RS, of Wi. For each considered facility i ∈ FS we assign
the optimal subset of customers C ′′ ⊆ C ′

i by either solving a knapsack problem – again using the
Combo algorithm [14] – in case

∑

k∈C′

i
dk > Di or simply assign all customers k ∈ C ′

i otherwise.

To further improve S we consider and add assignments {(i, k) | i ∈ FS ∧ k ∈ C ∧ xik = 1} greedily

in decreasing order of their efficiency values
pk−c′

ik

dk
in case the corresponding customer has not

been assigned to another facility and the capacity constraints are still met afterwards. Additional
assignments are then added to S by applying an identical greedy assignment using all possible
assignments of facilities i ∈ FS. In case S is better than the so far best solution S′ created by LH,
i.e. c(S) < c(S′), we try to further improve S using the neighborhood structures described in the
next section (S′ is the best so far found solution before applying these improvements). Finally, we
remove non-profitable parts from S using strong pruning as described in [16].

1http://www.diku.dk/˜pisinger/codes.html
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5 Solution Improvement

So far existing metaheuristic approaches for Connected Facility Location Problems [12, 13, 18]
typically represent a candidate solution by its open facilities and apply moves changing this set
of active facilities to improve solutions. However, since each facility move subsequently involves
updating the Steiner tree connecting them as well as updating client assignments the evaluation of
each move might be quite time consuming. As the Steiner tree problem as well as – in case of a
capacity constrained version – the problem of optimally assigning clients to a given set of facilities
are NP hard typically some heuristic is used to estimate the changes due to a candidate move. In
contrast to these approaches, we do only improve a candidate solution S with respect to the edges
used in the Steiner tree as well as by means of clients assigned to currently opened facilities. As will
be shown by our computational results, the initial solutions derived by our Lagrangian heuristic
usually allow for generating near optimal solutions without further improving the set of opened
facilities. For each candidate solution we apply a local search procedure based on one neighborhood
structure for each remaining solution aspect. The neighborhood structures are searched using a
best improvement strategy and applied in the same order as presented here.
The Key-Path Exchange Neighborhood which is well known for Steiner tree problems – see e.g. [15]
– tries to improve a path between any two key nodes K = {0} ∪ FS ∪ {v ∈ RS | degS(v) ≥ 3} of S
by replacing it by the shortest connection between its end nodes using the remaining solution edges
as infrastructure (i.e. zero edge costs are assumed for them).
The Customer Swap Neighborhood, which has also been used by Contreras et al. [5] for SSCFL,
tries to improve a solution with respect to the assignment between facilities and customers. This
neighborhood consists of all solutions S′ reachable from S by swapping the assignment of exactly
two customers, i.e. if αS(k) = i and αS(l) = j for customers k, l ∈ CS and facilities i, j ∈ FS, those
assignments will be αS′(k) = j and αS′(l) = i in S′.

6 Multi-Commodity Flow Formulation

To evaluate the performance of our Lagrangian decomposition approach, we further tried to solve a
formulation for CConFL based on directed multi-commodity flows. For each facility i ∈ F we define
a corresponding set of relevant arcs Ai = A0 ∪ {(u, v), (v, u) | (u, v) ∈ E ∧ u, v /∈ {0, i}} ∪ {(v, i) |
(v, i) ∈ E} that may be used to connect i with the root node, where A0 = {(0, v) | (0, v) ∈ E}.
We use binary variables xe, ∀e ∈ E′, to specify whether an edge e ∈ E′ is part of the solution
(xe = 1) or not, and binary variables yk, ∀k ∈ C, to indicate whether a customer k ∈ C is assigned
to an opened facility (yk = 1) or not. Furthermore, we use variables zi ∈ [0, 1], ∀i ∈ F , to denote if
a facility i is opened (zi = 1), and flow variables si

uv ∈ [0, 1], ∀i ∈ F, ∀(u, v) ∈ Ai, to indicate if arc
(u, v) ∈ Ai is used in the connection of facility i ∈ F to the root node 0 (si

uv = 1) or not.

(dMCFf ) min
∑

e∈E′

c′exe +
∑

i∈F

fizi +
∑

k∈C

pk(1 − yk) (17)

s.t.
∑

(u,v)∈Ai

si
uv −

∑

(v,u)∈Ai

si
vu =











−zi if v = 0

zi if v = i

0 otherwise

∀i ∈ F, ∀v ∈ V (18)
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si
uv + si

vu ≤ xuv ∀i ∈ F, ∀(u, v) ∈ E (19)

xik ≤ zi ∀(i, k) ∈ E′ | k ∈ C (20)
∑

k∈Ci

dkxik ≤ Dizi ∀i ∈ F (21)

∑

i∈Fk

xik ≥ yk ∀k ∈ C (22)

0 ≤ si
uv ≤ 1 ∀i ∈ F, ∀(u, v) ∈ Ai (23)

0 ≤ zi ≤ 1 ∀i ∈ F (24)

xe ∈ {0, 1} ∀e ∈ E′ (25)

yk ∈ {0, 1} ∀k ∈ C (26)

Alternatively, we could define a directed multi-commodity flow model based on sending one unit
of flow from the root node 0 to each customer node k ∈ C. Such a model would be a concrete
instantiation of our ILP introduced in Section 3. However, since dMCFf is stronger than such a
model, we decided to evaluate the performance of our Lagrangian decomposition approach against
this theoretically stronger model.

7 Computational Results

For our experiments, we combined instances for the capacitated facility location (CFL) problem
created with the instance generator2 from [11] with instances for the Steiner tree problem from the
OR-library3 in the following way. We select the first node from the STP instance as root node
and randomly select |F | other nodes as potential facility locations. Customers, assignment costs,

demands as well as capacities for each facility are given in the CFL instance. Let a(k) =
P

i∈F aik

|Fk|

denote the average assignment costs of customer k, amax(k) = maxi∈Fk
{aik} the maximal assignment

costs of customer k and f =
P

i∈F fi

|F | the average facility opening costs. We randomly select the

prize pk ∈ N0 of customer k from the interval
[

a(k), amax(k) + f
]

ensuring that each customer may
be assigned to the majority of potential facilities in a profitable way. Finally we apply degree-one
and degree-two filtering on the potential edges as described in [3]. All instances can be downloaded
at http://www.ads.tuwien.ac.at/people/mleitner/cconfl/instances.tar.gz.

Table 1 summarizes our computational results which have been computed using a single core of
an Intel Xeon 5150 with 2.66GHz. ILOG CPLEX 11.2 has been used for solving dMCFf and its
linear relaxation dMCFf

∗ and we used an absolute time limit of 3600 seconds for each experiment.
LDP denotes the Lagrangian decomposition approach with primal improvement as explained in
Section 5 while LD does not apply primal improvement. Since dMCFf never terminated before the
time limit was reached we do not report its runtime in Table 1. We use the volume algorithm as
described in [8] initializing Lagrangian multipliers by πk,e = ce for assignment edges e ∈ E′ \E and
by πk,e = ce/|C| for edges e ∈ E. The target value is initially set to T = 1.2 and multiplied by 1.1 in
case zLB > 0.9zUB where zUB and zLB denote the so far best upper and lower bound. ρ is initially set
to 0.1, multiplied by 0.67 after 20 non improving iterations in case ρ > 10−4 and multiplied by 1.5

2http://alas.matf.bg.ac.yu/˜kratica/instances/splp gen w32.zip
3http://people.brunel.ac.uk/˜mastjjb/jeb/orlib/steininfo.html
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in each improving iteration if ρ < 5 and if v̄ ·vt ≥ 0. Instead of computing λOPT as suggested in [8],
we always use λ = λMAX which we initialize by λMAX = 0.01. After every 100 iterations we multiply
λMAX by 0.85 in case the lower bound did improve less than 1% and if λMAX > 10−5. The volume
algorithm is terminated after 250 consecutive non improving iterations or if the time limit is reached.

We conclude that dMCFf is not only theoretically stronger but also in practice generates better
lower bounds given enough time. However, even for medium sized instances which could be solved
quite fast by LD and LDP , the linear relaxation of dMCFf could not always be computed within
one hour. dMCFf could not solve any instances to proven optimality within the given time. While
the feasible solutions (upper bounds) found by LD are for approximately 64% of the test instances
better than those found by dMCFf , LDP produces the best results with respect to upper bounds
for 86% of the test instances. Therefore, LDP clearly outperforms the other two approaches by
means of primal solution quality which documents the effectiveness of our neighborhood structures.
Furthermore, especially for larger instances the resulting gaps by LDP are significantly smaller than
those of the other two methods even though the lower bounds of dMCFf are typically better. Finally,
with respect to CPU times we conclude that LD and LDP often need less CPU time than solving
the linear relaxation of dMCFf . Since we apply primal improvement only to the most promising
candidate solutions generated by our Lagrangian heuristic no significant difference between LD and
LDP with respect to the needed CPU time could be observed. Since the resulting gap between
upper and lower bound of LDP never exceeded 5%, we recommend LDP for generating high quality
solutions to CConFL with tight gaps in relatively short time.

8 Conclusions and Outlook

In this artice we introduced a new variant of the Connected Facility Location Problem with ca-
pacity constraints which includes several so far considered variants of ConFL as special cases. We
modeled CConFL using directed multi-commodity flows. Furthermore, we presented a Lagrangian
decomposition approach for CConFL as well as a hybrid method combining this approach with local
search. Our computational results indicate, that the proposed hybrid method is able to generate
high quality solutions with tight gaps in relatively short time.

In future we want to integrate a very large scale neighborhood search approach similar to the one
presented by Ahuja et al. [1] in our hybrid Lagrangian decomposition approach as well as implement
a pure metaheuristic approach to approximately solve very large instances of CConFL. Additionally,
we are currently working on exact methods for medium sized instances based on branch-and-cut
and branch-and-cut-and-price.
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Table 1: Computational Results
Instance lower bound upper bound gap in % CPU time

Name |F | |C| |V | |E| dMCFf
∗ dMCFf LD LDP dMCFf LD LDP dMCFf LD LDP dMCFf

∗ LD LDP

c10-mo75 75 75 408 908 2878.7 2882.8 2851.9 2851.7 2959.5 2988.2 2962.4 2.7 4.8 3.9 154 74 73
c10-mq75 75 75 405 905 7095.2 7100.5 7079.2 7077.7 7182.9 7239.1 7162.6 1.2 2.3 1.2 181 95 67
c10-ms75 75 75 407 907 9506.3 9510.7 9479.9 9479.9 9573.1 9629.8 9563.3 0.7 1.6 0.9 299 143 141
c15-mo75 75 75 500 2500 2747.5 2749.1 2737.5 2738.2 2879.0 2855.2 2815.3 4.7 4.3 2.8 2092 91 111
c15-mq75 75 75 500 2500 7466.5 7469.8 7457.2 7455.7 7548.6 7576.1 7510.7 1.1 1.6 0.7 1815 127 94
c15-ms75 75 75 500 2500 9354.6 9358.0 9341.7 9342.3 10841.9 9487.5 9428.8 15.9 1.6 0.9 2008 195 159
d10-mo75 75 75 771 1770 2772.6 2777.0 2741.6 2741.8 2845.3 2921.9 2849.3 2.5 6.6 3.9 906 145 173
d10-mq75 75 75 775 1774 7295.0 7302.3 7280.9 7281.0 7373.1 7432.9 7364.6 1.0 2.1 1.1 292 125 154
d10-ms75 75 75 781 1780 10069.3 10075.9 10019.0 10017.9 10219.1 10257.3 10166.9 1.4 2.4 1.5 698 164 141
d15-mo75 75 75 1000 5000 - 2645.0 2636.6 2636.9 3370.2 2743.2 2697.1 27.4 4.0 2.3 3600 175 220
d15-mq75 75 75 1000 5000 - 7379.4 7370.8 7368.5 8493.6 7473.5 7444.1 15.1 1.4 1.0 3600 245 150
d15-ms75 75 75 1000 5000 - 9234.8 9221.6 9222.5 10933.6 9334.3 9293.1 18.4 1.2 0.8 3600 223 345

c10-mo100 100 100 406 906 3330.9 3334.8 3303.2 3297.7 3399.9 3486.1 3437.3 2.0 5.5 4.2 298 178 367
c10-mq100 100 100 406 906 9352.6 9360.3 9322.5 9322.6 9521.8 9610.5 9491.5 1.7 3.1 1.8 347 166 187
c10-ms100 100 100 416 916 11740.1 11747.6 11697.9 11696.6 11890.9 11979.1 11877.1 1.2 2.4 1.5 247 217 187
c15-mo100 100 100 500 2500 3422.6 3424.7 3413.8 3413.6 3881.8 3562.4 3542.6 13.3 4.4 3.8 3112 220 226
c15-mq100 100 100 500 2500 - 9124.9 9118.6 9113.3 9676.6 9331.9 9214.8 6.0 2.3 1.1 3600 188 151
c15-ms100 100 100 500 2500 - 11281.1 11264.0 11263.6 12619.2 11533.2 11412.0 11.9 2.4 1.3 3600 297 244
d10-mo100 100 100 788 1787 3376.7 3381.2 3337.8 3339.6 3492.1 3540.9 3474.6 3.3 6.1 4.0 401 252 328
d10-mq100 100 100 778 1777 9179.2 9186.0 9129.6 9128.1 9354.7 9406.5 9374.9 1.8 3.0 2.7 997 244 212
d10-ms100 100 100 783 1782 11049.0 11056.6 11000.4 11002.7 11185.5 11348.6 11170.3 1.2 3.2 1.5 678 209 260
d15-mo100 100 100 1000 5000 - 3310.6 3297.8 3298.6 3806.1 3454.6 3424.1 15.0 4.8 3.8 3600 412 367
d15-mq100 100 100 1000 5000 - - 9149.5 9150.4 23780.0 9422.2 9232.0 - 3.0 0.9 3600 291 331
d15-ms100 100 100 1000 5000 - - 11309.2 11309.1 30343.0 11549.3 11501.1 - 2.1 1.7 3600 334 438

c10-mo200 200 200 433 933 7116.2 7120.5 7052.9 7053.2 7489.8 7440.1 7325.2 5.2 5.5 3.9 529 2561 3600
c10-mq200 200 200 428 928 19270.3 19277.1 19211.7 19212.7 21089.5 19673.0 19561.6 9.4 2.4 1.8 1619 2566 2554
c10-ms200 200 200 431 931 25190.6 25199.1 25115.0 25115.1 31477.3 25680.7 25532.3 24.9 2.3 1.7 1617 3600 3600
c15-mo200 200 200 500 2500 - 7135.2 7108.8 7105.5 8360.9 7427.4 7450.5 17.2 4.5 4.9 3600 2714 2258
c15-mq200 200 200 500 2500 - - 19171.1 19170.4 56699.0 19495.3 19330.9 - 1.7 0.8 3600 2358 2771
c15-ms200 200 200 500 2500 - 24679.5 24654.4 24655.1 26697.0 25302.2 25043.5 8.2 2.6 1.6 3600 3079 2948
d10-mo200 200 200 816 1815 7194.1 7199.0 7107.3 7106.9 7864.9 7599.7 7448.3 9.3 6.9 4.8 2635 3600 3048
d10-mq200 200 200 814 1813 - 18798.4 18720.6 18719.7 21130.5 19245.3 19075.7 12.4 2.8 1.9 3600 3600 3600
d10-ms200 200 200 806 1805 - 24516.8 24426.2 24425.6 27785.1 24856.3 24762.7 13.3 1.8 1.4 3600 3600 3600
d15-mo200 200 200 1000 5000 - - 7129.0 7126.9 23975.0 7448.1 7381.0 - 4.5 3.6 3600 3600 3600
d15-mq200 200 200 1000 5000 - - 19457.0 19457.3 61778.0 19880.4 19673.0 - 2.2 1.1 3600 3139 3195
d15-ms200 200 200 1000 5000 - - 24007.7 24008.9 73434.0 24539.0 24222.4 - 2.2 0.9 3614 2998 3055

H
a
m

b
u
rg

,
G

e
rm

a
n
y
,
J
u
ly

1
3
–
1
6
,
2
0
0
9


