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Abstract

We consider a network design problem occurring in the extension of fiber optic networks on the
last mile which generalizes the (Price Collecting) Steiner Tree Problem by introducing redundancy
requirements on some customer nodes. In this work we present a formulation for this problem
based on exponentially many variables and solve its linear relaxation by column generation. Using
alternative dual-optimal solutions in the pricing problem we are able to significantly reduce the effects
of typical efficiency issues of simplex based column generation. Computational results clearly show
the advantages of our proposed strategy with respect to the number of pricing iterations needed as
well as by means of required running times.
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1 Introduction

We consider a real world network design problem occurring in the extension of fiber optic networks on
the last mile. This problem, to which we refer as bmax-Survivable Network Design Problem (SNDP)
generalizes the (Price Collecting) Steiner Tree Problem (STP) on a graph by introducing redundancy
requirements on some customer nodes. Formally, we are given an undirected graph G = (V,E) mod-
elling a spatial area in which an existing fiber optic infrastructure should be augmented to supply new
customers. Edges e ∈ E represent (potential) fiber optic routes with corresponding cable lengths le ≥ 0
and installation costs ce ≥ 0. The node set V is the disjoint union of customer nodes C with associated
prizes pk ≥ 0, ∀k ∈ C (i.e. the expected return on investment) and spatial nodes S (switches, possible
Steiner nodes). The set of customer nodes C is further partitioned into type-1 customer nodes C1 and
type-2 customer nodes C2. Already existing infrastructure is represented by a subgraph I = (VI , EI) of
G which we shrink into a single root node 0 ∈ V in a preprocessing step.
A solution G′ = (V ′, E′), V ′ ⊆ V , E′ ⊆ E is a connected subgraph of G feasibly connecting a set of
customers C ′ ⊆ C. While type-1 customer nodes k ∈ C1 are feasibly connected if a path from 0 to k
exists in G′, type-2 customer nodes k ∈ C2 need two node disjoint paths from 0 to k. Furthermore, this
biconnectivity condition for type-2 customers is relaxed if such a node k ∈ C2 has an associated maximum
branch line length bmax(k) > 0. Such a type-2 customer node is feasibly connected, if there exists some
branch node j ∈ V ′ with two node disjoint paths to the root node 0 and a single path (branch line) from j
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Figure 1: Solution with bmax = 0. Figure 2: Solution with bmax > 0.

root node

C1 customer
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to k of maximum total length bmax(k). Figure 1 depicts a solution without considering bmax-redundancy,
i.e. bmax = 0, while Figure 2 visualizes a solution to bmax-SNDP with bmax > 0.

We distinguish two problem variants with respect to the objective function. In the so called Operative
Planning Task (OPT) we need to identify a cheapest subgraph G′ feasibly connecting all customer nodes
(C ′ = C), i.e.

cOPT(G′) = min
X
e∈E′

ce,

while we want to find the most profitable solution in the Strategic Simulation Task (SST), i.e.

cSST(G′) = min
X
e∈E′

ce +
X

k∈C\C′
pk.

As bmax-SNDP contains the NP-hard STP as a special case (C2 = ∅), we conclude that bmax-SNDP
is NP-hard, too.
In this article, we present a formulation for bmax-SNDP based on exponentially many variables and solve
its linear relaxation by column generation. Hereby, we utilise alternative dual-optimal solutions to reduce
the number of iterations needed and dramatically decrease the required running time. Our computational
results clearly document the beneficial effects of this strategy.

2 Previous Work

A lot of research has been conducted on similar, more prominent network design problems, namely the
(Price Collecting) Steiner Tree Problem (STP) and several variants of the Survivable Network Design
Problem (SNDP), see e.g. [12] for a survey on the STP and [5] for the SNDP. Wagner et al. presented
exact approaches for bmax-SNDP based on multicommodity flows [11] and directed connection cuts [10].
Another, even stronger model – but which does not consider the special case of bmax-redundancy –
has been described by Chimani et al. [2]. It is also based on connection cuts but models redundant
connections by reversely directed paths. Recently, we approached bmax-SNDP by means of Lagrangian
Decomposition, Greedy Randomized Adaptive Search, Variable Neighborhood Search as well as hybrid
methods combining Lagrangian Decomposition with Variable Neighborhood Descent [6].

3 The Connection Formulation

To model bmax-SNDP as an Integer Linear Program (ILP) we consider the set of all possible feasible
connections Pk for each customer k ∈ C. For type-1 customers k ∈ C1, Pk corresponds to the set of all
paths from the root node 0 to k, i.e.

Pk = {p ⊆ E | p forms a path from 0 to k},

while for type-2 customers k ∈ C2, Pk can be expressed as follows:

Pk = {p ⊆ E | p forms two node disjoint paths from 0 to some node j and

one path from j to k whose length does not exceed bmax(k)}.
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We formulate the SST variant of our problem by the following integer master problem (IMP) using
binary variables fkp , ∀k ∈ C, ∀p ∈ Pk to indicate whether a corresponding connection p ∈ Pk is realized
(fkp = 1) or not, decision variables xe ∈ {0, 1}, ∀e ∈ E to specify whether an edge e is part of the solution
(xe = 1) or not, and binary variables yk, ∀k ∈ C to denote whether a feasible route to customer k is
installed (yk = 1) or not. yk variables are fixed to one in the OPT variant.

(IMP) z = min
X
e∈E

cexe +
X
k∈C

pk(1− yk)(1)

s.t.
X

p∈Pk

fk
p − yk = 0 ∀k ∈ C(2)

xe −
X

p∈Pk|e∈p

fk
p ≥ 0 ∀k ∈ C, ∀e ∈ E(3)

xe ∈ {0, 1} ∀e ∈ E(4)

yk ∈ {0, 1} ∀k ∈ C(5)

fk
p ∈ {0, 1} ∀k ∈ C, ∀p ∈ Pk(6)

The linear relaxation of IMP – the linear master problem (MP) – is given by substituting the integrality
constraints (4)–(6) by

xe ≥ 0 ∀e ∈ E(7)

yk ≥ 0 ∀k ∈ C(8)

yk ≤ 1 ∀k ∈ C(9)

fk
p ≥ 0 ∀k ∈ C, ∀p ∈ Pk(10)

Let µk, ∀k ∈ C be the dual variables associated to the convexity constraints (2) and πk,e, ∀k ∈ C, ∀e ∈
E be the dual variables associated to the coupling constraints (3). Note that one would usually replace
equalities (2) by inequalities (≥ 0) to restrict dual variables when solving such a model with column
generation. However, as we do not need to consider customers k ∈ C in the pricing problem if µk ≤ 0 (as
will be explained in the following) no significant differences could be observed when using inequalities.
Furthermore, let F = {fkp | k ∈ C, p ∈ Pk} be the set of all fkp variables representing columns in MP.
Since F consists of an exponential number of variables we define the restricted master problem (RMP)
using only a small subset F̃ ( F ; otherwise RMP corresponds to MP. When solving RMP we obtain
optimal dual variable values µ∗k and π∗k,e, defining reduced prices c̄k,p for variables fkp ∈ F \ F̃ :

ck,p = −µ∗k +
X
e∈p

π∗k,e

The pricing problem is now to find (k∗, p∗) = argmink∈C,p∈Pk
{ck,p}. If ck∗,p∗ ≥ 0 we have obtained an

optimal solution to MP. Otherwise, we add at least one column with negative reduced costs and resolve
RMP.

Solving the Pricing Problem: More generally speaking, in the pricing subproblem we have to find
a feasible connection for some k ∈ C yielding negative reduced costs ck,p = −µ∗k +

∑
e∈p π

∗
k,e or prove

that no such connection exists. For this purpose we need to determine the cheapest feasible connection
on the graph in which edge e ∈ E has costs πk,e ≥ 0, for each k ∈ C with µk > 0. When the costs of such
a connection are less then µk, we have found an appropriate connection, i.e. the corresponding variable
fkp can be added to RMP.
While for k ∈ C1 finding the cheapest feasible connection is a simple shortest path calculation from 0 to
k, we have to find a cheapest pair of node-disjoint paths from 0 to k for type-2 customers (without yet
considering bmax-redundancy). Suurballe and Tarjan [8] (see also [4]) presented an algorithm to efficiently
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compute a shortest arc-disjoint pair of paths between two nodes in time O(|E|+ |V | log |V |). By applying
this algorithm on the split graph of the original graph we can compute a shortest node-disjoint pair of
paths. The split graph is obtained by replacing each node v ∈ V by a pair of nodes v′ and v′′. For each
such pair, we add an arc (v′, v′′) with zero costs. Each edge e = (u, v) of G is replaced by two directed
arcs (u′′, v′), (v′′, u′) having costs ce.
We use a simple extension of this algorithm to consider bmax-redundancy by determining the cheapest
combination of a node-disjoint pair of paths from 0 to some node j in the bmax-neighborhood of a customer
k and a single path from j to k whose length does not exceed bmax(k). To avoid unnecessary calculations
we do only consider those possible branch nodes j for which the costs of the shortest path to the root
node do not exceed half of the costs of the so far found cheapest connection.

4 Using Alternative Dual-Optimal Solutions

It is well known that (simplex based) column generation approaches often suffer from inefficiency resulting
in a large number of needed pricing iterations as well as long computation times. Vanderbeck [9] describes
five major efficiency issues of simplex based column generation. Several stabilization techniques to reduce
their effects have been proposed, see e.g. [3] or [7] for reviews on those methods. From the issues described
by Vanderbeck preliminary tests showed that primal degeneracy as well as the heading-in effect are mainly
relevant in our case. Instead of using a problem-independent stabilization approach we analyse the dual
of RMP to take advantage of problem specific characteristics. Let λk ≤ 0 denote the dual variables
associated to inequalities (9) and F̃k ⊆ F̃ be the set of variables representing connections to customer
k ∈ C in RMP. Then the restricted dual problem (RDP) is given by (11)–(16).

(RDP) z =
X
k∈C

λk + pk(11)

X
k∈C

πk,e ≤ ce ∀e ∈ E(12)

µk −
X
e∈p

πk,e ≤ 0 ∀k ∈ C, ∀p ∈ F̃k(13)

− µk + λk ≤ −pk ∀k ∈ C(14)

πk,e ≥ 0 ∀k ∈ C, ∀e ∈ E(15)

λk ≤ 0 ∀k ∈ C(16)

Let D∗ = (λ∗, µ∗, π∗) be an optimal solution to RDP. Since only few connection variables f ∈ F̃ will
be non-zero in an optimal solution to RMP, RMP is usually degenerate, i.e. alternative optimal solutions
to RDP exist. In the following, we exploit different dual-optimal solutions to improve the convergence
properties of our column generation algorithm. This approach can be interpreted as a generic stabilization
technique that “centers” an actual LP solution.
Let E′ ⊆ E denote the subset of edges which are not part of any so far included connection, i.e. E′ ={
e ∈ E | @fkp ∈ F̃ : e ∈ p

}
. For edges e ∈ E′ all values πk,e ≥ 0, ∀k ∈ C are dual optimal as long as∑

k∈C πk,e ≤ ce. Furthermore, for edges e ∈ E \ E′, we can increase the sum of dual variable values∑
k∈C πk,e by δe = ce −

∑
k∈C πk,e.

Since CPLEX1 generates minimal values for dual variables (i.e. πk,e = 0, ∀k ∈ C, ∀e ∈ E′, usually
δe > 0 for some edges e ∈ E \ E′) and |E′| is typically quite large in the beginning, corresponding
edge costs in the pricing subproblem are not meaningful. More precisely, a lot of irrelevant columns
will be generated since many connections have equal costs. To reduce this harmful behavior one could
simply use the alternative dual optimal solution D′ = (λ∗, µ∗, π′) with π′k,e = ce

|C| , ∀k ∈ C, ∀e ∈ E′

and π′k,e = π∗k,e + δe

|C| , ∀k ∈ C, ∀e ∈ E \ E′. However, as will be illustrated by our computational

1http://www.ilog.com
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Algorithm 1: Column Generation
d = 1
create and add set of initial columns F̃
E′ = {e ∈ E | @fkp ∈ F̃ : e ∈ p}
m = true
while m do

m = false
solve RMP
δe =

(
ce −

∑
k∈C πk,e

)
/d, ∀e ∈ E′

forall k ∈ C do
if µk > 0 then

c′e =

{
πk,e + δe if e ∈ E′,
ce/d else.

∀e ∈ E

p = shortest connection to k using edge costs c′

Ep = {e ∈ E | e ∈ p}
if
∑
e∈Ep

c′e < µk then
add corresponding variable fkp to RMP
if Ep * E′ then

d = 1
E′ = E′ ∪ Ep
m = true

if m == false ∧ d < |C| then
m = true
d+ +

results we can do even better by initially using different dual-optimal solutions D(k,d) =
(
λ∗, µ∗, π(k,d)

)
,

for all k ∈ C – controlled by parameter d (1 ≤ d ≤ |C|) – which finally converge to D′ for d = |C|.
When considering client k ∈ C in the pricing problem, we use dual values π(k,d)

k,e = ce

d , ∀e ∈ E′ and

π
(k,d)
k,e = π∗k,e + δe

d , ∀e ∈ E \ E′. Note that assuming π(k,d)
k′,e = 0, ∀k′ 6= k ∈ C, ∀e ∈ E′ and π

(k,d)
k′,e = π∗k,e,

∀k′ 6= k ∈ C, ∀e ∈ E \ E′ we again only use dual optimal solutions when solving the pricing problem.
As shown in Algorithm 1 parameter d is initially set to one and gradually incremented up to |C| in case
no column with negative reduced cost could be priced in and reset to one in case columns including new
edges have been added to RMP. Since we essentially use D′ if d = |C| we can terminate the column
generation process if no column with negative reduced costs could be found for d = |C|.

5 Computational Results

We tested our algorithms on real world instance sets from a German city [1] – see Table 1 – with an
absolute time limit of 7200 seconds. ILOG CPLEX 11.1 has been used to solve RMP after each pricing
iteration. We use the dual simplex approach to solve RMP since it turned out to perform better than the
primal simplex method. Note that, instead of generating feasible or optimal solutions to our problem,
we only focus on solving its linear relaxation in this work.

The set of columns F̃ is initialized by (i) cheapest connections to each client k ∈ C, (ii) connections of
a solution constructed with the Minimum Spanning Tree Augmentation Heuristic [6], and (iii) connections
that emphasize pairs of customer nodes. For the latter, we consider each pair of customer nodes k, k′ ∈ C,
k 6= k′ and determine the cheapest connection to k′ while treating all edges part of the cheapest feasible
connection of k as pseudo-infrastructure, i.e. set their edge costs to zero. In each pricing iteration we add
the cheapest connection to each customer k ∈ C to RMP if it has negative reduced costs. In the following,
CG∗ refers to the standard column generation approach without adapting dual values, while CG′ refers
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Table 1: Instance set characteristics.
Set # |V | |E| |C| |C| |C1| |C1| |C2| |C2| bmax |V (bmax)|

ClgSE-I1 25 190 377 5−8 5.9 3−5 3.8 2−3 2.1 30 3.79
ClgSE-I2 15 190 377 11−17 13.8 7−12 8.9 4−7 4.9 30 8.97
ClgSE-I3 15 190 377 8−12 9.6 5−8 6.0 3−6 3.6 30 6.04

ClgN1B-I1 20 2804 3082 11−14 11.8 8−11 8.5 3−4 3.3 100 8.49
ClgN1B-I2 19 2804 3082 7−11 9.0 3−6 4.1 4−6 5.0 100 3.99
ClgME-I1 25 1757 3877 6−10 7.2 4−7 5.0 2−3 2.3 100 4.96
ClgME-I2 15 1523 3290 11−14 12.2 8−11 8.7 3−4 3.5 100 8.71

Table 2: Number of instances where linear relaxation could be solved.
OPT+RED SST+RED OPT+BMAX SST+BMAX

Set # CG∗ CG′ CGk CG∗ CG′ CGk CG∗ CG′ CGk CG∗ CG′ CGk

ClgSE-I1 25 25 25 25 25 25 25 25 25 25 25 25 25
ClgSE-I2 15 15 15 15 15 15 15 15 15 15 15 15 15
ClgSE-I3 15 14 15 15 14 15 15 15 15 15 15 15 15

ClgN1B-I1 20 7 20 20 9 20 20 12 20 20 12 20 20
ClgN1B-I2 19 5 19 19 7 19 19 7 19 19 4 19 19
ClgME-I1 25 0 1 19 0 2 19 0 1 17 0 1 16
ClgME-I2 15 0 2 10 0 1 10 0 2 9 0 1 10

to the simpler adaptation strategy (i.e. equally increasing dual variable values), and CGk denotes the
adaptive strategy described by Algorithm 1. Furthermore, RED refers to the problem variant without
considering bmax-redundancy (bmax = 0) while BMAX takes bmax-redundancy into account. Table 2
compares the number of instances solved by CG∗, CG′, and CGk, while Table 3 compares median run
times of those three variants and of the Lagrangian Decomposition (LD) approach from [6] which is
equally strong from a theoretic point of view and also practically generates lower bounds identical to
those obtained by column generation.

Both strategies to adapt dual variable values perform significantly better than CG∗ with respect to the
number of solved instances as well as median runtimes. Furthermore, while CG′ failed to solve most of the
ClgM instances, CGk was successful on 60% to 76% of those instances. While LD outperforms column
generation for most of the ClgM instances, CGk is the fastest (except for ClgN1B-I1 with bmax > 0)
method for the other instance sets. We further observed, that CGk usually finds the optimal LP bound
relatively quickly and spends around 60% to 80% of its total runtime to prove optimality (tailing-off
effect) which facilitates an early termination criterion in a possible extension to a branch and price
algorithm. CG∗ and CG′ need almost all of their (even longer) runtimes to find the optimal LP bound.
Finally, Table 4 compares the number of pricing iterations needed for instances that could be solved,
while Table 5 depicts the relative amount of time spent for repeatedly solving RMP (i.e. solving the
LPs with CPLEX). We conclude, that while CG′ often needs fewer iterations than CGk, both are able
to considerably reduce the number of pricing iterations compared to CG∗. Furthermore, CGk clearly
performs best with respect to reducing the effects of primal degeneracy.

Table 3: Median run times.
OPT+RED SST+RED OPT+BMAX SST+BMAX

Set CG∗ CG′ CGk LD CG∗ CG′ CGk LD CG∗ CG′ CGk LD CG∗ CG′ CGk LD
ClgSE-I1 3.4 0.3 0.2 1.0 2.0 0.3 0.2 1.1 2.1 0.3 0.4 3.8 2.1 0.5 0.4 3.9
ClgSE-I2 46.2 4.8 1.7 5.2 37.4 5.5 1.7 3.9 45.7 3.0 2.2 16.8 45.3 3.9 1.9 17.2
ClgSE-I3 7.5 0.6 0.6 2.1 4.4 0.6 0.7 2.0 9.1 0.9 1.0 10.6 9.9 0.9 0.9 15.1

ClgN1B-I1 7200.0 33.5 16.5 93.7 7200.0 26.4 22.6 89.5 2605.3 70.3 198.2 1015.3 3795.9 79.7 169.6 753.1
ClgN1B-I2 7200.0 206.3 15.7 62.1 7200.0 159.8 20.9 54.3 7200.0 251.5 149.9 463.6 7200.0 294.5 172.0 427.3
ClgME-I1 7200.0 7200.0 232.5 77.4 7200.0 7200.0 948.4 91.5 7200.0 7200.0 2249.8 3386.9 7200.0 7200.0 4441.5 3129.2
ClgME-I2 7200.0 7200.0 1417.5 75.5 7200.0 7200.0 964.9 80.0 7200.0 7200.0 3887.7 2113.4 7200.0 7200.0 3005.4 1621.6
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Table 4: Average relative number of pricing iterations and corresponding standard deviations.
OPT+RED SST+RED OPT+BMAX SST+BMAX

Set CGk

CG∗
CGk

CG′
CGk

CG∗
CGk

CG′
CGk

CG∗
CGk

CG′
CGk

CG∗
CGk

CG′

ClgSE-I1 0.28 (0.19) 1.57 (0.89) 0.32 (0.22) 1.41 (0.68) 0.33 (0.18) 1.86 (0.90) 0.37 (0.19) 1.72 (0.87)
ClgSE-I2 0.33 (0.17) 1.56 (0.67) 0.37 (0.28) 1.49 (0.61) 0.40 (0.21) 1.80 (0.65) 0.41 (0.28) 1.70 (1.04)
ClgSE-I3 0.38 (0.28) 2.25 (0.93) 0.39 (0.30) 2.15 (0.69) 0.33 (0.21) 2.33 (1.00) 0.35 (0.25) 2.31 (1.02)

ClgN1B-I1 0.12 (0.03) 2.26 (1.11) 0.15 (0.05) 2.04 (1.00) 0.17 (0.09) 2.72 (1.60) 0.16 (0.05) 2.32 (1.46)
ClgN1B-I2 0.09 (0.04) 1.10 (0.70) 0.11 (0.02) 0.91 (0.33) 0.12 (0.03) 0.93 (0.27) 0.15 (0.04) 0.85 (0.24)
ClgME-I1 - (-) 0.37 (0.00) - (-) 0.29 (0.16) - (-) 0.95 (0.00) - (-) 1.01 (0.00)
ClgME-I2 - (-) 0.28 (0.06) - (-) 0.50 (0.00) - (-) 0.85 (0.18) - (-) 1.69 (0.00)

Table 5: Average relative time and corresponding standard deviations for solving RMP.
OPT SST

Set CG∗ CG′ CGk CG∗ CG′ CGk

RED

ClgSE-I1 0.85 (0.10) 0.63 (0.18) 0.49 (0.13) 0.84 (0.10) 0.67 (0.13) 0.49 (0.10)
ClgSE-I2 0.94 (0.04) 0.83 (0.10) 0.51 (0.14) 0.94 (0.05) 0.84 (0.09) 0.52 (0.10)
ClgSE-I3 0.85 (0.09) 0.70 (0.13) 0.46 (0.09) 0.87 (0.09) 0.69 (0.14) 0.48 (0.10)

ClgN1B-I1 0.96 (0.05) 0.85 (0.11) 0.52 (0.08) 0.97 (0.05) 0.85 (0.10) 0.58 (0.11)
ClgN1B-I2 0.99 (0.01) 0.92 (0.08) 0.53 (0.15) 0.99 (0.01) 0.94 (0.04) 0.62 (0.16)
ClgME-I1 1.00 (0.00) 0.98 (0.03) 0.73 (0.19) 1.00 (0.00) 0.98 (0.03) 0.79 (0.16)
ClgME-I2 1.00 (0.00) 0.99 (0.02) 0.85 (0.17) 1.00 (0.00) 0.99 (0.02) 0.86 (0.15)

BMAX

ClgSE-I1 0.63 (0.17) 0.46 (0.14) 0.28 (0.09) 0.65 (0.15) 0.47 (0.15) 0.32 (0.10)
ClgSE-I2 0.85 (0.11) 0.72 (0.12) 0.37 (0.08) 0.86 (0.12) 0.72 (0.14) 0.37 (0.09)
ClgSE-I3 0.72 (0.16) 0.53 (0.14) 0.29 (0.07) 0.75 (0.15) 0.56 (0.14) 0.29 (0.06)

ClgN1B-I1 0.52 (0.29) 0.34 (0.19) 0.07 (0.04) 0.58 (0.29) 0.37 (0.20) 0.10 (0.06)
ClgN1B-I2 0.81 (0.10) 0.63 (0.16) 0.08 (0.06) 0.82 (0.11) 0.66 (0.15) 0.15 (0.07)
ClgME-I1 0.82 (0.16) 0.81 (0.23) 0.33 (0.36) 0.82 (0.14) 0.84 (0.18) 0.30 (0.33)
ClgME-I2 0.94 (0.05) 0.92 (0.12) 0.62 (0.32) 0.94 (0.04) 0.93 (0.13) 0.62 (0.33)

6 Conclusions and Future Work

In this paper we presented a column generation approach for bmax-SNDP, a problem which occurs in
the design of the last mile in fiber optic networks, based on exponentially many variables corresponding
to feasible client connections. By using alternative dual-optimal solutions when solving the pricing
subproblem, we could achieve a dramatic speedup with respect to computation time. However, since
primal degeneracy still has harmful effects on several instances, we want to combine this approach with a
problem independent stabilization method to further decrease the time needed to solve the LP relaxation
of our model in future work. Furthermore, we want to extend our approach to a branch-and-price
algorithm to obtain provably optimal solutions as well as combine column generation with metaheuristic
methods for generating high quality solutions with small gaps for large instances. Finally, from a more
general point of view we believe that the usage of alternative dual-optimal solutions might increase
performance of column generation approaches of other problems of similar structure, too.
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