
An Evolutionary Algorithm for the
Maximum Weight Trace Formulation of the

Multiple Sequence Alignment Problem

Gabriele Koller and Günther R. Raidl

Institute of Computer Graphics and Algorithms,
Vienna University of Technology, Vienna, Austria

{koller|raidl}@ads.tuwien.ac.at

Abstract. The multiple sequence alignment problem (MSA) can be re-
formulated as the problem of finding a maximum weight trace in an
alignment graph, which is derived from all pairwise alignments. We im-
prove the alignment graph by adding more global information. A new
construction heuristic and an evolutionary algorithm with specialized
operators are proposed and compared to three other algorithms for the
MSA, indicating advantages of the new approaches.

1 Introduction

Multiple sequence alignments are of great practical interest in the area of molec-
ular biology. For example, they are essential for the prediction of secondary and
tertiary structures of protein sequences and for finding conserved motifs in a
group of related proteins [2]. As a DNA or protein sequence can be represented
by a string over a finite alphabet Σ, the multiple sequence alignment problem
(MSA) can be defined as follows.

Given a set of k > 2 strings S = {S1, . . . , Sk}, where each string Sa,
a = 1, . . . , k, consists of characters sa,1, . . . , sa,la ∈ Σ, find a multiple sequence
alignment Ŝ = {Ŝ1, . . . , Ŝk} over the alphabet Σ̂ = Σ ∪ {“-”} which minimizes
a given scoring function and has the following properties: (1) all strings in Ŝ

have the same length l with maxa=1...k(la) ≤ l ≤ ∑k
a=1 la, (2) ignoring dashes,

Ŝa is identical with Sa, ∀a = 1, . . . , k, (3) no column of Ŝ only contains dashes.
In the alignment, a dash represents a space between characters of the original
sequences. Fig. 1a gives an example for the MSA.

To score an alignment, the weighted sum-of-pairs (SP) function with affine
gap penalties is most widely used [2]. Optimal pairwise alignments (k = 2) can be
found in time O(l2) by dynamic programming [6]. For the general case k > 2 the
time complexity of exact methods with SP-score increases exponentially with k.
Thus, exact methods can in practice only be applied to instances with few, rather
short sequences. For larger instances, various heuristics have been developed.

Heuristic methods for the MSA fall into different categories, see [7] for an ex-
tensive survey. The majority of them follow the progressive approach, in which

This work is supported by the Austrian Science Fund (FWF) under grant P16263-N04.

an alignment is built by repeatedly aligning two sequences or multiple align-
ments of subsets of the sequences by a pairwise alignment method. A widely
used algorithm of this category is ClustalW [12]. While it is usually fast and
yields acceptable solutions, it may produce sub-optimal alignments due to the
preservation of gaps of the pairwise alignments. T-Coffee [9] is also based on the
progressive method, but tries to avoid such drawbacks by using a tree-based con-
sistency objective function called COFFEE [10]. A library containing all pairwise
alignments replaces the usual substitution matrix for the evaluation of aligned
characters. To incorporate more global information, the library is extended by
transitive relationships for all character triples from different sequences.

Iterative algorithms try to overcome the drawbacks of progressive methods
by refining an initial alignment, generated randomly or by some other method,
via local improvement and/or random variation. Evolutionary algorithms such
as SAGA [8] fall into this category. SAGA was one of the first attempts to apply
a evolutionary algorithm (EA) to the MSA with SP-score. It uses a 2D array to
represent the alignment and includes a variety of crossover and mutation opera-
tors. The EA of Zhang et al. [13] focuses on identifying fully matched columns.
The evolutionary programming approach by [1] uses a different objective func-
tion; it maximizes a score for matched characters minus a gap penalty.

In our work we focus on the maximum weight trace formulation, which maps
the MSA to a graph problem [3]. This formulation is described in Sect. 2. Two
novel strategies for improving the information in the underlying alignment graph
are presented in Sect. 3. In Sect. 4, a construction heuristic for deriving a trace
from an alignment graph is described. Sect. 5 presents an EA with specific op-
erators based on the construction heuristic. The algorithms are experimentally
compared to ClustalW, T-Coffee, and SAGA in Sect. 6.

2 The Maximum Weight Trace Formulation of the MSA

The problem of aligning multiple sequences can be transformed into the maxi-
mum weight trace problem (MWT), which has been introduced by Kececioglu
[3] as a natural formulation of merging partial alignments to form multiple align-
ments. Like MSA, MWT is NP-hard. It is based on the concept of the alignment
graph G = (V,E), whose nodes V correspond to the characters of the k input se-
quences and are labeled correspondingly, and whose edges E represent desirable
alignments of character pairs. Each edge e ∈ E is assigned a weight w(e) > 0
corresponding to the desirability of the pairwise character alignment. For con-
venience, G is extended to a mixed graph Ĝ = (V,E, H) by adding directed
arcs H connecting all successive nodes of each sequence, see Fig. 1b. A trace
T ⊆ E is a subset of edges that can be realized in a multiple alignment, i.e.,
each pair of characters connected by an edge appears in the multiple alignment
in the same column. A set of edges forms a trace iff the arc-extended subgraph
ĜT = (V, T, H) does not contain any cycle including an arc, see Fig. 2. Given
a weighted alignment graph G, the MWT is to find a trace T with maximum
total weight w(T) =

∑
e∈T w(e).

S
S
S

3

2

1 :

:
: MLRLL
MPQILLLV

MKILLL

Sequences: (b)

edge
arc

M−KILLL−
MLR−LL−−
MPQILLLV

Possible alignment:(a)

RL

K I L L LM

M L L

M P Q I L L L V

Fig. 1. Examples for (a) a multiple sequence alignment and (b) an arc-extended align-
ment graph for three sequences (edge weights are omitted).

MK−ILLL−
MLR−LL−−
MPQILLLV

(a) (b)

RL

K I L L LM

M L L

M P Q I L L L V

RL

K I L L LM

M L L

M P Q I L L L V

Fig. 2. Examples for traces for the alignment graph in Fig. 1b: (a) a trace and a
corresponding alignment (note that edge (R,I) is not in the trace), (b) an edge set
violating the trace property since it contains a cycle including an arc: characters Q and
I of row 1 cannot simultaneously be aligned with character I of row 3.

A shortest possible multiple alignment can be derived from a given trace
column by column by aligning characters connected by an edge in the trace. For
each column, the algorithm considers in each sequence the left-most character
not yet included in the alignment—the front—and adds it to the current column
if it is not connected by an edge to a character to the right of the front.

A branch-and-bound algorithm [3] and a polyhedral approach [4] have been
proposed to solve small to moderately sized instances of the MWT exactly. In
these approaches, the alignment graph is constructed by calculating all pairwise
alignments and including corresponding edges. Edge weights are simply assigned
according to an appropriate substitution matrix.

3 Improvements on the Alignment Graph

Obviously, the edges of the alignment graph and their weights are crucial for
the success of any method applied to the MWT formulation of the MSA. So
far, finding appropriate edges and weights has received only little attention. We
propose two concepts to better reflect some of the global information contained
in all pairwise alignments: a neighborhood-dependant weighting scheme for cal-
culating edge weights and an edge extension.

We first obtain a preliminary edge set E from all pairwise sequence align-
ments which are computed using dynamic programming. For each pair of aligned
characters sa,i and sb,j , we add an edge e = (sa,i, sb,j). The purpose of the new
weighting scheme is to take the neighborhood of an edge into consideration and
to reward edges in regions of higher similarity with higher weights. The edge
weight w(e) is calculated as a weighted sum of the value from ClustalW’s sub-
stitution matrix for the pairwise alignment of sa,i and sb,j and the values for up

e(w) = 24.5 = 9 + (6+4) 0.75 + (7+5) 0.5 + 8 0.25

extension
level 2

alignment
pairwise

extension
level 3

(b)

48 9 5 167

(to the right, edge
because of the preceeding gap)

. ..

e’

e’

(a)

e

for the given substitution values and b = 3

is not considered

Fig. 3. Examples for (a) the computation of an edge weight and (b) the alignment
graph extension by adding transitive edges up to level dmax=3.

to b consecutively aligned character pairs to the right and to the left of e. The
value of a neighbor with distance ∆ to e in terms of columns is scaled by the
factor 1− ∆

b+1 . The block of considered character pairs is limited by the first gap
or by b. An example is given in Fig. 3a.

Furthermore, we extend the edge set E by transitive edges up to a level
dmax. This extension can be viewed as a generalization of the concept of the
extended library [9] where only transitive edges of level 2 are considered. An
edge et = (sa,i, sb,j) is called a transitive edge of level d ≥ 2 if there exists a path
of d edges between sa,i and sb,j , where only one character per sequence may be
involved, see Fig. 3b. A transitive edge’s weight depends on the minimum edge
weight wmin on the path and the level: w(et) = wmin/(d−1). If et already exists,
then its weight is increased by w(et). The addition or update of all transitive
edges of level d = 2, . . . , dmax for k sequences of maximum length l can be
performed in time O(l · kdmax+1) using a recursive depth-first search algorithm.

4 The Repeated Edge-Insertion Construction Heuristic

This section describes a new heuristic for deriving a feasible trace from a given
weighted alignment graph, which we call repeated edge-insertion construction
heuristic (REICH). The basic idea follows Kruskal’s greedy algorithm for find-
ing a minimum spanning tree of an undirected graph. Initially, trace T is the
empty set, and all edges are sorted according to decreasing weight; ties are broken
randomly. In its main part, the algorithm considers each edge in the predeter-
mined order and adds it to the trace if this does not violate the feasibility of the
trace. Otherwise, the edge is discarded.

As discussed in Sect. 2, a set of edges represents a trace as long as the
arc-extended subgraph does not contain any cycle including an arc. When we
consider an edge (sa,i, sb,j) ∈ E for inclusion in the trace, we therefore check if a
path from sa,i to sb,j or a path from sb,j to sa,i already exists in the arc-extended
trace. We can safely add edge (sa,i, sb,j) to T if no such path exists or the found
path does not contain any arcs.

Since the alignment graph usually contains many edges, the running time
of the path-search procedure is critical. We make the following observations
and later exploit them in an efficient algorithm. For convenience, we say a path

enters/leaves a sequence if it contains an edge leading to a node of this sequence
or an edge leading away from a node of this sequence, respectively.

1. If we find a path from a node sa,i to a node sb,j , we have implicitly found
all the paths from any node sa,i′ with i′ ≤ i to any node sb,j′ with j′ ≥ j.

2. We only have to consider paths which enter/leave any sequence at most
once. Furthermore, the path must not enter the sequence containing the
source node or leave the sequence containing the destination node. All paths
visiting a sequence more than once have corresponding simpler paths that
use arcs of this sequence as shortcuts.

3. It follows that we only have to consider paths containing at most k−1 edges
(plus the arcs, whose number is not limited by k).

4. Let sa,i be the source node. If we have identified the edge (sa,m, sc,n) with
minimum m ≥ i from all the edges connecting nodes of sequences a and c, we
do not have to consider any further edge inbetween these two sequences. For
any subsequent edge (sa,m′ , sc,n′) with m′ > m, n′ > n must hold (otherwise,
the trace would be infeasible), and, due to observation (1), only a subset of
the nodes already reachable via edge (sa,m, sc,n) is reachable via the edge
(sa,m′ , sc,n′). More generally, there even cannot exist any path from sa,m′ ,
m′ > m, to any node sc,n′′ with n′′ ≤ n. However, a path from sa,m′′ with
m′′ < m to a node sc,n′′ , n′′ < n, may exist.

A simple depth-first search in the arc-extended trace for identifying a path
from sa,i to sb,j would clearly be inefficient. Instead, we perform a breadth-first
search starting from sa,i and consider the above observations for pruning the
search tree. Global variables M1, . . . , Mk are used to store for each sequence the
minimum indices of the nodes which are reachable via the already considered
edges/paths; initially, Ma = i and Mc = ∞, ∀c 6= a. At any iteration of the
breadth-first search, at most k − 1 different active paths exist, which have last
improved the values Mc, ∀c 6= a. The path we consider next for an extension
with a new edge is always the one with the minimum number of edges; if two or
more paths with the same minimum number of edges exist, we choose the path
involving the smallest number of arcs.

To optimally support this breadth-first search, the trace is implemented as a
special data structure. For each pair of sequences c = 1, . . . , k and d = 1, . . . , k,
c 6= d, we maintain a balanced tree Ac,d which stores references to all edges con-
necting nodes of sequences c and d, sorted by the index of the node in sequence
c. In this way, we can efficiently identify the “next” edge leading from a certain
position in sequence c to sequence d, i.e., the edge (sc,m′ , sd,n) with minimum
m′ ≥ m for given m, c, and d. The balanced trees allow this operation in time
O(log l̂), with l̂ = max{l1, . . . , lk}, and need O(k2 + |T |) space.

When using this data structure, the total running time of REICH is bounded
above by O(|E| log |E| + |E|k3 log l̂), where the first term represents the initial

sorting of edges and the factor O(k3 log l̂) of the second term comes from the
breadth-first search1.

The running time of the described algorithm can be further improved to a
worst case complexity of O(|E| log |E|+ |T |k2 log l̂ + |E| log l̂). For this purpose,
we additionally store two kinds of auxiliary edges in the trace data structure: (a)
An alias-edge (sc,m, sd,n) is stored if the two incident nodes are already connected
by a path containing no arcs. (b) A directed path-edge (sc,m, sd,n) is stored if a
path including at least one arc exists from node sc,m to node sd,n, and we are
so far not aware of any node sd,n′′ with n′′ < n that is reachable from sc,m.
Keeping the trace data structure up-to-date with these auxiliary edges needs
additional bookkeeping, but it turns out to be worthwhile, since some effective
additional conditions for further pruning the breadth-first search can now be
efficiently checked.

5 The Maximum Trace Evolutionary Algorithm (MTEA)

The evolutionary algorithm described in this section is the first one that makes
use of the MWT formulation of the MSA problem. In combines and enhances
ideas of REICH and previous genetic algorithms for MSA.

5.1 Representation and Initialization

Candidate alignments are primarily represented in the most direct form as two-
dimensional array Ŝ. When needed, the trace data structure is additionally cre-
ated and stored.

To create promising initial candidate solutions and to ensure diversity at
the same time, a randomized version of REICH is used: A random number
|D| ∈ {bk · l̂/2c, . . . , bk · (k − 1) · l̂/2c} is picked; a list D ⊆ E of the |D| edges
with highest weights is determined and randomly permuted. Then, REICH is
performed on this list to obtain a trace, which is finally decoded into a multiple
alignment. To achieve higher diversity, we keep track of the edges from D that
could not be included in the trace. When creating the next solution, these edges
are forced to be included in D before all other edges. Additionally, REICH is
applied once to the whole list of edges.

5.2 Variation Operators

We apply the following five variation operators. They were carefully chosen or
designed with their specific strengths and computational efforts in mind in order
to achieve highest possible synergy. The first three operators are relatively simple

1 The depth of the breath-first search is bounded by k − 1. In depth t, 0 < t < k, a
maximum of k− 1− t possible extensions must be further considered for each of the
≤ k− 1 active paths. Considering the time O(log l̂) for finding an edge for a possible
extension, we get the total time complexity O(k3 log l̂) for one call of the search.

and fast; they are traditionally working directly on the multiple alignments. In
contrast, the latter two operators focus on the MWT formulation and make
active use of the trace data structure and the alignment graph; they are more
powerful, however, computationally also more expensive.

One-point crossover has been used in several previous EAs for MSA including
[8, 13]. The first parent alignment is cut straight after a randomly chosen column.
The whole left part is copied to the offspring. The right part is adopted from the
second parent alignment which is tailored accordingly so that it can be appended
while keeping the characters’ order of the original sequences. Any void space
appearing at the junction point is filled with gaps.

Block shuffling mutation has also previously been used [8]. From one se-
quence a block of consecutive characters being bounded left or right by one or
more gaps is randomly chosen. This block is then shifted over the neighboring
gaps. When there is more than one neighboring gap, we either check them all and
keep the best position or determine the target position randomly; the actually
applied strategy is decided at random. To limit the changes and the computa-
tional effort, we apply this operator only to blocks of a maximum length of 9
and consider at most 9 neighboring new positions.

Best consistent cut crossover. Columns of two alignments are called consis-
tent, when for each sequence their characters (or gaps) are identical with respect
to the corresponding positions in the original sequence. Blocks inbetween con-
sistent columns can be directly exchanged among parent alignments [8]. For the
alignment of many protein sequences, however, such consistent columns are rare,
and the operator can therefore not often be applied. We relax the requirements
by introducing consistent cuts: A cut of the first parent alignment after some
column is said to be consistent if no right-most symbol of the left part is aligned
with a symbol of the right part in the second parent alignment. In this case,
the second parent can also be cut straight at the corresponding position and
the right part of the second parent can simply be concatenated to the left part
of the first parent. In our crossover, we determine all possible consistent cuts
and choose the one yielding the highest total weight. Since the weights can be
calculated incrementally, only one sweep over the parent alignments is necessary,
and the operator can be implemented in time O(k2 l̂).

Edge insertion mutation selects an edge from the alignment graph and in-
cludes it in the alignment. The selection is performed by determining a uni-
form random value u ∈ [0, 1), calculating an exponentially distributed rank
r = bρ log(1− u)c mod |E|+ 1 from it, and using this rank as an index into an
array containing references to all edges E sorted according to decreasing weight.
The strategy parameter ρ is set according to theoretical and experimental inves-
tigations described in [5]. If an edge is selected that already exists in the trace
of the current alignment, the edge-selection is repeated.

In order to feasibly include the selected edge e, it is usually necessary to
remove several other edges from the alignment’s trace. All edges of the original

alignment’s trace realized in the alignment in columns to the left or the right of
both end-nodes of edge e will remain unchanged. All other edges of the trace,
thus, the edges representing alignments of symbols in the alignment-block B̂
delimited to the left and right by the columns containing the characters to be
aligned when including e, are temporarily removed and stored in a list R. The
new edge e can now safely be added to the trace. Then, REICH is used to process
R in order of decreasing weight and re-insert as many of the edges as possible.
Finally, as local improvement, we determine all edges from E being incident to
a character in block B̂ and not contained in R. These edges are also considered
in decreasing weight order for insertion in the trace by applying REICH.

Path relinking uses two parent alignments Â and B̂ and transforms Â step by
step into B̂. Thus, we consider all solutions lying in the search space on a path
connecting the two parents. The best intermediate solution is kept as offspring.

We transform Â into B̂ column by column from left to right. Let Îi be the
ith intermediate solution, with Î0 = Â and Îz = B̂. The first i columns of
alignment Îi always correspond to those in parent B̂. We determine Îi+1 from
Îi for i = 0, . . . , z − 1 as follows. Let X be the characters appearing in column
i + 1 of B̂. This column will be realized in Îi+1 in a locally optimal way.

Let Y denote the set of all characters appearing in B̂ to the right of X, and
let Y C ⊆ Y be the subset of characters connected with a character of X in the
trace of Ii. In order to align the characters of X, the edges connecting X and Y C

cannot be retained, and they are therefore deleted from the trace. All edges from
E connecting two nodes from X are then realized and added to the trace; the
characters in X are actually aligned. Finally, we check if the performed removal
of edges allows for an inclusion of new edges from E at the right side of X: All
edges from (a, b) ∈ E with a ∈ Y C and b ∈ Y are considered, and if they do not
yet appear in the trace they are tried to be included by using the edge-insertion
algorithm of REICH. The corresponding alignment Ii+1 is updated accordingly.
In this way, all intermediate solutions determined by path relinking are locally
optimal in the sense that no further edges from E can be realized in the trace
without removing others.

5.3 General Structure of the Algorithm

We use an island model as basic structure for the EA. Each island follows the
steady-state concept by always only creating a single new solution candidate
per iteration. If this offspring is a duplicate of another solution of the island,
it is discarded. Otherwise, it replaces the worst solution. Within each island,
an offspring is always created by performing either one-point crossover or best
consistent cut crossover (each with 50% probability) followed by the block shuf-
fling mutation. The more complex and time-demanding path relinking and edge
insertion mutation are applied with relatively low probabilities as inter-island
operators. Parents are randomly chosen among the best solutions of all islands,
and the offspring is incorporated into another randomly chosen island. Addi-
tionally, traditional migration is performed: With a certain probability, the best
solution of a randomly chosen island is copied into another island.

Table 1. Average results of ClustalW, T-Coffee, SAGA, REICH, and MTEA on the
BAliBASE instances: annotated SPS-values and total edge weights w(T).

Instance ClustalW T-Coffee SAGA REICH MTEA
Class SPS SPS SPS w(T) SPS w(T) SPS

Ref 1 0.859 0.865 0.789 1107 0.877 1114 0.888
Ref 2 0.847 0.854 0.800 19027 0.861 19047 0.861
Ref 3 0.749 0.773 0.672 18282 0.796 18347 0.804
Ref 4 0.770 0.835 0.564 5086 0.862 5101 0.863
Ref 5 0.850 0.956 0.752 5140 0.960 5149 0.965

Total avg. 0.837 0.860 0.753 6144 0.873 6158 0.880

6 Experimental Results

We experimentally compare REICH and MTEA to ClustalW 1.82, T-Coffee,
and SAGA using the 145 instances of the BAliBASE 1.0 benchmark library [11]
for protein sequence alignment. These instances are grouped into five classes:
equidistant sequences of similar length (Ref 1), a related family with divergent,
orphan sequences (Ref 2), families of related distances (Ref 3), sequences with
N/C-terminal extensions (Ref 4), and sequences with internal insertions (Ref 5).

For REICH and MTEA, the alignment graphs were built using ClustalW
to calculate global pairwise alignments and additionally—as suggested in [9]—
LALIGN to consider local pairwise alignments. The neighborhood-dependent
calculation of edge-weights was applied with b = 10, and edge extension was
performed to level dmax = 2. Appropriate parameters for MTEA were obtained
in preliminary tests: The population size was 100, divided into four equally sized
islands. Migration was performed with probability 0.1%, path relinking with
2%, and insert edge mutation with 10% per iteration. A run was terminated
when no new best solution had been found for 1 000 iterations or after a total of
10 000 iterations. ClustalW, T-Coffee, and SAGA were performed using default
parameter settings. All experiments were done on a Pentium4/1.9 GHz PC.

The resulting alignments were evaluated using the annotated SPS-values of
[11], which indicate the proportion of correctly aligned character pairs of an
alignment with respect to the manually refined BAliBASE reference alignment
considering only trusted blocks. A value of 1 means that the computed alignment
is identical to the reference alignment, whereas 0 signifies that no character pair
has been correctly aligned. Table 1 shows average results for each algorithm on
each of the five classes of instances. MTEA yielded for all five instance classes
the best average results; however, absolute differences of the SPS-values to the
results of REICH are generally small. A Wilcoxon signed rank test nevertheless
indicates the significance of the difference with an error probability less than
0.1%. On instance class 2, MTEA could not improve on the average SPS-value,
although slightly better solutions were obtained with respect to the average
edge weights w(T). REICH and MTEA performed on nearly all test instances
as good as or better than ClustalW, T-Coffee, and SAGA. In detail, the best
known solutions were obtained by MTEA for 57% of all instances compared to
40% by REICH, 37% by T-Coffee, 24% by ClustalW and 15% by SAGA.

Running times strongly depend on the individual instances. In general,
ClustalW was fastest, but also T-Coffee and REICH took only about one minute
on the largest instances. SAGA needed up to 214 min and MTEA up to 413 min.

7 Conclusion

The maximum weight trace formulation of the MSA is a well-suited model for
finding accurate multiple alignments. The proposed calculation of edge weights
and the extension of the alignment graph by transitive edges enhance the model
by the inclusion of more global information. The construction heuristic REICH
is fast and yields high quality alignments which are usually superior to those
obtained by ClustalW, T-Coffee, and SAGA. If longer running times are accept-
able, the proposed EA often finds even significantly better solutions.

References

1. K. Chellapilla and G. B. Fogel. Multiple sequence alignment using evolutionary
programming. In P. J. Angeline et al., editors, Proceedings of the 1999 IEEE
Congress on Evolutionary Computation, pages 445–452. IEEE Press, 1999.

2. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, 1997.

3. J. D. Kececioglu. The maximum weight trace problem in multiple sequence align-
ment. In Proceedings of the 4th Symposium on Combinatorial Pattern Matching,
number 684 in LNCS, pages 106–119. Springer, 1993.

4. J. D. Kececioglu, H.-P. Lenhof, K. Mehlhorn, P. Mutzel, K. Reinert, and M. Vin-
gron. A polyhedral approach to sequence alignment problems. Discrete Applied
Mathematics, 104:143–186, 2000.

5. S. Leopold. An alignment graph based evolutionary algorithm for the multiple
sequence alignment problem. Master’s thesis, Vienna University of Technology,
Vienna, Austria, February 2004.

6. S. Needleman and C. Wunsch. A generalmethod applicable to the search for simila-
rities in the amino acid sequence of two proteins. J.Mol. Biol., 48:443–453, 1970.

7. C. Notredame. Recent progresses in multiple sequence alignment: A survey. Phar-
macogenomics, 3(1):131–144, 2002.

8. C. Notredame and D. G. Higgins. SAGA: Sequence alignment by genetic algorithm.
Nucleic Acids Research, 24(8):1515–1524, 1996.

9. C. Notredame, D. G. Higgins, and J. Heringa. T-COFFEE: A novel method for
fast and accurate multiple sequence alignment. J. Mol. Biol., 392:205–217, 2000.

10. C. Notredame, L. Holm, and D. G. Higgins. COFFEE: An objective function for
multiple sequence alignment. Bioinformatics, 14(5):407–422, 1998.

11. J. Thompson, F. Plewniak, and O. Poch. BAliBASE: A benchmark alignments
database for the evaluation of multiple sequence alignment programs. Bioinfor-
matics, 15:87–88, 1999.

12. J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: Improving the
sensitivity of progressive multiple sequence alignment through sequence weighting,
position specific gap penalties and weight matrix choice. Nucleic Acids Research,
22(22):4673–4680, 1994.

13. C. Zhang and A. K. C. Wong. A genetic algorithm for multiple molecular sequence
alignment. CABIOS, 13(6):565–581, 1997.

