
EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Minimizing crossings in constrained two-sided circular graph layouts

Fabian Klute∗ Martin Nöllenburg∗

Abstract

Circular layouts are a popular graph drawing style,
where vertices are placed on a circle and edges are
drawn as straight chords. One way to reduce clutter
caused by edge crossings is to use two-sided circular
layouts, in which some edges are drawn as curves in
the exterior of the circle. We study the problem of
minimizing the crossings for a fixed cyclic vertex or-
der by computing an optimal 1-plane set of exteriorly
drawn edges. This relates to finding maximum-weight
degree-constrained induced subgraphs in circle or over-
lap graphs.

1 Introduction

Circular graph layouts are a popular drawing style to
visualize graphs, which focuses on a clear positioning
of the vertices on a circle, while the edges are drawn
as straight-line chords of said circle. As it is often
the case in graph drawing the crossings between the
edges play a big role in optimizing the readability of
the visualization. If the edges are drawn as chords all
crossings are determined by the order of the vertices.
Finding a vertex order that minimizes the crossings is
NP-hard [4]. Heuristics and approximation algorithms
have been studied in numerous papers, see e.g. [1].

Gansner and Koren [2] presented an approach to
compute improved circular layouts for a given input
graph G = (V, E) in a three-step process. The first
step computes a vertex order that aims to minimize
the overall edge length of the drawing, the second
step determines a crossing-free subset of edges that
are drawn outside the circle to reduce edge crossings
in the interior, and the third step introduces edge
bundling to save ink and reduce clutter in the interior.

Inspired by their approach we take a closer look at
the second step of the above process, which, in other
words, determines an outerplane subgraph to be drawn
outside the circle such that the remaining crossings of
the chords are minimized. Gansner and Koren [2] solve
this problem in O(|V|3) time1. In fact, the problem
is equivalent to finding a maximum independent set
in the corresponding circle graph G = (V,E) (see
Section 2). This graph has a vertex for each edge of G
and an edge between each pair of crossing chords in

∗Algorithms and Complexity Group, TU Wien, Austria
1The paper actually claims O(|V|2) time without a proof;

the immediate running time of their algorithm is O(|V|3).

(a) One-sided layout (b) Two-sided layout

Figure 1: Circular graph layouts

the circular layout of G. The maximum independent
set problem in a circle graph can be solved in O(`)
time [6], where ` ∈ Ω(|E|) ∩O(|E|2) is the total chord
length in an interval representation of G.

We generalize the problem from outerplane graphs
to outer k-plane graphs, i.e., we ask for an edge set
to be drawn outside the circle such that none of these
edges has more than k crossings. For k = 0 this is the
same problem considered by Gansner and Koren [2].
In this paper we present an efficient algorithm based
on dynamic programming for the case k = 1, where
at most one crossing per exterior edge is permitted.
Of course, this is only a first step towards solving the
general case. Yet, due to non-local dependencies that
occur for k ≥ 2, we do not see an obvious way of
extending our algorithm.

2 Optimizing interior crossings

Let G = (V, E) be a graph and π a cyclic order of V.
We arrange the vertices in this order on a circle C
and draw edges as straight chords to obtain a (one-
sided) circular drawing Γ, see Fig. 1a. Note that the
number of crossings of Γ is fully determined by π. Our
goal in this paper is to draw a subset of edges on the
exterior side of C in order to reduce the number of
edge crossings.

In a two-sided circular drawing ∆ of G and π we
still draw all vertices on a circle C according to π, but
we split the edges into two disjoint sets E1 and E2 with
E1 ∪ E2 = E . The edges in E1 are drawn as straight
chords, while the edges in E2 are drawn as curves in
the exterior of C, see Fig. 1b. Rather than asking for
a set E2 that globally minimizes the crossings in ∆,
which is equivalent to the NP-hard fixed linear crossing

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

33rd European Workshop on Computational Geometry, 2017

minimization problem in 2-page book embeddings [5],
we add the additional constraint that the exterior
drawing induced by E2 is outer k-plane, i.e., each edge
in E2 is crossed by at most k other edges in E2. This is
motivated by the fact that exterior edges are harder to
read and should not be further impaired by too many
crossings.

Instead of working with G and π directly we consider
the corresponding circle graph G = GG,π = (V,E) of
G and π, where V has one vertex for each edge in E
and two vertices u, v ∈ V are connected by an edge
(u, v) in E if and only if the edges corresponding to u
and v cross in the circular layout Γ. So the number of
vertices |V | = |E| equals the number of edges of G and
the number of edges |E| is the number of crossings of
Γ. We further assign to every vertex v ∈ V a weight
w(v) ∈ R+ and to every edge (u, v) ∈ E a weight
w(u, v) ∈ R+.

Finding the set E2 can now be modeled as a con-
strained maximum induced subgraph problem on the
circle graph G. The general problem can be stated as
follows.

Definition 1 (Max-Weight Deg-k Induced Sub-
graph) Given a weighted graph G = (V,E) and k ∈ N
find a set V ′ ⊂ V such that the induced subgraph
G[V ′] = (V ′, E′) has maximum degree k and maxi-
mizes the sum

W =
∑
v∈V ′

w(v)−
∑

(u,v)∈E′

w(u, v).

For general graphs it is NP-hard [7] to find such a
subgraph, but restricting the graph class of G to circle
graphs makes the problem significantly easier as we
will show in Section 3.

It remains to model our constrained crossing min-
imization problem for two-sided circular layouts as
an instance of Max-Weight Deg-k Induced Sub-
graph. We define the weights of G as w(v) = deg(v)
for all v ∈ V and as w(u, v) = 1 or, alternatively, as
w(u, v) = 2 for all (u, v) ∈ E, depending on the type
of crossings to minimize.

Lemma 1 Let G = (V, E) be a graph with cyclic ver-
tex order π and k ∈ N. Then a maximum-weight
degree-k induced subgraph in G induces an outer k-
plane graph in Γ that minimizes the number of cross-
ings in the corresponding two-sided layout ∆.

Proof. Let V ∗ ⊂ V be a vertex set that induces
a maximum-weight degree-k subgraph in G = GG,π.
Since vertices in G correspond to edges in G, we can
choose E∗ = V ∗ as the set of exterior edges in ∆. Each
edge in G corresponds to a crossing in the circular
layout Γ. Hence each edge in G[V ∗] corresponds to
an exterior crossing in ∆. Since the maximum degree
of G[V ∗] is k, no exterior edge in ∆ has more than k
crossings.

The degree of a vertex v ∈ V ∗ (and thus its weight
w(v)) equals the number of crossings that are removed
from Γ by drawing the corresponding edge in E′ in
the exterior part of ∆. However, if two vertices in V ∗

are connected by an edge, their corresponding edges
in ∆ cross in the exterior part of ∆ and we need to
add a correction term. For edge weights w(u, v) = 1
the weight W maximized by V ∗ equals the number of
crossings that are removed from the interior part of ∆.
For w(u, v) = 2, the weight W equals the number
of crossings that are removed from the interior, but
excluding those that are simply shifted to the exterior
of ∆. �

3 Efficient Algorithm based on Overlap Graphs

In this section we use the known connection between
circle graphs and overlap graphs, which are subgraphs
of interval graphs, to design an efficient algorithm for
our crossing minimization problem.

The key concept is to distinguish proper and non-
proper overlaps of intervals. Let I be a set of in-
tervals with distinct endpoints. For two intervals
I = [a, b], J = [c, d] ∈ I we say that they overlap
properly if either a < c < b < d or c < a < d < b. We
say that I nests J if a < c < d < b. Obviously, if two
intervals intersect, they either overlap properly or one
nests the other. For an interval I ∈ I we define the set
P(I, I) = {J | J ∈ I and I properly overlaps J}. By
P = ∪I∈I{(I, J) | J ∈ P(I, I)} we denote the set of
all properly overlapping interval pairs of I. Likewise
we define N (I, I) = {J | J ∈ I and I nests J}.

Given a set of intervals I we define the overlap
graph of I as the graph GI = (V,E) that has a vertex
for each interval in I and an edge for each pair of
properly overlapping intervals. In contrast to interval
graphs, two nested intervals do not define an edge in
the overlap graph.

Let ρ be the maximum degree of the overlap graph of
I and let δ = max{|N (I, I)| | I ∈ I} be the maximum
number of intervals nested by any interval in I. We
define the parameter γ = max{ρ, δ} as an upper bound
on the number of intersections per interval.

As shown by Gavril [3] circle graphs and overlap
graphs are isomorphic. The idea is to cut the circle C
between two arbitrary vertices and project the chords
onto the real line below C. Each chord is then repre-
sented by an interval and two chords intersect if and
only if their projected intervals overlap properly, see
Figure 2.

We rephrase Definition 1 in terms of interval repre-
sentations of circle graphs. The weights can be taken
directly from the circle graph GG,π = (V,E). For
each interval I ∈ I corresponding to v ∈ V we set
w(I) = w(v) and for each pair of properly overlapping
intervals (I, J) ∈ P(I) corresponding to edge e ∈ E
we set w(I, J) = w(e).

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Figure 2: An example projection of a circle graph to
a set of intervals with an isomorphic overlap graph.

Figure 3: Split along the two red intervals. The dotted
intervals are discarded and we recurse on the five sets
with black intervals.

Definition 2 (Max-Weight k-Intersection Set)
Given an interval set I find a subset I ′ ⊆ I such that
no interval I ∈ I ′ has more than k proper intersections
with other intervals in I ′ and the sum

W =
∑
I∈I′

w(I)−
∑

(I,J)∈P (I′)

w(I, J)

is maximized.

Since circle graphs and overlap graphs are iso-
morphic, we can also solve Max-Weight k-
Intersection Set in order to solve our crossing
minimization problem for two-sided circular layouts.
In this paper, we restrict our attention to the case
k = 1, i.e., finding an outer 1-plane edge set E′ or,
equivalently, finding an interval set with at most one
proper intersection per interval.

3.1 Properties of max-weight 1-intersection sets

Before we describe our algorithm in Section 3.2 we
introduce some notation and properties for splitting
an interval set into subsets. Let I be a set of intervals.
We say I has common point x ∈ R if x ∈ I for all
intervals I ∈ I. For a general set of intervals I we
define I|x = {I ∈ I | x ∈ I} as the set of all intervals
in I with common point x.

Further, for x, y ∈ R ∪ {±∞} with x ≤ y we define
the set I[x, y] = {I ∈ I | I ⊆ [x, y]}. For any x ≤ y an
interval set I[x, y] can be split along an interval I =
[a, b] ∈ I into the three sets I[x, a] , I[a, b] , I[b, y].
All intervals which are not contained in one of the
three sets are discarded.

Finally we can split any I[x, y] along a pair of proper
intersecting intervals I = [a, b], J = [c, d] ∈ I. With-
out loss of generality let a < c < b < d. Then the

split creates the five sets I[x, a] , I[a, c], I[c, b], I[b, d],
I[d, y]. Again, all intervals which are not contained
in one of the five sets are discarded. An example is
shown in Figure 3.

Lemma 2 Let I be a set of intervals. For any x ∈ R
at most two properly intersecting intervals I, J ∈ I|x
can be part of a max-weight 1-intersection set on I.

Proof. Assume there is a third interval K ∈ I|x in a
max-weight 1-intersection set, which properly overlaps
I or J or both. This K cannot be added to the
solution set without creating at least one interval with
more than one intersection, which is not allowed by
definition. �

For an interval set I we call I = [a, b] ∈ I the left-
most interval, if a < a′ for all [a′, b′] ∈ I \I. We define
the left interval set as L (I) = P (I, I) ∪N(I, I), the
set of intervals intersecting the left-most interval I.

Lemma 3 Let I be an interval set, Io a max-weight
1-intersection set of I and I ∈ I the left-most interval.
Then either I ∈ Io or there exists at least one interval
J ∈ Io such that J ∈ L (I).

Proof. Let I ′o be a max-weight 1-intersection set of
I such that neither I nor an interval J ∈ L (I) is
part of I ′o. That is, there is no interval K ∈ I ′o
that properly intersects I or is nested by I, but then
I ′o ∪ {I} is a solution to the max-weight 1-intersection
set problem on I with larger weight which contradicts
the optimality of I ′o. �

3.2 Algorithm for the max-weight 1-intersection
set problem

We use a dynamic programming algorithm to solve the
max-weight 1-intersection set problem. The principal
idea is to split a set of intervals I in each step along
one interval or two properly intersecting intervals into
smaller independent subsets. By Lemma 3 we do not
have to consider splits along arbitrary intervals, but
can choose either single intervals from L (I) or pairs
of properly intersecting intervals, where at least one
of them is in L (I).

We define a two-dimensional table T , in which we
store the weight of an optimal local solution for each
subinstance I[x, y] as the entry T [x, y]. Since for all
relevant splits x and y are start- or end-points of inter-
vals in I this table has size quadratic in the number
of intervals. The best global solution corresponds
to entry T [−∞,∞], where ±∞ are symbolic dummy
coordinates.

Picking one Interval A single interval I = [a, b] ∈
L (I[x, y]) is chosen as a candidate for the optimal
solution. This gives us a split along one interval and
three subinstances to consider. The optimal solution

33rd European Workshop on Computational Geometry, 2017

T1[x, y] between x and y, when splitting along one
interval I, is the maximum across these splits plus the
weight of the interval I.

T1[x, y] = max
I∈L (I[x,y])

{
T [x, a]+T [a, b]+T [b, y]+w(I)

}
.

Since we consider every interval in L (I[x, y]) this step
maximizes over O(γ) sub-cases, one for each interval
in L (I[x, y]) which has size at most γ = max{δ, ρ}.

Picking two Intervals Two properly intersecting in-
tervals I = [a, b] ∈ L (I[x, y]) and J = [c, d] ∈
P(I, I[x, y]) are chosen as candidates for the optimal
solution. This gives us a split along two intervals and
five subinstances to consider. The optimal solution
T2[x, y] for the set I[x, y] is the maximum across the
possible splits generated by pairs of properly intersect-
ing intervals. The weight of an individual split is the
weight of the optimal solutions of the generated subin-
stances plus the weight of the two chosen intervals I, J
minus the weight attributed to the pair (I, J).

T2[x, y] = max
I∈L (I[x,y])
J∈P(I,I[x,y])

{
T [x, a] + T [a, c] + T [c, b]

+ T [b, d] + T [d, y] + w(I) + w(J)− w(I, J)
}
.

Since we consider every pair of properly intersecting
intervals, one of which in L (I[x, y]), this case maxi-
mizes over O(γ2) sub-cases.

Maximizing over both possibilities for the split we
obtain the optimal local solution T [x, y] as

T [x, y] = max {T1[x, y], T2[x, y]} . (1)

The set of intervals forming an optimal solution of the
max-weight 1-intersection set problem can be recov-
ered using the standard process of backtracking the
decisions made by the maximization steps.

Theorem 4 The Max-Weight 1-Intersection
Set problem for a set of intervals I can be solved
in O(γ2n2) time, where n = |I| and γ is an upper
bound on the number of intersections per interval.

Proof. The time to compute an entry T [x, y] is domi-
nated by the case of splitting along a pair of intervals,
which requires O(γ2) time as argued above. Since T
has size O(n2), the total computation time is O(γ2n2).

It remains to show the correctness. Let Io be an
optimal solution to the max-weight 1-intersection set
problem on I. By definition Io can be decomposed into
pairs I, J ∈ Io such that I and J intersect properly,
and single intervals K ∈ Io such that no other interval
in Io overlaps K properly.

The proof is by induction over the number of in-
tervals in Io. In case Io consists of a single interval
or two properly intersecting intervals these have to
be in L (I) by Lemma 3. Our algorithm considers

exactly all single intervals and pairs of properly inter-
secting intervals of L (I) in its first step, in particular
it consider the intervals in Io.

So let Io be an optimal solution with more than two
intervals or two single intervals. By Lemma 3, Io must
contain a single interval from L (I) or a pair with
one interval from L (I) along which we can split Io.
With this split we create either three or five smaller
and independent subinstances. For each subinstance
we can compute an optimal solution by induction
hypothesis. Since our algorithm also considers that
particular split, our solution is at least as good as Io.
In the end we return exactly Io or a solution with
equal weight. �

Combining the results from above we can conclude
with the following result on two-sided layouts.

Corollary 1 Given a graph G = (V, E) and a cyclic
vertex order π a crossing-minimal two-sided drawing ∆
with outer 1-plane exterior edge set can be computed
in O(γ2|E|2) time, where γ is the thickness of the
overlap graph derived from the circle graph GG,π.

References

[1] M. Baur and U. Brandes. Crossing reduction in
circular layouts. In Graph-Theoretic Concepts in
Computer Science (WG’04), volume 3353 of LNCS,
pages 332–343. Springer Berlin Heidelberg, 2004.

[2] E. R. Gansner and Y. Koren. Improved circular
layouts. In Graph Drawing (GD’06), volume 4372
of LNCS, pages 386–398. Springer, 2007.

[3] F. Gavril. Algorithms for a maximum clique and a
maximum independent set of a circle graph. Net-
works, 3(3):261–273, 1973.

[4] S. Masuda, T. Kashiwabara, K. Nakajima, and
T. Fujisawa. On the NP-completeness of a com-
puter network layout problem. In Circuits and
Systems (ISCAS’87), pages 292–295. IEEE, 1987.

[5] S. Masuda, K. Nakajima, T. Kashiwabara, and
T. Fujisawa. Crossing minimization in linear em-
beddings of graphs. IEEE Trans. Computers,
39(1):124–127, 1990.

[6] G. Valiente. A new simple algorithm for the
maximum-weight independent set problem on
circle graphs. In Algorithms and Computation
(ISAAC’03), volume 2906 of LNCS, pages 129–137.
Springer, 2003.

[7] M. Yannakakis. Node-and edge-deletion NP-
complete problems. In Theory of Computing
(STOC’78), pages 253–264. ACM, 1978.

	Introduction
	Optimizing interior crossings
	Efficient Algorithm based on Overlap Graphs
	Properties of max-weight 1-intersection sets
	Algorithm for the max-weight 1-intersection set problem

