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Abstract

Variable Neighborhood Search (VNS) is a relatively new metaheuristic for solving
hard combinatorial optimisation problems. One such optimisation problem is the Car
Sequencing Problem (CarSP), where a sequence of cars along the assembly line with
minimum production costs has to be found. Although VNS is a successful metaheuris-
tic, it takes a long time until a suitable solution is found for real-world instances of
CarSP. Two approaches should be investigated in more detail: Firstly, the efficiency
of neighborhoods, i.e. the relation of computation time and the solution improvement,
should be used for identifying efficient neighborhood orderings on the fly. Secondly,
the high potential of parallelisation techniques should be exploited. Within this the-
sis both approaches are combined. Computational tests showed that a substantial
reduction of the computation time is possible. Further, the tests revealed that no
“perfect” neighborhood ordering can be identified which implies that such a parallel
self-adaptive approach is valuable and necessary for obtaining good solution qualities.

Kurzfassung

Variable Nachbarschaftssuche (VNS) ist eine relative neue Metaheuristik zum Lösen
von schwierigen kombinatorischen Optimierungsproblemen. Ein solches Optimierungs-
problem ist das Car Sequencing Problem (CarSP), wo eine Anordnung von Autos am
Fließband mit minimalen Produktionskosten gefunden werden muss. Obwohl VNS
eine erfolgreiche Metaheuristik ist, dauert es für praxisnahe Instanzen von CarSP
eine lange Zeit bis eine brauchbare Lösung gefunden wird. Zwei Ansätze sollen
ausführlicher untersucht werden: Erstens sollte die Effizienz von Nachbarschaften,
d.h. das Verhältnis von Berechnungszeit und Lösungsverbesserung, während der Pro-
grammausführung verwendet werden, um effiziente Nachbarschaftsreihenfolgen zu bes-
timmen. Zweitens sollte das hohes Parallelisierungspotential ausgenutzt werden. Im
Rahmen dieser Diplomarbeit werden beide Ansätze kombiniert. Die Tests zeigten,
dass eine beträchtliche Reduktion der Berechnungszeit möglich ist. Weiters haben
die Tests gezeigt, dass keine ,,perfekte“ Nachbarschaftsreihenfolge identifiziert werden
kann was bedeutet, dass ein paralleler selbst-adaptiver Ansatz nützlich und wichtig
ist, um gute Lösungsqualitäten zu erhalten.
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1 Introduction

Approximately 100 years ago Ford Motor Company introduced the Model T. It was
the first car mass produced on assembly lines. The advantage of this new produc-
tion method was a massive cost reduction, but with the disadvantage that only a
single, standardised product could be produced on the same assembly line. However,
requirements have changed dramatically. Nowadays the automotive industry has to
offer a high product variety, where the customer can choose among a multitude of
components. But due to the economic pressure, the automotive industry still has to
produce the cars cost-effectively. To meet both antithetical demands an additional
planning and optimisation process is necessary. One important planning step is the
daily sequence planning where an arrangement of cars on the assembly line with min-
imum production costs has to be found.

One model for solving the sequence problem is the Car Sequencing Problem. Thereby,
complex requirements are modelled by rules of the form lc/mc, meaning no more than
lc cars are allowed to require component c in a consecutive interval of length mc. Al-
though only a part of the overall optimisation process is considered and a simplified
model is used, exact algorithms are not able to find an optimal solution for real life
instances within suitable time. Thus metaheuristics are applied which sacrifice guar-
antees on solution quality for speeding up the solution process. However, even for
metaheuristics it takes a long time until a reasonable solution is provided. If taking
into account several production days or considering the whole planning process to
further reduce the production costs, things still get worse. A promising approach to
overcome this performance problem is a parallelisation of metaheuristics.

Another important aspect for solving the Car Sequencing Problem is the performance
of the used microprocessors. In the past decades microprocessors were undergoing
a rapid performance improvement. One reason was a significant raise of the clock
speed. However, the clock speed cannot be increased arbitrarily, because increasing
the clock speed leads to a disproportionately high power consumption. Furthermore,
signal speeds set boundaries to the clock speed. In addition to the increase of the clock
frequency, a lot of architectural improvements were implemented. These architectural
enhancements were mainly done by implicit parallelisation techniques like pipelining,
superscalar execution and so forth. However, these implicit parallelisation techniques
reach their limits, due to data dependencies between instructions. To realise a further
performance advancement of processors, multiple independent cores are combined to
a single processor, called multi-core processor. The disadvantage is that the paral-
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1 Introduction

lelisation has to be done explicitly by the programmer. Therefore, if a program is
not written to use multiple processors, it does not profit from the additional cores.
Furthermore, if in the future performance improvements are mainly done by adding
additional cores, a sequential algorithm cannot benefit from a new processor. There-
fore parallel metaheuristics are currently not only important to speedup the search
process, but also essential to benefit from future processors.

A relatively new and successful metaheuristic which has only a few parameters to
be tuned is Variable Neighbourhood Search (VNS). One crucial point in the perfor-
mance of a VNS approach is using appropriate neighbourhoods and deciding in which
order to use them. Currently most frequently used is to order neighbourhoods by in-
creasing complexity and using afterwards this static neighbourhood-order during the
whole program execution. However, this approach is not optimal. The key question
is what the efficiency of the used neighbourhood is, i.e. the relation of solution im-
provement and time needed for an improvement. In this thesis, I present a parallel
VNS approach which tries to find an efficient usage of neighbourhoods to speedup the
optimisation process. Thereby the additional computing power is used to determine
the most efficient neighbourhood repeatedly.

Thesis Overview

The next chapter gives a detailed description of the Car Sequencing Problem. Fur-
thermore, a formal definition of the Car Sequencing Problem as proposed by Renault
for the ROADEF challenge is given and complexity aspects are discussed. Chapter 3 is
devoted to previous work relevant for this thesis. In Chapter 4, I first discuss Variable
Neighbourhood Search in detail. Afterwards an introduction to the topic of parallel
computing is given. Thereby, the basics of parallel computers and their program-
ming models are discussed. Furthermore different parallel performance measures are
presented. Finally, I present a classification of parallelisation strategies for Variable
Neighbourhood Search. In chapter 5, I first give a formal description of an efficient
usage of neighbourhoods. Based on this theoretical formulation, I propose a special,
for parallelisation adapted sequential Variable Neighbourhood Search (VNS) and the
corresponding new parallel VNS approach. In Chapter 7 and 8, I present the test
results and discuss potential improvements.
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2 The Car Sequencing Problem

This chapter discusses the Car Sequencing Problem (CarSP). First an overview of
all necessary planning steps of an assembly line is presented. Then a description of
sequence planning with its constraints is given. Afterwards a formal definition of the
CarSP as defined by the car manufacture Renault for the ROADEF challenge 2005,
is presented.

2.1 Production Planning

One of the challenges in automotive industry is to offer a wide variety of individual cars
at low cost. These different equipped cars are very similar to each other, but differ in
colour and installed components. Although assembly lines were originally developed to
produce a standardised product very cost-effectively, most car manufactures produce
a wide range of different cars along the same assembly line. Therefore, an additional
planning phase is necessary for economic reasons. According to [5] the following
planning steps are needed:

• Initial configuration. In this step all needed resources and the detailed configu-
ration of the assembly line are determined, depending primarily on future sales
of the cars.

• Reconfiguration. There may be changes in the demand for a special equipped car
or there may be technological developments. In this case the initial configuration
of the assembly line must be reconfigured.

• Master scheduling. In this planning step the overall ordered cars are assigned to
smaller planning periods, mostly on a daily basis. The assignment depends on
the configuration of the cars and the order time of the customers.

• Sequence planning. After the assignment of cars to a single day, an arrangement
of the cars must be found such that all constraints are satisfied and/or the costs
are minimised.

• Resequencing. In the production process there may be unforeseen disturbances
such as a machine breakdown. In this case a rearrangement of the predefined
sequence may lead to better results.

3



2 The Car Sequencing Problem

Although dependencies exist between the above mentioned planning steps the indi-
vidual planning steps are mostly performed independently of each other. As CarSP
mainly addresses the daily sequencing of cars, the next section discusses sequence
planning in more detail.

2.2 Sequence Planning

In automotive industry an assembly line is composed of three stages: body shop, paint
shop and assembly shop. First of all, the chassis of the automobile is produced in the
body shop. Then the vehicle is painted with the desired colour in the paint shop.
Finally, in the assembly shop, each vehicle gets the different components such as an
air condition, a sound system and the engine. Because the requirements in the body
shop are similar to the requirements in the assembly shop, the main focus lies on the
paint shop and the assembly shop.

The assembly line itself consists of several working stations defining individual re-
quirements which must be fulfilled as good as possible. Moreover, the determined
sequence of the last day must also be considered, because assembly lines operate
mostly 24h a day. The goal of sequence planning is to find an arrangement of the cars
along the assembly line, such that all constraints are satisfied and at the same time
the costs are minimised.

2.2.1 Paint Shop Constraints

In the paint shop costs arise primarily when colours are changed. In this case the
injectors must be cleaned, which is a very cost intensive process. Therefore, cars
with the same colour should be grouped together to minimise the production costs.
However, it is not possible to cluster all cars with the same colour, because the colour in
the injector agglutinates and therefore the injectors must be cleaned after a predefined
number of cars. Moreover, after cleaning the injector the colour must be changed, as
reusing the same colour would lead to an imprecise workmanship.

Fig. 2.1: Cars with same colour grouped together
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2 The Car Sequencing Problem

2.2.2 Assembly Shop Constraints

In the assembly shop the components of the cars are installed. According to [6] there
are two sorts of requirements, which must be fulfilled in the assembly shop.

Levelling Part Usage

On the assembly line different equipped cars are produced. These cars need different
components and material in the production. Because only limited space is available
in front of the assembly line, all components must be delivered when they are needed.
On the other hand a large number of components is needed due to the wide variety of
cars. An aggravating circumstance in this context is that the components are delivered
by the suppliers just in time, i.e. all components are delivered when they are needed in
production. As components are mostly delivered in complete cargo carries, a delivery
of a single part can be very costly. Therefore, the goal is to smooth the component
usage.

Smooth Workload

In the assembly shop different work stations exist. There the components are installed
by the workers. Each component needs a different amount of time to be installed. This
leads to variations in the workload of the stations along the assembly line. But, if the
workers get too much workload, they make mistakes, which lead to additional costs for
the company. Or, even worse, the production must be stopped until the component is
installed. If, on the other side, the employees have not much to do, this will obviously
lead to higher production costs. Therefore the goal is to smooth the workload on the
different stations to avoid an over- and underloading of the stations.

2.2.3 Modelling the Real World Problem

To solve the sequence problem with the help of computers, models of the real world
are needed. In literature three basic models for solving the sequencing problem can
be found [7]:

• Level Scheduling. Level Scheduling tries to level part usage by defining “ideal”
production rates. The goal is to find a sequence such that the gap between
actual and ideal production rate is minimised.

• Mixed-Model Sequencing. This approach tries to avoid work overloads by a de-
tailed modelling of the assembly line. Thereby installation times of components,
the work flow and characteristics of the assembly line are taken into account.

• Car Sequencing. In contrast to Mixed-Model Sequencing, Car Sequencing tries
to avoid work overloads in an implicit manner by defining capacity constraints
for the working stations.

5



2 The Car Sequencing Problem

2.3 Car Sequencing Models

CarSP was proposed by Parello et al. [26] in 1986 for the automotive industry. The
idea behind CarSP can be explained by the following example [12]:

Suppose that on an average 60% of all cars require component c. Furthermore, assume
that the installation of component c takes x minutes. During these x minutes on an
average 5 cars pass the work station, where component c is installed. Because 60%
of all cars require component c, we can expect that 3 cars will need an installation
of component c. Therefore 3 work stations are needed for the installation. Thus, the
constraint for component c can be formulated as 3/5, meaning that no more than 3
cars are allowed to require component c in a consecutive interval of length 5.

CarSP was first formulated as a constraint satisfaction problem (CSP) [26]. The goal
is to find a sequence of cars such that all constraints lc/mc are satisfied. Recently
CarSP was also formulated as a combinatorial optimisation problem (COP) [17]. In
contrast to the CSP formulation of CarSP the optimisation approach provides also a
solution if constraints are violated. To transform the CSP, an objective function is
introduced where a cost factor is added if a constraint is violated.

2.3.1 Counting the Violations

In literature different approaches for counting violations of constraints can be found.
For an overview of different approaches see [7]. Currently the “sliding-window” ap-
proach is most frequently used.

“Sliding Window” Approach

The “sliding window” approach examines all possible “sliding windows” (subsequences
of cars) with length mc. Thereby one violation is counted, if the number of components
of the investigated “sliding window” is bigger than the allowed lc components [16, 17].
But this approach has the following two weak points [14]:

• Because a single car is covered by several “sliding windows”, the scheduling of
a single car can lead to more than one constraint violation in respect to one
component. However, this double-counting does not match reality.

• The same subsequence of cars scheduled at the beginning or at the end of the
assembly line might cause less violations than the same subsequence of cars
scheduled in the middle of the assembly line. The reason is that “sliding win-
dows” prior to the beginning and beyond the end are not considered.

6



2 The Car Sequencing Problem

Advanced “Sliding Window” Approach

ROADEF introduced an advanced “sliding window” approach. If a constraint is vi-
olated, the number of components exceeding the maximum allowed number of com-
ponents lc is counted. Furthermore, the previous production day and the next day
(assuming no components occur) are also taken into account. Hence, only the problem
of counting more than one violation caused by a single component persists.

Counting Components Causing a Violation

Due to the lack of the “sliding window” technique another approach for counting
violations of the defined constraints was proposed in [14]. Instead of counting the
number of violated “sliding windows”, this approach counts the components which
lead to the violation of a constraint. Like the “sliding window” approach all possible
subsequences are examined. The difference is that the violation is only counted if the
first position of the subsequence contains component c.

2.3.2 Renault Car Sequencing Problem

The French carmaker Renault proposed a CarSP for the ROADEF’05 challenge [34],
which we will denote as Renault CarSP. An interesting property of Renault CarSP
is that also constraints defined by the paint shop and the last production day are
included. Furthermore, the defined instances for the ROADEF’05 challenge include
up to 1300 cars. Therefore, Renault CarSP seems to be a quite realistic model of the
real world problem. Renault CarSP uses the advanced “sliding window” approach
as described in the previous subsection. Although it is not perfect, we will use the
same counting method to allow a comparison of our results with the results of the
ROADEF’05 challenge.

Formal Definition

The work within this thesis is based on Renault CarSP. Therefore, here a formal def-
inition is given. The formalisation is based on [28] and will be used throughout the
whole document.

The Renault CarSP is defined by a tupel (X, f), where

• X is a set of all possible arrangements of desired cars on the assembly line

• f : X → R+ is a cost function, which assigns each x ∈ X a positive objective
value

The goal is to find a solution x ∈ X, so that the function f(x) is minimised. Formal
we can write:

min
x∈X

f(x) (2.1)

7



2 The Car Sequencing Problem

To define possible solutions x, a set of components C and a set of colours F ⊆ C are
given. K is a set of possible configurations and a configuration k ∈ K has certain
installed components and exactly one colour. The set of configurations can be defined
as K = {k : k ⊆ C, |k ∩ F | = 1} with the restriction ki 6= kj for all ki, kj with i 6= j.
Furthermore, there is defined a demand δk for each configuration k ∈ K. The demand
δk defines the number of cars which must be produced for each configuration k ∈ K
and each car χi is represented by a configuration k ∈ K.

Now, the set of all possible solutions X, called a solution space, can formally be
described as:

X = {(χ1, . . . , χn) : {1, . . . , n} → K ∧ |{χi : χi = k}| = δk , ∀k ∈ K} (2.2)

Then the objective value of a solution x ∈ X is calculated by the following function:

f(x) =
n∑
i=1

costs(i) (2.3)

costs(i) = change(i) +
∑
c∈C\F

viol(i, c) + hard(i) (2.4)

change(i) =

γf ·max
f∈F

(afχi
− ef1) if i = 1

γf ·max
f∈F

(afχi
− afχi−1

) otherwise
(2.5)

viol(i, c) =


γc ·max(0, (

i∑
j=i−mc+1

acχj
)− lc) if i ≥ mc

γc ·max(0, (
i∑

j=1

acχj
+

mc−i∑
j=1

ecj)− lc) otherwise
(2.6)

hard(i) =


γhard ·max

f∈F
(0, (

i∑
j=i−mf+1

afχj
)− lf ) if i ≥ mf

γhard ·max
f∈F

(0, (
i∑

j=1

afχj
+

mf−i∑
j=1

efj)− lf ) otherwise

(2.7)

Equation (2.5) shows the calculation of colour changes. For this purpose a cost factor
γf ∈ {1, 103, 106} is defined. Furthermore, a component vector aTk = (a0k, . . . , a|C|k)
exists. If configuration k ∈ K contains component c ∈ C, the corresponding entry ack
is set to 1, otherwise ack is set to 0. Remember that the set of components C also in-
cludes the set of colours F , thus afk is set to 1 if configuration k ∈ K has colour f ∈ F .

Equation (2.6) shows the calculation of violations occurring at position i for compo-
nent c ∈ C. For this purpose a cost factor γc ∈ {1, 103, 106} \ {γf} for each component
c ∈ C exists. The constraints for component c ∈ C are defined by values mc, lc ∈ N,
meaning that no more than lc cars are allowed in a consecutive sequence of mc cars.

8



2 The Car Sequencing Problem

To take the last production day into account the determined sequence of the last day
is stored by constants eci ∈ {0, 1} for all c ∈ C and i = 1, . . . ,mc − 1. Thereby eci is
set to 1 if the i-th last car requires component c ∈ C, otherwise eci is set to 0.

Finally, Equation (2.7) shows the calculation of the hard constraints defined by the
paint shop. Thus a constant s ∈ N exists, meaning that maximal s cars having the
same colour f ∈ F are allowed to be scheduled in a consecutive interval. For calcula-
tion it is transformed to a rule lf/mf , where lf is equal to s and mf is equal to s+ 1
for all colors f ∈ F . As solutions x ∈ X can be found violating the defined hard
constraints, an additional penalisation constant γhard ∈ N is defined. This constant
γhard ∈ N should ensure that in principle not allowed solutions are discarded.

2.4 Computational Complexity

It can be shown that CarSP belongs to the class of NP -hard problems [23]. Under the
assumption that NP 6= P , no polynomial time algorithm exists. Therefore, in worst
case exponential time is needed to search through the whole search space X. Thus,
exact approaches such as Integer Linear Programming and Constraint Programming
are not capable of solving real-life instances [13].

An indicator of the complexity of an instance of CarSP is the size of the search
space size(X), which can be calculated by:

size(X) =
n!∏

k∈K
δk!

(2.8)

Furthermore, the utilisation rates utilRate(c) of the components c ∈ C \ F can be used
as an indicator of the complexity of CarSP instances [32]. The utilisation rate is defined
as the ratio of the whole number of cars requiring component c and the maximum
number of cars that can be sequenced without violating the defined constraints by the
component. Formal we can write:

utilRate(c) =
(
∑

k∈K δk · akc) ·mc

n · lc
, ∀c ∈ C \ F (2.9)

If the utilisation rate utilRate(c) of a component c is greater than 1, a rule lc/mc will
be violated in any case, i.e. the capacity of the station installing component c will be
exceeded in any case. Therefore, only with utilisation rates lower than 1 it might be
possible to find a sequence without violating any constraints.
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3 Related Work

This chapter presents the most relevant related work. Section 3.1 is devoted to dif-
ferent approaches that have already been made for CarSP. In Section 3.2 different
parallelisation strategies for VNS are presented. Finally, in Section 3.3 the topic of
VNS with dynamic neighbourhood-ordering is presented.

3.1 Car Sequencing Problem

In literature a great deal of work on topics related to the CarSP can be found. For
this reason only a summary of the different approaches is presented here. For a state
of the art overview the reader is refered to [34].

3.1.1 Exact Approaches

On the side of exact approaches, those based on Constraint Programming (CP) [10]
and Integer Linear Programming (ILP) [11] have to be mentioned. Exact algorithms
find a provable, optimal solution for a given instance. To solve the CarSP with CP or
ILP a suitable model has to be defined. For this purpose the constraints defined by the
CarSP must be mapped to a CP/ILP-model. In addition, constraints must be defined,
so that exactly one car is assigned to each position and all cars are used in a solution.
If the CarSP is defined as a combinatorial optimisation problem, soft-constraints can
be violated, but a cost-factor for each violation is added to an optimisation function.
Then a solution is a sequence of cars, where all hard-constraints are satisfied and the
optimisation function is minimised [27, 28].

3.1.2 Heuristic Approaches

Contrarily to exact approaches, heuristics sacrifice guaranteed solution quality to
speeding up the solution process.

Greedy Heuristics

The idea behind greedy heuristics is to start from an empty solution and add solution
components until the solution is complete. For CarSP that means that we start with
an empty sequence and add the next car to the existing sequence step by step. Which
car is selected next, is determined by the heuristic function. For CarSP the heuristic
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function should select a car in this way that as few as possible new constraint violations
are introduced. A study of six different greedy heuristics for the CarSP can be found
in [17].

Local Search Based Approaches

The basic idea of Local Search (LS) based approaches is to improve the current solu-
tion iteratively. First an initial solution is generated randomly or a greedy heuristic
is used. Afterwards the solution is improved by searching after better solutions in
a neighbourhood. A neighbourhood defines a set of solutions which we can be de-
rived from a given solution. Neighbourhoods are often generated by performing small
changes in the current solution, for example by swapping two cars. A Local Search
based approach can be found in [30, 17]. Thereby, different neighbourhoods are used.
These neighbourhoods are selected randomly and afterwards a single iteration is per-
formed in this neighbourhood.

Ant Colony Optimisation

Ant Colony Optimisation (ACO) is a probabilistic algorithm inspired from natural
ants. ACO tries to find a minimum cost path in a given graph. Therefore, the
CarSP must be transformed into a graph. Similar to natural ants, artificial ants lay
pheromone trails on the path they use. The path chosen by an individual ant is based
on a probabilistic decision, depending on the pheromone concentration laid on the
graph by the whole ant colony. An example of an ACO for the CarSP can be found
in [33].

Genetic Algorithms

A genetic algorithm is a population based method, i.e. there is a pool of candidate
solutions which is considered by the algorithm. A subset of these solutions called
parents is selected to be combined for generating new offspring. To avoid pure random
search, better solutions are selected with a higher probability. To bring in new genes
mutation is performed, where parts of the solution are randomly disturbed. These
steps—selection, crossover and mutation—are repeated until some stopping criterion
is met. A genetic algorithm for CarSP can be found in [8, 35].

3.1.3 Hybrid Approaches

Hybrid approaches try to combine the advantages of heuristic and exact algorithms.
Heuristic approaches have an advantage in run time, whereas exact approaches are
able to provide guarantees on solution quality. In [27, 28] a Variable Neighbourhood
Search was combined with an ILP based approach. Thereby, neighbourhood structures
examined via ILP techniques are included in the classical VNS.

11
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3.2 Parallel Variable Neighbourhood Search

Different parallelisation strategies for VNS can be found in literature. Here, we present
a short overview of these approaches. For a detailed description of possible paralleli-
sation strategies see Section 4.3.

3.2.1 Direct Parallelisation

Garćıa-López et al. [15] proposed two simple parallelisation strategies for VNS. The
first approach simply parallelises the Local Search by decomposition of the search space
of a single neighbourhood. The second presented approach is a classical multistart
approach, which is performed in parallel.

3.2.2 Centralised Parallelisation

In literature two more advanced parallelisation strategies for VNS can be found. The
key features are cooperation between the different processes and a central coordina-
tion. Garćıa-López et al. [15] proposed a synchronous, cooperative parallel VNS. In
this approach a Shaking and a Local Search are performed in parallel. After all Local
Searches have finished, the best value is determined. With this best solution the cal-
culation is continued.

Crainic et al. [9] presented an asynchronous, cooperative parallel VNS. Instead of
determining the best solution after each step (Shaking + Local search), the coopera-
tion is done in an asynchronous fashion. At the beginning different VNS are performed
in parallel by the slaves. If a slave can achieve no further improvement in a neigh-
bourhood, it sends the current solution to the master. The master determines the
best until yet received result and sends it back to the slave. Now the slave continues
with this solution and with the current neighbourhood.

3.2.3 Decentralised Parallelisation

Sevkli and Aydin [31] proposed two decentralised parallelisation strategies for VNS.
The first approach uses a unidirective ring-topology, where the outcome of one node
is passed to the next node in the ring. No further selection rules exist, i.e. the current
solution is replaced by the result of the predecessor node. Finally, they proposed
another decentralised approach using a so-called mesh-topology. Thereby, each process
receives two solutions from two other processes. Afterwards, each process continues
the calculation with the best of all locally known solutions.

12



3 Related Work

3.3 Variable Neighbourhood Search with Dynamic
Neighbourhood-Ordering

The research in the field of VNS with dynamic neighbourhood-ordering is still limited.
There are only two approaches which try to rearrange the neighbourhood-order dy-
namically during the VNS. The first approach in this direction is from Puchinger and
Raidl [29]. The order of neighbourhoods is determined dynamically based on relaxation
values computed for all neighbourhoods. In his work, Puchinger examines neighbour-
hoods using ILP based-methods. The relaxations are used as an improvement indica-
tor. During the VNS the neighbourhood-order is recalculated after each improvement
of the best neighbourhood.

A more general approach is from Hu and Raidl [22]. The presented algorithm uses
information from past behaviour to determine a new order of the neighbourhoods.
The neighbourhood-order depends on the execution time and on the success of the
neighbourhoods (current solution can be improved). In contrast to the approach from
Puchinger the neighbourhoods are not rearranged after each improvement. The rear-
rangement is only performed if a neighbourhood gets better/worse than the existing
best/worst neighbourhood. Between the adaption of the neighbourhood-ordering a
static order is used.
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Neighbourhood Search

Many practical instances of CarSP are too large to be solved with exact algorithms.
Therefore, heuristics, which give up finding the optimal solution for an improvement
of run time, are applied. But even with heuristics it may take a long time until a suit-
able solution is provided. Parallelisation of (meta)heuristics seems to be a promising
approach to overcome this issue.

4.1 Variable Neighbourhood Search

Variable Neighbourhood Search (VNS) is a metaheuristic developed by Hansen and
Mladenović and is based on the idea of changing the neighbourhood structure system-
atically [20, 21]. Metaheuristics try to guide underlying heuristics such that moderate
computing times are used and (near) optimal solutions are provided. The main idea
of VNS is to explore different neighbourhood structures systematically, with the goal
to escape local minima.

4.1.1 Basic Local Search

Starting from an initial solution, Local Search improves the current solution x itera-
tively by searching for better solutions x′ in the neighbourhood N (x) of solution x.
Under a neighbourhood N (x) one understands a set of solutions similar to x. The
definition of neighbourhoods is often done implicitly based on the application of one or
more specific moves to a current solution x. Identifying the next solution x′ to be used
within LS can be done according to different functions. Using a best improvement

Algorithm 1 Basic Local Search

Input: initial solution x
1: repeat
2: choose x′ ∈ N (x)
3: if f(x′) < f(x) then
4: x← x′

5: end if
6: until termination condition
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strategy, among all candidate solutions in N (x) that with the greatest improvement
is selected. In contrast, a next improvement strategy returns the first found solution
improving the current solution x. Algorithm 1 presents the pseudocode of Basic Local
Search. Mostly Local Search is applied until no further improvement can be achieved.
In this case a local minimum with respect to the used neighbourhood structure has
been reached.

4.1.2 Variable Neighbourhood Descent

Based on the idea that a local minimum with respect to Ni needs not necessarily be
a local optimum w.r.t. Ni, i 6= j, Variable Neighbourhood Descent (VND) changes
systematically between different predefined neighbourhood structures. See Figure 4.1
for an illustration of this idea. At point x it is not possible to escape from the local
minimum by using the neighbourhood N1(x). But when examining neighbourhood
N2(x), it is possible to escape from the local minimum and reach solution x′ with
f(x′) < f(x).

Fig. 4.1: Basic idea of VND

The pseudocode of VND is presented in Algorithm 2. VND starts with an initial
solution x and a given neighbourhood-order (N1, . . . ,Nmax). In the first step a Local
Search using neighbourhood structure N1 is performed until no further improvement
can be achieved. If a local optimum has been reached, VND continues by examining
neighbourhood structures N2, . . . ,Nmax. If an improvement can be achieved in any of
these neighbourhoods, VND swaps back to the first neighbourhood structure. Other-
wise it will terminate. In this case a local minimum has been reached with respect to
all neighbourhood structures.

The basic principle of VND is simple and only a few parameters have to be adjusted,
but nevertheless the following questions should be kept in mind [21]:

1. What is the complexity of the used neighbourhoods? Can the selected neigh-
bourhoods provide a solution in admissible time?

15



4 The Basics of Parallel Variable Neighbourhood Search

Algorithm 2 Variable Neighbourhood Descent (VND)

Input: initial solution x and a neighbourhood-order (N1, . . . ,Nmax)
1: k ← 1
2: repeat
3: choose x′ ∈ Nk
4: if f(x′) < f(x) then
5: x← x′

6: k ← 1
7: else
8: k ← k + 1
9: end if

10: until l = lmax

2. Are the used neighbourhoods adequate to explore the region containing x com-
pletely? Do appropriate neighbourhoods to escape from narrow valleys exist?

3. What is the best neighbourhood order (N1, . . . ,Nmax)?

The third question mainly addresses the efficiency of the used neighbourhoods, i.e.
the relation of computation time and the solution improvement of a neighbourhood.
Currently most frequently used is the order of neighbourhoods by increasing complex-
ity, often corresponding to the size |N (x)| of the neighbourhood. However, sometimes
this rule of thumb cannot be used, e.g. when the times necessary for examining the
neighbourhoods are similar to each other or when the size of a neighbourhood can-
not even be determined deterministically. Furthermore, this rule of thumb can be
misleading in the case when a neighbourhood with a greater complexity has a better
efficiency. Finally, a static neighbourhood-order during the whole run of VND will
probably not be ideal [29, 22].

4.1.3 Shaking

Although the usage of different neighbourhood structures reduces the probability to
be trapped in a local minimum, it is still possible. Based on the fact that local minima
are relatively close to each other, a random Shaking is performed, where only a few
variables are changed randomly. The goal of Shaking is to alter only as many positions
as necessary to escape from the valley containing the local minimum [21].

4.1.4 General VNS Scheme

General Variable Neighbourhood Search scheme combines VND and Shaking into a
general framework, on the one hand to escape from local minima and on the other
hand to escape from the valleys containing them. Given are a neighbourhood-order
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(N1, . . . ,Nmax) and an initial solution x. First a shaking step is performed and af-
terwards VND is applied to the current solution until no further improvement with
respect to all defined neighbourhoods can be achieved. These two steps are subse-
quently iterated whereas the neighbourhood used for the shaking phase is enlarged
systematically if no improvement could be achieved during the last local search phase.
For the pseudo code see Algorithm 3.

Algorithm 3 General Variable Neighbourhood Search scheme

Input: initial solution x and a neighbourhood-order (N1, . . . ,Nmax)
1: repeat
2: l← 1
3: repeat
4: x′ ← Shaking(l, x) {choose a random solution x′ ∈ Nl}
5: x′ ← V ND(x′)
6: if f(x′) < f(x) then
7: x← x′

8: l← 1
9: else

10: l← l + 1
11: end if
12: until l = lmax
13: until stopping conditions are met

4.2 Parallel Computing

The primary objective of parallel computing is to reduce the wall clock time for solving
a given problem. Of course, the additional computing power can also be used to solve
more complex problems in the same time [1]. At first glance this objective seems to be
clear, but on closer inspection the following different detailed reasons for parallelisation
can be identified [3]:

• Absolute Speed. The goal is to solve a given problem faster than it is possible
with the best algorithm running on the fastest computer.

• Relative Speed and Cost. Often it is only important to improve the wall clock
time subject to constraints such as cost or power consumption. The idea is to
perform the computation with a large amount of relatively inexpensive but slow
processors faster than using a cost-equivalent sequential computer.

• Scalable Computing. The objective is to develop a flexible design which offers
the possibility to increase the performance by adding additional processors.
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4.2.1 Parallel Architectures and Their Programming Models

The main idea of parallel computing is to divide computation into smaller computation
parts which can be executed simultaneously on multiple processors. As in general the
different computation parts are not independent from each other, a coordinated co-
operation is necessary. The coordinated cooperation is done by information exchange
and synchronisation. To understand how the information exchange and synchronisa-
tion can be done, it is important to have a look on the underlying parallel computer.
According to [36] a parallel computer

”[. . . ] is either a single computer with multiple internal processors or
multiple computers interconnected to form a coherent high-performance
computing platform.”

A frequently used classification of parallel computers is based on the memory organi-
sation which has a significant influence on the parallel programming model.

Multiprocessor System - Shared Memory

The common attribute of shared memory multiprocessor systems is that all proces-
sors have access to a shared memory. Hence, the information exchange can be done
by using global variables which all processes can access. Therefore the programming
model is called shared memory programming. To avoid concurrent access to a shared
variable, which can cause data inconsistency, mutual exclusion must be performed.
Mutual exclusion algorithms guarantee that only one process has access to a com-
mon resource by entering critical sections of a program. Synchronisation between
processes to achieve a certain sequence of actions is also done by using the shared
memory. In this architecture the parallelisation must be done explicitly, whereas the
communication is done implicitly.

Multicomputer - Distributed Memory

In a distributed memory multicomputer system each processor has only access to its
own local memory. In this architecture the information exchange is done by send-
ing messages explicitly to other processes. The underlying programming model is
therefore called message-passing programming. In a message-passing system no mu-
tual exclusion is necessary because the parallelisation is done implicitly. However, in
contrast to shared memory programming the communication must be done explicitly.

4.2.2 Measuring Performance

For evaluating parallel algorithms different performance metrics exist. Nevertheless,
all of them are based on the execution time of a program.

18



4 The Basics of Parallel Variable Neighbourhood Search

Execution Time

In sequential algorithms the number of iterations or evaluations of a program is often
used as a performance metric. This metric is prefered by many researchers because
implementation details, used software and hardware do not falsify the results and
therefore a meaningful comparison is possible. But this approach is not always suit-
able. For example, when comparing the effectiveness of different neighbourhoods, the
time to find a solution is an important factor and therefore cannot be neglected. Nev-
ertheless, also the number of evaluations should be reported to allow a comparison
between different algorithms [1].

The CPU time is also widely used as a performance metric for sequential programs.
It is the time a program is running on the CPU and excludes all system overhead
activities. Because the goal of parallelisation is the reduction of the wall clock time
for solving a problem, all overheads introduced by the parallelisation must be in-
cluded. Therefore, the parallel execution time Tp of a parallel program running on p
processors is defined as the wall clock time from starting a parallel program until all
processes have finished the execution. The sequential execution time Ts of a sequential
program is defined as the wall clock time between start and end of the program [1, 18].

Basically two stopping conditions for metaheuristics exist. First, an a priori defined
effort, e.g. a given amount of available wall clock computation time or a predefined
number of available iterations, can be used as a stopping condition and secondly a
metaheuristic can be terminated, if a predefined solution quality has been reached.
When using an a priori defined effort, no meaningful conclusion about the speedup is
possible, because we cannot conclude about time improvements based on the achieved
solution quality. Only when using a predefined solution quality as a stopping condi-
tion, statements about the speedup of the execution time are possible. Furthermore,
when stochastic algorithms are used, multiple independent runs must be performed
to obtain meaningful values for the execution times [1].

Costs

The costs of a parallel program running on p processors are defined as:

Cp = Tp · p (4.1)

The costs are a measure of the overall time spend by all processors running in a parallel
program.

Parallel Overhead

Theoretically, if using p processors, we can expect a p-fold faster parallel execution
time Tp compared to the sequential execution time Ts. But in a typical parallel
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program this will not be the case, because of the additional overhead introduced by
the parallelisation. According to [18] the main sources therefore are:

• Interprocess Interaction. The time needed to exchange information between
processes.

• Idling. In a parallel program processes may run out of doing useful work and
get idle. Reasons therefore are:

– Serial components. Serial components cannot be parallelised and therefore
they can only be performed by a single processor.

– Load Imbalance. Load imbalance occurs when not each process has the
same amount of work to do and therefore some processes must wait.

– Synchronisation. Since in a parallel program the computation is distributed
on more than one process, it might occur that a process must wait for the
termination of an other process.

• Excess Computation. In most cases it is not possible or at least difficult to
parallelise a given high developed, complex sequential algorithm. Therefore
a poorer sequential algorithm must often be used as a starting point of the
parallelisation. An additional frequent reason for excess of computation is that
in a parallel algorithm some computations are performed multiple times to avoid
additional interprocess interactions and idling.

All of these overheads can be summed up to a total overhead :

To = Cp − Ts = p · Tp − Ts (4.2)

Speedup

The most common performance metric for parallel programs is the speedup and it is
defined as:

Sp =
Ts
Tp

(4.3)

The speedup defines how much faster a parallel program runs on p processors in
comparison to the sequential program. In an ideal parallelisation we can achieve a
speedup of Sp = p which is called linear speedup. But in most cases only a sublinear
speedup with Sp < p can be achieved due to the parallelisation overhead. A super
linear speedup can be caused by hardware effects, e.g. when in the parallel program
all data fit into the cache. But as any parallel algorithm can be simulated on a single
processor, a super linear speedup suggests that the original sequential algorithm was
not optimal [36].
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Determining the Sequential Execution Time

When using the speedup metric, different assumptions about the sequential execu-
tion time Ts are possible [3]. The most unambiguous definition is absolute speedup.
Absolute speedup compares the fastest sequential program on the fastest sequential
computer with the parallel program running on p processors of a parallel computer.
Two practical problems arise when using absolute speedup. The first problem is that
it is mostly not possible to have access to the fastest sequential computer. The sec-
ond problem is finding the best sequential algorithm, especially when algorithms have
parameters which can be tuned. Consequently all known algorithms must be run on
different computers to find out the best parameters which cause the shortest sequential
execution time. Because of these problems most researchers use relative speedup [1].

In relative speedup the time for running the parallel program on one processor is
compared with the parallel program running on p processors. Consider that the rel-
ative speedup can only be used if the parallel algorithm running on one processor is
faster than other sequential algorithms. That means that the ”poorer” parallel algo-
rithm must be faster than the sequential algorithm, which was used as a starting point
of the parallelisation. Otherwise this would lead to misleading statements about the
achieved speedup.

Finally, speedup compares the time of the fastest sequential program for solving a
problem with the parallel program running on p processors. Here, also the best
known sequential algorithm is used but the usage of the best sequential computer is
disregarded.

Efficiency

Efficiency is the ratio of the sequential execution time Ts to the costs of the parallel
program Cp = p ·Tp. If substituting Tp by Tp from Equation (4.2), we get the following
equation for the efficiency:

E =
Ts
Tp · p

=
1

1 + To

Ts

(4.4)

Efficiency is the fraction of time during which a parallel algorithm is doing meaningful
work. Only in an ideal system with a parallel overhead To = 0 an efficiency of 100%
can be achieved.

4.2.3 Maximum Speedup

Theoretically, if adding additional processors, an improvement of the speedup can
be expected. Assuming a constant serial fraction f of computation which cannot be
parallelised, then f · Ts of the time can only be done by a single processor. If the rest
of the computation can be parallelised perfectly, the computation time (1− f)Ts can

21



4 The Basics of Parallel Variable Neighbourhood Search

be divided by p processors. Then the upper limit for the possible speedup, excluding
all other parallelisation overheads, is given by:

Sp =
Ts

f · Ts + (1−f)Ts

p

=
1

f + 1−f
p

≤ 1

f
(4.5)

Equation (4.5) is also known as the Amdahl’s law [2]. The main assumption of Am-
dahl’s law is that a fixed part of serial work must be done in a parallel algorithm. In
the year 1967 Amdahl argued against massive parallelism based on his formulated law.

It took 21 years until Gustafson presented massive parallel algorithms running on
a 1024-processor system with a speedup above 1000 [19]. To achieve this speedup the
problem size is increased to minimise the serial fraction f . If, as in many cases possi-
ble, the serial fraction decreases, while the problem size is increased, the assumption
of a fixed serial fraction can be discarded. Therefore, contrary to a fixed serial fraction
f as in the Amdahl’s law, we can assume that the parallel execution time is constant.
If the parallel execution time is expressed by f ·Ts+ (1−f)Ts and for mathematically
simplification it is assumed to be 1, we get

Sp =
f · Ts + (1− f)Ts · p
f · Ts + (1− f)Ts

= f · Ts + (1− f)Ts · p = p+ (1− p)f (4.6)

for the possible speedup. Equation (4.6) is known as the Gustafson’s law or scaled
speedup [19]. In this case the possible speedup is not bounded.

4.2.4 Scalability

The conclusion from Amdahl’s law is that, when using a constant problem size, the
efficiency goes down when increasing the number of processors. And from Gustafson’s
law we can conclude that, when increasing the problem size and letting the number of
processors constant, the efficiency improves. Both observations can be described by
scalability. Scalability is the ability of a parallel algorithm to use additional processors
efficiently. The main question of scalability is how much must we increase the problem
size so that we can use the additional processors at the same efficiency. An analytical
metric is the isoefficiency metric of scalability [18].

Isoefficiency Metric of Scalability

In sequential algorithms the problem size is mainly defined as the input size of the
problem. A drawback of this definition is that depending on the used algorithm a
different number of operations will be performed for the same problem. Therefore,
the problem size W is commonly defined as the number of basic operations of the best
sequential algorithm to solve a given problem. Assuming that a basic operation takes
unit time and all other constants are normalised, the problem size W is equal to the

22



4 The Basics of Parallel Variable Neighbourhood Search

sequential execution time Ts. Now, the total overhead To can be defined by an overhead
function To(W, p). If replacing the sequential execution time Ts by the problem size
W and the total overhead To by the overhead function To(W, p) in Equation (4.4) the
efficiency can be rewritten as:

E =
1

1 + To(W,p)
W

(4.7)

To maintain a fixed efficiency To(W, p)/W must be held constant. If transforming
Equation (4.7), we get for the problem size

W = KTo(W, p) (4.8)

where K = E
1−E is a constant depending on the efficiency to be maintained. The

expression (4.8) is called the isoefficiency function. The isoefficiency function deter-
mines the problem size W which is needed to sustain a fixed efficiency when using p
processors. High values of the isoefficiency function indicate poor scalability, whereas
low values indicate high scalability. For unscalable systems the isoefficiency function
does not exist, because the efficiency cannot be kept constant when p increases, no
matter how big the problem size W is.

Degree of Concurrency

The degree of concurrency C(W ) is the number of tasks that can be performed si-
multaneously. If the number of processors p exceeds the degree of concurrency C(W ),
the additional processors cannot be used efficiently and the efficiency goes down. In
this case p − C(W ) processors cannot be employed. As in a scalable system the effi-
ciency can be kept constant, also the degree of concurrency C(W ) can be increased
by increasing the problem size W . If a fixed degree of concurrency C(W ) independent
of the problem size W is used, the parallel algorithm is in any case unscalable. The
reason is that the efficiency cannot be held constant when the number of processors
exceeds C(W ).

4.3 Parallel Variable Neighbourhood Search

In this section a classification of parallelisation strategies for VNS based on various
characteristics is presented. This classification is based on a classification of parallel
metaheuristics presented in [9], which is extended by additional characteristics.

4.3.1 Direct versus Indirect

In a direct parallelisation the sequential VNS is parallelised by running the origi-
nal VNS on multiple processors. Examples of direct approaches are parallelising the
Local Search by decomposition of the search space or running a multistart VNS in
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parallel. Because a sequential VNS is optimised to run efficiently on a sequential com-
puter, it might be better to develop a ”poorer” sequential algorithm for parallelisation.
Therefore, in an indirect parallelisation a new algorithm based on the principles of
the classical VNS which can be parallelised efficiently is developed first. Although,
in general additional computation is introduced, an increased performance compared
to a direct approach can be expected. An obvious approach is exploring different
neighbourhoods in parallel.

4.3.2 Single-Trajectory versus Multi-Trajectory

When using a single-trajectory strategy only a single trajectory of the search space
is walked through. A possible strategy is a decomposition of the search space such
that each processor searches through a part of the whole search space. After each
process has finished, the best solution is determined and the search is continued with
it. Another approach is searching through different neighbourhoods and selecting the
best found solution afterwards. In a multi-trajectory parallelisation strategy multiple
search trajectories are searched through in parallel. Figure 4.2 illustrates the main
difference between single-trajectory and multi-trajectory strategy. Furthermore multi-
trajectory strategies can be classified whether information among the different search
trajectories is exchanged or not.
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Fig. 4.2: Example of single-trajectory (a) and mulit-trajectory (b) search

Independent versus Cooperative

In an independent search strategy no information is exchanged and all different search
trajectories are performed completely independent of each other. A straightforward
approach is to perform multiple, independent runs of VNS and collect the results at
the end. Although, an independent search strategy can be parallelised perfectly, the
disadvantage of considering worse solutions or neighbourhoods, which do not con-
tribute to the solution quality, exists. Hence, in a cooperative strategy information
among different search trajectories is exchanged to adapt the future search process.
Thus, a more detailed investigation of promising neighbourhoods or solutions, which
should lead to a speedup of the search process, is possible.
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4.3.3 Low-Level versus High-Level

When using a low-level parallelisation strategy, we basically try to parallelise low-
level computation such as loops or computation tasks of a single iteration such as
single moves of a neighbourhood. Contrarily, in a high-level parallelisation strategy
the focus lies on parallelising single parts of VNS. For example, the Local Search can
be replicated and run with different neighbourhoods in parallel.

4.3.4 Central versus Distributed

The basic characteristic of central approaches is the existence of a central point where
all pieces of information flow together. As in general also the whole information is
considered, decisions on global information are possible. A common approach is a
master-slave model, where mostly one master process generates work and allocates it
to the slaves. Thereby, the master makes the control decisions of the algorithm and
the slaves execute the assigned work. In contrast to a central parallelisation approach,
control decisions are mostly distributed over all involved processors in a distributed
approach. Thus, no central control point exists and almost always only a part of
the global information is considered for future decisions. If a process considers only
neighbour processes for future decisions, a possible decrease of the synchronisation
overhead can be expected. Furthermore, the disadvantage of a single point of failure
or the problem that a single point gets a performance bottleneck do not arise. An
example for a distributed approach is to use generated solutions of neighbour processes
and decide on basis of this local information with which solution to continue.

4.3.5 Synchronous versus Asynchronous

In synchronous computation a process waits at predefined points until all other pro-
cesses have finished computation, thereby becoming synchronised. In a parallel pro-
gram process synchronisation is done to guarantee that the same sequence of actions
is performed as in the sequential algorithm. A drawback of synchronous computation
is that additional synchronisation overhead is introduced. Asynchronous computa-
tion omits synchronisation to avoid synchronisation overhead. However, developing
an asynchronous algorithm is tricky, because any possible sequence of actions should
lead to the desired results. An example of an asynchronous approach is using the so
far best found solution in the case a local minimum has been achieved.
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In this Chapter we present a new parallelisation strategy for VNS called Parallel
Efficiency Guided VNS (PEGVNS). This approach exploits observed efficiencies of
neighbourhoods to guide the search process and is based on a special for parallelisa-
tion adapted VNS called Time Restricted Randomised VNS (TRRVNS), which uses
a random neighbourhood selection, a Time Restricted Local Search and a next im-
provement strategy with randomised examination order.

5.1 Efficiency of Neighbourhoods

When applying VND, the neighbourhoods are mostly ordered by increasing complexity
and afterwards this static neighbourhood-order is applied during the whole search
process. But as stated in Section 3, this is in general not optimal. If giving up this
standard practice, any possible neighbourhood could be selected in each iteration.
Such a sequence of neighbourhoods to be used is denoted as a neighbourhood-usage.
In this section we give a formal definition of an efficient neighbourhood-usage. This
formulation is based on the efficiency of a neighbourhood evaluation presented in [4]
which is extended to an efficient neighbourhood-usage. Table 5.1 shows the notations
used for the formal definition.

Table 5.1: Notations used for describing an efficient neighbourhood-usage

xi . . . solution in i-th iteration
xik . . . solution in i-th iteration generated by Nk
N i . . . neighbourhood structure used in the i-th iteration
N i
k . . . neighbourhood structure Nk used in the i-th iteration

e . . . overall number of performed iterations until termination
(N 1, . . . ,N e) . . . neighbourhood-usage
(x0, . . . , xe) . . . search trajectory
N . . . a set of neighbourhoods
µk,j . . . move j in Nk
Mk ⊆ Nk . . . a subset of moves µk,j
S(Nk(xi)) . . . step function to be used in Local Search
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For this formulation, we assume that the search trajectory also contains solutions xi

where xi = xi−1, i.e. the search trajectory contains solutions xi where no improved
solution is returned by S(N i(xi−1)). Furthermore, we assume a minimisation problem
and a deterministic improvement strategy S, i.e. applying S on a solution xi will
always return the same solution xi+1.

5.1.1 Improvement per Iteration

The so-called value improvement per iteration I is the improvement of the objective
value during one iteration and is defined as:

I(N i, xi−1) = f(S(N i(xi−1)))− f(xi−1) (5.1)

When using a best improvement strategy, the maximum value of I can always be
achieved, because the whole neighbourhood is examined. Whereas, using a next im-
provement strategy, mostly only an improvement less than the theoretically possible
improvement will be achieved during one local search iteration. A further influence
on I has the chosen neighbourhood structure N i. With appropriate and larger neigh-
bourhoods we can expect larger improvements. Furthermore, the current solution xi−1,
which depends on the previous applied neighbourhood structures (N 0, . . . ,N i−1), has
a major influence. Thus, when maximising I, a best improvement strategy with large
neighbourhoods is expected to be most promising.

5.1.2 Time per Iteration

The value time per iteration T is the time for examining a neighbourhood until a
solution is returned, according to the step function S, and it is defined as:

T (N i
k, x

i−1) =
∑

µk,j∈MSk

T (µk,j, x
i−1) (5.2)

Here T (µk,j, x
i−1) is the time for evaluating a single move and depends on the chosen

neighbourhood structure N i
k as well as on implementation details and on the used

hardware. The improvement strategy determines the size of the investigated set of
moves MS

k . When using a best improvement strategy, T will usually be higher com-
pared with a next improvement strategy. To minimise T , a next improvement strategy
with neighbourhoods where moves can be evaluated quickly should be used.

5.1.3 Efficient Neighbourhood-Usage

If we can choose among a set of neighbourhoods N, the best neighbourhood is neither
the neighbourhood with maximum I nor the neighbourhood with minimum T . Both
points considered in isolation are not appropriate to make statements about the quality
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of a neighbourhood, only the relation between them is meaningful. Thereby, a tradeoff
between I and T must be found. On the one side evaluating a larger subset of
moves increases the chance of identifying moves with larger improvements, but on the
other side it increases T . Therefore, we define efficiency of a neighbourhood in i-th
generation using neighbourhood structure N i and solution xi−1 as:

E((N i), xi−1) =
I(N i, xi−1)

T (N i, xi−1)
, with i > 0 (5.3)

Because a selection of the most efficient neighbourhood in the i-th iteration must not
necessarily lead to an optimal neighbourhood-usage, we are interested in the efficiency
of a neighbourhood-usage for a given amount of computation time tT ime. Therefore,
we first define the efficiency of a neighbourhood-usage between iteration j and i as:

E((N j, . . . ,N i), xj) =

∑i
l=j I(N l, xl−1)∑i
l=j T (N l, xl−1)

, with 0 > j > i (5.4)

Given an initial solution x0, we can define an optimal neighbourhood-usage as:

max
N 1,...,N e∈N

E((N 1, . . . ,N e), x0), with (5.5)

e−1∑
l=1

T (N l, xl−1) <= tT ime (5.6)

e∑
l=1

T (N l, xl−1) > tT ime (5.7)

e ≥ 1, tT ime > 0

Equation (5.5) states that we are searching for a neighbourhood-usage (N 1, . . . ,N e),
such that for a given amount of time tT ime the best efficiency can be achieved.
Consider that the overall number of performed iterations e depends on tT ime, the
initial solution x0 and on the chosen neighbourhood structures. Assuming that all
neighbourhood-usages have the same execution time, this formulation is equivalent of
finding a neighbourhood-usage which provides a solution with the minimum objective
value in the given amount of time.

When emin is the minimum number of iterations of all possible neighbourhood-usages
within the given amount of time tT ime, then at least |N|emin possible neighbourhood-
usages exist. Thus, exploring all of them is in practise impossible.
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5.2 Underlying Sequential VNS

The objective of Parallel Efficiency Guided VNS (PEGVNS) is to find an efficient
neighbourhood-usage (N 1, . . . ,N e). Thereby, the current solution is improved by
diverse neighbourhoods in parallel and afterwards the solution of the most efficient
neighbourhood is used for the future search.

Within this section the so-called Time Restricted Randomised VNS (TRRVNS) which
builds the basis for PEGVNS is presented. TRRVNS enables an efficient paralleli-
sation and supports finding an efficient neighbourhood-usage which might also prove
advantageous for TRRVNS.

5.2.1 Time Restricted Local Search within a Parallel
VNS-approach

The only difference between Time Restricted Local Search (TRLS) and Basic LS is
that the search is stopped after a predefined amount of available computation time t.
The stop of Local Search is mainly required to reduce the synchronisation overhead
and to allow a changing to a more efficient neighbourhood. Consider to make possible
a TRLS, also a time restricted neighbourhood evaluation has to be used. Within this
work a next improvement strategy with a randomised examination order, denoted as
RandExam, is used. Therefore, we use RandExam as described in Algorithm 5 for
S(Nk(xi)). Algorithm 4 shows the pseudocode of TRLS.

Algorithm 4 Time Restricted Local Search (TRLS)

Input: initial solution x, a neighbourhood structure Nk and a maximum allowed
execution time t

1: repeat
2: x′ = RandExam(Nk, x, t− execT ime) {stop if remaining time has elapsed}
3: if f(x′) < f(x) then
4: x← x′

5: end if
6: until execT ime > t or or no improvement is achieved

Reducing Parallelisation Overhead

From the viewpoint of an efficient parallelisation the goal is using a sequential al-
gorithm which causes a low parallelisation overhead. Without loss of generality, we
assume here that a single iteration of LS is performed with two neighbourhood struc-
tures in parallel. Assume we improve a given solution xi−1 with N i

j and N i
k in parallel

and obtain two solution improvements xij and xik. Because the values of T of dif-
ferent neighbourhoods are mostly not equal to each other, the problem that in some
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cases E((N i
j ), x

i−1) > E((N i
k), x

i−1), while f(xij) > f(xik), arises. If choosing the so-
lution generated by the neighbourhood with the higher efficiency, the solution with
the worse objective value is chosen. Therefore, the additional computation does not
contribute to a finding of an efficient neighbourhood-usage. This causes an excess of
computation, resulting in an additional parallelisation overhead. However, choosing
the solution with the best objective value leads to an inefficient neighbourhood-usage,
which causes also an excess of computation. Although we want to use the most ef-
ficient neighbourhood in each iteration, we will always use the solution generated by
the neighbourhood with maximum I. A usage of TRLS can avoid such effects.

An additional argument supporting a TRLS is that the synchronisation overhead
is minimised. Otherwise, all processes must wait until the process using the neigh-
bourhood with the maximum value of T has finished. Therefore each TRLS running
in parallel should use the same execution time t. However, even if all processes stop
at the same point of time, exchanging the new solution causes a basic synchronisation
overhead. Therefore, the number of necessary synchronisations should be reduced.
Moreover, the communication overhead decreases when the number of synchronisa-
tions is decreased. This implies that the execution time t of TRLS should be as
large as possible and thus several iterations of TRLS should be performed, whereas
the number of performed iterations depends on the used neighbourhood. However,
running TRLS too long leads to an inefficient neighbourhood-usage.

Finding an efficient Neighbourhood-Usage

Assume we apply on an initial solution x0 a complete LS with a single neighbourhood
Nj until a local minimum has been achieved. Let us assume that the local minimum
is reached in iteration i. In this case the efficiency of the neighbourhood structure will
be E((N i

j ), x
i−1) = 0, but often a neighbourhood N i

k exists where E((N i
k), x

i−1) > 0
with j 6= k. Therefore, it is in any case better to abort the last iteration of LS and
to use neighbourhood N i

k instead where the solution can be improved. Figure 5.1
illustrates the idea of skipping the last iteration of LS to increase efficiency.

N1
// N1

// N1
// N2

// N1
// N2

N1
// N1

// N2
// N2

Fig. 5.1: Rescheduling neighbourhoods to increase efficiency

However, a forecast, when this last iteration occurs, is not possible. But if choosing
appropriate values for t, TRLS aborts when the time for evaluating a neighbourhood
increases. This can be a hint that we get near a local minimum or we are in this last
iteration where no improvement will occur. Then a switching to another more efficient
neighbourhood is possible.
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Moreover, if running TRLS with a neighbourhood there may already be an earlier
point of time when the efficiency of the used neighbourhood is worse than another
neighbourhood. Thus, stopping TRLS from time to time gives the opportunity to
investigate a more efficient neighbourhood and therefore to increase the efficiency
of the neighbourhood-usage. Therefore, from the viewpoint of finding an efficient
neighbourhood-usage, TRLS should stop after a small amount of time t, to allow a
changing to a more efficient neighbourhood.

5.2.2 Random Neighbourhood Selection

The basic idea of a randomised VNS (RandVNS) is to choose the neighbourhoods ran-
domly instead of applying a statically determined order. Computational experiments
carried out in [29] have delivered better results for RandVNS than for VNS using a
static neighbourhood-order.

The superiority of a RandVNS over a VNS using a static neighbourhood-order might
be traced back to interfering effects of VND when using a static neighbourhood-order.
We have already argued that the efficiency goes down during LS and therefore another
neighbourhood might get more efficient. But in VND using a static neighbourhood-
order in any case the first neighbourhood is used until a local minimum is achieved,
even if a more efficient neighbourhood exists. Finally, we get into a local minimum,
resulting in an efficiency of E(N1, x

i−1) = 0. But as afterwards only one iteration
with another neighbourhood Nj, with j 6= 1, is performed, the efficiency of the first
neighbourhood cannot be boosted enough. The reason is that most moves will not
lead to improvements, because only in a small area changes have occurred. Therefore,
the efficiency of the first neighbourhood may still be less efficient compared to other
neighbourhoods. By using a random neighbourhood selection, we can overcome this
drawback. Thus, it would be better to switch to the most efficient neighbourhood
and continue TRLS until another neighbourhood gets more efficient. Because we do
not know which neighbourhood is most efficient, we choose a random neighbourhood.
When running more neighbourhoods in parallel we are able to choose the solution
generated from the most efficient neighbourhood.

5.2.3 Next Improvement with Randomised Examination Order

For evaluating a neighbourhood, different strategies, which have a major influence on
the efficiency are possible. When using a best improvement strategy, always the max-
imum value for I can be achieved. However, we always get the maximum value for
T . Assuming all moves have the same execution time. Then in a next improvement
strategy the optimal efficiency can be achieved if the first applied move leads to the
best solution. In this optimal case a next improvement strategy has in any case a
higher efficiency than a best improvement strategy.
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To increase efficiency of a next improvement strategy, it is better to begin apply-
ing moves where improvements can quickly be found and where the improvement
potential is the highest. When using always the same predefined examination or-
der, the neighbourhood is always examined in the same order which might reduce
the improvement potential. Suppose, we divide a given neighbourhood Nk into two
neighbourhoods Nk = Nk1 ∪Nk2 with Nk = Nk1 ∩Nk2 = ∅. Then in a specific exam-
ination order these neighbourhoods are always applied in the same order (Nk1,Nk2).
As in a specific examination order the neighbourhood Nk2 is not evaluated until a
local minimum has been achieved in Nk1, the same problems as in VND using a static
neighbourhood-order occur. To overcome this drawback a randomised examination
order should be chosen to diversify the search [4].

Algorithm 5 presents the pseudocode of the next improvement strategy with a ran-
domised examination order used within this work. Thereby, in each iteration a random
permutation π : {1, . . . , n} → {1, . . . , n} is newly created. Afterwards moves are se-
lected by using the random values π(0), . . . , π(n) for the parameters a1, . . . , ai defining
a move. If the selected move is included in the corresponding neighbourhood structure,
it is applied to the current solution, otherwise the next move is chosen.

Algorithm 5 RandExam

Input: a neighbourhood structureNk, a solution x and a maximum allowed execution
time t

1: π ← randShuffle(π)
2: for a1 = π(0) to π(n) do
3: . . .
4: for ai = π(0) to π(n) do
5: if execT ime > t then
6: return x
7: else
8: j ← Index(a1, . . . , ai) {move µk,j is defined by parameters a1, . . . , ai}
9: if µk,j ∈ Nk then

10: x′ = µk,j(x)
11: if f(x′) < f(x) then
12: return x′

13: end if
14: end if
15: end if
16: end for
17: . . .
18: end for
19: return x
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5.2.4 Time Restricted Randomised VNS

Combining the above ideas regarding neighbourhood ordering and considerations on
Local Search we present a new variant of VNS called Time Restricted Randomised
VNS (TRRVNS). This algorithm is based upon General VNS scheme described in Al-
gorithm 3 and uses TRLS, a next improvement strategy with a randomised examina-
tion order and a random neighbourhood selection. Algorithm 6 shows the pseudocode
of TRRVNS.

At the beginning it is easy to find better solutions quickly. Therefore, we can choose
a small value for time t, to avoid evaluating a neighbourhood which is near a local
minimum or in the last iteration. With time it gets harder to find better solutions with
small values of time t, because only a part of the large neighbourhoods can be evalu-
ated while small neighbourhoods do not lead to improvements any more. Therefore,
we increase the value of t by the function adaption(t) when the number of neighbour-
hood examinations without improvements exceeds a given parameter maxRetries.
This leads in general to a more detailed search within neighbourhoods. Furthermore
if maxRetries is exceeded, a Shaking is performed.

5.3 Parallel Efficiency Guided VNS

When parallelising TRRVNS a new variant of VNS evolves called Parallel Efficiency
Guided VNS (PEGVNS). The basic idea of Parallel Efficiency Guided VNS (PEGVNS)
is to improve a given solution x′ by examining more than one neighbourhood of x′ at
the same time. Afterwards the solution generated by the most efficient neighbourhood
is selected and the search is continued with this solution. In a first step, a set of
neighbourhood structures is chosen randomly to be applied on the current best solution
using TRLS as local improvement strategy. In the case TRLS terminates prematurely
due to a local minimum, a further neighbourhood structure is selected randomly and
the search is continued for the remaining time. This is done to utilise a processor
for the whole assignend CPU time. Finally, we can choose the solution with the
minimum objective value in each iteration which is also the solution generated by the
most efficient neighbourhood. Because all neighbourhoods are chosen randomly, it is
possible choosing a single neighbourhood twice. But as a next improvement strategy
with a randomised examination order is used, it is likely that even in this case two
different solutions can be generated. Algorithm 7 shows the pseudocode of PEGVNS.
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Algorithm 6 Time Restricted Randomised VNS (TRRVNS)

1: x← initialize()
2: x′ ← x
3: l← 1
4: retry ← 0
5: repeat
6: if retry = maxRetries then
7: if f(x′) ≥ f(x) then
8: x′ ← x
9: l← l + 1

10: else
11: x← x′

12: l← 1
13: end if
14: x′ ← Shaking(x′, l)
15: retry ← 0
16: t← adaption(t) {for example t← t · 2}
17: end if
18: Nk ← selectRandNeighbourhood()
19: x′′ ← TRLS(Nk, x′, t)
20: if f(x′) ≤ f(x′′) then
21: retry ← retry + 1
22: else
23: x′ ← x′′

24: retry ← 0
25: end if
26: until stopping condition is met
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Possible Speedup

The only possibility of PEGVNS to achieve a speedup compared to a sequential VNS
can be caused by a more efficient neighbourhood-usage, which implies that the effi-
ciency of different neighbourhood-usages must not be equal when applying PEGVNS.
Otherwise the speedup Sp is always equal to one, independent of the number of pro-
cessors used.

For the speedup metric it is necessary to compare the parallel execution time Tp
of PEGVNS with the sequential execution time Ts of a sequential VNS. For this
purpose the considered programs stop at a predefined objective value tObj. In this
case the efficiency of a neighbourhood-usage E((N 1, . . . ,N e), x0) holds the following
restrictions:

f(xe) < tObj

f(xe−1) >= tObj

Then the maximum speedup of PEGVNS including only the excess of computation
introduced by running TRLS with different neighbourhoods in parallel can be written
as:

Sp =
Ts
Tp

<=
Ep((N 1p , . . . ,N ep), x0)

Es((N 1s , . . . ,N es), x0)
=

∑es

l=1s
T (N l, xl−1)∑ep

l=1p
T (N l, xl−1)

(5.8)

Here Ep is the efficiency of the generated neighbourhood-usage of PEGVNS and Es
is the efficiency of the neighbourhood-usage of the to be compared sequential VNS.
Equation (5.8) states that the real speedup including all other parallelisation over-
heads is bounded by the efficiency of the neighbourhood-usage used by PEGVNS. For
example, a linear speedup can only be achieved if the generated neighbourhood-usage
is at least p-fold so efficient when running PEGVNS on p processors. However, even a
super linear speedup of PEGVNS is possible. But when comparing PEGVNS running
on p processors with PEGVNS simulated on a sequential computer, this super linear
speedup disappears.
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Algorithm 7 Parallel Efficiency Guided VNS (PEGVNS)

1: x← initialize()
2: x′ ← x
3: l← 1
4: retry ← 0
5: repeat
6: if retry = maxRetries then
7: retry ← 0
8: if f(x′) ≥ f(x) then
9: x′ ← x

10: l← l + 1
11: else
12: l← 1
13: x← x′

14: end if
15: x′ ← Shaking(x′, l)
16: t← adaption(t)
17: end if
18: do in parallel
19: xi ← x′

20: repeat
21: Nk ← selectRandNeighbourhood()
22: xi ← TRLS(Nk, xi, t− execT ime)
23: until execT ime > t
24: end do in parallel
25: if f(x′) ≤ f(xi), ∀xi then
26: retry ← retry + 1
27: end if
28: for all xi do
29: if f(xi) < f(x′) then
30: x′ ← xi
31: end if
32: end for
33: until stopping condition is met
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One crucial point in developing a VNS approach is the appropriate design of neigh-
bourhoods used with VND and VNS, respectively. For the formal description of the
neighbourhoods the notations of Table 6.1 are used. These notations and all defined
moves are based upon [17] and the implementations of neighbourhood Swapping and
Shifting are based upon [27, 28].

Table 6.1: Notations used for describing neighbourhood structures

(χ1, . . . , χn) . . . configuration vector of current solution x
χi . . . car at position i
πi . . . subsequence of x of length ≥ 0
(χi) . . . subsequence of x of length = 1
· . . . concatenates two subseuqences
(χi, χi+1, . . . , χi+k) . . . subsequence of x of length = k

Table 6 lists the five used neighbourhood structures, their size and the time for eval-
uating the whole neighbourhood. All neighbourhood structures use an incremental

Table 6.2: Used Neighbourhood Structure

short neighbourhood size complete examination
NSW Swapping O(n2) O(n · |K| ·

∑
c∈C\F mc)

NSH Shifting O(n2) O(n · |K| ·
∑

c∈C\F mc)

NINV Inverting O(n2) O(n2 ·
∑

c∈C\F mc)

NBS Block Swapping O(n3) O(n3 ·
∑

c∈C\F mc)

NBSH Block Shifting O(n3) O(n3 ·
∑

c∈C\F mc)

evaluation of the objective value. For this purpose an array of size n · (|C|−1) is used,
where for each component c and each sliding window of length mc the number of
occurrences for the component within the sliding window is stored. Then the number
of violations of a component c within a sliding window caused by a single configura-
tion exchange can be computed in constant time. Furthermore, all colour changes are
computed incrementally by comparing the colour of the new configuration with the
colour of the old configuration. For the maximum colour block size we use a second
array of size n, where each entry points to the beginning of the colour block. Thus,
the recalculations of violations caused by exceeding the maximum colour block size
can be done in constant time.
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6.1 Swapping

A swap move (SW) exchanges the positions of the configurations χi and χj of the
current solution x. Formal a swap move can be defined as:

SW((π1 · (χi) · π2 · (χj) · π3), i, j) =

(π1 · (χj) · π2 · (χi) · π3) (6.1)

To recalculate the objective value efficiently, only the configurations (χi, . . . , χi+mc−1)
and (χj, . . . , χj+mc−1) must be considered. Thereby, for each component c ∈ C \ F
and for each sliding window the changes in violations have to be recalculated. Thus,
an evaluation of a single swap move is possible in time O(

∑
c∈C\F mc).

Then the neighbourhood NSW consists of all solutions which can be derived by ap-
plying a permitted single swap move SW on the current solution:

NSW (x) = {x′ : x′ = SW(x, i, j) ∧ 1 ≤ i < j ≤ n, ∀i, j ∈ N} (6.2)

Because the maximum size of the neighbourhood Swapping is bounded by n2−n
2

, the
size of the neighbourhood is in O(n2). To further enhance the recalculation of the
objective value for each position i the changes in violations for the whole subsequence
(χi, . . . , χi+mc−1) are cached. Because a configuration at position i can be replaced
by at most |K| configurations, a complete examination of NSW is possible in time
O(n · |K| ·

∑
c∈C\F mc).

6.2 Shifting

By the operator shifting (SH) a configuration at position j is inserted at another
position i and all configurations between position i and j are shifted backward or
forward. Formal we can write:

SH((π1 · (χi) · π2 · (χj) · π3), i, j) =

(π1 · (χj) · (χi) · π2 · π3), with j > i (6.3)

or

SH((π1 · (χi) · π2 · (χj) · π3), i, j) =

(π1 · π2 · (χj) · (χi) · π3), with j > i (6.4)

The incremental computation is done similar to the recalculation of the objective value
of a swap move. Thus a single shift move SH can be evaluated in time O(

∑
c∈C\F mc).
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Then the neighbourhood NSH can be defined as:

NSH(x) = {x′ : x′ = SH(x, i, j) ∧ 1 ≤ i < j − 1 ≤ n− 1, ∀i, j ∈ N} (6.5)

The neighbourhood Shifting contains at most n2 − n solutions, thus the size of this
neighbourhood is in O(n2). Because the neighbourhood Shifting uses the same caching
strategy as used for the neighbourhood Swapping, a complete examination of the
neighbourhood is possible in time O(n · |K| ·

∑
c∈C\F mc).

6.3 Inverting

An inversion move (INV) inverts the configurations between the positions i and j.
Thereby, the configuration χi is exchanged with configuration χj, the configuration
χi+1 is exchanged with configuration χj−1 and so on. In a more formal manner an
inversion move can be written as:

INV((π1 · (χi, χi+1, . . . , χj−1, χj) · π2), i, j) =

(π1 · (χj, χj−1, . . . , χi+1, χi) · π2) (6.6)

Because the configurations (χi, . . . , χj) are inverted, there may be changes in violations
in the the whole subsequence (χi, . . . , χj+mc−1). If for simplicity disregarding the
previous production day, the violations for the subsequence (χi+mc−1, . . . , χj) before
applying the inversion move can be calculated by:

j∑
p=i+mc−1

max(0, (

p+mc−1∑
q=p

acχq)− lc)) (6.7)

Assuming a configuration at position l from the original solution x gets the po-
sition l′ in the new solution x′ = INV(x, i, j), the violations for the subsequence
(χj′ , . . . , . . . , χi′+mc−1) must be considered. The objective value in this interval can be
recalculated by:

i′+mc−1∑
p=j′

max(0, (

p+mc−1∑
q=p

acχq)− lc)) (6.8)

Because acχk′
= acχk

with j′ ≤ k ≤ i′ + mc − 1, ∀k ∈ N, Eq. (6.7) and Eq. (6.8)
are equivalent. Therefore, for a recalculation of the objective value, only the con-
figurations (χi, . . . , χi+mc−1) and (χj+1, . . . , χj+mc−1) must be considered. Thus, an
evaluation of an inversion move is possible in time O(

∑
c∈C\F mc).
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Then the neighbourhood NINV consists of all solutions which can be derived by ap-
plying a single permitted inversion move on the current solution:

NINV (x) = {x′ : x′ = INV(x, i, j) ∧ 1 ≤ i < j − 2 ≤ n− 1, ∀i, j ∈ N} (6.9)

In the neighbourhood NINV only inversion moves of length |j−i|+1 ≥ 4 are included,
because all solutions generated by inversion moves with |j − i| + 1 < 4 are already
included in the neighbourhood Swapping. The size of the neighbourhood is in O(n2)
and a complete examination of the neighbourhood can be achieved in time O(n2 ·∑

c∈C\F mc).

6.4 Block Swapping

A block swap move (BSW) exchanges the two blocks starting at position i and j with
equal length l − 1:

BSW((π1 · (χi, . . . , χi+l) · π2 · (χj, . . . , χj+l) · π3), i, i+ l, j) =

(π1 · (χj, . . . , χj+l) · π2 · (χi, . . . , χi+l) · π3) (6.10)

For the recalculation of the objective value only changes in violations for configurations
(χj, . . . , χj+mc−1), (χj+l, . . . , χj+l+mc−1), (χi, . . . , χi+mc−1), and (χi+l, . . . , χi+l+mc−1)
can occur. Furthermore, for the last three intervals a possible deviation of the stored
number of occurrences of components within a sliding window has to be taken into
account. But as the recalculation has to be done only once and the calculation takes
maximum

∑
c∈C\F mc steps, a complete evaluation of a block move is possible in time

O(
∑

c∈C\F mc).

Then the neighbourhood NBSW (x) can be defined as:

NBSW (x) = {x′ : x′ = BS(x, i, i+ l, j)∧
1 ≤ i < i+ l < j < j + l ≤ n, ∀i, j, l ∈ N} (6.11)

The size of the neighbourhood is in O(n3) and a complete examination of the neigh-
bourhood can be achieved in O(n3 ·

∑
c∈C\F mc).

6.5 Block Shifting

By a block shift move (BSH) the block (χj, . . . , χj+l) is shifted directly between cars
χi and χi−1 or χi and χi+1, respectively. A block shift move BSH can also be seen as
exchanging two consecutive blocks with arbitrary lengths. Formal we can write:
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6 Neighbourhood Structures

BSH((π1 · (χi, . . . , χj−1) · (χj, . . . , χj+l) · π3), i, j, j + l) =

(π1 · (χj, . . . , χj+l) · (χi, . . . , χj−1) · π3) (6.12)

The recalculation of the objective value is done analog to BSW. Thus, an evaluation
is possible in time O(

∑
c∈C\F mc).

Now we can define the neighbourhood NBSH as:

NBSH(x) = {x′ : x′ = BSH(x, i, j, j + l) ∧ 1 ≤ i < j − 1 < j < j + l ≤ n

∧ j − 1− i 6= l, ∀i, j, l ∈ N} (6.13)

In the neighbourhood Block Shifting all block shifting moves with equal block length
are excluded, because they are already included in the neighbourhood Block Swap-
ping. The size of the neighbourhood is in O(n3) and a complete examination of the
neighbourhood can be achieved in O(n3 ·

∑
c∈C\F mc).
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7 Tests and Results

This chapter presents the results of the computational experiments carried out in this
thesis. All tests were performed on two Dual Core AMD Opteron(tm) 270 Processors
with 2 GHz and 8 GB RAM in total. Everything was implemented in C++ using
EAlib 2.0, which is implemented in C++ too. EAlib 2.0 is a generic library for meta-
heuristics which was developed at the Institute of Computer Graphics and Algorithms
at the Vienna University of Technology. The parallel programs were implemented with
MPI [24] using a master-slave approach.

All algorithms use a randomly generated initial solution. Thereby, first a basic so-
lution is generated by placing cars with configuration 1 in the first positions of the
assembly line, in the subsequent positions cars with configuration 2 and so forth. Af-
terwards n random swap moves are applied on this basic solution. For Shaking(x, l),
instead of applying a random move in neighbourhood Nl, l random swap moves are
applied on the current solution. If not stated otherwise, all algorithms use a next im-
provement strategy with a randomised examination order as described in Algorithm 5.

All programs were tested on instances defined by Renault for the ROADEF Chal-
lenge 2005 and on newly created instances, which are also based upon instances of the
ROADEF Challenge 2005. For the comparison of the results we implemented a Paral-
lel Multi Neighbourhood-Order VNS (PMNOVNS). The basic idea of PMNOVNS is to
run General VNS as described in Algorithm 3 with all possible static neighbourhood-
orders in parallel. To save computation time, PMNOVNS uses the approach depicted
in Figure 7.1 for investigating all possible neighbourhood-orders. First an initial so-
lution x0 is created randomly. Afterwards, for each neighbourhood a General VNS
scheme is started, where the different neighbourhoods are used for the first neighbour-
hood N1 of the neighbourhood-order. If in one of the performed General VNS schemes
a local minimum occurs, several new General VNS schemes are created. Thereby, all
yet unused neighbourhoods of the neighbourhood-order are used for N2.

At whole three algorithms—PMNOVNS, TRRVNS and PEGVNS—with different set-
tings were tested. In the case of PMNOVNS at least 5 and possible up to 120 General
VNS schemes were performed with different neighbourhood-orders in parallel. In the
case of PEGVNS the program was run with 2, 4, 8 and 16 processes in parallel. There-
fore the different algorithms were only tested with 10 instances and for each instance
10 independent runs were performed.
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Fig. 7.1: Visualisation of PMNOVNS

7.1 Used Test Instances

In this section we present the used test instances in detail. Altogether 10 instances,
including instances with 918 up to 1992 cars, were used for computational experiments.
All used test instances are based upon test instances published by ROADEF and
Renault for the ROADEF Challenge 2005 [25]. For the ROADEF challenge 2005
three test sets—A, B and X—were published. Because set X was used for the final
evaluation process, we used set X as the basis of our test instances. It consists of
19 test instances, including test instances with 65 up to 1319 cars, 5 to 20 colours
and 5 to 26 components. To allow a better comparison of the possible speedup of
PEGVNS, we have chosen the five instances of set X with the largest number of cars n.
Furthermore we created five new test instances by duplicating a single instance of set X
and combining them to a new test instance. This can be seen as a possible attempt to
consider more than one production day in the optimisation process. Table 7.1 presents
the used instances for the computational experiments. In the first column the short
name of the used instance, which is used within this thesis, is given. Instances (1)-(5)
are the same instances as defined in set X, whereas instances (6)-(10) are the newly
created test instances. For the new test instances in the second column the number
of combined test instances is given.

7.2 Performance Measurement

For the performance evaluation we use a predefined objective value tObj as the stop-
ping condition of the algorithms, i.e. an algorithm stops if f(x) < tObj. Table 7.2
shows the used values of tObj for each instance. Furthermore in column two the
best obtained result during the ROADEF 2005 challenge (R-best) is given. For the
newly created instances (6)-(10) the hypothetical value for R-best is given in paren-
theses, which is derived by multiplying the value of R-best of the original instance
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Table 7.1: Used test instances for computational experiments
short dup. original instance n |C|
(1) 023 EP RAF ENP S49 J2 1260 12
(2) 024 EP RAF ENP S49 J2 1319 18
(3) 025 EP ENP RAF S49 J1 996 20
(4) 039 CH1 EP RAF ENP S49 J1 1247 12
(5) 039 CH3 EP RAF ENP S49 J1 1073 12
(6) 2 x 025 EP ENP RAF S49 J1 1992 20
(7) 2 x 034 VP EP RAF ENP S51 J1 J2 J3 1842 8
(8) 2 x 048 CH1 EP RAF ENP S50 J4 1038 22
(9) 2 x 048 CH2 EP RAF ENP S49 J5 918 20
(10) 4 x 028 CH1 EP ENP RAF S50 J4 1300 20

with the number of considered instances in the new instance. Column three shows the
theoretical placement in the ROADEF 2005 competition of an algorithm achieving a
result tObj. Again for the new instances we give the hypothetical rank in parenthe-
ses. Because at whole 18 teams participated in the final evaluation procedure, the last
position would be position 19.

Table 7.2: Stopping conditions for instances
short R-best rank tObj

(1) 192,466 15 235,000
(2) 337,006 10 500,000
(3) 160,408 15 220,000
(4) 69,239 12 74,000
(5) 231,030 15 240,000
(6) (320,815) (1) 300,000
(7) (111,990) (16) 173,000
(8) (394,011) (16) 425,000
(9) (62,155,832) (18) 64,205,000
(10) (145,365,982) (18) 198,000,000

In Section 4.2 we have argued that the primary goal of parallelisation is a reduction of
the wall clock time and therefore the primary performance measure should be based
upon the execution time Ts of a program. Nonetheless, we will use the CPU time
as the basic performance metric and not the execution time Ts. The main reason
is to allow a comparison of the efficiency of neighbourhood-usages generated by the
different algorithms. By the usage of the CPU time as a performance measure, all
other overheads which would falsify a comparison are excluded. Thus, it is possible
to compare the generated neighbourhood-usages and draw conclusion about the ap-
pearance of an efficient neighbourhood-usage. Another reason is that PEGVNS was
explicitly designed such that the parallel overheads idling and interprocess interaction
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are minimised. Thus, the dominant component of the parallel overhead will be the
excess of computation.

7.3 Comparison of Randomised and Specific
Examination Order

In order to evaluate the performance of a randomised examination order, we compare
PMNOVNSspec using a specific examination order and PMNOVNSrand using a ran-
domised examination order with each other. For this purpose we run PMNOVNSrand
using the randomised examination order described in Algorithm 5, where in each
iteration a new random permutation is used. Because a good specific examina-
tion for PMNOVNSspec order is not known, we use a specific examination similar
to Algorithm 5, but without performing the function randShuffle. Consider that for
PMNOVNSspec the same initial permutation is used during the whole program execu-
tion, whereas for PMNOVNSrand the random permutation is newly generated in each
iteration.

Table 7.3 presents the results of this comparison. Listed are the average CPU times,
standard deviations and median CPU times of both algorithms. Thereby for the CPU
time of PMNOVNS the CPU time of a single considered General VNS scheme, which
first reached the predefined objective value, is used. Furthermore we performed a
one-sided Wilcoxon rank sum test (U-test) to see how significant the differences in
the results between PMNOVNSspec and PMNOVNSrand are. Column U-test shows
the error probabilities for the hypotheses that the smaller mean CPU time (depicted
in bold) is less than the larger mean CPU time. Finally, in the last row the average
CPU times over all instances are listed.

When comparing the mean and median CPU times of both algorithms, a relative
clear difference can be observed. In nine of ten instances the mean CPU time of
PMNOVNSrand is better compared with PMNOVNSspec and when comparing the me-
dian CPU times, PMNOVNSrand is still better in seven instances. Also when compar-
ing the average CPU time over all performed runs, a clear difference can be observed.
However, only for four out of the ten instances significantly better results can be ob-
tained.

Therefore we investigate the influence of a random examination order in more detail.
For this purpose we inspect the CPU times of LSspec using a specific examination and
LSrand using a randomised examination of the performed algorithms PMNOVNSspec
and PMNOVNSrand. Thereby we determined the CPU times of LSrand and LSspec from
creating the initial solution x0 until a defined stopping condition tObj is achieved. Ta-
ble 7.4 presents the results of the average CPU times in seconds and standard deviation
of LSrand and LSspec. In column three the stopping condition tObj for each neighbour-
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Table 7.3: Comparison of PMNOVNSspec and PMNOVNSrand. Listed are mean CPU
times in seconds, standard deviations in parentheses, median CPU times and the error
probabilities of a Wilcoxon rank sum test (U-test).

PMNOVNSspec PMNOVNSrand
inst. mean (σ) median mean (σ) median U-test

(1) 115.4 (69.6) 92.7 126.0 (74.3) 119.0 0.40
(2) 459.1 (243.8) 428.3 301.2 (135.6) 294.3 0.08
(3) 527.3 (218.1) 422.6 411.4 (63.3) 423.5 0.30
(4) 326.5 (90.3) 340.9 143.6 (180.9) 76.1 < 0.01
(5) 821.5 (698.1) 587.8 666.6 (542.8) 646.1 0.46
(6) 991.3 (218.8) 940.5 499.4 (161.8) 461.9 < 0.01
(7) 407.0 (399.6) 256.1 112.3 (113.2) 73.5 < 0.01
(8) 187.9 (66.9) 184.2 143.9 (116.3) 108.6 0.09
(9) 743.0 (401.9) 771.7 498.2 (299.8) 497.9 0.11

(10) 1792.0 (245.2) 1883.2 391.6 (161.9) 405.5 < 0.01
overall 637.1 329.4

hood and for each instance is listed. Furthermore we performed an one-sided Wilcoxon
rank sum test (U-test) to see how significant the results are. Column U-test shows
the error probabilities for the hypotheses that the mean CPU time of LSrand is less
than the mean CPU time of LSspec.

Table 7.4: Comparing efficiency of LSspec and LSrand. Listed are average CPU times in
seconds, standard deviations in parentheses and the error probabilities of a Wilcoxon
rank sum test (U-test).

LSspec LSrand
inst. N tObj mean (σ) mean (σ) U-test

NSW 44 · 106 51.15 (13.88) 1.18 (0.39) < 0.01
NSH 37 · 105 50.49 (35.33) 6.47 (1.03) < 0.01

(1) NINV 255 · 103 35.82 (9.02) 14.32 (5.00) < 0.01
NBSW 362 · 106 10.92 (12.54) 0.16 (0.20) < 0.01
NBSH 333 · 106 19.05 (26.05) 0.40 (0.27) 0.07
NSW 40 · 104 240.44 (25.00) 5.19 (1.07) < 0.01
NSH 35 · 104 261.15 (75.29) 40.70 (10.53) < 0.01

(5) NINV 25 · 104 303.58 (134.48) 48.12 (12.96) < 0.01
NBSW 130 · 106 101.84 (136.05) 0.16 (0.08) < 0.01
NBSH 160 · 106 96.44 (92.87) 0.21 (0.06) < 0.01
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Now we can detect a considerable difference between LSrand and LSspec. For all con-
sidered comparisons the mean CPU time is clearly better and for nine out of ten
comparisons a significantly better result can be obtained. If comparing these results
with the results presented in Table 7.3, we notice that the randomised examination
order has a major influence on the performance of LS at the beginning of program
execution. However, this dominant influence disappears and the difference between a
randomised examination and a specific examination gets smaller after a longer run-
time.

7.4 Best Obtained Neighbourhood-Orders for General
VNS Scheme

This section presents the best obtained neighbourhood-orders for General VNS scheme
which were determined in each run of PMNOVNSrand. Figure 7.2 summarises these
results in a tree diagram. The nodes of the tree diagram represent the number of oc-
currences of each neighbourhood-order. The edges indicate the used neighbourhoods
in the neighbourhood-order. Because five neighbourhoods are used within this work,
120 different neighbourhood-orders are possible. In the root node the overall number
of determined neighbourhood-orders is represented, which corresponds to the 100 per-
formed runs. Consider that not all neighbourhoods of a neighbourhood-order must
be used. For example in five runs only neighbourhood NSW was necessary to achieve
tObj.

According to the rule of thumb, neighbourhoods are ordered by increasing size. How-
ever, this rule of thumb cannot be used, because neighbourhoods with equal size exist.
If considering the time needed for a complete examination of a neighbourhood, the
decision N1 = NSW would be the result. However, from the results presented in
Figure 7.2 we can see for neighbourhood N1 of the neighbourhood-order a clear dom-
inance of NINV . In 90 out of the 100 runs N1 = NINV and only in 10 runs NSW is
most qualified.

As the dominant neighbourhood-orders use N1 = NINV , we inspect the results of
them in more detail. Here we can see an advantage of N2 = NSW , which is the best
in 28 runs. However, no clear best neighbourhood can be determined for N2. Surpris-
ingly, even NBSH is most qualified in 11% of all runs. When looking at neighbourhood
N3, no best neighbourhood can be determined. Thus, we can conclude that the first
used neighbourhood N1 has a dominant influence on the performance of General VNS
scheme. For all other neighbourhoods N2, . . . ,Nmax the influence on the performance
drops rapidly. Obviously the last neighbourhoods of a neighbourhood-order are used
so rarely that stochastic factors dominate.
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7.5 Experimental Results of TRRVNS

TRRVNS was designed especially for an efficient parallelisation. Because no concrete,
best neighbourhood-order for General VNS scheme can be identified, we abandon a
comparison with a sequential General VNS scheme. Thus, we will compare TRRVNS
with PMNOVNSrand. For the parameters of TRRVNS we used maxRetries = 5, the
initial value of t was set to 0.25 and for the function adaption(t) we used t = t · 2.
This parameters were determined in preliminary tests.

In Table 7.5 the average CPU times, standard deviations and median CPU times
are listed. To determine significant differences, we performed a one-sided Wilcoxon
rank sum test (U-test). Column U-test lists the error probabilities for the hypotheses
that the smaller mean CPU time (depicted in bold) is less than the larger mean CPU
time. Finally, in the last row the average CPU times over all instances are listed.

Table 7.5: Comparison of TRRVNS and PMNOVNSrand. Listed are average CPU
times in seconds, standard deviations in parentheses and median CPU times as well
as the error probabilities of a Wilcoxon rank sum test (U-test).

PMNOVNSrand TRRVNS
inst. mean (σ) median mean (σ) median U-test

(1) 126.0 (74.3) 119.0 231.3 (319.6) 110.4 0.37
(2) 301.2 (135.6) 294.3 128.9 (159.5) 48.9 < 0.01
(3) 411.4 (63.3) 423.5 47.5 (11.0) 48.7 < 0.01
(4) 143.6 (180.9) 76.1 1221.1 (840.1) 1443.5 < 0.01
(5) 666.6 (542.8) 646.1 300.2 (199.2) 207.8 0.11
(6) 499.4 (161.8) 461.9 122.6 (24.6) 121.9 < 0.01
(7) 112.3 (113.2) 73.5 481.7 (212.6) 411.8 < 0.01
(8) 143.9 (116.3) 108.6 109.0 (32.3) 101.8 0.44
(9) 498.2 (299.8) 497.9 621.8 (455.4) 480.1 0.37

(10) 391.6 (161.9) 405.5 123.1 (71.9) 104.6 < 0.01
overall 329.4 338.7

When looking at the results presented in Table 7.5, no clear difference between both
algorithms is observable. Only in six of ten instances the mean CPU time of TRRVNS
is better compared with PMNOVNSrand. When comparing the median CPU times,
TRRVNS is better in eight instances, however, for some instances the difference is only
marginal. On the other hand, if looking at the average CPU times over all performed
runs, PMNOVNSrand is slightly better. Furthermore, in four instances significantly
better results can be obtained by TRRVNS, whereas PMNOVNSrand can deliver in
two of the ten instances significantly better results.
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However, an interesting result is that no performance benefit of PMNOVNSrand is
detectable, although PMNOVNSrand performs all possible neighbourhood-orders in
parallel. Thus, even when using the best neighbourhood-order in each run, General
VNS scheme cannot outperform TRRVNS. Therefore, if a best neighbourhood-order
is not known, it might be better to use TRRVNS instead of General VNS scheme.
Furthermore, we can recognise for some instances substantial differences of the mean
CPU times. Thus, we can conclude that both approaches have strengths and weak-
nesses. If it is possible to exploit the strengths of both algorithms without taking over
their weaknesses, a considerable performance improvement of VNS can be obtained.

7.6 Experimental Results of PEGVNS

Finally, here we present the results of PEGVNS and compare them with the already
presented results of the other algorithms. To investigate the performance of PEGVNS
we run it with different number of processes p, denoted as PEGVNSp. Consider that
the master, who coordinates the computation and determines the best solution in
each iteration, is not included in p. In total we run PEGVNS with 2, 4, 8 and 16 pro-
cesses. In addition to the performance investigation, we will also analyse the generated
neighbourhood-usage of PEGVNS in detail. For the parameter settings of PEGVNSp
we used the same setting as for TRRVNS, except we set parameter maxRetries = 3.
These parameters were determined in preliminary tests.

Tab 7.6 presents the overall results. For each algorithm the average CPU times over 10
runs and standard deviations are listed. Furthermore, in the second last last column
the average CPU times over all instances are listed. For PEGVNS the CPU time of a
single process is used as an estimation of the parallel execution time Tp. Finally, the
last column represents the costs of PEGVNSp.

At first, we investigate the maximum possible speedup considering only the excess of
computation and excluding all other parallelisation overheads. To do this, we com-
pare the average CPU times over all instances of PEGVNSp with TRRVNS. Figure 7.3
shows the maximum possible speedup for different number of processes. Here we can
see that for p > 4 the possible speedup goes down abruptly. Moreover, even the
speedup for p ≤ 4 is not optimal. For example PEGVNS2 can only achieve a maxi-
mum speedup of 1.58, whereas the optimal speedup would be 2. In addition this value
gets still worse when taking into account the whole parallelisation overhead. As we can
see from Table 7.6, PEGVNS16 can generate the most efficient neighbourhood-usages
when comparing the CPU time over all instances. Although efficient neighbourhood-
usages exist, the algorithms PEGVNSp with p ≤ 8 are not able to find an efficient
enough neighbourhood-usage, so that a linear speedup can be achieved. Thus, we
can conclude that a reduction of the CPU time with increasing size of processes p is
possible, but from the viewpoint of an efficient parallelisation not optimal.
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Fig. 7.3: Maximum possible speedup of PEGVNSp compared with TRRVNS consid-
ering only the excess of computation

In each iteration of PEGVNS only the solution generated by the most efficient neigh-
bourhood is used for the future search. Thus in each iteration only a single neigh-
bourhood can contribute to a solution improvement. To analyse the appearance of the
generated neighbourhood-usages of PEGVNS, we determined the relative frequency
of each neighbourhood. The relative frequency of a neighbourhood is the overall num-
ber of contributions to a solution improvement of a neighbourhood divided by the
total number of solution improvements of all neighbourhoods. Note that we only
considered the first randomly selected neighbourhood of each process for the relative
frequency. This is acceptable, because an additional neighbourhood is only used in
rare situations to utilize the processor for the remaining time in the case of a local min-
imum. Figure 7.4 shows the average, relative frequencies over 10 runs for PEGVNS16.
PEGVNS16 was selected, because it generated the best neighbourhood-usages.

In Figure 7.4 we can see that the relative frequencies of NINV and NSW are the
highest, which accords with the best found neighbourhood-orders of PMNOVNSrand
(see Figure 7.2). However, in comparison with PMNOVNSrand and TRRVNS a clear
difference can be determined. Because in TRRVNS all neighbourhoods are chosen
randomly, the relative frequencies of all neighbourhoods are approximately equal. For
PMNOVNSrand a direct comparison is not possible. But because in PMNOVNSrand
only in cases of a local minimum another neighbourhood is used and then only a
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Fig. 7.4: Relative frequencies of neighbourhoods NINV (a), NSW (b), NSH (c), NBSH
(d) and NBSW (e) for instances (1)-(10) of PEGVNS16.

single iteration is performed, the first neighbourhood will mostly be used. Taking
further into account that for PEGVNS during a single iteration one neighbourhood
is in general applied several times, then the relative frequency of a single neighbour-
hood of PMNOVNSrand is approximately 1. All other neighbourhoods have a relative
frequency of approximately 0.

Because the generated neighbourhood-usage of PEGVNS16 delivers the best results,
we can conclude that neither a concentration on a single neighbourhood, nor a pure
random neighbourhood selection causes the best results. Rather, a random selection
of neighbourhoods with a boosted selection of promising neighbourhoods and a re-
duced selection of unpromising neighbourhoods is most efficient. Figure 7.5 presents
an example of this effect. In this figure the relative frequencies of neighbourhoods for
PEGVNSp are depicted for instance (1). In Table 7.6 we can see that with increasing
number of processes p, the CPU time decreases and therefore the efficiency of the gen-
erated neighbourhood-usage increases. When comparing this with the corresponding
graphs in Fig 7.5 we can see that the relative frequency of the promising neighbourhood
NINV increases, whereas the relative frequency of poor neighbourhoods decreases.
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Fig. 7.5: Comparing relative frequencies of neighbourhoods NSW , NSH , NINV , NBSW
and NBSH generated by algorithms PEGVNS16 (a), PEGVNS8 (b), PEGVNS4 (c)
and PEGVNS2 (d) for instance (1). For comparison the approximation of the relative
frequencies of PMNOVNSrand (e) and TRRVNS (f) are depicted.

54



8 Conclusions and Future Work

8.1 Conclusions

This thesis proposed a new parallel Variable Neighbourhood Search (VNS) approach
called Parallel Efficiency Guided VNS (PEGVNS) for solving the Car Sequencing
Problem. The main idea of PEGVNS for speeding up computations is based on
using the additional computing power of a parallel computer to find an efficient
neighbourhood-usage. Starting point of this work was the question in which order
neighbourhoods should be applied in VNS. This question is related to the efficiency
of a neighbourhood examination, i.e. the relation of computation time for examining
a neighbourhood and solution improvement of a neighbourhood. For this purpose, we
both adapted metrics proposed in other works and introduced a new measure for eval-
uating the efficiency of a neighbourhood as well as an efficient neighbourhood-usage.
Keeping this theoretical foundation in mind, we evolved PEGVNS which supports
finding efficient neighbourhood-usages.

Experimental results revealed that an application of PEGVNS to the Car Sequenc-
ing Problem can substantially reduce the computation time compared with a single
processor variant of PEGVNS and compared with a conventional implementation of
a General VNS scheme. Furthermore, it can be observed that no general optimal
neighbourhood-usage exists. Nevertheless, some neighbourhoods are selected more of-
ten than others according to the results produced by PEGVNS. In addition the tests
showed that no single neighbourhood dominates the others and complex neighbour-
hoods also contribute to the final solution. Furthermore, the results revealed that
beside an efficient neighbourhood-usage, evaluating a single neighbourhood with dif-
ferent randomised examination orders in parallel is a further reason for the reduction
of the computation time of PEGVNS.

8.2 Future Work

The experimental results presented within this work showed that PEGVNS can only
achieve a sublinear speedup. The main reason for this lies in the fact that although a
multitude of solutions is computed during the parallel search phase, the further itera-
tion of PEGVNS only relies on the best last so far found solution whereas all other so-
lutions are disregarded. Therefore, we achieve an efficiency of maxNk∈N(E((Nk), xi−1))
for iteration i. But ideally, a parallel VNS approach combines all generated solution
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8 Conclusions and Future Work

improvements and continues its computation with this solution. In this optimal case
an efficiency of

∑
Nk∈N(E((Nk), xi−1)) can be achieved in each iteration. However, a

merging of different solutions is tricky. To avoid a time-consuming repair function,
the new solution has still be valid and of course should be better than the original
solutions.

Because Car Sequencing Problem considers “sliding windows” with length mc, the
violations at position i depend only on the configurations (χi−mc+1, . . . , χi). There-
fore, a promising approach would be a partitioning of neighbourhoods into several
sub-neighbourhoods. For example, we could divide Nk into Nk1 and Nk2 where
only configurations (χ1, . . . , χα1) and (χα2 , . . . , χn) are allowed to be changed, with
α2 − α1 ≥ maxc∈C(mc), respectively. Furthermore, we get a sub-neighbourhood
Nk3 = (Nk \Nk1) \Nk2. With this neighbourhood partitioning it is possible to merge
a solution xk1 generated by Nk1 with a solution xk2 generated by Nk2 without intro-
ducing new violations and resulting in a permitted solution. However, for solution
generated by Nk3 no solution merge is possible.
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