Variable Neighborhood Search for the Generalized Minimum Edge Biconnected

Network Problem

Markus Leitner, Favoritenstraf3e 9-11 /1861, 1040 Vienna, Austria
Bin Hu, FavoritenstrafRe 9-11 /1861, 1040 Vienna, Austria
Gunther R. Raidl, FavoritenstraRe 9-11 / 1861, 1040 Vienna, Austria

Keywords: Network Design, Variable Neighborhood Search

1. Introduction

The Generalized Minimum Edge Biconnected Network Problem (GMEBCNP) is defined as follows. We
consider an undirected weighted gra@h= (V, E, ¢) with node sel/’, edge sef, and edge cost function

c: E — R*. Node sef/ is partitioned inta- pairwise disjoint cluster¥’, Vs,..., V., U._, Vi =V, Vin
V;=0Vi,j=1,...,r, i #j.

A solution to the GMEBCNP defined df is a subgraptt = (P, T), P = {p1,...,p.} € V connecting
exactly one node from each cluster, pec V;, Vi = 1,...,r, and containing no bridges [2, 7, 8], see Figure

1. A bridge is an edge which does not lie on any cycles and thus its removal would disconnect the graph.
The costs of such an edge biconnected network are its total edge costd,).e= >, , 7 c(u,v), and the
objective is to identify a solution with minimum costs. This problem obviously is NP hard since already the
task of finding a minimum cost biconnected network spanning all nodes of a given graph is NP hard.

The GMEBCNP arises in the design of backbones in large communication networks. While connecting local
area networks by a global network, survivability by means of a single link outage can be covered via edge
redundancy [2].

Despite the importance of this problem in real world, not much research has been done specifically for it
until now. Huygens [7] studied the GMEBCNP and provided integer programming formulations along with
facet-defining inequalities, but no results on actual instances were published. Leitner [8] provided a Variable
Neighborhood Search (VNS) approach for the GMEBCNP in his thesis which is the basis of this article.

Variable Neighborhood Search, combined with Variable Neighborhood Descent (VND) as local improvement
subordinate, is a metaheuristic which exploits systematically the idea of changing between different types of
neighborhoods to head for superior local optima as well as a mechanism called shaking for reaching under-
explored areas. For a more detailed description on VNS, see [5, 6].

Figure 1: Example for a solution to the GMEBCNP. Figure 2: Example for a global solution.

Solution representation: For each solution, we store the spanned nggdes. ., p,. and theglobal edges
derived from the so-calledlobal graphGe = (V& E#). This graph consists of nodes corresponding to

*This work is supported by the RTN ADONET under grant 504438.

clusters inG, i.e. V& = {V4,V,,...,V,.}, and edge seb® = {(V;,V;) | I(u,v) € EAu € V; Av € V;}

Global edged™®, being a subset af®, define the connections between clusters giabal solutionSe =

(Ve T#), see Figure 2. Spanned noggs. . ., p, alone are insufficient to represent a solution, as finding the
cheapest edges for them is the classical minimum edge biconnected network problem, which is known to be
NP hard. Similarly, a representation via global edges alone is also insufficient [8].

However, it is possible to efficiently determine the optimal selection of nodes for the majority of clusters
once the spanned nodes are fixed in a few specific clusters. The underlying concepgreglfectduction

is based on the observation that good solutions to the GMEBCNP usually consist of only few clusters with
spanned nodes of degree greater than twar(ching clustersand long paths of clusters with spanned nodes

of degree two connecting themdth clusters Once the spanned nodes within all branching clusters are
fixed, itis possible to determine the optimal nodes for all remaining clusters in an efficient way by computing
the shortest paths between the fixed nodes.

Formally, for any solutiors' = (P, T") and its corresponding global solutiéi# = (V& T¢), we can define
a reduced global solutiof® ; = (V8,, 7%) with V8, = {V; € V& | deg(V;) > 3, Vi = 1,...,r} and

red’ ~red re

Tged = {(Va’ VL) | H(Va,Vkl)/\(sz,ng)/\' : '/\(ka%) SHAS deg(va) > 3/\deg(%) > 3/\deg(vki) =

T

2,Vi=1,...,1l}, see Figure 3.

Figure 3: Example for graph reduction: Clust&gsand Vs are branching clusters, whilé , Vy, V5, and V;
can be reduced to pati#, P, andPs.

Initial solution: We start with a solution to the Generalized Minimum Spanning Tree Problem computed
via Improved Kruskal Heuristi¢4]. This algorithm considers edges in increasing cost-order and adds an
edge to the solution iff it does not introduce a cycle and does not connect a second node of any cluster. By
fixing an initial node to be in the resulting generalized spanning tree, different solutions can be obtained.
Therefore, this process is carried ¢ut times, once for each node to be initially fixed, and the best spanning
tree is adopted. Then, we determine all nodes with odd degree and match them with respect to edge costs
in a greedy way. Unfortunately, this does not necessarily yield a solution satisfying the edge-biconnectivity
property, so we additionally include the cheapest edges between biconnected components. At the end, we
greedily removeedundant edgeshich might occur due to the previous step. Edges are redundant if they can

be deleted without violating the edge biconnectivity property. This initialization algorithm, catlagted
Christofides Heuristi€ACH), is described in detail in [8].

2. The Neighborhood Structures

Our VND uses five different neighborhood structures, each of them focusing on different aspects of solutions
to the GMEBCNP.

Node Optimization Neighborhood (NON): This neighborhood structure puts emphasis on the optimiza-
tion of spanned nodes for a given set of global edges while considering the graph reduction described above.
NON consists of all solution§” that differ from.S by at most two spanned nodes within branching clusters.
Spanned nodes of path clusters are selected in an optimal way once the solution is decoded.

In order to efficiently evaluate neighbor solutions with exchanged spanned nodes in branching clusters, we
precompute shortest paths between any pair of nodes of branching clusters that are connected via path clusters
in S&. Graph reduction including this additional precomputation has a worst case compleXity-fis),

with d . being the maximum number of nodes within a single cluster. As updating the objective value can
be done inD(d,,.) the overall complexity of NON i€)(r? - d3

max) *

Node Re-Arrangement Neighborhood (NRAN): With this neighborhood structure we try to optimize a
solution with respect to the arrangement of nodes. A neighbor solution in NRAN differs by exactly one swap
move which exchanges for two nodesaindb their sets of incident nodek, andI,. Setl,, in respect to
solutionS = (P, T, is defined ad, = {w € P|(a,w) € T}. After this swap moveS’ = {P, T’} consists

of " =T\ I, \ I, U{(a,v)|lv € L} U{(b,u)|lu € I,}

Updating the objective value for a single move means to subtract the costs of the original edges and to add
the costs of the new ones. Therefore, a complete evaluation of NRAN, which consists of all safiitions
differing from S by exactly one swap move, can be don®ifr? - dy,.x).

Cluster Re-Arrangement Neighborhood (CRAN): This neighborhood structure is an extension to NRAN

which makes use of the concept of graph reduction. Moving from the current safiutioa neighbor solution

S’ in CRAN means swapping two nodes in an analogous way as for NRAN, then computing the reduced
graph, and finally determining the best nodes in all path clusters. As applying the whole graph reduction
after each move would be too expensive, an incremental update is done whenever two nodes of degree two
are swapped, which will happen in the majority of cases. Whenever two nodesf degree two, being

part of the same path (i.&l pathP? = {(a,v1), (v1,v2),..., (vg,b)} with deg(v;) = 2Vi =1,...,k) are
swapped, only this path has to be updated.dhdb belong to different paths, both paths must be recomputed.
However, if at least one of these nodes is of degree three or more, the graph reduction procedure needs to be
re-applied as the structure of the whole solution may change.

The complexity of fully examining CRAN i®)(r* - d2,,) when graph reduction is applied after every move.
Since the complete evaluation might require too much time on larger instances, the exploration is aborted after

a certain time limit, returning the so-far best neighbor instead of following a strict best neighbor strategy.

Edge Augmentation Neighborhood (EAN): In this neighborhood structure, modifications on the edges
are primarily involved. Precisely, EAN of a solutidh = (P,T) consists of all solutions’ reachable
from S by adding a single edge ¢ T and removing redundant edges. Edges are redundant if they can
be deleted without violating the edge biconnectivity property. Obviously, remavitggelf is not allowed
since this would directly lead to the original solutiéh We do not have to consider edges= (a, b) if
deg(a) = deg(b) = 2 anda, b are part of the same path of nodes with degree two. In these cases, adding
obviously results in a graph whesavould be the only redundant edge.

The time complexity for evaluating EAN is bounded ©yr°). However, since good solutions are typically
rather sparse, we can omit the evaluation of many neighbor solutions due to the above observation.

Node Exchange Neighborhood (NEN): This neighborhood structure addresses both aspects, changing the
spanned nodes as well as the edges connecting them. A neighbor solution in NEN may differ from the
original solution by exactly one spanned node and an arbitrary number of edges. A single move within NEN

is accomplished by first changimg € V; top, € V;, p; # p; and removing all edges incidentgga This leads

to a graph consisting of at least two and at mbsf(p;) + 1 components. We reconnect this graph by adding

the cheapest edges between any pair of these components. Once this step is completed, edge biconnectivity
is restored by adding an additional edge between any two edge biconnected components. Finally, redundant
edges are removed.

The process of covering all bridges with additional edges can be expensive in practice. When disconnecting
a node in a sparse graph, many bridges arise typically. Therefore, we first determine all nodes with degree
one in the current solution and connect each of them with its cheapest partner. If only a single node with
degree one exists, we connect it with the first reachable node of degree greater than two. This strategy helps
to cover many bridges with only few edges. Remaining bridges are covered by simply adding the cheapest
edges between any pair of edge biconnected components. Even with this clever bridge covering strategy,
examining NEN still need®(|V| - r3). Therefore, analogous to CRAN, we stop the evaluation of NEN after

a certain time limit and return the so-far best neighbor.

Arrangement of the Neighborhoods: In VND, we alternate between NON, NRAN, CRAN, EAN, and
NEN in this order. This arrangement has been determined by taking the computational complexity of the
neighborhoods, as well as concrete experiments into account.

Shaking: Most of our neighborhood structures focus on the optimization of the spanned nodes instead of
the edges between them. In order to enhance diversity, our shaking procedure is based on EAN. It starts
by augmenting a current solution by a single edge and increases the amount of augmented edggs up to
Similar to EAN, redundant edges are removed after augmenting a solution.

3. Computational Results

We tested our algorithm on a benchmark set consisting of instances introduced by Ghosh [3] for the Gener-
alized Minimum Spanning Tree Problem, along with larger instances that have been created in an analogous
manner, as well as on most of the larger TSPlilased instances with geographical center clustering [1].
Since no previous computational results of other approaches for the GMEBCNP are available, we compare
the objective values of the final solutions of our VNS approach with the initial values computed by ACH in
Table 1 and 2. In order to compute mean values as well as standard deviations, all tests have been repeated
30 times. The used machine was a Pentium 4, 2.8 GHz PC with 2GB RAM.

Table 1: Results on TSPIib instances with geographical cluste%g,: 5.

TSPIlib Instances ACH VNS

Name | |V]| r | time C(T) | stddev|| C(T)| stddev
gri37 137| 28| 150s 562.0 0.00 442.2 2.94
kroal50| 150| 30 | 150s|| 17234.0f 0.00|| 11542.7| 24.74
krob200| 200 | 40 | 300s|| 17779.0f 0.00| 13300.9| 102.37
ts225 225|145 300s|| 83729.0, 0.00| 69110.0| 641.85
gil262 | 262| 53| 300s|| 1434.0/ 0.00| 1117.2| 30.70
pr264 | 264 |54 | 300s|| 39860.0, 0.00| 31641.9| 1027.65
pr299 | 299| 60 | 450s|| 28684.0f 0.00|| 23397.0| 321.22
[in318 | 318| 64 | 450s|| 28039.0 0.00| 22599.6| 780.27
rd400 | 400| 80| 600s|| 9605.0f 0.00| 7291.1| 276.53
fl417 417| 84| 600s|| 12177.0f 0.00|| 10875.7| 196.74
gr431 | 431|87|600s|| 1681.0f 0.00| 1399.6| 45.02
pr439 | 439 88| 600s|| 86968.0 0.00| 73193.7| 2941.80
pcb442 | 442 | 89| 600s|| 29573.0f 0.00|| 25960.8| 621.32

To perform a more detailed analysis on the contributions of all neighborhood structures to the overall search
process, we additionally logged how often each of them could improve a solution in relation to how often

Ihttp://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html

Table 2: Results on instance sets from Ghosh [3], 600s CPU-time for VNS. Three different instances are
considered for each set.

Instances ACH VNS
Set V| r||V|/r| C(T)|stddev|| C(T) | stddev
125| 25 5 227.1] 0.00|| 159.7 0.33
Grouped Eucl 125| 125| 25 5 209.5| 0.00|| 163.5| 0.00
125| 25 5 230.9| 0.00|| 166.1| 0.00
500/ 100 5 939.6| 0.00| 712.2| 16.33
5
5

Grouped Eucl 500 | 500 | 100 993.6|/ 0.00| 736.7| 33.86
500/ 100 943.7| 0.00| 751.5| 28.87
600| 20 30| 172.6. 0.00| 105.8| 2.66
Grouped Eucl 600| 600| 20 30| 151.0., 0.00|| 105.3| 0.07

600| 20 30 179.0f 0.00(107.5| 0.00
1280| 64 8 590.2| 0.00| 402.2| 22.90
Grouped Eucl 1280 1280| 64 585.4| 0.00| 399.9| 14.22
1280| 64 562.5| 0.00| 417.0| 15.83

8

8

250| 50 5] 4398.9| 0.00| 3521.8| 108.83
Random Eucl 250 | 250| 50 5| 5110.0f 0.00| 3227.5| 222.37
250| 50 5| 4975.1] 0.00| 3015.2| 139.05
400| 20 20|/ 3237.8.] 0.00|| 906.8| 61.17
Random Eucl 400 | 400| 20 20| 2582.8/ 0.00|| 867.4| 40.78
400| 20 20| 2308.6/ 0.00| 802.2| 18.18
600| 20 30| 2984.3] 0.00| 602.6| 4.03
Random Eucl 600 | 600| 20 30|l 2964.1| 0.00|| 785.4| 39.64
600| 20 30| 2550.8) 0.00| 759.2| 32.63

200| 20 10| 1569.7| 5.73| 237.5| 29.33
Non-Eucl 200 200| 20 10| 1223.9| 0.00|| 217.0f 22.00
200| 20 10| 1465.6) 0.00| 195.6| 32.20
500/ 100 5] 2045.9| 1.72| 1049.0| 114.92
Non-Eucl 500 500 100 51| 2073.6| 146.39| 998.1| 94.98
500/ 100 5] 1565.0, 0.00| 1020.4| 78.15
600| 20 30|| 1469.6/ 0.00| 122.7| 12.43
Non-Eucl 600 600| 20 30|l 1754.6| 0.00|| 118.0| 16.04
600| 20 30| 414.3] 0.00| 117.9| 16.54

they were evaluated. Table 3 shows contribution values grouped by the different instance types. They are
retrieved by first calculating the success rate of each neighborhood structure and then scaling these values
s.t. they sum up to 1 for each instance type. While all neighborhood structures contribute substantially to the
search process, we observe that CRAN performs best overall. Some neighborhood structures seem to work
well only on particular instance types, but NON'’s performance is relatively steady. We conclude that the
concept of graph reduction, which is used by CRAN and NON, is a very efficient technique when designing
neighborhood structures for GMEBCNP.

4. Conclusions and Future Work

In this article, we introduced five neighborhood structures for the Generalized Minimum Edge Biconnected
Network Problem. Each of them addresses particular properties as spanned nodes and/or the edges between
them. For the more complex neighborhood structures, we apply techniques to optimize the search process,
which consist of clever evaluation strategies, as well as methods to omit senseless computation.

We implemented a Variable Neighborhood Search algorithm with Variable Neighborhood Descent using all
five neighborhood structures as local improvement subordinate. Tests were performed on TSPlib instances

Table 3: Relative contributions of NON, NRAN, CRAN, EAN, and NEN.

Instance Type \4 r | |[V|/r || NON | NRAN | CRAN | EAN | NEN
TSPIib based n.a.| na. 5 0.11 0.18 0.37] 0.23| 0.11

125 25 5 0.29 0.14 0.40| 0.12| 0.05
Grouped Euclideary 500 | 100 5| 015| 018 028 0.22| 0.16

600 | 20 30 0.21 0.12 0.49| 0.11| 0.06
1280 | 64 20 0.21 0.14 0.29| 0.16| 0.20

250 | 50 5 0.11 0.26 0.34| 0.19| 0.09
Random Euclidean 400 | 20 20 0.20 0.21 0.44| 0.10| 0.04
600 | 20 30 0.14 0.24 0.46 | 0.11| 0.04
200 | 20 10 0.24 0.03 0.45| 0.16| 0.12
Non-Euclidean 500 | 100 5 0.13 0.05 0.27 | 0.33| 0.22
600 | 20 30 0.26 0.02 0.55| 0.09| 0.09

with geographical center clustering, Euclidean instances with grid clustering, Euclidean instances with ran-
dom clustering, and non-Euclidean instances. Results show that the combination of these neighborhood
structures works well and each of them contributes significantly to the whole success.

In future, we want to investigate additional large neighborhood structures that are evaluated by means of
Integer Linear Programming. Another idea is to extend the graph reduction concept by shrinking the graph
even further s.t. fewer spanned nodes have to be fixed, and more of them can be efficiently derived in an
optimal way.

References

[1]

(2]

3]

[4]

5]

[6]

[7]

Corinne FeremansGeneralized Spanning Trees and ExtensidPisD thesis, Universite Libre de Brux-
elles, 2001.

Corinne Feremans, Martine Labbe, and Gilbert Laporte. Generalized network design préhlempgan
Journal of Operational Research48(1):1-13, 2003.

Diptesh Ghosh. Solving medium to large sized Euclidean generalized minimum spanning tree problems.
Technical Report NEP-CMP-2003-09-28, Indian Institute of Management, Research and Publication De-
partment, Ahmedabad, India, 2003.

Bruce Golden, S. Raghavan, and Daliborka Stanojevic. Heuristic search for the generalized minimum
spanning tree probleniNFORMS Journal on Computing7(3):290-304, 2005.

Pierre Hansen and Nenad Mladenovic. An introduction to variable neighborhood search. In S. Voss,
S. Martello, I. H. Osman, and C. Roucairol, editdvieta-heuristics, Advances and trends in local search
paradigms for optimizatiorpages 433—-458. Kluwer Academic Publishers, 1999.

Pierre Hansen and Nenad Mladenovic. A tutorial on variable neighborhood search. Technical Report
G-2003-46, Les Cahiers du GERAD, HEC Montreal and GERAD, Canada, 2003.

David Huygens. Version generalisee du probleme de conception de reseau 2-arete-connexe. Master’'s
thesis, Universite Libre de Bruxelles, 2002.

Markus Leitner. Solving two generalized network design problems with exact and heuristic methods.
Master’s thesis, Vienna University of Technology, 2006.

