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Confluent drawings of graphs are geometric representations in the plane, in
which vertices are mapped to points, but edges are not drawn as individually
distinguishable geometric objects. Instead, an edge is represented by the presence
of a smooth curve between two vertices in a system of arcs and junctions.

More formally, a confluent drawing D of a graph G = (V,E) consists of a set
of points representing the vertices, a set of junction points, and a set of smooth
arcs, such that each arc starts and ends at a vertex point or a junction, no two
arcs intersect (except at common endpoints), and all arcs meeting in a junction
share the same tangent line in the junction point. There is an edge (u, v) ∈ E if
and only if there is a smooth path from u to v in D that does not pass through
any other vertex.

Confluent drawings were introduced by Dickerson et al. [1], who identified
classes of graphs that admit or that do not admit confluent drawings. Later,
variations such as strong and tree confluency [6], as well as ∆-confluency [2] were
introduced. Confluent drawings have further been used for layered drawings [3]
and for drawing Hasse diagrams [5]. The complexity of the recognition problem
for graphs that admit a confluent drawing remains open.

Eppstein et al. [4] defined strict confluent drawings, in which every edge of
the graph must be represented by a unique smooth path. They showed that for
general graphs it is NP-complete to decide whether a strict confluent drawing
exists. A strict confluent drawing is called strict outerconfluent if all vertices lie
on the boundary of a (topological) disk that contains the strict confluent draw-
ing. For a given cyclic vertex order, Eppstein et al. [4] presented a constructive
poly-time algorithm for testing the existence of a strict outerconfluent drawing.
Without a given vertex order the recognition complexity as well as a character-
ization of the graphs admitting such drawings remained open. We present first
results towards characterizing the strict outerconfluent (SOC) graphs by exam-
ining potential sub- and super-classes of SOC graphs. For definitions of the used
graph classes we refer to www.graphclasses.org.

If we draw a graphG as a traditional circular drawing with straight-line edges,
then all the crossings are determined by the order of the vertices alone. We can
replace a crossing by a confluent junction if the two edges forming the crossing
are part of a K2,2. We call such a crossing represented. It is clear that a graph
can only have a strict outerconfluent drawing if it has a circular layout with all
crossings represented. This is not sufficient though, as there are such graphs that
have no strict outerconfluent drawing. We obtain two 6-vertex obstructions for
strict outerconfluent drawings, namely a K3,3 with an alternating vertex order
and a domino graph (two four-cycles sharing an edge) in bipartite order.

www.graphclasses.org


Our next result concerns bipartite drawings. Let G = (X,Y,E) be a bipartite
graph with vertex sets X and Y . We call a strict outerconfluent drawing D a
bipartite strict outerconfluent drawing if the nodes can be partitioned into two
independent sets, such that each set is consecutive on the boundary of the topo-
logical disk. Hui et al. [6] showed that the bipartite outerconfluent graphs are ex-
actly the bipartite permutation graphs. We show that the (bipartite-permutation
∩ domino-free) graphs are exactly the bipartite strict outerconfluent graphs. The
proof uses the drawing algorithm by Hui et al. to obtain a confluent bipartite
drawing, which is non-strict if and only if a domino is present.

On the other hand we show that circle and comparability graphs are neither
sub- nor superclasses of the SOC graphs and the alternation and circle-polygon
graphs are no sub-classes of them. All the results can be shown via counterex-
amples, mostly using the wheel on six vertices and the so-called BW3 graph,
which both have no SOC drawing.

Finally our main result shows an interesting superclass of SOC graphs. The
class of outer-string graphs contains all graphs G = (V,E) which can be repre-
sented by an intersection model of curves in a disk with one end-point on the
disk’s boundary. We show that SOC graphs are outer-string graphs. The inclu-
sion is proper, because not every circle-polygon graph is an SOC graph, but
every circle-polygon graph is an outer-string graph.

Let D be a strict outerconfluent drawing. To get an outer-string representa-
tion of the corresponding graph GD we need to find for every vertex v in GD a
string starting at the node representing v in D and intersecting only strings rep-
resenting adjacent vertices in GD. We do this by exploiting the tree structure we
get for one node in D, when looking at all the junctions and other nodes which
can be reached from it via smooth paths. We call a junction j split-junction,
if the path coming from v separates at j into two paths and merge-junction if
another path fuses with it at j. One string is then constructed as follows:

– Start from a node and traverse its tree in left-first DFS order
– At leaf, make a clockwise U-turn and backtrack to the previous split-junction.
– At split-junction:
• coming from the left subtree: cross the arc from the left subtree at the

junction and descend into the right subtree
• coming from the right subtree: cross the arc to the left subtree and

backtrack along the existing string to the previous split-junction

To find the complete outer-string representation of GD we have to combine
all these strings for nodes in D. We distinguish three cases, two of which are
straightforward. If two nodes are connected by a path we have to guarantee
that the two strings intersect at least once, which can be done at the leaves.
The second one considers two nodes without a path connecting them and the
two trees are independent, i.e., not sharing a junction. Then the strings are
independent by construction as well. Finally if the trees share junctions, then
these can be only merge-junctions. The key observation here is that at most two
merge-junctions can be shared by two nodes without a connecting path in D.
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