
Optimization of Container
Transportation for Fixed-Schedule
Block Trains with Optional Round

Trips in Collaborative Logistics

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

Lukas Felician Krasel, BSc
Matrikelnummer 00071426

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Mitwirkung: Dipl.-Ing. Georg Brandstätter, BSc

Dipl.-Ing. Ulrike Ritzinger, BSc, PhD

Wien, 2. Dezember 2022
Lukas Felician Krasel Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Optimization of Container
Transportation for Fixed-Schedule
Block Trains with Optional Round

Trips in Collaborative Logistics

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

Lukas Felician Krasel, BSc
Registration Number 00071426

to the Faculty of Informatics
at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Assistance: Dipl.-Ing. Georg Brandstätter, BSc

Dipl.-Ing. Ulrike Ritzinger, BSc, PhD

Vienna, 2nd December, 2022
Lukas Felician Krasel Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Lukas Felician Krasel, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 2. Dezember 2022
Lukas Felician Krasel

v

Acknowledgements

First of all, thanks a lot to Georg Brandstätter and Ulrike Ritzinger, my supervisors at
the AIT Austrian Institute of Technology, for their great advice, guidance and excellent
support during the whole work process. Thanks to Günther Raidl, my supervisor at
the TU Wien for the uncomplicated and good support whenever needed. Thanks to my
colleagues at the AIT, and especially to Matthias Prandtstetter, the team leader of my
unit at the AIT, for creating a respectful and warm environment, including me in their
working team, and supporting me with their knowledge.

Thanks to Jovan Zivanovic and Roland Wallner, two of my fellow students and dear
friends, who studied alongside me since school and always supported me on the way.
Thanks to Sofia for providing first aid to my overcomplicated English sentences and my
emotional state. And, of cause, thanks to my family and friends for their emotional and
personal support.

Without all of you, this work wouldn’t have been possible!

vii

Kurzfassung

In Zeiten des Klimawandels und fortschreitender Globalisierung wird der Transportsektor
aufgrund steigenden Bedarfs laufen ausgebaut. Gleichzeitig ist er für einen großen Teil des
Energie- und CO2-Verbrauchs in Europäischen Union verantwortlich. Die Nutzung von
Güterzügen ist dabei eine der klimafreundlichsten und auch preisgünstigsten Optionen.

Zwei verschiedene Zugverkehrstypen werden derzeit oft eingesetzt: Beim Wagenla-
dungsverkehr setzen sich die Züge aus einzelnen Waggons zusammensetzen, während
beim Ganzzugverkehr (auch “Blockzugverkehr”) Züge mit gleichbleibenden Waggons
immer direkt von Start zum Ziel ohne Zwischenhalte fahren. Während ersterer mehr
Flexibilität bietet, ist letzterer kostengünstiger, denn das Zusammensetzen der Wagons
zu Zügen an sogenannten Rangierbahnhöfen ist aufwändig. In dieser Arbeit untersuchen
wir einen alternativen Ansatz, der die Vorteile beider Zugverkehrstypen kombiniert. Wir
optimieren den Transport von 20’ Standardcontainern und betrachten Ganzzüge, die
ähnlich wie Passagierzüge fahren: Sie haben fixe Fahrplänen, wiederholte Fahrten —
sogenannten “Round Trips” — und mehrfache Stops. Die Idee ist, dass Leerfahrten oder
schlecht ausgelastete Zugfahrten vermieden werden, indem wir die geladenen Container
auf andere Züge (oder Fahrten) verlagern und dadurch die gesamte Zugfahrt weglassen
und einsparen können.

Das dazugehörige Problem heißt “Multiple Collaborative Round Trip Problem”
(MCRP), stammt aus dem Bereich der kollaborativen Logistik und wird im Rahmen
des Forschungsprojekts PhysICAL untersucht. Containerpfade und der Einsatz der Züge
werden aus Sicht einer Spedition optimiert. Durch die globale Perspektive sind potentiell
Einsparungen möglich, wodurch die Spedition Kosten spart. Diese kann dann wiederum
bessere Preise für Kund:innen anbieten.

Wir stellen eine formale Problembeschreibung auf und repräsentieren das Problem
mit Hilfe eines Graphen, der die zeitliche Dimension über seine Struktur darstellt (“Time-
expanded Network”). Um das Problem exakt zu lösen, modellieren wir ein ILP (“Integer
Linear Program”). Außerdem beweisen wir die Komplexität des MCRP in seiner Ent-
scheidungsvariante.

Wir generieren künstliche Instanzen, um die Performance unseres Ansatzes und die
Eigenschaften der Lösungen zu den Instanzen zu untersuchen. Die Instanzen basieren
auf einem echtem Schienennetzwerk, das zehn relevante Städte des europäischen Güter-
verkehrs verbindet. Wir nehmen eine Speichenarchitektur an und lösen ein ILP, um die
verbindenden Längen der Gleise zu minimieren. Außerdem verwenden wir für die Parame-

ix

ter unserer Instanzen fundierte Werte, die auf Literatur und unseren Projektpartner:innen
beruhen.

Wir untersuchen unseren Algorithmus auf Laufzeit und andere Qualitätskriterien. Des
Weiteren untersuchen wir, welche Parameter die Komplexität des Problems beeinflussen
und welche Auswirkungen sie auf die Lösungsqualität haben. Im speziellen betrachten wir
eine einzelne beispielhafte Lösung, um einen tieferen Einblick in die Lösungsstrukturen
unserer Instanzen zu erhalten. Zuletzt vergleichen wir die künstlichen Instanzen mit der
derzeitigen Praxis und untersuchen die Anwendbarkeit unseres Problems in der Praxis.

Abstract

In times of globalization and climate change, the freight transportation sector faces
increasing demand. At the same time, it is responsible for a major part of the energy
consumption and CO2 emissions in the European Union. Rail freight transport appears
to be one of the best choices when considering economical and ecological aspects.

In current practice, two types of rail freight are common: In so-called wagonload freight,
individual trains are composed of individual wagons, while block trains have a fixed set of
wagons and directly connect their source to their destination without intermediate stops.
Wagon load trains allow more flexibility, but the uncoupling and rearranging operations of
wagons are rather costly. In this study, we investigate an alternative approach to combine
the advantages of both operation techniques and potentially increase the efficiency of the
freight sector.

We optimize the shipment of individual 20’ containers, which are carried by block
trains. These block trains operate on fixed schedules with potentially recurring round
trips and multiple stops, similar to passenger trains. The idea is to avoid empty runs and
underutilized round trips by shifting the respective containers to other trains or round
trips. These empty round trips then do not have to take place, hence costs are saved.

The corresponding problem is called “Multiple Collaborative Round Trip Problem”
(MCRP). It arises in the context of the research project PhysICAL from the point of
view of a freight forwarder in collaborative logistics. If the container paths are optimized
from a global point of view, the operational cost of the freight forwarder can be reduced.
In return, the operator can then offer better prices to its customers.

We formally define the MCRP and represent it with the use of a time-expanded
network, state an Integer Linear Program (ILP) to solve it in an exact way, and prove
the NP-completeness of its decision variant.

To investigate and benchmark the problem, we generate a set of artificial instances.
They are based on a real-world rail network and connect a subset of ten relevant cities for
current rail freight transport in Europe. The individual instance parameters and values
are researched or provided by our project partners.

We analyze the performance of our algorithm, the hardness of the problem, and the
characteristics of the solutions for a variety of instance parameters. We also investigate a
single solution in detail to provide deeper insights into the composition of the solutions.
At last, we compare our method to the state of the art and draw managerial insight from
our results.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii
Table of Abbreviations . xv
Table of Mathematical Symbols . xvi

1 Introduction 1
1.1 The Physical Internet (PI) and the PhysICAL Project 1
1.2 Problem Description . 2
1.3 Research Questions and Scientific Contributions 3
1.4 Thesis Outline . 3

2 Fundamentals and Related Work 5
2.1 Prior Knowledge and Notation – Mathematical and Computer Scientific

Background . 5
2.2 Literature Review — Related Work . 9

3 The Multiple Collaborative Round Trip Problem 13
3.1 Problem Definition . 13
3.2 Problem Representation — Time-Expanded Network 17
3.3 ILP Problem Formulation . 23
3.4 Complexity . 28

4 Instance Generation and Experimental Setup 33
4.1 Rail-Network . 34
4.2 Instance Parameters . 36
4.3 Experimental Setup . 44

5 Results 45
5.1 Performance and Solution Characteristics 45
5.2 Investigating an Exemplary Solution 50
5.3 Investigation of Results . 57

xiii

5.4 Summary of Results and Practical Insight 82

6 Conclusion 89
6.1 Future Work . 90

Appendix 93

Bibliography 99

Abbreviations
ILP Integer Linear Program
LP Linear Program
MCRP Multiple Collaborative Round Trip Problem
MILP Mixed Integer Linear Program
MST Minimum Spanning Tree
NP Nondeterministic polynomial (problems), see Section 2.1.3
P Polynomial (problems), see Section 2.1.3
PhysICAL Physical Internet through Cooperative Austrian Logistics
PI Physical Internet
SAT Satisfiability (Problem), see Section 3.4

Mathematical Symbols
Below, we list all mathematical symbols used in this work. We only include symbols that
appear in more than one place in this work, as otherwise the symbol’s definition is given
at their occurrence anyhow.

Hints regarding notation We usually use the hat-symbol ·̂ or the visually similar
single-dot notation ·̇ to indicate that a symbol is related to terminals (e.g., V̂ , Â, Ĉa, or
Ċt

j).
In contrast, we often use the bar-symbol ·̄ or the double-dot notation ·̈ to emphasize

a relation to trains (e.g., V̄ , Ā, C̄a, W̄a, or C̈t
l , Ẅ t

l).
The tilde-symbol ·̃ is used to indicate a relation to lifting and halting of trains at

terminals (e.g., Ã, L̃).

A Arcs of a graph (often being our time-expanded network, introduced in
Section 3.2.3)

Ald
p Arrival time of the p-th stop πld

p of train l’s d-th round trip, see Section 3.1
A(l) Transport arcs of train l where it is not halting and which are part of an

active round trip, used for calculating the transport and weight capacity
utilization, see Section 5.1

Ă Source and sink arcs, see Section 3.2.3
Ă(i) Source and sink arcs of container i, see Section 3.3.1
Â Storage arcs, see Section 3.2.3
Â(i) Storage arcs of container i, see Section 3.3.1
Â(j) Storage arcs of terminal j, see Section 3.2.3
Ā Transport arcs, see Section 3.2.3
Ā(i) Transport arcs of container i, see Section 3.3.1
Ā(l) Transport arcs of train l, see Section 3.2.3
ĀR(l, d) Round trip d’s transport arcs of train l, see Section 3.3.1
Ã Lifting arcs, see Section 3.2.3
Ã(i) Lifting arcs of container i, see Section 3.3.1
Ã(l) Lifting arcs of train l, see Section 3.2.3
ˆ̃A(j, t) Terminal lifting arcs of action time point t and terminal j, see Section 3.3.1
Â(i) Placeholder arcs of container i, see Section 3.3.1
Bld

p Departure time of the p-th stop πld
p of train l’s d-th round trip, see Section 3.1

buffi Number of days of the buffer time windows of container i, see Section 4.2.3
C Set of city terminals, see Section 4.1
Ċt

j Storage capacity of terminal j at time point t, introduced in Section 3.1
Ĉa Storage capacity of terminal j along arc a ∈ Â(j), see Section 3.2.3
C̈t

l Transport capacity of train l at time point t, introduced in Section 3.1
C̄a Transport capacity of train l along arc a ∈ Ā(l), see Section 3.2.3
c(a, i) Costs along arc a for storing, lifting, or transporting container i, see Sec-

tion 3.2.3

cL
j Lifting costs of terminal j, introduced in Section 3.1

cS
j Storage costs of terminal j, introduced in Section 3.1

c̈t
l Transport cost of train l at time point t, introduced in Section 3.1

c̄l
d Round trip costs of train l for making round trip Rl

d, introduced in Section 3.1
Di Deadline of container i, introduced in Section 3.1
Dl Index set Dl = {1, . . . , dl

max} of the round trips of train l, see Section 3.1
d Sink vertex, destination of our commodity flow, see Section 3.2.2
di Destination terminal of container i, introduced in Section 3.1
d∗

i Destination vertex d∗
i = d

tD
i

i of container i, see Section 3.2.2
dl

max Total number of round trips dl
max = |Rl| of some train l, see Section 3.1

d(e) Distance of edge e, see Section 4.1.2
Ei Expected shipping time of a container, see Section 4.2.3
h Length of the considered time horizon in days, see Section 4.2
I Set of containers, see Section 3.1
J Set of terminals, see Section 3.1
jld

p Halting terminal of the p-th stop πld
p of train l’s d-th round trip, see

Section 3.1
L Set of trains (“lines”), see Section 3.1
N Time-expanded network N = (V, A), introduced in Section 3.2
NP Class of problems whose solutions are verifiable in polynomial time, see

Section 2.1.3
O(·) Landau symbol for complexity, see Section 2.1.3
o Source vertex, origin of our commodity flow, see Section 3.2.2
oi Origin terminal of container i, introduced in Section 3.1
o∗

i Origin vertex o∗
i = o

tR
i

i of container i, see Section 3.2.2
P Class of problems which are solvable in polynomial time, see Section 2.1.3
P Set of port terminals, see Section 4.1
pmax Total number of stops pmax = |Rl

d| of a round trip Rl
d, see Section 3.1

qt
j Lifting capacity of terminal j at time point t, introduced in Section 3.1

Ri Release time of container i, introduced in Section 3.1
Rl Set of (potential) round trips of train l, see Section 3.1
ri Revenue of container i, introduced in Section 3.1
succj(t) Successor function providing the subsequent time point of t w.r.t. terminal

action time points T̂ (j), see Section 3.2.1
succl(t) Successor function providing the subsequent time point of t w.r.t. train

action time points T̄ (l), see Section 3.2.1
T Set of time points of the considered time horizon, introduced in Section 3.1
T ′ Set of time points of our time horizon, excluding the last time point:

T ′ = T \ {tmax}
T̂ (j) Terminal action time points of terminal j, see Section 3.2.1
T̂ ′(j) Reduced terminal action time points of terminal j, excluding the last action

time point, see Section 3.2.1

T̄ (l) Train action time points of train l, see Section 3.2.1
T̄ ′(l) Reduced train action time points of train l, excluding the last action time

point, see Section 3.2.1
tmax The last (greatest) time point of our considered time horizon T , introduced

in Section 3.1
tD
i Destination (“deadline”) time point of container i, see Section 3.2.2

tR
i Origin (“release”) time point of container i, see Section 3.2.2

V Vertices of a graph (often being our time-expanded network, introduced in
Section 3.2.2)

V̆ Source and sink vertices V̆ = {o, d}, introduced in Section 3.2.2
V̂ Terminal vertices, see Section 3.2.2
V̄ Train vertices, see Section 3.2.2
Ẅ t

l Weight capacity of train l at time point t, introduced in Section 3.1
W̄a Weight capacity of train l along arc a ∈ Ā(l), see Section 3.2.3
wi Weight of container i, introduced in Section 3.1
xi

a Binary ILP variable indicating if container i is shipped along arc a, intro-
duced in Section 3.3.2

yi Binary ILP variable indicating if container i is shipped at all, introduced in
Section 3.3.2

zl
d Binary ILP variable indicating if round trip d of train l is active, introduced

in Section 3.3.2
∆a Duration of transport arc a = (ll1 , lt2), introduced in Section 5.1
ηl Home terminal of train l, introduced in Section 3.1
Πl Plan of train l containing all its stops πld

p , see Section 3.1
πld

p The p-th stop πld
p = (jld

p , Ald
p , Bld

p) of the d-th round trip of train l, see
Section 3.1

τ The maximum allowed length of a detour w.r.t. its original distance (in
percent), see Section 4.1.2

CHAPTER 1
Introduction

Every day, thousands of containers are shipped around the globe by various modes of
transportation, most often carried by ships, trains, trucks and planes. In the European
Union, freight transportation has increased by 7.8 percent within the years 2010 to 2017
to a total of 3.731 billion tonne-kilometers [63, p. 8]. According to the European Court of
Auditors [23, p. 11], freight transportation is responsible for about a third of the energy
consumption and CO2 emissions in the European Union.

In times of climate change and ongoing globalization, the ecological and economical
aspects of transportation demand both cost efficiency and climate friendly ways of
transportation. Out of all the means of motorized transportation, the usage of trains
is the most environmentally friendly choice, as, e.g., stated by [2]. For this reason, the
European Union aims to shift the transportation of goods from road to rail (see, e.g.,
European Court of Auditors [23, p. 11f]). Nevertheless, 76 percent of all goods in the
European Union are transported by road (see Eurostat [24, p. 57]), and between 2010 and
2017 the road transport sector in the European Union increased faster (9.2 percent) than
the rail sector (7.0 percent) (see [63, p. 8]). One of the reasons are capacity limitations
in the rail sector, originating from shared infrastructure between passenger and freight
trains. Therefore, the improvement of efficiency in the rail freight transport sector plays
an important role in reaching climate targets and increasing the overall throughput of
the transport sector.

1.1 The Physical Internet (PI) and the PhysICAL Project
The research project PhysICAL (Physical Internet through Cooperative Austrian Lo-
gistics), see [29], has been started in 2020 and aims at a more efficient and ecologically
sustainable transport sector in Austria through cooperative logistics and the implementa-
tion and development of the Physical Internet (PI).

The idea of the PI was first introduced by Ballot et al. [6] as follows: “Like the
Digital Internet that conveys data, the concept is to connect and synchronize all logistics

1

1. Introduction

networks to create a collaborative and robust physical network of networks, capable of
continually optimizing the shipment of ‘encapsulated’ goods of many types and sizes
[...] by optimizing both the operator’s and the customer’s economic models [...].” [6]
An integral part of this process is the implementation of a digital twin, the digital
representation of the physical objects such as trains, containers, etc., to be able to then
apply, e.g., optimization algorithms to logistic transport problems that may arise.

Four pilot projects in different sectors, developed by 17 project partners, are part
of the PhysICAL project and aim at demonstrating the economical, environmental and
socioeconomic advantages of cooperative logistic. The contribution of this work is part
of the pilot project “Pilot 2.0”. As stated on the PhysICAL project web page [29], it
focuses on the development of an open transport management platform. The goal is
to replace unimodal (typically road-bound) services of transportation that are most
common and often lead to inefficiency and empty runs. Instead, more intermodal modes
of transportation shall be offered by the platform through digitalization of the transport
chain, leading to an easier order placement due to better presentation of the offers, better
transparency in the business of transportation without the disclosure of data of transport
companies, and to an efficiency increase of the whole physical transportation process.

1.2 Problem Description

In context of the Pilot 2.0 project of PhysICAL, we consider a new problem that arises
when optimizing the scheduling of trains and containers from the point of view of the
transport management platform: The “Multiple Collaborative Round Trip Problem”
(MCRP) is an optimization problem that was first introduced by Prandtstetter et al. [54].
The transport management platform functions as a freight forwarder (and potentially
carrier). It handles shipping requests of containers booked by customers (shippers) and
is responsible for the transportation of containers using trains.

Informally, the problem can be described as follows: We are considering a number of
rail terminals, connected by different train lines, usually operated between cities (and
ports). Containers are located at these terminals and have to be shipped to another
one within a given schedule. Each train is operated on fixed routes, along which it
travels in so called (potential) round trips, with a fixed schedule. The goal is to plan a
cost-optimal transportation schedule for all containers w.r.t. the given trains and their
routes. Furthermore, we have the option to cancel individual round trips if they do not
yield enough reward.

The underlying idea of the problem is to save costs for both the transport manager
though better utilization of the trains, and the shippers due to being offered reduced
prices caused by the collaborative logistics approach. Currently, the typical scenario is
that a freight forwarder orders trains, while shippers order individual slots of containers
on these trains. If the overall costs of each train are reduced, the shippers can be charged
less. This can be achieved by making use of a fourth party logistic provider (the transport
management platform), leading to increased utilization of the managed trains as the

2

1.3. Research Questions and Scientific Contributions

transport management platform tries to omit unnecessary train trips in order to save
costs and avoid wear on trains.

Today’s freight trains are usually operated as wagonload or block trains. Wagonload
trains are composed of individual wagons, while block trains (unit trains) have a fixed
set of wagons. Wagonload freight offers more flexibility in the scheduling process, but
the arrangement of wagons in shunting yards is rather costly.

Our alternative approach (the MCRP) combines the advantages of both types. In
contrast to the common practice of operating trains directly between two cities without
intermediate stops, we make use of block trains that operate on round trips with more
than two stops and follow a predefined schedule, similar to the operation of passenger
trains.

1.3 Research Questions and Scientific Contributions
In this section, we specify our research questions and scientific contributions.

• The MCRP was introduced by Prandtstetter et al. [54], but only an informal
problem description was given. Therefore, we ask:
How can we formally define the problem s.t. it suits its context in the PhysICAL
project?

• How can we solve the problem in an exact way?

• As we investigate a problem that is new and an alternative approach of rail freight
transport, it is unclear how real-world instances would look like. Furthermore, to
the best of our knowledge, neither are there similar instances available that could
be easily adapted to our problem, nor does there exist a collection of instance
parameters or related values in the context of rail freight transport. Therefore, we
gather relevant information and investigate the following questions:
What are suitable instances to benchmark our problem? How are these instances
structured, and what are appropriate values for our instance parameters?

• How does our algorithm perform in practice, and what instance parameters influence
the hardness of our instances?

• What do our solutions look like, and what managerial insight can we draw from
our benchmark?

1.4 Thesis Outline
We present the prerequisite knowledge that is necessary to understand this work in
Chapter 2, followed by a review of related work and literature.

Chapter 3 contains a detailed description of the MCRP, including a formal definition
of the problem, and a suitable problem representation using a time-expanded network.

3

1. Introduction

We further propose an ILP model for solving the problem, and follow with the proof of
its NP-completeness (considering its decision variant).

In Chapter 4 we describe the generation process for our instances, their parameters,
and our experimental setup for benchmarking.

Chapter 5 contains the results of our study. We introduce solution characteristics to
be able to investigate the large number of benchmarked solutions. Next, we present a
single exemplary solution for detailed understanding of the structure of the solution and
the calculation of the solution characteristics. Then, we analyze the effects of different
instances parameters on these solution characteristics, and finally draw some managerial
insights.

Finally, Chapter 6 contains a summary and conclusion of our study, including an
outlook on possible future research.

4

CHAPTER 2
Fundamentals and Related Work

In this section, we briefly discuss prior knowledge that is relevant for the understanding
of this work, and present a literature review of related work and similar problems.

2.1 Prior Knowledge and Notation – Mathematical and
Computer Scientific Background

This section contains relevant mathematical notations and concepts, followed by back-
ground information on complexity and (Mixed-)Integer Linear Programming.

2.1.1 Interval Notation

We use interval notation for discrete and continuous sets, where square brackets include,
while round brackets exclude the specified limit. For clarification, considering sets of
natural numbers, we have, e.g., [1, 3] = {1, 2, 3}, (1, 3) = {2}, and [1, 3) = {1, 2}.

2.1.2 Graphs

In this section, we present relevant background information associated with graphs.
In general, a graph G = (V, E) consists of vertices v ∈ V (also called “nodes”), and
undirected edges {v1, v2} ∈ E (or directed edges, so-called arcs (v1, v2) ∈ E), connecting
pairs of vertices. For further properties regarding graphs, see, e.g., [27, p. 3].

Minimum Spanning Tree

This problem asks the following: Given a connected graph G = (V, E), and non-negative
weights w(e) for edges e ∈ E, we want to find a Minimum Spanning Tree (MST), i.e., a
cycle-free simple graph T = (V, E′) spanning all vertices by edges E′ ⊆ E with minimum

5

2. Fundamentals and Related Work

weights. Two traditional algorithms are widely used, both starting by sorting the edges
by their weight, and then incrementally considering and adding edges:

• Kruskal’s Algorithm [45], introduced in 1956, starts with an (incomplete) tree
T = (V, E′ = ∅), then considers edges in-order and adds them to E′ when they
don’t introduce a cycle. This is repeated until no further edge can be added.

• Prim’s Algorithm [55], introduced in 1957, starts with any vertex v ∈ V , and adds it
to T . We now consider incident edges {u, v} (in-order) w.r.t. the already included
vertices in our tree, and add the edge (including the connected vertex) if it does
not introduce a cycle, i.e., if u or v are not yet part of our tree. We repeat this
until all vertices are part of our tree.

Both algorithms yield optimal results and have slightly different runtime properties w.r.t.
the density of the given input graph G, but for our study, both algorithms can be applied
when requiring a MST.

Shortest Path – Dijkstra

Given a graph G = (V, E), edge weights w(e) > 0 for all edges e ∈ E, and two specific
vertices s, t ∈ V , we want to find the shortest path from s to t w.r.t. G. Dijkstra’s
algorithm [21], proposed in 1959, solves this greedily and works as follows:

For all nodes, we initialize the following variables: We set all nodes to unvisited, we
set the predecessor of each node v ∈ V to p(v) := ∅, and the (accumulated) distance
d(v), i.e., the distance to reach node v from s, to d(v) := ∞, except for node s, where
d(s) := 0. While t is unvisited, we choose the unvisited node v with minimum distance
d(v) and perform the following steps: (1) We set the node v to visited, (2) and for
all unvisited neighbors n of v, we calculate the distance d′(n) from s to n via v, i.e.,
d′(n) := d(v) + w({v, n}), and if d′(n) < d(n), we update the distance d(n) := d′(n), and
set the predecessor of n to v, i.e., p(n) := v.

When we are done, we get the shortest path from s to t with length d(t) by following
the chain of predecessors of t (t, p(t), p(p(t)), . . . , s), and so on, until we reach p(v) = s.

Note that this algorithm only works for positive edge weights. Other algorithms
for solving this problem are, e.g., the Bellman-Ford-Algorithm [7, 27, 52] (for negative
weights), or the Floyd-Warshall-Algorithm [25, p. 345] (for negative weights and all node
pairs) .

Time-Expanded Networks

When considering some problems with temporal dimensions, time-expanded networks,
sometimes also called “time-space networks”, are often used for modeling. A time-
expanded network N = (V, A), where V are the nodes and A are the arcs (or edges), can
be viewed as having multiple copies of an underlying network for each point in time that
we consider, see, e.g., the book by Ahuja et al. [1, p. 737].

6

2.1. Prior Knowledge and Notation – Mathematical and Computer Scientific Background

2.1.3 Complexity

In this section, we sum up background information on computational complexity and
reductions. Most of the following content can be found in, e.g., [18].

When considering problems from a theoretical perspective, we are usually interested
in the hardness of a problem. This can be classified by the running time required for
obtaining the solution in the worst case, or the required memory for storing or checking
a solution in the worst case, w.r.t. the size of the input n.

Landau Symbol – Big-O Notation

Originally introduced by Bachmann [5] in 1894, and adapted by Landau [47] in 1909,
the Landau symbol O(·) is used for describing the order, upper bound, or growth rate
of a function, following [18, p. 47]: Let f(n), g(n) be two functions f, g : N 7→ R, then
f ∈ O(g) means that f does not grow significantly faster than g, formally:

f(n) ∈ O(g(n)) ⇐⇒ ∃C > 0 ∃n0 > 0 ∀n > n0 : |f(n)| ≤ C · |g(n)|

“Easy” Problems: P

We often refer to the class of problems that have a polynomial runtime O(nc), for some
constant c w.r.t. the size of the input n, as easy or efficient, forming the class of problems
P. An important property of these problems is that solving the problem and checking a
solution both takes polynomial time. Examples for such problems are sorting of lists or
finding MSTs. Note that in practice these problems can still be hard to solve for large
instances.

“Harder” Problems: NP and Beyond

For problems in the class NP, there exists a polynomially checkable certificate. This
means that given a solution, we can check its correctness in polynomial time. Nevertheless,
it appears that there is no polynomial-time algorithm for solving these problems and
efficiently obtaining a solution (unless P=NP) (see, e.g., [28, 31]). Therefore, verifying
a solution of an NP problem is “easy” (as checking is in P), but finding a solution is
“hard”, i.e., taking into account the even stronger Exponential Time Hypothesis, see [38],
many of these problems can only be solved in exponential time (O(cn) for some constant
c), see, e.g., [19]. Note that O(nc) ⊂ O(cn) for some constant c, e.g, O(n100) ⊂ O(2n).

Furthermore, there are much harder problems lying outside of NP, e.g., chess, (when
generalizing to a reasonable n × n-board and ignoring the threefold repetition and the
50-move rules, see, e.g., [60]). Intuitively, when playing chess we cannot decide if a
played move is best after playing it. Instead, we know this only after checking all other
possibilities and their consequences as well, expanding the whole search tree.

7

2. Fundamentals and Related Work

Reductions

For showing the hardness of a problem, we use the concept of reductions: Assume we
have a new problem A, and we already know the hardness of another problem B. We can
use the concept of reduction to show the hardness of problem A. The idea is to reduce A
to B (sometimes denoted as A ≤ B), and solve problem A by solving the known problem
B. This is done by transforming the input of problem A in polynomial time to an input
for problem B, solve B with our new input, and then use the output of B to transform
it into a solution for A (again in polynomial time). We now know that A is not harder
than B, as we could solve A by using B.

If we show a reduction in the other direction (as we will later do for our problem
under consideration), i.e., we solve B by using our problem A, we can conclude that A is
at least as hard as B.

NP-Hard and NP-Complete Problems

The notion of a problem B being NP-hard means that it is at least as hard as the hardest
problems in the class NP. This means that every problem A in NP can be reduced
to B (formally A ∈ NP, B is NP-hard =⇒ A ≤ B), meaning that we can solve all
NP-problems by using an algorithm for problem B.

Note that the membership of NP only tells us that the problem has a polynomial
certificate, but it could still be member of P. Knowing that problem B is NP-hard ensures
that it is not a member of P (unless P=NP).

Nevertheless, knowing that our problem B is NP-hard does not tell us if it is indeed
in the class of NP. Instead, it could also be a member of a superclass of NP, hence be
much harder. Therefore, we also have the notion of NP-completeness, which means that a
problem it is both a member of NP (not harder than NP) and (at least) NP-hard, hence
among the hardest problems in NP.

After Cook showed the NP-completeness of the SAT-problem (see Section 3.4) in 1971,
Karp [43] used reductions in 1972 to show that 21 combinatorial and graph theoretical
problems can be reduced to each other, hence they are all NP-complete.

2.1.4 (Mixed-)Integer Linear Programming

One of these NP-complete problems is the 0-1 Integer Programming Problem (also called
“Binary Integer Program”), formulated as a decision problem. The optimization version
of this problem, allowing non-binary variables, is called Integer Linear Programming
(ILP), and extending this to non-integer values results in a Mixed-Integer Linear Program
(MILP). Following the book “Integer Programming” by Wolsey [65], an MILP is defined

8

2.2. Literature Review — Related Work

as follows:

max c1x1 + c2x2 (2.1)
A1x1 + A2x2 ≤ b (2.2)

x1 ≥ 0 (2.3)
x2 ≥ 0 and integer (2.4)

In the above, c1 (c2) is an n-dimensional (p-dimensional) row vector, x1 (x2) is an
n-dimensional (p-dimensional) column vector, A1 (A2) is an m × n (m × p) matrix, and
b is an m-dimensional column vector. The idea is to describe the set of feasible solutions
for a given problem as a set of variables and linear inequalities.

MILPs are often used for modeling NP-hard problems, as they provide a mathematical
representation for the problem and many well-performing solvers, e.g., CPLEX [36], are
available.

The idea of solving MILPs, originally introduced by Land and Doig [46], is to relax
the integrality constraints of the integer variables, resulting in a Linear Program (LP),
and then perform a branch-and-bound algorithm on the values of variables with violated
integrality constraints. In every node of the branch-and-bound tree, a LP is solved. If
this node cannot be pruned (due to its bound, infeasibility, or optimality), and there
exists a violated integrality constraint for some variable xi = v with value v ̸∈ Z, we
branch and create two subproblems with constraints xi ≤ ⌊v⌋ and xi ≥ ⌈v⌉ respectively.

For solving LPs, Dantzig’s simplex method, see, e.g., [20], performs well in practice,
although yielding an exponential runtime in the worst case. Nevertheless, there do exist
polynomial-time algorithms, such as the interior-point method (see [42]) or algorithms
based on the ellipsoid method (see [44]), but in practice these are often outperformed by
the simplex method.

2.2 Literature Review — Related Work

Although there is ongoing research in the sector of railway transportation and the issue of
improving efficiency, to our knowledge, just a few studies tackle similar problems to the
one considered here, and all problems differ significantly. Archetti and Peirano [4, p. 1]
state that “Despite [freight forwarding companies] being one of the most relevant figures
in international multimodal transportation, freight forwarding companies optimization
problems did not receive much attention from the research community.” As the transport
management platform has the role of a freight forwarder company, our problem falls into
this category.

2.2.1 Similar Problems

One of the first problems to be considered in the context of transportation of goods is the
transportation problem, first formalized by Hitchcock [35] in 1941, and approached by, e.g.,
Ford and Fulkerson [26]. It considers the optimal (direct) shipment of goods from several

9

2. Fundamentals and Related Work

source nodes with specified supplies to a number of sink nodes with specified demands,
respecting transportation costs and capacities. It was extended to the transshipment
problem by Orden [53] in 1956, also considering intermediate transshipment centers.

Both these problems can be formulated as the more general minimum-cost multi-
commodity flow problem, originally introduced by Tomlin [61]. In this problem, multiple
commodities are sent out and received by various nodes in a graph, respecting the
expected demand of source and sink nodes and edge capacities, while shipping costs
along edges are minimized. In contrast to the transportation problem, a single node can
be both source and sink node, and we consider multiple commodities. In some sense, our
problem is a more general version of the minimum-cost multi-commodity flow problem
with unsplittable flows on a specialized time-expanded network. Additional constraints
have to be added to encode potential round trips. Nevertheless, the construction of the
time-expanded graph is non-trivial by itself, as we have to respect (1) train schedules and
container release times and deadlines, and (2) capacity constraints that are not defined
along single arcs, but can include multiple arcs (see lifting constraints in Section 3.3.3).
The minimum-cost multi-commodity flow problem and other related flow problems can
be found in, e.g., “Network Flows” by Ahuja et al. [1].

Guastaroba et al. [34] present a literature overview on freight forwarder transportation
problems with a focus on intermediate facilities (e.g., warehouses, transshipment centers

— or terminals in our case), which separate different stages of the supply chain. They
identify three major branches of study: vehicle routing problems, transshipment problems
and service network design problems [4, p. 2]. Our problem under consideration falls into
the category of ”many-to-many transshipment problems”, so in the following we list the
most closely related works in this survey:

Chen et al. [13] consider the cross-docking problem with the goal to “find a minimum
cost distribution plan involving cross-docks based on anticipated supplies and demands”
[13, p. 45]. Lim et al. [49] extends the classical transshipment problem by introducing
characteristics arising from cross-dock networks such as hard time windows, inventory
holding capacities and costs of the transshipment centers, and a set of fixed or flexible
shipping schedules of transportation, also including further capacity constraints and costs
(see [34, p. 777]). Their problem formulation as a minimum-cost flow problem using
a time-expanded network seems to be quite closely related to ours, but uses splittable
units, not individual containers, lacks the concept of round trips, and does not capture
our co-dependent lifting constraints (see Section 3.3.3). Another study by Chang [12]
examines an intermodal operational issue: “How an international carrier selects best
routes for shipment through the international intermodal network.” [12, p. 2877], and
they formulate it as a multi-objective multimodal multi-commodity flow problem with
time windows and concave costs.

Archetti and Peirano [4] tackle the air transportation freight forwarder service problem
from the point of view of a freight forwarder. They consider different transportation
services to satisfy a set of shipments and minimizing the total cost. A considered route
consists of truck transportation from factories to warehouses or directly to an airport, air
transportation to a destination airport, and the final delivery in the destination country,

10

2.2. Literature Review — Related Work

typically handled by foreign agents.
Despite many similarities of already mentioned related work, all of these problems

do not consider railway transportation systems and are not suited for modeling our
setting-specific problem. There exist various other distantly related problems in the
research field of intermodal transportation, but we will focus now on railway transport
related problem only.

2.2.2 Railway Transportation Problems

Many studies have been conducted on problems like the blocking problem, the block-
to-train assignment problem, or the shipment-to-block-assignment of wagonload trains,
e.g., [66], [41], [30], [67], or [50]. These problems consider how to block wagons of
wagonload trains together to minimize (un-)coupling operations and route blocks of trains
efficiently thorough the network. Xiao and Lin [66] mention the three typical phases for
forming a train formation plan: “ (1) determining the assignments of shipments to blocks,
(2) specifying the train routing and scheduling, (3) determining the assignments of blocks
to trains.” [66, p. 220]. In this context, further problems such as the optimization of
operations at shunting yards arise, e.g., considered by [11].

Nevertheless, these problems are not directly relevant for our work due to the fact
that we do not consider wagonload trains, but block trains that carry containers (see
Section 3.1.2).

More closely related to our work are problems arising in rail transshipment yards,
considering scheduling of trains within the yard for optimizing reloading of containers,
see, e.g., [14] or [32]. Cicheński et al. [14] divide the process into five steps: “(1) Schedule
time slots to service the trains. (2) Assign a railway track to each train. (3) Decide on
the outbound positions of the containers on trains. (4) Assign container moves to gantry
cranes. (5) Create a schedule for cranes to move all containers to their target outbound
positions.” [14, p. 2]. Although in our problem, we do consider reloading of containers
at terminals of our considered set of trains, we do not directly optimize any operations
required in the individual yards for lifting, as this is the task of the yard operator and not
the freight forwarder. Instead, we just assume a fixed lifting capacity for each terminal.

In the context of collaborative logistics, Moll et al. [51] investigate the potential of
collaborations of freight railways and shippers, and review the problems and current
best practice based on interviews with the Swiss freight railway and their customers,
“complemented with quantitative analyses on short-term shipment forecasts and operated
trains, supporting the interpretation and validation of interview results.” [51, p. If] They
also describe the process of how to order weekly block trains from the point of view of a
freight railway operator, but in contrast to our problem, block trains are ordered as a
whole without considering individual containers [51, p. 48ff].

To sum up the above review, it appears that all closely related problems differ from
our problem for two reasons: (1) Our problem does not exist in practice (yet), hence
was not investigated so far, and (2) most investigated problems are either too general or
too specialized for problems occurring in practice. Thus, they in- or exclude important

11

2. Fundamentals and Related Work

considered requirements, e.g., they lack concepts to encode potential round trips or train
schedules, container release times and deadlines are seldom respected, our commodities
(being single containers) cannot be split, and we have co-dependent constraints (w.r.t.
lifting) on arcs.

12

CHAPTER 3
The Multiple Collaborative Round

Trip Problem

In this chapter, we define our problem formally and clarify its context. We represent it by
using a time-expanded network, formulate it as an ILP model, and prove the NP-hardness
of its decision variant.

3.1 Problem Definition
Our considered optimization problem, the Multiple Collaborative Round Trip Problem
(MCRP), is formally described in this section. Recall the informal introduction from
Section 1.2. The MCRP is defined as follows:

We have a discretized time period, represented by the set T = { 1, 2, . . . , tmax },
where every pair of consecutive time points t, t + 1 ∈ T is a fixed time unit µ apart. We
further define the set T ′ that contains all but the last time point: T ′ = T \ {tmax}. We
are given:

• A set of rail terminals J . Each terminal j ∈ J has the following properties:

– Storage cost cS
j ∈ Q for storing a single container for one time unit (time

interval [t, t + 1)) at terminal j.
– Lifting cost cL

j ∈ Q for moving a single container from or onto some train at
terminal j.

– Storage capacity Ċt
j ∈ N is the maximum number of containers that can be

stored at terminal j during time interval [t, t + 1), with t ∈ T ′.
– Lifting capacity qt

j ∈ Q is the maximum number of containers that can be
lifted from or onto trains at terminal j during a single time unit, i.e., time
interval [t, t + 1) with t ∈ T ′.

13

3. The Multiple Collaborative Round Trip Problem

• A set of trains L. For each train (“line”) l ∈ L, we have:

– Transport cost c̈t
l ∈ Q is the price per tonne transported on train l for time

interval [t, t + 1) with t ∈ T ′.
– Transport capacity C̈t

l ∈ N is the maximum number of containers that can
be transported on train l at time interval [t, t + 1) with t ∈ T ′ .

– Weight capacity Ẅ t
l ∈ N is the maximum weight that train l can load and

carry during time interval [t, t + 1) with t ∈ T ′.
– Home terminal ηl ∈ J is the terminal where train l starts and ends its round

trips.
– A set of potential Round trips

Rl = { Rl
1, Rl

2, . . . , Rl
dl

max
}

that train l can takeṪhe d-th round trip (with d ∈ Dl = { 1, . . . , dl
max =

|Rl| }) is defined by a sequence of stops πld
p , with pmax = |Rl

d|:

Rl
d = (πld

1 , πld
2 , . . . , πld

pmax)

Each stop πld
p = (jld

p , Ald
p , Bld

p) ∈ Rl
d has

∗ Halting terminal jld
p ∈ J , i.e., the terminal where train l stops at,

∗ Arrival time Ald
p ∈ T and leaves at, and

∗ Departure time Bld
p ∈ T .

This yields the precedence Ald
p < Bld

p < Ald
p+1. Time [Ald

p , Bld
p) is the dwell

time of stop πld
p of train l at halting terminal jld

p .
Each round trip Rl

d starts and ends at it’s home terminal, i.e., for any d ∈ Dl

we have jld
1 = jld

pmax = ηl. Furthermore, for two consecutive round trips
Rl

d, Rl
d+1 ∈ Rl, we have that the last stop of Rl

d is the first stop of Rl
d+1,

formally: πld
max = πld+1

1 . Additionally, each round trip must contain at least
three stops: The two stops at its home terminal, and at least one additional
stop elsewhere, formally |Rl

d| ≥ 3.
The union of all round trips gives us the train’s plan Πl:

Πl =
⋃

d∈Dl

Rl
d =

{
πl

1, πl
2, . . . , πl

pmax

}

For each of these round trips, we are further given
∗ Round trip costs c̄l

d ∈ Q that have to be paid when train l makes the
round trip Rl

d.

• A set of containers I. Each container i ∈ I has

14

3.1. Problem Definition

– An origin terminal oi ∈ J where it is initially placed,
– Destination terminal di ∈ J to which it has to be delivered,
– Release time Ri ∈ T that is the earliest availability at oi, and
– Deadline Di ∈ T , i.e., the time at which container i has to be at di,
– Weight wi ∈ N, and
– Revenue ri ∈ Q that is collected when we deliver container i as specified.

3.1.1 Goal

We want to find a shipping schedule, that — given the implicit constraints — maximizes
the collected revenues minus the required shipping and round trip costs. Informally, we
want to deliver as many container as possible, as long as the round trip costs of the used
trains and the shipping costs of the delivered containers pay off.

Notation

We usually use the hat-symbol ·̂ or the visually similar single-dot notation ·̇ to indicate
that a symbol is related to terminals (e.g., V̂ , Â, Ĉa, or Ċt

j).
In contrast, we often use the bar-symbol ·̄ or the double-dot notation ·̈ to emphasize

a relation to trains (e.g., V̄ , Ā, C̄a, W̄a, or C̈t
l , Ẅ t

l).
Furthermore, we use the tilde-symbol ·̃ to indicate a relation to lifting and halting of

trains at terminals (e.g., Ã, L̃, see later).

3.1.2 Real-World Aspects and Remarks

In this brief section, we want to escape the scientific ivory tower and bring the theoretical
and mathematical formulation stated above into the view of the real world and highlight
related practical aspects. Our problem was defined in this way to capture the real-world
as realistically as possible — including, e.g., the lifting of containers, their availability
time windows, and lifting and storage capacities — while keeping the level of details
reasonable for solving it in practice (ignoring, e.g., delays of trains).

Changing Values Over Time

Note that we defined storage, transport, and weight capacities, as well as the transport
costs, in such a way that their value can change over time. This enables us to model the
involvement of third parties that might also use the considered terminals or trains, hence
restricting the respective capacities.

Block Trains

In contrast to so-called wagon load trains, which are a composite of multiple single
wagons, we assume that our trains are operated as block trains (sometimes called “unit

15

3. The Multiple Collaborative Round Trip Problem

trains”). Block trains are operated as a whole, i.e., no wagons are (un-)coupled at any
stops, and containers can be lifted onto and off the individual wagons. We consider
block trains because ordering this type of trains is cheaper in most cases (on average
per container) than ordering individual container transportation, see, e.g., [63, p. 21].
Schönemann [58] states that “Block trains ideally perform as shuttle trains with a fixed
wagon set with regular recurring operating times” [58, p. 19].

In contrast to current practice, the block trains that we consider are not operated
between only two stops, but instead halt at additional terminals where containers can be
lifted onto or off the train. This enables more flexible routing of containers, and allows
for more stops to be covered by a single train, potentially avoiding additional trains or
container shipment to these stops by trucks.

Single Stacking of Containers

We only consider single-stacked containers on trains, as double-stacking is currently not
possible on European trains (see, e.g., Rodrigue and Notteboom [56, p. 501]).

Round Trips

Informally, the potential round trips mentioned above look as follows: Some train leaves
a certain terminal, its “home terminal”, in the beginning, travels along intermediate
stops to another target stop, and then returns to its origin terminal. For instance,
if we consider a train connection between Hamburg (Germany) and Vienna (Austria)
with a single intermediate stop at Berlin (Germany), and we assume that Hamburg is
the train’s home terminal, there are three different round trips that we can possibly
construct: Hamburg-Berlin-Vienna-Berlin-Hamburg, Hamburg-Vienna-Berlin-Hamburg,
and Hamburg-Berlin-Vienna-Hamburg.

Note that round trips do not have to take place, hence we called them “potential”
round trips. If we indeed decide that a round trip takes place, we call it an active round
trip.

For non-active round trips, we assume that the train is parked or can be used for
other purposes during that time, hence no additional costs accumulate (or have to be
respected separately).

Note that in theory, our model allows different round trips per train, i.e., a train could
visit different locations during different round trips. Nevertheless, we are considering the
case where all round trips are identical, as usually block trains are operated as shuttle
trains with recurring schedules.

Post-Processing — Saving Storage Costs with Cooperating Customers

When considering a solution to our problem, it is often the case that containers arrive at
their origin terminal (at their release time) some time before they are actually shipped,
or are shipped to their destination terminal earlier then picked up (at their deadline).
This causes storage costs until these containers are first shipped (or finally picked up).

16

3.2. Problem Representation — Time-Expanded Network

In a post-processing optimization step, we can offer customers a discount if they are able
to deliver (or pick up) these containers later (earlier), as we can save the related storage
costs.

Post-Processing — Overestimating Number of Lifts

Another post-optimization step can be done by observing that containers can sometimes
be lifted directly from one train onto another, requiring only one lifting operation instead
of two. In these cases, we can save the costs for one of the lifting operations if the
respective terminal allows it. Overestimating the number of lifts seems appropriate due
to the fact that in the real-world, direct reloading of containers from one train to another
is not common.

Remarks on Wording

In the following, we use the term “shipping” in contrast to “transportation” of containers:
The latter refers to a container being transported on a specific train, while “shipping”
describes the overall process of shipping the container, including lifting, storage and
transportation (on trains). Note that we only consider train shipping and neglect how
containers arrive or are picked up at terminals, most likely by trucks or ships1.

Similarly, we use the term “terminal” in contrast to “stop”: A terminal (or station)
has a specific location, while a stop describes the state of a train halting at some terminal.
So a stop always has an associated time, train and terminal, while a terminal is not
associated with times or trains directly.

3.2 Problem Representation — Time-Expanded Network
In this section, we present a mathematical representation for our problem. We use a
time-expanded directed network with multiple (parallel) arcs to model it. The general
idea is to construct the network in such a way that the shipping schedule of containers is
represented by a path from a source to a sink vertex in our network, i.e., containers will
“travel” along arcs. We will model this by sending a commodity flow for each container
along its path through the network.

3.2.1 Time Points

We start by introducing the following action time point sets:

• For terminals j ∈ J , we define the set of terminal action time points T̂ (j) that
contains the time points where some train l ∈ L arrives or leaves terminal j:

T̂ (j) = { Al
p, Bl

p | l ∈ L, (jl
p, Al

p, Bl
p) ∈ Πl : j = jl

p } ⊆ T

1Note that our model is potentially able to capture some of these trips as well if we are able to encode
their respective trips by our notion of round trips.

17

3. The Multiple Collaborative Round Trip Problem

• Analogously, for trains l ∈ L, we define the train action time points T̄ (l) that
contain the time points where train l arrives or leaves some terminal j:

T̄ (l) = { Al
p, Bl

p | (jl
p, Al

p, Bl
p) ∈ Πl } ⊆ T

Furthermore, we define the reduced time point sets T̂ ′(j) and T̄ ′(l) that contain
all but the last time points, formally T̂ ′(j) = T̂ (j) \ {max T̂ (j) }, and T̄ ′(l) = T̄ (j) \
{max T̂ (l) }.

We further introduce the successor functions succj(t) : T̂ ′(j) → T̂ (j) and succl(t) :
T̄ ′(l) → T̄ (j) that give us the subsequent time point of a given time point t in one of the
action time point sets T̂ (l) and T̄ (l) (formally succj(t) = min T̂ (j) > t, and analogously
succl(t) = min T̄ (l) > t). Note that for trains, we have that succl(Al

p) = Bl
p (for stop

πl
p ∈ Πl), and succl(Bl

p) = Al
p+1 (for πl

p ∈ Πl \ {πl
pmax}). In the general case (|L| > 1),

this does not hold for terminals.
but the successor function is not defined on the last time point, we define the

3.2.2 Vertices

We can now define the time-expanded directed network with multiple arcs N = (V, A).
We define the vertex set V = V̆ ∪ V̂ ∪ V̄ :

• The source and sink vertices V̆ are exactly two vertices, the source vertex o
(“origin”) and the sink vertex d (“destination”) of all container paths:

V̆ = { o, d }

• The terminal vertices V̂ contain one vertex for each terminal and each of its
respective terminal action time points:

V̂ = { jt | j ∈ J, t ∈ T̂ (j) }

• The train vertices V̄ contain one vertex for each train and each of its respective
train action time points:

V̄ = { lt | l ∈ L, t ∈ T̄ (l) }

Before being able to define the arc set A formally, we have to introduce further time
points and vertices:

Origin and Destination Time Points and Vertices

Recall that each container i has a release time Ri and a deadline Di. Note that in general,
time points Ri and Di are not directly represented by any vertex in our network (except
when Ri or Di happen to be action time points).

18

3.2. Problem Representation — Time-Expanded Network

The earliest time point for a container to be moved is the earliest time point in
T̂ (oi) after Ri at origin terminal oi. We define the origin time (point) tR

i = min {t ∈
T̂ (oi) | t ≥ Ri}. Similarly, the latest time point for a container to be at its destination
terminal di is the destination time (point) tD

i that is the last possible time before Di,
i.e, tD

i = max {t ∈ T̂ (di) | t ≤ Di}. We call the time interval [tR
i , tD

i] the container’s
time horizon.

Additionally, we extend our notation for simplicity reasons: We let the origin vertex
o∗

i be the vertex that corresponds to the origin terminal oi at origin time point tR
i , i.e.,

o∗
i = o

tR
i

i . We can omit the time point tR
i in our notation as it is clear by the definition of

the vertex itself w.r.t. the underlying network. Analogously, we have the destination
vertex d∗

i that corresponds to the destination terminal di at destination time point tD
i ,

formally d∗
i = d

tD
i

i .

3.2.3 Arcs

We now define the arcs A = Ă ∪ Â ∪ Ā ∪ Ã of our network N = (V, A):

• Source and sink arcs Ă contain two arcs for each container i ∈ I: The first
arc connects source vertex o to the origin vertices o∗

i . The second arc connects
destination vertex d∗

i to sink vertex d. These arcs are required as we want to
construct a path for each container that starts at o and has to reach d. Formally:

Ă = { (o, o∗
i)i, (d∗

i , d)i | i ∈ I }

Note that this arc set might contain multi-arcs that can be distinguished by the
superscript i.

• Storage arcs Â are the arcs representing that a container remains at a terminal
for two consecutive terminal action time points:

Â =
⋃
j∈J

Â(l)

where Â(j) are the storage arcs of an individual terminal j:

Â(j) = { (jt1 , jt2) | t1 ∈ T̂ ′(j), t2 = succj(t1) }

• Transport arcs Ā are the arcs representing containers remaining on trains for two
consecutive train action time points:

Ā =
⋃
l∈L

Ā(l)

where Ā(l) are the transport arcs of a single train l ∈ L:

Ā(l) = { (lt1 , lt2) | t1 ∈ T̄ ′(l), t2 = succl(t1) }

A container is either being transported on a train (in between stops), or it remains
on a train during halting.

19

3. The Multiple Collaborative Round Trip Problem

• Lifting arcs Ã are the arcs representing containers being lifted from (or onto) a
train to (or from) a terminal, i.e.,

Ã =
⋃
l∈L

Ã(l)

The arc set Ã(l) of train l ∈ L are the arcs that represent containers to be lifted
from or onto train l. For each stop πl

p = (jl
p, Al

p, Bl
p) ∈ Πl, we create multiple arcs

from train l to terminal j at the train’s arrival time Al
p, and the other way around

— from terminal j to train l — at the train’s departure time Bl
p.

The multiple parallel arcs are required for modeling lifting capacity constraints
when multiple trains are present at the same terminal during overlapping time
intervals (see Section 3.3). For a specific stop πl

p of train l, we create an arc pair
for each terminal action time point t within the dwell time of train l at stop πl

p,
i.e., every time another train arrives or leaves during the duration of the stop, we
introduce a pair of arcs, indicated by the superscript t, at arrival and departure
time of train l and stop πl

p:

Ã(l) = { (lt1 , jt1)t, (jt2 , lt2)t |
(jl

p, Al
p, Bl

p) ∈ Πl, j = jl
p, t1 = Al

p, t2 = Bl
p, t ∈ T̂ (j) ∩ [t1, t2) }.

Note that we have at least two arcs for each stop πl
p = (jl

p, Al
p, Bl

p) ∈ Πl of train
l, i.e., (lAl

p , jAl
p)Al

p and (jBl
p , lB

l
p)Al

p , as these lifting arcs are required even if there
is no other train present during stop πl

p. Furthermore, note that we excluded
departure time Bl

p from the considered time horizon in the set construction, as
otherwise we would have two additional arcs when, e.g., considering this simple
case with just a single train stopping at some terminal.
As we do not want to optimize the reloading/lifting process at each terminal —
this is a complex problem on its own —, we simply assume that all containers that
should be loaded are lifted onto trains at its departure time. Similarly, all containers
that should be unloaded are lifted off the train at its arrival time. Furthermore,
we assume that we have to pay for the storage of unloaded containers at terminals
starting with the arrival time of the train. The transport costs of a container start
with the departure of the train, and end with its arrival.
Together with the source and sink arcs, the lifting arcs are the only arc set in our
representation that potentially contains multiple parallel arcs.

Example Fig. 3.1 shows an exemplary part of a time-expanded network for a single
terminal j and two trains l1, l2 with overlapping dwell times. The nodes correspond
to the action time points of the respective terminal and trains. The four considered
action time points are the following: The first action time point t1 = Al1 ∈ T̂ (j), T̄ (l1)
corresponds to the arrival of the first train l1 at terminal j. The second train l2 arrives

20

3.2. Problem Representation — Time-Expanded Network

j ∈ J jt1 jt2 jt3 jt4

l1 ∈ L lt1
1 lt4

1

l2 ∈ L lt2
2 lt3

2

t1 = Al1 t2 = Al2 t3 = Bl2 t4 = Bl1 ∈ T

Figure 3.1: Example of storage, transport and lifting arcs for a single terminal j and two
trains l1, l2 with overlapping dwell times. The red arcs are introduced because the arrival
of train l2 at time point t2 lies within the dwell time of train l1, which halts at the same
terminal. The blue arcs are introduced for the same reason with respect to the departure
of train l2.

at the terminal at action time point t2 = Al2 ∈ T̂ (j), T̄ (l2), and departures again at
t3 = Bl2 ∈ T̂ (j), T̄ (l2). At last, the first train l1 departures at t4 = Bl2 ∈ T̂ (j), T̄ (l1).

The horizontal arcs are the storage arcs for terminal j ∈ J , and the transport arcs for
the two trains l1, l2 ∈ L. The vertical (or bent) arcs are the lifting arcs. The overlapping
dwell times of the two trains cause multiple (parallel) lifting arcs for the first train l1.
During the dwell time of l1, the arrival of train l2 takes place at time point t1. Therefore,
the red arcs are introduced. Similarly, the blue arcs are introduced as the departure of
train l2 also lies within train l1’s dwell time. As there are no trains that arrive or leave
during train l2’s dwell time, no additional arcs are added for this train.

Costs Along Arcs

Recall that we want to represent container schedules by paths (or commodity flows)
through our network. Therefore, we define costs (and capacities) along arcs that have to
be respected when they are used on the path of container i. These arcs represent storing,
lifting or the transportation of containers:

If a = (o, o∗
i)i ∈ Ă c(a, i) = cS

oi
· (tR

i − Ri) (source costs)
If a = (d∗

i , d)i ∈ Ă c(a, i) = cS
di

· (Di − tD
i) (sink costs)

If a = (jt1 , jt2) ∈ Â c(a, i) = cS
j · (t2 − t1) (storage costs)

If a = (lt1 , lt2) ∈ Ā c(a, i) = wi ·
∑

t∈[t1,t2]⊆T

c̈t
l (transport costs)

If a = (lt1 , jt1)t ∨ (jt2 , lt2)t ∈ Ã c(a, i) = cL
j (lifting costs)

Recall that due to the introduction of vertices related to time points, time intervals
[Ri, tR

i) and (tD
i , Di] w.r.t. container i are not represented by storage arcs. Thus, the

21

3. The Multiple Collaborative Round Trip Problem

related storage costs for container i during these time intervals are not captured directly
by the storage arcs. Instead, we collect them via the source (and sink) arcs, which are the
storage costs accumulating in the not yet considered time interval [Ri, tR

i) (and (tD
i , Di]).

No transport costs during halting When a train is halting, we set the transport
costs to zero, formally:

c̈t
l = 0 ∀l ∈ L, ∀t ∈ { t ∈ [Al

p, Bl
p) | πl

p = (jl
p, Al

p, Bl
p), πl

p ∈ Πl }

Capacities Along Arcs

Note that we defined the terminal’s storage capacities Ċt
j (j ∈ J) and each train’s

transport capacities C̈t
l (l ∈ L), and weight capacities Ẅ t

l it can carry per time interval
[t, t + 1). Analogously to the costs along arcs, the capacity and weight restrictions can be
considered along arcs between two time points t1 < t2, omitting time points in between.
Therefore, we define:

Ĉa = min
t∈[t1,t2]

Ċt
j , ∀j ∈ J, ∀a = (jt1 , jt2) ∈ Â(j) (storage capacity along arcs)

C̄a = min
t∈[t1,t2]

C̈t
l , ∀l ∈ L, ∀a = (lt1 , lt2) ∈ Ā(l) (transport capacity along arcs)

W̄a = min
t∈[t1,t2]

Ẅ t
l , ∀l ∈ L, ∀a = (lt1 , lt2) ∈ Ā(l) (weight capacity along arcs)

3.2.4 Objective

Given a specific problem instance, we can specify our objective w.r.t. the time-expanded
network N = (V, A):

For each container i ∈ I, we try to find a path from o to d in our network, while
respecting all implicit (capacity and time) constraints and costs. We only collect the
revenue of containers for which we found a path, while only using arcs of round trips
that are active (i.e., that we paid for). We maximize the overall collected revenues while
simultaneously minimizing the costs.

3.2.5 Size of the Time-Expanded Network

Theorem 1. The time-expanded network is polynomial in its size.

Proof. We claim that our time-expanded network N = (V, A) is polynomial in its size
w.r.t. the input parameters tmax, |J |, |L|, |I|, and the specified round trips. In the worst
case, the number of vertices |V | ≤ 2 + tmax · (|J | + |L|) is clearly polynomial. Therefore,
the number of non-multiple arcs is also polynomial. The only arcs that allow multiple
arcs are source and sink arcs, and lifting arcs. The number of source and sink arcs is
at most |I| (each). Completely overestimating the number of lifting arcs still yields a

22

3.3. ILP Problem Formulation

polynomial size: Assume that all trains overlap at all time points, and for all trains, we
introduce two additional lifting arcs for all other trains at all time points (and two just for
the lifting of the considered train).2 This still yields a polynomial bound: tmax

2 · 2 · |L|2,
hence our network is polynomial in its size.

3.3 ILP Problem Formulation
In this section, we present an ILP model for our problem that uses a commodity flow
formulation to model the paths of containers in our time-expanded network. For that
reason, we have to introduce further sets before we can define our variables and the
necessary constraints.

3.3.1 Required Definitions

As it is impossible for containers to be shipped before their release time or after their
deadline — or, more specifically, before their respective origin and after their destination
time —, we introduce container arcs A(i) for each container i ∈ I. It only contains
those arcs that have to be considered w.r.t. the container’s time horizon, i.e., arcs within
origin time tR

i and destination time tD
i of container i. Later, we will use this set to

define container arc variables only along the arcs that are relevant for the container. The
container arcs A(i) are the union of the following sets:

A(i) = Ă(i) ∪ Â(i) ∪ Ā(i) ∪ Ã(i)

Thus, for every container i, we have:

• Container source and sink arcs Ă(i) are the two source and sink arcs specifically
created for container i:

Ă(i) = { (o, o∗
i)i, (d∗

i , d)i } ⊆ Ă

• Container storage arcs Â(i) are the storage arcs within container i’s time horizon,
representing that the container remains at some terminal j ∈ J :

Â(i) = { (jt1 , jt2) ∈ Â | t1, t2 ∈ [tR
i , tD

i] }

• Container transport arcs Ā(i) are the arcs within container i’s time horizon,
representing that the container is transported on some train l ∈ L:

Ā(i) = { (lt1 , lt2) ∈ Ā | t1, t2 ∈ [tR
i , tD

i] }

• Container lifting arcs Ã(i) are the lifting arcs representing container i being lifted
from or onto some train l ∈ L at a specific terminal j ∈ J , while the corresponding
action time point as well as the arc itself lie within the container’s time horizon:

Ã(i) = { (lt1 , jt1)t ∈ Ã | t, t1 ∈ [tR
i , tD

i] } ∪ { (jt2 , lt2)t ∈ Ã | t, t2 ∈ [tR
i , tD

i] }
2We actually introduce far less lifting arcs.

23

3. The Multiple Collaborative Round Trip Problem

Note that these container arcs are not the path that a container takes. Instead, these
arcs are the possible arcs that a container might be sent along, i.e., the arcs that have to
be considered when planning a path for the container. We will later define constraints
related to individual containers along these arcs only.

Furthermore, we define some more arc sets in order to concisely formulate all con-
straints of our ILP model:

• The terminal lifting arcs of action time point ˆ̃A(j, t) of terminal j and action
time point t ∈ T̂ (j) contain the lifting arcs — potentially selected out of multiple
parallel arcs — that are related to action time point t. It contains exactly those
lifting arcs associated with t and all trains that are present at terminal j at that
time point t. We will later define lifting capacity constraints along these arcs.
Formally, we have:

ˆ̃A(j, t) = { (lt1 , jt1)t ∈ Ã(l) } ∪ { (jt2 , lt2)t ∈ Ã(l) }

• The round trip transport arcs ĀR(l, d) capture the transport arcs of round trip
Rl

d of train l. These are the transport arcs that lie within the train’s arrival time
Ald

1 of the round trip’s first home stop (jld
1 , Ald

1 , Bld
1) = πld

1 ∈ Rl
d and the departure

time Bld
pmax of the round trip’s last home stop (jld

pmax , Ald
pmax , Bld

pmax) = πld
pmax ∈ Rl

d:

ĀR(l, d) = { (lt1 , lt2) ∈ Ā(l) | t1, t2 ∈ [Ald
1 , Bld

pmax] }

• The container’s placeholder arcs Â(i) of each container i are required to model
terminal capacity constraints correctly. For each container, there are at most two of
these arcs: the incoming storage arc of the origin vertex, and the outgoing storage
arc of the destination vertex, which are arcs that lie outside the container’s time
horizon. Along these arcs, we have to reserve space for container i in case it is
shipped. As these arcs lie outside the container’s time horizon, they are not part of
the container arcs A(i) (and their related constraints that we will define). Therefore,
we will need to consider them separately within the relevant capacity constraints.
In detail, the first placeholder arc (jt1

1 , jt2
1) is the storage arc spanning from a

predecessor vertex (ot
i) to the container i’s origin vertex o

tR
i

i (= o∗
i). Thus, it can be

also represented by as (ot
i, o

tR
i

i). The second arc (jt3
2 , jt4

2) is the storage arc spanning
the container i’s destination vertex d

tD
i

i (= d∗
i) to the successor terminal vertex

(ot′
i), hence it can be written as (dtD

i
i , dt′

i). Formally:

Â(i) = { (jt1
1 , jt2

1), (jt3
2 , jt4

2) ∈ Â \ Â(i)
| j1 = oi, j2 = di, t2 = tR

i , t3 = tD
i , t2 = succj1(t1), t4 = succj2(t3) }

Note that this set can contain just a single arc (or can even be empty) when Ri = tR
i

(and) or tD
i = Di, but contains at most two arcs.

24

3.3. ILP Problem Formulation

Additionally, we require the set of relevant containers of an arc I(a), which
contains the containers i ∈ I for which arc a is included in the respective container arc
set A(i):

I(a) = { i ∈ I | a ∈ A(i) }

3.3.2 Variables

Before introducing the ILP model, we define the following binary variables:

• Binary container arc variable xi
a or xi

uv is 1 if container i ∈ I is shipped along
arc a = (u, v) ∈ A(i) on it’s path, i.e., it is transported/stored/lifted via that arc,
and 0 otherwise.

• Binary container variable yi is 1 if container i ∈ I is delivered, and 0 otherwise.
This means we have found a path from its origin to its destination terminal within
the underlying time-expanded network.

• Binary round trip variables zl
d is 1 if train l ∈ L makes round trip Rl

d, i.e., we
can ship (transport and lift) containers on the respective stops of the round trip,
and we pay for the round trip. If zl

d = 1, we refer to it as being an active round
trip.

3.3.3 The Model

Finally, we can formulate our ILP model:

25

3. The Multiple Collaborative Round Trip Problem

max
∑
i∈I

yi · ri −
∑

a∈A(i)
xi

a · c(a, i)

 −
∑
l∈L

∑
d∈Dl

zl
d · c̄l

d (3.1)

s.t. −
∑

(u,v)∈A(i)
xi

uv +
∑

(v,w)∈A(i)
xi

vw =


yi v = o

−yi v = d

0 otw.
∀v ∈ V, ∀i ∈ I (3.2)

∑
i∈I(a)

xi
a +

∑
i∈I: a∈Â(i)

yi ≤ Ĉa ∀a ∈ Â (3.3)

∑
i∈I(a)

xi
a ≤ C̄a ∀a ∈ Ā (3.4)

∑
i∈I(a)

xi
a · wi ≤ W̄a ∀a ∈ Ā (3.5)

∑
i∈I

∑
at∈Ã(i)∩ ˆ̃A(j,t)

xi
at ≤

∑
t′∈[t,succj(t))

qt′
j

∀j ∈ J,

∀t ∈ T̂ ′(j) (3.6)

xi
a ≤

∑
d∈Dl: a∈ĀR(l,d)

zl
d

∀l ∈ L, ∀i ∈ I,

∀a ∈ Ā(i) ∩ Ā(l) (3.7)

xi
a ∈ {0, 1} ∀i ∈ I, ∀a ∈ A(i) (3.8)

yi ∈ {0, 1} ∀i ∈ I (3.9)
zl

d ∈ {0, 1} ∀l ∈ L, ∀d ∈ Dl (3.10)

The objective function (3.1) maximizes container revenues while minimizing induced
costs. The left term of the sum collects the revenues ri of all delivered containers i (if
yi = 1). From this, we subtract the containers’ shipping costs of all arcs that are used
along each delivered container’s path, as well as the costs of active round trips (if zl

d = 1).
Constraints (3.2) are the commodity flow/conservation constraints: If container

i ∈ I is delivered, we send out yi = 1 unit of flow from its origin vertex o∗
i . At the same

time, its destination vertex d∗
i has to receive exactly the same (1) amount of flow. For

non-origin and -destination vertices, we have the classic flow conservation constraints,
i.e., the in-flow of the vertex has to be equal to its out-flow. For undelivered containers,
we don’t send out (or receive at d∗

i) any flow (as yi = 0), hence there can be no flow
within the network.

Note that the objective alone is enough to avoid unnecessary costs caused by cycles
in any graph, as the existence of a (cost-positive) cycle violates the optimality of our
solution. Nevertheless, it is also cycle-free by construction, hence we can guarantee that
if yi = 0 for some container i, there cannot exist flow on any arc a (xi

a = 1).
Constraints (3.3), (3.4) and (3.5) ensure that storage, transport and weight

capacities are not exceeded at any point. The additional term on the left-hand side
of constraints (3.3) is responsible for reducing the storage capacities along arcs that are
part of the placeholder arc set of any delivered container.

26

3.3. ILP Problem Formulation

Constraints (3.6) ensure that the lifting capacities of every terminal are never ex-
ceeded. We consider each terminal j’s action time points t ∈ T̂ ′(j) with the corresponding
spanning time interval [t, succj(t)). On the right-hand side of the inequality, we simply
sum up the lifting capacities over all time points within the considered interval, as this
corresponds to the maximum lifting capacity during that time period. The left-hand side
simply counts the number of lifts of all container’s lifting arcs at ∈ Ã(i) associated with
action time point t and terminal j.

With constraints (3.7), we only allow the shipping of containers along transport arcs
of train l when a corresponding round trip is active. Note that restricting transport
arcs also results in a corresponding restriction of the associated lifting arcs due to flow
conservation constraints (3.2). Also, the sum on the right-hand side usually contains
just one, and at most two variables. The latter is the case when we consider arcs within
arrival and departure time of the first or the last stop of a round trip, i.e., when the
train is at it’s home terminal. Recall that these stops appear in two round trips, e.g., the
last stop is also present in the first stop of the subsequent round trip. Therefore, the
sum captures both round trips as when either is active, the considered transportation
arc can be used. In all other cases, the sum contains just a single variable, i.e., the one
corresponding to the round trip containing the respective transport arc.

Finally, we have constraints (3.8), (3.9) and (3.10) defining the binary domains of
the x-, y- and z-variables.

Flexibility of our Model

Note that our model is quite flexible, i.e., we can encode many problem variants.

For example, we can force the delivery of all containers by setting the container
variables yi = 1. In this case, our model just returns infeasibility if it is not possible to
deliver all containers.

We can also force the model to try to deliver as many containers as possible by
setting the container revenues to sufficiently large values. For example, we can choose the
container revenues ri ≥ M , where M exceeds the maximum costs for operating all trains
and shipping the most expensive container on its worst path. An appropriate value is,
e.g., M = ∑

l∈L

∑
d∈Dl zl

d + maxi∈I
∑

a∈P (i) c(a, i), where P (i) is the maximum arc path
of container i from o to d w.r.t. to costs c(a, i) along the path (note that a ∈ A(i)).

We can also extend our model to other types of transportation, e.g., ships, not
restricting it to rail. If these other modes are operated in round trips, it is easy to encode
them in our model. Note that we can also respect (potential) single trips by just encoding
them as a single round trip.

27

3. The Multiple Collaborative Round Trip Problem

3.4 Complexity

To show the NP-hardness (of the decision variant3 of) the MCRP, we show a reduction
of the well-known NP-complete Satisfiability Problem (SAT problem) to the MCRP.
The NP-completeness of SAT was shown by Cook [17] in 1973, and independently by
Levin [48] in 1973.

Recall the SAT problem for a propositional formula in conjunctive normal form:
Given n variables X = { x1, . . . , xn }, corresponding literals L = { x, x | x ∈ X },
and m clauses C = { C1, . . . , Cm }, where each clause Cι = {lι1, . . . , lιmax} contains
some literals lι1, . . . , lιmax ∈ L, we want to find a variable assignment (“interpretation”)
I : X 7→ {0, 1} s.t. all clauses in C are satisfied, i.e., the formula F = F1 ∧ . . . ∧ Fm,
where Fι = (lι1 ∨ . . . ∨ lιmax) for ι ∈ {1, . . . , m}, evaluates to true4.

3.4.1 Multi-Train Reduction

Given an arbitrary SAT instance, we construct an instance of our problem, formulated
as a decision variant, as follows:

We introduce an origin terminal and a destination terminal, denoted by jO and
jD. For each variable x ∈ X we have blocking terminals jB

x , and for each clause Cι, we
introduce clause terminals, denoted by jC

ι . Each terminal has infinite storage and lifting
capacity Ċt

j = qt
j = ∞ (or sufficiently large capacities, e.g., m + n).

We further introduce 2n trains, one for each positive and negative literal l ∈ L. All
trains start at home terminal jO, go along some clause terminals, arrive at jD, and —
in order to complete their round trips — end at home terminal jO. Each of these 2n
trains has an infinite capacity C̈t

l = ∞ (or some sufficiently large number, e.g., m) and a
constant maximum total container weight capacity of Ẅ t

l = m.
We place a single satisfying container iS

ι at each clause terminal jC
ι (i.e., oiS

ι
= jC

ι)
that has to be delivered to the destination terminal jD (i.e., diS

ι
= jD). Furthermore,

there is a blocking container iB
x located at each blocking terminal jB

x (i.e., oiB
x

= jB
x) that

also have to be delivered to the destination terminal jD (i.e., diB
x

= jD). Note that we
have exactly n satisfying and m blocking containers, so in total n + m containers. Each
satisfying container iS

ι has weight wiS
ι

= 1, while the blocking containers iB
x have weight

wiB
x

= m.
Recall that we have 2n trains, one for each positive or negative literal. Note that

each train has maximum total weight capacity of Ẅ t
l = m = wiB

x
, hence they can either

pick up exactly one blocking container, or up to all satisfying containers.
Now, we construct the round trips of the trains. Each train corresponding to a single

(positive or negative) literal l and its corresponding variable x. Every train has a single
3In the decision variant, we don’t ask for the optimal objective. Instead, we ask if it is possible to

obtain an objective that is higher than some predefined value.
4A positive literal x ∈ L evaluates to true if I(x) = 1, while its negative counterpart x ∈ L evaluates

to true if I(x) = 0. A clause Cι and its corresponding formula Fι evaluate to true if at least one of its
literals l ∈ Cι evaluates to true. The whole formula F evaluates to true if all subformulas Fι evaluate to
true.

28

3.4. Complexity

F =
C1︷ ︸︸ ︷

(a ∨ b ∨ c) ∧
C2︷ ︸︸ ︷

(a ∨ b ∨ c)

jO

jB
a

jB
b

jB
c

jC
1

jC
2

jD

Figure 3.2: Example reduction for a Boolean formula with just two clause. The solid
edges correspond to the trains used for the positive literal, the dashed edges are the
negative literal trains. The black dash-dotted edge is the same for all (positive and
negative) literal trains.

round trip with the following stops: It starts at jO, continues to blocking terminal jB
x ,

visits (in arbitrary order) all clause terminals jC
ι in whose clause Cι literal l appears, and

finally reaches jD. Afterwards, it returns to its home terminal. The construction of the
rail network is illustrated in Fig. 3.2 for an small exemplary Boolean formula with two
clauses.

In order to deliver all containers to the destination terminal jD, the blocking con-
tainer of each variable has to be transported by one of its two corresponding trains
(positive and negative literal), while the other train can pick up satisfying containers from
clause terminals, yielding a solution for SAT based on the trains transporting satisfying
containers.

Note that we did not yet define our considered time horizon T = [1, tmax], release
times and deadlines, or any other time-related values such as time points of each stop.
We just have to choose tmax to be sufficiently large (e.g., 2(3+m+n)) to contain all stops
of each each train, and we let all containers be available from the beginning (Ri = 1) to
the end (Di = tmax).

We omit all costs (set them to zero), and let the revenue of each container ri = 1.
We claim now that the SAT-instance is satisfiable if and only if our constructed problem
instance has an objective value of m + n, i.e., all containers can be delivered to the
destination terminal jD.

29

3. The Multiple Collaborative Round Trip Problem

Correctness of the Reduction

As usual, we proof the correctness of our reduction by showing both directions of the
reduction, i.e., we show that a positive SAT instance implies a positive instance of our
problem, and the other way around. Note that for this section, “positive instance of our
problem” refers to an objective of exactly m + n, i.e., we indeed delivered all containers.

Proof. “⇒” Given formula F , assume we have a positive instance for SAT. Then there
exists some variable assignment I(x) ∈ {0, 1} for each variable x ∈ X such that every
clause Cι is satisfied, i.e., at least one of its literals is mapped to 1, i.e., I(l) = 1, for
some l ∈ Cι. Note that for complementary literals of variable x ∈ X, we trivially have
I(x) = 1 − I(x). In order to construct a positive MCRP instance from the SAT instance,
we can now assign containers to trains in the following way: If variable x = 1 (x = 0)
for some x ∈ X, we let the train associated to the positive (negative) occurrence of x
pick up all still available satisfying containers iS

ι from the clause terminals it visits on its
way and deliver it to jD, while train associated to the complementary literal, i.e., the
negative (positive) literal, picks up and delivers the blocking container iB

x . Note that this
is possible as every train has the capacities to transport either a single blocking, or up
to all satisfying containers. We claim now (again) that we can indeed deliver all m + n
containers.

Assume otherwise. Then there is some container that was not delivered, being either
a satisfying or blocking container. Assume it is a blocking container, i.e., one of the n
blocking containers was not delivered. This assumption contradicts the fact that for each
of the n variables, one of the two trains associated with the two complementary literals
picks up the blocking container.

Assume now that instead, a satisfying container iS
ι could not be delivered. This is

contradicted by the fact that some literal l ∈ Cι is true, hence the corresponding train
will have picked up this container.

As a result, we can indeed deliver all containers of our corresponding MCRP instance,
given a positive SAT instance.

“⇐” For the second direction, we are given a positive instance of the MCRP, which
is based on a SAT instance with given formula F . We show that we can construct a
variable assignment I satisfying F from the solution of this MCRP instance. Recall
that we delivered all n + m containers. This means that each blocking container iB

x

associated to variable x is delivered to jD by a train associated to some literal l, while
each train associated to the complementary literal l′ delivers some satisfying containers.
We choose the variable assignment I(x) = 1 if and only if the train associated to the
negative literal l′ of variable x delivered container iB

x . For example, if iB
x is delivered by

the train associated to positive literal l, we have I(x) = 0. We claim now that formula F
evaluate to true under interpretation I.

Assume otherwise. Then there exists some clause Cι that is not satisfied. This implies
that all literals l ∈ Cι are falsified by I, i.e., I(l) = 0 for l ∈ Cι. But this contradicts the
fact that container iC

ι was successfully delivered to jD, as one of the trains associated to

30

3.4. Complexity

literal lι has to have picked it up due to the fact that we have a positive instance of our
problem. As a consequence, F is indeed satisfiable.

To complete the correctness of the reduction, it remains to argue that our MCRP
is indeed polynomial in it’s size w.r.t. the input SAT problem with m clauses and n
variables. We have already shown the polynomial size of the used time-expanded graph
in Section 3.2.5. Following the construction of our instance, this is clearly the case as
the number of terminals |J | = 2 + n + m, the number of trains is 2n, each with a single
round trip with at most 3 + m stops, and the number of containers |I| = n + m, yielding
a proper polynomial-sized reduction.

As a consequence, we have proven the following theorem:

Theorem 2. The MCRP (as a decision problem) is NP-hard.

Considering the existence of an (polynomial) ILP model for our problem, and knowing
that (the decision variant of) Integer Linear Programming is itself NP-complete, we
immediately get the following result:

Theorem 3. The MCRP (as a decision problem) is NP-complete.

Note that we can transform every decision problem into an optimization problem by
using binary search (e.g., see Benoit et al. [8, p. 135]).

3.4.2 Single Train Reduction

We have seen a reduction using 2n trains. Instead, we can also use a single train that
repeats round trip — jO, jC

1 , . . . , jC
ι , jD and back to jO — 2n times (i.e., it visits every

clause terminal once for each (positive and negative) literal). All blocking containers
are located at jO, and during each trip, only one blocking container is available at jO.
Furthermore, every round trip corresponds to a specific literal. The lifting capacities of
those clause terminals in whose clause the considered literal appears are 1, while all other
clause terminals have lifting capacities of zero when the train is halting. As a result, we
get the following corollary:

Corollary 3.1. The MCRP (as a decision problem) is NP-complete for |L| ≥ 1.

31

CHAPTER 4
Instance Generation and

Experimental Setup

To our knowledge (and since we are considering a new optimization problem), no existing
benchmark instances are available that can be used for or easily adapted to our problem.
Therefore, we artificially created instances to investigate the performance and behavior
of our problem. We aimed for realistic characteristics of all instance parameters (costs,
capacities, weights, etc.). These were obtained through public resources, the research
community, or were directly provided by our project partners.

This chapter contains detailed descriptions of the instance generation algorithm,
the identification of real-world values for the instance parameters that we used in our
benchmark experiments, and our experimental setup.

The instance generation process is divided into the following steps:

1. Choosing a set of terminals to be considered,

2. the generation of the underlying rail network,

3. the selection of appropriate parameters for the terminals,

4. the generation of trains, including their round trip schedules and their associated
parameters, and

5. the generation of containers with their respective parameters.

In Section 4.1 we describe the generation of our rail network. In Section 4.2 we
discuss the remaining steps of our instance generation process in detail, including the
identification of real-world values that are used as parameters, and the algorithm for
generating all benchmark instances. Finally, we describe our experimental setup and the
benchmarking environment in Section 4.3.

33

4. Instance Generation and Experimental Setup

4.1 Rail-Network

The first step of our instance generation process is the determination of the architecture
of the underlying rail network that our instances are based on. We have to choose
appropriate terminal locations, a size (∈ (0, 1]) for each terminal, and have to decide on
the existence and length of train routes that connect pairs of terminals.

4.1.1 Terminal Locations, Sizes, Types and Unification

After consulting with experts and project partners, we identified ten terminal locations
within Europe as the most relevant for our study. For estimating the size and other
parameters of these ten terminal locations, we collected properties of all existing freight
terminals within these cities using www.intermodal_terminals.eu [39]. We grouped
all existing terminals of a single location together (e.g., Vienna has three intermodal
or rail freight terminals) and collected associated information such as track length, the
number of lifting devices, or lifting capacities. We then created an artificial terminal
per location to represent the collected information, merged into a single terminal. These
(artificial) terminals are the ones we use for our instances.

We assigned a relative size to each terminal based on the total track length of all
available loading tracks. This feature appeared to be the best choice for estimating the
terminals’ sizes as it was available for all terminals.

We group these ten terminals into two types, which will be relevant in the next
section: (sea) port terminals P and city (non-port, inland) terminals C, forming the set
of terminals J = P ∪ C.

Table 4.1 shows all used terminals, their corresponding country codes, if they are
ports or cities, and their sizes. Table 1 in the appendix gives an overview of specific
properties and the sizes derived from each of them for each considered (artificial) terminal.
Table 2 contains the complete information of all individual terminal properties taken
from [39].

4.1.2 Determining the Rail Network Using an ILP

Given our ten considered terminals with their respective sizes, we have to determine
the underlying rail network. We calculate the minimum rail distance between each
terminal pair w.r.t. the underlying physical real-world rail network that was provided
by our project partners. This results in a complete graph that consists of ten vertices
representing the terminals, and with distance information along all edges.

Although we could use all edges of the complete graph as for our underlying rail
network, this would result in a large number of trains. Therefore, we have to determine
a subset of all edges that will connect our terminals to form the final rail network. Note
that four our instances, we only consider subsets of the ten terminals for our instances,
depending on the choice of input parameters |P | and |C|.

As hub-and-spoke networks are often in place, we want to model a similar architecture
where we use the ports as hubs. Therefore, we want to have train lines that connect every

34

www.intermodal_terminals.eu

4.1. Rail-Network

Table 4.1: Terminals of the rail network

Terminal Abbrv.
Country

Code
City (C) /
Port (P) Size

Hamburg HMB DE P 1.00
Rotterdam RTD NL P 0.78
Antwerp AWP BE P 0.44
Bremerhaven BHV DE P 0.14
Duisburg DUI DE C 0.66
Munich MUN DE C 0.30
Vienna VIE AT C 0.23
Salzburg SZB AT C 0.12
Berlin BER DE C 0.11
Enns ENS AT C 0.09

port-city pair (pc-pair). We further want to investigate trains that are operated in a way
that they connect more then two cities. Thus, for each pc-pair, we consider the direct
connection {p, c} and want to allow detours over additional cities (e.g., p − x − y − c,
where x, y are some other cities) as long as the resulting tour (w.r.t. its track length)
does not exceed a defined threshold τ of the direct distance of the connection. At the
same time, we try to minimize the length of all rail tracks in the network.

Formally, we can describe the problem as follows: Given a (complete) graph G =
(V, E), where the vertices are the union of port terminals P and city terminals C, formally
V = P ∪ C, and distances d(e) for each edge e ∈ E, find a subset of edges E′ ⊆ E with
minimal total distance s.t. for every pair (p, c) with p ∈ P, c ∈ C, there exists a path
in E′. The accumulated distance of each path must not exceed 1+τ of the direct edge
distance d({p, c}). Here, τ ≥ 0 is the maximum factor that each pc-path is allowed to
exceed the distance d({p, c}) of the direct connection.

For solving this problem, we use an ILP with a multi-commodity flow formulation to
model the path for each pc-pair. It requires the following variables:

• Binary variable xe or xuv is one if its corresponding edge e = {u, v} ∈ E is part of
our solution, i.e. e ∈ E′.

• Binary variable ypc
a or ypc

uv is one if arc a = (u, v) ∈ A is part of the directed flow
path from p ∈ P to c ∈ C, where A is the directed arc set of our considered edges
E (formally A = { (u, v), (v, u) | {u, v} ∈ E }).

The ILP looks as follows:

35

4. Instance Generation and Experimental Setup

min
∑
e∈E

d(e) · xe (4.1)

s.t. −
∑

(u,v)∈A

ypc
uv +

∑
(v,w)∈A

ypc
vw =


1 if v = p

−1 if v = c

0 otw.
∀v ∈ V, ∀(p, c) ∈ P × C (4.2)

∑
a∈A

d(a) · ypc
a ≤ d({p, c}) · (1 + τ) ∀(p, c) ∈ P × C (4.3)

ypc
uv ≤ xuv ∀(u, v) ∈ A (4.4)

xe ∈ {0, 1} ∀e ∈ E (4.5)
ypc

a ∈ {0, 1} ∀a ∈ A, ∀(p, c) ∈ P × C (4.6)

The objective (4.1) minimizes the overall distance of all selected edges in our solution.
Constraints (4.2) are flow conservation constraints for every pc-pair. For each pc-pair, p
sends out one unit of pc-flow, c consumes one unit of pc-flow, and for all other nodes, the
amount of inflow has to be equal to the amount of outflow. Constraints (4.3) ensure that
for every pc-pair, the total distance of the arcs on the path defined by the respective
pc-flow does not exceed the maximum allowed distance d({p, c}) · (1 + τ). Constraints
(4.4) ensure that flow can only exist on selected edges. Constraints (4.5) and (4.6) define
the binary domains of the variables.

Figure 1 in the appendix shows the resulting rail networks for τ ∈ {0.00, 0.05, 0.10, 0.15}.
We can observe that the number of connections decreases for higher τ values as a low τ
value restricts the total distance of each pc-path more. For example, at τ = 0.00, there
is a direct connection from HMB to VIE, but at τ = 0.05, we can connect this pair via
BER, forming the connection HMB-BER-VIE.

We use the result with τ = 0.10 as the underlying rail network for our instances,
which is illustrated in Fig. 4.1.

Note that due to the complexity of our problem, we did not actually generate instances
including all ten terminals for our benchmark. The maximum number of used terminals
is seven, see Section 4.3. The two resulting rail networks with |J | = 7 are shown in
Fig. 4.2.

4.2 Instance Parameters
In this section, we list all parameters of our instance generation process. As already
mentioned, these parameters are taken from existing literature or were provided by our
project partners (except for some basic input parameters of our instance generation
process like the number of considered containers).

Beside the architecture of the underlying rail network, see Section 4.1, the following
parameters were used as an input for our instance generation process:

• |I|, the number of containers,

36

4.2. Instance Parameters

VIE
SZB

ENS

BER

DUI

MUN

BHV HMB

AWP
RTD

Figure 4.1: Resulting network for τ = 0.1, ports are colored red, cities blue.

VIE
SZB

BER

DUI

MUN

HMB

RTD

(a) |P | = 2, |C| = 5

VIE
SZB

DUI

MUN

HMB

AWP
RTD

(b) |P | = 3, |C| = 4

Figure 4.2: Maximum considered rail networks with seven terminals.

• |J | = |P | + |C|, the number of considered terminals of the rail network, where |P |
and |C| are the number of ports and cities (see Section 4.1),

• the considered time horizon h, given in days,

• the length of container buffer time windows buffi, i.e., the additional buffer time
beside the expected (minimum) shipping time of a container, defining release time
and deadline,

• the revenue factor ρ, a multiplier for each container revenue, and

• the train scheduling method for all trains, i.e., whether we schedule daily trains or
just have a single recurring train per terminal (see Section 4.2.2).

Non-varying costs and capacities over time In Section 3.1, we defined all capacities
and some costs in a way that they can vary over time, meaning that they are time-
dependent on time point t ∈ T , consider, e.g., the storage capacity Ċt

j . This was done
to allow our model to capture varying constraints of these resources that might occur

37

4. Instance Generation and Experimental Setup

in real-world scenarios. Nevertheless, we use the same value for all time points in our
instances, formally ct = ct+1, ∀t ∈ T ′, c ∈ {Ċj , qj , C̈l, Ẅl}.

Considered time horizon For the length of the considered time horizon h, we choose
multiples of seven days (see Section 4.3). For our instances, we use time units of µ = 15
minutes, hence tmax = number of days · 96.1

4.2.1 Terminal Parameters

Our terminals j ∈ J = P ∪ C have the following parameters, presented together with
their respective values that they are based on, and corresponding sources:

Storage costs WienCont Container Terminal GmbH [64] offers the storage of empty
containers for 3 e and charges 6.10 e for loaded containers per day. CMA CGM
[15] list storage costs of many locations in Europe. In most cases, the first two
(three, five or ten) days (including arrival day) are free of charge, followed by daily
charges, usually in the range of 11 e (minimum 8 e, maximum 35 e), and often
the price increases (e.g., doubles) after 5-21 days. Other parties charge 10.40 e
per day, but the first day is free of charge. For simplicity, we use the same storage
costs of about 10 e per day for all terminals j ∈ J , resulting in storage costs of
cS

j = 0.104 e per 15-minutes time unit2.

Lifting costs According to Black et al. [10, p. 41f, 81], the costs for a single movement
from rail to rail of a single container range from 14 e to 38 e, with an average
of 27 e. This agrees with the information of Beresford [9, p. 240], who states
varying costs of about 30 e for Europe, and 36 e for the UK. WienCont Container
Terminal GmbH [64] charge 32.40 e for handling a single container, or 58 e for
a two-handling operation. CMA CGM [15] list lifting costs of 25 e to 80 e for
storing containers at various locations, but these might include multiple lifts in
practice as the whole lifting process for storing is charged. For our instances, we
use costs of cL

j = 27 e for a single lifting operation at every terminal j ∈ J .

Storage and lifting capacities Schönemann [58, p. 77] states that the lifting time
per container usually lies between three and four minutes, and is 3.375 minutes
on average. This results in lifting capacities of about four containers per 15
minutes and per lifting device (crane, etc.) (=16 containers/h). Furthermore, www.
intermodal-terminals.eu [39] lists various terminal/depot storage capacities,
as well as the number of lifting devices, for a number of terminals (see Table 2 in
the appendix).
However, we cannot directly use these values for our instances, as we currently
only consider a fraction of all operating trains. In practice, there might be other

1tmax = number of days · 24 · 60
152 10·15

24·60 ≃ 0.1042, where 10 e is the price per day, 15 minutes is the size of a time unit, and 24 · 60 are
the number of minutes per day.

38

www.intermodal-terminals.eu
www.intermodal-terminals.eu

4.2. Instance Parameters

trains (or even ships) that will also consume space and lifting capacities. Thus, we
lack realistic storage (and lifting) capacity values like the average utilization of the
considered resources, or the number of other trains present at a terminal.
For our instances, we assume that the largest terminal (Hamburg) is able to un- and
reload all containers of a single train within one hour. Assuming 70 containers per
train, we get a lifting capacity of 140 containers per hour, resulting in 35 container
per time unit. We further assume that the number of lifts is directly proportional
to the size of the terminal, resulting in lifting capacities of:

qt
j = ⌊size(j) · 35⌋

lifts per time unit for terminal j (∀t ∈ T).
For the storage capacity, we assume that intermediate containers have to be stored
to some extent at each depot, and for the largest terminal Hamburg, we assume
that it can store the load of ten trains (700 containers). Again, we assume a direct
correlation between the terminal’s size and the space of its depot, resulting in a
capacity of

Ċt
j = size(j) · 700

containers for terminal j (∀t ∈ T).

4.2.2 Train Generation

For generating train lines in between terminals, we follow the idea that was used during
the construction of our rail network: We connect the terminals in such a way that all
pc-pairs are connected by a train line. Trains stop and serve terminals on the way to
replace redundant coverage of connections. For example, given train line A-B-C (where A
is our port terminal), we do not generate an extra train line A-B, as it is already covered
by the connection A-B-C. We always choose the port p as the train’s home terminal
when considering any pc-pair.

Transport capacity According to Allianz pro Schiene [3], transcontinental trains across
Europe have at most 35 wagons and a maximum length of about 740 meters, which
also matches the maximum length of trains in Austria. This leads to a maximum
capacity of about 70-80 20’ containers per block train, assuming two containers
per wagon. In contrast, Schönknecht [57, p. 5] state a maximum capacity of 100
containers for a 700 m train.
UNECE [62, p. 2f] mention two types of typical block trains used in the Euro-Asian
transport links: The first one being trains consisting of 39 wagons that can carry
three 20’ containers each (117 containers in total), and the second ones consisting
of 57 wagons with a respective capacity of two 20’ containers (114 containers in
total).
Nevertheless, only eleven percent of trains reach a length of over 700 m (w.r.t.
Deutsche Bahn), and over 60 percent measure less then 600 m, see [3].

39

4. Instance Generation and Experimental Setup

In our benchmark instances, we use a transport capacity of C̈t
l = 70 for all trains

l ∈ L.

Weight capacity We assume that our trains are operated with a Siemens ES64U2
1116 Taurus locomotive and 35 2-TEU container wagons of type Lgjnss[33]. The
locomotive is able to carry a total weight of about 1600 t (track dependent).
Subtracting the wagon weight (13.5 t per 2-TEU wagon) yields a rounded total
weight capacity of Ẅ t

l = 1127.5 t for trains l ∈ L.

Transport costs Note that in this paragraph, we consider the operational costs of our
freight forwarding company for shipping a container, and not the shipping costs
that the customer is billed for (corresponding to the container’s revenue, see later).

Black et al. [10] state that the shipping costs for a 20’ container on their investigated
routes lie between 0.32 e and 0.68 e. This results in an (unweighted) average of
0.45 e per kilometer [10, p. 40ff, 82]. The transport costs of 0.03 e per tonne-
kilometer, provided by our project partners, agree with this3. Rounding the number
to three decimal places, we get transport costs c̈t

l = 0.225 e for a single time unit
t ∈ T and trains l ∈ L4.

Train speed The expected train speed is essential for calculating estimated shipping
times of containers, and also for determining individual round trip times. According
to European Court of Auditors [23], block trains travel with an average speed of
20 to 30 km/h. In contrast, Janic [40, p. 41] uses an average speed of 40 km/h,
and an average anticipated delay of 0.5 h. We assume an average train speed of
30 km/h in all our instances.

Construction of Round Trips

Each round trip is constructed in a way that trains (of the same connection) leave their
home terminal at the same time on their departure days (when they are not underway).
To obtain this, we first construct the first round trip with the respective dwell times of
each stop on the way. Then, we equally lengthen the dwell times of the first, the last,
and an intermediate stop (stop C for round trip A-B-C-B-A) such that the (arrival and)
departure of the first stop takes place at the same time of day then the (arrival and)
departure of the last stop. This first round trip is then repeated multiple times until no
further round trip can fit in the considered time horizon.

Note that we did not yet specify the exact starting times of the round trips, we only
ensured that a train leaves its home terminal (and all other terminals) at the same time
of day in the beginning of its round trips. The starting time of the first round trip (i.e.,
the arrival time at the first stop) is randomly chosen from such a time window that it can
take place without the (departure) time at the last stop of its last round trip exceeding

3Assuming an average container weight of 14.3 t: 14.3 · 0.03 ≃ 0.43 e ≃ 0.45 e.
4Price per tonne-kilometer 0.03 e · average train speed 30 km/h · 0.25 (= 15

60 , 4 time units per hour)

40

4.2. Instance Parameters

tmax. All subsequent round trips are shifted accordingly to match the corresponding
times of the first round trip.

For example, assume we have the following round trip after ensuring that it leaves its
home terminal at the same time of day: The first stop has its arrival time on Monday
00:00, and its departure time on Monday 01:00. Its last stop has an arrival time on
Wednesday 00:00, and a departure at 01:00. Recall that this stop is also the first stop of
the second round trip. For simplicity, we consider a time horizon of a single week, i.e,
until the consecutive Monday 00:00. This means that we will have three round trips, (so
far) scheduled for Monday, Wednesday and Friday. As each round trip lasts two days,
the last (=third) round trip has a last stop with arrival time on Sunday 00:00, and its
departure time on Sunday 01:00. Note that exactly 23 hours remain until the end of
our considered time horizon. This means that the initial starting time of the first round
trip (=arrival time of the first stop of the first round trip) is arbitrarily chosen out of
Monday 00:00 and Monday 23:00, and the dwell times of all stops of all round trip times
are adjusted accordingly. For example, when Monday 10:00 is taken as the initial arrival
time of the first round trip, the second round trip has its arrival time on Wednesday
10:00, and the third one on Friday 10:00. The departure time of the last stop of the last
round trip is on Sunday 11:00.

Round trip times Shi and Chen [59, p. 71] describes the daily schedule of a shuttle
train in between Göteborg and Karlstad (Sweden). The arrival at Göteborg is at
20:00, the departure at 01:50, the arrival at Karlstad is at 08:00, and the departure
at 14:00.
Following this example, we chose the dwell times of our trains to be at most 6
hours, as we expect that the whole train can be un- and reloaded within this time.
Additionally, we assume a correlation between terminal sizes and the dwell time of
trains at that terminals, as potentially more container lifts are expected at larger
terminals due to the increased demand. Therefore, we use the following formula to
calculate the dwell times of train l at halting terminal jld

p (of stop πld
p):

Bld
p − Ald

p =
⌈
max{ 4, size(jld

p) · 24 }
⌉

time units. This corresponds to a maximum dwell time of 6 hours, and a minimum
of 1 hour5, depending on the size of the halting terminal.
To determine the traveling time of trains in between stops πld

p , πld
p+1, we use the

(track) distance in between the halting terminals and the average train speed from
above, yielding6

Ald
p+1 − Bld

p =
⌈

distance(jld
p , jld

p+1)
30 · 4

⌉
time units.

5Recall time unit µ = 15 minutes, hence 1 hour = 60
15 = 4 time units, and 6 hours = 24 time units.

6Average train speed: 30 km/h, number of time units per hour: 4 = 60
15 .

41

4. Instance Generation and Experimental Setup

Round trip costs Beresford [9, p. 240] states rail operating costs of £6.50 per train
kilometer for a trailing weight of 1150 tonnes. This essentially supports the
information provided by our project partners: Given the accumulated traveling
distance of a round trip Rl

d of train l ∈ L, we chose the round trip costs c̄l
d to be

7 e per train kilometer, formally c̄l
d = 7 · distance(Rl

d).

Train Scheduling Method (Number of Trains per Train Line)

Given the train schedule for a round trip of a single train, we have specified its starting
times, but we have not yet decided whether there are other trains traveling along the
same train connection on different days of the week. We investigate two variants of train
scheduling methods that are applied to all trains of a single instance:

1. We generate just one train per train connection, called “single-train variant”. (We
call instances with this train scheduling method “single-train instances”.)

2. We generate as many trains as required for having one train leave its home ter-
minal every day at the same time7, called “daily-train variant” (or “daily-train
instances”).

For example, if the first train has its round trip starts on Monday 10:00 and is
repeated on the fourth day (Thursday 10:00), two additional trains are generated.
The second train has its first round trip on Tuesday 10:00, and the third one on
Wednesday 10:00.

Note the possibility of these two variants being the same for a train connection if its
round trips repeat after a single day. Nevertheless, this is not the case if round trips last
more then one day.

4.2.3 Container Parameters

Finally, we place |I| containers with the following parameters at our terminals:

Origin and destination terminal For the placement of containers, we assume a direct
correlation to the size of terminals. Given the terminal sets P and C, we assume
that we do not want to ship containers from port to port, as these are potentially
covered by maritime transportation. We choose the origin terminal of container
i ∈ I from a weighted distribution W based on the size of the terminals8, i.e.,
oi ∼ W(P ∪ C). If the origin terminal is a port, we choose the destination terminal

7after the day when the first train leaves its home terminal for the first time with the respective
scheduled times as mentioned before

8For weighted distribution W(J), the probability that each terminal j ∈ J is chosen as the origin
terminal oi is calculated by P (oi = j) = size(j)∑

j′∈J
size(j′)

.

42

4.2. Instance Parameters

out of the cities, otherwise we (again) choose the destination terminal out of all
terminals J \ {oi}, formally:

di ∼
{

W(C), if oi ∈ P
W(C ∪ P \ {oi}), otw.

Container time windows — release times and deadlines For choosing release time
and deadline of a container i ∈ I, we first optimistically calculate the expected
shipping time in time units w.r.t. the minimum distance distance(oi, di), and add
2 · 6 hours as an estimated un-/loading time (including buffer for lateness, see
Section 5.4.4) of the train. This yields the expected shipping time Ei of container
i, formally:9

Ei =
⌈(distance(oi, di)

30 + 12
)

· 4
⌉

Based on Ei, we now calculate release time and deadline, respecting an additional
flexibility buffer time window buffi, given in the number of days, that is given as
input to our instance generation process.
We choose the release time Ri of each container i ∈ I randomly out of the considered
time horizon s.t. the deadline still lies within the considered time horizon. Formally,
where U is the uniform distribution10:

Ri ∼ U({1} ∪ { t ∈ T | t < tmax − (Ei + buffi · 96) })

The deadline Di then is calculated by:

Di = min{ tmax, Ri + Ei + buffi · 96 }

Container weight According to Janic [40], European Commisson [22] states the average
gross weight of a 20’ containers is 14.3 metric tonnes [40, p. 40]. UNECE [62, p.
3] state that they rarely exceed an overall mass of 18 tonnes (2.5 tonnes tare plus
15.5 tonnes load). According to the freight forwarder company iContainers [37], an
empty containers weights 2.3 tonnes and can be theoretically loaded with goods
weighting at most 25.4 tonnes. For simplicity, we use a normal distribution with
a mean of 14.3 and a standard deviation of 4 to randomly sample each container
weight, while respecting permitted minimum and maximum loads:

wi = max{ 2.3, min{ 27.7, N (14.3, 4) } }

tonnes.
9The average train speed is 30 km/h, 2 · 6 = 12 h is the dwell time at the origin and destination

terminal, and 60
15 = 4 is the number of time units per hour.

1024 · 60
15 = 96 is the number time units per day. The set {1} is required because if the considered time

horizon is smaller than the time windows of the container, the right hand side is empty, hence we pick 1
as the release time and set the deadline to tmax.

43

4. Instance Generation and Experimental Setup

Expected shipping distance and container revenue Note that the shipping price
(= revenue) of a container has to be determined in advance to reliably charge the
customer, although the actual shipping cost for the freight forwarder company is
dependent on the actual shipping path. Therefore, the expected shipping price
(including reward) is based on the expected traveling distance.
www.mtcontainer.de/container-service/transport/ [16] lists 1.25 e
per container kilometer. Expecting an average container weight of 14.3 t, the
use of 0.09 e11 per tonne-kilometer seems appropriate for our project partners.
To investigate different pricing strategies, we include additional revenue factors
ρ ∈ {0.5, 1, 1.5, 2.5}. For the container revenues, we get the following formula:

ri = ρ · distance(oi, di) · wi · 0.09 e

where distance(oi, di) is the minimum distance that container i has to travel in the
underlying rail network from its origin to its destination terminal.

4.3 Experimental Setup
Generated instances For benchmarking, we generated 840 instances. We parameter-
ized them by the cross-product of the following parameters: The number of containers
|I| ∈ {1000, 2000, 3000, 4000, 5000}, the considered time horizon of tmax = 96 · h, where
h ∈ {14, 21, 28, 35} is the number of considered days12, and container buffer time
windows buffi ∈ {3, 7, 14},

The number of terminals, distinguished by the number of ports |P | and the number of
cities |C|, were chosen from (|P |, |C|) ∈ { (1, 2), (1, 3), (2, 3), (3, 3), (2, 4), (2, 5), (3, 4) }
(Table 3 in the appendix contains their respective rail networks), and we used both train
scheduling methods (w.r.t. all trains of a single instance), i.e., the single-train and the
daily-train variant (see Section 4.2.2). For all instances, we chose the neutral revenue
factor of ρ = 1.

Used infrastructure and configuration All instances were executed on a single core
of an Intel® Xeon® E5-2640 v4 with 2.40 GHz, and a time limit of 5 hours. We used
CPLEX 20.1 as our ILP solver.

11 1.25e
14.3t

≃ 0.09 e per tonne-kilometer
1296 = 24 · 4 is the number of time units per day (µ = 15 minutes).

44

www.mtcontainer.de/container-service/transport/

CHAPTER 5
Results

In this chapter, we investigate the results of our created and benchmarked instances from
the previous section.

First, we describe the features (attributes/properties) we used in the investigations
of our instances. Then, we consider the solution of a single exemplary instance in
order to better understand the overall solution structure and characteristics. Next, the
performance of our algorithm and various solution characteristics of all instances are
analyzed together with the effects of different instance parameters on the respective
solutions. Finally, we summarize these results and draw conclusions that are relevant for
practical implementations of such systems.

5.1 Performance and Solution Characteristics
For investigating the performance of our instances, we consider the following features:
The number of optimally solved instances, the average optimality gap (between our best
solution and the dual bound, not our solution and the optimal solution), and the running
times of the instances. Beside these performance characteristics, we focus our analysis
on the following solution characteristics:

The deliverable container rate is important to identify whether all containers of
an instance can theoretically be delivered. Sometimes, train schedules and narrow
container time windows of instances can lead to containers that can never be
transported with respect to the given constraints. In these cases, the underlying
assumptions concerning train schedules (too long round trips, to few trains) and
(too short) container time windows might be improvable.
The deliverable container rate is calculated by dividing the number of deliverable
containers by the total number of containers, formally:

deliverable container rate = number of deliverable containers
|I|

45

5. Results

A container is deliverable if it can theoretically be shipped w.r.t. its release time
and deadline and our operated trains. This is the case if there is at least one path
from its origin to its destination vertex in the underlying time-expanded network.
Note that usually all containers can be delivered (are deliverable), i.e., the deliverable
container rate is 1. Nevertheless, short container time windows and given train
schedules (especially when using the single-train variant as the train scheduling
method, see Section 5.3.1) can lead to a few containers that cannot be shipped at
all, resulting in a deliverable container rate strictly smaller then 1.
Further note that the deliverable container rate is actually the characteristic of an
instance and not a solution.

The (container) delivery rate represents the rate of delivered containers in our
instance. In general, we aim for higher delivery rate values as we want to have high
container throughput through our rail network, even if we technically seek maximum
revenue. A low value might indicate that the individual container revenues are too
low, or that too few trains as scheduled to ship the considered containers.
The delivery rate is calculated by dividing the number of (actually) delivered
containers by the number of deliverable containers, formally:

delivery rate =

∑
i∈I

yi

number of deliverable containers

Recall that the variable yi is one if and only if a shipping path for container i has
been found in the solution.

The active round trip rate indicates how many round trips in an instance are active,
i.e., have their corresponding MIP-variable zl

d set to one. If the active round trip
rate is low, it indicates that many trains have non-active round trips, hence idle
time. A reason for low values might be a low container density such that the round
trips do not pay off. On the other hand, if the active round trip rate is almost
one, it might make sense to investigate if scheduling more trains increases the
throughput of the network, potentially resulting in higher container delivery rates
and increased collected revenue.
The active round trip rate is calculated by dividing the number of active round
trips by total number of round trips, formally:

active round trip rate =

∑
l∈L

∑
d∈Dl

zl
d∑

l∈L
|Rl|

The (average train) transport capacity utilization represents the average load
factor over all trains. It is the ratio between the average number of containers
transported on a train and the total number of containers they can carry. i.e., their

46

5.1. Performance and Solution Characteristics

transport capacity. If it is one, every single train carries the maximum amount of
containers all the time (this is what we aim for), and if it is zero, all trains are
travelling empty (the worst case). Therefore, this characteristic directly reflects the
overall train utilization, and we aim for high values.
It is calculated as follows: For every single round trip of an instance, we calculate
the transport capacity utilization whenever the train is moving, i.e., in between
stops. Therefore, we consider all transport arcs a ∈ A(l) of train l ∈ L where it is
not halting, and which are part of an active round trip, formally:

A(l) = { (lt1 , lt2) ∈ Ā(l) | ¬∃πld
p ∈ Rl

d : Ald
p = t1 ∧ Bld

p = t2 }
∩ { a ∈ ĀR(l, d) | d ∈ Dl : zl

d = 1 }

Along each arc a ∈ A(l), we calculate its (transport) utilization:

arc utilization(a) =

∑
i∈I(a)

xi
a

C̄a

To get the utilization of a single train l ∈ L, we calculate the mean over all arcs
(lt1 , lt2) = a ∈ A, weighted by their duration ∆a = t2 − t1, formally:

single train utilization(l) =

∑
a∈A(l)

∆a ·

∑
i∈I(a)

xi
a

C̄a


∑

a∈A(l)
∆a

Finally, we take the mean value utilization value over all trains, formally:

(overall) transport capacity utilization =

∑
l∈L

∑
a∈A(l)

∆a·

∑
i∈I(a)

xi
a

C̄a


∑

a∈A(l)
∆a

|L|

The weight capacity utilization is the average utilization calculated similarly to
the transport capacity utilization, but with respect to the total weight carried
by the train relative to its weight capacity (in contrast to the transport capacity
utilization, where the number of carried containers relative to the transport capacity
is considered). The weight capacity along each arc a ∈ A(l) is calculated by:

arc utilization(a) =

∑
i∈I(a)

xi
a · wi

W̄a

47

5. Results

Therefore, the weight capacity utilization for the whole instance is calculated as:

weight capacity utilization =

∑
l∈L

∑
a∈A(l)

∆a·

∑
i∈I(a)

xi
a·wi

W̄a


∑

a∈A(l)
∆a

|L|

The weight capacity utilization strongly depends on the transport capacity utiliza-
tion (and the individual container weights). This is due to the fact that container
weights are chosen with the same distribution for all instances. As the transport
capacity is usually more constraining than the weight capacity for our instances,
we primarily investigate the transport capacity utilization and not the weight
capacity utilization in the remainder of this chapter. In general, most observations
regarding the transport capacity utilization can be directly applied to the train
weight utilization as well.

The (average) storage capacity utilization represents the average load factor of all
terminals over time and indicates whether the storage of terminals is heavily used.
It is calculated by summing up the number of containers stored in any terminal at
each time point, and dividing it by its total storage capacity summed up over our
considered time horizon. The values for each individual terminal are then averaged,
resulting in a single value per instance, the storage capacity utilization. Formally,
where a(t, j) = (jt1 , jt2) ∈ Â : t ∈ [t1, t2) is the storage arc of terminal j at time
point t:

storage capacity utilization =

∑
j∈J

∑
t∈T

∑
i∈I(a(t,j))

xi
a(t,j)∑

t∈T

Ċt
j

|J |
Note that when arcs are longer than one time unit, the containers stored during
that time at the corresponding terminal are counted multiple times in the sum, as
we consider every single time unit. At the same time, we also sum up all storage
capacities at all time points in the denominator of that sum.

Similarly, the (average) lifting capacity utilization represents the average number
of lifting operations over all terminals and the considered time horizon.
It is calculated by computing the lifting utilization of each terminal at each time
point. The number of performed lifting operations at a terminal is summed up,
divided by the total lifting capacity over the considered time horizon. The values
of each terminal are then again averaged, resulting in a single value per instance,
formally:

lifting capacity utilization =

∑
j∈J

∑
t∈T̂ (j)

∑
a∈ ˆ̃A(j,t)

∑
i∈I(a)

xi
a∑

t∈T

qt
j

|J |

48

5.1. Performance and Solution Characteristics

Note that the lifting capacity utilization values for our solutions are usually quite
small (<0.1) due to the fact that lifts only occur when trains halt at the terminals.

The required train rate is the last and most complex of our solution characteristics.
From a practical point of view, we are interested in the advantages of operating
trains in the way that we propose in this study, compared to the state of the art.
Beside considering the transport capacity utilization, we can investigate whether
we can reduce the number of required trains when transporting containers with our
method.

Given a solution of an instances with its delivered containers, we ask the following:
How many direct trains (of the same size) would be necessary for transporting the
delivered containers in this solution?

For pairs of terminals (j1, j2) ∈ J × J (origin and destination), we have to minimize
the number of trains required for transporting all containers i ∈ I with yi = 1 (i.e.,
those being delivered in our solution) that have oi = j1 (their origin terminal is ji),
and di = j2 (their destination terminal is j2). We further have to respect the time
constraints induced by the time windows of these containers, and schedule trains
based on that.

Note that this is a non-trivial optimization problem on it’s own. Instead of solving
it, we can easily compute the lower bound of trains that is necessary for transporting
them, assuming that these direct trains have the same transport capacity of C = 70
as the trains in our instances.

lower bound of direct trains =
∑

(j1, j2)∈J×J


∑

i∈I: oi=j1∧di=j2

yi

C


The inner sum counts the number of containers that have to be transported for each
terminal-pair j1, j2 and were delivered in our solution. This number is then divided
it by the transport capacity. As trains that are just half fully loaded still count
as a whole train, we round this number up and sum over all pairs of terminals,
yielding the lower bound of direct trains. To make this number comparable to our
instances, we have to consider that our round trips are operated both ways. For
this calculation, an active round trip therefore counts as two trains.

We can now compute the required train rate. It is calculated by the number of
trains that are used in the solution of our method (multi-stop round trips), i.e.,
the number of active round trips (zl

d = 1) times two (for the two round trip legs),
divided by the lower bound of direct trains, formally:

required train rate =
2 ·

∑
l∈L

∑
d∈Dl

zl
d

lower bound of direct trains

49

5. Results

VIE

DUI

MUN

HMB

AWP
RTD

Figure 5.1: Rail network of our exemplary instance with three ports and three cities.

A required train rate value larger than one means that our solution requires more
trains, when comparing it to lower bound of direct trains. Therefore, we aim for
low required train rates, as these suggest that we can indeed perform better when
using trains operated as proposed in our study, i.e., having multi-stop round trips.

5.2 Investigating an Exemplary Solution
To get an overall impression of the instances and their solution characteristics, we
investigate the solution of a single exemplary instance in detail before our analyses of the
entire pool of solutions.

For this purpose, we look at a “median-sized” instance. i.e., we consider the instance
where all instance parameters are chosen from the (lesser) median of our benchmark
configuration. Therefore, the instance of the exemplary solution under investigation has
following parameters: Its rail network, shown in Fig. 5.1, has three ports and three cities,
i.e., (|P |, |C|) = (3, 3). The number of containers |I| is 3000, the considered time horizon
is three weeks, i.e., h = 21 (and tmax = 672 · 3), the container buffer time windows buffi

is 7 days, and the train scheduling method is the single-train variant, i.e., we have a
single train per connection. Following the train scheduling method from Section 4.2.2,
we get five trains (see Section 5.2.2 below).

This instances was solved to proven optimality within 9336 seconds1. The deliverable
container rate of this instance is one, i.e., all containers are (potentially) deliverable. In
the optimal solution, 2169 out of the 3000 were indeed delivered, resulting in a delivery
rate of 0.723.

When considering the overall number of containers that are present in the time-
expanded network at each time point, we can observe that in the beginning and the end
of the considered time horizon relatively fewer containers are present. This is illustrated in
Fig. 5.2. The (available) container density is highest during the middle of our considered
time horizon. This is due to the fact that in the beginning and the end, fewer containers

19335.163 s = 2 h 35 min 36.163 s

50

5.2. Investigating an Exemplary Solution

0 250 500 750 1000 1250 1500 1750 2000
time horizon

0

200

400

600

800

1000

1200

nu
m

be
r o

f c
on

ta
in

er
s

active containers
transported containers
lifts
stored containers

Figure 5.2: Number of containers being active, transported, lifted and stored at each
point in time for our exemplary solution.

are available, as their release times and deadlines are chosen uniformly at random from
the available time horizon (see Section 4.2.3). With the number of containers present
in the network, the number of active containers, the number of actively transported
containers, the number of lifting operations, and the number of stored containers similarly
in- and decrease, as can be seen in Fig. 5.2. These observations hold for all solutions of
our instances, not just this one.

5.2.1 Investigating Terminals

At first, we investigate the six terminals of our instance and consider the number of
containers that are deliverable or delivered from and to these terminals. Figure 5.3a
shows the number of delivered and non-delivered containers from and to each of them.

Because container origins and destinations are chosen as described in Section 4.2.3, it
is not surprising that the number of deliverable containers from and to each terminal
depends on its size, and whether it is a port or a city. Compared to all other terminals,
DUI is the origin or destination terminal of the largest number of containers, followed by
HMB. HMB is the largest terminal, but as it is a port, DUI is preferred as a destination
terminal during the placement of containers, as it is a city terminal. Therefore, most
containers (potentially) originate from HMB (oi = HMB), followed by RTD, while DUI
(as the largest city terminal) is the destination of the largest number of containers
(di = DUI).

When we consider the actually delivered containers, HMB and DUI have the most
delivered containers both from and to them. Almost all containers that should have been
delivered from and to VIE could actually be delivered in our solution. In contrast, RTD
has the most non-delivered containers originating from it, and DUI the most non-delivered
containers that should have been delivered to it.

When looking at Fig. 5.3b, we gain further insight: The plot shows the number

51

5. Results

VIE DUI MUN HMB AWP RTD
0

500

1000

1500

nu
m

be
r o

f c
on

ta
in

er
s del. from

del. to
non-del. from
non-del. to

(a) Number of (non-)delivered containers per terminal

('AWP', 'DUI')
('AWP', 'MUN')

('AWP', 'VIE')
('DUI', 'AWP')
('DUI', 'HMB')
('DUI', 'MUN')
('DUI', 'RTD')
('DUI', 'VIE')
('HMB', 'DUI')
('HMB', 'MUN')

('HMB', 'VIE')
('MUN', 'AWP')

('MUN', 'DUI')
('MUN', 'HMB')

('MUN', 'RTD')
('MUN', 'VIE')
('RTD', 'DUI')
('RTD', 'MUN')
('RTD', 'VIE')
('VIE', 'AWP')
('VIE', 'DUI')
('VIE', 'HMB')
('VIE', 'MUN')
('VIE', 'RTD')

(from, to)

0

100

200

300

400

500

nu
m

be
r o

f c
on

ta
in

er
s

del.
non-del.

(b) Number of (non-)delivered containers per terminal pair

Figure 5.3: Number of delivered and non-delivered containers per terminal (and terminal
pair) of our exemplary solution.

of delivered containers (out of the deliverable containers) per terminal pair, i.e., the
containers that are transported from j1 to j2 for terminal pair (j1, j2). We can see that for
most pairs almost all containers were delivered, with two noticeable exceptions: Almost
no containers from either AWP or RTD could be delivered to DUI. This suggests that
it might make sense to introduce additional train lines to cover the shipment of these
containers.

When looking at the number of stored containers at each terminal at each point
in time, shown in Fig. 5.4, we can again see that in the beginning and the end of our
considered time horizon fewer containers are stored at the terminals. Another noticeable
fact is that the y-values of the graph, representing the number of transported containers
of a train, change only at terminal action time points, i.e., when a train is arriving at or
departing from that terminal. At these time points, containers can be lifted from or to
the terminal storage, or are initially placed or picked up, resulting in changes of values.

52

5.2. Investigating an Exemplary Solution

0 250 500 750 1000 1250 1500 1750 2000
time horizon

0

100

200

300

400

nu
m

be
r o

f c
on

ta
in

er
s

VIE
DUI
MUN
HMB
AWP
RTD

Figure 5.4: Number of stored containers at each terminal in our exemplary solution,
plotted over time.

Table 5.1: Average storage and lifting capacity utilization values for all terminals of our
exemplary instance.

VIE DUI MUN HMB AWP RTD Average

Storage
cap. util. 0.294 0.459 0.365 0.272 0.092 0.068 0.258

Lifting
cap. util. 0.038 0.029 0.036 0.02 0.01 0.008 0.024

Recall that if we sum up the number of containers present at the terminal at each
time point and divide it by the summed-up storage capacities over all time points, we get
the storage capacity utilization for a single terminal. Table 5.1 shows the storage (and
lifting) capacity utilization values of all individual terminals, as well as their averages
over all terminals. In the case of DUI, its storage capacity utilization values is 0.459,
meaning that on average about half of its storage capacity is used. The solution’s overall
storage capacity utilization (i.e., the average utilization of all terminals) is 0.258. This
means that on average, the terminals use about a quarter of their available storage.

Similarly, we can calculate the lifting capacity utilization of the individual terminals,
as shown (again) in Table 5.1. Averaging the values of the individual terminals yields
the solution’s overall lifting capacity utilization of 0.024. Note that compared to the
storage capacity utilization values, the lifting capacity utilization values are small, as
lifting operations only happen when a train halts, so most of the time, no lifting takes
place.

53

5. Results

Table 5.2: Number of (active) round trips of our exemplary solution.

HMB
-VIE

HMB
-DUI

HMB
-MUN

AWP
-VIE

RTD
-VIE All

Number of
active round trips 4 7 3 3 4 21

Total number
of round trips 5 10 6 4 4 29

Ratio 0.8 0.7 0.5 0.75 1.0 0.724

5.2.2 Investigating Trains and Round Trips

Our instance has five trains with the following stops on their round trips:

(1) HMB-VIE (visiting HMB-VIE-HMB),

(2) HMB-DUI (visiting HMB-DUI-HMB),

(3) HMB-MUN (visiting HMB-MUN-HMB),

(4) AWP-VIE (visiting AWP-DUI-MUN-VIE-MUN-DUI-AWP), and

(5) RTD-VIE (visiting RTD-DUI-MUN-VIE-MUN-DUI-RTD).

The round trips of train HMB-DUI have the shortest duration, yielding a total of
ten round trips on that connection, while trains AWP-VIE and RTD-VIE only have four
round trips each, as these individual round trips take longer. Train HMB-VIE has five,
and HMB-MUN has six round trips, yielding 29 round trips altogether. Out of these 29
round trips, 21 are active, resulting in an active round trip rate of 0.724. Table 5.2 shows
the number of active round trips of each terminal, and the resulting ratios when dividing
the number of active round trips by the number of all potential round trips. We can
see that all round trips of train RTD-VIE take place, whereas only half of the potential
round trips of train HMB-MUN are active.

In order to understand the generation of the round trip times from Section 4.2.2
better, Table 5.3 shows the dwell times of each stop of the first round trip of train
RTD-VIE, which repeats after five days.

In order to calculate the utilization of trains, we firstly consider the transport capacity
utilization (see Section 5.1). Recall that this solution characteristic is calculated by taking
the average transport utilization of all sections (arcs) of all active round trips of the train
where it is not halting, weighted by the travelling time of that section. Train RTD-VIE
has the lowest transport capacity utilization with a value of 0.527, while train HMB-DUI
has the highest one being 0.785. When taking the mean of all average transport utilization
values w.r.t. all trains, we get an (overall) transport capacity utilization of 0.659 for this
instance.

54

5.2. Investigating an Exemplary Solution

Table 5.3: Round trip times of train RTD-VIE of our exemplary instance.

Terminal Arrival
arr.

time unit Departure
dep.

time unit
RTD Mon 08:00 32 Mon 21:00 84
DUI Tue 04:00 112 Tue 08:00 128
MUN Wed 05:30 214 Wed 07:30 222
VIE Wed 21:30 278 Thu 07:30 318
MUN Thu 21:30 374 Thu 23:30 382
DUI Fri 21:00 468 Sat 01:00 484
RTD Sat 08:00 512 Sat 21:00 564

0 250 500 750 1000 1250 1500 1750 2000
time horizon

0

10

20

30

40

50

60

70

nu
m

be
r o

f c
on

ta
in

er
s

(a) HMB-DUI

0 250 500 750 1000 1250 1500 1750 2000
time horizon

0

10

20

30

40

50

60

70

nu
m

be
r o

f c
on

ta
in

er
s

(b) RTD-VIE

Figure 5.5: Number of transported containers for two specific trains in our exemplary
solution, plotted over time.

Figure 5.5 shows the number of transported containers for the two trains HMB-DUI
and RTD-VIE over time. As the round trips of train HMB-DUI have just two stops
(plus the return stop), all shipped containers are unloaded at every stop. Therefore,
the number of containers drops to zero whenever the train is halting, as containers are
lifted off the train at its arrival, and lifted onto the train at its departure. This leads to
an even-looking, almost bar-plot-like line for this train. In contrast, the round trips of
train RTD-VIE have more stops. When it halts, containers often remain on the train, as
their target stop has not yet been reached. This leads to a more irregular looking plot,
indicating that also at intermediate stops container are lifted on and off the train.

5.2.3 Calculating the Required Train Rate

When asking for the lower bound of direct trains, we consider the number of delivered
container for pairs of terminals. For example, 468 containers were delivered from HMB
to DUI. For transporting this number of containers, we need (at least) seven trains2 with

2468/70 ≃ 6.69

55

5. Results

1.0 1.2 1.4 1.6 1.8
path cost ratio

0

250

500

750

1000

1250

1500

1750

2000

nu
m

be
r o

f c
on

ta
in

er
s

(a) Path costs

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
lifting cost ratio

0

250

500

750

1000

1250

1500

1750

2000

nu
m

be
r o

f c
on

ta
in

er
s

(b) Lifting costs

Figure 5.6: Relative path and lifting cost histograms for the delivered containers in our
exemplary solution.

a capacity of 70 containers. When summing up the calculated values for all pairs of
terminals, we get a lower bound of direct trains of 42 for this solution. As the number
of active round trips is 21, this instance has a required train rate of exactly one3. This
means that when comparing the number of active round trips (time two) with the lower
bound of direct trains, we cannot see any gain (or loss) in efficiency for this instance with
respect to this value. In other words, we need the same number of trains as when having
directly scheduled trains (ignoring time window constraints).

5.2.4 Investigating Container Paths

When considering the paths of all 2169 delivered containers, we find that 1927 containers
travel on their (individual) cost-optimal path. In contrast, 242 containers are shipped
on paths that exceed the cost of their minimum shipping cost path by more than one
percent. Out of these containers, 205 were lifted more often than would be necessary on
their cost-optimal path. Figure 5.6 shows this. The values for each container in Fig. 5.6a
are calculated by dividing the actual path costs of each container by their minimum path
costs. The same holds for Fig. 5.6b, except that only lifting costs are considered, not
the overall path costs of each container. We can observe that the relative lifting path
costs in Fig. 5.6b are either 1, 2 or 3, i.e., all integer values. This is due to the fact that
the lifting costs of all terminals are equal, and the number of required lifts is always an
integer multiple of the minimum number of required lifts for this instance.

Note that this must not always be the case. In other instances, also fractional values
are possible. The lifting costs are still equal for all terminals, but there might exist a
container having a minimum number of, e.g., four lifts, but the actual number of lifts is
six, resulting in a relative lifting cost value of 1.5.

We now consider the paths of two specific containers: container i2850, which has the
highest relative path cost, and container i1951, which has the highest relative lifting cost
(and among these containers, the highest relative path cost).

3(21 · 2)/42 = 1

56

5.3. Investigation of Results

Container i2850 should be shipped from DUI to MUN, but as the lifting capacity
is exceeded when the train that transports it halts at MUN, it is shipped onward to
VIE. There, it remains on the train and is shipped back to MUN, where it finally is
unloaded. This results in 1.923 times shipping costs when compared to than would be
required on its minimum cost path. Note that the customer of that container would
not be charged more for this, as we are optimizing from the point of view of the freight
forwarder. Instead, the price paid by the customer is the fixed revenue of the container.

The other container, i1951, has the highest relative lifting costs. It should be shipped
from MUN to AWP. Instead of being directly shipped by train AWP-VIE to its destination,
it takes a detour via HMB as the transportation capacity of train AWP-VIE is already
fully utilized. It is first shipped from MUN to HMB by the train HMB-MUN, then to
DUI by the train HMB-DUI, and finally to AWP by train AWP-VIE. This detour results
in thrice the number of required lifts, and overall higher shipping costs of 1.654 times
that of its minimum-cost shipping path.

Note that our solution has been solved to proven optimality, hence the sub-optimal
paths of the containers are only non-optimal w.r.t. to their own minimum shipping costs.
Nevertheless, it overall pays off to send them on these individually suboptimal paths as
we can, e.g., use fewer round trips to save costs.

5.3 Investigation of Results

After we have seen a single solution in detail, we now focus on the solution characteristics
from Section 5.1 to analyse the whole set of benchmark solutions. In this section,
we present a few general results of our benchmark, and then discuss the effects of
instance parameters on the solution characteristics. Before that, we briefly investigate
the deliverable container rate of our instances on its own.

5.3.1 Deliverable Container Rate

The deliverable container rate is one for most instances, but there do exist instances
with values smaller then one. Figure 5.7 shows that a low deliverable container rate
highly correlates with narrow container buffer time windows. The minimum proportion
of deliverable containers is 0.75 for one instance with narrow container buffer time
windows of buffi = 3 days. When only considering instances with wider time windows
(buffi ∈ {7, 14}), we get a minimum deliverable container rate of 0.983, i.e., almost all
containers can be delivered for all of these instances.

5.3.2 General Results and Performance w.r.t. Train Scheduling
Methods

Out of the total of 840 benchmarked instance, 332 instances could be solved to optimality,
and 751 instances yielded at least one feasible solution. A solutions counts as optimally
solved when it reaches a gap smaller than 10−4, which is the default relative MIP gap

57

5. Results

3 7 14
container buffer time windows [days]

0.75

0.80

0.85

0.90

0.95

1.00

de
liv

er
ab

le
 c

on
ta

in
er

 ra
te

Figure 5.7: Boxplots of the deliverable container rate for all benchmarked instances,
grouped by the size of the container buffer time windows buffi ∈ {3, 7, 14}.

0 3600 7200 10800 14400 18000
runtime [s]

0

50

100

150

200

nu
m

be
r o

f i
ns

ta
nc

es

1
d

Figure 5.8: Performance plot of the runtimes of instances, grouped by their respective
train scheduling method. “1” represents the single-train instances, while “d” represents
the daily-train instances.

tolerance of CPLEX. The remaining 89 unsolved instances terminated due to exceeding
the amount of available memory or could not find any feasible solution at all within the
specified time limit.

When investigating the runtimes of our instances, we look at the performance plot of
runtimes shown in Fig. 5.8. The x-axis represents the runtime, and the y-axis counts
the number of instances that terminated within at most x seconds. The instances are
grouped by their respective train scheduling method: “1” represents the single-train
instances, and “d” is the daily-train instances. Recall that single-train instances have
only a single train scheduled for each train connection. This train performs repeated
round trips. In contrast, the daily-train instances have one train scheduled per day,
resulting in potentially more than one train per connection (see Section 4.2.2).

58

5.3. Investigation of Results

10 4 10 3 10 2 10 1 100 101

gap

0

50

100

150

200

250

300

350

nu
m

be
r o

f i
ns

ta
nc

es

1
d

(a) All instances

10 4 10 3 10 2 10 1 100 101

gap

0

20

40

60

80

100

120

nu
m

be
r o

f i
ns

ta
nc

es

1
d

(b) Non-optimal instances only

Figure 5.9: Performance plot of the gaps of our benchmark instances, grouped by train
scheduling method. “1” represents the single-train instances, while “d” represents the
daily-train instances. The dashed vertical line at x = 0.01 indicates the gap of instances
that we consider in Section 5.3.3.

We can observe that the daily-train instances are much harder to solve than the
single-train instances, as the availability of more trains leads to more routing options and
larger models. Additionally, we can see that for both train scheduling methods, there are
instances that terminate with proven optimality for almost all times within the specified
time limit.

Out of the 420 single-train instances, 416 instances returned a solution while 4
instances did not yield a solution due to memory issues. Out of the 416 successful single-
train instances, 180 reached the maximum time limit of 5 hours, while 236 instances
were solved to proven optimality before that. Out of the 180 non-optimal solutions, 117
instances yielded a non-trivial solution, meaning that at least one container was delivered
(in contrast to the trivial solution of setting all variables to zero), hence having a positive
objective value.

In contrast, when considering the 420 daily-train instances, only 335 instances returned
a feasible solution, and 85 instances terminated due to exceeding the amount of available
memory or finding not even the trivial solution. Only 96 instances could be solved to
proven optimality, and out of the 239 instances that reached the time limit, 111 instances
yielded non-trivial solutions.

We now consider the gaps of instances with non-trivial solutions. Figure 5.9 shows the
performance plot for the gaps of these solutions, again grouped by their train scheduling
method. The x-axis represents the value of the gap, and the y-axis counts the number of
solutions with a gap of at most x. Figure 5.9a contains solutions of all instances, while
Fig. 5.9b only considers non-optimal instances.

We can see that the gaps of the single-train instances are smaller than the ones for
the daily-train instances due the increased hardness of the latter, as the line representing
the single-train instances is steeper than the one for the daily-train instances. This is
well-illustrated in Fig. 5.9b.

We can further observe that only a few instances have gap-values in between 0.1 and

59

5. Results

10. This suggests that once a non-trivial solution is found, CPLEX can quickly narrow
the gap significantly, but proving optimality is not easy.

5.3.3 Single-Train Instances – In-Depth Analysis of Solution
Characteristics

When investigating the solution characteristics with respect to our instances parameters,
we only consider instances that are close to or optimally solved. Otherwise, we could
draw misleading conclusions from highly suboptimal solutions. We consider a gap of
one percent as sufficiently meaningful for this purpose. In the following, we refer to
instances with solutions having a gap smaller or equal to one percent as “instances with
sufficient gap”. Note that also optimal solutions have a sufficiently small gap, hence are
also contained in this set.

Single-train instances have more then twice the number of optimally solved instances
in comparison to the daily-train instances. 332 single-train instances fulfill our afore-
mentioned gap-criterion, while only 123 daily-train instances do so. Therefore, we only
investigate the effect of instance parameters on the solution characteristics of single-train
instances in detail in this (sub)section. Solutions of the daily-train instances are briefly
investigated in that manner in the subsequent Section 5.3.4.

In order to examine the solutions, we group the single-train instances by different
instance parameters and investigate their effects on the solution characteristics in the
following.

Number of Containers

The first instance parameter under investigation is the number of containers |I|. When
looking at the hardness of our instances, the results are rather unsurprising: As the
number of containers increases, instances become harder to solve, as the number of
decisions for scheduling and shipping increase and the size of the model grows.

Out of a total of 84 instances per investigated group of solutions with |I| ∈ {1000,
2000, 3000, 4000, 5000}, 78 instances with |I| = 1000 containers terminated with proven
optimality. In contrast, only 23 instances with |I| = 5000 reach an optimal solution
within the time limit of 5 hours. This is illustrated in the performance plot w.r.t. runtime
shown in Fig. 5.10a. When comparing the line representing instances with |I| = 1000 to
the one with |I| = 5000, the times at which instances terminate with proven optimality
are more evenly spread across the allowed runtime range for instances with |I| = 1000.
In contrast, a few easy instances with |I| = 5000 terminate within the first few minutes,
and some of these instance just terminate right before reaching the time limit, but in
between, there are almost no instances terminating.

We continue our performance analysis by looking at the number of solutions with
different gaps for each group of instances, shown in Fig. 5.10b. We can see that it makes
sense to consider solutions having a gap smaller than one percent, as especially for those
instances with a higher number of containers, there are much more solutions with gaps

60

5.3. Investigation of Results

0 3600 7200 10800 14400 18000
runtime [s]

0

10

20

30

40

50

60

70

80

nu
m

be
r o

f i
ns

ta
nc

es

1000
2000
3000
4000
5000

(a) Runtime performance plot

1000 2000 3000 4000 5000
number of containers

0

10

20

30

40

50

60

70

80

nu
m

be
r o

f i
ns

ta
nc

es

0.0001
0.01
0.05
0.1

(b) Number of instances with different gaps

1000 2000 3000 4000 5000
number of containers

0.75

0.80

0.85

0.90

0.95

1.00

de
liv

er
ab

le
 c

on
ta

in
er

 ra
te

(c) Deliverable container rate for optimal
instances

1000 2000 3000 4000 5000
number of containers

0.75

0.80

0.85

0.90

0.95

1.00

de
liv

er
ab

le
 c

on
ta

in
er

 ra
te

(d) Deliverable container rate for instances
with gap ≤ 1%

Figure 5.10: Figures for investigating the effect of the number of containers on the runtime,
gaps and deliverable container rate of the single-train instances. For the deliverable
container rate, we investigate the difference between only considering optimal instances,
and also including instances with gap ≤ 1%.

of at most one percent then the ones having optimal4 solutions. For example, there are
23 optimal solutions for instances with |I| = 5000, but 55 instances have a gap smaller
then one percent, representing this group of solutions better.

The effects of just considering optimal solutions, or also including the ones with a
sufficient gap, can be seen when considering the deliverable container rate. Figure 5.10c
shows the deliverable container rate for the optimal instances, while Fig. 5.10d shows it
for instances with sufficient gap. We can observe that instances with a high number of
containers can be solved to proven optimality more often when having lower deliverable
container rates. This makes sense as non-deliverable containers do not have to be
considered during the search, making the instance easier. The same is true for instances
with sufficient gap, but the effect is much less pronounced. Therefore, it makes sense
to include instances with sufficient gap in our considerations, as we get a much better
representation of all instances.

4Recall that CPLEX considers solutions with a gap ≤ 10−4 as optimal.

61

5. Results

When considering the container delivery rates with increasing number of containers,
we can again observe meaningful differences between just considering optimal instances,
and ones with sufficient gap. Figure 5.11a shows the container delivery rate for optimal
instances, and Fig. 5.11b shows it for instances with sufficient gap. When considering
optimal solutions, it appears that the delivery rate only drops slightly when increasing the
number of containers. When including instances with sufficient gaps in our consideration,
the effect is much clearer. One of the reasons for the difference is clear, as the delivery rate
is calculated by dividing the number of delivered containers by the number of deliverable
containers. As already discussed above, instances with a large number of containers tend
to be solved to optimality more easily for those instances with lower container delivery
rates. Another explanation is that if more containers can be delivered in the solution (in
contrast to begin deliverable), the gap is easier to close, as not that many alternative
containers have to be considered, and all other containers have their own path. This might
lead to higher container delivery rates for the optimally solved instances. Furthermore,
the increase in delivery rate at |I| = 2000 is notable, as with a higher number of containers,
more round trips pay off, leading to overall more delivered containers. Nevertheless, after
|I| = 3000 it appears that for many instances, the transport capacities of many trains
are reached and all round trips that are possible and pay off already take place, resulting
in a drop in delivery rates for even higher number of containers.

We consider the active round trip rates next, illustrated in Fig. 5.11c for optimal
instances, and in Fig. 5.11d for instances with sufficient gap. We can see that the two
plots follow the same trend, but the active round trip rate is notably higher for instances
with |I| = 5000 containers for instances with sufficient gap, indicating that instances with
higher active round trips rates tend to be harder. At |I| = 1000, the active round trip is
quite low, most likely due to the container density in the network being too low for many
round trips to pay off and take place. With an increase in the number of containers, the
active round trip rate increases. At |I| = 4000, all round trips already take place for
more than a quarter of all considered instances, and at |I| = 5000, this is the case for
half the instances. This indicates that for many instances with |I| ≥ 4000, the maximum
throughput of the network is already reached.

The required train rate, illustrated in Fig. 5.11e for optimal instances, and in Fig. 5.11f
for instances with sufficient gap, appears to be very similar for instances of all sizes, i.e.,
number of containers, except for |I| = 1000 where it is significantly lower.

With fewer active round trips and a low container density, only a few containers
per terminal might be picked up. In this case, the advantages of our approach become
especially clear. As an example, imagine a single train that connects three terminals
A-B-C, and transports a single container from B to C and some container from A to C.
Our approach uses just one train, as the single container that is transported from B to C
is also shipped by this one train. In contrast when only using trains without intermediate
stops, a second train from B to C is required. Therefore, the values of the lower bound
of direct trains are potentially much higher for these types of instances.

Furthermore, note that for most instances, it appears that the required train rate is
above one. We will discuss this in more detail in Section 5.4.

62

5.3. Investigation of Results

1000 2000 3000 4000 5000
number of containers

0.0

0.2

0.4

0.6

0.8

1.0

co
nt

ai
ne

r d
el

iv
er

y
ra

te

(a) Container delivery rate for optimal in-
stances

1000 2000 3000 4000 5000
number of containers

0.0

0.2

0.4

0.6

0.8

1.0

co
nt

ai
ne

r d
el

iv
er

y
ra

te

(b) Container delivery rate for instances with
gap ≤ 1%

1000 2000 3000 4000 5000
number of containers

0.0

0.2

0.4

0.6

0.8

1.0

ac
tiv

e
ro

un
d

tri
p

ra
te

(c) Active round trip rate for optimal in-
stances

1000 2000 3000 4000 5000
number of containers

0.0

0.2

0.4

0.6

0.8

1.0
ac

tiv
e

ro
un

d
tri

p
ra

te

(d) Active round trip rate for instances with
gap ≤ 1%

1000 2000 3000 4000 5000
number of containers

0.5

1.0

1.5

2.0

2.5

3.0

re
qu

ire
d

tra
in

 ra
te

(e) Required train rate for optimal instances

1000 2000 3000 4000 5000
number of containers

0.5

1.0

1.5

2.0

2.5

3.0

re
qu

ire
d

tra
in

 ra
te

(f) Required train rate for instances with
gap ≤ 1%

Figure 5.11: Boxplots of the container delivery rate, the active round trip rate, and the
required train rate for the single-train instances, grouped by the number of containers.
On the left, only optimal instances are considered, while on the right also instances with
gap≤ 1% are included.

63

5. Results

Unsurprisingly, we can observe that the transport, storage and lifting capacity
utilization values are directly proportional to the number of containers, as shown in
Fig. 5.12. The more containers are present, the more containers have to be transported,
stored and lifted. There are no notable differences for the lifting capacity utilization
between optimal instances and ones with sufficient gaps, as can be seen when comparing
Fig. 5.12a and Fig. 5.12b.

Nevertheless, there are some noticeable differences when comparing transport and
storage capacity utilizations, which are illustrated in Figs. 5.12c to 5.12f, respectively.
The transport capacity utilization trends for optimal and sufficient gap instances are
similar. Nevertheless, the transport capacity utilization of the latter tends to be a bit
higher when compared to the former.

The same can be observed for the storage capacity utilization, but here, we can
observe another interesting phenomenon: When considering instances with sufficient gap,
the storage capacity utilization appears to drop for |I| = 5000 containers. This might
be due to the fact that for instances with a large number of containers, only instances
with fewer containers present in the network could be solved. This is also supported by
the drop in both deliverable container rate and container delivery rate, as illustrated in
Figs. 5.10c, 5.10d, 5.11a and 5.11b.

Optimal instances vs. instances with sufficient gap So far, we highlighted the
differences arising from only considering optimal instances versus also including instances
with sufficient gap into our considerations. We have seen that they follow the same
trends with only small differences, especially for harder instances. The instances with
sufficient gap appear to provide more reliable insights, as this set contains much more
(hard) instances (as well as the optimal ones). Therefore, we focus our further analysis
on only those instances with sufficient gap.

Considered Time Horizon

Next, we consider the effect of the length of the time horizon on our solutions. We
group the instances by the number of considered days h ∈ {14, 21, 28, 35}, yielding 105
instances per group.

When looking at the runtime performance plot, Fig. 5.13a, it appears that a short
time horizon makes the problem harder, as for a time horizon of 14 days, only 49 out of
105 real-world instances terminate with proven optimality, while for a time horizon of 35
days, this is the case for 67 instance.

Nevertheless, when also taking non-optimal instances with sufficient gap into account,
we gain further insight. Figure 5.13b shows the number of instances with different gaps
per group. Although the number of optimally solved solutions is lower for a shorter time
horizon, the total number of solved instances having a sufficient gap is larger, i.e., 89
instances with h = 14 have a sufficient gap, while for h = 35 we only have 80 instances.

This means that finding good solutions for instances with a smaller time horizon is
easier, but solving them to proven optimality is harder, compared to instances with a
larger time horizon. This is plausible when considering that for a constant number of

64

5.3. Investigation of Results

1000 2000 3000 4000 5000
number of containers

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

lif
tin

g
ca

pa
cit

y
ut

iliz
at

io
n

(a) Lifting capacity utilization for optimal
instances

1000 2000 3000 4000 5000
number of containers

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

lif
tin

g
ca

pa
cit

y
ut

iliz
at

io
n

(b) Lifting capacity utilization for instances
with gap ≤ 1%

1000 2000 3000 4000 5000
number of containers

0.0

0.2

0.4

0.6

0.8

1.0

tra
ns

po
rt

ca
pa

cit
y

ut
iliz

at
io

n

(c) Transport capacity utilization for optimal
instances

1000 2000 3000 4000 5000
number of containers

0.0

0.2

0.4

0.6

0.8

1.0
tra

ns
po

rt
ca

pa
cit

y
ut

iliz
at

io
n

(d) Transport capacity utilization for in-
stances with gap ≤ 1%

1000 2000 3000 4000 5000
number of containers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

st
or

ag
e

ca
pa

cit
y

ut
iliz

at
io

n

(e) Storage capacity utilization for optimally
solved instances

1000 2000 3000 4000 5000
number of containers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

st
or

ag
e

ca
pa

cit
y

ut
iliz

at
io

n

(f) Storage capacity utilization for instances
with gap ≤ 1%

Figure 5.12: Boxplots of different capacity utilization values for the single-train instances,
grouped by the number of containers. On the left, only optimal instances are considered,
while on the right also instances with gap≤ 1% are included.

65

5. Results

0 3600 7200 10800 14400 18000
runtime [s]

0

10

20

30

40

50

60

70

nu
m

be
r o

f i
ns

ta
nc

es

14
21
28
35

(a) Runtime performance plot

14 21 28 35
time horizon [days]

0

10

20

30

40

50

60

70

80

90

nu
m

be
r o

f i
ns

ta
nc

es

0.0001
0.01
0.05
0.1

(b) Number of instances with different gaps

14 21 28 35
time horizon [days]

0.75

0.80

0.85

0.90

0.95

1.00

de
liv

er
ab

le
 c

on
ta

in
er

 ra
te

(c) Deliverable container rate for instances
with gap ≤ 1%

14 21 28 35
time horizon [days]

0.0

0.2

0.4

0.6

0.8

1.0

co
nt

ai
ne

r d
el

iv
er

y
ra

te

(d) Container delivery rate for instances with
gap ≤ 1%

14 21 28 35
time horizon [days]

0.0

0.2

0.4

0.6

0.8

1.0

ac
tiv

e
ro

un
d

tri
p

ra
te

(e) Active round trip rate for instances with
gap ≤ 1%

14 21 28 35
time horizon [days]

0.5

1.0

1.5

2.0

2.5

3.0

re
qu

ire
d

tra
in

 ra
te

(f) Required train rate for instances with
gap ≤ 1%

Figure 5.13: Figures for investigating the effect of the length of the considered time
horizon (in days) for the single-train instances.

66

5.3. Investigation of Results

containers, the container density |I|
tmax

of instances with a short considered time horizon
is much higher, hence there are much more choices to consider for, e.g., a single train (at
a single stop), which makes closing the gap hard.

The decrease of the container density also explains an increase in container delivery
rates with larger considered time horizons, shown in Fig. 5.13d for instances with sufficient
gap, as well as the drop of the active round trip rate for larger time horizons, shown in
Fig. 5.13e.

The deliverable container rates of instances (with sufficient gap) do not differ signifi-
cantly for the different time horizons, as can be seen in Fig. 5.13c.

When looking at the required train rate, illustrated in Fig. 5.13f, we can observe an
increase of the required train rate with increasing length of the considered time horizon.
This makes sense as time constraints are not respected in the calculation of the lower
bound of direct trains. Thus, the required train rate is higher for large time horizons.
Furthermore, larger time horizons mean more round trips in the respective instances,
leading to an accumulating effect of trains that are not fully utilized, resulting in lower
required train rate values. For example, if a train is 90 percent utilized, and we consider
a single round trip, the required train rate is one. Nevertheless, if we have ten round
trips with the same utilization, the lower bound of required trains is nine, leading to a
required train rate of 1.11.

The above claim is also supported when looking at the transport capacity utilization
values, shown in Fig. 5.14a. We can observe that, due to lower container densities for
larger considered time windows, the transport capacity utilization values drop. Less
utilized trains also lead to higher required train rates.

When looking at the weight capacity utilization in Fig. 5.14b, we can verify the claim
that it strongly correlates with the transport capacity utilization. In general, the weight
capacity utilization is just a bit lower than the transport capacity utilization, as the
latter is usually more constraining.

Furthermore, both storage and lifting capacity utilization follow the trend of the
transport capacity utilization, as can be seen in Figs. 5.14c and 5.14d, respectively: With
larger considered time horizons, the utilization values drop.

A closer look – equal container density over time We have seen that the number
of containers is essential for the hardness of our instances. With more containers to
consider, the instances become harder to solve. Specifically, the container density |I|

tmax
is

important for the hardness.
Therefore, we briefly investigate instances with the same container density only.

Instances satisfying one of the following tuples have an equal container density over time:

(|I|, tmax) ∈ { (2000, 14), (3000, 21), (4000, 28), (5000, 35) }

We get 21 instances per group, consisting of the three instances per container buffer time
windows buffi ∈ {3, 7, 14}, and the seven different configurations of ports and cities.

Now, we can clearly observe that a larger time horizon indeed makes the instances
harder, as shown in Fig. 5.15a.

67

5. Results

14 21 28 35
time horizon [days]

0.0

0.2

0.4

0.6

0.8

1.0

tra
ns

po
rt

ca
pa

cit
y

ut
iliz

at
io

n

(a) Transport capacity utilization

14 21 28 35
time horizon [days]

0.0

0.2

0.4

0.6

0.8

1.0

we
ig

ht
 c

ap
ac

ity
 u

til
iza

tio
n

(b) Weight capacity utilization

14 21 28 35
time horizon [days]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

st
or

ag
e

ca
pa

cit
y

ut
iliz

at
io

n

(c) Storage capacity utilization

14 21 28 35
time horizon [days]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

lif
tin

g
ca

pa
cit

y
ut

iliz
at

io
n

(d) Lifting capacity utilization

Figure 5.14: Boxplots of various capacity utilization values for single-train instances with
gap ≤ 1%, grouped by the length of the considered time horizon in days.

When comparing the deliverable container rates of all of these instances, shown in
Fig. 5.15b, to the rates of instances with sufficient gap, shown in Fig. 5.15d, we can see
that for larger time horizons, only instances with fewer deliverable containers can be
solved. This can be deduced, as Fig. 5.15b shows roughly similar deliverable container
rates for all considered instances, whereas lower median values for larger time horizons
can be seen in Fig. 5.15d.

Although the container delivery rate, shown in Fig. 5.15c, roughly follows the previ-
ously observed pattern, the active round trip rate, shown in Fig. 5.15e, shows different
results: With the consideration of equal container density, the active round trip rate
now slightly increases with larger time horizons. This effect can be explained by the
non-availability of containers in the beginning and the end of our instances, highlighted in
Section 5.2. With increasing time horizons, the beginning and the end are outweighed by
the rest of the (now larger) time horizons. We can further notice a drop of the container
delivery rates for instances with the largest time horizons.

The observations for the required train rate remain the same: With increasing length
of the considered time horizon, the required train rates grow. This can be seen in
Fig. 5.15f for instances with sufficient gap.

The transport capacity utilization, shown in Fig. 5.16a, differs slightly for the different

68

5.3. Investigation of Results

14 21 28 35
time horizon [days]

0

2

4

6

8

10

12

14

16

18

nu
m

be
r o

f i
ns

ta
nc

es

0.0001
0.01
0.05
0.1

(a) Number of instances with different gaps

14 21 28 35
time horizon [days]

0.75

0.80

0.85

0.90

0.95

1.00

de
liv

er
ab

le
 c

on
ta

in
er

 ra
te

(b) Deliverable container rates for all in-
stances

14 21 28 35
time horizon [days]

0.0

0.2

0.4

0.6

0.8

1.0

co
nt

ai
ne

r d
el

iv
er

y
ra

te

(c) Container delivery rates for instances
with gap ≤ 1%

14 21 28 35
time horizon [days]

0.75

0.80

0.85

0.90

0.95

1.00

de
liv

er
ab

le
 c

on
ta

in
er

 ra
te

(d) Deliverable container rates for instances
with gap ≤ 1%

14 21 28 35
time horizon [days]

0.0

0.2

0.4

0.6

0.8

1.0

ac
tiv

e
ro

un
d

tri
p

ra
te

(e) Active round trip rates for instances with
gap ≤ 1%

14 21 28 35
time horizon [days]

0.5

1.0

1.5

2.0

2.5

3.0

re
qu

ire
d

tra
in

 ra
te

(f) Required train rates for instances with
gap ≤ 1%

Figure 5.15: Figures for analyzing single-train instances with equal container density.
The instances fulfill (|I|, tmax) ∈ { (2000, 14), (3000, 21), (4000, 28), (5000, 35) }.

69

5. Results

14 21 28 35
time horizon [days]

0.0

0.2

0.4

0.6

0.8

1.0

tra
ns

po
rt

ca
pa

cit
y

ut
iliz

at
io

n

(a) Transport capacity utilization

14 21 28 35
time horizon [days]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

lif
tin

g
ca

pa
cit

y
ut

iliz
at

io
n

(b) Lifting capacity utilization

14 21 28 35
time horizon [days]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

st
or

ag
e

ca
pa

cit
y

ut
iliz

at
io

n

(c) Storage capacity utilization

Figure 5.16: Figures for analyzing the capacity utilization values for single-train instances
with the same container density. The instances fulfill (|I|, tmax) ∈ { (2000, 14), (3000, 21),
(4000, 28), (5000, 35) } and have a gap ≤ 1%.

groups. For h = 14, the values tend to be higher, dropping at h = 21, and then increase
again with larger time horizons. This agrees with our previous argument, as a higher
container density in the middle of the considered time horizon enables the transportation
of more containers in the round trips that take place.

The lifting capacity utilization values are about the same for all groups of instances,
as can be seen in Fig. 5.16b.

Interestingly, the storage capacity utilization values appear to drop with larger time
horizons. This is illustrated in Fig. 5.16c. A possible explanation for this is that instances
with larger time horizons also have more containers in this considered setting, which are
harder to solve. Thus, fewer instances with a large number of delivered containers could
be solved for larger time horizons, leading to lower storage capacity utilization values.

Container Buffer Time Windows

When considering the effect of size of the container buffer time windows buffi ∈ {3, 7, 14}
days, we have 140 instances per group. The number of instances per group that could be
solved with a given maximum gap are shown in Fig. 5.17a. Out of 140 instances with a

70

5.3. Investigation of Results

3 7 14
container buffer time windows [days]

0

15

30

45

60

75

90

105

120

135

nu
m

be
r o

f i
ns

ta
nc

es

0.0001
0.01
0.05
0.1

(a) Number of instances with different gaps

3 7 14
container buffer time windows [days]

0.75

0.80

0.85

0.90

0.95

1.00

de
liv

er
ab

le
 c

on
ta

in
er

 ra
te

(b) Deliverable container rate for instances
with gap ≤ 1%

3 7 14
container buffer time windows [days]

0.0

0.2

0.4

0.6

0.8

1.0

co
nt

ai
ne

r d
el

iv
er

y
ra

te

(c) Container delivery rate for instances with
gap ≤ 1%

3 7 14
container buffer time windows [days]

0.0

0.2

0.4

0.6

0.8

1.0

ac
tiv

e
ro

un
d

tri
p

ra
te

(d) Active round trip rate for instances with
gap ≤ 1%

Figure 5.17: Figures for investigating the effect of the container buffer time windows
buffi ∈ {3, 7, 14} (in days) on the single-train instances.

buffer time window buffi = 3 days, 125 instances terminate with proven optimality, while
for buffi = 7 days, we still have 83 optimally solved instances, and for instances with
buffi = 14 days, only 28 instances terminated with proven optimality. This suggests that
having small time windows leads to easier instances. This is for two reasons:

As mentioned in Section 5.3.1, the deliverable container rate is lower when the buffer
time windows are smaller, as many containers cannot be delivered at all. Having fewer
containers to consider makes instances easier, as already mentioned. ?? shows the
deliverable container rate for instances with sufficient gap, grouped by the different buffer
time windows.

In addition, longer buffer time windows lead to more routing options for the containers,
hence to harder instances. This effect can be seen clearly when considering the low
number of solved instances for buffi = 14, suggesting that the choice of appropriate
container buffer time windows is essential for the hardness of the instances.

When looking at the container delivery rates, shown in Fig. 5.17c we can see an
unexpected drop for buffi = 14. This is surprising, as we would expect higher container
delivery rates for larger buffer time windows, as these allow a greater flexibility in

71

5. Results

scheduling. Again, we have two explanations.
The first explanation is that larger buffer time window lead to harder instances, and

only instances with lower delivery rates could be solved with sufficient gap.
The second explanation is that for large buffer time windows, active trains (and round

trips) can almost be fully utilized, leaving other round trips with too few containers to
take place. An example is that instead of having three trains that are 75 percent utilized,
the larger buffer time windows allow us to schedule the containers in a way to only use
two fully utilized trains. Nevertheless, the remaining 25 percent of containers of the
last train remain non-delivered, as the last train does not pay off with a load of only 25
percent. This is supported by the drop in active round trip rates, shown in Fig. 5.17d,
and the increasing transport capacity utilization for larger container buffer time windows,
shown in Fig. 5.18b.

When considering the required train rate, illustrated in Fig. 5.18a, we can see that for
instances with buffi = 3, the values are often above one, while for buffi = 7, the median is
below one, and for buffi = 14, it is about one. Lower transport capacity utilizations lead
to higher required train rates and vice verse. When considering instances with buffi = 14,
it appears that the required train rate increases compared to instances with buffi = 7.
Nevertheless, this is due to the fact that more instances with fewer terminals could be
solved in general, which tend to have higher required train rates (see Section 5.4).

With lower container delivery rates for buffi = 14, the lifting capacity utilization
values also drop, as can be seen in Fig. 5.18d.

In contrast, the storage capacity utilization drastically increases for longer container
buffer time windows, as show in Fig. 5.18c. This is plausible, as with larger buffer time
windows, (delivered) containers are guaranteed to remain longer in our network and have
to be stored at the terminals.

Number of Terminals (Ports and Cities) (& Number of Trains)

In this section, we consider the number of terminals. Nevertheless, the observations of
this section also hold for our instances when considering the number of trains, as the
number of trains |L| strongly correlates with the number of ports |P | and cities |C|: The
number of trains follows the formula |L| = |P | + |C| − 1, except for (|P |, |C|) = (3, 3)
where |L| = 5, and (|P |, |C|) = (3, 4) where |L| = 7. Table 3 in the appendix contains
the rail networks of all numbers of terminals, and their associated train lines5. In the
following, the plots are therefore ordered by ascending number of terminals and trains.

Similar to previous observations, the container density per terminal and train decreases
as the number of terminals increases, making the problem easier (especially w.r.t. proven
optimality). At the same time, more routing options are potentially available for each
container, making the problem harder. This is reflected in the performance plot w.r.t.
runtime, see Fig. 5.19a, and in Fig. 5.19b showing the number of instances with different
gaps per (|P |, |C|) group, each with a total of 60 instances. When looking at the

5Note that for the single-train instances under consideration, the number of trains lines also corresponds
to the number of trains.

72

5.3. Investigation of Results

3 7 14
container buffer time windows [days]

0.5

1.0

1.5

2.0

2.5

3.0

re
qu

ire
d

tra
in

 ra
te

(a) Required train rate

3 7 14
container buffer time windows [days]

0.0

0.2

0.4

0.6

0.8

1.0

tra
ns

po
rt

ca
pa

cit
y

ut
iliz

at
io

n

(b) Transport capacity utilization

3 7 14
container buffer time windows [days]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

st
or

ag
e

ca
pa

cit
y

ut
iliz

at
io

n

(c) Storage capacity utilization

3 7 14
container buffer time windows [days]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

lif
tin

g
ca

pa
cit

y
ut

iliz
at

io
n

(d) Lifting capacity utilization

Figure 5.18: Required train rate and capacity utilization values for single-train instances
with gap ≤ 1%, grouped by their container buffer time windows buffi ∈ {3, 7, 14} (in
days).

performance plot, instances with (|P |, |C|) = (1, 2) yield the lowest number of optimal
solutions with only 27 out of 60 instances, while (3,3)-instances have the most optimally
solved solutions with 38 out of 60, and (3,4)-instances yield 34. Nevertheless, when also
considering solutions with sufficient gap, we see the opposite: 59 of the (1,2)-instances
have a gap smaller than one percent, while the instances with (p, c) = (3, 4) now have
the fewest out of all instance groups with only 38 solutions.

Knowing that the deliverable container rate plays a significant role in the number
of instances that can be solved, we have a look at Fig. 5.19d that shows the deliverable
container rate for instances with container buffer time windows of buffi = 3. We know
from Section 5.3.1 that these instances are the ones with deliverable rates that are
significantly lower than one. Once again, when comparing Fig. 5.19d with Fig. 5.19b, we
can see that instances tend to be solved more easily when the deliverable container rate
is low.

It is interesting to note that instances with (|P |, |C|) = (2, 3) and (3, 3) yield much
lower deliverable container rates. Figure 5.19c shows the rail network for (|P |, |C|) = (3, 4).
When considering the sizes of the terminals, we know that the last two ports to add
to our network (when increasing its size w.r.t. the number of terminals) are RTD and

73

5. Results

0 3600 7200 10800 14400 18000
runtime [s]

0

5

10

15

20

25

30

35

nu
m

be
r o

f i
ns

ta
nc

es

(1, 2)
(1, 3)
(2, 3)
(2, 4)
(3, 3)
(2, 5)
(3, 4)

(a) Runtime performance plot

(1, 2) (1, 3) (2, 3) (2, 4) (3, 3) (2, 5) (3, 4)
number of ports and cities

0

6

12

18

24

30

36

42

48

54

60

nu
m

be
r o

f i
ns

ta
nc

es

0.0001
0.01
0.05
0.1

(b) Number of instances with different gaps

VIE
SZB

DUI

MUN

HMB

AWP
RTD

(c) Rail network with (|P |, |C|) = (3, 4)

(1, 2) (1, 3) (2, 3) (2, 4) (3, 3) (2, 5) (3, 4)
number of ports and cities

0.75

0.80

0.85

0.90

0.95

1.00

de
liv

er
ab

le
 c

on
ta

in
er

 ra
te

(d) Deliverable container rate for all in-
stances with buffi = 3.

(1, 2) (1, 3) (2, 3) (2, 4) (3, 3) (2, 5) (3, 4)
number of ports and cities

0.0

0.2

0.4

0.6

0.8

1.0

co
nt

ai
ne

r d
el

iv
er

y
ra

te

(e) Container delivery rate for instances with
gap ≤ 1%

(1, 2) (1, 3) (2, 3) (2, 4) (3, 3) (2, 5) (3, 4)
number of ports and cities

0.0

0.2

0.4

0.6

0.8

1.0

ac
tiv

e
ro

un
d

tri
p

ra
te

(f) Active round trip rate for instances with
gap ≤ 1%

Figure 5.19: Figures for investigating the effect of the number of terminals on the single-
train instances. Each group is denoted by (|P |, |C|), where |P | is the number of ports
and |C| is the number of cities.

74

5.3. Investigation of Results

AWP, and the last city is SZB. An explanation for the lower deliverable rates for (2,3)
and (3,3) is that with the addition of one (or two) ports, the long-lasting round trip
RTD-DUI-MUN-VIE (AWP-DUI-MUN-VIE) is added, and with narrow time windows
many containers originating from VIE cannot be transported in time. When adding the
additional city SZB, the number of container at VIE is reduced, increasing the deliverable
container rate again.

When considering the container delivery rate and the active round trip rate, shown
in Fig. 5.19e and Fig. 5.19f respectively, we can see that a low number of terminals
(resulting in a higher density of containers per terminal and train), leads to higher active
round trip rates. At the same time, the median of the container delivery rate is lower,
but deviations are much higher than for instances with more terminals. This indicates
that for instances with just on port, the other instance parameters strongly influence the
container delivery rate. The same conclusions can be drawn when considering the high
deviations of the active round trip values for instances with more than one port.

Lower container densities might also be the reason for dropping transport capacity
utilization values when increasing the number of terminals. These values can be seen
in Fig. 5.20b. The same can be said about the storage and lifting capacity utilization,
illustrated in Fig. 5.20c and Fig. 5.20d, but the effect is less pronounced.

The required train rate, shown in Fig. 5.20a, appears to be above one for most
instances with one port. This is plausible when considering the fact that instances with
only one port have trains that are scheduled in a way that each city is directly connected
by a single train line to the port. For containers that are transported from city to city,
two trains are required instead of having a single direct connection. Thus, the required
train rate values are higher for these instances. In contrast, it appears that with a higher
number of ports (and terminals in general), the required train rate drops, with medians
of all groups being below one.

5.3.4 Daily-Train Instances

In the previous section, we mostly considered instances generated with the single-train
scheduling method. These instances have just one scheduled train per train connection
(potentially performing recurring round trips). In this section, we briefly consider daily-
train instances, where for every train connection, a train leaves the home terminal every
day at the same time, leading to an increased number of trains. While single-train
instances have at most 7 trains, daily-train instances have up to 27 trains.

When comparing the deliverable container rates of the daily-train instances to the
single-train instances, it is rather unsurprising that the deliverable container rates are
higher for the daily-train instances. Even instances with narrow container buffer time
windows have more containers that can be delivered, as more trains are scheduled in
the daily-train instances. Nevertheless, there are still instances where less than ninety
percent of containers are deliverable. Figure 5.21a shows the deliverable rates for all
single-train instances, and Fig. 5.21b for all daily-train instances.

As discussed in Section 5.3.3, 332 instances of the single-train have a sufficient gap,
while only 123 of the daily-train instances do so. In order to make the results comparable,

75

5. Results

(1, 2) (1, 3) (2, 3) (2, 4) (3, 3) (2, 5) (3, 4)
number of ports and cities

0.5

1.0

1.5

2.0

2.5

3.0
re

qu
ire

d
tra

in
 ra

te

(a) Required train rate

(1, 2) (1, 3) (2, 3) (2, 4) (3, 3) (2, 5) (3, 4)
number of ports and cities

0.0

0.2

0.4

0.6

0.8

1.0

tra
ns

po
rt

ca
pa

cit
y

ut
iliz

at
io

n

(b) Transport capacity utilization

(1, 2) (1, 3) (2, 3) (2, 4) (3, 3) (2, 5) (3, 4)
number of ports and cities

0.0

0.1

0.2

0.3

0.4

0.5

0.6

st
or

ag
e

ca
pa

cit
y

ut
iliz

at
io

n

(c) Storage capacity utilization

(1, 2) (1, 3) (2, 3) (2, 4) (3, 3) (2, 5) (3, 4)
number of ports and cities

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

lif
tin

g
ca

pa
cit

y
ut

iliz
at

io
n

(d) Lifting capacity utilization

Figure 5.20: Boxplots for the required train rate and capacity utilization values for
single-train instances with gap ≤ 1%, grouped by their respective number of terminals.
Each group is denoted by (|P |, |C|), where |P | is the number of ports and |C| is the
number of cities.

3 7 14
container buffer time windows [days]

0.75

0.80

0.85

0.90

0.95

1.00

de
liv

er
ab

le
 c

on
ta

in
er

 ra
te

(a) single-train

3 7 14
container buffer time windows [days]

0.75

0.80

0.85

0.90

0.95

1.00

de
liv

er
ab

le
 c

on
ta

in
er

 ra
te

(b) daily-train

Figure 5.21: Boxplots of the deliverable container rates for all single-train instances on
the left, and for all daily-train instances on the right. The instances are grouped by
length of the container buffer time windows buffi ∈ {3, 7, 14}.

76

5.3. Investigation of Results

we filter out the single-train instances that do not correspond to the 123 daily-train
instances with respect to their respective instance parameters. The remaining 123 single-
train instances have the same parameters as the considered daily-train instances (except
for the train scheduling method and, therefore, the number of trains)6.

Figure 5.22 contains boxplots for the values of the container delivery rates, the active
round trip rates, and required train rates of the daily-train instances on the right side,
and the corresponding single-train instances on the left.

The container delivery rate is higher for the daily-train instances, and the active
round trip rate is much lower. In the daily-train instances, much more trains are available,
but still only the required round trips take place, leading to lower active round trip values.
Nevertheless, the higher container delivery rates of the daily-train instances indicate that
the total number of active round trips is higher, as more containers have been shipped
(and the transport capacity utilization values are not significantly higher).

A notable difference to the previously observed trends is that the daily-train instance
do not have dropping delivery rate values with a higher number of containers. In contrast
to the single-train instances, where the maximum throughput of the network appears to
be reached for many |I| = 3000 already, the daily-train instances have sufficiently many
trains (and round trips) to cover the increasing demand.

When considering the required train rates, the daily-train instances appear to have
slightly higher values. When taking the transport capacity utilization into account, shown
in Fig. 5.23b and Fig. 5.23a for daily-train instances and the corresponding single-train
instances respectively, we can see that the daily-train instances have lower values. With
more transported containers and active round trips (indicated by the increased container
delivery rates) and less train capacity utilization, the required train rate values naturally
increase.

Next, we further investigate the capacity utilization values of the daily-train instances
in comparison to the single-train instances. The corresponding plots are shown in Fig. 5.23.
Again, plots of the daily-train instances (with sufficient gap) are on the right side, while
the corresponding single-train capacity utilization values are on the left. We also consider
the values of the single-train instances (previously) shown in Fig. 5.12. (These plots
contain not only values of the corresponding, but values of all single-train instances with
sufficient gap.)

The transport capacity utilization values of the daily-train instances are shown in
Fig. 5.23b, and the ones for the corresponding single-train instances in Fig. 5.23a (and
Fig. 5.12c and Fig. 5.12d). When comparing the daily-train instances to the corresponding
single-train instances, it appears that for a small number of containers, the daily-train has
slightly higher transport utilization values than the corresponding single-train instances,
while for a large number of containers, it has slightly lower transport utilization values.
Nevertheless, when looking at the plots containing all single-train instances, we have
a similar distribution of values. An explanation for the observed difference to the
corresponding single-train instances is that for small number of containers, the container

6Note that the same number of containers was generated for each instance pair, but the parameters
of the individual containers differ.

77

5. Results

1000 2000 3000 4000 5000
number of containers

0.0

0.2

0.4

0.6

0.8

1.0
co

nt
ai

ne
r d

el
iv

er
y

ra
te

(a) Container delivery rate for the corre-
sponding single-train instances

1000 2000 3000 4000 5000
number of containers

0.0

0.2

0.4

0.6

0.8

1.0

co
nt

ai
ne

r d
el

iv
er

y
ra

te

(b) Container delivery rate for the daily-
train instances with gap ≤ 1%

1000 2000 3000 4000 5000
number of containers

0.0

0.2

0.4

0.6

0.8

1.0

ac
tiv

e
ro

un
d

tri
p

ra
te

(c) Active round trip rate for corresponding
single-train instances

1000 2000 3000 4000 5000
number of containers

0.0

0.2

0.4

0.6

0.8

1.0

ac
tiv

e
ro

un
d

tri
p

ra
te

(d) Active round trip rate for the daily-train
instances with gap ≤ 1%

1000 2000 3000 4000 5000
number of containers

0.5

1.0

1.5

2.0

2.5

3.0

re
qu

ire
d

tra
in

 ra
te

(e) Required train rate for corresponding
single-train instances

1000 2000 3000 4000 5000
number of containers

0.5

1.0

1.5

2.0

2.5

3.0

re
qu

ire
d

tra
in

 ra
te

(f) Required train rate for the daily-train
instances with gap ≤ 1%

Figure 5.22: Delivery rate, active round trip rate, and required train rate values for
the daily-train instances with gap ≤ 1% are shown on the right side. Plots for the
corresponding single-train instances are shown on the left. This set of single-train
instances differs only in the train scheduling method, but otherwise has the same instance
parameters as the respective daily-train instances, yielding the same number (123) of
considered instances.

78

5.3. Investigation of Results

1000 2000 3000 4000 5000
number of containers

0.0

0.2

0.4

0.6

0.8

1.0

tra
ns

po
rt

ca
pa

cit
y

ut
iliz

at
io

n

(a) Transport capacity utilization for the
corresponding single-train instances

1000 2000 3000 4000 5000
number of containers

0.0

0.2

0.4

0.6

0.8

1.0

tra
ns

po
rt

ca
pa

cit
y

ut
iliz

at
io

n

(b) Transport capacity utilization for the
daily-instances with gap ≤ 1%

1000 2000 3000 4000 5000
number of containers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

st
or

ag
e

ca
pa

cit
y

ut
iliz

at
io

n

(c) Storage capacity utilization for the cor-
responding single-train instances

1000 2000 3000 4000 5000
number of containers

0.0

0.1

0.2

0.3

0.4

0.5

0.6
st

or
ag

e
ca

pa
cit

y
ut

iliz
at

io
n

(d) Storage capacity utilization for daily-
train instances with gap ≤ 1%

1000 2000 3000 4000 5000
number of containers

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

lif
tin

g
ca

pa
cit

y
ut

iliz
at

io
n

(e) Lifting capacity utilization for the corre-
sponding single-train instances

1000 2000 3000 4000 5000
number of containers

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

lif
tin

g
ca

pa
cit

y
ut

iliz
at

io
n

(f) Lifting capacity utilization for the daily-
train instances with gap ≤ 1%

Figure 5.23: Boxplots for comparing the different capacity utilization values for the
daily-train instances with gap ≤ 1%, plotted on the right, with their corresponding
single-train instances plotted on the left.

79

5. Results

density in the single-train instances is so low that the active round trips cannot be
utilized well. In contrast, the daily-train instances can pick the best choice of all active
round trips for transporting more containers. When considering instances with larger
number of containers (resulting in higher container densities), almost all round trips of
the single-train instances are active to transport as many containers as possible, leading
to higher train utilization values. For the daily-train instances, much more round trip can
be active. Therefore, the container density is not high enough to increase the transport
capacity utilization, as it is the case for the single-train instances.

When considering the storage and lifting capacity utilization values, shown in
Fig. 5.23d and Fig. 5.23f, we compare them to Fig. 5.23c and Fig. 5.23e respectively, (and
also to Fig. 5.12e, Fig. 5.12f, and to Fig. 5.12a and Fig. 5.12b respectively). We can see
that especially for instances with a large number of containers, the daily-train instances
tend to have higher utilization values. This makes sense as the container delivery rate is
also much higher for these instances, hence more containers are transported, lifted and
stored. Note that this is not directly reflected in the transport capacity utilization values,
as potentially more trains (or round trips) are used, but the individual trains (and round
trips) are not utilized more on average.

5.3.5 Revenue Factor

In the previous sections, we considered instances with a revenue factor of ρ = 1, i.e.,
whose costs and revenue parameters were derived from real-world data, as described
in Section 4.2.3. To investigate the effects of varying profit margins on the resulting
solutions, we will now compare them to additionally performed benchmark runs of our
single-train instances with different revenue factors ρ ∈ {0.5, 1.5, 2.5}.

Figure 5.24a shows the number of (single-train) instances with respect to their gap,
grouped by their respective earning rates ρ ∈ {0.5, 1, 1.5, 2.5}. Every instance group
has a total of 420 instances. Figure 5.24b and Fig. 5.24c are the performance plots for
runtime and gaps of instances with ρ ∈ {1, 1.5, 2.5}. The remaining three plots, Fig. 5.24d,
Fig. 5.24e and Fig. 5.24f show boxplots of the container delivery rate, the active round
trip rate, and the required train rate respectively. For these and the following plots, we
again only consider instances with sufficient gap. Figure 5.25 contains boxplots for the
capacity utilization values.

In Fig. 5.24a we can clearly see that the instances with a revenue factor of ρ = 0.5
are much easier to solve that the other groups. The reason for this gets clear when
looking at the container delivery rate: It is zero for almost all instances, simultaneously
resulting in low active round trip rates, as the container revenues are too low to make the
round trips pay off and take place. For the few instances where indeed some containers
were delivered, the transport capacity utilization is high, as it only then pays off to ship
containers with low revenue at all.

When looking at the higher revenue factors ρ = 1.5 and ρ = 2.5, we can observe that
the instances also appear to get slightly easier with increasing revenue factor. This can be
seen in the performance plots Fig. 5.24b and Fig. 5.24c. 332 instances yielded sufficient

80

5.3. Investigation of Results

0.5 1.0 1.5 2.5
revenue factor

0

50

100

150

200

250

300

350

400

nu
m

be
r o

f i
ns

ta
nc

es

0.0001
0.01
0.05
0.1

(a) Number of instances with different gaps

0 3600 7200 10800 14400 18000
runtime [s]

0

50

100

150

200

250

nu
m

be
r o

f i
ns

ta
nc

es

1.0
1.5
2.5

(b) Performance plot of runtimes

10 4 10 3 10 2 10 1 100 101

gap

0

50

100

150

200

250

300

350

nu
m

be
r o

f i
ns

ta
nc

es

1.0
1.5
2.5

(c) Performance plot of gaps

0.5 1.0 1.5 2.5
revenue factor

0.0

0.2

0.4

0.6

0.8

1.0

co
nt

ai
ne

r d
el

iv
er

y
ra

te

(d) Container delivery rate for instances with
gap ≤ 1%

0.5 1.0 1.5 2.5
revenue factor

0.0

0.2

0.4

0.6

0.8

1.0

ac
tiv

e
ro

un
d

tri
p

ra
te

(e) Active round trip rate for instances with
gap ≤ 1%

0.5 1.0 1.5 2.5
revenue factor

0.5

1.0

1.5

2.0

2.5

3.0

re
qu

ire
d

tra
in

 ra
te

(f) Required train rate for instances with
gap ≤ 1%

Figure 5.24: Figures for investigating single-train instances with earning rates ρ ∈
{0.5, 1, 1.5, 2.5}.

81

5. Results

0.5 1.0 1.5 2.5
revenue factor

0.0

0.2

0.4

0.6

0.8

1.0

tra
ns

po
rt

ca
pa

cit
y

ut
iliz

at
io

n

(a) Transport capacity utilization for in-
stances with gap ≤ 1%

0.5 1.0 1.5 2.5
revenue factor

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

lif
tin

g
ca

pa
cit

y
ut

iliz
at

io
n

(b) Lifting capacity utilization for instances
with gap ≤ 1%

1.0
revenue factor

0.0

0.1

0.2

0.3

0.4

0.5

0.6

st
or

ag
e

ca
pa

cit
y

ut
iliz

at
io

n

(c) Storage capacity utilization for instances
with gap ≤ 1%

Figure 5.25: Boxplots of the capacity utilization values for investigating single-train
instances with earning rates ρ ∈ {0.5, 1, 1.5, 2.5}.

gaps (≤ one percent) when considering the ρ = 1 instance group, while for ρ = 1.5 we
have 341 instances, and for ρ = 2.5 a total of 348 instances have sufficient gaps.

Unsurprisingly, the active round trips rate values increase with higher revenue factors,
as more and more round trips pay off with higher container revenues. At the same time,
even fewer containers are transported on each train, as indicated by the drop in transport
capacity utilization, shown in Fig. 5.25a. Simultaneously, the container delivery rates
and the required train rate both increase with higher revenue factors, (as can be seen in
Fig. 5.24d and Fig. 5.24f), as well as the lifting and storage capacity utilization values
(shown in Fig. 5.25b and Fig. 5.25c respectively).

5.4 Summary of Results and Practical Insight

In the previous sections, we have analyzed our instances and their solutions with respect
to the solutions characteristics from Section 5.1 quite thoroughly. In this section, we
summarize the key results from above and consider practical aspects of our problem and
our results.

82

5.4. Summary of Results and Practical Insight

5.4.1 Factors of Hardness

We have seen that the number of containers, and especially the container density over
time, significantly influence the hardness of our instances. Nevertheless, being able to
consider large numbers of containers is important for practice, as in real-world scenarios,
we might have to consider many more containers than in the instances we currently
investigated.

The hardness of the problem also grows with an increased number of trains and
considered terminals, and with the length of the considered time horizon (when the
container density remains the same).

An important difference between the single-train and the daily-train instances is
that the latter are harder, but yield higher container delivery rates for high numbers of
containers as more trains (and round trips) are available.

Furthermore, we have seen that the length of the container buffer time windows is
essential for the hardness. Customers prefer small time windows, as this gives them more
certainty when planning their operations. Nevertheless, we have seen that the number of
deliverable containers drops significantly with narrow buffer time windows. The same
holds true for the transport capacity utilization values. Therefore, out of our investigated
values buffi ∈ {3, 7, 14}, picking an intermediate value of seven days as the buffer time
windows appears to be best in practice.

5.4.2 (Incomparable) Train Utilization

When comparing the transport capacity utilization of our instances with real-world data,
Black et al. [10] mention a typical load factor (=average fill of a vehicle) of 75% on
average [10, p. 16].

Nevertheless, it is difficult to compare our values to actual real-world data, as our
instance are artificially generated. We have seen that the transport capacity utilization
highly depends on the available number of containers, and more specifically the container
density over time, per terminal and train. If the container density is sufficiently high,
and the container buffer time windows are sufficiently large, the trains can be utilized
well. If this is not the case, they are utilized poorly. In practice, many more containers
(and higher container densities) than we have considered in this study will have to be
accommodated, leading to potentially higher transport capacity utilization values than
we have observed for our instances.

Another notable fact is that the revenues of the individual containers and the individual
round trip costs influence the train utilization significantly. We have seen in Section 5.3.5
that with higher container revenues, the transport capacity utilization drops. The
opposite is the case when increasing the round trip costs: With higher round trip costs,
more container revenue has to be collected for a single round trip to be profitable, hence
more containers have to be transported on each round trip. We expect that tuning these
parameters would therefore lead to higher transport capacity utilization values.

In summary, we have seen that our instances tend to have lower transport capacity
utilization values than 75 percent. Nevertheless, a fair comparison to this value can only

83

5. Results

A B
0

50

100

150

200

250

300

350

400

450

nu
m

be
r o

f i
ns

ta
nc

es

0.0001
0.01
0.05
0.1
inf

(a) Number of instances with different gaps
– “inf” addresses instances with larger gaps
or no solution.

A B

0.5

1.0

1.5

2.0

2.5

3.0

re
qu

ire
d

tra
in

 ra
te

(b) Required train rate for instance with gap
≤ 1%

Figure 5.26: Group “A” contains instances that either have just one port or container
buffer time windows with length buffi = 3 days, while group “B”contains the remaining
instances.

be obtained by using real-world data to reflect an authentic container density distribution
and a realistic number of containers. Furthermore, adaptations of the container revenues
and round trip costs might force higher transport capacity utilization values.

5.4.3 Required Train Rate

Besides the transport capacity utilization, the required train rate is highly relevant for
practical insights.

We have seen that the number of considered terminals plays a key role influencing
this solution characteristic. If we consider just one port and trains with only two stops
(like direct trains) on their round trips, as in our instances with |P | = 1, |C| ∈ {2, 3}, the
resulting required train rates are high, usually above one. Considering more terminals
and trains with more than two stops on their round trips leads to the lower required
train rates that we aim for.

The required train rate also profits from larger container buffer time windows, as
small buffer time windows lead to low transport capacity utilization values and high
required train rates.

In the previous sections, it appeared that the required train rate is mostly above one,
indicating that our approach does not work well in practice. Nevertheless, this is due
to the overrepresentation of instances with small buffer time windows (three days) and
just one port, as these are easier to solve (with sufficient gap). These are precisely the
instances where it appears that our method does not perform well for the mentioned
reasons.

Figure 5.26a shows the number of instances with different gaps for instances with one
port or container buffer time windows of buffi = 3 days, labeled group “A”, and group
“B” are the remaining investigated instances.

84

5.4. Summary of Results and Practical Insight

When looking at the required train rates of these groups of instances with sufficient
gap, illustrated in Fig. 5.26b, we can see that group “B” has required train rate values
mostly below one. This indicates that for instances with these types of parameters, our
method would outperform a system that uses direct trains.

5.4.4 Low Priority of Freight Trains

Another important factor to consider is that in practice, freight trains have lower priority
than passenger trains w.r.t. their scheduled times and the use of the required tracks.
The reason for the low priority of freight trains is that passenger trains have to rely on
strict schedules to ensure customer satisfaction and their continued use. In contrast,
the actual arrival and departure dates of freight trains sometimes deviate from their
originally planned ones by multiple days. It is common that freight trains start their
journey earlier than planned if the required tracks are available and all containers are
already loaded. Conversely, freight trains are often delayed when passenger trains block
the required tracks.

When trains are scheduled as we propose in this study, we can only compensate this
kind of uncertainty in freight train schedules to some extent. We can increase the dwell
times by a buffer compensation time to absorb some of the incurred delays. Nevertheless,
this is only possible to some degree, as otherwise the travelling times of the individual
round trips would take too long. As containers might be transported by multiple trains,
the lateness of a single train might also influence the lateness of subsequent trains.
Nevertheless, having high container and train densities might counteract this problem. In
this case, containers might just use the next freight train and still arrive on time, while
the previous train can carry another container instead.

These factors are important to keep in mind when considering practical implementa-
tions of our proposed system.

5.4.5 Investigation of Bottlenecks

Another area of interest for practical implementations is the identification of bottlenecks
within the system. Identifying the most occupied resources can potentially lead to
cheap improvements of the system’s throughput when the corresponding parameters are
accordingly adapted.

One way to identify bottlenecks is to disable individual sets of capacity constraints
within our model from Section 3.3.3, specifically the storage capacity constraints (3.3),
lifting capacity constraints (3.6), transport capacity constraints (3.4), or weight capacity
constraints (3.5).

We performed additional experiments on our previously studied instances to investigate
their bottlenecks. Figure 5.27a contains the delivery rates of single-train instances with
sufficient gap without any disabled constraints7. Figure 5.27b shows the delivery rates of
the same set of instances run with disabled lifting constraints, and Fig. 5.27c contains the

7identical to Fig. 5.11b from Section 5.3.3

85

5. Results

1000 2000 3000 4000 5000
number of containers

0.0

0.2

0.4

0.6

0.8

1.0

co
nt

ai
ne

r d
el

iv
er

y
ra

te

(a) Container delivery rate (all constraints)
for instances with gap ≤ 1%

1000 2000 3000 4000 5000
number of containers

0.0

0.2

0.4

0.6

0.8

1.0

co
nt

ai
ne

r d
el

iv
er

y
ra

te

(b) Container delivery rate for correspond-
ing instances with disabled lifting capacity
constraints

1000 2000 3000 4000 5000
number of containers

0.0

0.2

0.4

0.6

0.8

1.0

co
nt

ai
ne

r d
el

iv
er

y
ra

te

(c) Container delivery rate for correspond-
ing instances with disabled storage capacity
constraints

1000 2000 3000 4000 5000
number of containers

0.0

0.2

0.4

0.6

0.8

1.0

co
nt

ai
ne

r d
el

iv
er

y
ra

te

(d) Container delivery rate for correspond-
ing instances with disabled lifting, storage,
weight and transport capacity constraints

Figure 5.27: Container delivery rates for the single-train instances with gap ≤ 1%, and
the same instances with a set of disabled constraints.

instances run with disabled storage constraints. Disabling the storage or lifting capacity
constraints did not result in large increases of delivery rates, although a slight increase is
notable, meaning that a few more containers could be delivered overall. This indicates
that the primary bottlenecks of our instances are the transport (and weight) capacity
constraints, i.e., the number of scheduled trains (cf. daily-train instances).

This can be verified by considering Fig. 5.27d. Here, all constraints have been disabled,
leading to a drastic increase in the container delivery rates. When disabling all constraints,
the only reason for containers not to be delivered is that the container density is too low
for round trips to pay off.

Similar investigations can be done on individual instances to identify their bottlenecks.
For example, when looking at our exemplary instance from Section 5.2 with disabled
storage constraints, it would make sense to increase the storage capacity of terminals
MUN and VIE. This can be seen in Fig. 5.28, showing the utilization of storage capacity
over time. The dashed lines represents the terminal’s current maximum storage capacity,
which is exceeded for MUN and VIE, but not for AWP.

86

5.4. Summary of Results and Practical Insight

0 250 500 750 1000 1250 1500 1750 2000
0

50

100

150

200

250

300

nu
m

be
r o

f c
on

ta
in

er
s

AWP
MUN
VIE

Figure 5.28: Number of stored containers for the three terminals AWP, MUN and VIE
of our exemplary instance, run with disabled storage capacity constraints, plotted over
time. The dashed lines are the terminal’s nominal storage capacities.

Increasing the storage capacities lead to an increase of the container delivery rate
from 0.723 to 0.738. At the same time, the storage capacity utilization increases from
0.258 to 0.297. The transport capacity utilization increases from 0.659 to 0.698, and the
active round trip rate even drops from 0.659 to 0.724. This means that we can omit
an entire round trip (and save its associated costs), while still increasing the number of
delivered containers and the overall collected revenue.

87

CHAPTER 6
Conclusion

In this study, we have investigated the MCRP, a new problem that arises in the context
of collaborative freight logistics. We optimize the shipment of containers and the use
of trains from the point of view of a freight forwarder within a rail network. Instead of
using direct trains, which is the current practice, trains are operated with potentially
recurring round trips, multiple stops, and fixed schedules. This allows us to optimize
container paths from a global point of view. We can try to avoid underutilized runs
(round trips) of trains by shifting containers to other trains. This saves costs for the
freight forwarder, which are then able to provide better prices for the customers as well.

After an extensive literature review in Chapter 2, we formally described the problem
and clarified its context in Chapter 3. We used a time-expanded network to represent the
problem and proposed an ILP model to solve it. Furthermore, we proved the complexity
of our problem to be NP-complete w.r.t. its decision variant.

We created artificial instances for benchmarking the problem, described in detail in
Chapter 4. These instances are based on a rail network that connects a subset of ten
currently relevant cities for rail freight transport. To obtain the network, we assumed a
hub-and-spoke architecture and solve a small ILP to minimize the length of the connecting
tracks. We identified suitable realistic instance parameters through further literature
review and feedback from our project partners, and provided sources for their respective
values.

We discussed the results of applying our algorithm to these instances in Chapter 5.
There, we analysed the impact of different input parameters on the hardness of our
problem, as well as their influence on the characteristics of our solutions. To provide
insights into the composition of individual solutions, we also investigated the results of a
single exemplary instance in detail.

Finally, we summarized the following key results of our analysis and discussed
managerial insight in Section 5.4: Beside the size of the instances, an appropriate choice
of intermediately-sized container buffer time windows appears so be important for both
the hardness of our problem and customer satisfaction. High container densities are

89

6. Conclusion

necessary to obtain high train utilizations. And using trains as operated in the MCRP
appears to be promising for a variety of larger instances. Nevertheless, without further
investigations and the use of real-world data, it still remains an open question whether
the use of freight trains with recurring round trips, multiple stops, and fixed schedules
would be beneficial in practice.

6.1 Future Work

In order to answer the aforementioned question, further research is required and some
practical aspects will have to be addressed.

For example, we did not specify what happens to trains during inactive round trips.
The alternative use of these trains has to be further investigated.

Another practical issue is the low priority of freight trains within rail networks. It
potentially causes lateness that propagates to subsequent trains in case they have to wait
on delayed ones. Stochastic or robust modeling would allow for the consideration of this
issue.

Additionally, further research is required to compare the state of the art of directly
operated freight trains with our investigated method. The required train rate that we
used in this study is just one of the possibilities. In the best case, we would be able
to compare our method to actual real-world data, but then it is still unclear how the
corresponding instances of our problem would look like. Specifically, the construction of
the individual train lines and their respective round trip schedules have to be further
investigated for real-world application.

We have seen that in our instances, fewer containers are present at the start and end
of the considered time horizon. It could make sense to consider more evenly distributed
containers over time. Furthermore, in future analyses regarding the performance and
other solution characteristics, more insights could be gained by investigating instances
grouped by equal container density w.r.t. terminals, and over time. Also, the considera-
tion of varying capacities over time could be of interest to account for resources used by
other parties. Nevertheless, future investigations should preferably be based on real-world
data as much as possible.

Our investigations have shown that high container densities lead to better train
utilizations. Mindful of this and the ever-increasing demand for freight transportation,
we believe that larger instances than the ones we considered in this study should be
studied in future works.

We have seen in Section 5.4 that when considering the required train rate, trains
operated as in the MCRP appear to potentially outperform the current practice of using
directly operated trains, especially for larger types of our instances. Nevertheless, the
difficulty of solving our problem grows noticeably with increasing size. This makes the
application of (meta-)heuristics for this problem especially interesting. Greedy heuristics

90

6.1. Future Work

appear to be particularly attractive due to the fact that in many of the optimal solutions
we found, most containers are shipped on their shortest paths w.r.t. their shipping costs.

In this study, we have investigated train schedules with fixed scheduled round trips.
In future work it might be interesting to simultaneously optimize round trip times and
the container paths.

Furthermore, the use of a more sophisticated pricing model for the storage costs might
be of interest. While the instances we have used assumed constant costs per terminal,
current practice often uses pricing models where the first day is free of charge, and then
the costs gradually increase, see Section 4.2.1.

Allowing different container sizes, as well as multiple origin and destinations terminals
for each container (with varying additional cost to account for first and last mile delivery),
would provide additional flexibility to the platform’s operator and customers. Finally,
we might want to consider alternative multi- and intermodal routes for each rejected
container.

91

Appendix

Table 1: The summed up properties of all terminals within each considered city and their
corresponding derived terminal sizes. Columns 2-7 contain the accumulated property
information of all terminals, e.g., column “Tracks” contains the total number of loading
tracks of all terminals of that city. The columns labeled “Size” are the respective sizes
using one of these property columns. For our study, we use relative sizes based on the
column “Size (Track Length)”.

City Tracks
Track

Length [m]
Gantry
Cranes

Reach
Stackers

Total
Lifts
per

Hour

Interim
Storage
[TEU]

Size
(Tracks)

Size
(Track

Length)

Size
(Lifting
Devices)

Size
(Lifting

per
Hour)

Wien 11 7602 4 14 460 5260 0.23 0.23 0.53 0.57
Salzburg 8 3800 2 15 285 3600 0.17 0.12 0.50 0.35
Enns 4 3000 1 4 90 5000 0.09 0.09 0.15 0.11
Berlin 10 4420 4 5 195 2300 0.21 0.11 0.26 0.24
Duisburg 38 21520 13 21 735 22700 0.81 0.66 1.00 0.91
München 14 9800 8 2 270 1000 0.30 0.30 0.29 0.33
Bremerhaven 6 4590 4 0 120 0 0.13 0.14 0.12 0.15
Hamburg 47 32800 26 2 810 4400 1.00 1.00 0.82 1.00
Antwerpen 23 14550 10 17 565 8200 0.49 0.44 0.79 0.70
Rotterdam 39 25700 16 11 600 3381 0.83 0.78 0.79 0.74

93

Table 2: Information based on [39] of all relevant terminals.

C
it

y
T

er
m

in
al

N
am

e
T

ra
ck

s

T
ot

al
T

ra
ck

Le
ng

th
[m

]
G

an
tr

y
C

ra
ne

s

M
ax

W
ei

gh
t

[t
]

Li
ft

in
g

O
pe

ra
ti

on
s

pe
r

H
ou

r
R

ea
ch

-
st

ac
ke

rs

M
ax

W
ei

gh
t

[t
]

Li
ft

in
g

O
pe

ra
ti

on
s

pe
r

H
ou

r

T
ot

al
Li

ft
in

g
O

pe
ra

ti
on

s
pe

r
H

ou
r

In
te

ri
m

St
or

ag
e

[T
E

U
]

D
ep

ot
C

ap
ac

it
y

[T
E

U
]

W
ie

n
W

ie
n

C
on

t
7

48
02

2
45

25
6

45
25

20
0

20
00

50
00

W
ie

n
8

12
25

20
0

W
ie

n
W

ie
n

Sü
d

C
C

T
4

28
00

2
41

30
60

32
60

Sa
lz

bu
rg

Sa
lz

bu
rg

Fr
ac

ht
en

ba
hn

ho
f-

RO
LA

2
80

0
0

Sa
lz

bu
rg

Sa
lz

bu
rg

C
T

S
6

30
00

2
41

30
15

10
15

28
5

36
00

En
ns

En
ns

H
af

en
C

C
T

4
30

00
1

50
30

4
45

15
90

50
00

Be
rli

n
M

ul
tim

od
al

Te
rm

in
al

Be
rli

n
2

12
20

2
45

15
30

50
0

Be
rli

n
Be

rli
n

W
es

th
af

en
2

70
0

2
45

30
1

15
75

12
00

Be
rli

n
G

ro
ßb

ee
re

n
4

21
00

1
41

30
1

35
15

45
60

0
60

0
Be

rli
n

M
et

ra
ns

C
on

ta
in

er
te

rm
in

al
Be

rli
n

2
40

0
1

30
1

15
45

D
ui

sb
ur

g
D

ui
sb

ur
g

K
V

-H
ub

R
he

in
-R

uh
r

4
28

40
2

40
30

60
D

ui
sb

ur
g

D
eC

eT
e

D
ui

sb
ur

g
2

14
00

5
42

15
75

D
ui

sb
ur

g
5

8
15

75
D

ui
sb

ur
g

D
ui

sb
ur

g
R

RT
H

om
e

Te
rm

in
al

4
12

40
2

50
30

4
42

15
12

0
80

00
D

ui
sb

ur
g

1
17

15
15

D
ui

sb
ur

g
D

ui
sb

ur
g

Tr
im

od
al

Te
rm

in
al

(D
3T

)
4

14
00

1
30

30
18

00
D

ui
sb

ur
g

D
ui

sb
ur

g
K

om
bi

te
rm

in
al

(D
K

T
)

6
28

20
2

30
60

18
00

D
ui

sb
ur

g
D

ui
sb

ur
g

D
IT

6
45

00
2

50
30

1
15

75
75

00
D

ui
sb

ur
g

D
ui

sb
ur

g
R

RT
G

at
ew

ay
W

es
t

4
14

00
2

50
30

3
42

15
10

5
36

00
D

ui
sb

ur
g

D
ui

sb
ur

g
lo

gp
or

t
II

I(
H

oh
en

bu
db

er
g)

8
59

20
2

30
2

30
12

0
M

ün
ch

en
M

ün
ch

en
-R

ie
m

14
98

00
8

41
30

2
41

15
27

0
10

00
Br

em
er

ha
ve

n
Br

em
er

ha
ve

n
-E

ur
og

at
e

C
T

B
6

45
90

4
30

12
0

H
am

bu
rg

H
am

bu
rg

-E
ur

ok
om

bi
W

al
te

rs
ho

f
11

78
40

8
41

30
2

41
15

27
0

30
00

H
am

bu
rg

H
am

bu
rg

-T
ol

le
ro

rt
(C

T
T

)
5

36
00

3
30

90
H

am
bu

rg
H

am
bu

rg
-B

ur
ch

ar
dk

ai
(C

T
B)

10
74

00
4

40
30

12
0

H
am

bu
rg

H
am

bu
rg

-A
lte

nw
er

de
r

(C
TA

)
9

63
00

4
43

30
12

0
H

am
bu

rg
H

am
bu

rg
-B

ill
we

rd
er

12
76

60
7

41
30

21
0

14
00

A
nt

we
rp

en
A

nt
we

rp
en

C
om

bi
na

nt
5

31
00

2
44

25
50

12
00

A
nt

we
rp

en
A

nt
we

rp
en

C
irk

el
dy

k
4

26
00

2
40

30
4

35
15

12
0

A
nt

we
rp

en
1

30
15

15
A

nt
we

rp
en

A
nt

we
rp

en
M

ai
n-

H
ub

8
56

00
3

40
30

4
15

15
0

A
nt

we
rp

en
H

TA
H

up
ac

Te
rm

in
al

A
nt

we
rp

5
31

00
3

40
30

3
15

13
5

A
nt

we
rp

en
A

nt
we

rp
en

AT
O

1
15

0
3

35
15

45
70

00
A

nt
we

rp
en

2
10

25
50

R
ot

te
rd

am
R

ot
te

rd
am

Eu
ro

m
ax

6
48

00
3

15
45

R
ot

te
rd

am
R

ot
te

rd
am

A
PM

Te
rm

in
al

s
M

aa
sv

la
kt

e
II

4
30

00
2

30
60

R
ot

te
rd

am
R

ot
te

rd
am

EC
T

D
el

ta
Te

rm
in

al
4

28
00

2
40

30
2

40
15

90
R

ot
te

rd
am

R
ot

te
rd

am
RW

G
6

45
00

2
30

60
R

ot
te

rd
am

R
ot

te
rd

am
Bo

tle
k

3
12

00
1

30
30

R
ot

te
rd

am
R

ot
te

rd
am

C
om

bi
Te

rm
in

al
Tw

en
te

8
34

00
2

30
3

45
15

10
5

18
00

94

VIE
SZB

ENS

BER

DUI

MUN

BHV HMB

AWP
RTD

(a) τ = 0.00

VIE
SZB

ENS

BER

DUI

MUN

BHV HMB

AWP
RTD

(b) τ = 0.05

VIE
SZB

ENS

BER

DUI

MUN

BHV HMB

AWP
RTD

(c) τ = 0.10

VIE
SZB

ENS

BER

DUI

MUN

BHV HMB

AWP
RTD

(d) τ = 0.15

Figure 1: Results of the ILP from Section 4.1.2 generating our real-world rail network
for τ ∈ {0, 0.05, 0.10, 0.15}. For our study, we use τ = 0.10

Table 3: Rail networks and train lines of the associated instances with different numbers
of ports |P | and cities |C|. Here, column “|L|” indicates the number of train lines (and
not the number of individual trains1).

(|P |, |C|) |L| Rail Network Train Lines

(1,2) 2
DUI

MUN

HMB

• HMB-DUI
• HMB-MUN

Continued on the next page

1Nevertheless, the number of trains and train lines coincides for the single-train instances.

95

Table 3 – continued from previous page
(|P |, |C|) |L| Rail Network Train Lines

(1,3) 3

VIE

DUI

MUN

HMB

• HMB-DUI
• HMB-MUN
• HMB-VIE

(2,3) 4

VIE

DUI

MUN

HMB

RTD
• HMB-DUI
• HMB-MUN
• HMB-VIE
• RTD-DUI-MUN-VIE

(2,4) 5

VIE
SZB

DUI

MUN

HMB

RTD

• HMB-DUI
• HMB-MUN-SZB
• HMB-VIE
• RTD-DUI-MUN-VIE
• RTD-DUI-MUN-SZB

(3,3) 5

VIE

DUI

MUN

HMB

AWP
RTD

• HMB-DUI
• HMB-MUN
• HMB-VIE
• RTD-DUI-MUN-VIE
• AWP-DUI-MUN-VIE

(2,5) 6

VIE
SZB

BER

DUI

MUN

HMB

RTD

• HMB-DUI
• HMB-MUN-SZB
• HMB-BER-VIE
• RTD-DUI-MUN-VIE
• RTD-DUI-MUN-SZB
• RTD-DUI-BER

Continued on the next page

96

Table 3 – continued from previous page
(|P |, |C|) |L| Rail Network Train Lines

(3,4) 7

VIE
SZB

DUI

MUN

HMB

AWP
RTD

• HMB-DUI
• HMB-MUN-SZB
• HMB-VIE
• RTD-DUI-MUN-VIE
• RTD-DUI-MUN-SZB
• AWP-DUI-MUN-VIE
• AWP-DUI-MUN-SZB

97

Bibliography

[1] RK Ahuja, TL Magnanti, and JB Orlin. Network Flows, volume 10. Prentice hall,
1993.

[2] Allianz pro Schiene. Die bahn ist das umweltfreundlichste motorisierte verkehrsmit-
tel. https://www.allianz-pro-schiene.de/themen/umwelt/. Accessed:
2021-10-06.

[3] Allianz pro Schiene. Überblick: Wie der güterzug länger werden
kann. https://www.allianz-pro-schiene.de/themen/aktuell/
740-meter-gueterzug/, 2016. Accessed: 2021-10-06.

[4] Claudia Archetti and Lorenzo Peirano. Air intermodal freight transportation:
The freight forwarder service problem. Omega, 94:102040, 2020. ISSN 0305-
0483. doi: https://doi.org/10.1016/j.omega.2019.02.009. URL https://www.
sciencedirect.com/science/article/pii/S0305048318304316.

[5] Paul Gustav Heinrich Bachmann. Die analytische Zahlentheorie. Dargestellt von
Paul Bachmann. Leipzig B.G. Teubner, 1894.

[6] Eric Ballot, Benoit Montreuil, and Russell Meller. The physical internet. La
Documentation Française, 2014.

[7] Richard Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):
87–90, 1958.

[8] Anne Benoit, Yves Robert, and Frédéric Vivien. A guide to algorithm design:
paradigms, methods, and complexity analysis. CRC Press, 2013.

[9] Anthony K. C. Beresford. Modelling freight transport costs: A case study of the
uk-greece corridor. International Journal of Logistics Research and Applications, 2
(3):229–246, 1999. doi: 10.1080/13675569908901583. URL https://doi.org/10.
1080/13675569908901583.

[10] Ian Black, Roger Seaton, Andrea Ricci, and Riccardo Enei. Final report: actions
to promote intermodal transport. RECORDIT Final Report. Cranfield University,
Institute of Studies for the Integration of System, Cranfield, Rome, 2003.

99

https://www.allianz-pro-schiene.de/themen/umwelt/
https://www.allianz-pro-schiene.de/themen/aktuell/740-meter-gueterzug/
https://www.allianz-pro-schiene.de/themen/aktuell/740-meter-gueterzug/
https://www.sciencedirect.com/science/article/pii/S0305048318304316
https://www.sciencedirect.com/science/article/pii/S0305048318304316
https://doi.org/10.1080/13675569908901583
https://doi.org/10.1080/13675569908901583

[11] Nils Boysen, Malte Fliedner, Florian Jaehn, and Erwin Pesch. Shunting yard
operations: Theoretical aspects and applications. European Journal of Operational
Research, 220(1):1–14, 2012. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.
2012.01.043. URL https://www.sciencedirect.com/science/article/
pii/S0377221712000811.

[12] Tsung-Sheng Chang. Best routes selection in international intermodal networks.
Computers & Operations Research, 35(9):2877–2891, 2008. ISSN 0305-0548. doi:
https://doi.org/10.1016/j.cor.2006.12.025. URL https://www.sciencedirect.
com/science/article/pii/S0305054806003273. Part Special Issue: Bio-
inspired Methods in Combinatorial Optimization.

[13] Ping Chen, Yunsong Guo, Andrew Lim, and Brian Rodrigues. Multiple crossdocks
with inventory and time windows. Comput. Oper. Res., 33:43–63, 2006.

[14] Mateusz Cicheński, Florian Jaehn, Grzegorz Pawlak, Erwin Pesch, Gaurav Singh,
and Jacek Blazewicz. An integrated model for the transshipment yard scheduling
problem. Journal of Scheduling, 20, 02 2017. doi: 10.1007/s10951-016-0470-4.

[15] CMA CGM. Tariff inland terminals import storage costs 2020. https:
//www.cma-cgm.com/static/DE/attachments/LC%20-%20Inland%
20Terminal%20Storage%20Charges%20Import%202020%20V1.3b.pdf,
2021. Accessed: 2021-11-02.

[16] MT Container. Container-transport – optionen im Überblick. https://www.
mtcontainer.de/container-service/transport/. Accessed: 2022-04-27.

[17] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the Third Annual ACM Symposium on Theory of Computing, STOC ’71, page
151–158, New York, NY, USA, 1971. Association for Computing Machinery. ISBN
9781450374644. doi: 10.1145/800157.805047. URL https://doi.org/10.1145/
800157.805047.

[18] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to algorithms. MIT press, 2009.

[19] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms,
chapter Lower Bounds Based on the Exponential-Time Hypothesis, pages 467–521.
Springer International Publishing, Cham, 2015. ISBN 978-3-319-21275-3. URL
https://doi.org/10.1007/978-3-319-21275-3_14.

[20] George Dantzig. Linear Programming and Extensions. Princeton University Press,
2016. ISBN 9781400884179. doi: doi:10.1515/9781400884179. URL https://doi.
org/10.1515/9781400884179.

100

https://www.sciencedirect.com/science/article/pii/S0377221712000811
https://www.sciencedirect.com/science/article/pii/S0377221712000811
https://www.sciencedirect.com/science/article/pii/S0305054806003273
https://www.sciencedirect.com/science/article/pii/S0305054806003273
https://www.cma-cgm.com/static/DE/attachments/LC%20-%20Inland%20Terminal%20Storage%20Charges%20Import%202020%20V1.3b.pdf
https://www.cma-cgm.com/static/DE/attachments/LC%20-%20Inland%20Terminal%20Storage%20Charges%20Import%202020%20V1.3b.pdf
https://www.cma-cgm.com/static/DE/attachments/LC%20-%20Inland%20Terminal%20Storage%20Charges%20Import%202020%20V1.3b.pdf
https://www.mtcontainer.de/container-service/transport/
https://www.mtcontainer.de/container-service/transport/
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-3-319-21275-3_14
https://doi.org/10.1515/9781400884179
https://doi.org/10.1515/9781400884179

[21] Edsger W Dijkstra et al. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[22] European Commisson. Real cost reduction of door-to-door intermodal transport
– recordit, 2001. Directorate General DG VII, RTD 5th Framework Programme,
Brussels, Belgium.

[23] European Court of Auditors. Rail freight transport in the eu: still not on the right
track. Technical Report 08, European Court of Auditors, 12, rue Alcide De Gasperi,
1615 Luxembourg, 2016. Special Report.

[24] Eurostat. Key figures on europe – 2021 edition. https://ec.europa.eu/
eurostat/documents/3217494/13394938/KS-EI-21-001-EN-N.pdf/
ad9053c2-debd-68c0-2167-f2646efeaec1, 2021. Accessed: 2021-11-05.

[25] Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):
345, 1962.

[26] Jr Ford, L. R. and D. R Fulkerson. Solving the transportation problem. Management
science, 3(1):24–32, 1956. ISSN 0025-1909.

[27] Lester Randolph Ford and Delbert Ray Fulkerson. Flows in networks. In Flows in
Networks. Princeton university press, 2015.

[28] Lance Fortnow. The status of the p versus np problem. Commun. ACM, 52(9):
78–86, sep 2009. ISSN 0001-0782. doi: 10.1145/1562164.1562186. URL https:
//doi.org/10.1145/1562164.1562186.

[29] Fraunhofer Austria Research GmbH. Physical project. https://
physical-project.at/. Accessed: 2021-10-04.

[30] Armin Fügenschuh, Henning Homfeld, and Hanno Schülldorf. Single-car routing in
rail freight transport. Transp. Sci., 49:130–148, 2015.

[31] William Gasarch. The p=?np poll. SIGACT News, 33:34–47, 01 2002.

[32] Igor Grebennik, Remy Dupas, Oleksandr Lytvynenko, and Inna Urniaieva. Schedul-
ing freight trains in rail-rail transshipment yards with train arrangements. Inter-
national Journal of Intelligent Systems and Applications, 9:12–19, 10 2017. doi:
10.5815/ijisa.2017.10.02.

[33] Rail Cargo Group. Lgjnss. https://www.railcargo.com/de/dam/jcr:
e3895fb3-8adf-4c02-aa6a-7c27538a769c/lgjnss-fs.pdf. Accessed:
2022-04-27.

[34] G. Guastaroba, M. G. Speranza, and D. Vigo. Intermediate facilities in freight
transportation planning: A survey. Transportation Science, 50(3):763–789, August
2016. ISSN 1526-5447. doi: 10.1287/trsc.2015.0631. URL https://doi.org/10.
1287/trsc.2015.0631.

101

https://ec.europa.eu/eurostat/documents/3217494/13394938/KS-EI-21-001-EN-N.pdf/ad9053c2-debd-68c0-2167-f2646efeaec1
https://ec.europa.eu/eurostat/documents/3217494/13394938/KS-EI-21-001-EN-N.pdf/ad9053c2-debd-68c0-2167-f2646efeaec1
https://ec.europa.eu/eurostat/documents/3217494/13394938/KS-EI-21-001-EN-N.pdf/ad9053c2-debd-68c0-2167-f2646efeaec1
https://doi.org/10.1145/1562164.1562186
https://doi.org/10.1145/1562164.1562186
https://physical-project.at/
https://physical-project.at/
https://www.railcargo.com/de/dam/jcr:e3895fb3-8adf-4c02-aa6a-7c27538a769c/lgjnss-fs.pdf
https://www.railcargo.com/de/dam/jcr:e3895fb3-8adf-4c02-aa6a-7c27538a769c/lgjnss-fs.pdf
https://doi.org/10.1287/trsc.2015.0631
https://doi.org/10.1287/trsc.2015.0631

[35] Frank L. Hitchcock. The distribution of a product from several sources to nu-
merous localities. Journal of Mathematics and Physics, 20(1-4):224–230, 1941.
doi: https://doi.org/10.1002/sapm1941201224. URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/sapm1941201224.

[36] IBM. Ibm ilog cplex optimizer. https://www.ibm.com/products/
ilog-cplex-optimization-studio/cplex-optimizer. Accessed: 2022-
11-30.

[37] iContainers. 20-foot container – dimensions, measurements and weight. https:
//www.icontainers.com/help/20-foot-container/. Accessed: 2021-10-
29.

[38] R. Impagliazzo and R. Paturi. Complexity of k-sat. In Proceedings. Fourteenth
Annual IEEE Conference on Computational Complexity (Formerly: Structure in
Complexity Theory Conference) (Cat.No.99CB36317), pages 237–240, May 1999.
doi: 10.1109/CCC.1999.766282.

[39] AGORA intermodal terminals.eu. Intermodal terminals in europe. https://www.
intermodal-terminals.eu/database. Accessed: 2022-03-09.

[40] Milan Janic. Modelling the full costs of an intermodal and road freight trans-
port network. Transportation Research Part D: Transport and Environment,
12(1):33–44, 2007. ISSN 1361-9209. doi: https://doi.org/10.1016/j.trd.2006.
10.004. URL https://www.sciencedirect.com/science/article/pii/
S1361920906000794.

[41] Krishna C. Jha, Ravindra K. Ahuja, and Güvenç Şahin. New approaches for solving
the block-to-train assignment problem. Networks, 51(1):48–62, 2008. doi: https://
doi.org/10.1002/net.20195. URL https://onlinelibrary.wiley.com/doi/
abs/10.1002/net.20195.

[42] N. Karmarkar. A new polynomial-time algorithm for linear programming. In
Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing,
STOC ’84, page 302–311, New York, NY, USA, 1984. Association for Computing
Machinery. ISBN 0897911334. doi: 10.1145/800057.808695. URL https://doi.
org/10.1145/800057.808695.

[43] Richard M Karp. Reducibility among combinatorial problems. In Complexity of
computer computations, pages 85–103. Springer, 1972.

[44] Leonid Khachiyan. Polynomial algorithms in linear programming. Ussr Computa-
tional Mathematics and Mathematical Physics, 20:53–72, 1980.

[45] Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society, 7(1):48–
50, 1956. ISSN 00029939, 10886826. URL http://www.jstor.org/stable/
2033241.

102

https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm1941201224
https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm1941201224
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.icontainers.com/help/20-foot-container/
https://www.icontainers.com/help/20-foot-container/
https://www.intermodal-terminals.eu/database
https://www.intermodal-terminals.eu/database
https://www.sciencedirect.com/science/article/pii/S1361920906000794
https://www.sciencedirect.com/science/article/pii/S1361920906000794
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.20195
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.20195
https://doi.org/10.1145/800057.808695
https://doi.org/10.1145/800057.808695
http://www.jstor.org/stable/2033241
http://www.jstor.org/stable/2033241

[46] A. H. Land and A. G. Doig. An automatic method of solving discrete programming
problems. Econometrica, 28(3):497–520, 1960. ISSN 00129682, 14680262. URL
http://www.jstor.org/stable/1910129.

[47] Edmund Landau. Handbuch der Lehre von der Verteilung der Primzahlen. Leipzig
B.G. Teubner, 1909.

[48] Leonid A. Levin. Universal sequential search problems. Problems of Information
Transmission, 9(3), 1973.

[49] Andrew Lim, Zhaowei Miao, Brian Rodrigues, and Zhou Xu. Transshipment through
crossdocks with inventory and time windows. Naval Research Logistics Quarterly,
52(8):724–733, 12 2005. ISSN 0894-069X. doi: 10.1002/nav.20113.

[50] Reza Mohammad Hasany and Yousef Shafahi. Two-stage stochastic programming
for the railroad blocking problem with uncertain demand and supply resources.
Computers & Industrial Engineering, 106:275–286, 2017. ISSN 0360-8352. doi:
https://doi.org/10.1016/j.cie.2017.02.014. URL https://www.sciencedirect.
com/science/article/pii/S036083521730075X.

[51] S. Moll, U. Weidmann, and W. Stölzle. Productivity Improvements for Freight
Railways Through Collaborative Transport Planning. Institute for Transport Plan-
ning and Systems. ETH, 2012. URL https://books.google.at/books?id=
DPmEwgEACAAJ.

[52] Edward F Moore. The shortest path through a maze. In Proc. Int. Symp. Switching
Theory, 1959, pages 285–292, 1959.

[53] Alex Orden. The transhipment problem. Management science journal of the Institute
for Operations Research and the Management Sciences, 2(3):276–285, 1956. ISSN
0025-1909.

[54] Matthias Prandtstetter, Georg Brandstätter, and Lukas F. Krasel. Optimising
container transports in collaborative roundtrip scenarios. In Proceedings of the 8th
International Physical Internet Conference, pages 123–128, 2021.

[55] R. C. Prim. Shortest connection networks and some generalizations. The Bell System
Technical Journal, 36(6):1389–1401, 1957. doi: 10.1002/j.1538-7305.1957.tb01515.x.

[56] Jean-Paul Rodrigue and Theo Notteboom. Comparative north american and euro-
pean gateway logistics: the regionalism of freight distribution. Journal of Transport
Geography, 18(4):497–507, 2010. ISSN 0966-6923. doi: https://doi.org/10.1016/
j.jtrangeo.2010.03.006. URL https://www.sciencedirect.com/science/
article/pii/S0966692310000384. Special Issue on Comparative North Amer-
ican and European gateway logistics.

[57] Axel Schönknecht. Maritime Containerlogistik: Leistungsvergleich von Container-
schiffen in intermodalen Transportketten. Springer-Verlag, 2009.

103

http://www.jstor.org/stable/1910129
https://www.sciencedirect.com/science/article/pii/S036083521730075X
https://www.sciencedirect.com/science/article/pii/S036083521730075X
https://books.google.at/books?id=DPmEwgEACAAJ
https://books.google.at/books?id=DPmEwgEACAAJ
https://www.sciencedirect.com/science/article/pii/S0966692310000384
https://www.sciencedirect.com/science/article/pii/S0966692310000384

[58] René Schönemann. Scheduling rail freight node operations through a slot allocation
approach. Doctoral thesis, Technische Universität Berlin, Berlin, 2016. URL http:
//dx.doi.org/10.14279/depositonce-5452.

[59] Huirong Shi and Yang Chen. Capacity analysis of rail container freight shuttle train
which factors are important for running this kind of train? Master Thesis No 2003
5, 2004.

[60] James A Storer. On the complexity of chess. Journal of computer and system
sciences, 27(1):77–100, 1983.

[61] J. A Tomlin. Minimum-cost multicommodity network flows. Operations research, 14
(1):45–51, 1966. ISSN 0030-364X.

[62] UNECE. Recommendations on organizing demonstration runs of container block
trains on euro-asian transport links. https://digitallibrary.un.org/
record/584890, 2006. Accessed: 2021-10-27.

[63] VCÖ. Güterverkehr auf klimakurs bringen. Mobilität mit Zukunft, 2020.

[64] WienCont Container Terminal GmbH. Tariffs 2018. https://www.wienholding.
at/tools/uploads/STANDARD-TARIF-2018kompakt-engl.pdf, 2018. Ac-
cessed: 2021-10-29, Address: Freudenauer Hafenstrasse 8-10, 1020 Wien, a company
of Port of Vienna.

[65] Laurence A Wolsey. Integer programming john wiley & sons. New York, NY, 4,
1998.

[66] Jie Xiao and Boliang Lin. Comprehensive optimization of the one-block and two-
block train formation plan. Journal of Rail Transport Planning & Management,
6(3):218–236, 2016. ISSN 2210-9706. doi: https://doi.org/10.1016/j.jrtpm.2016.
09.002. URL https://www.sciencedirect.com/science/article/pii/
S221097061630049X.

[67] Endong Zhu, Teodor Gabriel Crainic, and Michel Gendreau. Scheduled service
network design for freight rail transportation. Oper. Res., 62:383–400, 2014.

104

http://dx.doi.org/10.14279/depositonce-5452
http://dx.doi.org/10.14279/depositonce-5452
https://digitallibrary.un.org/record/584890
https://digitallibrary.un.org/record/584890
https://www.wienholding.at/tools/uploads/STANDARD-TARIF-2018kompakt-engl.pdf
https://www.wienholding.at/tools/uploads/STANDARD-TARIF-2018kompakt-engl.pdf
https://www.sciencedirect.com/science/article/pii/S221097061630049X
https://www.sciencedirect.com/science/article/pii/S221097061630049X

	Kurzfassung
	Abstract
	Contents
	Table of Abbreviations
	Table of Mathematical Symbols

	Introduction
	 The Physical Internet (PI) and the PhysICAL Project
	Problem Description
	Research Questions and Scientific Contributions
	Thesis Outline

	Fundamentals and Related Work
	Prior Knowledge and Notation – Mathematical and Computer Scientific Background
	Literature Review — Related Work

	The Multiple Collaborative Round Trip Problem
	Problem Definition
	Problem Representation — Time-Expanded Network
	ILP Problem Formulation
	Complexity

	Instance Generation and Experimental Setup
	Rail-Network
	Instance Parameters
	Experimental Setup

	Results
	Performance and Solution Characteristics
	Investigating an Exemplary Solution
	Investigation of Results
	Summary of Results and Practical Insight

	Conclusion
	Future Work

	Appendix
	Bibliography

