
Variable Neighborhood Search for a Prize Collecting Capacity Constrained
Connected Facility Location Problem

Markus Leitner∗

Carinthia University of Applied Sciences
School of Telematics / Network Engineering

Klagenfurt, Austria
markus.leitner@fh-kaernten.at

Günther R. Raidl
Vienna University of Technology

Institute of Computer Graphics and Algorithms
Vienna, Austria

raidl@ads.tuwien.ac.at

Abstract

We present a Variable Neighborhood Search approach
for a network design problem occurring in real world when
the bandwidth of an existing network shall be enhanced.
Using two different neighborhood structures we show that
a carefully designed combination of a metaheuristic and
an exact method based on integer linear programming is
able to improve solution quality compared to using heuris-
tic methods only.

1. Introduction

We consider a connected facility location problem where
only clients which are reasonable from an economic point of
view need to be served (prize collecting variant) with capac-
ity constraints on possible facilities (PCConFL). PCConFL
arises when increasing the available bandwidth of an exist-
ing network by installing additional fibre optic routes. In-
stead of connecting clients directly (fibre to the home), fa-
cilities which act as mediation points between the newly in-
stalled and original network are introduced and connected.
Each facility will serve several clients that are physically
near to it up to some maximum capacity.

More formally, we are given a connected undirected
graph G = 〈V,E, c〉 with node set V , edge set E and edge
costs c(u, v) ∈ N, ∀(u, v) ∈ E. Each edge (u, v) ∈ E
represents a possibly new fibre optic route while its costs
c(u, v) correspond to the expenses of installing it. Further-
more, we are given clients C, possible facilities F ⊆ V
and a root node r ∈ V . The latter models the whole exist-
ing fibre optic infrastructure to which new facilities must be
connected. Clients k ∈ C have demands dk ∈ N, prizes
pk ∈ N and a given set of potential facilities Fk ⊆ F they

∗This work is supported by the Austrian Research Promotion Agency
(FFG) under grant 811378.

may be assigned to. While each client may be assigned to
at most one facility, each facility can serve clients up to a
maximum total demand dmax.

A solution to PCConFL S = 〈FS, CS, GT〉 consists of
a set of facilities FS ⊆ F to be opened, a set of customers
CS ⊆ C that will be served by FS and a Steiner tree GT =
〈VS, TS〉 with node set VS ⊆ V and edge set TS ⊆ E con-
necting all facilities in FS with the root node r. The profit
of a solution S is given by the sum of prizes of all served
clients minus the cost of the Steiner tree connecting opened
facilities , i.e. o(S) =

∑
k∈CS

pk −
∑

(u,v)∈TS
c(u, v), and

the objective is to maximize this profit. The root node r is
treated as a facility that may not be removed and is therefore
not considered explicitly in the following.

2. Related Work

To the best of our knowledge PCConFL has not been
considered so far. However, several authors studied the
Connected Facility Location Problem (ConFL). In ConFL
facilities do not have capacity constraints, all clients need
to be served, opening costs for facilities and costs for as-
signing clients to them are given. Karger and Minkoff [4]
motivated the problem by the so-called maybecast and pre-
sented the first constant factor approximation. Swamy and
Kumar [9] gave primal-dual approximation algorithms with
factor 8.55 for ConFL and a 4.55 approximation for the
rent-or-buy problem in which all opening costs are zero and
each node is a possible facility (i.e. F = V). Hasan et al.
[3] improved the result of Swamy and Kumar by propos-
ing a 8.29 approximation algorithm for ConFL based on
LP-rounding and a factor 7 approximation when all open-
ing costs are equal. Recently Ljubić [6] presented a hybrid
Variable Neighborhood Search approach utilizing a simple
swap neighborhood as well as a branch-and-cut approach to
solve ConFL exactly.

Algorithm 1: Facility Swap (Facilities FS)

F̂ = FS

forall f ∈ F do
F ′ = FS∆{f}
derive Steiner tree GT for F ′

derive customer assignment for F ′, GT

if o(F ′) > o(F̂) then
F̂ = F ′

FS = F̂

3. The Heuristic

To solve PCConFL we consider its three mutually
strongly dependent subproblems, which are (1) selecting fa-
cilities, (2) connecting them by a Steiner tree and (3) assign-
ing clients to selected facilities.

Our heuristic optimizes the selection of facilities by Vari-
able Neighborhood Search (VNS) using the neighborhood
structures described in Section 3.1 while the determination
of the Steiner tree (see Section 3.2) as well as the assign-
ment of customers to facilities (see Section 3.3) is carried
out by second and third level heuristics which are called for
each candidate set of facilities. For the VNS, it is therefore
sufficient to represent a solution by its set of facilities FS.

3.1. Choosing Facilities

3.1.1. Facility Swap Neighborhood

The Facility Swap Neighborhood (FSN) of a solution con-
sists of all solutions that differ from an initial solution FS

by exactly one open facility; i.e. either one facility may be
removed or added. Algorithm 1 shows how it is searched.
Therefore, FSN consists of |F | neighboring solutions.

3.1.2. Facility Exchange Neighborhood

Instead of simply swapping a single facility as done by FSN,
the Facility Exchange Neighborhood (FEN) replaces one fa-
cility by another one, see Algorithm 2. Here, each candidate
solution has |FS| · |F \ FS| = O(|F |2) neighbors.

3.2. Connecting Facilities

We use the Minimum Spanning Tree (MST) heuristic [7]
for the Steiner Tree Problem to connect opened facilities
f ∈ FS by a Steiner tree GT. Initially the MST heuris-
tic computes a MST G′

T in the distance network which is
a complete graph with node set FS and edge costs d(u, v)
corresponding to the costs of the shortest path between u
and v in G, ∀u, v ∈ FS. Afterwards, GT is initialized by
the subgraph of G induced by all edges part of any shortest
path corresponding to an edge in G′

T. If GT is not yet a tree,

Algorithm 2: Facility Exchange (Facilities FS)

F̂ = FS

forall f ∈ F \ FS do
F ′ = FS ∪ {f}
forall g ∈ FS do

F ′ = F ′ \ {g}
derive Steiner tree GT for F ′

derive customer assignment for F ′, GT

if o(F ′) > o(F̂) then
F̂ = F ′

F ′ = F ′ ∪ {g}

FS = F̂

the MST heuristic reduces it to a tree and finally recursively
removes non-facility nodes v /∈ FS of degree one.

3.3. Assigning Clients to Facilities

Considering each facility f ∈ FS as a knapsack with
capacity dmax and each customer k ∈ C as an item with
weight dk and profit pk it is easy to see that assigning clients
to a given set of open facilities FS ∈ F is a Multiple Knap-
sack Problem with Assignment Restrictions (MKPAR) [5]
and identical capacities (MKPAR-I).

MKPAR has been introduced by Dawande et al. [1] who
considered the special case when the prizes of all items
are equal to their costs. They showed that the problem is
strongly NP hard even for the case of identical capacities
and when the bipartite graph modelling the assignment re-
strictions is sparse. They described a greedy 1/3 approxima-
tion algorithm and two 1/2 approximation algorithms, one
based on successively solving the single knapsack problem
and a second one based on LP rounding.

In the following we present a heuristic as well as an exact
method to assign clients to facilities. Furthermore, a mixed
strategy utilizing both methods is explained in Section 3.4.

3.3.1. Heuristic Assignment

Algorithm 3 finds a heuristic solution to MKPAR-I by suc-
cessively solving a series of single knapsack problems (KP).
For each facility f ∈ FS the corresponding KP is ap-
proached by a greedy algorithm which considers assignable
customers k ∈ Cf = {i ∈ C | f ∈ Fi} by their relative
efficiency pk

dk
in decreasing order. Each client k is assigned

to f if it has not been previously assigned to another facility
and the resulting total demand of f does not exceed dmax.

Since the set of clients Cf assignable to a facility f as
well as efficiency values for clients can be precomputed,
we assume that the entries of each set Cf is ordered by effi-
ciency values in decreasing order.

As non-profitable facilities will be removed from a solu-
tion later on, the order in which to consider facilities is of

Algorithm 3: Assign (Facilities FS, Tree GT)
root GT at r
s(f) = |{g ∈ FS | g is successor of f}|, ∀f ∈ FS

for f ∈ FS in decreasing order w.r.t. s(f) do
for k ∈ Cf in decreasing order w.r.t. pk

dk
do

assign k to f if valid

great relevance. Let GT be the Steiner tree rooted at r con-
necting the facilities in FS. Algorithm 3 considers facilities
by their number of succeeding facilities in GT in decreas-
ing order. A facility g is a successor of facility f iff the path
from r to g includes f . This ordering prioritizes facilities
that are “inside” the tree and typically closer to the root.

Rooting the tree and determining the number of succes-
sors for all facilities is implemented by a single depth first
search. Therefore, Algorithm 3 has a computational com-
plexity of O(|V |+ |FS| log |FS|+ |FS||C|).

3.3.2. Exact Assignment

To compute an optimal client assignment for a given set of
facilities FS, we solve the following integer linear program-
ming (ILP) formulation from [1, 5] using a general purpose
ILP solver.

max
X
k∈C

X
f∈(Fk∩FS)

pkxk,f (1)

s.t.
X

f∈Fk∩FS

xk,f ≤ 1 ∀k ∈ C (2)

X
k∈C|f∈Fk

dkxk,f ≤ dmax ∀f ∈ FS (3)

xk,f ∈ {0, 1} ∀k ∈ C, ∀f ∈ FS (4)

Binary variables xk,f indicate whether client k is as-
signed to facility f (xk,f = 1) or not (xk,f = 0). Inequal-
ities (2) ensure that each client is assigned to at most one
facility, while inequalities (3) force the total demands re-
sulting for each facility to be less than dmax.

3.4. Combining Exact and Heuristic Assign-
ment

As calculating an exact client assignment requires con-
siderably more time than performing the heuristic client as-
signment, we combine both methods presented in Section
3.3 when searching the neighborhoods by using the heuris-
tic assignment method as a relaxation of the exact approach.
When searching a neighborhood N (i.e. FSN or FEN) we
apply exact client assignment only to the most promising
candidate solutions which are those that improve the best
so far found solution within N with respect to the heuristic
client assignment. As for each candidate set of facilities the

objective value of the heuristic assignment is a lower bound
to the one of the exact client assignment, we further use the
heuristic solution as starting solution whenever calculating
an exact client assignment. As a secondary effect this en-
sures that even if the ILP solver is terminated due to a time
limit its solution is still never worse than the heuristic one.

3.5. Initial Solution

To create a feasible starting solution to PCConFL we de-
clare all possible facilities as opened (i.e. FS = F), com-
pute the corresponding Steiner Tree and assign clients to
them using the heuristic assignment method. Afterwards,
we remove all facilities with no assigned clients from FS

and remove non-profitable facilities using strong pruning as
described in [8].

3.6. Variable Neighborhood Search

We use the general VNS framework [2] and FSN and
FEN within an embedded variable neighborhood descent
in this order. To analyze the impact of our methods for
client assignment we compare variant VNS1 using the
heuristic assignment method with variant VNS2 using the
mixed strategy. Always applying the exact client assign-
ment method turned out to be not competitive due to sub-
stantially longer running times.

3.6.1. Shaking

To escape from a local optimum we apply shaking based on
FSN but swap s = 1, . . . , b |F |10 c facilities instead of only
one. Afterwards, we perform strong pruning [8] to remove
non-improving subtrees.

4. Test Instances

We combined instances for the PCSTP from Resende1

with instances for one-dimensional Bin Packing2 (BP). We
selected the first node of a PCSTP instance as root and ran-
domly chose |F | other nodes as possible facilities. Each
item in the BP instance is used as a client with a demand
equal to the costs given, and the maximum demand for a
single facility dmax is equal to the specified bin capacity.

Original edge costs from the PCSTP instance are multi-
plied by the estimated average number of clients that may be
served by a single facility (dmax

d
), and the prizes for clients

are randomly chosen from the interval [0.25 · p, 0.5 · p],
with p being the average client prize in the PCSTP instance.
Each client can be assigned to |Fk| ∈ {fmin, . . . , fmax}
randomly chosen facilities.

1http://www.research.att.com/˜mgcr/data/index.html
2http://www.wiwi.uni-jena.de/Entscheidung/binpp/index.htm

Table 1. Computational Results
VNS1 VNS2

|F | |C| fmin fmax o(S) std dev o(S) std dev
1235.6 0.52 1308.0 9.24

50 100 20 40 1537.0 0.00 1594.1 8.96
1144.1 1.45 1197.1 10.02
1854.0 0.00 1921.0 0.00

50 200 20 40 1789.0 0.00 1901.0 0.00
1457.0 0.00 1560.6 1.90
1605.1 7.30 1621.7 13.49

100 100 20 50 1757.6 5.39 1773.3 6.80
1447.8 7.10 1459.7 7.37
2852.7 2.59 2932.0 6.82

100 200 20 50 3378.1 3.57 3417.7 11.05
2675.6 2.98 2722.5 10.4
1510.3 11.98 1544.2 19.04

200 100 20 60 1776.0 5.73 1781.6 8.83
1439.6 11.64 1452.6 18.86
3016.2 13.97 3015.3 15.2

200 200 20 60 3589.3 17.22 3577.2 25.65
2543.7 22.63 2557.0 9.59

5. Computational Results

We tested our algorithms on instances with |F | ∈
{50, 100} possible facilities, |V | = 500 nodes and |E| =
1000 edges as well as on instances with |F | = 200, |V | =
1000 and |E| = 2000.

Table 1 reports instance characteristics as well as aver-
age solution values and corresponding standard deviations
for three instances of each type. Standard deviations have
been computed using 10 runs for each instance and we used
a time limit of 300s for instances with |F | ∈ {50, 100} and
450s in case |F | = 200 as termination criterion. All tests
have been performed on a single core of a Intel Xeon 5150
with 2.66GHz and 8GB RAM; ILOG CPLEX 11.0 has been
used to solve the ILPs in VNS2. Since proving the optimal-
ity of an exact client assignment in VNS2 frequently needs
considerably more time than finding the optimum we en-
force a time limit of 2s for solving each ILP.

Results indicate that VNS2 is able to improve solution
quality for all but two instances. However, the average im-
provement of VNS2 over VNS1 tends to get smaller with
increasing number of possible facilities. One reason for this
behavior is the larger number of possibilities for selecting
facilities leading to more iterations required in order to find
a high quality solution, so that the higher speed of VNS1
is particularly advantageous. Additionally, with an increas-
ing number of possible facilities, solving the ILP in VNS2
will need disproportionately more time or will be aborted
due to the time limit with a larger remaining gap. Neverthe-
less, VNS2 is clearly able to compensate its higher compu-
tational effort for almost all instances of our instances.

6. Conclusions and Future Work

This article introduced a prize collecting variant of the
connected facility location problem with capacity con-
straints. Based on a characterization of the problem by its
subproblems, a general variable neighborhood search uti-
lizing two different types of neighborhood structures and
second and third level procedures for completing solutions
by connecting chosen facilities and assigning clients has
been presented. Results show that the variant combining
the greedy heuristic with the exact ILP-based method for
the assignment of clients has clear advantages over the pure
heuristic approach.

In future work we want to investigate a self-adaptive
strategy with respect to the time limit for solving the exact
part and apply similar ideas to other metaheuristics. Addi-
tionally, it seems important to develop an exact method for
the problem in order to compare the results of our approach
with optimal ones. Finally, we want to accomplish a more
detailed computational study as well as test our approach on
real-world instances.

References

[1] M. Dawande, J. Kalagnanam, P. Keskinocak, F. Salman, and
R. Ravi. Approximation algorithms for the multiple knapsack
problem with assignment restrictions. Journal of Combinato-
rial Optimization, 4(2):171–186, 2000.

[2] P. Hansen and N. Mladenovic. An introduction to variable
neighborhood search. In S. Voss, S. Martello, I. H. Os-
man, and C. Roucairol, editors, Meta-heuristics, Advances
and trends in local search paradigms for optimization, pages
433–458. Kluwer Academic Publishers, 1999.

[3] M. K. Hasan, H. Jung, and K.-Y. Chwa. Approximation al-
gorithms for connected facility location problems. Journal of
Combinatorial Optimization, 2008. accepted.

[4] D. R. Karger and M. Minkoff. Building Steiner trees with
incomplete global knowledge. In Proceedings of the 41st An-
nual Symposium on Foundations of Computer Science, pages
613–623, Washington DC, 2000. IEEE Computer Society.

[5] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Prob-
lems. Springer, Heidelberg, 2004.

[6] I. Ljubić. A hybrid VNS for connected facility location. In
T. Bartz-Beielstein et al., editors, Hybrid Metaheuristics, 4th
International Workshop, HM 2007, volume 4771 of LNCS,
pages 157–169. Springer, 2007.

[7] K. Mehlhorn. A faster approximation algorithm for the
Steiner problem in graphs. Information Processing Letters,
27(3):125–128, 1988.

[8] M. Minkoff. The prize collecting Steiner tree problem. Mas-
ter’s thesis, Massachusetts Institute of Technology, 2000.

[9] C. Swamy and A. Kumar. Primal-dual algorithms for con-
nected facility location problems. Algorithmica, 40(4):245–
269, 2004.

