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Abstract. We consider a generalization of the (Price Collecting)
Steiner Tree Problem on a graph with special redundancy requirements
for customer nodes. The problem occurs in the design of the last mile
of real-world communication networks. We formulate it as an abstract
integer linear program and apply Lagrangian Decomposition to obtain
relatively tight lower bounds as well as feasible solutions. Furthermore,
a Variable Neighborhood Search and a GRASP approach are described,
utilizing a new construction heuristic and special neighborhoods. In
particular, hybrids of these methods are also studied and turn out to
often perform superior. By comparison to previously published exact
methods we show that our approaches are applicable to larger problem
instances, while providing high quality solutions together with good
lower bounds.

Keywords: Network Design, Variable Neighborhood Search, Greedy
Randomized Adaptive Search Procedure, Lagrangian Relaxation, Redun-
dancy, Steiner Tree Problem, Survivable Network Design.

1 Introduction

We consider a real-world communication network design problem arising in the
expansion of existing fiber optic networks. “Fiber-to-home” has recently become
economically feasible for individual households. Since the coverage of larger dis-
tricts with such networks requires enormous financial resources, good algorithms
for finding cost-efficient network layouts are crucial.

We consider the problem of augmenting an existing network infrastructure
by additional links (and switches) in order to connect potential customer nodes.
Two types of customers exist: For type-1 customers, a standard, single link
connection suffices, while type-2 customers require more reliable connections,
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ensuring connectivity even when a single link or routing node fails. We also
consider a variant of the problem in which the redundancy condition for type-2
customers is relaxed in the sense that a connection is allowed via a final non-
redundant branch that does not exceed a certain length bmax.

In previous work, summarized in Section 3, we approached this problem with
integer linear programming techniques, including an extended multi-commodity
flow formulation and a branch-and-cut algorithm. These techniques allow to find
proven optimal solutions for relatively small instances.

Here we propose an approach that is also feasible for larger instances and never-
theless provides performance guarantees. It is based on a Lagrangian decomposi-
tion of the network flow model in order to obtain relatively tight lower bounds. The
Lagrangian dual problem is hereby solved via the Volume Algorithm [1], which is
known to often perform better than a standard subgradient search. Upper bounds
and thus primal (feasible) solutions are identified at the same time, and they are
improved by local search utilizing several neighborhoods. Furthermore, we pro-
pose two metaheuristic approaches based on Variable Neighborhood Search [2]
and GRASP [3] to obtain primal solutions in relatively short time.

From a theoretical point-of-view, we are able to show that our Lagrangian
decomposition represents a stronger model than the linear programming relax-
ation of the original multi-commodity network flow model. This observation is
also clearly supported by our experimental results: The Volume Algorithm usu-
ally finds significantly better lower bounds in shorter times, and the obtained
heuristic solutions are typically better or equal than those that could eventually
be obtained by the previous approaches.

In a more general sense, this work is a good example on how Lagrangian
relaxation can be applied in combination with local search based metaheuristics
in order to solve a difficult practical problem heuristically and provide a quality
guarantee, i.e. a lower bound, at the same time. The next section will formally
introduce the problem. In Section 3 we give a short summary on related previous
work. An abstract variant of the multi-commodity flow formulation from [4] is
presented in Section 4 together with the Lagrangian decomposition approach
for solving it. Section 5 presents the neighborhood structures used to improve
solutions in the metaheuristics of Section 6 as well as in the hybrid Lagrangian
approaches given in Section 7. Experimental results are discussed in Section 8,
and Section 9 concludes this work.

2 Problem Definition

We are given a connected undirected graph G = (V, E) representing the spatial
topology of the surrounding area of potential customers. Edges in E correspond
to possible cable routes and have associated lengths le ≥ 0 and construction
costs ce ≥ 0 for installing a corresponding fiber optic link. The node set V is
the disjoint union of customer nodes C and spatial nodes S (switches, possi-
ble Steiner nodes). Set C is partitioned into subsets C1 and C2, whereby cus-
tomers C1 require a single connection (type-1) and customers C2 need to be



160 M. Leitner and G.R. Raidl

Fig. 1. Problem Instance Fig. 2. Shrunken Instance

Fig. 3. Solution with bmax = 0 Fig. 4. Solution with bmax > 0

root node

C1 client

C2 client

spatial node

infrastructure node

redundantly connected (type-2). Each customer node k ∈ C further has asso-
ciated a prize pk ≥ 0, i.e. expected return of investment. The already existing
network infrastructure is represented by the subgraph I = (VI , EI) of G, see
Figure 1.

In a first preprocessing step, we shrink the whole existing network infras-
tructure, i.e. the root and all connected infrastructure nodes, into a single node
0 ∈ V . From all edges connecting a node i ∈ V to the existing infrastructure,
only the cheapest edge is kept and finally replaced by an edge (0, i) with the
same length and costs, see Figure 2.

Let subgraph G′ = (V ′, E′) with V ′ ⊆ V and E′ ⊆ E represent a solution
network we seek. The following conditions specify how customer nodes are to be
connected:

– Simple connection: A customer node k from C1 is feasibly connected iff there
exists a path from node 0 to k.

– Redundant connection: A customer node k from C2 is feasibly connected iff
there exist two node (and edge) disjoint paths from node 0 to k, see Figure 3.

– bmax-redundant connection: Occasionally, the biconnectivity condition for
the nodes in set C2 is relaxed in the sense that such a node k ∈ C2 may
be connected to any biconnected (Steiner or customer) node j ∈ V (the
branch-node of k) via a single path of maximum total length bmax(k) > 0.
This (optional) single path is called branch-line and bmax(k) the maximum
branch-line length for customer k, see Figure 4.

Regarding the objective, we distinguish between two alternative goals:

– In the Operative Planning Task (OPT) we focus on finding a minimum-cost
subgraph G′ feasibly connecting all customers C, with the total costs being

cOPT(G′) =
∑

e∈E′

ce. (1)
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This case can be considered a generalization of the classical Steiner tree
problem on a graph (STP) where a special form of redundancy is required
for the nodes in C2.

– In the Strategic Simulation Task (SST) customers’ prizes are also considered,
and the objective is to only connect a subset C′ ⊆ C of customers so that
the costs for building the network minus the earned prizes are minimized.
In order to always have positive total costs, which eases some parts of our
algorithms and notations, we perform a simple transformation by adding the
constant

∑
k∈C pk to the objective function, yielding

cSST(G′) =
∑

e∈E′

ce −
∑

k∈C′

pk +
∑

k∈C

pk =
∑

e∈E′

ce +
∑

k∈C\C′

pk. (2)

This problem variant is generalization of the price-collecting Steiner tree
problem (PCSTP).

As already the classical Steiner tree problem on a graph is NP-hard [5], this
obviously also holds for both of our problem variants. In the following presen-
tation of our solution approaches, we primarily consider the more complex SST
case if not explicitly stated and assume pk = ∞, ∀k ∈ C for the OPT case.

3 Previous Work

The Steiner Tree Problem (STP) has been considered by a lot of authors, see
e.g. [6] for a survey. The Price Collecting Steiner Tree Problem (PCSTP) was
introduced by Segev [7] who considered the Node Weighted STP, which is a
special version of the PCSTP. The term “price collecting” has been introduced
by Balas [8] for the Price Collecting Traveling Salesman Problem. A survey on
methods for Survivable Network Design which can be seen as a more general
version of our problem can be found in [9].

In our first attempt described in [4], we modeled this problem as an integer
linear program (ILP) by means of an extended multi-commodity network flow
(MCF) formulation. With the general purpose ILP-solver CPLEX [10], instances
with up to 190 total nodes, 377 edges but only 6 customer nodes could be solved
to proven optimality, and instances up to 2804 nodes, 3082 edges and 12 customer
nodes could be solved with a final gap of about 7%. Unfortunately, this approach
turned out to be unsuitable for larger instances and/or in particular instances
with larger number of customer nodes, as already solving the linear programming
(LP) relaxation of the ILP requires too much time due to the huge number of
variables involved.

In [11], we approached this problem with a different formulation based on
directed connectivity constraints. While this formulation involves only a reason-
able number of variables, the number of inequalities is exponentially large. By
using a branch-and-cut algorithm, however, this model could be solved relatively
well, and we were able to find proven optimal solutions for instances with up
to 190 nodes, 377 edges, and 13 customer nodes. For larger, practical instances
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this approach unfortunately still is not applicable at all or finds quite poor so-
lutions with huge LP-gaps only. Finally, another even stronger model based on
directed connectivity constraints which does not consider bmax redundancy has
been presented in [12].

4 Abstract ILP Model and Lagrangian Decomposition

To formulate this problem as an abstract ILP, we utilize decision variables xe ∈
{0, 1}, ∀e ∈ E, indicating whether or not edge e is part of the solution, i.e.
xe = 1 ↔ e ∈ E′. For customer nodes k ∈ C variables yk ∈ {0, 1} denote whether
or not feasible connections according to the customers’ types and bmax(k) exist.
Our model is based on the MCF formulation from [4], but all the different types
of flow variables for each customer k ∈ C on directed arcs are replaced by simple
variables fk

e ∈ {0, 1}, ∀e ∈ E, indicating whether or not edge e is part of the
single path (type-1) or pair of disjoint paths plus the eventual branch-line (type-
2) for connecting customer k; fk denotes the vector of all these variables for a
customer k.

Let Fk, ∀k ∈ C, be the set of all incidence vectors on E corresponding to
feasible connections for customer k. We can now formulate the SST-variant of
our problem in the following abstract way:

minimize
∑

e∈E

cexe +
∑

k∈C

pk(1 − yk) (3)

s.t. fk
e ≤ xe ∀k ∈ C, ∀e ∈ E (4)

fk ∈ Fk if yk = 1 ∀k ∈ C (5)

fk
e ∈ {0, 1} ∀k ∈ C, ∀e ∈ E (6)

xe ∈ {0, 1} ∀e ∈ E (7)

The objective function (3) uses variables xe and yk but otherwise corresponds
to (2). Inequalities (4) are called coupling constraints and enforce an edge to
appear in the solution when it is used for connecting at least one customer.
Conditions (5) ensure feasible connections for all selected customers (yk = 1).
The OPT-variant of the model is obtained by simply ignoring the second term
in the objective function and the conditions on yk in (5).

Note that in this form, the model is not yet a concrete ILP, as conditions (5)
are not expressed by means of linear inequalities. Ideally, we would substitute
them by a set of linear inequalities describing the convex hull conv(Fk) of all
incidence vectors of feasible connections for each customer k in dependence of
variables yk. Unfortunately, finding a (compact) set of such inequalities is not
trivial. While this can be achieved for simple (type-1) connections via a network
flow formulation, this task is quite difficult for the biconnected case involving
branch-lines (type-2).

Our MCF model from [4] represents a concrete instantiation of this abstract
model. As can be easily shown, however, it does not contain a complete descrip-
tion of conv(Fk) but just a formulation that is valid for integer solutions. We
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conclude that the MCF-formulation from [4] therefore is not as strong as an
“ideal” instantiation of the abstract model.

4.1 Lagrangian Decomposition

For a general introduction to Lagrangian relaxation and decomposition see
e.g. [13]. We relax the coupling constraints (4) of our abstract model in a clas-
sical Lagrangian fashion, i.e., by substituting them with corresponding penalty
terms in the objective function. This yields model LR(λ):

minimize
∑

e∈E

cexe +
∑

k∈C

pk(1 − yk) +
∑

k∈C

∑

e∈E

λk,e · (fk
e − xe) = (8)

=
∑

k∈C

pk +
∑

e∈E

(
ce −

∑

k∈C

λk,e

)
xe +

∑

k∈C

(
∑

e∈E

λk,ef
k
e − pkyk

)
(9)

s.t. fk ∈ Fk if yk = 1 ∀k ∈ C (10)

fk
e ∈ {0, 1} ∀k ∈ C, ∀e ∈ E (11)

xe ∈ {0, 1} ∀e ∈ E (12)

Parameters λk,e ≥ 0, ∀k ∈ C, ∀e ∈ E, are the Lagrangian multipliers, and for
any feasible instantiation of them the optimal solution of LR(λ) yields a lower
bound on the optimal solution value of our original abstract model [13]

For a specific selection of λ, this relaxation can be efficiently solved as it
decomposes into |C| independent problems of determining individual cheapest
connections for each k ∈ C on a graph whose edge costs are λk,e (see Section 4.2).
A node k is finally connected (yk = 1) and the variables fk

e corresponding to the
identified connection are set to one iff the connection pays off, i.e.

∑
e∈E λk,ef

k
e ≤

pk. Otherwise, the connection is discarded by setting yk = 0 and fk
e = 0, ∀e ∈ E.

Optimal values for variables xe, e ∈ E, are independently determined by simple
inspection, i.e. xe = 1 iff ce <

∑
k∈C λk,e, ∀e ∈ E.

The Lagrangian dual problem is the challenge of finding an optimal vector of
Lagrange multipliers λ∗ so that the lower bound obtained by LR(λ∗) becomes
as large as possible. As this maximization problem is convex and piecewise lin-
ear, subgradient algorithms are well suited for this purpose [13]. While different
variants of such methods exist, the Volume Algorithm [1] has proven to be more
effective than several alternatives on various occasions [14,15], and we therefore
apply it here. Also, our preliminary comparisons indicate the superiority of this
algorithm over the standard subgradient strategy as described in [13]. Due to
space limitations, we unfortunately cannot describe the Volume Algorithm here.

4.2 Determining an Individual Optimal Connection

In each iteration of the Volume Algorithm, we need to determine for each cus-
tomer k ∈ C the cheapest feasible connection on the graph in which each edge
e ∈ E has costs λk,e ≥ 0. While a simple shortest path calculation from 0 to k
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returns this connection for type-1 customers k ∈ C1, we need to determine the
cheapest pair of node-disjoint paths from 0 to k for type-2 customers k ∈ C2.
Suurballe and Tarjan [16] presented an algorithm to efficiently compute a short-
est arc-disjoint pair of paths between two nodes s and t on a directed graph
GD = (V, A) in time O(|A| + |V | log |V |), see also [17]. Initially a shortest path
tree from s as well as the shortest path P1 from s to t are determined and the
costs of each arc (i, j) are replaced with ci,j −dj +di, with di and dj representing
the costs of the shortest paths from s to i and j, respectively. After reversing all
arcs on P1, a shortest path P2 from s to t is determined on this new (residual)
graph using these adapted arc costs. Finally, the cheapest arc-disjoint pair of
paths is given by P1	P2.

We apply this algorithm on the split graph of the original graph to compute
node-disjoint paths. The split graph is obtained by replacing each node v ∈ V by
a pair of nodes v′, v′′ connected by an arc (v′, v′′) with zero costs. Furthermore,
for each (undirected) edge (u, v) ∈ E arcs (u, v′) and (v′′, u) with the same costs
(and lengths) are created. Since each node v′ has only one outgoing arc and
each node v′′ has only one ingoing arc, any pair of edge-disjoint paths is also
node-disjoint.

A simple extension of the algorithm above for the case of bmax-redundancy
(see Fig. 3) is to determine the overall cheapest combination of a shortest pair
of paths to a node in the bmax-neighborhood of a customer k and a simple path
from this node to k. Although we believe that a more efficient algorithm, at
least with respect to average time complexity, can be found, we currently use
this extension, which increases worst time complexity by a factor proportional to
the size of the bmax neighborhood. Unnecessary calculations can be avoided by
only considering possible branch-nodes j for which dj < 1

2 ccurr with ccurr being
the costs of the so far cheapest connection.

4.3 Theoretical Comparison of LR(λ∗) and the MCF Formulation

For each concrete instantiation of λ, all subproblems obtained by the Lagrangian
decomposition are always solved to optimality and integrality. Therefore, fk ∈
conv(Fk) holds for all k ∈ C, and the abstract constraints (5) of our model (3)
to (7) can be regarded as “ideally instantiated”. Assuming we would be able to
identify an optimal Lagrange vector λ∗, the lower bound obtained by LR(λ∗))
is at least as good as the lower bound determined by an LP-relaxation of the
model. As already argued before, the MCF-formulation from [4] is weaker than an
“ideal” instantiation of the abstract model. We therefore conclude that LR(λ∗))
is stronger than the LP-relaxation of the MCF-formulation. Our experimental
results in Section 8 also clearly support this fact.

5 Neighborhoods for Improving Primal Solutions

Our algorithms make use of three types of neighborhoods. While the first two
aim at reducing the cost of a given solution, the last type consisting of two
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Fig. 5. An exemplary candidate solution and the representation of its connections

concrete neighborhoods tries to improve a solution by removing customers from
a candidate solution. Therefore, the latter is only applicable to the SST variant.

For our neighborhood structures, a candidate solution S′ = (V ′, E′, C′, X ′) is
represented, by its node set V ′, total edge set E′, feasible connected customers
C′ = {k ∈ C | yk = 1} and individual connections X ′ = {E′

k | k ∈ C′} with
E′

k = {e ∈ E′ | fk
e = 1}. In other words, E′

k is the set of edges used to eventually
connect customer k. Note that there may exist multiple connections to a single
customer node in a solution S′ in which case we store only one of them.

Furthermore, for each connection E′
k we maintain its internal structure con-

sisting of its branch-node B(E′
k) ∈ V ′, edge sets P (E′

k), Q(E′
k) ⊆ E′ of its two

paths between 0 and B(E′
k) and finally the edge set of its branch-line L(E′

k) ⊆ E′.
Note that we assume B(E′

k) = k if bmax(k) = 0 or k ∈ C1 as well as internally
define P (E′

k) to be the “first” path of a connection, i.e. P (E′
k) is used for type-1

customers while Q(E′
k) = L(E′

k) = ∅ for type-1 customers, see Figure 5. Finally,
to allow for efficient updates of a solution with respect to connections, we main-
tain for each edge e ∈ E′ a list of the customers that are connected via this edge:
Me = {k ∈ C′ | e ∈ E′

k}.

5.1 Connection Exchange Neighborhood

The Connection Exchange Neighborhood (CEN) consists of all solutions differing
from the current solution S′ by exactly one connection E′

k, see Algorithm 1.
To determine the best neighboring solution for a fixed customer k ∈ C′, CEN
calculates the saving due to removing the corresponding connection E′

k (which
is the sum of all edge costs exclusively used to connect k). The connection to
k leading to minimum additional costs is then determined by calculating the
cheapest feasible connection to k in a graph with edge costs c′e = 0, ∀e ∈ E′′ =
E′ \ {e ∈ E′

k | Me = {k}} and c′e = ce, ∀e ∈ E \ E′′. For type-1 nodes and
type-2 nodes with bmax(k) = 0, the computational complexity of finding this
new connection for one specific client node k is bounded by O(|E| + |V | log |V |).
For type-2 customers with bmax(k) > 0, we iteratively consider each possible
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Algorithm 1. Connection Exchange (Solution S′)
c′
e = 0 ∀e ∈ E′

c′
e = ce ∀e ∈ e \ E′

dopt = 0
forall k ∈ C′ do

E′′ = {e ∈ E′
k | Me = {k}}

c′
e = ce, ∀e ∈ E′′

d =
∑

e∈E′′ ce

E′′
k = shortest connection to k using edge costs c′

d =
∑

e∈E′′ ce −
∑

e∈E′′
k

c′
e

if d > dopt then
dopt = d −

∑
e∈E′′

k
c′
e

store solution S′ with E′′
k replacing E′

k as best solution
c′
e = 0, ∀e ∈ E′′

return best solution

branch-nodes, yielding an upper bound of O(b(|E|+|V | log |V |)), with b denoting
the maximum number of possible branch-nodes. Therefore, the whole CEN which
consists of exponentially many feasible connections can be efficiently searched
for the best neighbor in O(|C| b (|E| + |V | log |V |)).

5.2 Key-Path Exchange Neighborhood

A key-node of a solution S′ is a node v ∈ V ′ \C′ with node degree degS′(v) ≥ 3,
while a key-path is a path KP = (VP, EP) whose end nodes are either key-nodes
or customer nodes k ∈ C, while all other nodes are Steiner nodes v ∈ V ′ \(C ∪0)
of degree two, i.e. degS′(v) = 2. This concept of key-paths is well known for the
STP and several metaheuristic methods utilizing a key-path exchange neighbor-
hood have been proposed, see e.g. [18]. The Key-Path Exchange Neighborhood
(KPEN) given in Algorithm 2 extends this concept by exchanging key-paths
while respecting node- as well as bmax redundancy. KPEN of a candidate so-
lution S′ consists of all feasible solutions that differ from S′ by at most one
key-path. To ensure feasibility, after exchanging a key-path KP, three relevant
cases need to be considered. If KP is used to connect type-1 customer only, it
may simply be replaced by any other path, while if it is used in a branch-line
L(E′

k) of a type-2 customer k ∈ C2, the maximum length of the new path may
be at most bmax(k) −

∑
e∈(L(E′

k)\EP) le. Finally, if KP is used in the first path
P (E′

k) of a C2 customer k, all edges incident to “internal” nodes of its second
path Q(E′

k) may not be used by the new key-path to guarantee node redundancy
(and vice versa for the alternate path Q(E′

k)). All other edges e of S′ are treated
as pseudo-infrastructure, i.e. c′e = 0.

5.3 Connection Remove Neighborhood

Instead of exchanging a customer’s connection as in CEN, the Connection Re-
move Neighborhood (CRN) removes the connection to a single customer node
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Algorithm 2. Key Path Exchange (Solution S′)
determine key-paths W
dopt = 0
forall key-paths (VP, EP) ∈ W do

// actual key-path connects its end nodes m,n
c′
e = 0 ∀e ∈ E′ \ EP

c′
e = ce ∀e ∈ EP ∪ (E \ E′)

choose e ∈ EP randomly
lmax = ∞
forall k ∈ M ′

e do
if e ∈ P (E′

k) then
c′
e = ∞, ∀e ∈ E incident to a inner node of Q(E′

k)

else if e ∈ Q(E′
k) then

c′
e = ∞, ∀e ∈ E incident to a inner node of P (E′

k)

else if e ∈ L(E′
k) then

lmax = bmax(k) −
∑

e∈(L(E′
k
)\EP) le

(V ′
P, E′

P) = shortest path from m to n using c′
e with max. length lmax

d =
∑

e∈EP
ce −

∑
e∈EP′ c′

e

if d > dopt then
dopt = d
store solution S′ with (VP, EP) replacing (VP, EP) as best solution

return best solution

k ∈ C′. CRN of a current solution S′ therefore consists of all solutions S′′,
where exactly one customer connected in C′ is not connected anymore, i.e.
C′′ ⊂ C′ ∧ |C′′ \ C′| = 1. As a customer’s connection may consist of O(|V |)
edges only, CRN consisting of |C′| neighboring solutions can be searched in
O(|C′||V |) time.

5.4 Restricted Two Connection Remove Neighborhood

CRN can be easily generalized to simultaneously remove multiple customer
nodes. However, removing the connections to l > 1 customers at once will result
in |C|l neighboring solutions and the computational effort of searching such a
neighborhood would be O(|C|l|V |). We therefore concentrate on simultaneously
removing pairs of customers i, j ∈ C′, i �= j which share at least one edge exclu-
sively used by them, i.e. ∃e ∈ E′ | Me = {i, j}. The Restricted two Connection
Remove Neighborhood (R2CRN) can be searched in O(|V | min(|E′|, |C′|2)).

6 Metaheuristics

In this section we present metaheuristic approaches utilizing the neighborhoods
explained in Section 5 to compute feasible solutions. After describing a construc-
tion heuristic in Section 6.1, we present a Variable Neighborhood Search (VNS)
with embedded Variable Neighborhood Descent (VND) in Section 6.2 and – as
an alternative – a GRASP/VND hybrid in Section 6.3.
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6.1 Minimum Spanning Tree Augmentation Heuristic

We use a three-phase approach called Minimum Spanning Tree Augmentation
Heuristic (MSTAH) to construct a feasible solution for a given selection of cus-
tomers C′ ⊆ C to be connected. Initially, a Steiner tree GT is computed using the
Minimum Spanning Tree (MST) heuristic from [19]. This procedure determines a
MST TD on the distance network, which is the complete graph D = (C′, C′×C′)
with node set C′ and edge costs d(u, v) corresponding to the costs of the cheapest
paths between any u, v ∈ C′ in G. A feasible solution S′′ to the Steiner Tree Prob-
lem is derived by further computing a MST on G(TD) which is the subgraph of G
induced by all edges part of any cheapest path corresponding to an edge in TD.
In its second phase, MSTAH augments S′′ = (V ′′, E′′) by feasible connections to
C2 customers. Such connections are determined by individually calculating the
cheapest feasible connection (compare Section 4.2) for all customers k ∈ C2. All
so far selected edges e ∈ E′′ are considered as pseudo-infrastructure, i.e. having
zero costs. Finally, an edge minimal solution is extracted (i.e. no further edges
can be deleted without violating feasibility) by greedily removing unnecessary
key-paths in decreasing cost order. A similar heuristic which does not consider
bmax redundancy has been presented in [12]. Similar to MSTAH the heuristic
from [12] uses the MST heuristic [19] to compute a Steiner tree. As opposed to
MSTAH redundancy for C2 customers is ensured by adding a redundant route
to each type-2 customer avoiding any inner node of the existing primary path
using so far selected edge as pseudo-infrastructure.

6.2 Variable Neighborhood Search

We use the general VNS scheme with VND as embedded local improvement [2].
In VND, we alternate between CEN, KPEN, CRN, R2CRN in this order, with
the latter two considered only in the SST variant.

Our shaking algorithm used to escape local optima modifies a solution S′ by
excluding a subset of its Steiner nodes as well as changing the set of connected
customers C′ in the SST variant: A set of l = 1, . . . , lmax = |C| Steiner nodes
VF ⊂ V ′ \ C of the current solution S′ is randomly chosen for removal. Further-
more, we select a set of m = � l

3� customer nodes CC ⊂ V ′
i ∈ C at random. The

set of customers C′′ connected in the new solution S′′ is C′′ = C′	VC, i.e. we
add those customers of VC that are currently unconnected while removing the so
far connected ones. Finally, we apply MSTAH using the following adapted edge
costs c′ with a sufficiently large value for M (M � maxe∈E ce).

c′e =

⎧
⎪⎨

⎪⎩

M if e is incident to a nodes v ∈ VF,

0 if e ∈ E′ and e not incident to a node v ∈ VF,

ce else.

Edge costs c′ ensure the creation of a new solution S′′ that is in general similar
to S′ while those Steiner nodes selected for exclusion will not be used unless there
is no other option to obtain a feasible solution S′′.
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6.3 Greedy Randomized Adaptive Search Procedure

As an alternative to the general VNS, we also consider a GRASP in which local
search is again performed by the above mentioned VND. A similar approach
utilizing node- and path-based neighborhoods has been already proposed for the
classical STP by Martins et al. [18]. They used a modified version of the MST
heuristic [19] in the construction phase. Similarly, we modify our construction
heuristic MSTAH by randomizing Kruskal’s algorithm for computing the MST
on the distance network D. Let dmax = max{d(u, v) | ∀(u, v) ∈ C′ × C′} and
dmin = min{d(u, v) | ∀(u, v) ∈ C′×C′} be the maximum and minimum distances,
respectively. Instead of always adding the cheapest feasible edge that connects
two yet unconnected components, the randomized spanning tree construction
selects the edge to be included next randomly from a restricted candidate list
consisting of all feasible edges (u, v) ∈ C′×C′ with d(u, v) ≤ dmin+α(dmax−dmin)
with 0 < α ≤ 1.

7 Combining Lagrangian Decomposition and Variable
Neighborhood Descent

As described in Section 4 we solve the Lagrangiandual problem of determining op-
timal λ∗ by the Volume Algorithm. In each iteration we need to determine optimal
xe variables as well as fk

e variables for the current set of Lagrangian multipliers λ.
The latter are computed by calculating individual cheapest connections for each
customer k ∈ C and eventually choosing to connect k in case it pays off. Obviously,
the graph S′ = (V ′, E′) induced by the set of edges E′ = {e ∈ E | ∃k s.t. fk

e = 1}
is a primal feasible solution. This offers multiple ways of hybridizing the La-
grangian decomposition approach with metaheuristics in order to obtain better
primal solutions and reduce the gap between lower and upper bounds.

Here, we pursue two alternatives: Either we immediately try to improve
promising solutions gained by the iterations of the Volume Algorithm, or we
store the N best solutions obtained by the Volume Algorithm and try to improve
them after termination of the Volume Algorithm. In both cases, we use VND
with CEN, KPEN, CRN, and R2CRN in this order to generate a local optimum
for a given candidate solution (CRN and R2CRN are again only considered in
the SST variant). According to the classification of hybrid metaheuristics given
in [20] the former approach is a sequential hybridization with respect to the order
of execution, while the latter falls into the category of interleaved hybridization.

As the time for performing VND on a candidate solution is not negligible, it is
critical to apply it wisely on a well-chosen subset of candidate solutions only. In
the interleaved approach, we found the following self-adaptive strategy with the
exogenous parameters δ, γ, and βmax to work well. Let S′ and S′

best be the current
and so far best solutions obtained by the Volume algorithm, respectively. VND
is applied to S′ iff c(S′) ≤ (1 + β) c(S′

best). Preliminary tests indicated that a
good value for β is not easy to find as it depends on the problem instance, and so
we automatically adapt it each δ iterations as follows. Let r be the ratio of how
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Table 1. Instance set characteristics

Set # |V | |E| |C| |C| |C1| |C1| |C2| |C2| bmax |V (bmax)|
ClgSE-I1 25 190 377 5-8 5.9 3-5 3.8 2-3 2.1 30 3.79
ClgSE-I2 15 190 377 11-17 13.8 7-12 8.9 4-7 4.9 30 8.97
ClgSE-I3 15 190 377 8-12 9.6 5-8 6.0 3-6 3.6 30 6.04
ClgME-I1 25 1757 3877 6-10 7.2 4-7 5.0 2-3 2.3 100 4.96
ClgME-I2 15 1523 3290 11-14 12.2 8-11 8.7 3-4 3.5 100 8.71
ClgN1B-I1 20 2804 3082 11-14 11.8 8-11 8.5 3-4 3.3 100 8.49
ClgN1B-I2 19 2804 3082 7-11 9.0 3-6 4.1 4-6 5.0 100 3.99
ClgN1E-I1 20 3867 8477 8-14 11 3-6 4.1 5-9 6.9 150 4.12
ClgN1E-I2 20 3867 8477 10-12 10.6 6-8 6.4 4-5 4.2 150 6.39

often VND has been applied during the last δ iterations of the Volume algorithm.
If r < γ we set β = min(2β, βmax) while β = max(β/2, βmax) if r > γ. We chose
N = 50, βmin = 0.01, βmin = 0.4, γ = 0.05 and δ = 100 and initially set β = 0.1.

Furthermore, we memorize hash-values of candidate solution which have al-
ready been used as starting solutions to avoid unnecessary runs of VND. These
hash-values are also used to ensure that the N solutions stored in the sequential
approach are pairwise different.

We initialize Lagrangian multipliers by λk,e = ce/|C| ensuring a positive lower
bound in the first iteration of the Volume Algorithm. Referring to the description
of the Volume algorithm in [15], we further configured it as follows: The target
value T is set to T = 1.1zUB with zUB being the actual upper bound unless the
actual lower bound zLB > 0.9 T in which case T is multiplied by 1.1. We initially
set f = 0.1 and α = 0.01. After 20 consecutive non-improving iterations, f is
multiplied by 0.67 in case it is greater than 10−4 and by 1.1 in an improving
iteration if f < 1. If zLB did not improve by more than 1% within the last 100
iterations and if α > 10−5, we multiply α by 0.85. The Volume Algorithm is
terminated if �zLB� = zUB, after 250 consecutive non improving iterations, or if
the maximum time limit is reached.

8 Computational Results

We used real-world instances from a German city [21] to test our approaches, see
Table 1. All experiments have been performed on a single core of an Intel Xeon
5150 with 2.66GHz and 8GB RAM; ILOG CPLEX 10.0 has been used to solve
the ILP for the MCF formulation from [4]. For GRASP we chose α = 0.25 and
generated 100 initial solutions, and the VNS was terminated after 100 iterations
of the outermost, largest shaking move. An absolute time limit of 7200 seconds
has been used for all experiments.

Table 2 compares lower bounds generated by our Lagrangian Decomposition
(LD) approach to the LP-relaxation values of the MCF formulation from [4]. RED
refers to the problem variant with standard redundancy constraints for C2 cus-
tomers while BMAX describes those experiments using bmax redundancy. As the
sequential Lagrangian Decomposition approach (SEQ) as well as the interleaved
approach (INT) yield similar bounds we only report the relative improvement of
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Table 2. Improvement of lower bounds comp. to the LP-relaxation of MCF [4] in %.

Set OPT+RED SST+RED OPT+BMAX SST+BMAX
ClgS-I1 0.00 0.05 6.83 6.98
ClgS-I2 0.00 0.14 5.98 5.96
ClgS-I3 0.00 0.51 5.53 4.95
ClgM-I1 0.00 0.00 2.04 2.04
ClgM-I2 0.00 0.15 4.54 3.71
ClgN1B-I1 0.00 3.07 - -
ClgN1B-I2 0.00 2.12 - -
ClgN1E-I1 0.00 0.14 - -
ClgN1E-I2 0.00 0.02 - -

Table 3. Relative gaps and corresponding standard deviations in %

OPT SST
Set LD SEQ INT LD SEQ INT

RED

ClgS-I1 1.77 (2.45) 1.65 (2.39) 1.63 (2.38) 1.76 (2.45) 1.65 (2.39) 1.63 (2.38)
ClgS-I2 12.80 (6.16) 9.12 (4.05) 8.84 (4.08) 13.45 (7.07) 9.98 (6.18) 9.13 (4.65)
ClgS-I3 7.49 (6.07) 5.73 (4.81) 5.54 (4.55) 8.89 (6.19) 7.28 (5.03) 7.09 (4.84)
ClgM-I1 4.29 (2.61) 2.80 (2.17) 2.70 (2.10) 4.22 (2.62) 2.80 (2.17) 2.61 (2.10)
ClgM-I2 9.88 (7.10) 6.58 (4.75) 5.89 (4.43) 11.60 (6.70) 8.50 (5.77) 7.67 (5.65)
ClgN1B-I1 4.12 (3.50) 2.82 (2.82) 2.50 (2.19) 4.17 (3.45) 2.88 (2.80) 2.58 (2.20)
ClgN1B-I2 1.96 (1.81) 1.32 (1.43) 1.27 (1.44) 1.84 (1.73) 1.34 (1.46) 1.29 (1.46)
ClgN1E-I1 3.13 (3.33) 1.51 (1.57) 1.23 (1.24) 3.08 (3.23) 1.65 (1.81) 1.23 (1.24)
ClgN1E-I2 5.62 (4.67) 3.55 (2.51) 3.21 (2.09) 5.36 (4.04) 3.53 (2.52) 3.20 (2.08)

BMAX
ClgS-I1 2.26 (3.19) 2.13 (3.00) 1.74 (2.40) 2.26 (3.19) 2.13 (3.00) 1.74 (2.40)
ClgS-I2 19.49 (7.36) 14.41 (4.46) 12.87 (4.34) 19.53 (7.11) 14.60 (4.91) 13.15 (4.89)
ClgS-I3 9.05 (7.44) 6.47 (4.47) 6.23 (4.30) 10.26 (7.67) 7.31 (4.32) 7.14 (4.21)
ClgM-I1 5.27 (3.22) 3.41 (2.14) 3.09 (1.96) 5.27 (3.23) 3.34 (2.10) 3.09 (1.96)
ClgM-I2 15.19 (9.49) 9.29 (5.66) 8.27 (4.53) 15.89 (9.37) 9.85 (5.86) 9.02 (5.16)

LD in Table 2. LD generally generates equal bounds for the OPT case when bmax-
redundancy is not considered, while the achieved lower bounds are better when
dealing with the SST variant or when considering bmax-redundancy. The LP relax-
ation of the MCF formulation from [4] could not be solved for one instance of set
ClgN1E-I1 (OPT variant) within 2 hours. Therefore, Table 2 reports the relative
improvements for the remaining 19 instances of this set.

Table 3 compares relative gaps between upper and lower bounds generated
by LD, SEQ, and INT and corresponding standard deviations (in parentheses).
In general, one can observe the expected behavior that the gap increases with
increasing number of customers.

SEQ and INT consistently yield for all problem variants and instances the
smallest gaps, which are usually significantly better than those of LD. Table
4 depicts relative improvements of the generated upper bounds compared to
LD. Without considering bmax-redundancy, INT generally finds solutions equally
good or even better than those that could be obtained by the MCF formulation
[4] within 2 hours. As the MCF formulation from [4] could not identify a feasible
solution for several instances of set ClgN1E-I1 (4 instances in the OPT variant
and 7 instances in the SST variant) we do not report the average improvement
of MCF for this set. Average values for GRASP and VNS have been computed
using 10 runs per instance.
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Table 4. Relative improvement of upper bounds compared to LD in %

Set MCF SEQ INT GRASP VNS

OPT+RED

ClgS-I1 0.14 (0.19) 0.12 (0.19) 0.14 (0.19) -0.13 (1.02) 0.12 (0.21)
ClgS-I2 3.40 (2.85) 3.15 (2.73) 3.40 (2.85) 3.03 (3.23) 3.38 (2.85)
ClgS-I3 1.74 (2.17) 1.57 (2.16) 1.74 (2.17) 1.48 (2.33) 1.63 (2.30)
ClgM-I1 1.53 (1.01) 1.41 (1.12) 1.61 (1.11) 1.54 (1.13) 1.22 (1.67)
ClgM-I2 3.18 (2.88) 2.87 (2.74) 3.51 (2.85) 3.23 (2.78) 2.73 (4.15)
ClgN1B-I1 1.50 (1.82) 1.22 (1.57) 1.51 (1.83) 1.47 (1.87) 1.41 (1.93)
ClgN1B-I2 0.66 (1.05) 0.62 (1.02) 0.67 (1.05) 0.53 (1.09) 0.67 (1.05)
ClgN1E-I1 - (-) 1.52 (1.77) 1.78 (2.00) 1.65 (2.11) 1.14 (2.04)
ClgN1E-I2 1.07 (3.32) 2.07 (2.41) 2.64 (2.74) 2.56 (2.75) 2.36 (2.78)

SST+RED

ClgS-I1 0.13 (0.19) 0.11 (0.19) 0.13 (0.19) -0.14 (1.02) 0.00 (0.43)
ClgS-I2 3.67 (2.92) 2.98 (2.90) 3.67 (2.92) 3.30 (3.33) 2.87 (3.76)
ClgS-I3 1.57 (2.38) 1.40 (2.34) 1.57 (2.38) 1.21 (2.57) 1.30 (2.43)
ClgM-I1 1.49 (0.99) 1.35 (1.05) 1.55 (1.04) 1.48 (1.06) 0.95 (1.89)
ClgM-I2 3.44 (2.67) 2.71 (2.60) 3.45 (2.62) 3.01 (2.60) 2.14 (4.14)
ClgN1B-I1 1.50 (1.80) 1.21 (1.51) 1.49 (1.82) -0.86 (7.66) 0.81 (2.25)
ClgN1B-I2 0.54 (0.89) 0.49 (0.86) 0.54 (0.89) -2.68 (6.94) -0.12 (1.83)
ClgN1E-I1 - (-) 1.35 (1.56) 1.75 (1.98) 1.60 (2.05) 0.36 (2.04)
ClgN1E-I2 1.21 (2.53) 1.88 (1.95) 2.43 (2.27) 2.10 (2.56) 1.92 (2.31)

OPT+BMAX
ClgS-I1 0.50 (1.33) 0.12 (0.24) 0.48 (1.32) 0.23 (1.82) 0.48 (1.32)
ClgS-I2 5.71 (3.90) 4.08 (3.68) 5.36 (4.04) 4.97 (4.36) 5.22 (3.97)
ClgS-I3 2.60 (3.32) 2.18 (3.31) 2.40 (3.38) 1.68 (3.95) 2.15 (3.66)
ClgM-I1 1.73 (2.13) 1.74 (1.69) 2.05 (1.87) 1.84 (1.83) 1.94 (1.90)
ClgM-I2 4.02 (6.17) 4.82 (4.99) 5.67 (5.17) 5.51 (5.11) 5.61 (5.11)

SST+BMAX
ClgS-I1 0.50 (1.33) 0.12 (0.24) 0.48 (1.32) 0.23 (1.82) 0.47 (1.32)
ClgS-I2 5.52 (4.10) 4.00 (3.23) 5.17 (4.15) 4.78 (4.41) 3.97 (4.28)
ClgS-I3 2.80 (3.70) 2.46 (3.78) 2.61 (3.77) 1.89 (4.26) 2.16 (4.03)
ClgM-I1 1.62 (1.78) 1.81 (1.67) 2.05 (1.83) 1.84 (1.83) 1.85 (1.93)
ClgM-I2 3.59 (6.94) 4.95 (4.84) 5.63 (5.08) 5.42 (5.09) 4.63 (4.87)

Table 5. Median run times

Set MCFLP MCF LD SEQ INT GRASP VNS

OPT+RED

ClgS-* 0.2 0.9 2.0 1.7 3.7 1.7 1.2
ClgM-* 58.2 3490.4 77.4 99.7 234.0 59.6 34.5
ClgN1B-* 91.5 739.0 72.3 93.2 216.5 118.6 87.2
ClgN1E-* 1103.9 7220.9 371.9 659.5 2684.9 351.6 211.9

SST+RED

ClgS-* 0.2 1.0 2.0 1.8 3.9 1.8 1.1
ClgM-* 71.1 3052.2 90.2 109.4 226.9 58.0 30.2
ClgN1B-* 96.1 603.5 68.2 101.1 203.2 115.3 77.2
ClgN1E-* 824.9 7220.9 365.4 583.7 2241.2 365.7 206.8

OPT+BMAX
ClgS-* 0.3 3.2 7.7 8.4 10.5 2.0 1.5
ClgM-* 403.6 7205.9 2865.5 3604.6 7200.0 409.8 200.5

SST+BMAX
ClgS-* 0.3 3.1 8.3 8.3 10.7 2.1 1.3
ClgM-* 380.6 7205.9 2260.4 3401.4 6214.3 400.0 181.9

Both, GRASP and VNS also produce high quality solutions with small ad-
vantages for VNS which seem to be more stable with respect to solution quality,
i.e. it almost always produces slightly better average solutions than LD. Median
run times of all approaches are given in Table 5, where MCFLP denotes the LP-
relaxation of MCF. The CPU-times of all our approaches are in the same order of
magnitude as the times for solving the LP-relaxations of the MCF formulation,
but high quality feasible solutions are identified in addition to the often bet-
ter lower bounds. In further tests we observed that VNS and GRASP typically
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produce quite good solutions very early in the search process. In that way they
might be a fast alternative to solve practical instances when no performance
guarantee is wanted.

9 Conclusions and Future Work

In this article we considered a generalized version of the (Price Collecting) Steiner
Tree Problem where some customers have redundancy requirements. Based on
an abstract version of a previously published multi-commodity flow formulation
we proposed an approach based on Lagrangian decomposition which is stronger
than the LP-relaxation of this MCF formulation from a theoretical point of
view. Promising primal solutions are directly obtained and improved by a VND
utilizing several types of neighborhoods. Furthermore, VNS and GRASP meta-
heuristics have been considered, making also use of the VND. Results indicate
that combining Lagrangian decomposition with local search based metaheuristics
produces near-optimal solutions with good performance guarantees, i.e. with rel-
atively small gaps. In future we want accomplish a more detailed computational
study with additional larger instances as well as consider an exact approach
based on branch-and-price.
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