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Kurzfassung

Die vorliegende Arbeit beschäftigt sich mit der Erstkoordinierung von Flughafenslots. In
Europa unterliegt es der Verantwortung des jeweiligen Flughafenkoordinators zu Beginn
einer Saison einen initialen Flugplan zu erstellen. Dies ist eine komplexe Aufgabe und
bietet hohes Potential für Optimierungsverfahren. Der Fokus dieser Arbeit liegt in der
vollständig automatisierten Erstellung eines initialen Flugplans anhand heuristischer
Algorithmen.

Diese Arbeit wurde in engem Kontakt mit der Schedule Coordination Austria entwickelt
und ein großer Schwerpunkt liegt daher in der praktischen Anwendbarkeit. Aufgrund
der großen Menge an Flugdaten wurde ein heuristischer Ansatz gewählt. Erstmals
wird eine Konstruktionsheuristik vorgestellt, die die Koordinierung von Flughafenslots in
relativ kurzer Laufzeit ermöglicht. Zusätzlich werden heuristische Verbesserungsmethoden
vorgestellt, um die Ergebnisse weiter zu optimieren.

Die Erstkoordinierung basiert auf initialen Anfragen der Fluglinien für Ankunfts- und
Abflugslots an den jeweiligen Flughäfen für die nächste Saison. Im Allgemeinen ist es das
Ziel, so viele dieser Anfragen wie möglich zu bestätigen und so wenig wie möglich von der
angefragten Zeit abzuweichen. Allerdings unterliegt die Koordinierung zahlreichen Be-
schränkungen. Zum einen müssen die IATA Vorgaben, sowie europäische Bestimmungen,
eingehalten werden. Dies beinhaltet under anderem Bestandsrechte (sog. ”Großvaterrech-
te“), sowie Prioritätsregeln. Zum anderen unterliegen die Ressourcen des Flughafens für
gewöhnlich zahlreichen Kapazitätsbeschränkungen. In dieser Arbeit wird ein umfangrei-
ches Konzept mit vielen Konfigurationsmöglichkeiten vorgestellt, um Pisten-, Passagier-
und Vorfeldbeschränkungen einzuhalten. Des Weiteren muss eine bestimmte Bodenzeit
zwischen Ankunft und Abflug eingehalten werden.

Überdies erfolgt die Anfrage von Flughafenslots in Serien, bestehend aus mehreren
Anfragen gleichartiger Flüge im Verlauf einer Saison. Die Slots einer solchen Serie sollten
möglichst einheitlich zugewiesen werden. Das entspricht einem weiteren Optimierungsziel.
Die Optimierung besteht aus zwei wesentlichen Komponenten: einer Konstruktionsheuris-
tik und darauf folgende Verbesserungsmethoden. Mit dem Konstruktionsalgorithmus wird
die Anzahl der bestätigten Anfragen maximiert. Die Verbesserungsmethoden dagegen
approximieren die Pareto Front des mehrdimensionalen Optimerungsproblems. Auf diese
Weise erzeugt der Algorithmus mehrere Pareto-effiziente Lösungen mit unterschiedlicher
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Zeitabweichung und Fragmentierung, einem Maß für die einheitliche Zuweisung von
Serien.

Die Algorithmen werden anhand von operativen Daten des Wiener Flughafens sowohl
in Bezug auf die Zeitabweichung zur angefragten Wunschzeit, als auch in Bezug auf die
Fragmentierung evaluiert und getestet. Außerdem werden die Ergebnisse der Algorithmen
mit Daten aus der angewandten Praxis der letzten Saisonen verglichen.

Die Ergebnisse sind hinsichtlich der betrachteten Optimierungsziele mit den manuell
erzeugten Flugplänen vergleichbar, bzw. in manchen Situationen sogar besser. Somit
können die Algorithmen die Erstkoordinierung von Flughafenslots mit hoher Flexibilität
unterstützen und ermöglichen es, den manuellen Aufwand bei der Erstellung eines initialen
Flugplans zu reduzieren.



Abstract

This work deals with long-term airport slot allocation. In Europe, local coordination
authorities are responsible to create an initial flight schedule in advance of a season. This
is a sophisticated problem and bears great potential for optimization methods. The focus
of this work is to create an initial flight schedule in a fully automated way by heuristic
algorithms.

This thesis is developed with high emphasis on practical applicability. It was carried
out in close contact with Schedule Coordination Austria. Due to the high amount of
flight data, a heuristic approach is taken. For the first time, a construction heuristic
is proposed to solve the airport slot allocation problem within relatively short running
times. Additionally, heuristic improvement methods are presented to further optimize
the results.

The coordination process is based on air carriers requesting arrival and departure slots
for certain airports for the upcoming season. In general, the aim is to confirm as many
such submissions as close as possible to the initially requested times. However, the
airport slot allocation process is restricted by several respects. For once, the IATA
guidelines and European regulations must be met. This involes inter alia compliance to
the grandfather rights and consideration of priority rules. For another, the resources of
the airport are usually constrained by several capacity limitations. Within this thesis an
extensive framework is introduced, to respect runway limitations as well as passenger and
apron restrictions in a highly configurable way. Furthermore, to allow for refueling and
cleaning, interdependencies between arrivals and departures must be taken into account.
In particular, a certain ground time must be met.

Moreover, the requests of the initial submission are treated as series comprising the
requests of similar flights over the course of the season. The slots for such series should
be assigned as uniformly as possible, which is a further optimization objective. The
optimization framework consists of two major components: a construction algorithm
and a subsequent improvement process. Whereas the construction algorithm attempts
to maximize the number of confirmed requests, the improvement step approximates the
pareto frontier of the multi-objective problem. Thus, the algorithm yields multiple pareto
efficient solutions with different time deviations and fragmentations, i. e. the degrees of
uniformity of the assigned series of slots.
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The developed algorithms are evaluated and benchmarked by real world data of the
Vienna airport with regard to both objectives, low time deviation regarding the initially
requested times as well as good fragmentation. Furthermore, the computational results
are compared to applied practice of historic seasons.

Regarding the considered objective function the results are comparable, and in some
situations even better than the manually obtained schedules. This allows to solve the
assignment problem of the initial submission with higher flexibility and less manual effort.
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CHAPTER 1
Introduction

This thesis deals with algorithmic methods for a complex optimization problem arising
in the aviation sector. Particularly, the problem of creating seasonal flight schedules for
major European airports is tackled by heuristic optimization algorithms.

The motiviation for this work is presented in detail in Section 1.1 of this Chapter. Next,
we explain the aim of this work in Section 1.2, followed by the contribution in Section 1.3.
In the last Section 1.4 an outline to the following chapters of this work is given.

1.1 Motivation
In the last years the annual growth of global air transport stabilized between 5 and 10
percent (see [IAT19a]). Possible causes for the steady increase are higher living standards,
rise of low-cost airlines and growth of air cargo. The increasing demand inevitably leads to
overcrowded airports. Several (European) airports already suffer from congestion, which
causes very high expenses for airlines and aircraft operators. According to latest forecasts
the situation will further escalate in the next years, since the amount of passengers is
expected to grow to approximately 16 million flights in Europe in 2040 (see [EUR18]).
This corresponds to a growth of 53% in respect to 2017.

The increasing air traffic demand already exceeds capacity limitations of many airports.
For this reason efficient utilization of airport resources is essential and will become even
more important in the following years. In order to maximize utilization of available
resources airports are coordinated. At the time of writing, over 170 aiports all over the
world are (Level 3) coordinated airports.

Coordination is a process to ensure fair, neutral and transparent assignment of airport
capacities to air carriers. It involves inter alia capacity declarations, initial slot allocation,
a worldwide scheduling conference and slot monitoring. All steps are guided by mandatory
worldwide regulations (see [IAT19b]).

1



1. Introduction

In terms of optimization the most important step of coordination is the initial slot
allocation. This is a preliminary step in creating a flight schedule. It is usually done by a
local, independent coordination authority (in Austria it is the responsibility of Schedule
Coordination Austria). The coordinator constructs an initial flight schedule for the whole
season (summer or winter term) based upon requests of the air carriers. In a further
step, this initial draft schedule will be discussed and adapted during a worldwide slot
conference.

The central element of the initial schedule creation is the airport slot. An airport slot
refers to a certain day and time and permits an air carrier to arrive at or depart from a
coordinated airport. Before the start of a season all air carriers request their required
airport slots. Then the coordinator assigns such slots to the air carriers for a whole
season in advance. During the season arrivals or departures without a previously assigned
airport slot are not permitted.

However, due to several capacity restrictions it is not possible to assign all slots (i. e. times)
as requested by the air carriers. First and foremost, the number of runway movements
is restricted within certain time intervals. Further limitations exist for the number of
passengers in the terminal and aircraft parking positions on the APRON. In order to
avoid capacity exceedance the coordinator might either assign an alternative time slot,
or if not possible, reject the request altogheter.

Besides, during the initial slot allocation several worldwide regulations must be obeyed.
Firstly, the whole process must be neutral and transparent. Several priorities, as specified
in the slot guidelines (see [IAT19b]) must be respected. Moreover, the airport slot
assignment process in Europe is largely based on the use-it-or-lose-it-rule also called
grandfather rights. Hence, air carriers that used their airport slots for at least 80% of the
allocated time in the previous season, have the right to further use the same airport slots
in the next equivalent season. Apart from that, airport slots are generally requested as
series of slots. Thus, several requests belong together and should preferably be assigned
to the same airport slots if possible.

The key focus of this work is the initial schedule creation. Meeting all requirements is
quite sophisticated and complex. Because of the aforementioned air traffic increase it gets
harder from season to season. Thus, the initial slot allocation is non-trivial and involves
lots of efforts. Although this step bears a great potential for optimization methods, it is
still widely done manually. In this work we propose heuristic optimization algorithms
capable of creating such initial schedules fully automatically.

1.2 Aim of this work

This work is based on previous work of Destion - IT Consulting & Software Solutions
GmbH, an Austrian operations research company of which I am a 10 % shareholder. Prior
to this thesis, an algorithmic prototype for the considered problem existed, but, however,
with many shortcomings. The main contribution of this work is a newly developed,

2



1.3. Contribution

refined algorithmic framework with many new functionalities and improved runtime
performance. With this framework it is for the first time possible to algorithmically
create and improve feasible solutions for all coordinated Austrian airports. The schedules
are created in a fully automated way within relatively short running times even for large
amounts of data. All data sets have been provided by Schedule Coordination Austria.

Primary goal of the optimization strategy is to fullfill the requested times of the air
carriers as close as possible without exceeding capacity limitations. However, further
optimization goals are to ensure fair assignments (according to the IATA guidelines,
see [IAT19b]), and moreover homogenous assignments. Airports typically need to assign
particular series of requests to homogeneous times. We call this aspect fragmentation
and it has been addressed by the first time in [ACK15].

1.3 Contribution
Optimization for airport slot allocation is a relatively new research topic. Recently some
exact models and formulations have been proposed. However, because of the complexity
these previous approaches are limited to small or medium sized airports at best. For
the very first time, we propose a software solution to optimize airport slot allocation for
large airports with 200.000 requests and more per season. Furthermore, we introduce the
concept of fragmentation which is essential for practical applications.

1.4 Outline of the Thesis
Chapter 1 presents a motivation for the airport slot allocation problem. The growing
demand in air traffic calls for optimization methods to minimize congestion.

Chapter 2 gives a brief overview about previous work dealing with airport slot allocation.
Although the work in long-term optimization for airport slot allocation is limited, several
exact methods have been proposed. According to the literature the results are quite
promising for small and medium sized airports. However, due to the complicated
constraints and the complexity of the problem it is not clear whether exact methods
can be applied to large airports with reasonable running times. We claim that further
increasing the test instances sooner or later requires a change from exact methods to
heuristic optimization methods.

In Chapter 3 the worldwide slot guidelines as specified in [IAT19b] are introduced. Details
and concepts such as the priority model, the grandfather rights and series of slots are
explained. Furthermore, a formal definition of the airport slot allocation problem follows.
Limiting constraints, problem specific issues and parametrization details are also shown
in detail.

Next, the theoretical background of heuristic optimization methods is presented in
Chapter 4. The concepts of solution-construction and improvement methods as well as
pareto-frontiers for multiple objective optimization methods are discussed.

3



1. Introduction

Chapter 5 deals with the algorithms developed in this work. Both, the construction
heuristic as well as the improvement methods are presented.

The problem instances used for evaluation of the algorithms are presented together with
the experimental results in Chapter 6. All test data is kindly provided by Schedule
Coordination Austria. The outcome of the algorithms are shown and discussed in respect
to several criteria such as running time, time deviation, fragmentation and amount of
confirmed requests. Furthermore the results are compared to reference solutions provided
by Schedule Coordination Austria.

Last, but not least, the most important results are summarized in Chapter 7, where also
the final conclusions are drawn.

4



CHAPTER 2
Related Work

From an economical point of view, demand and capacity analyzation of airport operations
is of high interest. Many evaluations have been carried out (e. g. see [EUR18] among many
others). A high discrepancy between demand and available resources causes congestion
at several airports all over the world. Hence, efficient airport utilization is extremely
important to save costs and ensure on-going operation.

To overcome the challenges arising from insufficient capacities with respect to the
growing demand different approaches have been proposed. Several research topics can be
distinguished. On the one hand, short-term scheduling (also called tactical scheduling)
deals with dynamic air traffic optimization on the basis of one or several days. Here the
ground holding problem (GHP) as presented by [AOR93] gained quite some popularity.
Aircraft delays lead to high costs. However, delaying an aircraft during its flight results
in much higher costs than delaying an aircraft before takeoff. So, the question is when
to delay which aircraft. In some situations it is wise to keep an aircraft longer on the
ground in order to minimize overall delay costs. The goal is to have a real time decision
support system to decide when to delay which aircraft.

However, in order to reduce overall costs it is crucial to consider scheduling optimization
early on. Long-term scheduling (often called strategic scheduling) intends to balance
workload right away from the very first planning steps. It deals with the initial schedule
creation and targets a much longer period of time. Usually several months up to a whole
scheduling season are considered.

Several strategies concerning long-term scheduling have been investigated. A major
research topic are market-driven slot assignment approaches, where assignments are not
strictly based on regulations. Among those, congestion based pricing is particularly
important. Several different regulatory models have been proposed. The common
idea is that air carriers have to pay tolls dependent on the congestion impact (see for
example [Dan95], [Bru02], [PV04], [CL19]). Further approaches are slot trading and

5



2. Related Work

auction based methods (see for example [Bru09], [Ver10], [BZ10]). But, in Europe
congestion pricing as well as auction based methods are currently not applicable at all
because of European regulations (i. e. grandfather rights). Those strategies may be of
concern in the USA only.

Despite the economic based debates, further contributions can be found in the field
of operations research. However, there has been limited work yet towards long-term
optimization for airport slot allocation. The first contribution in this topic dates back
to 2007. First proposals to model the initial schedule creation process with strategic
optimization in mind can be found in [Koe07]. The author suggests a heuristic iterative
approach to minimize the time deviation between requested and granted requests. This
very first attempt lacks some crucial coordination parameters though. E. g. slot priority
classes and the concept of slot series are not considered at all.

In the PhD-thesis [Zho12] the author also deal with a long-term slot assignment problem.
The main focus of the work lies on fairness considerations between individual air carriers.
In order to achieve a balanced time deviation over all air carriers a multiple objective
integer programming model is proposed. But the introduced model is very restricted in
terms of several aspects. Firstly, only arrival slots are taken into account. It is assumed,
that a paired departure slot is always available. However, the interdependencies between
arrival and departure slots play an important role and cannot be ignored in practice
for most airports. To allow for maintainance, refueling, cleaning, etc. aircrafts need to
stay at ground for a certain time interval (also called turnaround time). Dropping the
turnaround restrictions simplifies the scheduling problem a lot.

Moreover, further differences concern the period of time under examination. On the one
hand, a slot is viewed as a resource that can be leased for one to ten years by an air carrier.
However, according to the Worldwide Slot Guidelines [IAT19b] the coordination process
takes place twice a year. (The airport under consideration by the authors of [Zho12] is
LaGuardia Airport in the USA. Possibly the regulatory requirements are quite different
there.) On the other hand, the scheduling problem is solved exemplary for a single day
of operation only. This is a big simplification, since the whole scheduling season covers
half a year with different requests, changing peak times and most importantly, many
interdependencies between scheduling days.

Furthermore, many requests must be considered as a series of slots which belong together.
For example, an air carrier might request a certain time slot (e. g. 9:30) at the same day
of the week (e. g. Monday) over the whole scheduling season. Depending on the priority
and some regulatory rules it might be mandatory to confirm such requests.

It is worth to mention that the author of [Zho12] also discusses a heuristic strategy,
even though it is quite limited in applicability to the concern of our work. Basically
the proposal is to assign the time slots in a round-robin fashion to different air carriers.
This might or might not help to meet certain fairness criteria, but in any case, it is not
compatible with priority classes and the grandfather rights.

In [ZSM12] the authors also present an integer programming model to solve the long-term
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slot assignment problem and hence create an initial flight schedule. This contribution is
already much more related to current practice in Europe. Real data of three regional
Greek airports for the summer season of 2009 is provided by the Greek slot coordination
authority. For the first time the whole scheduling season is considered. Furthermore, the
authors already take different priority classes into account, though only three different
classes are considered. In addition, series of slots are used instead of single requests.
However, several restrictions still occur. For one thing, fragmentation is not addressed
at all, because series are always assigned homogenously. But, at least at big airports
this is not always desirable. In some situations, splitting a series and thus assigning the
corresponding individual requests to different times of the day might be more attractive
than displacing or rejecting the whole series. For another, it is assumed, that each series
can be allocated at any time of the day. But in practice this strongly depends on the
type of request, e. g. some requests might be very restricted and can not be assigned to
an arbitrary time of the day.

Yet another integer programming model has been proposed by the authors of [RJA+18].
In this work the priority model used for solving the slot assignment problem is slightly
improved. Historic change requests are now treated more accurately. For experimental
evaluation the approach has been applied to the Portuguese airports of Madeira and Porto.
The latter airport operates approximately 85.000 flights per year. Notably, for the first
time problem instances of this size can be solved in reasonable running time. Furthermore
an extension to this work is announced in [RJA]. By the use of a construction heuristic
and an improvement method the proposed integer programming model is applied to the
airport of Lisbon which operates 200.000 flights per year. With a running time of 30
minutes up to several hours a suitable solution can be found. But still fragmentation is
not a matter at all. Furthermore it is not clear at all, whether the model can be applied
to even larger problem instances due to the expected high running time.

For the sake of completeness, it is also worth mentioning that some authors promote a
radically different strategy. Currently the initial flight schedule is created on a per airport
basis, as specified by the worldwide slot guidelines [IAT19b]. However, the efficiency
of this procedure is debatable. Some authors promote to revise the flight schedule
creation process altogether and consider aiport slot allocation on a network basis (see
for example [CLN14], [PBCP17], [ZMA17], [Ben18] and [RJAO19]). But the biggest
problem here is the lack of realistic problem instances, because the initial requests of the
air carriers are usually highly confidential. Moreover, such a big change might be hard to
put into practice, since it depends on international political decisions.
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CHAPTER 3
Airport Slot Allocation

This Chapter deals with the details of the initial schedule creation and presents a
formalization, as well as a model for the considered airport slot allocation problem.
Section 3.1 gives an overview of the whole coordinaton process. The denotation of
time is explained in Section 3.2. Next, Section 3.3 presents the initial submissions of
air carriers. The concept of slot series is worked out in Section 3.4. Then, a priority
model is introduced in Section 3.5. The possible actions of coordinators are shown in
Section 3.6. Several resource limitations such as runway constraints, passenger constraints
and APRON constraints are tackled in Section 3.7. Constraints regarding the minimal
time on ground are formulated in Section 3.8. The concept of fragmentation and different
ways of quantification are proposed in Section 3.9. Last, we discuss the objective function
and hence the quantification of scheduling solutions in Section 3.10.

3.1 Coordination
To cope with the high air traffic the International Air Transport Association (IATA)
published worldwide slot guidelines (see [IAT19b]). These also apply to Europe with slight
adaptions and extensions published by the European Airport Coordinators Association
(EUACA, see [Par93], [Par04]).

These regulations define a process of coordination to ensure a fair, neutral and transparent
airport utilization at all times. Depending on demand and capacity three different levels
can be distinguished.

• Level 1 airports: The capacity of the airport is sufficient to manage the demand
at all times.

• Level 2 airports: There is potential for congestion at certain times which can be
resolved by schedule adjustments.
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3. Airport Slot Allocation

• Level 3 airports: The demand exceeds capacity limitations and expansion of
airport infrastructure is not possible in short term.

Depending on the level different rules and regulations apply. Congested airports are in
general classified as level 3 airports and thus need to be coordinated. As a result air
carriers have to allocate a slot by a coordinator before operating at the airport. In total,
more than 170 airports are currently level 3 coordinated airports.

Several distinct procedures are involved when creating a flight schedule for a level 3
coordinated airport. A detailed explanation is given by [IAT19b]. Briefly summarized,
the key points are

• capacity declarations of the airport,

• initial submissions of requested airport slots by the air carriers,

• initial coordination by the coordinator,

• worldwide slot conference (secondary slot trading) and

• slot monitoring.

Firstly, the airport is responsible to submit the amount of available resources. The
available airport capacity is limited by several complex constraints which are further
discussed in Sections 3.7 and 3.8.

Afterwards, the air carriers can request the desired airport slots. Different aspects such
as historic status, request time, etc. play an important role. In particular, depending on
the historic status code several actions are possible, which might include to deviate from
the requested time. The different parameters of the requests are explained in Section 3.3.

The initial coordination is a central part of the coordination process and includes to solve
a challenging scheduling problem. This bears a great potential to use computational
optimization techniques to improve current operational practice significantly.

The outcome of this process is then discussed and further adapted at the worldwide slot
conference. Although the slot allocation is done at each airport separately, the flight
schedule of a single air carrier obviously causes interdependencies between the airport
of departure and the airport of arrival. To account for those dependencies primary slot
allocation is subsequently followed by secondary slot trading in which the air carriers
can trade slots one-by-one to meet their schedules with minimal time discrepancies.
Additionally, air carriers must return slots which they do not intend to operate.

Furthermore, the coordination authority is responsible to monitor the usage of the
allocated airport slots in order to prematurely determine the historic status codes and
accompanying grand father rights for the following season.
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3.2. Denotation of Time

3.2 Denotation of Time
The initial schedule contains data for the period of half a year, usually called a season.
The winter season commences on the last sunday in October, the summer season on the
last sunday in March.

An optimization approach needs to tackle the whole season at once. Because of the
concept of series of slots (further discussed in Section 3.4) individual days depend on
each other and hence creating separate schedules for individual days is not possible.

So, a season consists of approximately 200 scheduling days. We denote the set of days
as D. Now, every scheduling day is discretized into intervals of five minutes. Hence, we
define the set T = {1, . . . , 288} to describe the discretized times t ∈ T of a scheduling
day d ∈ D. Thus, by this denotation, e. g. t = 150, d = 1 stands for the time 12:30 at the
first scheduling day of the season.

3.3 Airport Slots
An airport slot is the permission to use airport infrastructure at a certain date and time
in order to arrive at or depart from a level 3 coordinated airport (see [IAT19b]). Thus,
such a slot is a prerequisite for air carriers to operate on coordinated airports. Moreover,
in terms of optimization it is a quantification of the limited airport resources, i. e. the
number of possible movements (arrivals or departures) at a certain date and time due to
capacities and regulations.

Before the coordinator creates an initial schedule the air carriers need to submit their
initial requests. Let R denote the set of initially submitted requests, then a single request
r ∈ R has the following attributes

• movement type: either arrival or departure,

• day of operation: number decoding the day of the week (1..Monday,. . ., 7..Sunday),

• request date and time: d ∈ D, t ∈ T referring to the requested airport slot,

• historic date and time: d ∈ D, t ∈ T referring to the historic airport slot,

• historic status code: describes historic precedence privileges,

• operator code: identifies the air carrier,

• flight number: airline designator (two letters) and a number (one to four digits),

• service type: a code to identify the aircraft,

• seat count: maximal number of seats and

• load factor: an estimation of the fill grade.
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3.4 Series of Slots
However, single requests are only of mere interest. As specified by [IAT19b] requests are
usually submitted in bundles called series of slots. It is preferable to assign all requests
of a series to the same time of day. Hence, different scheduling days might depend on
each other if they are part of the same series.

In a first step we consider only series with requests on the same day of the week (same
day of operation). Such a series must contain at least five requests, otherwise it is not
considered at all in the initial schedule creation. Instead, such individual requests are
usually set after the worldwide slot conference (so-called ad hoc requests). Furthermore,
all requests of a series must have the same movement type (be it arrival or departure),
the same operator code and either the same flight number or directly consecutive flight
numbers. In addition, the request times may not differ by more than 30 minutes.

Hence we can define an equivalence relation r1 ∼Sr r2, such that (r1, r2) ∈ Sr if and
only if the requests r1, r2 ∈ R are scheduled on the same day of the week, have the same
movement type, same operator code and equal or directly consecutive flight numbers.
Furthermore, the request times of r1 and r2 may not differ by more than 30 minutes.

Then, Sr induces equivalence classes [r]Sr
, such that

[r]Sr
=
{
r′ ∈ R | r ∼Sr r

′} . (3.1)

Let P(R) be the powerset of R. Thus, we get a partition PSr ⊆ P(R), such that

PSr =
{

[r]Sr
| r ∈ R

}
. (3.2)

Note, that

∀A ∈ PSr : A 6= ∅ (3.3a)
∀A,B ∈ PSr : A 6= B ⇒ A ∩B = ∅ (3.3b)⋃

A∈PSr

A = R (3.3c)

must hold. That is PSr must be non-empty (3.3a), pairwise disjoint (3.3b) and the union
of all subsets equals to R (3.3c).

However, in operational practice series of slots often span over different days of the
week. Hence, we also define multiday series to group series with different days of the
week together. Let s1 and s2 be two series. So, we define another equivalence relation
s1 ∼MS

s2, such that (s1, s2) ∈ MS holds if and only if the series are have the same
movement type, same operator code and equal or directly consecutive flight numbers.
Thus, in contrast to Sr the day of the week plays no role for the relation MS .

But, still another restriction needs to be met. Consider a series a containing only a few
requests and another series b with requests on e. g. every Monday of the season. It is not
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desirable to group such series together, because series b might unnecessarily restrict series
a too much (in general, assigning a series with a few requests is easier than assigning a
series with many requests). So, for all (s1, s2) ∈MS we require |s1| ≥ 0.7 · |s2|.

Then, the relation MS induces equivalence classes [s], such that

[s]MS
=
{
s′ ∈ PSr | s ∼MS

s′
}
. (3.4)

Next, we denote the powerset of PSr as P(PSr ). We get another partition PMS
⊆ P(PSr ),

such that
PMS

=
{

[s]MS
| s ∈ PSr

}
. (3.5)

to account for multiday series.

Now, to map an individual request r to its series, we define a relation seriesSr (r) : R→
P(R) as

seriesSr (r) = [r]Sr
. (3.6)

In the same manner, we define a relation seriesMS
(s) : P(R)→ P(PSr ) to map a series

to its multiday series,
seriesMS

(s) = [s]MS
. (3.7)

Note, that we get the multiday series s for a request r by composition

s = seriesMS
(seriesSr (r)). (3.8)

3.5 IATA Priority Model
According to the IATA rules [IAT19b] the initially submitted requests must be categorized
into several priority classes. Ultimate priority must be given to slots with historic
precedence. That is, air carriers can keep a series of slots of the preceding equivalent
season as long as the series were operated at least 80% of the allocated time period. This
is known as use-it-or-lose-it rule (also known as the so-called grandfather rights). The
historic status code of such series is denoted as F.

Next, priority must be given to historic change requests. These include extensions and
adaptions (change of time, change of aircraft type, etc.) to historic series.

The remaining slots form a so-called slot pool. 50% of the slots in the pool must be
allocated to new entrants, that is requests with status code N. However, extensions
of existing operations to operate on a year round basis should be prioritized over new
requests within each category. Furthermore, some additional aspects such as fairness
criteria, curfews, frequency of operation, local guidelines and more should be taken into
account (see [IAT19b]).

However, to conform with current practice and allow for flexibility we implement a very
fine-grained and highly configurable priority model. For this purpose, we define a priority
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for every request r ∈ R depending on the historic status code, the service type, the
number of seats and the number of movements in the multiday series to which r belongs
to, that is seriesMS

(seriesSr (r)).

Firstly, depending on the historic status code h in the set of all possible historic status
codes H, a priority class is defined as prhist(h) : H → [1, 100], such that the highest
priority is equal to 1 and the lowest priority has a value of 100. The actual priority
classes used in this work together with the corresponding priority values are shown in
appendixA.

Furthermore, we assign to each priority class a list of possible times (relative to the
requested time). For this purpose, we define a mapping allowed_times(h) from a historic
status code h ∈ H to a set of allowed times T ∈ P(T ). Hence, allowed_times(h) : H →
P(T ).

However, note that both the request time and the historic time are always allowed for
any request. So, e. g. for historic slots with historic status code F the set of allowed times
evaluates to allowed_times(F) = {request time} (keep in mind, that for requests with
status code F the request time is always equal to the historic time), whereas the allowed
times for the priority class with historic status code FI evaluates to allowed_times(FI) =
{rt,ht, rt− 1h, rt− 55min, . . . , rt + 55min, rt + 1h} where rt is the request time and ht
is the historic time.

Next, the priority of a request shall depend on its service type. Hence, we define a set of
service types as

S = {J,C,G, F,H,A,MP,W, I, E,X,O,N,D,U,K, T, Y, Z} . (3.9)

Now, let s ∈ S be a service type, then we can define a relation prsvc_type(s) : S →
[−1, . . . , 1] to map a service type to a priority. Note, that this mapping is in general
configurable by the coordinator. The values used in this work are shown in appendix A.

Furthermore, let mvts(r) be the cardinality of the series containing the request r, hence
mvts(r) = | seriesMS

(seriesSr (r)) |. Then, we can denote the size of the series with the
most requests as mvtsmax and the size of the series with the fewest requests as mvtsmin.
Now, we define a priority factor prmvts(r) depending on the number of movements of a
request r

prmvts(r) = mvts(r)−mvtsmin
mvtsmax −mvtsmin

. (3.10)

In the same manner, we define a priority factor prseats(r) to account for the seats. Let
seats(r) be the seats of a request r, further, seatsmax be the number of seats of the request
with the most seats and seatsmin be the number of seats of the request with the fewest
seats. Then, we can denote the priority factor prseats(r) as

prseats(r) = seats(r)− seatsmin
seatsmax − seatsmin

. (3.11)
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Let hist(r) be the historic status code and in the same manner svc(r) be the service type
of a given request r. Then, we can now define the priority prr(r) for a single request
r ∈ R as

prr(r) = prhist(hist(r)) + ξ c1 prsvc_type(svc(r))

+ ξ c2

(1
2 − prmvts(r)

)
+ ξ c3

(1
2 − prseats(r)

)
,

(3.12)

where c1, c2 and c3 are weighting coefficients, and ξ is a gain factor. Note, that
c1 + c2 + c3 = 1 holds. The actual values used in this thesis are shown in appendix A.

3.5.1 Priorities of Slot Series

Furthermore, we define the priority of a series prSr
(s) as the average priority of the

individual requests. That is,

prS(s) = 1
|s|
∑
r∈s

prr(r). (3.13)

In the same manner we define the priority of a multiday series prMS
(m) as the average

priority of the individual series. So, let

prMs
(m) = 1

|m|
∑
s∈m

prSr
(s). (3.14)

3.6 Action Codes
To every request r ∈ R the coordinator can assign one of the action codes {K,T, U}.
Action code K means that the request is confirmed and that the corresponding multiday
series seriesMS

(seriesSr (r)) is eligible for historic precedence in the next saison, whereas
action code T indicates a temporary confirmation for the current season only. Denied
requests on the other hand obtain the action code U , standing for “unable”.

Now, let action(r) map every request r ∈ R to its assigned action code a ∈ {K,T, U}.
Then, for every request with action(r) ∈ {K,T} the relation conf_time(r) maps the
request r to the allocated time slot t ∈ T . In the same manner, let relation conf_day(r)
denote the day d ∈ D on which the request r is confirmed. Note, that conf_day(r) is
usually equal to the request date of r (discrepancies might only occur around midnight).

3.7 Capacity Constraints
The flight schedule is restricted by several capacity limitations. Section 3.7.1 deals with
limitations of the runway. At a certain time of the day only a limited amount of arrivals
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or departures can be accepted. In the same manner also the amount of passengers guided
through the terminal might be restricted. Details are explained in Section 3.7.2. In
addition, the number of grounded aircrafts may not exceed the available parking positions.
This is known as APRON limits and is further discussed in Section 3.7.3.

3.7.1 Runway Limits

In general, the number of movements during a certain time interval needs to be restricted,
since airport resources are limited. Such runway limitations can be defined separately for
arrivals, departures or total (both). Furthermore, the maximal number of movements
might also depend on the time of the day, e. g. in the morning the available resources
might be tighter than in the afternoon.

Hence, to support separate limits depending on the time of the day, we define six different
time ranges Trday,Trevening, . . . ,Trmorning as shown in Table 3.1. Column one shows the
designator, columns two and four show the actual times for the winter and summer
periods, whereas columns three and five show the same times in minutes.

Table 3.1: Time ranges used to define time dependent limits.

time range winter period [min] summer period [min]
Trday 72 - 239 06:00 - 19:55 60 - 227 05:00 - 18:55

Trevening 240 - 251 20:00 - 20:55 228 - 251 19:00 - 20:55

Trevening-shoulder 264 - 269 22:00 - 22:25 252 - 257 21:00 - 21:25

Trnight
270 - 288, 22:30 - 04:25 258 - 288, 21:30 - 03:251 - 53 1 - 41

Trmorning-shoulder 54 - 59 04:30 - 04:55 42 - 47 03:30 - 03:55

Trmorning 60 - 71 05:00 - 05:55 48 - 59 04:00 - 04:55

Furthermore, the limits are defined for a certain time interval δ, e. g. in the interval
δ = 12 (60 min) at most x arrivals are allowed. However, in order to ensure an uniform
distribution, usually several limits with different time intervals (δ1, . . . , δn) are defined at
once, e. g. in the interval δ1 = 12 (60 min) at most x arrivals are allowed and additionally
in the interval δ2 = 2 (10 min) at most y arrivals are allowed. Note, that the actual
values used for evaluation are listed in appendix A.

Let µ describe the movement type in M = {arrival, departure, total}. Then, for certain
time intervals δ1, . . . , δn we define the maximal number of movements as limitdef(t, µ, δ),
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such that

limitdef(t, µ, δ) =



λ1,µ,δ t ∈ Trday,

λ2,µ,δ t ∈ Trevening,
...
λ6,µ,δ t ∈ Trmorning.

(3.15)

To clarify the considerations and introduce some further details regarding limit transitions,
we present a small example for the purpose of illustration only. For this purpose, we
consider the three different time ranges Trmorning-shoulder,Trmorning and Trday as shown
in Table 3.1. The runway movements shall be restricted for several time intervals
δ1 = 2 (10 min), δ2 = 4 (20 min) and δ3 = 12 (60 min). The limits are separately defined
for the movement type µ ∈M , that is either for arrivals only, departures only or both
(total). The limits are shown exemplarily in Table 3.2. The first column contains the
time range, the second column shows the different time intervals δ and the remaining
columns show the defined maximal number of movements for arrivals, departures and
total (λ5,µ,δ, λ6,µ,δ and λ1,µ,δ).

Table 3.2: Examplary limits for several time ranges depending on the time interval δ and
the movement type µ.

time range interval arrivals departures total

Trmorning-shoulder

δ1 5 - -
δ2 10 - 15
δ3 20 20 -

Trmorning

δ1 7 12 16
δ2 15 20 25
δ3 40 - -

Trday

δ1 - - 10
δ2 5 15 -
δ3 10 35 -

So, e. g. for the movement type µ1 = arrival, the interval δ2 and the time t ∈ Trmorning,
the term limitdef(t, µ1, δ2) evaluates to λ6,µ1,δ2 = 15 meaning that in any time interval of
length 20 minutes no more than 15 arrivals are allowed in the morning (between 05:00
and 05:55 in the winter period).

Next, Figure 3.1 shows a minimalistic flight plan for an arbitrary day of the season. Note,
that we only consider a few arrival movements in this example to keep the details as clear
as possible. Furthermore, we only focus on the daytimes 04:30 to 06:30. In addition, the
limit for the time interval of 20 minutes (δ2) as defined in Table 3.2 is shown for the
movement type µ1 = arrival.
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Time
04:30 05:00 05:30 06:00 06:30

arrivals
morning-
shoulder

morning day

0

5

10

15

20

limitdef(t, µ1, δ2)4
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5

Figure 3.1: Examplary flight plan for an arbitrary day of the season; Defined limit for
the movement type arrival and a time interval of 20 minutes.

However, to compare the arrivals against the defined limits, we need to aggregate the
counts. Aggregation denotes the accumulation of the counts in the corresponding time
interval. In this manner, we define the aggregated counts depending on the discrete time
t ∈ T , the time interval δ and the movement type µ ∈M as

agg(t, µ, δ) =
t+δ−1∑
i=t

| { r ∈ R | conf_time(r) = i ∧ (µ = total ∨mvt_type(r) = µ) } |,

(3.16)

where mvt_type(r) denotes the movement type of r. Hence, for a given time t we sum
the number of requests with the movement type µ which are confirmed in the interval t
to t+ δ − 1.

Figure 3.2 shows the aggregated arrivals for the example described above. Note, that the
aggregated counts at 05:50 and 05:55 exceed the limit defined by limitdef(t, µ1, δ2). This
is because of the aggregation which spans over a time period of δ. Hence, for some points
in time t < t1 the aggregation also includes counts at t ≥ t1 where already another limit
is defined. This problem is addressed next.

Propagated Maxima

Suppose, we have two different limits defined, l1 = λ1,µ,δ for the time range Trday and
l2 = λ2,µ,δ for the time range Trevening complying with the example above. Then special
care must be taken at the points of intersection. Since the aggregation is defined over the
time interval (t, t+ δ − 1) it spans over both time ranges Trday and Trevening for certain
values of t. But then both of the limits l1 and l2 apply.

18



3.7. Capacity Constraints

Time
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Figure 3.2: Aggregated arrival counts for the example above.

Hence, to compare the aggregated counts directly against the limits, we need to slightly
extend the limits and propagate the maxima. Hence, we define limitprop(t, µ, δ) as

limitprop(t, µ, δ) = max
t′ ∈ [t,t+δ−1]

limitdef(t′, µ, δ) (3.17)

to take the transitions into account.

Figure 3.3 shows the aggregated arrivals with the propagated maxima limits defined by
limitprop(t, µ1, δ2). Now the transitions are adequatly taken into account.

Implicit Limits

The example limits shown in Table 3.2 reveal another important fact. In the time range
(Trmorning) seven arrivals are allowed in the interval δ1 (10 minutes), whereas 15 arrivals
are allowed in the interval δ2 (20 minutes). However, the limits of interval δ1 implicitly
restrict the interval δ2. Both, limitprop(t, µ, δ1) and limitprop(t, µ, δ2) must be satisfied
at the same time and hence in the concrete example only 14 arrivals are allowed in the
interval of δ2(20 minutes).

This fact is further illustrated in Figure 3.4. Suppose limitprop(t, µ, δ1) and limitprop(t, µ, δ2)
are given. Then, the implicit limit limitimpl(t, µ, δ2) results by minimization.

So, we define limitimpl(t, µ, δ), such that

limitimpl(t, µ, δ) = min
δ′<δ ∧ (µ′=µ∨

(µ=total∧µ′∈{arrival,departure}))

(limitprop(t, µ, δ), δ
δ′

limitprop(t, µ′, δ′)).

(3.18)
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Time
04:30 05:00 05:30 06:00 06:30

aggregated arrivals
morning-
shoulder

morning day

0

5

10

15

20

limitprop(t, µ1, δ2)

15 min

4

12 13 13

9

1

5 5 5 5

Figure 3.3: Exemplary propagated maxima limits used to respect the limit transitions.

limitprop(t, µ, δ1)
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Figure 3.4: Exemplary implicit limits determined by propagated limits limitprop(t, µ, δ1)
and limitprop(t, µ, δ2).
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Rolling Counts

Next, in addition to the aggregated counts we define the rolling counts, such that

roll(t, µ, δ) = max
t′∈[t−(δ−1), t]

agg(t′, µ, δ). (3.19)

Despite being directly related to the aggregated counts, the rolling counts are not
necessary for the sole purpose of optimization. However, they are usually used for
analyzation by managers and stakeholders, because they represent the actual utilization
most appropriately. Hence, they shall not be absent.

Advanced Limits

In the same manner, we define advanced limits. Just as the rolling counts they are only
used for analyzation and demonstration. In some sense, they can be seen as extension to
the implicit limits defined above.

For example, the limit defined for the time interval δ2 (20 minutes) can be implicitly
restricted by the limit defined for 10 minutes as described above, since 10 + 10 = 20.
However, further implicit restrictions might occur when considering several time intervals
of different length, i. e. the limit of δ2 might be even more restricted by the combination of
limits for the intervals of 5 and 15 minutes (5 + 15 = 20). The situation further escalates
when taking transition points into account. So, the limit for the interval of 20 minutes at
time t might be implicitly restricted by the limit for the interval of 10 minutes defined
for the time range Trday plus the limit for the interval of 10 minutes defined for the time
range Trevening.

Let C(t, µ, δ) be a set of all possible combinations of implicit limits for a timespan δ even
taking transition points into account. I. e., for δx = 2 (10 minutes) and δy = 1 (5 minutes)
this could be C(t, µ, δx) = {limitprop(t, µ, δx), limitprop(t, µ, δy) + limitprop(t+ 1, µ, δy)}.
Then, we define the advanced limits as

limitadv(t, µ, δ) = min
c∈C(t,µ,δ)

c. (3.20)

Note, that the number of combinations |C(t, µ, δ)| grows significantly with increasing δ
and can get quite high. Figure 3.5 visualizes the situation for a timespan of 30 minutes
(δ = 6). Every path in the tree represents one combination c ∈ C(t, µ, δ).

Night Regulations and Seasonal Limits

Furthermore, some quota constraints such as restrictions regarding nightly operations,
noise reduction, etc. might have to be considered. In particular, also some seasonal limits
might be defined (e. g. in the morning the number of movements over the whole season
might not exceed a defined maximum).
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Figure 3.5: All possible combinations C(t, µ, δ) for implicit limit with timespan δ = 6
(30 minutes).

Let Tr be a time range Tr ∈ {Trday,Trevening, . . . ,Trmorning}. Furthermore, let seasonal(Tr)
denote the sum of all confirmed requests in the time range Tr over a whole season. Hence,

seasonal(Tr) = | {r | r ∈ R ∧ action(r) ∈ {K,T} ∧ conf_time(r) ∈ Tr} | . (3.21)

So, for example, the number of all confirmed requests of a whole season during the night
is given by seasonal(Trnight).

Then, a seasonal night quota constraint can be formulated as

seasonal(Trnight) ≤ λnight, (3.22)

where λnight is the defined maximum number of movements during the night over a whole
season. In the case of Vienna, such a seasonal night constraint is active. The actual
values are shown in appendix A.

3.7.2 Passenger Limits

Also the number of passengers can be restricted. Let seats(r) be the total number of
seats available in the aircraft corresponding to request r. Furthermore, let load(r) be an
estimated load factor that approximates the utilization of request r. Thus, we get the
estimated number of passengers pax(r) delivered by request r as

pax(r) = seats(r) · load(r). (3.23)

Let π− denote the assumed time for the passengers to stay in the terminal before
departure. In the same manner π+ denotes the assumed time for passengers to stay in
the terminal after arrival. Then the number of passengers in the terminal cntpax(t) at a

22



3.8. Turnaround Constraints

given time t ∈ T can be defined, such that

cntpax(t) =
∑
r∈R∧

mvt_type(r)=arrival∧
conf_time(r)∈[t,t+π+]

pax(r) +
∑
r∈R∧

mvt_type(r)=departure∧
conf_time(r)∈[t−π−,t]

pax(r). (3.24)

In the same way as for the runway constraints described in Section 3.7.1, limits for the
number of passengers in the terminal can be configured for different time intervals and
depending on the time of the day.

3.7.3 APRON Limits

Another limiting factor might be the number of available parking positions for aircrafts.
This is commonly known as APRON constraints. After arrival an aircraft occupies a
parking lot until its next departure. Different types of parking lots with varying sizes are
plausible. A big aircraft might need a big parking lot, or might perhaps occupy two or
even more smaller parking lots.

Let A = [α1, α2, . . . , αn]T denote the number of available parking positions for APRON
position types 1 to n. Furthermore, let apron(r) assign one ore more necessary parking
positions to request r ∈ R. Hence, apron(r) is a vector, such that the element e at index
i states, that the request r needs e parking positions of type i. For example, suppose we
have three types of parking positions (i. e. small, medium, big) with available capacities
A = [2, 1, 3]. Then the aircraft belonging to the request r with apron(r) = [2, 0, 0]T
occupies two small parking positions. Note, that a departure never occupies any parking
position, but instead releases some.

Hence, we can define the number of parking positions pos(t) in use at time t ∈ T for
every APRON type with index i ∈ {1, . . . , n} as

pos(t, i) =
∑
r∈R∧

mvt_type(r)=arrival∧
t∈[conf_time(r),conf_time(r′)]

aproni(r), (3.25)

where r′ is the corresponding departure request, also called turnaround request, which is
explained in more detail in the next section.

Now, for all times t ∈ T and all i ∈ {1, . . . , n}

pos(t, i) ≤ Ai (3.26)

must hold.

3.8 Turnaround Constraints
Another constraint deals with the interdependencies between arrivals and departurers.
Obviously a departure must be scheduled after the corresponding arrival. Furthermore,
in order to clean, refuel, etc. the aircraft a certain ground time must be met.
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3. Airport Slot Allocation

Hence, we define a relation turnaround(r) : R→ R to link every request r ∈ R with its
corresponding turnaround request, that is every arrival with its corresponding departure
and vice versa.

However, depending on the quality of the input data the linking information might not
be available or be incomplete. Hence, the turnaround information must be extracted and
approximated based on the movement types, the operator names and the flight numbers
in case it is not available.

Besides, the turnaround times also affect the APRON constraints, since every aircraft
staying at ground needs to occupy (one or more) parking positions. Hence, it is even
more desirable to get linking information of high quality.

So, a brief overview of the matching algorithm used to extract the turnaround information
from the input data follows. The basic idea is for every arrival to search for a corresponding
departure. Hence, we iterate over the requests r ∈ R and try to find a matching departure.
Obviously, inappropriate requests can be skipped (e. g. arrivals, requests on the wrong
day of operation, etc.). For the remaining candidates, the following matching criteria
apply (ordered from high to low quality):

1. Full (consistent) linking information available for both, the arrival and the departure

2. Complete linking information available, either for the arrival or the departure

3. Linking information available partly for the arrival and partly for the departure

4. Incomplete linking information, but flight number differs by less than 2, the
requested times differ by less than 25 minutes and the operator names are equal

5. Requested times differ by less than 25 minutes and the operator names are equal

However, for home carriers the situation is slightly different. In such cases, the turnaround
constraints are slightly relaxed, because usually for home carriers enough aircrafts are
available at all times. Appendix A shows a list of such home carriers for the special case
of Vienna.

For a given request r and its turnaround request r′ the requested ground time gnd_time(r, r′)
equals to

gnd_time(r, r′) =
{

rt(r)− rt(r′) in case r is a departure,
rt(r′)− rt(r) in case r is an arrival,

(3.27)

where rt(r) denotes the request time of request r.

However, in many cases it is not possible to meet the ground time exactly as requested
by the initial submissions. Hence, to comply with current practice, different deviations
depending on the requested ground time gnd_time(r, r′) are allowed. The exact values
used in this work are shown in appendix A.
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3.9 Fragmentation
In general, it is desirable to assign all requests of a (multiday) series to the same time of
the day t ∈ T . We call such an assignment homogenous assignment. However, this is not
always possible (or useful). In some situations it is better to split a (multiday) series
and assign the requests to different times of the day. Two or even more times of the day
might be used. Otherwise the deviation between the requested time and the confirmed
time might increase significantly or even worse, some requests of the series must be set
to the action code U (unable).

The concept of fragmentation was mentioned first by Destion [ACK15]. Although a
homogenous assignment is prefered, fragmentation can not be avoided in every case.
Hence, a way to estimate its impact is needed. However, several ways to quantify the
fragmentation are possible.

3.9.1 Basic Fragmentation

Probably, the most trivial way is to count the assigned times. So, for a series s we define
the basic fragmentation bas_fragSr

(s), such that

bas_fragSr
(s) = | {conf_time(r) | r ∈ s ∧ action(r) ∈ {K,T}} | . (3.28)

In the same manner, we define the basic fragmentation for a multiday series m as
bas_fragMS

(m), such that

bas_fragMS
(m) = | {conf_time(r) | r ∈ m ∧ action(r) ∈ {K,T}} | . (3.29)

3.9.2 Scaled Fragmentation

However, the basic fragmentation as defined above has several drawbacks. For one thing,
the values of bas_fragSr

and bas_fragMS
are not (reasonably) limited. For another, the

distribution of confirmed times over the season is not respected at all. Table 3.3 shows an
example with three (multiday) series labelled by the numbers one to three. Each column
represents a day of the season, each line a certain time. For illustration, we consider ten
days only. In terms of basic fragmentation, all three series would be equally weighted.
However, the fragmentation of series one is clearly more desirable than the fragmentation
of series two and three, which are intertwined.

Table 3.3: Fragmentation example 1 – three series with the same number of confirmed
times, but very different fragmentation.

t1 1 1 1 1 1
t2 2 3 2 3 2 3 2 3 2 3

Hence, we present another way to quantify the fragmentation of (multiday) series over a
whole season. The scaled fragmentation was outlined for the first time by Destion [ACK15].
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Up to now, fragmentation has been addressed in terms of a series. However, that is not
the only way to move forward. The scaled fragmentation is based on time. The goal is
to define scal_frag(t) to quantify the fragmentation of a certain time slot t ∈ T over a
whole season.

Now, the central idea is “block counting”. Lets consider another example, as shown in
Table 3.4. At time t1, we have a series consisting of three continuous blocks with lengths
3, 1 and 3, whereas series two at time t2 contains three continuous blocks with lengths 2,
2 and 4.

Table 3.4: Fragmentation example 2 – two series with blocks of different length.

t1 1 1 1 1 1 1 1
t2 2 2 2 2 2 2 2 2

Next, let |D| denote the number of days of the whole scheduling season (in our examples
|D| = 10). Furthermore, let li be the length of block i (equal to zero if no such block exists)
and let li, i = 1, . . . , |D| be sorted by the length in descending order (l1 ≥ l2 ≥ l3 ≥ . . .).
Hence, for the example above, we get l1 = 3, l2 = 3 and l3 = 1 at the time t1.

Then, to quantify the different blocks of a time slot t ∈ T , let

blkt =
|D|∑
i=1

li (|D|+ 1− i). (3.30)

In order to scale the fragmentation between zero and one, we will analyze the extreme
cases. For the best-case, let l1 = |D| and li = 0 for i ≥ 2. Then, blkt evaluates to |D|2.
On the contrary, in the worst-case we have li = 1 for all i = 1, . . . , |D|. Hence, blkt
evaluates to 1

2 |D| (|D|+ 1).

So, to scale the fragmentation between zero (for the worst-case) and one (for the best-case),
we define

scal_frag1(t) = 1− blkt − blktmin

blktmax − blktmin
= 1−

blkt − 1
2 |D| (|D|+ 1)

|D|
(
|D| − 1

2 (|D|+ 1)
) . (3.31)

Note, that in general a time slot ti contains more than one assignment at the same
time. However, this is not yet respected in scal_frag1(t) and shall be addressed now.
As shown in the next example in Table 3.5, it is not always possible to compute the
scaled fragmentation for every series separately. Hence, we need to compute the scaled
fragmentation for all series in a single step.

So, let µt denote the maximum number of movements at the same time, that is

µt = max
d∈D

| {r ∈ R | conf_time(r) = t ∧ conf_day(r) = d ∧ action(r) ∈ {K,T}}| .
(3.32)
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Table 3.5: Fragmentation example 3 – three series with blocks of different length.

t1 1 1 1 3 3 3 2 2 2
t1 2 2 2 2 2 1 1 1 1

Thus, equation (3.30) becomes

blkt,µt =
µt |D|∑
i=1

li (µt |D|+ 1− i). (3.33)

Once again, we analyze the extreme cases. In the best-case, we have µt blocks of length
|D| (and li = 0 for i > µt). In that case, we get

blkt,µtmax =
µt |D|∑
i=1

li (µt |D|+ 1− i) =
µt∑
i=1
|D| (µt |D|+ 1− i) +

µt |D|∑
i=µt+1

0

= µ2
t |D|

2 + µt |D| −
µt∑
i=1
|D| i = µ2

t |D|
2 + µt |D| − |D|

1
2µt(µt + 1)

= µ2
t |D|

2 + 1
2(µt |D| − µ2

t |D|).

(3.34)

In the worst case, we have li = 1 for all i = 1, . . . , µt |D|. Hence,

blkt,µtmin =
µt |D|∑
i=1

li (µt |D|+ 1− i) = µ2
t |D|

2 + µt |D| −
µt |D|∑
i=1

i

= µ2
t |D|

2 + µt |D| −
1
2(µt |D| (µt |D|+ 1))

= 1
2µ

2
t |D|

2 + 1
2µt |D| =

1
2µt |D| (µt |D|+ 1) =

µt|D|∑
i=1

i.

(3.35)

Now, to respect the maximum number of assignments µt we define the scaled fragmenta-
tion scal_fragµt

(t) as

scal_fragµt
(t) = 1−

blkt,µt − blkt,µtmin

blkt,µtmax − blkt,µtmin

= 1−
blkt,µt − 1

2µt |D| (µt |D|+ 1)
1
2µ

2
t |D| (|D| − 1)

.

(3.36)

Note, that for µt = 1 equation (3.36) is equivalent to equation (3.31).

Apart from that, we still have to respect multiday series with different days of operation.
Consider the examples three and four shown in Tables 3.6 and 3.7. In both cases,
series one is spread over three different days of the week, namely Monday, Tuesday and
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Thursday. Moreover, in both cases the number of movements is equal. But still, example
three is significantly more appealing than example four. Whereas example three can
be seen as somehow continuous, example four is clearly interrupted in several columns
(d ∈ D). In particular, this might lead to a scenario, where one series fills the gaps of
another series. However, this is not desired at all, because it potentially prevents the
series to be continuous in the following season. Thus, we will evaluate the blocks of
example three as continuous (l1 = 17 and li = 0, i > 1) and the blocks of example four as
disconnected during the days (columns) 6,7 and 8 (l1 = 12, l2 = 5 and li = 0, i > 2).

Table 3.6: Fragmentation example 4 – multiday series, Monday and Tuesday are somehow
connected by Thursday.

t1, Mo: 1 1 1 1 1 1 1
t1, Tu: 1 1 1 1 1 1
t1, We:
t1, Th: 1 1 1 1

Table 3.7: Fragmentation example 5 – multiday series, all days are disconnected at some
d ∈ D.

t1, Mo: 1 1 1 1 1
t1, Tu: 1 1 1 1 1 1 1
t1, We:
t1, Th: 1 1 1 1 1

Formally, for the computation of the block lengths li, we define |D| graphs with super-
nodes 1 to 7 representing the days of operation (Monday to Sunday). The super-nodes
contain in turn nodes representing individual movements of a series. Now, two nodes
belonging to the same series are connected by an edge if and only if both nodes are in
adjacent super-nodes. That is, either they are on different days in the same week (same
plane) or they are on the same day in adjacent weeks (planes). For illustration, the graph
is shown in Figure 3.6.

Then, the block lengths li result from the sizes of connected components of the fragmen-
tation graph. They can for example be computed by the algorithm of Tarjan (see [Tar71])
with linear time. Hence, for the computation of scal_fragµt

(t) for multiday series with
respect to different days of operation, equation (3.36) can be used by computing the
block lengths with the algorithm of Tarjan. Obviously the value of |D| must be equal to
the number of planes (weeks) in the fragmentation graph multiplied by seven.

For further clarification, another example is shown in Figure 3.7. Here, the planes contain
only three days of the week to keep things simple. In each plane, all nodes of a series are
connected by an edge. Furthermore, nodes are also connected across adjacent planes, if
the series operates on the same day of the week (e. g. a request belonging to series one
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Figure 3.6: Fragmentation graph – Each plane corresponds to a week of the season, each
super-node represents a day of the week and contains nodes for individual movements of
a series, see [ACK15].
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Figure 3.7: Fragmentation graph – Example showing two adjacent planes (weeks) with
super-nodes for three days of the week, see [ACK15].

on Monday of week one would be connected by an edge to another request of the same
series on Monday of week two).
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3.9.3 Relative Fragmentation

Furthermore, we define a relative fragmentation on the basis of a reference solution. Such
a referene solution could for example be the actual airport slot assignment used by the
coordination authority. So, the relative fragmentation suits best to compare the solution
computed by optimization algorithms against current practice.

Let conf_timeref(r) be the confirmed time and actionref(r) the action code of a request
in the reference solution. Now, for a given multiday series m, we define the number of
confirmed times as cnt(m) and the number of confirmed times in the reference solution
as cntref(m), such that

cnt(m) = | {conf_time(r) | r ∈ m ∧ action(r) ∈ {K,T} ∧ actionref(r) ∈ {K,T}} |

(3.37a)
cntref(m) = | {conf_timeref(r) | r ∈ m ∧ action(r) ∈ {K,T} ∧ actionref(r) ∈ {K,T}} |.

(3.37b)

Then, we define the relative fragmentation rel_frag, such that

rel_frag =
∑

m∈PMS

(cnt(m)− cntref(m)). (3.38)

However, it is desirable to take the priorities of the series into account. Hence, we define
a relative fragmentation weighted on priority rel_fragprio, such that

rel_fragprio =

∑
m∈PMS

(cnt(m)− cntref(m))prMS
(m)∑

m∈PMS
cnt(m)6=cntref(m)

prMS
(m) . (3.39)

3.10 Objective Function
In general, any assignment of requests r ∈ R to certain times t ∈ T is a solution to the
scheduling problem. Hence, a solution sol can be denoted by the assigned action codes
and the confirmed times, such that

sol = { action(r) ∀r ∈ R,
conf_time(r) ∀r ∈ {x ∈ R | action(x) ∈ {K,T}}}.

(3.40)

However, a solution is only feasible if all of the constraints (runway constraints, passenger
constraints, APRON constraints and turnaround constraints) are fulfilled. Furthermore,
the priorities as described in Section 3.5 must be respected.

Note, that by this definition even the empty set ∅ can be regarded as a valid solution.
But, obviously we are not interested in any solution, but a “good” one. Hence, some
quality criteria for a good solution shall be worked out next.
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Quantity

Firstly, the quantity of accepted requests can be used to indicate good solutions. So, we
define the quantity of accepted requests as Γ, such that

Γ = | { r ∈ R | action(r) ∈ {K,T} } | . (3.41)

Time Deviation

Next, another important indicator for the quality of solutions is the time deviation.
Preferably a request is assigned to the requested time with little or no deviation. Hence,
we define the time deviation dev(r) of a single (confirmed) request r ∈ R as

dev(r) = | rt(r)− conf_time(r) | , (3.42)

where rt(r) denotes the requested time of r.

In the same manner, we define the overall time deviation ∆, such that

∆ =
∑

r∈R∧
action(r)∈{K,T}

dev(r). (3.43)

Fragmentation

Furthermore, fragmentation also plays a crucial role for the quality of a solution. As
worked out in Section 3.9 different ways to measure the fragmentation are possible. For
reasons of comparability, we use the relative fragmentation weighted on priority for the
objective function. Hence, we define

Θ = rel_fragprio. (3.44)

Obviously, the value Θ shall be minimized.

Objective Function

Several different criteria such as quantity, time deviation and fragmentation impact the
quality of a solution. Hence, we deal with a multi-objective optimization problem. To
balance the impact of the different optimization goals, we introduce the weighting factors
ω1, ω2 and ω3 such that ω1 +ω2 +ω3 = 1. Then, we define the objective function obj(sol)
as

obj(sol) = −ω1 · Γ + ω2 ·∆ + ω3 ·Θ (3.45)

to measure the quality of a given solution sol. The objective function 3.45 should be
minimized, since lower values represent better solutions.
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CHAPTER 4
Optimization Methods

In this Chapter a formal definition of optimization problems is presented. Section 4.1
covers continuous optimization problems. Several methods and solution strategies to
solve such problems are discussed. Next, Section 4.2 deals with discrete optimization
problems, which are in general harder to solve. A brief overview of exact methods and
heuristic solution methods follows. Furthermore, several heuristc improvement strategies
are examined in Section 4.3. Last, in Section 4.4 multi-objective optimization problems
are considered.

4.1 Continuous Optimization

Optimization theory is a broad topic belonging to applied mathematics with lots of
applications in different disciplines such as economics, engineering, physics and many
more. In general, the goal is to find an optimum of a set of possible candidates according
to a certain criterion. Formally, this can be described as follows. Let X be a set of
candidates and f be a function mapping such candidates x ∈ X to real numbers R, that
is f : X → R. Then the goal is to minimize f,

min
x∈X

f(x). (4.1)

Hence, for a global optimum x∗

f(x∗) ≤ f(x) ∀x ∈ X (4.2)

holds.

Note, that the set of candidates X can be constrained by several equality restrictions
gi(x) = 0 and inequality restrictions hj(x) ≤ 0. In such a case, the set of feasible
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candidates X can be denoted as

X = {x ∈ Rn : gi(x) = 0, i = 1, . . . p,
hj(x) ≤ 0, j = 1, . . . q },

(4.3)

where p describes the number of equality restrictions and q the number of inequality
restrictions. Obviously p ≤ n must hold, or else X is the empty set and no feasible
solution exists.

The objective function f(x) is also called cost function, because it assigns every value
x ∈ X a cost. In physical applications it often refers to the energy of a system and thus
f(x) is called energy function in such situations.

In the literature, it is common to formalize optimization problems as minimization
problems. However, it is always possible to transform a maximization problem into a
minimization problem, by applying

max
x∈X

f(x) = min
x∈X
−f(x). (4.4)

Usually the optimal value can not be found analytically. Thus, numerical solution methods
are used. An overview of several different solution approaches is given by [NW06]. For
unrestricted minimization problems, common solution strategies are for example line
search and trust region methods. Both methods rely on the availability of the derivation
of the objective function. Otherwise, if the derivation is not available (or does not
exist) direct methods, such as the simplex algorithm, also called Nelder-Mead method
and presented for the first time in [NM65], or particle swarm optimization as described
in [KE95] might be used.

For the restricted case further solution algorithms such as the active set method and
the gradient projection method (see [Kel99]) exist. Another aproach is to transform the
restricted optimization problem into an equivalent unrestricted one. In this case, penalty
methods or barrier methods like the interior-point method (see [Kar84]) might be used.

4.2 Discrete Optimization
However, some applications require one or more variables to be discrete. Common applica-
tions for such scenarios include vehicle routing, scheduling, knapsack problems, constraint
satisfaction problems, traveling salesman problems and many more. Unfortunately, such
a restriction makes the problem significantly harder.

In case of airport slot allocation, we also have to deal with discrete variables. For
example, an individual request can only be accepted or denied. Accepting it to e. g. 50%
is meaningless. Hence, the goal is to minimize f(x), such that some or all variables
x ∈ X are discrete. In general, the individual values of the candidates x ∈ X could be
restricted to integral values or in a similar way restricted to countably infinite (or finite)
domains. In the concrete case of airport slot allocation, both, the action codes and the
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confirmed times are discrete variables. The domain of action(r) is restricted to {K,T, U}
and conf_time(r) denotes a discrete time interval and hence is restricted to an integral
value between 1 and 288.

Often, combinatorial optimization problems are hard to solve. Principally, finding the
optimum conforms to a search in a discrete set, the search space. However, the search
space can be very large and thus, the search can be very tedious. Indeed, some problems
such as the traveling salesman problem are NP-complete.

In general, two solution strategies are possible. Exact methods on the one hand and
heuristic methods on the other hand. We will take a closer look on each of those.

4.2.1 Exact Methods

Exact methods guarantee to find the optimum if the problem is solveable. However, it
can take a verly long time. In general, finding a global optimum is equivalent to a search
in a discrete set. So, an exhaustive search can be considered as a (naive) exact method.
It will always find the optimum, though the performance might be very bad when the
search space is big. Hence, if possible it should be attempted to reduce the search space
and eliminate improper candidate solutions early on.

Often the search space can be viewed as a tree or similarly be structured into several
distinct partitions. Sometimes it is possible to cut off a whole branch or partition at once.
For example, the branch and bound method, mentioned for the first time in [LD60], tries
to identify such branches or partitions by computing bounds. Hence, a full enumeration
of all solution candidates is only necessary in the worst case.

In particular, LP-based branch and bound is a popular method to solve discrete optimiza-
tion problems. Good bounds can be computed by LP-relaxations (see [Agm]), where the
integrality constraint is dropped. Then, cutting planes (see [DFJ54]) can be separated in
order to to find better approximations of the integer polyhedron. Based on the obtained
bounds the size of the search tree of the underlying branch and bound algorithm can be
reduced effectively.

Today, many professional solvers for (mixed) integer programming problems (MIP solvers)
are available. For example, CPLEX is a well-known proprietary solver developed by IBM.
An opensource alternative is for example COIN-OR linear programming (CLP). Usually
they use branch and bound methods with cutting plane algorithms, as well as several
further state of the art methods.

Although MIP solvers often achieve amazing results, they are no magic whizz kids. When
the complexity and the size of the problem exceeds certain boundaries, exact methods
are not applicable within reasonable running times.
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4.2.2 Heuristic Methods

In almost every use case the goal is not to find the very best solution, but instead it
suffices to find a ”good“ solution comparable to the global optimum. Heuristic methods
do not guarantee to find the global optimum. Instead, they provide ways to find good
solutions in reasonable running times. This is in particular helpful when the size of the
search space is very big and exact methods fail due to the bad performance.

Depending on certain characteristics different types of heuristics can be distinguished.
In contrast to problem specific heuristics, so-called meta heuristics can principially be
applied to any optimization problem. The overall sequence of abstract steps does not
depend on the problem itself, although the individual steps are most probably still
implemented in a problem specific way. Typical representatives for such meta heuristics
are local search and simulated annealing among many others.

Another important way to categorize heuristics is the distinction between constructive
and improvement heuristics. Whereas the first type starts out of nowhere and constructs
a solution step by step, the improvement method uses an existing solution candidate and
tries to futher improve it.

4.3 Improvement Heuristics
Next, we will discuss several improvement (meta) heuristics. As described above the goal
is to improve an existing solution candidate x step by step. A single step, which transforms
a solution candidate x into a new (feasible) solution candidate x′ is called improvement
step. Furthermore, the neighborhood N (x) denotes all those solution candidates, which
can be reached from x by applying one single improvement step.

A simple seach strategy is the above mentioned local search. Algorithm 4.1 shows the
corresponding pseudo code.

Algorithm 4.1: Local Search
Data: existing solution candidate x
Result: improved solution candidate x

1 repeat
2 choose x′ ∈ N (x);
3 if f(x′) ≤ f(x) then
4 x← x′;
5 end
6 until abort criterion met;

The most important step happens in line 2. A new solution candidate x′ is chosen out of
the set of neighbors of the current solution candidate x. However, different strategies
are possible. A best improvement strategy might consider all neighbors of x and choose
the best one, that is f(x′) ≤ f(x∗) ∀x∗ ∈ N (x). On the contrary, a first improvement
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strategy might be content with any neighbor satisfying f(x′) < f(x). This is particularly
interesting, when the evaluation of f(x) is expensive. Still another strategy is the random
improvement strategy. Here, a random neighbor x′ ∈ N (x) is chosen.

Another improvement (meta) heuristic is simulated annealing. In 1983, it was applied to
the Traveling Salesman Problem (see [KGV83]) and since then to lots of optimization
problems. Often, a local search algorithm as presented above might not be able to escape
local optima. Simulated annealing was developed in analogy to the physical process of
heating and cooling some metallic material. Hereby, the particles move less and less with
decreasing temperature. Algorithm 4.2 shows the basic algorithm.

Algorithm 4.2: Simulated Annealing
Data: existing solution candidate x, time t, current temperature T , initial

temperature Tinit, random variable Z
Result: improved solution candidate x

1 t← 0;
2 T ← Tinit;
3 repeat
4 randomly choose x′ ∈ N (x);
5 if f(x′) < f(x) then
6 x← x′;
7 else
8 Z ← random ∈ [0, 1);

9 if Z < e
|f(x′)−f(x)|

T then
10 x← x′;
11 end
12 end
13 T ← g(T, t);
14 t← t+ 1;
15 until abort criterion met;

In the beginning, the algorithm also accepts worse solution candidates by a certain
probability and thus, we can escape from local minima. However, with decreasing
temperature the chance to accept worse solution candidates becomes more and more
unlikely and in the end the algorithm converges to local search. Hereby, the ”cooling
process“ is determined by the function g(T, t). A typical implementation is given by
g(T, t) = T · α with α < 1.

Furthermore, many other (meta) heuristic methods exist, such as tabu search, ant colony
optimization and evolutionary algorithms to name just a few. The latter one memorizes not
only the current solution candidate, but a whole set of solution candidates, the so-called
population. Among others, further meta heuristics are covered in detail in [GP19].
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4.4 Multi-Objective Optimization
In practice, quantifying a solution candidate is not always straight forward. Often, several
distinct optimization goals can be formulated, e. g. time, monetary costs, distance, etc..
Frequently the individual goals are in conflict with each other. Minimizing goal A might
lead to higher costs regarding goal B and vice versa. Although often desired, optimizing
both (or even more) goals separately usually yields no sufficient solution at all. As a
result, tradeoffs have to be balanced.

So, multi-objective optimization deals with several objective functions simultaneously.
In principal, the goal is to minimize the whole vector of objective functions f1 to fn at
once. Although it might sound simple at first glance, it is hard in practice. In fact, for an
optimization problem with conflicting objectives usually no single optimal solution exists.
Instead, we need to deal with a whole set of optimal solutions reflecting the possible
tradeoffs between different objectives.

Formally, such a set is called pareto frontier . Let f1(x), . . . , fn(x) be n objective functions
to quantify n different optimization goals. Then, a solution candidate x is called
pareto optimal if there exists no other feasible solution candidate x′, such that fi(x′) <
fi(x) ∧ ∀j ∈ {1, . . . , n} fj(x′) ≤ fj(x) for some i. Hence, the pareto solution describes a
state, in which no further improvement is possible, without worsening at least one other
objective. In the literature the terms pareto optimal, pareto efficient and nondominated
solution are used interchangably. Now, the set of all pareto optimal solutions is called
pareto frontier. Note, that its size can possibly be infinite.

Besides, the domains of the objectives might vary significantly. This makes comparison
of different solutions even harder. Suppose, the objective functions f1 and f2 yield the
values 0.2 and 100 for solution A. Furthermore, suppose solution B results in the values
0.1 and 500. Now, which solution should be preferred? This question has no unique
answer. Both solutions might be pareto optimal and intuitively solution A might seem
desirable at first. But, for one thing, the values might not be directly comparable, because
of different domains. Suppose, f1 yields values in the range [0, 1] and f2 in the range
[0, 100000]. Then, solution B seems suddenly much more attractive. For another, besides
the possibly differing domains, the objectives just might not be equally important. It
strongly depends on the meaning of the objective functions. So, at the end of the day
it is in general incumbent upon the humans to assess the tradeoffs between conflicting
objective functions. Hence, a common approach is to visualize the pareto frontier and
leave the ultimate decision to humans in charge.
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CHAPTER 5
Solution Algorithms

The focus of this Chapter are the algorithms developed to solve the airport slot allocation
problem. First, we will consider a construction heuristic. In Section 5.1 the basic algorithm
is presented and discussed in detail. Next, Section 5.2 shows further improvement
heuristics used to refine the solution.

5.1 Construction Heuristic
As described in Chapter 4, for many combinatorial optimization problems finding a
global optimum is hard. This is also true for the airport slot allocation problem. Due to
the problem size (200.000 requests and more) exact solution approaches are somewhat
limited. Hence, we propose heuristic solution strategies to find a ”good“ solution in
relatively short running times.

In a first step, a construction heuristic is used to create a feasible solution. As a hard
requirement, the turnaround constraints, the capacity limitations (runway, apron and
passenger constraints) as described in Sections 3.7.1, 3.7.2, 3.7.3 and 3.8 must hold. Goal
is to confirm as many requests as possible (action_code(r) ∈ {K,T} - see Section 3.6),
while minimizing the total time deviation ∆ and the fragmentation Θ (see Section 3.10).

The construction heuristic can be decomposed into several parts. First, in algorithm 5.1
we define a basic procedure used to assign a whole set of requests S ⊆ R to a certain
time t. Note, that the algorithm ensures feasibility of the current partial solution. Hence,
it must also take the aggregated counts of runway, passengers and apron into account.
Furthermore, some of the requests s ∈ S might have already been assigned in advance.
Those requests shall be skipped and not be changed at all. Hence, in line 1 only those
requests s ∈ S, that are not yet assigned (action(s) = U), are set to the desired time t.

After updating the confirmed times of all requests s ∈ S, we need to check whether
the partial solution is still feasible. Hence, the aggregated counts of the current partial
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solution must be updated accordingly and then the satisfaction of the constraints must
be evaluated. If the constraints are still fulfilled, the partial solution is still feasible and
all s ∈ S are successfully assigned. Hence, the algorithm returns a flag indicating success.
Otherwise, some constraints are violated due to the assignments in line 1. All changes
must be reverted to the previous state as if the algorithm was not called at all. In that
case, the returned flag indicates that not all demanded assignments are possible, because
some of the constraints would be violated.

Algorithm 5.1: set_assignments
Data: set S of requests to be assigned at a certain time t, aggregated counts of

current partial solution
Result: flag indicating success or failure

1 assign all requests in {s ∈ S | s not yet assigned} to time t;
2 update aggregated counts;
3 if feasible (capacity and turnaround constraints satisfied) then
4 return success;
5 else
6 revert assigned requests and aggregated counts to previous state;
7 return failure;
8 end

Next, algorithm 5.2 gives an abstract overview of the overall construction procedure.
First, all requests r ∈ R are sorted by their priority prr(r). Then, all mandatory requests
are assigned. Mandatory requests are those, for which only one possible time exists (e. g.
requests with historic status code F). Last, we iterate over the remaining requests and
try to find a feasible assignment.

This involves several strategies, each of which might be successful. In the simplest
case, only the current request itself is considered and the algorithm tries to find a
feasible assignment for this single request. This can be considered as a fallback case and
corresponds to line 10 in algorithm 5.2.

However, in general it is desired to find a homogenous assignment for all requests
belonging to the same (multiday) series. Assigning all requests of a (multiday) series to
the same time slot keeps the fragmentation low. This is all the more important, since
low fragmentation is one of the key objectives. Hence, before using the fallback strategy,
the algorithm 5.2 tries to find a feasible assignment for the whole series of the current
request. This strategy is applied in line 8.

But, the assignment of a request also depends on its turnaround request. Often, it is
essential to assign both at once. Thus, we introduce still another strategy. In line 6, the
algorithm takes the (multiday) series of the current request as well as the (multiday)
series of its turnaround request into account and tries to assign both series homogenously.
This is the preferred case and hence it is tried first.
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However, in some situations all three strategies fail. As a last resort, we try to resolve
conflicts. That is, the algorithm tries to move already assigned requests to other time
slots in order to find a feasible assignment for the current request r. If this keeps to fail,
the current request remains unable (action code U) and the iteration moves on.

Algorithm 5.2: construction
Result: solution consisting of action codes and confirmed times

1 initially for all r ∈ R, set action code to U (unable);
2 sort requests r ∈ R by priority prr(r);
3 assign all mandatory requests;
4 forall r ∈ R do
5 skip if r is already assigned;
6 try_homogenous_assignment(r, respect_turnaround← true);
7 if not possible then
8 try_homogenous_assignment(r, respect_turnaround← false);
9 if not possible then

10 try_single_assignment(r);
11 depth← 0;
12 while not possible and depth ≤ 2 do
13 try_conflict_resolvement(r, depth);
14 depth← depth + 1;
15 end
16 end
17 end
18 end

The different strategies will be explained in detail next.

5.1.1 Homogenous Assignments

When assigning a request r, it makes sense to take the whole (multiday) series S of r
into account. Confirming r at time t does not help a lot, if the remaining requests of the
same series can not be assigned to the same time slot. Homogenous allocation is almost
always the better choice. Hence, we introduce algorithm 5.3, which gets a request r as
input and tries to find a time slot t for all requests belonging to the whole (multiday)
series of r.

Furthermore, depending on the flag respect_turnaround, the algorithm might consider the
turnaround requests too. In this case, it tries to find a feasible, homogenous assignment
for both, the series S of r and the series of the turnaround request r′ = turnaround(r).

However, note that all requests s ∈ S with prr(s) < prr(r) + η are skipped. The same is
valid for the turnaround series T . This ensures, that the priority model as described in
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Algorithm 5.3: try_homogenous_assignment
Data: request r, respect_turnaround flag
Result: flag indicating success or failure

1 S ← seriesMS
(seriesSr (r));

2 remove requests s ∈ S with prr(s) < prr(r) + η or differing requested time;
3 forall t ∈ get_priorized_times(r) do
4 set_assignments(S, t);
5 if possible then
6 if not respect_turnaround then
7 return success;
8 end
9 T ← seriesMS

(seriesSr (turnaround(r)));
10 remove requests t ∈ T with prr(t) < prr(r) + η or differing requested time;
11 forall t′ ∈ get_priorized_times(turnaround(r)) do
12 set_assignments(T , t′)
13 if possible then
14 return success;
15 end
16 revert assignments of T to previous state;
17 end
18 end
19 revert assignments of S to previous state;
20 end
21 return failure;

Section 3.5 is respected. The constant η is a configuration parameter and can be flexibly
adjusted by the coordinator. Throughout this work, a value of η = 5.0 is used.

Furthermore, requests which belong to the same series, but have another requested time
are also skipped. Because the requested time differs, assigning those requests as well
might lead to very high time deviation.

This algorithm iterates over all possible times and tries to assign all requests of the
(multiday) series S of r to the same time slot t. If this succeeds and respect_turnaround
is set to false, we are done. However, if respect_turnaround is set to true, it takes more.
Since the assignment of a request always affects the assignment of its turnaround request
too, it is desirable to assign both at once. Assigning r to the ”wrong“ time slot might
prohibit a feasible assignment for its turnaround request r′ = turnaround(r). Hence, the
algorithm also deals with the series of the turnaround request r′. Only, if both series can
be assigned homogenously, the algorithm returns success.

Suppose, the series of the turnaround request can not be assigned in a feasible way,
because either the turnaround constraints or the capacity constraints are violated. Then,
all temporary assignments are reverted to the previous state and the iteration moves on.
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Probably, the most important step in this algorithm is the deduction of priorized times.
The order, in which we iterate over the possible time slots matters a lot. Hence, we will
take a closer look on this part now. Algorithm 5.4 determines a priorized list of possible
times for the request r. For that purpose, we once again take the (multiday) series of
r into account. Suppose, that some requests s ∈ S are already assigned to some time
slot t in advance. Then, for the sake of low fragmentation, it is desirable to assign r to
the same time slot t (provided, t ∈ allowed_times(r)). On the other hand, the requested
time of r is also very desirable, because it minimizes time deviation. This is sort of
a tradeoff, which needs to be sorted out. Another factor, which might play a role, is
whether the already assigned requests are on the same day of operation. Assigning r1 to
the same time slot as r2 is more important if r1 and r2 are on the same day of operation.

Hence, to sort the allowed times, we use the priority rules as implemented in algorithm 5.4.
First, we consider all requests s ∈ S which are already assigned and take place on the
same day of operation. Those confirmed times are most desirable for the request r. Next,
we consider the requested time of r. Then, the confirmed times of requests s ∈ S, which
take place on another day of operation, are considered. Last, we add the remaining
allowed_times(r) sorted by the deviation to the requested time.

However, it must be ensured, that all those priorized times are allowed for every request
s ∈ S (and for r in particular). Hence, in line 6 all potential times, that are not allowed
for every request s ∈ S, are removed from P .

Algorithm 5.4: get_priorized_times
Data: request r
Result: sorted array P containing potential times

1 S ← seriesMS
(seriesSr (r));

2 append confirmed times of s ∈ S with same day of operation as r to P ;
3 append requested time of r to P ;
4 append confirmed times of s ∈ S on another day of operation than r to P ;
5 append allowed_times(r) to P , sorted by deviation to requested time of r;
6 remove all p ∈ P : p /∈

⋂
s∈S

allowed_times(s) from P ;

7 return P;

5.1.2 Single assignment

Next, we deal with single assignments. When a homogenous assignment is not possible,
algorithm 5.5 is used. It iterates over the allowed_times of r, sorted by the deviation
to the requested time. If all constraints are satisfied, we return success. Otherwise, the
assignment is reverted and the iteration moves on. If no assignment is possible, failure is
returned.
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Algorithm 5.5: try_single_assignment
Data: request r
Result: flag indicating success or failure

1 T ← allowed_times(r);
2 sort T by deviation to requested time of r;
3 forall t ∈ T do
4 set_assignments({r}, t);
5 if possible then
6 return success;
7 end
8 revert assignment to previous state;
9 end

10 return failure;

5.1.3 Conflict Resolvement

If all other strategies fail, we can still try to move an already confirmed request to another
time slot in favor of the current request. For this purpose, we first introduce algorithm 5.6
used to identify possible candidates for conflict resolving.

Algorithm 5.6: get_potential_conflict_assignments
Data: request r
Result: array of conflicting requests C sorted by priority

1 T ← allowed_times(r);
2 tmin ← minT − (κ− 1);
3 tmax ← max T + (κ− 1);
4 forall r′ ∈ R | r′ 6= r ∧ conf_day(r) = conf_day(r′) ∧

tmin ≤ conf_time(r′) ≤ tmax do
5 if r′ not mandatory ∧ prr(r′) ≥ (prr(r)− η) then
6 append r′ to C;
7 end
8 end
9 sort C by priority prr(r);

10 return C;

In lines 2 and 3, the algorithm defines a time interval. All requests confirmed in this
interval are potential candidates for conflict resolvement. The parameter κ expands this
interval to account for the aggregated counts as defined in Section 3.7.1, since they span
over a time interval δ.

The potential candidates are further restricted in line 5. Since mandatory requests can not
be moved to another time, they are never selected for conflict resolvement. Furthermore,
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in order to respect the priority model, a conflicting request must not have a lower priority
than prr(r)− η.

Next, algorithm 5.7 shows the conflict resolvement method. In line 1, a set of possible
candidates for conflict resolvement is determined. Then, the algorithm tries to confirm
the current request r by moving one of the conflicting requests to some other time slot.
In the best case, the whole (multiday) series of the conflicting request can be moved
homogenously to another time slot. Otherwise, only the conflicting request itself is moved
to another time slot.

Algorithm 5.7: try_conflict_resolvement
Data: request r, iteration depth d
Result: flag indicating success or failure

1 C ← get_potential_conflict_assignments(r);
2 forall c ∈ C do
3 T ← allowed_times(r) sorted by deviation to requested time;
4 forall t ∈ T do
5 set c to unable;
6 set_assignments({r}, t);
7 if possible then
8 try_to_move_series_to_other_time(c);
9 if possible then

10 return success;
11 end
12 try_to_move_request_to_other_time(c, d);
13 if possible then
14 return success;
15 end
16 end
17 revert assignments to previous state;
18 end
19 end
20 return failure;

Note, that the conflict resolvement method is performance critical. Hence, a total time
limit θ is used and checked throughout the conflict resolvement. If the running time of
this algorithm exceeds this time limit, the conflict resolvement is stopped, all temporary
assignments are reverted to the previous state, failure is returned, and the current request
remains unable.

Furthermore, the whole conflict resolvement strategy is never called for requests with
historic status code N due to performance reasons. The set of allowed times for such
requests is usually quite big and hence they have high chances to be assigned during the
single assignment strategy anyways. The conflict resolvement strategy on the other hand
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takes quite a long time for such requests with low chances of success. Hence, they are
skipped altogether.

The next algorithm 5.8, which tries to move a whole (multiday) series to another time, is
straightforward. It iterates over the priorized times of the series and tries to assign the
whole series homogenously to another time. However, in order to respect the priority
model, all unassigned requests belonging to the (multiday) series are skipped and remain
unassigned.

Algorithm 5.8: try_to_move_series_to_other_time
Data: request r
Result: flag indicating success or failure

1 S ← seriesMS
(seriesSr (r));

2 remove unassigned requests from S;
3 T ← get_priorized_times(r);
4 forall t′ ∈ T ∧ t′ 6= conf_time(r) do
5 set all s ∈ S to unable;
6 set_assignments(S, t′);
7 if possible then
8 return success;
9 end

10 revert assignments to previous state;
11 end
12 return failure;

Now, algorithm 5.9 is slightly more advanced. Here, we respect the iteration depth d.
If d is equal or less than zero, we just try the allowed times of the conflicting request c
and try to find a new timeslot. However, if d is greater than zero, we restart the whole
conflict assingment method for c. That is, we try to move some other confirmed request
to a new time slot in favor of c.
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Algorithm 5.9: try_to_move_request_to_other_time
Data: conflicting request c, iteration depth d
Result: flag indicating success or failure

1 T ← allowed_times(c);
2 sort T by deviation to requested time;
3 forall t′ ∈ T do
4 if d ≤ 0 then
5 set_assignments(c, t′);
6 if possible then
7 return success;
8 end
9 else

10 try_conflict_resolvement(c, d− 1);
11 if possible then
12 return success;
13 end
14 end
15 revert assignments to previous state;
16 end

5.2 Improvement Heuristics
Moreover, we propose some heuristic methods to further improve the results. Experimental
evaluation reveals, that in general the construction heuristic as presented in Section 5.1
leads to low time deviation. However, to achieve low fragmentation too, usually further
refinement is necessary.

In this manner, we developed some heuristic improvement methods focusing on fragmen-
tation. Since, we have to deal with multiple objectives, a good tradeoff between time
deviation and fragmentation needs to be found. Hence, the following algorithm 5.10
works with a set of partial solutions and approximates the pareto frontier in order to
find a good balance between deviation and fragmentation.

In a first precomputing step, candidates for further improvement are identified. Regarding
fragmentation, two distinct cases need to be distinguished. On the one hand, we need to
deal with whole multiday series at once. In the best case, we can assign all requests of a
multiday series to the same time slot. However, this is not always possible. Hence, we
also need to deal with single days of operation.

Lets consider an example. Suppose, a series contains several requests on Monday and on
Thursday throughout the season. Quite often, it is not feasible to assign all requests of
both days to the same time slot. However, it might be possible to assign all requests on
Monday to time slot t1 and all requests on Thursday to time slot t2. Hence, we need to
find homogenous assignments for each individual day separately.

47



5. Solution Algorithms

In line 1 all multiday series with inhomogenous assignments are identified as possible
candidates for further improvement. Every element a ∈ A contains all requests of such
a multiday series. Next, in line 2 individual days of operation with inhomogenous
assignments are detected. An element b ∈ B contains only requests belonging to the
same day of operation. Hence, it is only a subset of a multiday series.

The algorithm keeps a set of best solutions found so far. At the beginning, we start with
the solution of the construction heuristic described in Section 5.1. While the maximum
number of iterations is not yet reached, a random partial solution is picked and the
algorithm randomly tries to improve the fragmentation either regarding a whole multiday
series or a single day of operation.

Whenever this yields a better solution in terms of pareto efficiency, the new solution is
added to the set of best solutions. This might also imply, that a former partial solution
needs to be removed from this vector, because it is no longer pareto efficient.

Algorithm 5.10: improvement
Result: randomly approximated pareto frontier

1 A← inhomogenously assigned multiday (seriesMS
);

2 B ← inhomogenously assigned series (seriesSr);
3 best_solutions ← construction_solution;
4 while max_iterations not reached do
5 c← pick random solution from best_solutions;
6 i← 0..1 randomly;
7 while max_tries not reached do
8 if i = 0 then
9 S ← pick random candidate from A;

10 else
11 S ← pick random candidate from B;
12 end
13 c← improve_fragmentation(c, S);
14 if c is pareto efficient regarding best_solutions then
15 append c to best_solutions;
16 remove all pareto inefficient solutions from best_solutions;
17 break;
18 end
19 end
20 end
21 return best_solutions;

Next, algorithm 5.11 shows the actual improvement step. It receives a solution cadidate
c and a set S of inhomogenously assigned requests of a multiday series (or a subset).
First, all possible times for S are determined and sorted by deviation to the requested
time. Then, all requests S are reset (set to unable) and the algorithm tries to find

48



5.2. Improvement Heuristics

a homogenous assignment for all requests in S. After all, the resulting new solution
candidate c is returned.

Algorithm 5.11: improve_fragmentation
Data: current solution c, set S of requests
Result: current solution c

1 T ←
⋂
s∈S allowed_times(s)

2 sort T by deviation to requested time;
3 forall t ∈ T do
4 set all s ∈ S to unable;
5 set_assignments(S, t) in c;
6 if possible then
7 return c;
8 end
9 revert temporary assignments to previous state;

10 end
11 return c;
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CHAPTER 6
Experimental Results

This Chapter presents the computational results of the algorithms developed in the scope
of this work. To evaluate the results, the solutions of the optimization algorithms are
compared to current operational practice at Austrian airports. Section 6.1 introduces
the data sets used in this work. Section 6.2 covers a description of the hardware used to
run the tests. The computational results of the construction algorithms are shown in
Section 6.3. Then, in Section 6.4 the results of the improvement algorithms are shown,
together with an approximated pareto analysis. Section 6.5 summarizes the best solutions
for all data sets and last, Section 6.6 shows further results regarding passenger and apron
limits.

6.1 Description of the Data Sets
All data sets have been provided by Schedule Coordination Austria. The input data
consists of real (historic) data used for the initial schedule creation at the Vienna airport.
The test cases contain all initial requests of airport slots as submitted by the air carriers
before the start of the season.

Now, to take a closer look on the input data and briefly discuss the format, we show
an example with anonymized values. Table 6.1 shows three lines of input data, each
corresponding to a single request. All enries of such a request are delimited by a semicolon.
A short description of all individual entries is shown in Table 6.2.

Usually, the data sets span a whole season. Regarding the Vienna airport, such data
sets contain between 100,000 and 200,000 lines. Taking other international airports into
account, the size of such data sets can increase up to half a million lines and even more.
Note, that all requests contain the attributes presented in Section 3.3. Furthermore, for
every request some turnaround information might be available. However, the quality of
that turnaround information is not always reliable and hence, a preprocessing step as
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Table 6.1: Anonymized input data.

Season;Airport;Date;DOOP;ArrDep;Time;Req;Hist;HistStat;ActionCode;AirlDesig;Fltno;
OpeSuffix;Seats;IATA Aircraft Type;ICAO Aircraft Type;LastNext;ICAO LastNext;
OrigDest;ICAO OrigDest;LastNextCountry;OrigDestCountry;ServType;TurnOpe;
TurnServNo;TD; EditDate;ACReg;GA/BA;OpeName;RC

W16;VIE;2016-10-26;1000000;A;0545;0540;;N;K;EA;1819;;150;J6;
VCR;FRA;DUS;FRA;DUS;HG;HG;J;;;;01MAY2016 0001;;0;Ex Air;OK

W16;VIE;2016-10-26;0200000;D;0620;0620;;Y;K;AN;1234;;163;SS;
CRL;VIE;ZRHF;VIE;ZRH;AT;AT;C;;;;01MAY2016 1131;;0;Anonymous;OK

W16;VIE;2016-10-26;1000000;D;0540;0530;;N;K;EA;3546;;192;NG;
LDA;MUC;EDDF;MUC;EDDF;CH;CH;J;;;;01MAY2016 0001;;0;Ex Air;OK

described in Section 3.8 is applied to match as many turnaround requests as possible.
Additionally, also the series information is computed in advance. The conditions for this
step are explained in detail in Section 3.4.

The algorithms presented in this work are part of a big software framework. Inter alia,
it consists of a graphical user interface used for configuration and visualization of the
results. In the course of this software framework, we also developed a view to visualize
the series information. To get an impression, Figure 6.1 shows a screenshot of such a
series window. The series are visualized as a tree. Each root node represents a multiday
series. The next level in this hierarchy corresponds to a single day of operation. Last,
each line contains a single request.

Figure 6.1: Tree view, used to visualize the series.

Next, Table 6.3 presents an overview of the data sets used in this work and lists the
key points. Columns one and two describe the data sets by listing the airport, the year
and whether it contains data for the winter or summer season. Column three shows the
overall number of requests present in that season and column four the number of slot
series. In general, the summer seasons contain significantly more requests than the winter
seasons. Furthermore, there is a noticeable increase of data over the years.
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Table 6.2: Brief explanation of fields in the input data.

Field Description

Season season of the data set
Airport coordinated airport of the data set
Date requested date
DOOP day of operation (1=Monday, 7=Sunday)
ArrDep movement type (A=arrival, D=departure)
Time assigned time (in operational practice)
Req requested time
Hist historic time
HistStat historic status code
ActionCode action code (in operational practice)
AirlDesig unique designator for every air carrier
Fltno flight number
OpeSuffix suffix of flight number (redundant, not used)
Seats number of available seats
IATA / ICAO Aircraft Type international identifier of the aircraft
LastNext / ICAO LastNext last airport of arrivals,

next airport of departures
OrigDest / ICAO OrigDest original airport of arrivals,

final airport of departures
LastNextCountry last country of arrivals,

next country of departures
OrigDestCountry original country of arrivals,

final destination of departures
ServType service type
TurnOpe turnaround operator code
TurnServNo turnaround service number
TD turnaround days, overnight indicator
EditDate last modified date
ACReg aircraft registration, not used
GA/BA general aviation or business aviation
OpeName descriptive name of aircraft, not used
RC reason code
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Table 6.3: Data sets used to evaluate the optimization algorithms.

Airport Season Nr of requests Nr of series
Vienna W17 95,138 1,113

Vienna S18 178,105 1,691
Vienna W18 121,271 1,433

Vienna S19 200,353 1,886
Vienna W19 125,419 1,500

The optimization algorithms need to consider lots of airport and season dependent
parameters and configuration values. For example, the capacity limitations depend not
only on the size and resources of the airport, but might also vary from winter to summer
season. Furthermore, the priority of requests as well as the turnaround constraints (home
carriers) depend on several configuration parameters. All settings and paramters used
for the evaluation of the algorithms as presented in the following sections, are provided
in appendix A.

6.2 Benchmark System Environment
All tests are performed on a Desktop Computer running Ubuntu Linux 18.04 (KDE
neon User Edition 5.16). The system runs on an Intel(R) Core(TM) i7-8550U CPU, 8th
generation consisting of 4 cores. Furthermore, the system contains 32GB Ram and a
SSD hard disc.

The program was written in C++, conforming to the C++11 standard. For compilation,
the gnu GCC compiler 7.4.0 was used. Furthermore, the following additional libraries
were used.

• C++ Standard Template Library (STL),

• Boost 1.65 (portable C++ library to extend the standard library),

• Qt 5.12.3 (used for graphical user interface),

• Qwt 6.1.3 (used for plotting),

• and Xerces 3.2 (xml parser, used for logging and debugging).

6.3 Evaluation of the Construction Algorithm
Next, we will analyze the computational results of the construction algorithm described
in Section 5.1. The objective function, as defined in Section 3.10 consists of three
components, the quantity Γ, the time deviation ∆ and the fragmentation Θ.
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In order to compare the results of the optimization algorithms, Schedule Coordination
Austria provided historical slot assignment data used in operational practice. We will
refer to those manually created solutions by the term reference solution.

Table 6.4 shows the results for all data sets. Column one shows the season of the data
set. Column two contains the running time of the construction heuristic. Columns three
shows the number of requests which are not confirmed, but remain unable (equivalent to
|R|−Γ). Column four shows the number of unconfirmed requests in the reference solution
(operational practice). Column five contains the time deviation ∆. Again, column six
contains the time deviation ∆ of the reference solution. Last, column seven shows the
fragmentation Θ. Note, that for reasons of comparability a relative fragmentation is
used and hence the value of this column depends on both, the reference solution and the
solution of the construction algorithm. A negative value means, that the fragmentation
is clearly better in the optimized solution, whereas a positive value indicates that the
fragmentation of the reference solution is better.

Table 6.4: Computational results of the construction algorithm.

season run time [s] ¬pos ¬posref ∆ [min] ∆ref [min] Θ
W17 120 380 379 85,680 101,595 0.302

S18 300 1,316 1312 346,730 398,800 0.675
W18 178 447 442 188,425 249,080 0.019

S19 530 35 0 849,555 1,002,740 0.373
W19 208 7 0 211,485 285,605 0.171

To some extent, the number of unconfirmed requests is equivalent. Little discrepancies
occur, because the construction algorithm skips requests which do not belong to any
series. Such ad hoc requests are usually set after the worldwide slot conference. However,
the reference solution contains a few ad hoc requests assigned to a certain time slot.
Because of the small amount and the low impact, those discrepancies can be neglected.

Note, that the construction algorithm yields very good results regarding time deviation
∆. For every data set, ∆ is lower than in the reference solution. However, in terms of
relative fragmentation Θ, tables are turned. In this respect, the reference solution yields
better results for every data set.

For the sake of completeness, it should also be mentioned, that we encountered a few
assignments in the reference solution not conforming to the constraints described in
Chapter 3. In consultation with the coordination authority, it turned out, that almost
all those cases can be regarded as highly exceptional situations in which some further
considerations, not manageable by software, affects the decision making. Note, that this
affects only very few requests, approximately 0.5%. Hence, for reasons of comparability,
in those rare situations we allowed the optimization algorithms to use the very same
decisions. Furthermore, we even allow the algorithms to skip requests, which are not
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Table 6.5: Exceptional assignments in reference solution not conforming to the model.

Season Nr of requests Percentage [%]
W17 577 0.6064

S18 799 0.4486
W18 563 0.4642

S19 1,002 0.5001
W19 519 0.4138

assigned in the reference solution. Table 6.5 shows the overall impact for every data
set. Column one shows the season, column two the number of affected requests not
conforming to the model and column three shows the affected requests as percentage on
the whole number of requests.

Comparison to Previous Work

As mentioned in Chapter 2, others already investigated similar problems. Of course,
it would be highly desirable to compare the results of different approaches with each
other. Unfortunately, a comparison to existing approaches was not possible, though it
was intended. For one thing, the data sets are usually highly confidential. Usually they
are protected by local coordination authorities. For another, several details regarding
the limits, series and turnarounds could not be sorted out entirely.

Runway Utilization

Next, we will take a closer look on the aggregated counts and analyze the runway capacity
limitations. For this purpose, we focus on the data set W17. First, Figure 6.2 shows the
aggregated, total counts for a time interval of 10 minutes. For reasons of clarity, we show
the maxima of the season for every time slot. Additionally, we also show the advanced
limit as described in Section 3.7.1. Apparently, the limit is reached several times, but
never exceeded.

Furthermore, Figures 6.3 and 6.4 show the aggregated total counts for the time intervals
of 20 and 60 minutes. Again, we show the maximal values of the whole season. Of course,
the aggregated counts shown here are also implicitely restricted by limits of lower time
intervals (e. g. interval of 10 minutes ). In particular, the limit of 60 minutes is restricted
by many limits of lower intervals. This explains, why it can not be reached in Figure 6.4.

The total counts consist of both, arrivals and departures. Now, Figure 6.5 shows only
the departures for the time interval of 60 minutes. On the contrary, Figure 6.6 shows
solely the arrivals. One can see, that the peek times of high loads differ slightly. At all
times, the aggregated counts clearly comply with the limits.
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Figure 6.2: W17 – Aggregated counts, 10min, Seasonal Maxima, Total.

Figure 6.3: W17 – Aggregated counts, 20min, Seasonal Maxima, Total.

Figure 6.4: W17 – Aggregated counts, 60min, Seasonal Maxima, Total.

Figure 6.5: W17 – Aggregated counts, 60min, Seasonal Maxima, Departures.
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Figure 6.6: W17 – Aggregated counts, 60min, Seasonal Maxima, Arrivals.

6.4 Improvement
Next, the computational results of the improvement algorithms will be discussed. As
described in Section 5.2, we deal with multiple objectives. To find a good tradeoff between
time deviation and fragmentation, the improvement algorithm approximates the pareto
frontier. Figures 6.7, 6.8, 6.9, 6.10 and 6.11 visualize the pareto frontier for each data
set. The running time of the improvement algorithms is approximately 1,000 seconds
and the maximum number of iterations is set to 1,000. The x axis shows the relative
fragmentation and the y axis shows the time deviation. Furthermore, the result of the
construction heuristic is also plotted.

In all cases, the improvement algorithm is able find significantly better solutions. As we
can see in the plots, the fragmentation can not be improved independently of the time
deviation. As expected, better fragmentation leads to higher time deviation. Hence, a
tradeoff between both objectives is necessary.

Notice, that in almost every case (except S19), the algorithm finds a solution, which is
better than the reference solution in both respects, time deviation and fragmentation.
The data set S19, on the other hand, is challenging. Even though the improvement
algorithm is not able to find a solution with negative relative fragmentation, a good
solution with low time deviation and low (positive) relative fragmentation is found.
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Figure 6.7: Pareto efficient solutions regarding time deviation and fragmentation obtained
by the improvement algorithms – W17.
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Figure 6.8: Pareto efficient solutions regarding time deviation and fragmentation obtained
by the improvement algorithms – S18.
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Figure 6.9: Pareto efficient solutions regarding time deviation and fragmentation obtained
by the improvement algorithms – W18.
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Figure 6.10: Pareto efficient solutions regarding time deviation and fragmentation
obtained by the improvement algorithms – S19.
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Figure 6.11: Pareto efficient solutions regarding time deviation and fragmentation
obtained by the improvement algorithms – W19.

6.5 Best Solutions
The pareto frontier consists of a set of solutions. However, at the end of the day it is
necessary to elect a single solution. This step involves human interaction to find a good
balance between the different objectives.

Table 6.6 summarizes the best solution found for each data set. Columns one and
two show the number of unconfirmed requests of both, the optimized solution and the
reference solution. Columns three and four show the time deviation and column five
shows the relative fragmentation.

Table 6.6: Best solutions found by the improvement algorithm.

season ¬pos ¬posref ∆ [min] ∆ref [min] Θ
W17 380 379 86,765 101,595 -0.599

S18 1,316 1,312 348,220 398,800 -0.023
W18 447 442 187,695 249,080 -0.133

S19 35 0 849,555 1,002,740 0.197
W19 7 0 209,925 285,605 -0.151

Overall, the algorithms are capable to find good solutions in all respects. In terms of
quantity Γ, the results are comparable to existing practice. As shown in Table 6.6, the
time deviation ∆ is significantly lower than in the reference solution in all test cases.
Furthermore, the algorithms yield negative values for the fragmentation Θ for almost all
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data sets. In case of the summer season S19, the fragmentation Θ is positive, but still
very low.

In effect, this means that the found solutions are comparable or even better than the
reference solution in all objectives. Hence, the approximation of the pareto frontier permits
to find good tradeoffs. Furthermore, the running times of all presented algorithms is
remarkably low.

Moreover, the presented algorithms can also be used in operational practice. As fur-
ther stated in the cooperation statement of Schedule Coordination Austria shown in
appendix D, the software framework developed in this work is a valuable innovation and
bears great potential to support the coordination authority in future.

6.6 Further Results
Next, we show some more results regarding passenger and apron constraints. In Austria,
the Vienna airport is by far the biggest airport with the highest utilization and the most
challenging capacity limitations. However, in contrast to runway limitations, passenger
and apron restrictions only play a minor role at Vienna.

Hence, to demonstrate compliance with the passenger and apron limitations, we consider
some further Austrian airports. Note, however, that we only show a brief overview with
the intention to present a proof of concept and not an exhaustive evaluation. In-depth
investigations would require much more efforts and are beyond the scope of this work.
Moreover, all configuration settings and parameters are highly optimized for the case of
Vienna and would require thorough examination.

Now, we consider the Austrian airports of Salzburg and Linz. The configuration settings,
as well as the specified capacity limitations are shown in the appendices B and C. Table 6.7
shows the results of the construction heuristic. Columns one and two show the airport and
the season, column three shows the running time, columns four and five show the number
of unconfirmed requests, columns and six and seven show the time deviation of the
solution and of operational practice and column eight shows the relative fragmentation.

Table 6.7: Further results for Austrian airports.

airport season run time[s] ¬pos ¬posref ∆ [min] ∆ref [min] Θ
Salzburg W18 356 17 0 36,620 36,260 -0.152

Linz W18 15 0 0 0 110 0

Note, that both airports are very small, notably much smaller than Vienna. In case of
Salzburg, the number of requests is 10,832 and in case of Linz it is 2,420. Hence, both
data sets are in principal not hard to solve. In particular, the airport of Linz is not
utilized to capacity and thus the data set can be solved in several seconds. Consequently,
the time deviation ∆ is zero meaning that all requests can be confirmed as requested.
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Also the relative fragmentation Θ is zero. For the data set of Salzburg, the situation
is slightly different. This time, the time deviation ∆ is a little bit higher than in the
reference solution. Regarding fragmentation Θ on the other hand, the construction
heuristic yields a better result.

However, now our intention is not to further analyze the construction heuristic, but to
present the results regarding passenger and apron restrictions. For this purpose, we show
some selected figures. The number of parking positions is only relevant at the airport of
Salzburg. Figure 6.12 shows the total apron counts. As in the following figures, we show
the maximum values of the whole season for every time slot. Clearly, the apron limit
does not restrict the solution of this data set. At all times, the counts comply with the
limit with a big margin of flexibility.

Next, we analyze the passenger counts. Figure 6.13 shows the aggregated counts of
arrivals for a time interval of 60 minutes. The departures of the same time interval are
shown in Figure 6.14 and the total counts are shown in Figure 6.15. As always, we show
the maximal values of the whole season for every time slot. One can see, that the limits
are reached several times of the day, but never exceeded. Hence, they are restrictive.

Last, we show the passenger counts for the airport of Linz. Figure 6.16 shows the
aggregated total counts for a time interval of 60 minutes. Again, the limits are cleary
met and there is lots of margin for further increase.

Figure 6.12: SZG18 – Apron counts, Seasonal Maxima, Total.

Figure 6.13: SZG18 – Passenger counts, 60min, Seasonal Maxima, Arrivals.

Note, that we encountered some shortcomings regarding the conflict resolvement strategies
(see Section 5.1.3), when evaluating the data sets of Salzburg. If necessary, the algorithm
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Figure 6.14: SZG18 – Passenger counts, 60min, Seasonal Maxima, Departures.

Figure 6.15: SZG18 – Passenger counts, 60min, Seasonal Maxima, Total.

Figure 6.16: LNZ18 – Passenger counts, 60min, Seasonal Maxima, Total.

tries to move a single request or even a whole series to another time. However, it does
not respect the turnaround requests. In some situations, it seems worthwhile to move
an already assigned request and its turnaround request to a new time slot. This allows
for even more flexibility. Preliminary implementation and first tests seem promising.
However, a stable implementation complying with previous results requires much more
work.
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CHAPTER 7
Conclusion

The main focus of this work was to solve the airport slot allocation problem and
create initial flight schedules in a fully automated way. In previous work, exact integer
programming models covering small and medium airports have been presented. In
contrast, we proposed heuristic optimization methods capable to solve even large data
sets in reasonable running times.

A major part of this thesis deals with the constraints and regulations determining
the airport slot allocation. A highly configurable framework is presented to support
runway capacity limitations as well as passenger and apron limitations. Furthermore,
a flexible priority model is introduced, which also conforms to the IATA guidelines.
Additionally, turnaround constraints are worked out to ensure certain ground times of
the aircrafts. Furthermore, we presented the concept of fragmentation to respect and
promote homogenous assignments of slot series as far as possible and at the same time
support inhomogenous assignments as well.

Within this thesis, we developed heuristic optimization algorithms respecting all con-
straints and regulations. The proposed algorithms consist of a construction heuristic and
subsequent improvement methods. They are capable of creating initial flight schedules in
remarkable running times. Furthermore, to cope with multiple objectives simultaneously,
the algorithms approximate pareto efficient solutions.

To evaluate and benchmark the algorithms, Schedule Coordination Austria provided
several data sets with real historic data together with reference solutions of operational
practice. Based on these data sets, we showed, that the proposed algorithms are able
to solve the airport slot allocation problem within low running times. Furthermore, the
automatically created solutions can compete with current operational practice. The
improvement methods achieve good results regarding low time deviation, as well as good
fragmentation. For almost all data sets, the algorithms can even find a solution, which is
better than the reference solution in both objectives.
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According to Schedule Coordination Austria, the presented algorithms are a valuable tool
and can improve current operational practice significantly. Furthermore, the presented
algorithms are very configurable and highly extensible to future needs.

However, the downside of this flexible approach is the high effort needed to maintain
parameter settings, as well as to adapt configuration settings to future changes. In
particular, when integrating new data sets with possibly new historic status codes,
operator codes, and so on, error analysis can become tough and tiring.

In the last few years, airport slot allocation rised to a promising field of research and
further work is to be expected. There is already a strong tendency to solve airport slot
allocation problems of increasing size. Thus, it seems very likely, that more heuristic
approaches will show up.

Even though, deep insights and remarkable computational results have been gained by
this work, there are also lots of possibilities for further improvement. A very important
aspect of the presented approach is fragmentation, a concept which has not been addressed
yet in the way shown in this work. Several ways to measure the impact of inhomogenous
assignments are introduced. Since this work has a strong focus on practical applicability,
relative fragmentation was used to evaluate the algorithms. However, this is not the
only way to go. Further efforts to formulate an estimator for the fragmentation seem
promising. At the end of the day, optimization methods heavily depend on good
performance indicators.

Furthermore, another key issue of airport slot allocation are the (multiday) series of
slots. The algorithms presented in this thesis work on basis of single requests. Of
course, (multiday) series are still respected and homogenous assignments are preferred.
However, a bottom-up method seems also plausible. In this manner, one could write an
algorithm working solely on (multiday) series of slots and still allowing for inhomogenous
assignments. For example, a possible way to implement such a strategy could be to split
a (multiday) series on demand into several sub-series in case a homogenous assignment
is not possible. Then the algorithm can possibly find homogenous assignments for the
sub-series.

Last, the algorithms described in this work can also be further improved. For one thing,
the improvement methods could be extended. The proposed methods in this work focus on
fragmentation. However, further neighborhoods targeting time deviation or even quantity
of confirmed requests pledge to be fruitful. Ultimately, a variable neighborhood search
would be desirable. However, the biggest challenge here is to find good improvement
steps.

For another, the conflict resolvement strategy can be futher extended. If all other
strategies fail, the algorithms within this work try to move an already assigned request
to another time slot. However, such a request also depends on its turnaround request.
Hence, it would be worth a try to even move the turnaround request to a new time slot.
Preliminary work showed, that such an extension of the conflict resolvement could be
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lucrative. However, further work is needed to implement and extensively evaluate the
working draft.

Despite those potential improvements, the algorithms have shown to be applicable and
helpful for practical applications. Due to the short running times the algorithms are not
only useful for the initial creation of flight schedules, but also for uses cases in analytics
like studies of the impact of changes of available airport and runway capacities.
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APPENDIX A
Model Parameters of Vienna

Airport

The software framework developed in this work is highly configurable. This Chapter
shows the settings and model parameters used throughout the work to develop and
evaluate the algorithms.

A.1 Priorities

First, configuration settings regarding the priority model as described in Chapter 3 are
shown. Table A.1 shows the priority prhist(h) depending on the historic status code h
of a request. Column one lists the historic status code, column two shows the assigned
priority (high priority is expressed by low numbers) for the summer periods, column three
shows the priority for the winter periods and the remaining columns state the allowed
times - a tick in column three indicates that all time slots between the historic time and
the request time are possible and column four states an allowed timespan relative to the
request time.

Next, we show the mapping of service types to priorities. Table A.2 lists the priority
values for every service type s ∈ S used in this work.

Table A.3 shows the weighting coefficients c1, c2, c3 and the gain factor ξ used to mix
the different priority factors.

A.2 Turnaround Parameters

As described in Section 3.8 of Chapter 3 the arrivals and departures are related to each
other by turnaround constraints. However, those rules do not apply for home carriers.
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Table A.1: Priority classes and configuration values.

historic status code priority in-between timespan [min]
summer winter

B 60 60 180
BCL 20 20 -
BCLT 20 20 -
BCIT 30 30 X -
BCLX 20 20 -
BCR 25 25 X -
BCRT 20 25 X -
BF 10 10 -
CI 30 20 X -
CIT 30 30 X -
CIX 30 30 60
CL 15 15 -
CLX 15 15 -
CLT 20 20 -
CR 25 25 X -
CRT 20 25 X -
DFI 35 35 100
F 10 10 X -
FI 25 25 60
N 85 85 240
V 50 50 180
Y 80 80 180

Table A.4 shows a list of home carriers used in Vienna. For those operators no turnaround
information is used.

For refueling, cleaning, etc. it is necessary to respect a certain ground time. However, in
many cases the ground times as requested by the initial submissions can not be met. At
least slight adaptions are inevitable in practice. To account for current practice, we allow
slight deviations depending on the initially requested ground time as shown in Table A.5.
Column one shows the requested ground time gnd_time(r, r′) in minutes and column
two shows the allowed deviations in minutes.

A.3 Seasonal Night Limit

In Vienna, the number of movements during the night is restricted by a seasonal maximum
value. Hence,

seasonal(Trnight) ≤ λnight (A.1)
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Table A.2: Priorities of the service types.

service type priority
J -0.40
C -0.35
G -0.28
F -0.19
H -0.18
A -0.09
M -0.08
P 0
W 0.11
I 0.12
E 0.13
X 0.21
O 0.22
N 0.31
D 0.32
U 0.33
K 0.41
T 0.42
Y 0.50
Z 0.50

Table A.3: Priority weighting coefficients and gain factor.

coefficient value
c1 0.3
c2 0.6
c3 0.1
ξ 10

.

For the winter period, λnight is equal to 967 and for the summer period a value of 2600 is
used.

A.4 Runway Limits

Next, we show the runway limits of the Vienna airport. Table A.6 shows the time intervals
in use. Column one lists the designator of the time interval, column two the timespan
and column three the very same timespan in minutes. Furthermore, Table A.7 shows
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Table A.4: Vienna home carriers, which are not considered for turnaround constraints.

operator name IATA code
Austrian Airlines OS
Air Berlin AB
Niki Luftfahrt HG
Lauda Motion OE
Wizz Air W6
Eurowings EW

Table A.5: Allowed ground time deviations.

gnd_time(r, r′) deviation
0 . . . 35 0 . . . 10

35 . . . 45 − 5 . . . 20
45 . . . 55 − 5 . . . 25
55 . . . 95 −10 . . . 25
95 . . . 120 −30 . . . 35

120 . . . 235 −30 . . . 30
else 0.15 gnd_time(r, r′)

the capacity limits of the runway for the different timeranges and intervals. Column one
contains the time range, column two the interval and columns three, four and five the
maximum limit for every movement type.

Table A.6: Interval lengths.

interval timespan timespan [min]
δ1 1 5
δ2 2 10
δ3 6 30
δ4 12 60
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Table A.7: Runway limits at Vienna airport.

time range interval arrivals departures total

Trday

δ1 5 5 7
δ2 9 9 12
δ3 24 25 34
δ4 48 50 68

Trevening

δ1 5 5 7
δ2 7 7 12
δ3 18 18 26
δ4 36 36 48

Trevening-shoulder

δ1 5 5 5
δ2 7 7 8
δ3 18 18 24
δ4 36 36 24

Trnight

δ1 2 2 2
δ2 4 4 4
δ3 12 12 12
δ4 24 24 24

Trmorning-shoulder

δ1 5 5 5
δ2 7 7 8
δ3 18 18 24
δ4 36 36 24

Trmorning

δ1 5 5 7
δ2 7 7 12
δ3 18 18 26
δ4 36 36 48
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APPENDIX B
Model Parameters of Salzburg

Airport

Further results and discussions deal with the Salzburg airport. In particular apron
and passenger limits are demonstrated. Hence, we consider now the configurations and
parameter settings used for those evaluations.

First, Table B.1 shows the priority settings for every status code. Column one lists the
historic status code, column two shows the priority and columns three and four provide
insight about the allowed times.

Table B.1: Priorty configurations for Salzburg.

historic status code priority in-between timespan [min]
CLT 20 -
CLS 20 -
CLTS 20 -
CLX 15 -
CR 25 X -
CRT 25 X -
CRTS 30 X -
DFI 35 100
F 10 -
FI 25 60
N 85 240

Next, we show the runway limits in Table B.2. Column one shows the time range, column
two the time interval and columns three, four and five show the maximum values for
arrivals, departures and total (both).
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Table B.2: Runway limits for Salzburg.

Timerange interval [min] arrivals departures total

05:00 - 20:55

5 3 3 3
10 5 5 5
20 8 8 8
60 10 10 20

21:00 - 22:00 5 2 0 2
60 10 0 10

Table B.3 shows the limits for the passenger counts. Column one shows the time range,
column two the time interval and columns three, four and five show the maximum values
for arrivals, departures and total (both).

Table B.3: Passenger limits for Salzburg.

Timerange interval [min] arrivals departures total

05:00 - 20:55 10 550 700 1,200
60 1,500 1,500 2,900

21:00 - 22:00 10 550 0 550
60 1,500 0 1,500

Last, Table B.4 shows the apron limits. Column one shows the maximum number of
small parking positions, columns two and three show the maximum number of medium
and large parking positions and column four shows the total number of available parking
positions.

Table B.4: Apron limits for Salzburg.

Small Medium Large Total

2 10 4 16
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Model Parameters of Linz Airport

Furthermore, we show the configuration values used for the airport of Linz. In the same
manner as before, this airport is regarded in further discussions in order to provide a
proof of concept regarding fulfilment of passenger limitations.

In this case, all requests have the same historic status code, that is N. The allowed time
is a timespan of 120 minutes around the requested time.

Next, we show the runway limits in Table C.1. Column one contains the timerange,
column two the interval and columns three, four and five contain the maximum values
for arrivals, departures and total (both).

Table C.1: Runway limits for Linz.

Timerange interval [min] arrivals departures total

During opening hours 5 2 2 2
15 4 4 6

Last, Table C.2 shows the passenger limits. Column one shows the timerange, column
two the time interval and column three the maximum values for departures. Note, that
for arrivals and totals no limit is defined.

Table C.2: Passenger limits for Linz.

Timerange interval [min] departures

During opening hours 20 350
60 550
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