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Kurzfassung

Diese Arbeit behandelt drei kombinatorische Optimierungsprobleme, wobei zwei davon
ihren Ursprung in öffentlichen Fahrradverleihsystemen haben und das dritte Problem im
Kontext von Sicherheitskontrollen auftritt. Öffentliche Fahrradverleihsysteme erfreuen
sich stetig wachsender Beliebtheit, vor allem in größeren Städten, da sie zur allgemeinen
Gesundheit beitragen indem die Einwohner der Stadt zu mehr Sport angeregt werden,
sie verbessern die CO2-Bilanz und unterstützen auch den öffentlichen Transport indem
sie einen Lösungsansatz für das sogenannte Last-Mile Problem darstellen. Öffentliche
Fahrradverleihsysteme bestehen zumeist aus mehreren festen Stationen, an denen die
Fahrräder mittels eines Docking-Mechanismus abgestellt sind, was der Diebstahlsicherung
dient. Fahrräder können an einer Station entlehnt werden und an einer anderen wieder
zurückgegeben werden woraus folgt, dass manche Stationen leer und andere Stationen
hingegen voll werden können. Dadurch ist es notwendig das System zu rebalancieren
und das zu Grunde liegende Optimierungsproblem wird als Balancing-Bike Sharing
System Problem bezeichnet. Wenn ein neues System geplant werden oder ein bestehendes
erweitert werden soll, dann entsteht ein weiteres Optimierungsproblem, nämlich dass
unter gewissen Budgetbeschränkungen und weiteren Bedingungen/Einschränkungen,
neue Stationen geplant werden sollen, sodass der Nutzen für die Benutzer des Systems
maximiert wird. Dieses Problem wird als Bike-Sharing Station Planning Problem bezeich-
net. Ein weiteres Problem, das in der Dissertation behandelt wird, tritt im Kontext von
Sicherheitskontrollen auf. Es kommt immer wieder zu Diebstählen und Vandalismus an
Gebäuden und deren Einrichtung, sodass es notwendig ist diese zu überwachen, um eben
diese Diebstähle und den Vandalismus so gut wie möglich einzuschränken. Da es aufgrund
beschränkter Ressourcen nicht möglich ist Gebäude konstant zu überwachen, betrachten
wir die Minimierung der Anzahl von Routen die notwendig sind, um eine gewisse Menge
an Gebäuden zu überwachen. Wir bezeichnen dieses Problem als Districting and Routing
Problem for Security Control. Das Problem ist verwandt mit dem Balancing Bike-Sharing
System Problem, weil es sich bei beiden Problemen um eine Variante des bekannten
Vehicle Routing Problems handelt.

Beim Balancing Bike-Sharing System Problem betrachten wir zuerst die statische Variante,
bei der keine Benutzerinteraktionen während des Rebalancierens in Betracht gezogen
werden. Zuerst stellen wir hierfür eine PILOT sowie eine Greedy Konstruktionsheuristik
vor, welche mit zusätzlicher, geschickter lokaler Suche sinnvolle, aber normalerweise
suboptimale Lösungen in kurzen Laufzeiten liefern. In weiterer Folge werden eine variable
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Nachbarschaftssuche sowie ein GRASP Ansatz vorgeschlagen, welche in der Lage sind
heuristische Lösungen für Instanzen bis zu 700 Stationen zu berechnen. Zusätzlich ist
ein wichtiger Teil der Arbeit das effiziente Berechnen der Ladeinstruktionen für die
Stationen. Zu diesem Zweck vergleichen wir einen integrierten Greedy-Ansatz sowie
zwei Ansätze basierend auf Maximum-Flow Formulierungen und einen Ansatz basierend
auf linearer Programmierung. Als nächstes betrachten wir die dynamische Variante
des Problems, bei der wir auch die Benutzerinteraktionen während des Rebalancierens
in Betracht ziehen. Die wenigen Arbeiten, die es zum dynamischen Fall des Problems
gibt, basieren fast ausschließlich auf Zeitdiskretisierung. Eine solche erhöht aber die
Laufzeiten der Algorithmen und ist ebenso fehleranfälliger, je nachdem in welcher Größe
die Diskretisierung vorgenommen wird. Daher schlagen wir einen neuen, innovativen
Ansatz ein, bei dem keine Diskretisierung nötig ist, sondern basierend auf monoton
steigenden und monoton fallenden Segmenten die Benutzernachfrage modelliert wird.
Dadurch werden schnellere Laufzeiten der Algorithmen erreicht und auch die Genauigkeit
der Berechnungen steigt gegenüber der Variante mit Zeitdiskretisierung. Grundsätzlich
sind alle unsere bisherigen Ansätze darauf ausgelegt eine beliebige Anzahl von Fahrrädern
bei den Ladeinstruktionen zu betrachten. Im Gegensatz dazu werden in der Praxis meist
nur volle Wagenladungen verführt, da in der Regel mehr Rebalancierungsarbeit vorhanden
ist als erledigt werden kann und mit vollen Wagenladungen intuitiv die größte Effizienz
erreicht werden kann. Daher stellen wir eine neue vereinfachte Problemformulierung vor,
welche nur ganze Wagenladungen bei den Ladeinstruktionen berücksichtigt. Dadurch
ergeben sich neue und effektive Lösungswege und -methoden. Um diese Problemstellung zu
lösen, stellen wir einen Ansatz vor, welcher das Problem in ein Zuweisungsproblem sowie
ein Routing-Problem zerlegt und anschließend mit logikbasierter Benders-Decomposition
gelöst wird. Ein Highlight des Ansatzes ist die Approximation der Routingkosten im
Zuweisungsproblem durch eine 0-Arboreszenz, sodass für das Routing-Problem sinnvolle
Zuweisungen generiert werden, welche die Berechnungszeit des Algorithmus erheblich
beschleunigt.

Beim Planen von Fahrradverleihsystemen für Großstädte ist es zumeist notwendig meh-
rere tausend potentielle Standorte für neue Stationen in Betracht zu ziehen, wodurch
traditionelle Optimierungsverfahren oft in ihre Schranken gewiesen werden. Unser Ziel
ist es dabei nicht einen vollautomatisierten Planungsalgorithmus zu entwickeln, sondern
ein halbautomatisches Planungstool, welches Vorschläge für die letztendlich manuelle
Planung berechnet. Um Instanzen dieser Größenordnung in den Griff zu bekommen,
haben wir einen neuen und innovativen Lösungsansatz entworfen, welcher zuerst ein
hierarchisches Clustering aufgrund der originalen Inputdaten berechnet und danach
vernachlässigbare, kleine Nachfragewerte auf den unteren Ebenen des Clusterings nach
oben in den Cluster-Baum aggregiert, wo diese Werte schlussendlich nicht mehr vernach-
lässigbar sind. Auf Basis dieses Clusterings und angepassten Inputs wird ein Ansatz
basierend auf dem Multilevel-Refinement Paradigma vorgestellt, welcher effizient mit dem
bereits erfolgten hierarchischen Clustering angewendet werden kann. Dieser innovative
Ansatz erscheint nicht nur in dieser Spezialanwendung vielversprechend, sondern auch
für andere Optimierungsprobleme welche große Inputdaten in Form einer Matrix mit



Nachfragewerten gegeben haben.

Bei Betrachtung des Districting and Routing Problem for Security Control ist es wün-
schenswert alle zu betrachtenden Objekte mit einer minimalen Anzahl an Routen zu
überwachen. Zuerst wird hierfür eine Greedy-Konstruktionsheuristik vorgestellt, welche
mit mehreren, unterschiedlichen Evaluationskritierien entwickelt und getestet wurde.
Basierend auf den Ausgangslösungen dieser Konstruktionsheuristik haben wir einen
iterativen Ansatz entwickelt, der darauf basiert, bestehende Routen zu zerstören und
die übrig gebliebenen Besuche von Objekten noch bestehenden Routen zuweist. Diese
freistehenden Besuche werden in einem sogenannten Ejection-Pool gehalten, um die Mög-
lichkeit/Wahrscheinlichkeit diese Besuche unter den bestehenden Routen einzufügen, zu
maximieren. Eine weitere Problemvariante ist die Betrachtung von weichen Zeitfenstern
für die Besuche von Objekten. In der Praxis stellt sich immer wieder heraus, dass kleine
Zeitfensterverletzungen vertretbar sind, wenn dadurch die Lösungsqualität substanziell
verbessert werden kann. Dabei entsteht eine neue Problemvariante, bei der optimale
Ankunftszeiten für eine gegebene Route beziehungsweise Besuchsreihenfolge gefunden
werden müssen, sodass die gesamte Dauer der Route minimiert wird. Dazu wird ein
Modell basierend auf linearer Programmierung und eine schnellere hybride Heuristik
basierend auf dynamischer Programmierung, welche in den meisten Fällen bewiesen
optimale Lösungen berechnet, vorgestellt. Mit dieser Lösungsmethode des Subproblems
ist es möglich eine große Nachbarschaftssuche zu implementieren, in der die effiziente
Lösung des Subproblems ein integraler Bestandteil ist. Mit dieser Metaheuristik ist es
möglich, Lösungen von ausgezeichneter Qualität in moderater Laufzeit zu berechnen.





Abstract

This thesis deals with three combinatorial optimization problems where two of them arise
in the context of public bike-sharing systems and the other one in the domain of security
control. Public bike-sharing systems are emerging in large cities worldwide and contribute
to public health, reduce CO2 emissions and complement public transport. Most public
bike-sharing systems have rental stations where bikes are docked into. These stations may
get full or empty making it necessary to redistribute the bikes among the docking stations
in the system. This is referred to as the balancing bike-sharing system problem. When a
bike-sharing system is set up or extended, the new system or the extensions have to be
planned such that under certain budget restrictions and other constraints, the prospective
user benefit is maximized. This problem is denoted as the bike-sharing station planning
problem. Theft and vandalism make it necessary that certain buildings are surveilled by
security guards multiple times a day within particular time windows. We consider the
optimization problem of minimizing the number of security routes needed to observe all
buildings in consideration. This problem is called the districting and routing problem for
security control and relates to the balancing bike sharing rebalancing problem as it is
also a particular kind of vehicle routing problem.

For the balancing bike-sharing systems problem, we first analyze the static variant of
the problem where no user interaction takes place during rebalancing. In this scenario,
we propose a greedy and a PILOT construction heuristic combined with additional
local-search improvements for obtaining fast ad-hoc solutions in practice which, however,
are usually suboptimal. A further developed variable neighborhood search and greedy
randomized adaptive search procedure yield heuristic solutions on large instances up to 700
stations. Additionally, to the routing part of the problem we propose efficient algorithms
to compute loading instructions for the station visits. We compare an integrated greedy
approach, two approaches based on maximum-flow algorithms and a linear programming
based method. Furthermore, we study the dynamic variant of the problem where user
interaction during the rebalancing process is considered. Previous works model the
problem with time discretization, which we aim to avoid, since this slows down the
algorithm and also introduces additional computation errors depending on the unit of
the discretization. Thus, we model the problem by considering monotonically increasing
and decreasing segments of a user demand function which enables substantially faster
computations and introduces less errors than previous work. While our approaches are
in general able to consider the transportation of arbitrary numbers of bikes, in practice
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frequently only full-vehicle loads are considered. We therefore also study the simplified
problem formulation with always full-vehicle loads, which is practically, highly relevant
and allows more effective solving strategies. Based on this problem formulation we
propose a new and efficient algorithm that splits the problem into an assignment part and
a routing part which follows a logic-based Benders decomposition approach. The costs
of the routing part in the subproblem are approximated with a 0-arborescence in the
assignment part of the algorithm, yielding a strong relaxation so that already meaningful
assignments are obtained for the routing part.

When planning bike-sharing station locations for large cities, thousands of potential
station locations have to be considered, and cannot be handled anymore by traditional
(meta)heuristics. The goal is not to create a fully automatized planning but rather to
design a decision-support tool which helps the planner of such systems by proposing
locations for new station candidates. To this end, we propose a novel solution approach
which first computes a hierarchical clustering on the original input data and then
aggregates the negligible demands on the lower levels of the hierarchical clustering to an
upper level where the aggregated demands play a substantial role for the solution. Based
on this meaningfully generated hierarchical clustering, we propose an algorithm based on
the multilevel refinement paradigm, which utilizes the hierarchical clustering fo the input
data again. This novel solution approach also appears promising for other (real-world)
optimization problems with large input data.

For the districting and routing problem for security control, it is desired that all buildings
can be observed with a minimum number of routes. We propose a greedy-based districting
construction heuristic based on various greedy evaluation criteria. Upon this construction
heuristic, we build a route minimization algorithm that iteratively destroys routes and
intelligently maintains an ejection pool from where visits of buildings are (re)inserted into
other routes than the destroyed ones. Moreover, we extend the problem to a variant with
soft time windows as small time window violations are acceptable in practice but may
improve solution quality significantly. A new problem arises where optimal arrival times
have to be found for each visit of a route such that the makespan of the route is minimized.
We therefore propose a linear-programming model and a superior hybrid heuristic based
on dynamic programming which is able to yield in most cases proven optimal solutions.
With this efficient solution technique for the subproblem we are able to embed the whole
mechanism within a large neighborhood search providing high-quality solutions to the
districting and routing problem for security control with soft time windows.
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CHAPTER 1
Introduction

Public bike sharing systems (PBS) are constructed in cities all over the world. Most of
the time, they consist of self-service rental stations distributed over a city where users
can rent and return bikes. In modern systems, each station has a computer terminal for
automatic rental and return. For security reasons and to prevent theft and vandalism of
the bikes, every station consists of docks where the bikes are docked into. Bikes can only
be returned if at least a single dock is free and obviously, they can only be rent, if at
least one dock is occupied by a bike. Obviously, both scenarios, i.e., full as well as empty
stations hinder the use of the system and easily annoy potential customers. Thus, these
cases have to be avoided as far as possible to increase customer satisfaction. In contrast
to these station-based systems, there exist also free floating bike sharing systems [19, 108]
but as station-based systems are clearly more widespread we only concentrate on those
in this work. PBSs should also not be confused with more classical bike-rental systems,
which are designed for long-term use, higher prices, and to typically return a bike from
where it was rent, whereas PBSs are designed for short-term use, cheaper prices, and
one-way trips. Sometimes, PBSs are even without costs for the customer, as in the
case of Citybike Wien1 in Vienna. In order to make sure that the bikes are constantly
available to the customers of these systems, for longer use the price drastically rises.
The economic advantage of PBSs is manifold. They help at reducing CO2 emissions,
encourage people to do more sports, complement public transport and could also solve
the last mile problem in the case of public transport. Lastly, another advantage of these
shared mobility systems is that they use public spaces more efficiently as people need
not own their individual private vehicles.

For the success of a PBS, the station locations have to be planned such that they are
distributed among a city to fulfill potential customer demand as much as possible. When
planning a new PBS or extending an existing one, various aspects have to be considered.

1https://www.citybikewien.at/
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1. Introduction

Usually, customer demand is higher in areas of large housing complexes, office buildings,
and stations of public transport. It is also important to consider the flow of bikes. Some
stations tend to get full whereas others tend to get empty which also makes it necessary
to rebalance these systems such that at each station in each time point free bikes as well
as docks are available. The expected rebalancing costs should be minimized, as they
represent non-negligible operating costs; this aspect should be already considered in the
planning phase of a PBS such that there is a minimum requirement of rebalancing when
maintaining the system by the operator. To use the limited resources, i.e., workforce
and money, as efficiently as possible, difficult combinatorial optimization problems arise
when planning and rebalancing a PBS which require elaborate optimization techniques
in order to do these tasks as effectively as possible.

When operating a PBS, it is necessary to perform rebalancing activities such that the
system is in a certain balance during the whole period of operation. Since it is crucial for
the success of such a system that customers have constantly free bikes and docks available
at their disposal at nearly all stations of the system, bikes have to be continuously
moved from stations with an excess of bikes to stations with a lack of bikes. Typically,
vehicles with trailers are used to accomplish this task. The underlying combinatorial
optimization problem is to plan rebalancing routes with corresponding loading and
unloading instructions at every stop such that the system is in an optimal condition
after the rebalancing process. For the static case of this problem, i.e., there is no user
interaction during the rebalancing, which can be useful for, e.g., overnight rebalancing,
we propose efficient heuristics and metaheuristics for solving the problem. A fast greedy
construction heuristic as well as a PILOT construction heuristic are designed for finding
meaningful results in short runtimes. Additional local-search components are suggested
for improving results from the construction heuristics. For finding high-quality solutions
in reasonable runtimes we propose an efficient variable neighborhood search exploiting
cleverly chosen neighborhoods as well as a greedy randomized adaptive search procedure
(GRASP) which is based on the efficient greedy construction heuristic. We provide
rigorous test results for these algorithms on a large benchmark suite based on real-world
data occurring at Citybike Wien. The findings have been published in:

M. Rainer-Harbach, P. Papazek, B. Hu, G. R. Raidl, and C. Kloimüllner. PILOT,
GRASP, and VNS approaches for the static balancing of bicycle sharing systems.
Journal of Global Optimization, 63(3):597–629, 2015

Moreover, we also considered the dynamic variant of the problem, when user interaction
during the rebalancing is considered. For this case, we adapted methods and methodologies
from the static case and propose a smart way of calculating the dynamic aspects by
splitting the user demand functions into monotonically increasing and decreasing segments.
The corresponding paper was nominated for best paper candidate at the 14th European
Conference on Evolutionary Computation in Combinatorial Optimisation:

C. Kloimüllner, P. Papazek, B. Hu, and G. R. Raidl. Balancing bicycle sharing
systems: An approach for the dynamic case. In C. Blum and G. Ochoa, editors,
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Evolutionary Computation in Combinatorial Optimisation, volume 8600 of Lecture
Notes in Computer Science, pages 73–84. Springer Berlin Heidelberg, 2014

To be also able to solve practically relevant instances to optimality we considered a novel
and simplified problem formulation that considers only full-vehicle loads. For this, we
propose a cluster-first route-second heuristic that has been published in:

C. Kloimüllner, P. Papazek, B. Hu, and G. R. Raidl. A cluster-first route-second
approach for balancing bicycle sharing systems. In R. Moreno-Díaz, F. Pichler, and
A. Quesada-Arencibia, editors, Computer Aided Systems Theory – EUROCAST
2015, volume 9520 of Lecture Notes in Computer Science, pages 439–446. Springer
International Publishing, 2015

This work is subsequently extended to an exact logic-based Benders decomposition
approach for finding proven optimal solutions. The algorithmic framework and rigorous
tests are published in:

C. Kloimüllner and G. R. Raidl. Full-load route planning for balancing bike sharing
systems by logic-based Benders decomposition. Networks, 69(3):270–289, 2017

We further consider the bike sharing station planning problem (BSSPP). Given a city
and prospective customer demands for a city and a particular maximum budget, the goal
is to plan station locations and a corresponding number of bike docks such that a given
customer demand is fulfilled as far as possible. As PBSs are mostly implemented in large
cities, practical problem instances are large, making it necessary to think about novel
optimization techniques to use limited resources such as CPU and memory as efficient as
possible, as otherwise it is not possible to solve those problem instances arising in practical
scenarios. In this thesis a novel optimization technique is developed which, basically,
applies hierarchical clustering to the input data such that a traditional full demand matrix
is not needed and algorithms can operate on a much sparser hierarchically clustered
input data. An algorithm based on the multilevel refinement paradigm is developed for
utilizing this hierarchically clustered input data. This approach is introduced in the
following work:

C. Kloimüllner and G. R. Raidl. Hierarchical clustering and multilevel refinement
for the bike-sharing station planning problem. In R. Battiti, D. E. Kvasov, and Y. D.
Sergeyev, editors, Learning and Intelligent Optimization, volume 10556 of Lecture
Notes in Computer Science, pages 150–165. Springer International Publishing, 2017

The approach is then extended to a problem variant more relevant for the practical
scenario in Vienna and tested on instances based on real-world data of Vienna. The
approach and corresponding results have been submitted to the 13th Learning and
Intelligent Optimization Conference:

C. Kloimüllner and G. R. Raidl. A novel approach for solving large-scale instances
in the bike sharing station planning problem. Technical report, Institute of Logic
and Computation, TU Wien, 2019. submitted to 13th Learning and Intelligent
Optimization Conference

3



1. Introduction

The outcome of the project is a semi-automated planning tool for PBSs. A full description
of this tool, including the requirement analysis, the input generation, demand modeling,
algorithmic approach and the visualization as well as the planning frontend are published
in the Proceedings of 7th Transport Research Arena (TRA-2018):

M. Straub, C. Rudloff, A. Graser, C. Kloimüllner, G. R. Raidl, M. Pajones, and
F. Beyer. Semi-automated location planning for urban bike-sharing systems. In
Proceedings of the 7th Transport Research Arena (TRA 2018), pages 1–10, Vienna,
Austria, 2018

The proposed rebalancing problem occurring in PBSs is basically a special kind of vehicle
routing problem (VRP). In VRPs, routes have to be planned for a vehicle fleet under
various conditions and constraints. The VRP is a long studied combinatorial optimization
problem and occurs in many different variants in real-world problems. Another example
of such a VRP-related problem is the districting and routing problem for security control
(DRPSC).

Due to theft and vandalism, certain buildings have to be constantly surveilled. As a
result of limited economic resources, such as money and security staff, it is not possible to
constantly observe buildings, but these buildings have to be visited one or multiple times
a day such that theft and vandalism is minimized. This requires elaborate optimization
techniques to be developed to plan efficient routes for performing a given set of visits
to fulfill the custodial duty. Here, the underlying combinatorial optimization problem
is to perform all visits of all buildings by minimizing the number of routes. Thus, a
districting construction heuristic based on various greedy evaluation criteria as well as a
novel district elimination algorithm are proposed. The problem formulation is introduced
and results are published in:

M. Prischink, C. Kloimüllner, B. Biesinger, and G. R. Raidl. Districting and
routing for security control. In M. J. Blesa, C. Blum, A. Cangelosi, V. Cutello,
A. D. Nuovo, M. Pavone, and E.-G. Talbi, editors, Hybrid Metaheuristics, volume
9668 of Lecture Notes in Computer Science, pages 87–103. Springer International
Publishing, 2016

Moreover, as in practice small time window violations are negligible but may substantially
improve solution quality we also study a variant of the problem when considering soft
time windows instead of hard time windows. For solving a subproblem, namely to
determine optimal arrival times at objects, given a particular visit order, and minimizing
the makespan of the visit order, we propose a linear-programming model as well as a
faster hybrid heuristic based on dynamic programming which is used within a large
neighborhood search. These novel, interesting algorithmic frameworks and results for the
DRPSC with soft time windows have been published in:

B.-M. Kim, C. Kloimüllner, and G. R. Raidl. Efficient consideration of soft time
windows in a large neighborhood search for the districting and routing problem for
security control. In B. Hu and M. López-Ibáñez, editors, Evolutionary Computation
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in Combinatorial Optimization, volume 10197 of Lecture Notes in Computer Science,
pages 91–107. Springer International Publishing, 2017

1.1 Overview of the Thesis
Chapter 2 introduces the methods and methodologies used within this thesis to approach
and solve the three selected COPs.

Chapter 3 shows in detail the work done in the area of balancing bike-sharing systems.
First of all, the static case is described in detail and rigorous computational experiments
are shown for various heuristics, metaheuristics as well as a mixed integer linear pro-
gramming approaches [125]. Also comparisons between different methods for deriving
optimal loading instructions are shown. Furthermore, the dynamic problem variant
is introduced and an efficient solution method based on monotonically increasing and
decreasing segments is described and results on instances that have been derived from a
real-world scenario are shown [86]. In the remainder of this chapter, a simplified problem
formulation is introduced and proven optimal solutions derived by logic-based Benders
decomposition and a variant thereof, branch-and-check, are shown [87, 83].

In Chapter 4, the BSSPP is explained in detail and it is described how hierarchically
clustered input data can be derived from the original input. An algorithm is shown that
aggregates negligible demand on the lower levels of the clustering tree to non-negligible
demand on the upper levels of the tree, essentially reducing instance size. Based on
this hierarchical clustering, an optimization scheme based on multilevel refinement is
introduced [84, 85]. The introduced technique is well applicable to other optimization
problems which also need to manage large instance sizes. Results are shown on randomly
generated instances as well as instances derived from the practical scenario in Vienna.

The DRPSC is introduced in detail in Chapter 5. First, a districting construction heuristic
and a sophisticated district elimination algorithm is introduced and results are shown for
instances derived from real-world data [117]. The problem is then extended to a variant
with soft time windows, where we show two efficient methods for solving the problem of
assigning optimal arrival times to an ordered sequence of visits of buildings. A linear
programming based approach is shown and a practically superior hybrid heuristic based
on dynamic programming is proposed [81]. This procedure is embedded within a large
neighborhood search.

Finally, we draw conclusions on the work described in this thesis and present possible
future work in Chapter 6.

5





CHAPTER 2
Methodology

This chapter talks about combinatorial optimization problems (COPs) and comes up with
basics in solution methods for solving these problems which are relevant in the following
chapters of this thesis. In general, COPs can be solved by an exact algorithm providing
optimal solutions, or by a (meta)heuristic yielding good solutions but not necessarily
optimal solutions. These two types of solution methods are especially important for
the work in this thesis, but there exist also approximation algorithms which aim at
finding provable guarantees for the quality of solutions produced by the approximation
algorithm with respect to the optimal solution. Optimal solutions of exact methods come
together with optimality proofs showing that the obtained solution is indeed optimal,
but if the problem is too complex to be solved optimally in practical time, exact methods
sometimes yield heuristic solutions together with upper and lower bounds to an optimal
objective value for a given problem instance of a COP. (Meta)heuristic algorithms do not
usually prove quality guarantees but are nevertheless highly relevant in practice, as they
frequently yield best solutions in practice [58].

2.1 Combinatorial Optimization Problems

The problems which are described in this thesis are all combinatorial optimization
problems, therefore the term is introduced in this section. According to Wolsey [160], a
combinatorial optimization problem consists of a finite set N = {1, . . . , n} and weights
cj ∀j ∈ N . Moreover, a set F of feasible subsets of N is given. A combinatorial
optimization problem is then defined as finding the minimum weight feasible subset:

min
S⊆N

∑
j∈S

cj : S ∈ F

 (2.1)
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2. Methodology

The value of the optimal solution to the COP is then the sum of all weights of the
minimum weight feasible subset. COPs are not only limited to minimization problems,
but can also be maximization problems.

Most COPs are said to be NP-hard. Formally, Schrijver [138] describes the complexity
class NP as follows: “a decision problem α ⊆

∑∗ belongs to NP if there exists a
polynomially solvable decision problem α′ ⊆

∑∗ ×∑∗ and a polynomial φ such that for
each z in

∑∗:”
z ∈ α⇔ ∃y ∈

∑∗
: (z, y) ∈ α′ and size(y) ≤ φ(size(z)) (2.2)

Unless P 6= NP there exists no polynomial-time algorithm that can solve all problems
lying in NP , in particular the subset of NP-hard problems. One widely used methodology
for solving COPs is mixed integer linear programming (MIP) whereas (meta)heuristic
approaches to COPs often yield solution with good quality but often lack theoretic
information about optimality gaps. There also exist modern approaches which combine
exact methods and (meta)heuristics. Those are denoted as hybrid (meta)heuristics [15].

2.2 Exact methods

We describe methods which are able to yield proven optimal solutions to COPs. One of the
most prominent method is mixed-inter linear programming (MIP). Linear programming
(LP) is often used to solve the relaxed problem and provide a straightforward dual bound
to the COP. Other exact methods are also constraint programming [130] and dynamic
programming as well as SAT solving [11]. As practical relevant problems often consist of
a huge number of variables and constraints, it is often not enough to solve the full MIP
model but more sophisticated methods based on decomposition techniques are needed
such as the cutting plane method, (logic-based) Benders decomposition [26, 118] and
column generation [39]. These decomposition techniques take advantage of solving the
problem with only considering a subset of the variables and/or constraints of the original
problem, and adding constraints and variables until optimality can be proved. Those
methods are explained in detail in the following sections. Most of the following part is
based on the books written by Bertsimas and Tsitsiklis [10] as well as Wolsey [160].

2.2.1 Branch-and-Bound

Each COP can be solved exactly by enumerating the whole search space and in the end
taking the assignment of values to variables which yield the best objective value according
to the evaluation function. Obviously, such an exhaustive search is also for small problem
instances a very time-consuming task and even not possible for larger instances. Thus,
smarter methods need to be developed to obtain proven optimal solutions to a given COP.
A very basic solution method that uses information about the search space, to make the
procedure much faster, is called branch-and-bound. Branch-and-bound is also often used
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2.2. Exact methods

within other methods and methodologies, like e.g., in mixed-integer linear programming.
The whole procedure can be represented as a routed tree, where the root node of the
tree contains the whole search space and at every node, the problem is splitted via a
decision variable, and this node can be seen as a subproblem of the whole problem. In a
branch-and-bound algorithm the pruning of nodes is important. A node can be pruned
when

• the best objective value obtainable with this node is worse than the best objective
value found so far,

• the solution becomes infeasible within this node, and

• the objective is not going to improve anymore when examining subnodes of the
incumbent.

Basically, the earlier a node can be pruned, the better, as it makes the algorithm faster
by pruning more nodes that do not need to be evaluated anymore.

2.2.2 Dynamic Programming

Dynamic programming (DP) is also an exact method which follows the principles of divide
and conquer. The idea is to solve small subproblems and remember the solutions to the
subproblems which is also referred to the term memoization. DP makes use of a recursive
function where the solutions of the subproblem are used and combined so that finally a
solution to the whole problem is obtained. Obviously, dynamic programming only makes
sense for problems with a particular structure, i.e., the problem can be expressed in a
recursive manner and the subproblems are partly overlapping. DP has been successfully
applied to various COPs and is therefore an important optimization technique [74, 76, 81].
For a deeper introduction into DP see also the book by Bellman [8].

2.2.3 Linear Programming

Linear programming (LP) defines the problem of minimizing or maximizing a linear cost
function subject to linear inequalities. LP has been shown to be in the complexity class
P which means that for any problem which can be formulated as an LP, there exists a
polynomial-time algorithm which solves the problem. First of all, we will give a formal
definition of a linear program:

min c′x (2.3)
s.t. a′ix ≥ bi ∀i ∈M1 (2.4)

a′ix ≤ bi ∀i ∈M2 (2.5)
a′ix = bi ∀i ∈M3 (2.6)
xj ≥ 0 ∀j ∈ N1 (2.7)
xj ≤ 0 ∀j ∈ N2 (2.8)
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2. Methodology

The linear cost function (2.3) is also denoted as objective function. The feasible region
of the problem is described by inequalities (2.4)–(2.6) and the domain of the variables
is described in inequalities (2.7) and (2.8). Every set of feasible variable assignments,
i.e., which lies in the feasible region of the problem is regarded as feasible solution. The
solution from the feasible set of solutions, which minimizes the objective function (2.3)
is denoted as optimal solution. Note, that there maybe more than one solution that
minimizes the objective function in which case all those solutions would be denoted as
optimal solution. The value of the objective function for the optimal solution is regarded
as optimal cost.

An LP is said to be in standard form if it looks like:

min c′x (2.9)
s.t. Ax = b (2.10)

x ≥ 0 (2.11)

By transforming all inequalities of an arbitrary LP to the form Ax = b and having only
non-negative variables x ≥ 0 every LP can be brought into standard form where the
process of bringing an LP into standard form is regarded to reduction to standard form.

To formally define the feasible region of an LP we define a polyhedron [10].

Definition 1. A polyhedron is a set that can be described in the form {x ∈ Rn | Ax ≥ b},
where A is an m× n matrix and b is a vector in Rm.

Now, we define a solution of an LP. First of all, we need to describe the term of an active
constraint:

Definition 2. A constraint of the form ax∗ = b is said to be active if vector x∗ satisfies
it.

Then, we can define basic solutions and basic feasible solutions as follows:

Definition 3. Consider a polyhedron P defined by linear equality and inequality con-
straints, and let x∗ be an element of Rn.

• Vector x∗ is a basic solution if all equality constraints are active and out of the
constraints that are active at x∗, there are n of them linearly independent.

• If x∗ is a basic solution that satisfies all of the constraints, it is called a basic
feasible solution.

Definition 3 formally defines what basic feasible solutions are, but we are mostly interested
in solving the LP to optimality. Thus, we need also information about the optimality of
extreme points:
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Theorem 1. Consider an LP minimizing cx over a polyhedron P . Suppose that P has
at least one extreme point and that there exists an optimal solution. Then, there exists
an optimal solution which is an extreme point of P .

For a proof of Theorem 1 see [10]. As basic feasible solutions and the term optimality are
now introduced we can start thinking of algorithms which are able to solve LPs. This is
explained in the next section.

Solution Algorithms for Linear Programs

Well known are the following three different methods for solving LPs:

• simplex algorithm,

• ellipsoid method, and

• interior point method.

Since it was shown by Khachiyan [80] that the ellipsoid method is able to solve LPs in
polynomial time, it is known that LPs are generally in the complexity class P . This was
also shown by the work of Karmarkar [79], an Indian mathematician, in 1984, where
he proposed the interior point method which is also a polynomial-time algorithm for
solving LPs. Even, if the well known simplex algorithm of Dantzig [33] has an exponential
runtime in the worst-case scenario, it is effective in practice [88] and implemented in
most commercial (mixed integer) linear-programming solvers, such as CPLEX or Gurobi.
Basically, the idea of the simplex method is to walk along the edges of the feasible
polyhedron in direction of reduced costs (in case of a minimization problem) until no
further improvement in the current solutions neighborhood is possible. The simplex
algorithm terminates after a finite number of steps. A full implementation guide including
also performance enhancements can be found in [10].

Duality

Duality is an important property in LP and it is also a substantial property for finding
dual bounds. Most notably, every feasible solution found through the dual problem
provides a dual bound on the objective value of the primal problem.

Definition 4. Two problems

(MIP) z = max{c(x) : x ∈ X} (2.12)
(D) w = min{w(u) : u ∈ U} (2.13)

form a weak-dual pair if c(x) ≤ w(u)∀x ∈ X and all u ∈ U . If z = w, they form a
strong-dual pair.
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Theorem 2. Suppose x is a feasible solution to the primal problem and u a feasible
solution to its dual problem, then

p · b ≤ c · x. (2.14)

if its a minimization problem.

Therefore, any feasible solution of the dual problem gives a dual bound on the objective
of the primal problem which is a useful property when solving LPs.

2.2.4 (Mixed) Integer Linear Programming

The basics for (mixed) integer linear programming lies in the theory of LP and with
the simplex algorithm of Dantzig there already exists a practically efficient solution
method for those programs. However, LPs can only cope with real numbers which means
that many practical problems cannot be expressed with an LP. Imagine, a company
is planning to build new factories and they have to decide where to place these new
facilities. Therefore, a decision is needed whether to build or not to build a factory on a
particular place. This cannot be expressed by an LP. When integer variables are needed
to model a problem we speak about (mixed) integer linear programs. A model which
contains only integer variables is called integer program, a model containing only binary
decision variables, i.e., all variables can only take a value of zero or one are called binary
programs, and if a model contains integer as well as real-valued variables it is a mixed
integer linear program.

The question arising is, how MIPs can be (efficiently) solved. An obvious way in solving
those models is to solve the LP instead of the MIP by replacing all integer variable
domains with a real-valued domain. Rounding the fractional values to integer values
could be a solution to retrieve a valid integer solution for the model. But, of course,
rounding is not sufficient as this rounded solution can be far away from the optimal
integer solution. For finding an algorithm that solves MIPs, some information is needed
at which point a given solution x∗ can be proved optimal. Let z be the optimal solution
of integer program IP, z̄ an upper bound of z and z a lower bound. The optimal solution
is reached when

z̄ − z ≤ ε (2.15)

where ε is a small optimality tolerance. The question is how to find upper and lower
bounds to the optimal solution of the MIP. First, we define what a relaxation of the
original MIP is.

A simple and useful relaxation of IP is the so called LP relaxation when the domains of
the integer variables are changed to real values. Obviously, the optimal solution to the LP
relaxation is a lower bound or dual bound to the optimal solution (in case of minimization).
Upper bounds or primal bounds are any feasible solution to the problem/model.

As all other types of problems, also a MIP could be solved to optimality with complete
enumeration. However, as this is not tractable a more sophisticated solution approach
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has to be found. An approach is described in the next section, namely LP-based branch-
and-bound.

LP-based branch-and-bound

When considering an integer program z = max{cx : x ∈ S}, the question is how it can
be divided into subproblems such that it can be solved faster and more efficiently.

Proposition 1. Let S1, . . . , Sk be a decomposition of S into smaller problem, and let
zk = max{cx : x ∈ Sk}∀k = 1, . . . ,K. Then, z = maxk zk.

A way of reaching such a decomposition is to solve the so called LP relaxation of the MIP.
Usually, this results in some integer variables being fractional. If this is not the case the
optimal LP solution is also the optimal solution of the MIP. A way of eliminating such
fractional variables is to branch over these variables and make them integer. Again a full
enumeration tree would not be tractable, so a smarter method has to be applied. This is
done by computing bounds and pruning the tree, similar as described in Section 2.2.1.
In general there are three types of pruning in a branch-and-bound tree:

prune by optimality if lower and upper bound on a node in the tree have the same
value there is no need to expand the node further.

prune by bound if the best found primal bound so far is higher (for maximization
problems) than the dual bound in the current node it is not possible to find the
optimal solution in the subtree of this node.

prune by infeasibility if the solution would become infeasible, the subtree of the
current node can be discarded.

Using this information an algorithm can be implemented which uses LP-based branch-
and-bound. However, there are further decisions to be made, like, e.g., in which order
should the tree be traversed, in which order should the nodes be expanded. These
decisions influence the performance of the algorithm.

2.2.5 Decomposition-based Approaches

Solving a whole MIP model, e.g., through LP-based branch-and-bound as introduced in
Section 2.2.4, is often not possible because of the huge number of variables and constraints
in practicable problem instances. Thus, there are decomposition approaches such that the
whole problem may not be solved at once. The idea behind these approaches is to only
consider a subset of the constraints or variables. The resulting problem is much easier to
solve than the original. In (logic-based) Benders decomposition, and the cutting-plane
method, constraints are iteratively added, whereas in column generation variables are
iteratively added.
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Cutting-Plane Method and Branch-and-Cut

The cutting plane method iteratively adds cuts/constraints to a MIP. The idea is to use
this technique inside the nodes of the branch-and-bound tree to tighten the dual bound
by recomputing the LP solution with the new constraint(s), which have to be valid for the
original problem, and cut off invalid solutions. For finding such cuts, so called separation
algorithms, may be used. For instance, in the traveling salesman problem (TSP) subtours
are not allowed. However, there are exponential many subtour elimination constraints.
Thus, those constraints are added in a branch-and-cut procedure. The separation problem
would be, to find the minimum cut in the corresponding branch-and-bound node. Note,
that there also exist TSP formulation which does not need subtour elimination constraints
when Miller-Tucker-Zemlin (MTZ) constraints are added, see [96].

By using the branch-and-cut algorithm, usually less nodes need to be considered, as the
dual bound is strengthened through recomputing the LP. Branch-and-cut is a widely
applied decomposition method for MIPs. However, finding good and useful cuts and also
finding fast separation algorithms is a challenging task.

Benders Decomposition

Benders decomposition is a useful decomposition technique if the original MIP contains
so called “complicating variables” and was originally proposed in 1962 [9]. The problem is
divided into a master problem (MP) and a subproblem (SP) where the MP contains the
“complicating variables” variables and the subproblem contains only continuous variables.
Consider a MIP of the form

MIP = min cx + c′y (2.16)
s.t. Ax + By ≥ b (2.17)

Dx ≥ d (2.18)
x ∈ Zn (2.19)
y ≥ 0 (2.20)

In this case the x variables are the “complicating” ones and the y variables are continuous.
This MIP can be reexpressed in the form

MP = min cx + zSP(x) (2.21)
s.t. Dx ≥ d (2.22)

x ∈ Zn. (2.23)

The value of zSP(x) is the solution of the following subproblem, when the values for the
“complicating” x variables are fixed, and the problem becomes a linear program with
only continuous y variables

SP = min c′y (2.24)
s.t. By ≥ b−Ax (2.25)
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y ≥ 0 (2.26)

where the dual form of this subproblem is as follows

DSP = max w · (b−Ax) (2.27)
s.t. wB ≤ c′ (2.28)

w ≥ 0 (2.29)

When the dual of the subproblem (DSP) is solved, we can derive two types of cuts. If the
dual of the subproblem is unbounded, it is known that the primal problem is infeasible
and thus, we derive (Benders) feasibility cuts. Moreover, if the dual is bounded, we
derive (Benders) optimality cuts for the MP of the form

z ≥ cx + w · (b−Ax) ∀w ∈W (2.30)

where W is the set of extreme points obtained by the solution of DSP. The algorithm
stops when no cut violating the solution of the MP can be found by solving the dual
problem of the SP, and finally, terminates with the optimal solution.

Logic-Based Benders Decomposition

Logic-based Benders decomposition was introduced by Hooker and Ottosson [72] in 1995
and generalizes the classical Benders decomposition from an LP dual to an inference dual.
The difference to classical Benders decomposition is that the SP does not necessarily
need to be an LP. However, again as in classical Benders decomposition the problem is
divided into a MP and a SP. An initial solution to the reduced MP is computed and
with this fixed solution, the SP is solved. The SP can create again feasibility and/or
optimality cuts. In case of logic-based Benders decomposition the SP often corresponds
to a satisfiability problem where also constraint programming can be a promising, if not
superior, approach. If cuts could be generated, because the SP has proven infeasibility
of the solution to variables of the MP or an optimality cut could be derived, a cut over
the current assignment of the variables of the MP is added and the MP is resolved. The
algorithm terminates with the optimal solution when no further cuts can be derived in
the SP. Note, that the SP must be solved to optimality in order to ensure optimality of
the final solution.

There exists also a variant of logic-based Benders decomposition, which is sometimes also
referred as branch-and-check [150], that adds (Benders) feasibility and optimality cuts in
a branch-and-cut manner.

2.3 Heuristics
The word heuristic has its origin in the Greek and is derived from the word “heuriskein”
which means “to find”. Basically, a heuristic aims at finding (good) solutions for COPs
which are not necessarily optimal. Heuristics try to find a way through the search space
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Algorithm 2.1: Construction heuristic
1: x = ∅
2: while extend(x) 6= ∅ do
3: c← select(extend(x))
4: x← x ∪ c
5: end while
6: return x

of a COP by using predefined rules that evaluate the current state of a solution and also
its final objective value. Usually, heuristics are applied to problems when either fast
solutions are needed or exact methods fail to work, because the search space is too large
for an exact method to be applied. In the following we introduce two basic concepts of
heuristics, namely construction heuristics as well as local search.

This section as well as Section 2.4 and Section 2.5 are partly based on the book by Blum
and Raidl [15].

2.3.1 Construction Heuristics

Construction heuristics provide a fast way to construct initial solutions to a problem. In
many applications, their solution quality is good enough for solving the problem. They
may also provide starting solutions for metaheuristics, or they can even be extended to
an own metaheuristic, see also Section 2.4.2 about greedy randomized adaptive search
procedure. The pseudo code for a construction heuristic is given in Algorithm 2.1. The
variable x consists of solution components and is called the partial solution. In each step
the solution is extended with another solution component until the solution is complete or
cannot be extended anymore. The function extend(x) returns all solution components for
which the partial solution x can be extended in its current partial state. The function will
return the empty set, if the solution is either complete or cannot be extended anymore.
The select function will select a solution component from the available ones. At the end
of the construction heuristic the final solution x is returned.

Greedy construction heuristic

A greedy algorithm always makes the choice which seems currently the best even its
not the best choice on global perspective. Usually, an objective function is defined and
the greedy algorithm selects the next step which has the best objective function value
among all given possibilities. The greedy algorithm stops when a full solution has been
constructed. In most cases, a greedy algorithm works only with feasible solutions which in
turn produces a final feasible solution when the algorithm terminates. A greedy algorithm
can also be randomized which in most cases improves the average final solution quality.
The pseudo code for a greedy construction heuristic is shown in Algorithm 2.2. The
algorithm adds solution components from a given candidate list C until the solution
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Algorithm 2.2: Greedy construction heuristic greedy(S ,C )
Require: possibly empty incumbent solution S, candidate list C

1: while solution is not complete do
2: xbest ← uninitialized
3: for all c ∈ C do
4: if xbest = uninitialized or better(eval(S, c), xbest) then
5: xbest ← c
6: end if
7: end for
8: S ← S ∪ {xbest}
9: C ← C \ {xbest}

10: end while
11: return S

is complete. In each step of the algorithm, every possible candidate is evaluated and
the best possible choice is made. Then, the solution is extended with this locally best
possible choice xbest and the candidate is removed from the candidate list C.

Basically, a greedy algorithm do not yield optimal solutions except for matroids. When a
problem can be expressed as matroid a greedy algorithm is able to yield optimal solutions
like it is the case of the minimum spanning tree problem for which, e.g, Kruskal’s
algorithm yields optimal solutions.

2.3.2 Local Search

Whereas construction heuristics, such as greedy construction heuristics or PILOT, create
solutions from scratch, local search starts with an initial solution and tries to improve this
solution for a given neighborhood function or neighborhood structure. Often it is the case
that local search obtains an initial solution by a construction heuristic and tries to improve
this solution. Local search is an effective technique in combinatorial optimization and
widely applied to improve a particular solution. Given a set of neighborhood structures
N = N1(x), . . . , Nk(x) it is possible to compute locally optimal solutions with respect
to the the given neighborhoods N. When the local optimum is reached, no further
improvement is possible with these neighborhood structures. There exist methods for
escaping local optima, like, e.g., variable neighborhood search (VNS), see Section 2.4.3.
According to Blum and Roli [16] a neighborhood structure is defined as follows

Definition 5. Let S be the search space of a given COP. Then, a neighborhood structure
is a function N : S→ 2S that assigns to every s ∈ S a set of neighbors N(s) ⊆ S. N(s)
is called the neighborhood of s.

A neighborhood simply describes the changes to be applied to a solution to generate its
neighbors. The application of a neighborhood which produces solution s′ from solution
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Algorithm 2.3: Variable neighborhood descent
Require: initial solution x, neighborhood structures Nk | k = 1, . . . , kmax

1: while improvement obtained do
2: k ← 1
3: while k 6= kmax do
4: x′ ← BestNeighbor(x,Nk)
5: if x′ better x then
6: x← x′

7: k ← 1
8: else
9: k ← k + 1

10: end if
11: end while
12: end while

s is called a move. When exhaustively applying a neighborhood function N one gets a
local minimum which is defined as follows (Blum and Raidl [15]):

Definition 6. A local minimum with respect to a neighborhood function N is a solution
ŝ such that ∀s ∈ N(ŝ) : f(ŝ) ≤ f(s). We call ŝ a strict local minimum if f(ŝ) < f(s)∀s ∈
N(ŝ).

Such a neighborhood function can be searched either in a first improvement or best
improvement fashion. In either case the solution found is a local minimum with respect
to the given neighborhoods.

2.3.3 Variable Neighborhood Descent

Variable neighborhood descent (VND), initially proposed by Mladenović and Hansen [97],
is a typical local-search routine which is often used and embedded in various (meta)heuristics
and is used to compute locally optimal solution with respect to given neighborhoods.

It is often used within a VNS, see Section 2.4.3. When running a VND, the change in
neighborhoods is always performed in a deterministic way, see also Algorithm 2.3.

2.4 Metaheuristics
A definition of the term metaheuristic according to Osman and Laporte [104] is the
following:

Definition 7. A metaheuristic is formally defined as an iterative generation process which
guides a subordinate heuristic by combining intelligently different concepts for exploring
and exploiting the search space, learning strategies are used to structure information in
order to find efficiently near-optimal solutions.
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Although, MIP techniques are powerful, it is often the case that they are not suitable or
applicable for practical problems due to too excessive runtime or memory requirements for
NP-hard problems. Sometimes, it is also even impossible to obtain any feasible solution
or even bounds when trying to solve huge problem instances with exact techniques like
MIP-methods, CP or SAT-based approaches. In these cases, (meta)heuristics may be a
practically highly promising way to go.

In general, (meta)heuristics do not provide guarantees on solution quality but provide
a way to frequently yield good approximate solutions to a problem if well designed. In
the following we will describe heuristics which have been used for solving the problems
handled in this thesis.

Metaheuristics have already been studied for decades and a good starting point for
developing and learning about them is the Handbook of Metaheuristics [61].

There is a wide range of metaheuristics described in the literature and it is not in
the scope of this work to describe all of them in detail. The following sections sketch
the principles of GRASP, PILOT and VNS, which are those applied in the subsequent
chapters. Further prominent metaheuristics are, for example:

• population-based metaheuristics

– ant-colony optimization [42, 43, 44]
– genetic algorithms [35, 127]

• local-search based metaheuristics

– tabu search [57, 60]
– simulated annealing [82, 152]

We also note, that the term of a hyperheuristic is gaining popularity which is basically a
special metaheuristic layer that is able to adapt the search by selectively utilizing various
lower level (meta)heuristics. The book of Sörensen et al. [31] gives an overview on the
topic and discusses recent results in this area.

2.4.1 Preferred Iterative Look ahead Technique

This method proposed by Duin and Voß [45, 46, 157], short as PILOT, tries to reduce
problems with the greedy trap by looking ahead a certain number of steps. Basically,
any greedy algorithm can be enhanced to the PILOT method when looking ahead the
incumbent solution. The PILOT method could do a full dry run of the, e.g., greedy
algorithm, or the PILOT depth could also be limited in case the runtimes are to large
when applying this method, but this clearly is problem- and instance dependent. When
setting the depth to zero this can also seen as a special case where the algorithm
corresponds to the usual greedy construction heuristic without look-ahead mechanism.
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Algorithm 2.4: Preferred Iterative Look ahead Technique
Require: candidate list C

1: S ← ∅
2: while solution is not complete do
3: xbest ← uninitialized
4: Sbest ← uninitialized
5: for all c ∈ C do
6: S′ ← greedy(S ∪ {c}, C \ {c})
7: if Sbest = uninitialized or better(S′, Sbest) then
8: xbest ← c
9: Sbest ← S′

10: end if
11: end for
12: S ← S ∪ {xbest}
13: C ← C \ {xbest}
14: end while
15: return S

Algorithm 2.5: GRASP
1: Sbest = ∅
2: while termination criterion not met do
3: S ← GreedyRandomizedConstruction()
4: S ← LocalSearch(S)
5: if S better than Sbest then
6: Sbest ← S
7: end if
8: end while

The pseudo code for PILOT is given in Algorithm 2.4. First, the solution is initialized to
the empty set. Then, the algorithm tries to add solution components until the solution is
complete. In each iteration of the outer loop, for every candidate c ∈ C a full greedy look
ahead is done, possibly limited by a given look-ahead depth, and xbest is the element
from the candidate list which has the best solution for a complete look ahead solution.
The function greedy(S,C) calls the corresponding Algorithm 2.2. After all elements are
evaluated with the look-ahead mechanism the solution is extended with the best possible
choice and the element is removed from the candidate list.

2.4.2 Greedy Randomized Adaptive Search Procedure

The Greedy Randomized Adaptive Search Procedure (GRASP) has been proposed by
Resende and Ribeiro [128]. Basically, GRASP is a multistart metaheuristic where each
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Algorithm 2.6: GreedyRandomizedConstruction
Require: Set of candidates C

1: S = ∅
2: ∀c ∈ C : evaluate incremental costs
3: while solution is not complete do
4: Build restricted candidate list (RCL)
5: pick c ∈ RCL at random
6: S = S ∪ {c}
7: Reevaluate incremental costs
8: end while
9: return S

Algorithm 2.7: Variable neighborhood search
Require: initial solution x, shaking neighborhood structures N s

l | l = 1, . . . , lmax, local
search neighborhood structures Nk | k = 1, . . . , kmax

1: while termination criteria not met do
2: l← 1
3: while l 6= lmax do
4: x′ ← Shaking(x,N s

l )
5: x′′ ← VND(x′, Nk)
6: if x′′ better x then
7: x← x′′

8: l← 1
9: else

10: l← l + 1
11: end if
12: end while
13: end while

step of the metaheuristic consists of a construction phase and a local search phase. The
general procedure of GRASP is given in Algorithm 2.5.

When looking at Algorithm 2.6, GRASP makes use of a restricted candidate list (RCL).
This list usually contains a number of best elements from which one element is chosen at
random to be the next part of the solution. The size of RCL obviously directly influences
performance and solution quality of the algorithm and should be chosen well.

2.4.3 Variable Neighborhood Search

The Variable neighborhood search (VNS) [97] metaheuristic uses a so called shaking
mechanism to construct a random point which allows the metaheuristic escaping local
optima. VNS is a powerful technique for many real-world applications requiring good
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solutions in reasonable runtimes. Pseudo code of the VNS is shown in Algorithm 2.7.
There are many variations, extensions and hybrids of the basic VNS algorithm where the
most prominent ones are reduced VNS (RVNS), variable neighborhood decomposition
search (VNDS), parallel VNS (PVNS) and skewed VNS (SVNS).

2.5 Hybrids

We introduced two different guided ways for solving COPs, namely exact methods and
(meta)heuristic methods. Both have their advantages and shortcomings and thus, it
is occasionally meaningful to combine them to more powerful methods. On one hand,
(meta)heuristics are usually fast and are able to yield solutions to larger instances than
exact methods. On the other hand exact, methods are able to yield proven optimal
solutions (for smaller instance sizes), but they can also provide bounds to the particular
COP. Especially, using pure (meta)heuristics it is often hard or impossible to provide
dual bounds whereas, e.g., MIPs always can at least provide easily dual solutions via the
simple LP dual solution.

There are multiple possibilities of combining (meta)heuristics and exact methods. For
instance, (meta)heuristics can also help to boost the efficiency of exact methods by
providing good primal bounds to MIPs. In a branch-and-cut manner, heuristics can also
support MIPs for finding cutsets or detecting invalid solutions in a fast way. Often, exact
methods are also used within (meta)heuristics as, e.g., solving subproblems by LP or
MIP. A good example for such a use case can be found in Section 5.3 where the overall
problem is solved using a metaheuristic and the subproblem is either solved by LP or DP.

We give a taxonomy of hybrid metaheuristics as proposed by Raidl [119, 120]. However,
we want to note, that also Talbi proposed a taxonomy for hybrid metaheuristics [149].
Raidl distinguishes hybrid metaheuristics among the following properties:

hybridized algorithms: metaheuristics with metaheuristics, metaheuristics with problem-
specific algorithms/simulations, metaheuristics with other operations research/artificial
intelligence techniques, and metaheuristics with human interaction

control strategy: integrative and collaborative

order of execution: batch (sequential), interleaved, parallel

level of hybridization: high-level (weak coupling), low-level (strong coupling)

In the last decade, a lot of effort has been put on developing hybrid metaheuristics
as it seems that they are one of the best solution methods to solve large real-world
problems. In fact, if well and sophisticated designed, they provide powerful solution
methods. Therefore, many surveys [18, 119, 120] and books [15, 17, 149] have been
published about hybrid metaheuristics and how their strength can be exploited best.
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Giving a full list of hybridization possibilities and methods is out-of-scope for this thesis
and even not possible, as in general, they can be combined as desired. However, to design
a good hybrid method, one has to be careful what to combine and how to combine it. We
will give some examples on hybrids in the remainder of this section. First, we discuss the
combination of metaheuristics with metaheuristics, then we will shortly show possibilities
of how to combine MIP approaches with metaheuristics, which are also sometimes denoted
as matheuristics, and in the end we show some methodologies which can be used to solve
large-scale real-world problems, namely so called multistage approaches.

2.5.1 Combining Metaheuristics with Metaheuristics

Basically we can distinguish between local-search (trajectory) based metaheuristics
and population-based metaheuristics. These two types of metaheuristics can be well
combined with each other to exploit/combine both advantages. In general, population-
based algorithms profit of keeping multiple diverse solutions whereas trajectory-based
metaheuristics are able to intensify the search by looking up the neighborhood for a locally
optimal solution, based on a particular given solution. An example of this hybridization
would be the combination of genetic algorithms with, e.g., VND. The advantage of
this combination is that the population-based metaheuristic, the genetic algorithm in
this case, can be used for diversifying the search by holding a whole population and
the VND can be used to intensify the search by locally optimizing each solution of
the population. These algorithms are called memetic algorithms [99, 100]. Another
successfully applied combination of trajectory-based methods with population-based ones
are ant-colony optimization and beam search. Beam search is a tree-search based method
which allows to extend partial solutions in a parallel greedy fashion for increasing the
probability of finding a good solution [107]. Blum [13] refers this kind of hybridization
also as Beam-ACO. This hybridization has been successfully applied to several prominent
problems, such as the traveling salesman problem with time windows [93] and the longest
common subsequence problem [14].

2.5.2 Combining Metaheuristics with Mixed Integer Linear
Programming

It has also become very popular to combine metaheuristics with DP, LP or MIP to take
advantage of both methodologies. Raidl and Puchinger [121] gave a good overview about
the techniques and how they can be combined.

It is often useful to embed (meta)heuristics within an exact approach to provide the
exact approach with primal bounds which can also help to keep the branch-and-bound
tree smaller if the metaheuristic can provide good primal bounds to the exact approach.
Obviously, it is, however, also a trade-off because performing metaheuristic methods
at every node of a branch-and-bound tree is also very time consuming. Thus, clever
decisions have to be made, whether a metaheuristic should be called in a particular
branch-and-bound node or not. Alternatively, if suitable also faster and/or simpler
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heuristics can be called more often. In a decomposition-based exact approach like, e.g.,
branch-and-cut, it can also be useful to use metaheuristics to find cutsets faster and
even larger cutsets which may speed up the computation of the MIP, see, e.g., Raidl et
al. [123].

On the other hand, for metaheuristics, it can also be useful to guide them by relaxations
of LPs or MIPs. Sometimes it can be useful to solve the LP-relaxation of a problem,
and then, trying to repair infeasible solutions for providing good initial solutions to
metaheuristics. Solutions providing dual bounds from, e.g., the LP-relaxation of a
problem can also be exploited by metaheuristics, utilizing the primal-dual relationships.

Another possibility, which is sometimes also referred as fix-and-optimize strategy [156], is
to fix some variables and let the other variables free, so that they can be optimized by a
MIP solver like CPLEX or Gurobi. This is often done within a (very) large neighborhood
search (VLSN). Ahuja et al. [1] provided a survey on very-large scale neighborhood search
techniques.

2.5.3 Multistage Approaches

Multistage approaches are particularly useful for (very) large real-world problems. They
decompose the problem such that the original problem may not be solved at once, but only
a smaller problem, or the problem can even be divided into a master and a subproblem.
In the first part of this section, we describe the cluster-first route-second methodology
originally proposed by Fisher and Jaikumar [50]. This is particularly useful for vehicle
routing problems (VRP), when at first the given items, which need to be visited are
assigned to a particular vehicle, and in a second step for each vehicle a routing problem
is solved separately. The second metaheuristic we describe, is the multilevel refinement
strategy, initially proposed for combinatorial optimization by Walshaw [158], where the
original, usually large, problem is coarsened until a problem size is reached which can
be easily solved. After that, the problem is iteratively extended and refined (possibly
by local search such as a VND) until the lowest level is reached and a solution to the
original problem is retrieved.

Cluster-First Route-Second

Cluster-first route-second is a decomposition-based metaheuristic and was first proposed
by Fisher and Jaikumar [50] in 1981. The basic idea is to divide the problem into a
master problem and a subproblem, where the master problem is associated with the
clustering and the subproblem is an independent problem, which is much easier to solve.
The union of the solutions from all subproblems corresponds to the solution of the overall
problem. Note, that, e.g., for the vehicle routing problem with maximum-tour constraint
an estimation of the tour length of each cluster has to be integrated into the master
problem. The success of this approach is also dependent on the quality of this estimation,
which results in a better assignment for the subproblem. The subproblem is usually easy
to compute respectively solve.
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Algorithm 2.8: Multilevel refinement
1: l← 0
2: while Pl is too large to be reasonably considered in a direct way do
3: Pl+1 ← coarsen(Pl)
4: l← l + 1
5: end while
6: xl{Pl} ← initialize(Pl)
7: while l > 0 do
8: l← l − 1
9: x0

l {Pl} = extend(xl+1{Pl+1}, Pl)
10: xl{Pl} = refine(x0

l {Pl}, Pl)
11: end while

It is also possible to do this the other way round, which would result in the route-first
cluster-second methodology, which has been shown by Prins [115], to be also a fruitful
approach for VRPs. This way, a giant tour is constructed, and then, by applying splitting
algorithms, multiple tours are created, such that e.g., in the VRP, each vehicle has its
own route.

Multilevel Refinement

The multilevel refinement paradigm is a metaheuristic which, e.g., can be used to improve
results of existing approaches. It was proposed by Walshaw [158, 159] and it was shown
to be able to improve results of existing approaches. This is an intuitive paradigm as
it tries to make the problem size smaller and first solve a small variant of the instance
and then iteratively extend solutions to obtain a solution to the initial problem instance.
After each extension step a possible refinement can also be made, like, e.g., VND (see
Section 2.3.3). The process of making the initial problem size smaller is also denoted as
coarsening.

The procedure is shown in pseudo-code in Algorithm 2.8. The problem is coarsened
until an instance size is reached which can be easily solved, possibly by exact methods
like LP or MIP. After the coarsening is finished, the solution xl is initialized at the
highest respectively coarsest level. Then, the solution is iteratively extended to a lower
level l − 1 and optionally refined at the level l − 1. If level l = 0 is reached, a solution
to original problem instance is found. Crucial decisions in this metaheuristic are the
criterion when to stop coarsening and how to most accurately coarsen the instance, as
usually information is lost while coarsening. Keeping as much information as possible in
the upper levels of the coarsening is crucial for the success of the algorithm.
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CHAPTER 3
Balancing Bike-Sharing Systems

In this chapter, the work on the Balancing Bike Sharing Systems (BBSS) problem is
presented. Essentially, we show three approaches. We present the static BBSS problem
which was published in the Journal of Global Optimization [125]. Subsequently, the
dynamic BBSS is discussed where we have been nominated as best paper candidate at
the 14th European Conference on Evolutionary Computation in Combinatorial Optimi-
sation [86]. In the end, we introduce a simplified problem formulation, where we first
proposed a cluster-first route-second heuristic (see Section 2.5.3), published at Interna-
tional Conference on Computer Aided Systems Theory [87] which is then extended to an
approach based on logic-based Benders decomposition (see Section 2.2.5) which yields
optimal solutions to practical relevant problem instances for which the input data is also
based on real-world data. This approach has been published in Networks [83].

3.1 Introduction

Public bike sharing systems (PBSs) provide a modern way of shared public transport
within cities. These systems, most frequently, consist of rental stations distributed in
parts of a city. In state-of-the-art PBSs every station has a self-service computer terminal
authenticating the customers, and ideally also used to allow instant registration for new
clients. Customers have to authenticate and provide a payment method to reduce theft
and vandalism. Rental stations consist of slots which can either be empty or occupied by
a bike. These slots are connected to the whole computer system allowing the operators
as well as the customers to have an overview of the status of each station. If there is at
least one slot occupied by a bike, customers have the opportunity to rent a bike via the
terminal, and if there is at least one slot free, customers may return a bike by putting it
into the free slot. To work well, a PBS has to have a reasonable density of stations in
the covered region. Users can rent bikes at any station and return them at any other
station. An overview of the structure of a PBS is shown in Figure 3.1. Note that user
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demand can be satisfied via different stations. For instance, the demand between o1
and t1 is satisfied by utilizing two distinct bike-sharing stations. A PBS should not
be confused with classical bike rental as both have different use cases, client bases and
revenue models. The major differences are that in PBS short-term usage is promoted
whereas in bike rental longer rental times are not unusual, PBSs are distributed over a
larger area, whereas bike rentals are more stationary with bikes usually to be returned at
the same place where they have been rent [139].

PBSs are mostly implemented in public-private partnership and are financed through
advertisements on the bikes, subsidies from the municipalities, and subscription fees from
the users. The costs for building and operating the system have to be covered. The
problem of building or extending a PBS can in principle be seen as a facility location or
hub location problem with network design aspects [91] and more detailed information
about it can be found in Section 4.

For continuous operation of the system, besides maintaining the bikes and stations,
providers in particular have to take care of rebalancing bikes among the stations such
that users can rent and return bikes at any station with high probability. Stations should
ideally neither run full nor empty, as these situations obviously significantly impact
customer satisfaction.

Different approaches to achieve and maintain a reasonable balance exist. Most commonly,
the PBS operator actively rebalances the stations by employing vehicles with trailers
that pickup bikes at stations with excess of bikes and deliver them to stations with
a lack of bikes. This is the scenario that will be considered within this work, but
there are also alternative approaches in which balance should be achieved by the users
themselves [53, 111]. There, the operator provides incentives for their customers to rent
bikes at stations with excess and to return them at stations with a lack of bikes. These
incentives can be reduced subscription fees, prizes or discounts at special partners of the
PBS. Both rebalancing strategies can also be used in conjunction.

The active rebalancing of a PBS by a vehicle fleet has in the literature been referred
to as a capacitated single commodity split pickup and delivery vehicle routing problem
with multiple visits [125]. Diverse variants of this problem, with different objectives
and constraints, have already been considered, and different algorithmic approaches
have been proposed, ranging from mixed integer linear programming (MIP) methods
to metaheuristics and hybrids. To our knowledge, all these approaches allow for an
arbitrary number of bikes to be picked up at some stations and delivered to other stations,
just limited by the vehicles’ and stations’ capacities. Observations in practice, however,
indicate that in a larger well-working bike sharing system it makes rarely sense to move
only few bikes for rebalancing. Drivers actually almost always pickup a full vehicle load
and deliver it completely to another station. Many stations even require several visits
with full load pickups or deliveries. Due to budgetary reasons, typically only just enough
drivers and vehicles are employed to achieve a reasonable balance most of the time, but
basically never an ideal one where single bikes play a substantial role. Drivers should use
their limited working time in a best way to optimize the PBS’s overall balance as far as
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free slots/bikes
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Figure 3.1: A small example of a public bike sharing system is shown. Customers want
to travel from their origins on to their desired target destinations tn. They have to walk
to the first bike-sharing station, travel to the second bike-sharing station by bike, and
then, walk the last part to their desired target. Since the starting bike-sharing station
and the final bike-sharing station can be chosen arbitrarily by the users and the stations
have fixed capacities, rebalancing becomes necessary.

possible. The described scenario is particularly true in case of our collaboration partner
Citybike Wien.

In this work, we consider three different problem variants of the BBSS problem, each one
particularly useful in different scenarios:

• the static BBSS problem,

• the dynamic BBSS problem,

• and a variant considering only full vehicle loads.

3.2 Related Work
Nowadays, there also exist practical implementation guides for PBS, mostly inspired by
practical considerations and experience. The book “Bicycle Sharing 101: Getting the
Wheels Turning” [139] discusses nearly all aspects of PBSs from an introduction over the
conceptualization to maintenance and implementation. Another book “The Bike-share
Planning Guide” [55] was published by the Institute for Transportation & Development
Policy located in New York.

In this section we give an overview on existing algorithmic approaches for finding
reasonable routes for balancing PBSs and other problems related to our simplified
problem formulation considering full vehicle loads only.

As already pointed out in the above section, essentially all existing models for rebalancing
PBSs consider flexible numbers of bikes to be loaded or unloaded at each visit, and most
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work addresses the static case only. Several different problem variants with different
objectives and side constraints exist, and different solution approaches have been proposed
for them. Direct comparisons are therefore quite hard. Many of the described approaches
rely on MIP techniques, but there also exist (meta)heuristics and hybrid metaheuristics,
which appear to be particularly well suited for larger scenarios.

In his PhD thesis, Vergeylen [153] also aims at solving the bike sharing repositioning
problem, but considers a different view on the problem. In his problem definition, he
considers a decomposition-based approach. First, a list of requests is given which defines
the actions needed to be taken such that the system keeps balanced. In a second process,
the best selection of requests needs to be made and these requests have to be assigned to a
particular vehicle from the existing fleet. Basically, the thesis consists of two parts where
in the first part it is described, how routes are generated from the list of repositioning
requests whereas the second part deals with the prediction, when a particular station
becomes full or empty.

Before starting with the literature review it should be pointed out that an overview
paper about shared mobility systems has been published by Laporte et al. [90] containing
chapters about rebalancing incentives and vehicle repositioning approaches.

3.2.1 MIP Approaches

Chemla et al. [21] proposed an exact branch-and-cut approach for the single-vehicle case
considering it a hard constraint to exactly reach all given target fill levels. The approach
is based on a relaxed MIP model yielding a lower bound and a tabu search for obtaining
heuristic solutions and thus upper bounds.

Raviv et al. [126] proposed several MIP models minimizing user dissatisfaction and
operational costs. These include a time-indexed as well as an arc-indexed formulation
which is restricted in the sense that a station may only be visited once by the same
vehicle. They also incorporate loading and unloading times proportional to the number
of bikes moved. By additionally applying algorithmic enhancements to their MIP models
they are able to solve instances up to 60 stations with reasonable optimality gaps.

Schuijbroek et al. [140] describe approaches for determining service level requirements at
the stations and vehicle routes for the rebalancing at the same time. An initial MIP model
turns out to be intractable for instances of practical size. Consequently, the authors
derive a cluster-first route-second heuristic where they first assign stations to clusters by
a MIP model and then they solve an independent vehicle routing problem (VRP) for
each cluster. In our approach, we will follow a similar basic idea for decomposition, but
extend it to an exact LBBD.

Similarly to Schuijbroek et al., Erdoğan et al. [47] define demand intervals for each
station. They consider only the single-vehicle case and aim at minimizing traveling costs
for the vehicle and handling costs for the rebalanced bikes. Erdoğan et al. present a
branch-and-cut formulation, apply valid inequalities from the VRP literature and also
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present a Benders decomposition scheme. Their approaches solve instances up to 50
stations to optimality.

3.2.2 (Meta)Heuristics and Hybrid Approaches

Due to the practical complexity of BBSS, (meta)heuristics appear also particularly mean-
ingful especially for larger systems and many of them have already been proposed in the
literature. Rainer-Harbach et al. [124] introduced a greedy construction heuristic (GCH)
and a variable neighborhood search (VNS) with an embedded variable neighborhood
descent. These methods have been tested for instances with up to 700 stations, for
which they provided very reasonable results. Papazek et al. [109] have developed a pilot
heuristic [157] which improved the GCH from [124] significantly, a greedy randomized
adaptive search procedure (GRASP) upon both construction heuristics, performing very
well on instances with a high number of rental stations. Raidl et al. [122] examined
different strategies for determining optimal loading and unloading decisions for given
routes within a metaheuristic by specialized maximum-flow and linear programming
approaches. Rainer-Harbach et al. [125] refined their work on metaheuristics for the
static case by providing comprehensive computational tests and have also introduced
their time-indexed and hop-indexed MIP models. Papazek et al. [110] investigated diverse
path relinking extensions for GRASP.

The dynamic case was considered by Kloimüllner et al. [86], who proposed a problem
model in which flexible demand functions in dependence of time can be considered for
all the stations. By separating the demand functions into continuous monotonic pieces
and dealing with them appropriately, a complete discretization of time could be avoided.
As solution approaches, the authors extended the GRASP and VNS metaheuristics
from [125]. The VNS was able to solve instances with up to 90 stations reasonably well.

Di Gaspero et al. further describe a constraint programming approach [41] and a hy-
bridization of it with ant colony optimization [40]. They tested on the same benchmark set
as Rainer-Harbach et al. [125]. Although the hybrid ant colony optimization performed
better than the pure constraint programming, these methods were not able to yield
competitive results.

Vogel et al. [156] propose a MIP model for the resource allocation problem arising in
PBSs. They aim at minimizing the traveling costs as well as the handling costs for the
relocated bikes. Furthermore, they add a penalty to the objective function for missing
bikes and missing free slots at the stations. As for real-world instances the size of the
MIP model is too large to be solved directly, the authors suggest a MIP-based large
neighborhood search following a fix-and-optimize strategy.

Forma et al. [51] propose the following 3-step hybrid metaheuristic. First, stations are
clustered according to geographical data and initial inventory by using a savings heuristic.
In a second step, it is decided which vehicle visits which clusters of stations by using a
revised MIP model originally stated in [126]. Vehicles are allowed to visit multiple clusters
but one cluster is assigned to exactly one vehicle. In a third step, routing problems are
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solved for each cluster independently. The authors report results for instances with up to
200 stations and three vehicles.

Sörensen and Vergeylen [144] present the bike request scheduling problem which aims
also at rebalancing a PBS but from a different perspective. In the problem formulation,
a request list for repositioning bikes has to be generated and this request list has to be
scheduled. Sörensen and Vergeylen also present solution space analysis [154] therefore.

3.2.3 Other Related Problems and Approaches

Obviously, our simplified BBSS model in which only full vehicle loads are considered is
related to diverse other vehicle routing and in particular pickup and delivery problems.
There are, however, several special aspects that need to be considered by a meaningful
solution approach, in particular that not all stations need to be visited, that a time
budget is given, and that tours are sought on a bipartite graph.

A similar problem occurs in the domain of waste collection, for which Aringhieri et al. [3]
describe a GRASP and a tabu search. In this problem there is also given a bipartite graph
resulting in alternating tours between pickup and delivery places. However, multiple
commodities representing different types of waste are considered there. The objective is
to reduce the number of tours needed to dispose all the waste and thus, collecting all the
waste is considered here as hard constraint, whereas we aim to optimize the quantity of
moved commodity within the given time budget.

Another problem related to the one introduced here is the one-commodity full-truckload
pickup and delivery problem (1-FTPDP) proposed by Gendreau et al. [59]. This is a
variant of the well-known pickup and delivery problem where a truck has to alternatively
visit pickup as well as delivery customers all demanding a unit-capacity pickup respectively
delivery. In contrast to our problem the supply and demand of each customer has to be
satisfied. Thus, the authors add copies of the depot either to the set of pickup customers
or to the set of delivery customers to ensure enough supply respectively demand of the
customers. There are no time-budget constraints and all customers have to be visited
exactly once. The authors model the problem by solving a routing problem through the
set of pickup customers and then, assign the delivery customers to the pickup customers.
The problem is solved to optimality by relying on classical and generalized Benders
decomposition. They also present a traveling salesman problem (TSP) formulation of the
problem based on classical subtour elimination constraints. Starting with an initial empty
set of subtour elimination constraints they separate them by detecting all connected
components and adding subtour elimination constraints for them accordingly. They
compare their two approaches based on classical and generalized Benders decomposition
with their TSP formulation and conclude that the TSP formulation outperforms the
classical as well as the generalized Benders decomposition, although the authors note
that there is room for improvement of the approaches based on Benders decomposition.

Related to our problem formulation also is the one-commodity pickup and delivery
traveling salesman problem (1-PDTSP) described by Hernández-Pérez et al. [65, 68,
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66, 67], and the selective pickup and delivery problem (SPDP) studied by Ting and
Liao [151]. In the 1-PDTSP a depot and several customers are given which are either
pickup or delivery customers and the aim is to find a minimum distance route visiting all
customers starting and ending at the depot and satisfying all the supplies and demands.
In addition, Salazar-González and Santos-Hernández [135, 69] introduce the split-demand
one-commodity pickup and delivery traveling salesman problem where a truck has to
visit a number of delivery and pickup customers multiple times respecting a maximum
number of visits per customer. Also the depot may be visited multiple times. However,
they do not consider time-budget constraints and all demands have to be fulfilled. They
propose an exact model which is solved by Benders decomposition where the separation
problem is modeled as a maximum-flow problem. They report interesting and excellent
results on an extensive set of benchmark instances. In the SPDP not all pickup nodes
have to be visited, but all delivery demands need to be fulfilled. Moreover, somewhat
related also is the prize collecting traveling salesman problem introduced by Balas [5], in
which a prize is paid for every visited city and/or a penalty has to be paid for each city
which is not visited. A minimum prize money has to be earned, and the objective is to
minimize the routing costs as well as the penalty incurred by cities which have not been
visited.

Especially when considering our decomposition approach which will be described in
Section 3.6.2, we obtain as subproblems independent Hamiltonian path problems for
the individual vehicles. These problems can be modeled as classical asymmetric TSPs
(ATSP) on bipartite graphs. Concerning this special TSP variant, not much specific work
exists. To the best of our knowledge, Frank et al. [133] have been the first researchers
considering bipartite, symmetric TSPs for which they proposed a 2-factor approximation
algorithm. Srivastav et al. [145] analyzed the problem of finding tours for pick-and-place
robots which showed up of consisting of a an assignment problem and a bipartite TSP.
Given an initial bin assignment the authors proposed several approximation algorithms
for the bipartite TSP. Further work on approximation algorithms for the bipartite TSP
was done by Baltz and Srivastav [7] as well as Shurbevski et al. [142]. However, these
algorithms are more of theoretical interest. We will apply the well-known Concorde TSP
solver [2, 30] to tackle these subproblems, not further exploiting the underlying bipartite
graph structure.

Another related problem is the clustered vehicle routing problem which is basically a
generalization of the capacitated vehicle routing problem. This problem was introduced by
Sevaux and Sörensen [141] and Defryn et al. [36] present and apply a solution framework
therefore.

3.3 Static Balancing Bike Sharing Systems Problem

In this section we describe the static BBSS problem and organize it as follows: The next
section formalizes the problem, while Section 3.3.2 describes the construction heuristic
and its extension to a PILOT method. Four alternative methods for deriving loading
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instructions from candidate tours are discussed in Section 3.3.3. Sections 3.3.4, 3.3.5, and
3.3.6 describe the VND, GRASP, and VNS approaches including the used neighborhood
structures, respectively. Information on the test instances and the results of diverse
experiments are given in Section 3.3.7. Finally, Section 3.3.8 draws conclusions and
sketches promising future work.

3.3.1 Problem Definition

We start by providing a formal definition of the BBSS problem. In this work we consider
the static problem variant that neglects any user activities during the rebalancing process
and where we strive to reach a target fill level of bikes that is pre-specified for each
station. Suitable target fill levels are obtained in practice from a statistical demand
forecast model that considers several aspects such as season, day, time, as well as the
weather forecast [131]. This is another major research issue that exceeds the scope of the
current article. By using such models operators are able to estimate reoccurring demands
quite well in order to derive expected target values. Note that in most practical scenarios
this static case of BBSS is already a useful approximation, since stations are usually
designed sufficiently large in order to compensate short-term fluctuations. However, the
balancing is still necessary because imbalances arise over longer time horizons, such as
one or several days.

The BSS is represented by a complete directed graphG0 = (V0, A0). Node set V0 = V ∪{0}
consists of nodes for the rental stations V and a node 0 for the depot (i.e., parking place
of the vehicles). Each arc (u, v) ∈ A0 has associated a time tu,v > 0. This value not only
includes the time needed for traveling from u to v, but also an expected average time
needed for parking, handling the local computer terminal, and loading or unloading bikes
at v. Let the subgraph induced by the bike stations V only be G = (V,A), A ⊂ A0.

Each station v ∈ V has associated three values: The capacity Cv ≥ 0, i.e., the number of
available bike parking positions, the number of available bikes at the beginning of the
rebalancing process pv, and the target number of bikes that should ideally be available
after rebalancing qv, with 0 ≤ pv, qv ≤ Cv.

The BSS operator has a fleet of vehicles L = {1, . . . , |L|} that is available for moving
bikes between stations. Each vehicle l ∈ L has a capacity to transport Zl > 0 bikes
simultaneously, a total time budget t̂l within which it has to finish a route, i.e., the
worker’s shift length. Each route has to start and end at the depot 0. We assume that
all vehicles start and finish their routes empty. A practical rationale behind this is that
frequently vehicles are publicly accessible at the depot and bikes cannot be locked at the
vehicles’ trailers.

Solutions to the BBSS problem consist of two parts. The first one is the route for each
vehicle l ∈ L specified by an ordered sequence of visited stations rl = (r1

l , . . . , r
ρl
l ) with

ril ∈ V , i = 1, . . . , ρl and ρl representing the number of stations traveled to. Note that
stations may be visited multiple times by the same or different vehicles. For reasonable
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solutions these multiple visits are necessary as the station capacities Cv are sometimes
much larger than the vehicle capacities Zl.

The second part of a solution consists of loading instructions yil,v ∈ {−Zl, . . . , Zl} with
l ∈ L, v ∈ V , and i = 1, . . . , ρl, specifying how many bikes are to be picked up (yil,v > 0)
or delivered (yil,v < 0) at station v at the i-th stop of vehicle l. Of course loading actions
may only take place at visited stations, i.e., ∀v 6= ril : yil,v = 0, and thus, for simplicity
we also write yil for yil,ri

l
, i.e., if no station index is explicitly specified we assume the

station to be the visited one (ril).

Note that an option would be to further limit the domains of these loading instructions
by the station capacities, i.e., yil,v ∈ {−min (Zl, Cv), . . . ,min (Zl, Cv)}. We, however,
stay more general and potentially allow vehicles meeting at a station to exchange bikes
directly. Imposing a limit based on station capacities would be too restrictive in this
case.

Several conditions must hold for a solution to be feasible: The number of bikes available
at each station v ∈ V always needs to be within {0, . . . , Cv}. For any vehicle l ∈ L the
number of simultaneously transported bikes may never exceed the capacity Zl, and the
total tour length tl

tl =

t0,r1
l

+
ρl∑
i=2

tri−1
l

,ri
l

+ trρl
l
,0 for ρl > 0

0 for ρl = 0,
(3.1)

is restricted by the time budget t̂l, ∀l ∈ L.

Let av be the final number of bikes at each station v ∈ V after the rebalancing operation

av = pv −
∑
l∈L

ρl∑
i=1

yil,v. (3.2)

The objective is to find a feasible solution that primarily minimizes the deviation from
the target number of bikes δv = |av − qv| at each station v ∈ V and secondarily the
number of loading activities including the overall time required for traveling all routes.
Therefore, our objective function is given by

min ωbal ∑
v∈V

δv + ωload ∑
l∈L

ρl∑
i=1
|yil |+ ωwork ∑

l∈L
tl, (3.3)

where ωbal, ωload, ωwork ≥ 0 are scaling factors controlling the relative importance of the
respective terms. Following the advice from experts at Citybike Wien, we assume that
any improvement in balance is always preferred over decreasing the number of loading
actions or reducing the work time, and to ensure this preference we use appropriate
scaling factors. In all our tests we use the setting ωbal = 1 and ωload = ωwork = 1/100 000.
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Figure 3.2: Example where the restriction to monotonicity yields a worse solution. With
monotonicity, the best possible loading instructions are y1 = (+15,+1,+4,−16, 0,−4)
resulting in a total imbalance of 22. In the general case, node b can be used as buffer
and loading instructions y1 = (+15,−14,+15,−16,+15,−15) yield perfect balance.

Monotonicity for Fill Levels of Stations

A natural simplification for the BBSS problem is the restriction to monotonicity regarding
the fill levels of stations. By exploiting it we will see that algorithms for deriving good or
optimal loading instructions for given tours become simpler while in general solutions
are not substantially worse in comparison to the general case.

Let Vpic = {v ∈ V | pv > qv} denote pickup stations, i.e., the set of stations from which
ultimately bikes should be removed, and Vdel = {v ∈ V | pv < qv} denote the set of
delivery stations. The remaining stations V \ Vpic \ Vdel are initially already in balance.

In the monotonic case, vehicles are only allowed to load bikes at pickup stations and
unload them at delivery stations. In this way a station’s fill level only decreases or
increases monotonically, and consequently the order in which different vehicles visit a
single station does not matter. Stations that are already balanced at the beginning do
not need to be considered at all as no pickups or deliveries are allowed there.

While monotonicity appears to be a very intuitive simplification, enforcing it may exclude
better solutions that, e.g., use stations as buffers to temporarily store bikes or by
exchanging bikes between vehicles when they meet at some stations. An example of such
a situation is shown in Figure 3.2.

Experiments in Section 3.3.7 will show that the impact of monotonicity on the objective
values of solutions is recognizable but small. We assume that this trend also depends on
the scaling factors in the objective function which put a substantially lower weight on
the traveling time than on the imbalance. In practice, excellent solutions can be found
even under the assumption of monotonicity.

3.3.2 Construction Heuristics

We present two construction heuristics aimed at generating meaningful initial solutions
within short time. The first basic heuristic, presented in the following subsection, has
already been used in [125] and follows a classic greedy principle, but utilizes a greedy

36



3.3. Static Balancing Bike Sharing Systems Problem

function specifically designed for BBSS. While fast, local greedy decisions can be far
from optimal with regard to the whole solution. This is especially true for BBSS as the
greedy function is a compromise that combines multiple objectives. To mitigate this
problem, we extend the basic heuristic by evaluating each candidate station considered for
addition to a partial tour in a deeper way by also considering its potential successors via
recursive calls. This second approach follows the PILOT method [157] and is described
in Section 3.3.2. Both methods assume monotonicity regarding fill levels of stations as
defined in Section 3.3.1.

Greedy Construction Heuristic (GCH)

This greedy method builds solutions by iteratively creating a tour for each vehicle
following a local best successor strategy. From the last station of a partial tour (or
initially the depot), we first determine the set F ⊆ V of feasible successor stations. Set
F includes all stations that are not yet balanced and additionally can be serviced by the
current vehicle l without exceeding the shift length t̂l, i.e., there is enough working time
left to visit the station and to go back to the depot.

For each such candidate station v ∈ F , we calculate the maximum number of bikes that
can be picked up or delivered by

γv =
{

min(av − qv, Zl − bl) for v ∈ F ∩ Vpic and
min(qv − av, bl) for v ∈ F ∩ Vdel,

(3.4)

where bl represents the final load of vehicle l so far and av the final number of bikes at
station v in the currently considered partial tour. For an empty tour (i.e., ρl = 0) they
are initialized with bl = 0 and av = pv, respectively. If routes for other vehicles have
already been constructed, av is modified to correctly reflect the number of available bikes
under consideration of the other vehicles’ actions.

We assume that no bikes are allowed to remain on a vehicle when returning to the depot.
Therefore, an additional correction is important for pickup stations. For this purpose,
we determine an estimation of the number of bikes bdel which can still be delivered to
successive stations after visiting the last station within the remaining time. This is
achieved by a recursive call of the construction heuristic which only considers delivery
stations and assumes to have an unlimited amount of bikes available at the vehicle.

Note that here we deviate in a detail from the greedy heuristic in [125]: In that work,
the estimation of deliverable bikes is individually determined for each candidate station
v ∈ F ∩Vpic considering it as the starting point. Tests indicated that the higher precision
gained by these individual calculations is relatively small while the computational effort
is substantially higher by a factor of O(|V |). Especially when considering the extension to
the PILOT method in the next chapter and the larger instances with up to 700 stations
used here, the differences in running time become dramatical, and thus, we rely on the
described simpler approach.
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Having determined bdel, we discard all remaining pickup stations from F if av ≥ bdel,
because in this case further pickups appear to be not possible anymore; i.e., the con-
struction of the route is finished with delivery stations only. Otherwise, e.g., if further
pickups are allowed, the number of bikes to be collected at each candidate pickup station
v ∈ F ∩ Vpic is corrected by considering the limit bdel:

γv ← min(γv, bdel − bl) ∀v ∈ F ∩ Vpic. (3.5)

Having calculated γv for all candidate stations v ∈ F , we finally evaluate them by the
ratio γv/tu,v, where tu,v is the time needed to travel from the vehicle’s last location u
to station v and service v. Thus, this greedy evaluation criterion considers the balance
increase per time unit. The node v ∈ F with the highest ratio is then appended to the
tour rl; ties are broken randomly. Loading instructions are set as follows:

yρll,v =
{
γv if v ∈ Vpic and
−γv if v ∈ Vdel.

(3.6)

Furthermore, bl and av are updated accordingly and the procedure continues with the
next extension, evaluating stations in F from scratch, until no feasible extension remains,
i.e., F = ∅.

As bdel is only an estimation, it may occasionally happen that a few bikes remain in the
vehicle at the end of a route. As we do not allow this in feasible solutions, we repair
the situation by reducing the last pickup(s) correspondingly. If some yil , i = 1, . . . , ρl,
becomes zero, then we remove visit i from the route.

PILOT Construction Heuristic

The PILOT construction heuristic extends the greedy construction heuristic using the
PILOT (Preferred Iterative LOok ahead Technique) method according to [157]. On
several occasions, this metaheuristic has already shown to yield better solutions than its
simple greedy counterpart with only moderate and scalable computational overhead. In
particular, we consider it to be a promising alternative to the VNS/VND approach for
large instances where the VND might already take very long in execution. The basic idea
of this method is to look ahead in order to escape the greedy trap, i.e., to further evaluate
every candidate successor in a greedy way and thus avoid short-sighted results. The main
issue of the greedy construction heuristic is that it always chooses the single locally best
successor as long as the solution remains feasible. As a result, e.g., a dense cluster of
stations which is in a greater distance from the current station than an isolated single
station might yield a larger balance gain altogether, but the simple greedy algorithm does
not recognize the cluster’s overall benefit and selects the isolated station as successor.
Contrarily, the PILOT construction heuristic evaluates each candidate station not just
by its own distance and balance gain, but instead also in possible future gains by visiting
further stations in corresponding recursive calls. To some degree, the PILOT approach is
also related to probing techniques in Mixed Integer Programming [137].
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Figure 3.3: Basic principle of one iteration of the PILOT method for evaluating stations.

Figure 3.3 shows the basic idea of PILOT in the context of BBSS. The vehicle is currently
at station 1 and we evaluate all potential successors by greedily determining individual
extensions with them. In this example we only show the evaluation for the stations
{2, 3, 4}. It is performed by trying to temporarily append each candidate station to
the current route and continuing the basic greedy construction process until no further
station can be added. Furthermore, the constructed extensions are evaluated on a defined
criterion which is in our case the total decrease of the objective function value (3.3).
Finally, the candidate station with the highest benefit (i.e., objective function decrease) is
selected – in our example station 3 – and appended to the route; all temporary solutions
are discarded and PILOT continues with the next round of successor evaluations until F
becomes empty and the route is completed.

Note that the construction of the temporary extensions is done exactly the same way
as in the basic greedy construction heuristic, including the calculation of the number of
bikes to be picked up or delivered, and taking into account the estimation of the number
of bikes that can still be delivered.

Figure 3.4 shows an example how the PILOT approach dominates the simple greedy
variant where the shift length is assumed to be t̂1 = 30min. For simplicity we only show
the most lucrative connections and assume symmetric traveling times which are printed
for each edge. The objective function values only show the imbalance and omit the other
factors (working time and total number of loading instructions), in order to simplify the
visualization. Figure 3.4a visualizes the solution of the greedy construction heuristic.
Note that in particular the path from station 1 to 2 has a higher greedy value (5

3 = 1.67)
than to station 8 (4

7 = 0.57), and again the path from station 2 to 3 is preferred over
station 8. After the visit of station 4 no further feasible station is left. On the contrary,
the PILOT method will select station 8 as second one because when considering it, the
most lucrative extension with further stops at the stations 6, 7, 8, 2, and 3 is identified.
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(b) PILOT method.

Figure 3.4: Exemplary solutions of the greedy construction heuristic and the PILOT
method with one vehicle and and t̂1 = 30 min showing the benefits of the latter.
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Due to the recursive evaluation of candidates the time complexity of the PILOT approach
is higher than the time complexity of the basic greedy heuristic by a factor of O(|V |).
One possibility to improve the running time while still following the general idea is to
apply a short-cut policy, i.e., to limit the recursive look-ahead to a certain number of
successor stations, which is referred to as the PILOT depth β. In such a limited-depth
PILOT approach, we do not evaluate each candidate extension by the overall gain in the
objective function since the required time becomes a crucial factor again. Instead, we
follow the criterion of the greedy heuristic, i.e., use the ratio of the balance gain and the
time for the whole extension.

We tested our PILOT extension with various restricted depths and the unrestricted
case on our benchmark instances, which are introduced in more detail in Section 3.3.7.
Figure 3.5 shows the objective values and computation times for varying β on benchmark
instances including 700 and 90 stations, where β = 0 represents the simple greedy
approach and β =∞ the unrestricted depth. Since the unrestricted case still runs very
fast compared to our other metaheuristics and yields significantly better results than
when imposing any depth limit, we finally decided to only consider the unrestricted case
in all further work.

3.3.3 Solution Representation and Deriving Loading Instructions

Our VND, GRASP, and VNS metaheuristics will be described in detail in Sections 3.3.4
to 3.3.6 and use an incomplete solution representation inspired by [20]. They process the
search space of vehicle routes, while corresponding loading instructions yil,v, l ∈ L, v ∈
V, i = 1, . . . , ρl, are derived for each candidate solution by an embedded procedure. We
consider four alternative methods for calculating loading instructions for a given set
of routes r. The next sections describe them and examine their individual assets and
drawbacks.

Greedy Heuristic (GH)

This fast heuristic approach follows the strategy from the greedy construction heuristic for
a whole solution. It processes the routes vehicle by vehicle in a sequential way. Stations
are considered in the order as they are visited and loading instructions are computed in
a similar way as described in Section 3.3.2. If the current station v = ril , l = 1, . . . , |L|,
i = 1, . . . , ρl, is a delivery station, then

yil,v = −min(qv − av, bl) (v ∈ Vdel), (3.7)

with av indicating the current number of bikes at station v and bl the number of currently
loaded bikes at vehicle l. In case of v being a pickup station, an estimation bdel of the
number of bikes which can still be delivered is calculated, but now on the basis of the

41



3. Balancing Bike-Sharing Systems

0 1 2 4 8 ∞
β

200
210
220
230
240
250
260
270
280
290

ob
je

ct
iv

e
v
al

u
e

(a) Objective values for instances with |V | = 90,
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(b) Objective values for instances with |V | = 700,
|L| = 14, and t̂l = 8 h, ∀l ∈ L.
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(c) CPU times for instances with |V | = 90, |L| = 2,
and t̂l = 8 h, ∀l ∈ L.
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(d) CPU times for instances with |V | = 700, |L| =
14, and t̂l = 8 h, ∀l ∈ L.

Figure 3.5: Finally best objective values and CPU times in seconds for different PILOT
depths β.
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already known successive delivery stations in the route. Loading instructions are then
set to

yil,v = min(av − qv, Zl − bl, bdel − bl) (v ∈ Vpic). (3.8)

GH is able to calculate loading instructions very quickly, but it is, as the construction
heuristic, restricted to the monotonic case of the BBSS problem, i.e., does not make use
of temporarily buffering bikes at stations or exchanging of bikes among vehicles. However,
also under the assumption of monotonicity, GH is not guaranteed to find optimal loading
instructions. For example, in a route where a station v is visited twice, it can be beneficial
to retain bikes in the vehicle at the first visit of v in order to be able to satisfy a following
delivery station. Station v may later be also satisfied on its second visit.

Maximum Flow Approach for the Monotonic Case (MF-MC)

The MF-MC approach assumes monotonicity like GH, but it is an exact method, i.e., it
always derives proven optimal loading instructions for a given set of routes. We apply
a maximum flow computation on a specifically defined flow network. The approach
is similar to [20], but we extend this method to our problem definition by considering
multiple vehicles and handling balance as a goal in the objective function instead of a
hard constraint. The design of the flow network implicitly enforces all constraints of the
BBSS problem with regard to the number of bikes present in the stations and vehicles.

We define the graph Gfm = (Vfm, Afm) with node set Vfm = {σ, τ} ∪ Vpic ∪ Vdel ∪ VL,
where σ and τ are the source and target nodes of the flow network, respectively, and
VL =

⋃
l∈L Vl with Vl = {vil | l ∈ L, i = 1 . . . , ρl} represents the stops of all routes. The

arc set Afm = Aσ ∪AL ∪Apic ∪Adel ∪Aτ consists of:

• Aσ = {(σ, v) | v ∈ Vpic} with capacities pv − qv representing the surplus number of
bikes at each pickup station.

• Aτ = {(v, τ) | v ∈ Vdel} with capacities qv − pv representing the lacking number of
bikes at each delivery station.

• Apic = {(v, vil) | vil ∈ VL, v = ril , v ∈ Vpic}, i.e., each pickup node in Vpic is
connected with every node representing a stop at this station in any route l ∈ L.
These arcs’ capacities are not limited.

• Adel = {(vil , v) | vil ∈ VL, v = ril , v ∈ Vdel}, i.e., each node representing a stop at
a delivery station is connected to the corresponding delivery node in Vdel. These
arcs’ capacities are also not limited.

• AL = {(vi−1
l , vil) | vil ∈ VL, i > 1}, i.e., the nodes representing the stops in each

tour are connected according to the tour. Arc capacities are given by the vehicle
capacities Zl.
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Figure 3.6: Exemplary flow network under the assumption of monotonicity for the tours
r1 = (a, b, a, c) and r2 = (d, a, b) with Vpic = {a, d} and Vdel = {b, c}.

An exemplary network for an instance with four stations and two vehicles is shown in
Figure 3.6. It can be seen easily that calculating a maximum (σ, τ)-flow on the network
directly yields (under the assumption of monotonicity) optimal loading instructions yil via
the flows on the corresponding arcs Apic and Adel, respectively. In our implementation,
we use the efficient push-relabel method from Cherkassky and Goldberg [25] for the
maximum flow computations.

Linear Programming Approach (LP)

In the more powerful LP approach we are able to determine optimal loading instructions
for the general, not necessarily monotonic case by solving a minimum cost flow problem
on another network by linear programming (e.g., the network simplex algorithm). The
main difference is that we now consider the order in which vehicles make their stops (at
possibly the same stations). In this model, bikes can be buffered at stations or even be
directly transferred from one vehicle to another when they meet.

Let t(ril) denote the absolute time when vehicle l makes its i-th stop at station ril . We
define the multi-graph Gf = (Vf , Af ) with node set Vf = {σ, τ} ∪ Vt where Vt = {vj |
∃vil ∈ Vl : t(ril) = j}, i.e., besides source and target nodes σ and τ we have a node vj for
each station v and time j when a vehicle arrives at v. Furthermore, let V first = {vjmin ∈
Vt | jmin = min{j | vj ∈ Vt}} denote the set of nodes representing the first visit of all
stations among all routes and V last = {vjmax ∈ Vt | jmax = max{j | vj ∈ Vt}}, denote the
set of nodes representing the last visit of all stations. Arc set Af = Aσ ∪Aτ ∪AR ∪AV
consists of:

• Aσ = {(σ, vj) | vj ∈ V first} with capacities pv.

• Aτ = {(vj , τ) | vj ∈ V last} with capacities qv.

• AR =
⋃
l∈LAR,l with AR,l = {(uj′ , vj) | u = ri−1

l , v = ril , j
′ = t(ri−1

l ), j =
t(ril), i = 2, . . . , ρl}, ∀l ∈ L, i.e., the arcs representing the flow induced by the
vehicles. Capacities are Zl. Note that multiple arcs exist between two nodes if two
(or more) vehicles leave and arrive at the same stations exactly at the same time.
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Figure 3.7: Exemplary flow network for the general case with tours r1 = (a, b, a, c) and
r2 = (d, a, b).

• AV =
⋃
v∈V Av with Av = {(vj1 , vj2), . . . , (vjmax−1 , vjmax)}, (vj1 , . . . , vjmax) is the

sequence of nodes {vj ∈ Vt} sorted according to increasing j. Capacities are Cv.

An example of such a network is given in Figure 3.7. Now, a simple maximum (σ, τ)-flow
calculation would in general not yield optimal or even feasible loading instructions anymore
as it must be guaranteed that all arcs Aσ are satisfied (corresponding to the initially
available bikes) and we do not have a correspondence between the achieved balance and
the total flow. Instead, we have to minimize a certain objective function that depends on
the flow, i.e., we have to solve the following minimum cost flow problem which is done by
linear programming. Let the flow variables be fu,v, ∀(u, v) ∈ Af . By predl(vj) ∈ Vt we
denote the predecessor of the node vj on the route of vehicle l, i.e., predl(vj) = uj

′ with
u = vi−1

l , j′ = t(ri−1
l ), and by succl(vj) ∈ Vt we denote its successor, i.e., succl(vj) = wj

′′

with w = vi+1
l , j′′ = t(ri+1

l ). To calculate the balance as final absolute deviations of
the target values and the total amount of loading operations, we split the variables
for the loading instructions yil,v ∈ {−Zl, . . . , Zl} into y

+,i
l,v ∈ {0, . . . , Zl} for pickups and

y−,il,v ∈ {0, . . . , Zl} for deliveries of bikes, i.e., yil,v = y+,i
l,v − y

−,i
l,v , y+,i

l,v = 0 ∨ y−,il,v = 0,
and |yil,v| = y+,i

l,v + y−,il,v .

min ωbal ∑
∀v∈V last

δv + ωload ∑
l∈L

ρl∑
i=1

(
y+,i
l,ri
l

+ y−,i
l,ri
l

)
(3.9)

subject to

∑
(u,vj)∈Aσ∪AV

fu,vj +
∑
l∈L

∑
(u,vj)∈AR,l

fu,vj =

∑
(vj ,w)∈Aτ∪AV

fvj ,w +
∑
l∈L

∑
(vj ,w)∈AR,l

fvj ,w ∀vj ∈ Vt (3.10)
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y+,i
l,v − y

−,i
l,v =


fvj ,succl(vj) ∀l ∈ L, i = 1, v = ril , j = t(ril)
fvj ,succl(vj) − fpredl(vj),vj

∀l ∈ L, i = 2, . . . , ρl − 1, v = ril , j = t(ril)
−fpredl(vj),vj ∀l ∈ L, i = ρl, v = ril , j = t(ril)

(3.11)

fσ,vj = pv ∀(σ, vj) ∈ Aσ (3.12)
fvj ,τ − qv ≤ δv ∀(vj , τ) ∈ Aτ (3.13)
qv − fvj ,τ ≤ δv ∀(vj , τ) ∈ Aτ (3.14)
0 ≤ fvj ,τ ≤ Cv ∀(vj , τ) ∈ Aτ (3.15)
0 ≤ fuj′ ,vj ≤ Zl ∀l ∈ L, (uj′ , vj) ∈ AR,l (3.16)

0 ≤ fvj′ ,vj ≤ Cv ∀(vj′ , vj) ∈ AV (3.17)

δv ≥ 0 ∀(vj , τ) ∈ Aτ (3.18)
y+,i
l,v ∈ {0, . . . , Zl} ∀l ∈ L, v ∈ V, i = 1, . . . , ρl (3.19)

y−,il,v ∈ {0, . . . , Zl} ∀l ∈ L, v ∈ V, i = 1, . . . , ρl (3.20)

The objective function (3.9) is directly derived from our BBSS objective (3.3). Equa-
tions (3.10) are the flow conservation equalities, while equations (3.11) link the loading
instruction variables with the flows. The flows at arcs (σ, vj) ∈ Aσ are fixed to the
station’s initial number of bikes pv in (3.12).

As we have a capacitated but unrestricted flow network with all capacities being integer,
the LP is totally unimodular and the corresponding polytope’s extreme points are all
integer. Therefore by solving this LP with a common LP solver (or more specifically a
network simplex algorithm), we obtain optimal integral values for the loading instructions.

Maximum Flow Approach for the General Case (MF-GC)

Since solving the above minimum cost flow problem on Gf by linear programming is
computationally expensive, we developed an alternative approach for obtaining the same
optimal loading instructions based on two maximum flow calculations and an additional
post-processing step; details of this rather complex procedure can be found in [122].

Although this approach, which we call here MF-GC, is computationally significantly
more efficient than LP, it is still slower than MF-MC and especially GH. In preliminary
results we observed that similar to the LP approach, the additional computational effort
for allowing the solution to overcome the monotonicity restriction does not pay off in
most cases. In this article we omit a detailed description but will include comparative
results in Section 3.3.7.

In [122], we further evaluated a hybrid approach, in which the different strategies for
calculating loading instructions are applied in a combined, adaptive way. In the VND,
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an additional neighborhood structure is used to determine the best suited method for a
solution, and this method is inherited by its descendants. Results on instances with up
to 90 nodes indicated small advantages for this approach. However, the benefits diminish
for larger instances as considered in the current work, and running times become again
considerably larger. Thus, we do not further consider the combination in this article.

3.3.4 Variable Neighborhood Descent (VND)

For locally improving candidate solutions, we employ several classical neighborhood
structures that were successfully applied in various VRPs together with new structures
exploiting specifics of BBSS within a Variable Neighborhood Descent [97]. All these
neighborhood structures augment each other. Concerning the classical neighborhood
structures, we based our design on the experience from [112].

The following neighborhoods are traversed in a best improvement fashion and applied in
the given static order that has been determined experimentally. We also tried to use a
dynamic reordering strategy but it did not yield any significant advantages.

After each move inside a neighborhood, all candidate tours that have changed are efficiently
checked for feasibility with respect to time budgets using incremental computations. If
one station appears multiple times in direct succession within a route, only the first stop
is retained. Infeasible solutions, i.e., solutions where at least one vehicle route became
infeasible, are discarded immediately. For solutions where all routes stay feasible we
derive loading instructions by one of the methods from the last section. Obsolete stops
without any loading or unloading operations, i.e., where yil = 0, are immediately removed
from the routes.

Remove station (REM-VND): This neighborhood considers all possible removals of
a single station in each route. Thus, a successful move avoids an unnecessary visit
of a station: In this case, the same overall balance can be obtained without the
visit, resulting in a shorter total working time and a higher potential to include
some other station.

Insert unbalanced station (INS-U): This neighborhood tries to improve balance by
considering each single yet unbalanced station for insertion at any position of any
route.

Intra-route 2-opt (2-OPT): This is the classical 2-opt neighborhood from the travel-
ing salesman problem applied individually to each route. Each possible segment of
at least two stations is tried for inversion.

Replace station (REPL): Similarly to INS-U, this neighborhood considers stations
which are currently unbalanced. However, it considers the replacement of an existing
station by another unbalanced station.
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Intra or-opt (OR-OPT): Here we consider solutions where sequences of one, two, or
three stations are moved to another position within the same route.

2-opt* inter-route exchange (2-OPT*): This classical neighborhood of vehicle rout-
ing problems considers pairs of routes. All feasible exchanges of arbitrarily long end
segments of the routes are enumerated. The neighborhood is implemented efficiently
such that if an exchange of an end segment already resulted in an infeasible route,
no end segments of larger length will be considered for moving to the route which
became infeasible.

Intra-route 3-opt (3-OPT): This neighborhood structure resembles a restricted vari-
ation of the well-known 3-opt neighborhood, individually applied to each route.
For any partitioning of a route into three nonempty subsequences rl =(a,b,c), the
routes (b,a,c) and (a,c,b) are considered. An effective enumeration scheme excludes
all solutions of the previous neighborhoods.

3.3.5 Greedy Randomized Adaptive Search Procedure (GRASP)

In order to prolong the heuristic search and obtain potentially better solutions, we
extend our two construction heuristics to Greedy Randomized Adaptive Search Procedures
(GRASP) according to [128]. For this purpose we iteratively apply a randomized version
of the greedy or PILOT construction heuristic, respectively, and locally improve each
solution with the VND. The overall best solution is returned.

The construction heuristics are randomized in order to obtain a diversified set of starting
solutions for the VND. This randomization takes place in a GRASP-typical way: At each
iteration of the construction heuristic, we do not always pick the locally best successor
station but rank all candidates from F (the serviceable, not yet balanced stations)
according to the heuristic evaluation criterion. A restricted candidate list RCL ⊆ F of
best successors is preselected, and from these, one station is chosen uniformly at random.
This successor is appended to the route, and the construction heuristic continues with its
next iteration.

More precisely, the restricted candidate list RCL contains the following elements:

RCL = {v ∈ F | g(v) ≥ gmax − α (gmax − gmin)}, (3.21)

where g(v) is the greedy value of candidate station v, while gmax = max{g(v) | v ∈ F}
and gmin = min{g(v) | v ∈ F} are the maximum and minimum evaluation values that
occur in F , respectively. Parameter α ∈ [0, 1] controls the strength of the randomization,
with α = 0 resulting in a purely greedy solution, while α = 1 turns the heuristic into a
completely random construction method.

In preliminary tests on the benchmarks instances described in Section 3.3.7, we evaluated
different values for α in a fixed and a randomized version. In the fixed version α remains
constant throughout all GRASP iterations whereas in the randomized variant we choose
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(a) Instances with |V | = 180, |L| = 4.
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(b) Instances with |V | = 700, |L| = 14.

Figure 3.8: GCH-GRASP: Final objective values in dependence of α; t̂l = 8h, ∀l ∈ L.

an individual α′ randomly from [0, α] for each GRASP-iteration. The randomized version
turned out to be significantly more robust, and consequently we employ it in all further
tests.

Moreover, our tests indicated that large instances w.r.t. |V | tend to require smaller
values for α than small instances. Figure 3.8 shows the impact of different values for α
exemplarily for GCH-based GRASP on instances with |V | = 180, |L| = 4 and instances
with |V | = 700, |L| = 14, and t̂l = 8h, ∀l ∈ L. One can see that differences are generally
relatively small, indicating the robustness of the method w.r.t. the choice of α. Based on
those preliminary tests we finally concluded to set

α = 0.1 · e−
|V |
200 (3.22)

in all following tests.

3.3.6 General Variable Neighborhood Search (VNS)

As an alternative to GRASP for diversification of the search, we embed the previously
described VND into a Variable Neighborhood Search (VNS) as described in [97]. Similarly
to the VND, the VNS neighborhood structures represent a combination of both classical
neighborhoods from vehicle routing problems and more problem-specific neighborhoods
of the BBSS problem.

In contrast to the VND, the VNS neighborhoods are generally larger and thus, they are
not systematically searched, but instead used for shaking, i.e., for randomly deriving
single new solutions in some distance to the incumbent solution. These solutions are
always locally improved by the VND before the VNS decides upon their acceptance.

We use four types of VNS neighborhood structures, and each is parameterized by six
different possible values of a parameter δ, yielding a total of 24 individual neighborhoods.
If a VNS move results in an infeasible solution containing routes that violate the available
time budget of a vehicle, the respective routes are repaired by removing stations from
the end. If the VNS does not find a better solution with the last neighborhood, it
restarts with the first, until a termination criterion (i.e., CPU time or a certain number
of iterations without improvement) is fulfilled.
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Move sequence (MV-SEQδ): This neighborhood selects a sequence from one to
min(δ, ρl) consecutive stations of a source route rl, l ∈ L randomly, and moves it
to a random position of a different route. If the original route contains less than
δ stations, the whole route is inserted into the target route and the first route
becomes empty. Both source and target routes are selected randomly, with the
restriction that they must not be the same route. δ ∈ {1, . . . , 5, ρl}.

Exchange sequence (EX-SEQδ): This neighborhood also selects two routes at ran-
dom. In each route, a randomly selected segment of length one to min(δ, ρl) is
chosen and exchanged with the respective other route. With a probability of
10% each exchanged segment is added to the target route in reversed order. This
particular feature is adopted from [112]. δ ∈ {1, . . . , 5, ρl}.

Remove stations (REM-VNSδ): Here we sequentially process all stops of all routes
and remove each station visit with probability δ ∈ {10%, 14%, 18%, 22%, 26%, 30%}.
We trust on the VND to again add fruitful visits.

Destroy and recreate (D&Rδ): In this neighborhood we select a random position
in a randomly chosen route rl, l ∈ L. Then, all nodes from this position to
the end of the route are removed and a new end segment is created by applying
a randomized version of the PILOT construction heuristic. The randomization
is done as described in Section 3.3.5, but with the threshold parameter set to
α = δ ∈ {0%, 4%, 8%, 12%, 16%, 20%}.

3.3.7 Computational Results

We performed extensive tests in order to assess the performance of our algorithms.
After describing the way we generated our test instances, Section 3.3.7 compares the
performance of VNS variants with different methods for deriving loading instructions and
analyzes the efficiency of the VND neighborhood structures. We also use results from
a sequence-indexed mixed integer programming (MIP) model as a baseline. For these
preliminary analyses we only use small to medium-sized instances since a clear trend
is visible and the MIP approach also reaches its limits. Finally, Section 3.3.7 compares
the two construction heuristics with or without a subsequent VND run, as well as the
GRASP and VNS approaches on all instances.

Benchmark Instances

We tested our algorithms on a new benchmark suite based on real-world data from the
year 2011 provided by Citybike Wien which runs a bike-sharing system with, at the time,
92 stations in Vienna, Austria. In order to evaluate the performance of the approaches
on very large instances, our project partner Austrian Institute of Technology (AIT)1

provided a larger set of 664 additional stations placed in Vienna at realistic positions.
1http://www.ait.ac.at/
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We generated the instances, which are available on the web2, from the pool of 92 real
plus 664 artificial stations as follows:

• Travel times tu,v, (u, v) ∈ A0, are real average driving times from u to v plus an
estimation for parking the vehicle and loading or unloading bikes at v.

• Station capacities Cv of artificial stations were chosen randomly according to the
distribution of real stations’ capacities.

• The number of initially available bikes pv was taken from a snapshot of the system
for all real stations. For the artificial ones, we first dedicated some of them as
support points to which we assigned fill levels at random according to a certain
distribution derived from the real stations. The fill levels of the remaining artificial
stations were then determined by an Akima bicubic spline interpolation. In this
way we achieve a small correlation between the fill levels of geographically close
stations, as it can also be observed in the real data.

• Target values qv were derived from accumulated demands of the stations over a
whole day which are known for the real stations. For terminals with a high number
of bike demands we set the target value to 75% of the stations capacity, for a high
number of parking position demands we set the target value to 25% and, if both
are similar, then we set the target value to 50% of the capacity. For the artificial
stations accumulated demands were determined randomly in a similar way as initial
fill levels, i.e., to achieve a similar distribution and geographic correlation as in the
real data.

• We derived instances with different numbers of stations |V | by choosing the first
station randomly from the pool of 756 stations and adding its |V | nearest neighbors
with regard to Euclidean distances. From the now |V |+1 stations, one was randomly
selected to be the depot.

• In order to make complete balance at least theoretically possible when having
enough working time and vehicles available,

∑
v∈V pv =

∑
v∈V qv must hold in each

instance. This was achieved by randomly selecting a station v and incrementing
or decrementing pv by one, as required. We iterated this process until the above
equation was fulfilled. Note that there might not necessarily be the right number
of bikes available to meet all target levels in reality. Still, operators strive to fulfill
target levels by controlling the number of bikes in the system accordingly.

• We assume a homogeneous fleet of vehicles with capacities Zl = 20, ∀l ∈ L.

• The time budget was set to t̂ ∈ {2, 4, 8} hours, t̂l = t̂, ∀l ∈ L.

• The number of available vehicles |L| varies and is stated in the following sections.
2https://www.ac.tuwien.ac.at/files/resources/instances/bbss/bench3.tar.gz
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• For each configuration of |V |, |L| and t̂, 30 independent instances were created.

For the real-world scenario at Citybike Wien the configuration with |L| = 2 and t̂ = 8 is
the most relevant. The planning for Citybike Wien’s two vehicles is done in the morning
and they are usually in action for a whole working day shift of eight hours. Considering
shorter shift times thus becomes interesting when performing an “on-line” re-optimization
for the remaining day after some major disruption only. Note that the considered static
case is not exactly met here, as Citybike Wien operates 24/7. Nevertheless solving the
static BBSS is still considered to be a reasonably good approximation as expected demands
are relatively well known and the target values are set correspondingly. Furthermore,
stations are designed with a significant reserve so that the balancing is not usually needed
for solving short-term fluctuations but to resolve imbalances occurring over a longer time
horizon, e.g., one or even more days. Citybike Wien has its highest activity in the evening
and during the night.

Note that this benchmark suite is different from the one used in our former work [125].
While in the latter instances initial fill levels of artificial stations have been chosen simply
at random and all target values have been set to 50% of the stations’ capacities, the new
instances are more realistic.

We implemented all algorithms in C++ using GCC 4.6. Each test run was performed on
a single core of an Intel Xeon E5540 machine with 2.53 GHz and 3 GB RAM per core.
For solving the LP-based approach to determine loading instructions CPLEX 12.4 was
used with default settings, except for restricting CPLEX to only use a single thread.

As already mentioned in Section 3.3.1, the scaling factors in the objective function were
set to ωbal = 1, ωload = ωwork = 1/100 000. Using these factors, improving the system
balance always has a greater impact on the objective value than reducing the tour lengths
or the number of loading operations. This aspect is a result of our discussions with
project partner Citybike Wien. Reducing the lengths of routes and/or the number of
loading operations can lower operation costs and has a positive environmental impact. In
addition, tours with obviously redundant station visits or loading actions would strongly
reduce the practical acceptance by the drivers. However, the top priority is still to balance
the system so that target values are reached as far as possible and user satisfaction is
maximized. From the operator’s point of view, workers are paid for the whole shift length
anyway, and therefore a reduction in the tour lengths is just a secondary aspect.

Objective values of different solutions must be compared with care due to the small
scaling factors ωload and ωwork for the secondary terms in the objective function. If
two solutions achieve the same balance but differ regarding the secondary terms, the
difference between the objective values will be very small although possibly important.
Therefore, we list in the result tables for each algorithm variant and each instance set
the number of runs for which the variant yielded the best results (#best) besides average
objective values. We consider #best to be a better indicator for analyzing performance
differences than average objective value differences. Maximum #best values are printed
bold for each instance set.
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Comparison of VNS Variants

In this section we analyze the influence of the four alternative procedures for deriving
loading instructions within the VNS in Section 3.3.7 and further compare them to a MIP
approach. Moreover, we study the performance of the VND neighborhood structures.

The following instance settings are used in these tests:

• The number of stations is |V | ∈ {10, 20, 30, 60, 90}.

• The vehicle fleet size is |L| ∈ {1, 2, 3, 5}.

• Each instance set uses a unique combination of |V |, |L|, t̂ and contains 30 instances,
resulting in a total of 30 sets and 900 instances.

• For each instance five independent runs were performed.

• Each run was terminated when no improvement could be achieved within the last
5 000 VNS iterations or after a CPU time of one hour. In the first case we consider
the heuristic search as converged, major further improvements in prolonged runs
are unlikely.

Tables 3.3.7 and 3.3.7 show aggregated results for these 30 instance sets. They also cover
both the situation where perfect balance cannot be achieved due to a small number of
vehicles and/or insufficient time budgets in relation to the number of stations, and the
situation where perfect balance is possible. Table 3.3.7 shows for all approaches the
number of runs where the respective approach obtained the best objective values (#best).
For the MIP model, we additionally give mean upper bounds ub, mean lower bounds
lb and their respective standard deviations ubsd, lbsd. For each variant of the VNS, in
addition to #best, we also list mean objective values obj and their standard deviations
sd. Table 3.3.7 gives the median total run times t̃tot for all approaches. For the VNS
variants we also list the median number of performed VNS iterations g̃tot.

MIP models: In addition to the metaheuristic algorithms, we implemented a MIP
model based on the sequence-indexed formulation from [126] but adapted to our problem
formulation in a straight-forward way. Just like GH and MF-MC, this model is not
able to consider dependencies among vehicles and is therefore restricted to monotonicity.
CPLEX 12.4 was used for trying to solve the instances with this model. Again, we used
default settings, except for the restriction to use only a single thread. A CPU time limit
of one hour was imposed. Furthermore, we investigated a second MIP model based on a
time-indexed formulation [126] for the general case. Unfortunately, experiments indicated
that this approach led to worse results than the first model due to the higher complexity
of the model caused by the discretization of station visit times. Thus, we omit the results
of the time-indexed formulation here.
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We can clearly observe that the pure MIP approach is only able to solve the smallest
instances to optimality within the given time limit. For most realistically sized instances
very large gaps remain between upper and lower bounds. The MIP approach scales very
badly with increasing numbers of vehicles and especially with longer vehicle time budgets.
This is reflected in the low #best values for all but the smallest instances. For the larger
instances CPLEX often only found trivial solutions where all vehicles are staying at the
depot, or even no solutions at all. Also, no useful lower bounds can be derived for these
more complex instances.

For the few instance groups with |V | = 10 where the MIP approach yielded small gaps,
we observe that the VNS variants are almost always able to find solutions with equal or
better objective values. Especially on instance sets with more than 10 stations, the VNS
dramatically outperforms the MIP approach by obtaining better solutions in substantially
shorter run times.

Comparing different variants for deriving loading instructions: Among our
four VNS variants, the one applying GH is clearly the fastest. MF-MC required about
120% more run time on average for each call of the auxillary algorithm for deriving
loading instructions. LP is very slow, resulting in run times that are about 250 times
longer than those of GH. MF-GC improves on the performance of LP, but is still around
eight times slower than GH.

The solution quality of the VNS approach strongly depends on the ability to perform a
substantial number of iterations. Therefore, a computationally more expensive variant
needs to achieve rather large improvements in order to compete with the faster variants.
We will now analyze the solution quality of the different variants for deriving loading
instructions.

VNS with GH: As the fastest variant for deriving loading instructions, GH has
a very high number of #best values (2969) that is only slightly exceeded by MF-MC.
GH’s total of the objective values is even better by a small degree. Especially on instance
sets with large numbers of stations and shift lengths, this variant is able to achieve the
highest #best values among all VNS variants. On small instances, GH performs slightly
worse than MF-MC, but in general both variants obtain very similar results with regard
to solution quality. In addition, GH has the advantage of significantly shorter run times.

VNS with MF-MC: This method shows the highest sum of #best values of all
approaches (2987), as well as the second lowest total objective values. A Wilcoxon signed-
rank test comparing MF-MC with the strongest contender GH on each instance set shows
significant advantages with error probabilities of less than 5% for 18 of the 60 classes.
We observe a clear tendency that MF-MC performs better on smaller instances while
GH performs better on larger instances. There is no statistically significant difference
between the two methods when looking at the total results of all 60 instance sets.
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VNS with LP: In general the LP approach is able to construct better solutions
than GH and MF-MC since it is not restricted to monotonicity but computes the optimal
loading instructions for any given vehicle routes. However, this difference is barely
visible in the results. We conclude that for the static BBSS problem the assumption of
monotonicity does not have a practically significant negative impact on the solution quality.
On the contrary, the LP approach suffers from the longest run times in comparison to the
other variants and only a substantially smaller number of iterations can be performed
within the time limit. About 60% of all runs were terminated before the VNS converged
reasonably. This usually leads to worse objective values for LP in comparison to the other
variants. When compared to GH, LP performs significantly worse when considering all
60 instance sets in total with an error probability of less than 0.1%. This is also reflected
in the low sum of #best values for LP (2161).

VNS with MF-GC: Similarly to LP, MF-GC is theoretically able to construct
better solutions than GH and MF-MC since it is not restricted to monotonicity. However,
even with the vastly improved performance of MF-GC over LP, this difference is barely
visible in the results. Again, higher computational expense of MF-GC compared to GH
and MF-MC impedes the ability to find good solutions for larger instances because only a
substantially smaller number of iterations can be performed within the time limit. While
the #best values of MF-GC are quite good for small to medium instances, the faster
methods outperform it for many instances with 60 and 90 stations, especially when the
number of vehicles and/or shift length is large. A Wilcoxon test confirms this by showing
that GH is significantly better than MF-GC for nine of the large instance sets and also
in total over all instance sets with error probabilities of less than 1%. The total sum of
#best values (2625) is about 10% lower than those of GH and MF-MC.

We conclude that it is more important to perform a large number of VNS iterations
than to employ a more sophisticated but slower method for deriving loading instructions.
While MF-GC and LP are theoretically more powerful than GH and MF-MC, they
only infrequently lead to slightly better solution qualities and therefore cannot justify
the higher computational effort. GH is by far the fastest method for deriving loading
instructions, and no other method offers consistent significant advantages with regard
to solution quality. Thus, GH is the best method for deriving loading instructions in
practice.
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3.3. Static Balancing Bike Sharing Systems Problem

Instance set MIP VNS with GH VNS with MF-MC VNS with LP VNS with MF-GC
|V | |L| t̂ [h] t̃tot [s] t̃tot [s] g̃tot t̃tot [s] g̃tot t̃tot [s] g̃tot t̃tot [s] g̃tot

10 1 2 3.0 0.8 5001.0 1.8 5001.0 224.0 5001.0 5.3 5001.0
10 1 4 3600.0 4.8 5003.0 12.1 5003.0 1382.7 5004.5 41.3 5002.0
10 1 8 3600.0 7.8 5001.0 19.2 5001.0 2056.6 5001.0 70.5 5001.0

10 2 2 897.5 1.8 5004.0 4.1 5008.0 488.9 5007.0 14.0 5004.5
10 2 4 3600.0 5.8 5009.5 12.9 5005.0 1467.7 5006.0 47.4 5006.5
10 2 8 3600.0 6.7 5001.0 16.7 5001.0 1795.9 5001.0 60.7 5001.0

20 2 2 3600.0 4.3 5012.0 10.5 5014.5 1346.9 5021.5 38.7 5020.0
20 2 4 3600.0 38.9 5670.0 95.3 5456.0 3601.0 2320.5 358.1 5374.0
20 2 8 3600.0 75.4 5271.0 193.4 5177.0 3601.3 1197.5 773.2 5163.5

20 3 2 3600.0 8.4 5103.0 19.3 5151.5 2017.0 5109.5 79.8 5137.0
20 3 4 3600.0 41.8 5372.5 101.9 5510.5 3600.8 2273.0 385.5 5361.0
20 3 8 3600.0 72.4 5400.0 188.6 5282.0 3601.5 1304.5 680.2 5258.0

30 2 2 3600.0 6.9 5032.0 17.6 5019.0 1848.8 5020.0 61.5 5025.5
30 2 4 3600.0 63.4 5866.0 158.6 5657.5 3601.2 1503.0 635.2 5780.0
30 2 8 3600.0 242.9 5806.0 695.3 5932.0 3603.4 423.5 2664.1 5684.5

30 3 2 3600.0 12.8 5072.5 29.7 5087.5 3000.9 5035.0 117.5 5095.5
30 3 4 3600.0 130.4 6813.0 316.9 6612.5 3602.3 938.0 1346.8 7015.5
30 3 8 3600.0 238.4 6446.5 615.6 5978.0 3603.4 476.5 2523.3 6155.0

60 3 2 3600.0 29.7 5129.5 74.5 5124.5 3600.9 2612.0 289.5 5136.5
60 3 4 3600.0 301.1 7046.5 878.1 7705.0 3605.9 393.0 3474.4 6441.5
60 3 8 3600.0 3009.4 10407.5 3600.4 4269.5 3632.1 59.0 3602.1 1022.0

60 5 2 3600.0 75.6 6115.0 185.3 5726.0 3601.4 1441.0 760.1 5757.5
60 5 4 3600.0 1115.9 10492.0 2703.7 10387.5 3613.7 170.0 3600.7 3126.0
60 5 8 3600.0 2826.7 9488.0 3600.4 4325.5 3643.6 52.0 3601.8 979.5

90 3 2 3600.0 46.7 5200.0 136.3 5184.0 3601.0 1803.5 474.1 5185.5
90 3 4 3600.0 490.8 7343.0 1506.6 7326.0 3608.7 239.0 3600.5 4629.5
90 3 8 3600.0 3600.2 6914.5 3600.9 2401.5 3666.5 34.0 3604.0 552.0

90 5 2 3600.0 126.5 5924.5 330.2 5772.5 3602.3 809.5 1412.4 5923.5
90 5 4 3600.0 1856.5 10899.5 3600.2 7425.5 3626.1 97.5 3601.7 1705.5
90 5 8 3600.0 3600.7 3164.0 3602.0 1077.5 3721.7 15.0 3608.1 236.0

Total 101700.5 18043.5 185008.0 26328.1 162622.0 87968.2 68368.5 41532.5 136780.5

Table 3.2: Results regarding computation times and iteration counts of the MIP approach
and the VNS considering the four variants of deriving loading instructions.

Up to this point we only used instances with up to 90 stations. However, it is already
obvious that the more complex methods perform worse with increasing instance size.
Since GH already turns out to be the best overall method on these instances, we refrained
from testing even larger instances.

Performance of VND neighborhood structures: Figure 3.9 shows relative success
rates (i.e., the number of times a particular neighborhood structure was able to improve the
solution divided by the number of applications) and CPU times of the VND neighborhoods
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Figure 3.9: VND neighborhood performance for the instance set with |V | = 90, |L| = 5,
t̂ = 8h using the VNS with GH.

for runs of the VNS with GH on the large instance set with |V | = 90, |L| = 5, t̂ = 8h.
However, these results are typical for all instance sets except the smallest ones.

REM-VND is applied as the first neighborhood despite having lower relative success rates
than the two following neighborhoods because it is meant to provide space in a route for
the insertion of additional stations. Experiments confirmed that it is advantageous to
use REM-VND as the first neighborhood directly followed by INS-U.

In the VNS, all shaking neighborhoods have similar relative success rates, therefore
we omit the corresponding chart. These results show that all neighborhood structures
contribute well to the overall performance.

Comparing the GRASP/PILOT Hybrid with VNS

In this section we compare our GRASP/PILOT hybrid (see Section 3.3.5) with VNS
with GH for deriving loading instructions. In order to analyze the different approaches
in detail, we performed extensive tests across all instance sizes.

The following configurations were used in this section:

• The number of stations is |V | ∈ {30, 60, 90, 180, 300, 400, 500, 600, 700}.

• Meaningful numbers of vehicles |L| ∈ {1, . . . , 21} were chosen in dependence of |V |
and t̂l and are listed in the result tables.

• Each instance set uses a unique combination of |V |, |L|, t̂ and contains 30 instances,
resulting in a total of 2310 instances grouped into 30 sets.

First of all, Table 3.3 compares the results of the basic greedy construction heuristic
(GCH) and the PILOT method. It lists the number of runs where the respective approach
obtained the best objective values (#best), the mean objective values obj, and their
median computation times t̃tot. According to a Wilcoxon signed-rank test with an error
level of 5%, PILOT yields significantly better results on all aggregated results. This
dominance can also be easily observed by looking at the objective values and #best.
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3.3. Static Balancing Bike Sharing Systems Problem

Instance set GCH PILOT
|V | |L| t̂ [h] #best obj sd t̃tot [s] #best obj sd t̃tot [s]

30 1 2 8 152.001530 26.203390 < 0.1 30 147.934980 25.818900 0.0
30 1 4 1 105.336470 22.402790 < 0.1 30 98.536640 20.824000 0.0
30 1 8 0 38.939550 11.694270 < 0.1 30 33.206330 9.834630 0.0

60 1 4 2 283.403320 30.702870 < 0.1 30 274.536880 30.974760 0.0
60 1 8 0 189.473390 23.429750 < 0.1 30 181.006870 23.042860 0.1
60 2 2 3 309.069590 35.718110 < 0.1 27 299.203200 33.768400 0.0

90 2 4 1 374.206650 39.689670 < 0.1 29 358.273740 40.821710 0.1
90 2 8 0 204.479890 28.385090 < 0.1 30 190.146840 28.724430 0.4
90 4 2 0 423.739160 54.371890 < 0.1 30 397.606520 45.975640 0.0

180 4 4 0 772.613200 45.352750 < 0.1 30 737.747390 45.958780 0.5
180 4 8 0 427.826300 34.797430 < 0.1 30 395.827040 33.669300 2.9
180 5 8 0 317.565360 29.071670 < 0.1 30 285.432860 28.725460 3.4

300 6 4 0 1321.753520 56.947210 < 0.1 30 1271.554660 60.493890 2.0
300 6 8 0 782.906610 37.341860 < 0.1 30 736.841050 35.493270 11.8
300 9 8 0 462.657110 25.704740 < 0.1 30 413.858500 22.799850 15.4

400 8 4 0 1754.493320 75.600710 0.1 30 1681.628380 68.761200 4.4
400 8 8 0 1028.119890 47.776700 0.1 30 971.388000 41.910880 27.6
400 12 8 0 607.542700 35.657190 0.1 30 543.077910 32.626580 36.0

500 10 4 0 2205.566730 74.431490 0.1 30 2118.902180 70.022140 8.1
500 10 8 0 1301.733160 50.863390 0.1 30 1225.801700 44.761010 50.9
500 15 8 0 764.095080 34.038710 0.1 30 681.564200 29.478280 67.6

600 12 4 0 2712.906470 50.845290 0.1 30 2597.909120 40.370350 13.7
600 12 8 0 1608.079730 29.548010 0.2 30 1514.815390 27.303960 87.8
600 18 8 0 954.114180 31.063330 0.2 30 854.983800 26.979600 116.6

700 14 4 0 3115.779650 72.914380 0.2 30 2986.049480 62.149560 21.1
700 14 8 0 1866.959250 51.772820 0.2 30 1755.028720 41.214960 132.8
700 21 8 0 1104.599490 43.605020 0.2 30 984.469630 34.184230 178.5

Total 15 25189.961300 — 1.7 806 23737.332010 — 781.7

Table 3.3: Computational results of the greedy construction heuristic (GCH) and the
PILOT method.

Although PILOT requires more computation time, even on the largest instances the
additional effort does not get out of hand, and we consider it to be a good tradeoff.
Consequently, for practical applications that require solutions in short time, the PILOT
heuristic is a good choice.

In order to analyze the improvement potentials of the solutions obtained by the con-
struction heuristics, we add a local improvement step via VND at the end and compare
the results in Table 3.4. First we observe that PILOT with VND performs significantly
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better than GCH with VND, which is supported by the Wilcoxon signed-rank test with
an error probability of less than 5%. The total run times of both approaches are very
close now. The reason is that although GCH is much faster than PILOT, VND has to
spend more iterations to reach a local optimum afterwards which evens up at the end.
During these tests, PILOT is the clear winner.

Instance set GCH-VND PILOT-VND
|V | |L| t̂ [h] #best obj sd t̃tot [s] #best obj sd t̃tot [s]

30 1 2 22 148.601630 25.806420 < 0.1 25 147.801650 25.764711 0.0
30 1 4 14 97.869980 20.537200 < 0.1 24 97.736620 20.649725 0.0
30 1 8 9 32.339640 10.280110 < 0.1 22 31.339650 9.661051 0.1

60 1 4 10 276.270150 29.556540 < 0.1 22 273.670200 30.617129 0.0
60 1 8 17 178.406880 22.605600 < 0.1 14 178.740170 22.806587 0.1
60 2 2 12 299.936470 32.798160 < 0.1 24 297.736530 33.968484 0.0

90 2 4 6 361.007000 39.099410 < 0.1 25 356.607050 40.592714 0.1
90 2 8 6 189.546730 29.401890 0.3 24 185.013490 28.761965 0.6
90 4 2 4 404.472980 46.165080 < 0.1 26 396.339860 46.010674 0.0

180 4 4 2 749.213760 46.891200 0.2 28 735.547360 45.351396 0.6
180 4 8 5 400.026790 35.451870 1.9 25 392.560250 32.355673 3.8
180 5 8 5 289.299210 28.640580 3.8 25 281.632680 28.291244 5.4

300 6 4 3 1282.421030 59.696840 1.0 27 1265.487980 60.006868 2.4
300 6 8 1 745.240620 37.650540 6.4 29 729.374280 36.928317 15.4
300 9 8 2 424.057690 24.342590 19.4 28 407.191520 24.301169 25.4

400 8 4 0 1704.227880 71.566280 3.0 30 1674.895060 70.285444 5.6
400 8 8 1 980.987530 42.888140 16.2 29 965.054470 41.931984 34.9
400 12 8 0 557.743570 31.479010 54.5 30 536.144270 34.064915 58.7

500 10 4 0 2145.301500 73.154580 6.3 30 2110.102140 70.194881 10.5
500 10 8 0 1240.201050 48.395080 39.7 30 1216.801520 44.478994 65.5
500 15 8 0 699.629590 31.067280 107.8 30 673.563680 27.767719 117.0

600 12 4 0 2630.441670 45.924340 13.2 30 2590.242360 40.951831 17.7
600 12 8 0 1541.014560 27.596550 61.5 30 1506.548520 27.790606 109.0
600 18 8 1 880.182330 26.932450 183.0 29 847.450010 27.957043 172.1

700 14 4 1 3023.781870 66.177400 24.6 29 2977.782790 60.409126 26.2
700 14 8 0 1778.027740 45.659610 101.0 30 1743.695180 41.563750 167.0
700 21 8 0 1015.934540 40.265470 262.9 30 974.269160 34.392786 274.7

Total 121 24076.184390 — 906.7 725 23593.328450 — 1112.8

Table 3.4: Computational results for construction heuristics with local improvement via
VND.

Finally, Table 3.5 shows the final results for VNS, GCH-GRASP (GRASP with randomized
greedy construction heuristic), and PILOT-GRASP (GRASP with randomized PILOT
construction heuristic). Although we performed tests for the entire instances collection
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of 77 sets, the table only contains a selection of these sets. They represent the global
trend and are sufficient for the conclusions.

Due to the highly different characteristics of our metaheuristics and in order to compare
them in a fair way, we use a common time limit (tmax) as the sole termination criterion.
For the largest instances (180 to 700 stations) it is set to one hour, for medium instances
(60 to 90 stations) we use 30 minutes, and for small instances (30 stations) we use 15
minutes. The median number of iterations g̃tot suggests that all approaches scale well up
to 700 instances.

For the GRASP variants we set α according to equation (3.22) in Section 3.3.5. We
observe that PILOT-GRASP yields significantly better results than GCH-GRASP, which
is supported by the Wilcoxon signed-rank test (< 5% error probability). We also see a
clear improvement over the results of GCH-VND and PILOT-VND from the previous
table.

As the main competitor for PILOT-GRASP, we chose VNS with GH since we concluded
in Section 3.3.7 that this is the most robust VNS variant with the best balance between
computation time and solution quality. Especially on larger instances which we are
considering now, VNS with GH outperforms the other VNS variants. For the VND inside
the VNS we use a fixed order of neighborhood structures as suggested in Section 3.3.4.
However, for the GRASP runs the random VND order yields overall better results and we
thus employ it for all GRASP tests. Comparing VNS with PILOT-GRASP, we observe
an interesting trend. While all approaches perform comparably good on small instances
with 30 nodes, VNS with GH dominates the medium-sized instances with 60 to 180 nodes.
On large instances with 400 or more nodes, PILOT-GRASP is the clear winner.

In order to check if this trend depends on the chosen time limits (tmax), we also performed
computational tests with shorter time limitations. Therefore, we apply the same general
settings as before, however set the run time tmax for instances with small instances
(30 stations) to 5 minutes, for medium instances (60 to 90 stations) to 10 minutes and
for largest instances (180 to 700 stations) to 15 minutes. Computational results of
these short-time runs indicate as well that VNS dominates on medium instances and
PILOT-GRASP on large instances. A Wilcoxon signed-rank test with an error level of
5% confirms this observation. Table 3.6 shows a few selected results from these tests.
Naturally, the obtained solutions are usually worse than those of Table 3.5 with the larger
computation time limits.
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3.3. Static Balancing Bike Sharing Systems Problem

Instance set VNS with GH PILOT-GRASP
|V | |L| t̂ [h] tmax [s] #best obj sd g̃tot #best obj sd g̃tot

30 1 2 300 28 147.201660 25.480770 569766.5 29 147.135000 25.519080 207275.0
30 1 4 300 28 95.203360 19.886650 101678.5 24 95.736670 20.582820 32566.0

60 1 4 600 29 269.603620 30.419670 107947.0 18 271.203580 31.599270 25369.0
60 1 8 600 28 170.473680 21.976200 14632.0 16 171.073660 22.001610 3515.0

90 2 4 600 26 346.273910 40.604890 16489.5 6 349.007180 41.164970 5910.0
90 2 8 600 25 174.680360 27.952510 2384.5 6 176.680330 28.783920 783.0

300 6 4 900 21 1248.954860 61.250840 748.0 9 1250.754900 60.019630 338.5
300 9 8 900 0 411.991360 24.300130 35.5 30 398.524990 23.012590 29.0

500 10 4 900 0 2115.502050 70.683370 130.0 30 2094.169080 69.288040 80.0
500 15 8 900 0 692.029890 29.335570 16.0 30 666.163990 29.783500 8.0

700 14 4 900 0 3003.715600 61.370360 47.5 30 2962.583020 59.063480 33.0
700 21 8 900 0 1011.267910 35.516260 7.0 30 968.735990 32.905700 4.0

Total 8400 185 9686.898260 — 813882.0 258 9551.768390 — 275910.5

Table 3.6: Short runtime (limited to 5 to 15 minutes) results of VNS with GH and
PILOT-GRASP.

3.3.8 Conclusions and Future Work

We investigated different metaheuristic approaches for finding good solutions to the
problem of balancing bike sharing systems using a fleet of vehicles, focusing on the static
problem variant where any user activities during the rebalancing process are neglected.

We started with a greedy construction heuristic for quickly generating meaningful initial
solutions. Its particular feature is the greedy criterion in which an estimation of still
deliverable bikes is considered. In a further step, the construction heuristic was extended
to a PILOT method. The impact of different choices for the PILOT depth parameter were
studied. Results showed that the unrestricted variant yielded clearly better results than
any depth restriction while still performing relatively fast even on the largest instances.

To locally improve solutions, we applied a VND employing seven neighborhood structures
focusing on different problem aspects. For obtaining even better solutions in longer
running times, we suggested GRASP based on randomized versions of the greedy con-
struction heuristic as well as the PILOT method and a general VNS that makes use of
further, larger neighborhoods exploited by shaking.

All these local search based metaheuristics focus on the search space of vehicle routes,
and corresponding loading instructions are derived for each candidate solution as second
level decision variables by an embedded method. Four alternative strategies have been
described for this purpose and were experimentally compared. The most general method
based on linear programming and its functionally equivalent but computationally more
efficient implementation based on two maximum flow calculations yield proven optimal
solutions for the general non-monotonic case, where bikes may, e.g., be buffered at stations
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3. Balancing Bike-Sharing Systems

and directly be exchanged between vehicles. However, results indicate that this flexibility
only rarely yields better solutions and the average quality gains are rather small. The
significantly higher computational complexity does not pay off in general, and therefore
we conclude to better stay with the fast and relatively simple greedy heuristic approach
for determining loading instructions. Monotonicity is thus a very reasonable restriction
for practical applications.

During computational experiments we compared the performance of the two construction
heuristics, each optionally followed by the VND, as well as GRASP and VNS. Results
show that the PILOT method yields significantly better solutions than the pure greedy
construction heuristic in still relatively short running times. Furthermore, GRASP and
VNS are able to significantly improve the results obtained by the construction heuristics.
They exhibit significant performance differences in dependence of instance size. For
medium-sized instances, the VNS showed significant advantages, while for large to very
large instances it was outperformed by GRASP. We conclude that for this problem
GRASP scales better with respect to instance size and complexity.

In future work further performance gains might possibly be achieved by considering
additional advanced neighborhood structures, e.g., very large neighborhoods based on
ejection chains or mixed integer programming. For much larger BBSS instances with
possibly thousands of stations, it appears to become crucial to combine the suggested
methods with clustering, decomposition or multi-level optimization techniques to achieve
even better scalability.

Another interesting extension would be to drop the assumption that an increase in
balance is always preferred over savings in travel times and the number of loading
operations. While our heuristics in principle still work with arbitrary weights for the
corresponding terms in the objective function, the advanced techniques for calculating
loading instructions do not necessarily produce optimal results anymore. Thus, corre-
sponding extensions of these procedures and, in general, more advanced multi-objective
optimization techniques should be considered.

Finally, it is important to also consider the dynamic (online) scenario where bikes are
rented or returned by users even during the balancing process. As this problem variant
introduces uncertainties, stochastic aspects need to be addressed. From the optimization
point of view, it will not suffice to consider the final deviations from target balance
values anymore because user demands will constantly change the fill levels of stations
over time. Therefore the order in which stations are visited becomes much more relevant.
In addition, it is necessary to consider user demand shifts which occur when full stations
cause an increased parking position demand whereas empty stations cause an increased
bike demand in the neighboring stations.
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3.4. Dynamic Balancing Bike Sharing Systems Problem

3.4 Dynamic Balancing Bike Sharing Systems Problem

In this section we extend our previous algorithms for the static case from Section 3.3
towards the dynamic scenario where we take user demands over time into account, and
try to reduce unfulfilled demands during the rebalancing process as well as reaching
target fill levels for stations at the end. We propose an efficient way to model and
simulate these dynamics as well as adapt a greedy and PILOT construction heuristic,
Variable Neighborhood Search (VNS) and GRASP accordingly. This section is organized
as follows. In Section 3.4.1 the problem for the dynamic scenario is formalized and in
Section 3.4.2 we show how the dynamics can be modeled such that the dynamics can
be efficiently and incrementally calculated. In Section 3.4.3 adaptations to the greedy
construction heuristic are discussed and in Section 3.4.4 metaheuristic approaches from
the static case are reviewed. Computational results for the dynamic scenario are given in
Section 3.4.5 and finally, we conclude in Section 3.4.6.

3.4.1 Problem Definition

We consider the dynamic scenario of BBSS, referred to as DBBSS, where rebalancing is
done while we simulate system usage by considering expected cumulated user demands.
In addition to the input data for the static problem variant we particularly consider
expected user demands from a prediction model.

For the BSS infrastructure we are given a complete directed graph G = (V ∪{0}, A) where
node set V represents rental stations, node 0 the vehicles’ depot, and arc set A the fastest
connection between all nodes. Each arc (u, v) ∈ A is assigned a weight corresponding to
the travel time tu,v > 0 (including average times for loading and unloading actions). Each
station v ∈ V has a capacity Cv ≥ 0 denoting the total number of bike slots. The initial
fill level pv is the number of available bikes at the beginning of the rebalancing while the
target fill level qv states the desired number of bikes at the end of the rebalancing. For
the rebalancing procedure we are given a fleet of vehicles L = {1, . . . , |L|} where each
vehicle l ∈ L has a capacity Zl > 0. Finally, let t̂max be the time budget within a vehicle
has to finish its route which starts and ends at the depot 0.

Regarding user demands over time we assume the expected cumulated demand µv(t) ∈ R
occurring at each station v ∈ V from the beginning of the rebalancing process until time
t, 0 ≤ t ≤ t̂max to be given as an essentially arbitrary function. The cumulated demand is
calculated by subtracting the expected number of bikes to be returned from the expected
number of bikes to be rent over the respective time period. An example of a demand
function is shown in Figure 3.10. Note that we display pv − µv(t) as the dash-dotted
line in order to highlight the area where unfulfilled demands occur. Thus, a positive
slope of µv(t) indicates that more users are expected to rent bikes than to return them
in the time period t, and vice versa. Demands are always fulfilled immediately as far as
possible, i.e., bikes or parking slots are available. Unfulfilled demands cannot be fulfilled
later and are penalized in the objective function. Let δ̂unf,−

v denote the total amount of
unfulfilled bike demands for station v ∈ V , i.e., the number of users who want to rent a
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expected bikes at station v

ll pickup by vehicle l at event til

Figure 3.10: Example of a demand function and two pickup events.

bike but are not able to at the desired station. Analogously, let δ̂unf,+
v refer to the total

number of unfulfilled slot demands, i.e., the amount of users who cannot return bikes as
the station is already full.

A solution to DBBSS consists of a route for every vehicle and corresponding loading
instructions for every stop at a station. A route of length ρl is defined as an ordered,
arbitrarily long sequence of stations rl = (r1

l , . . . , r
ρl
l ), ril ∈ V where the depot is assumed

to be implicitly added as start and end node. The loading instruction for vehicle l ∈ L
during the i-th stop at station v ∈ V is denoted as yil,v. Positive values for yil,v denote
the corresponding number of bikes to be picked up, negative values denote deliveries.
Feasible solutions must fulfill the following conditions. For any station, its fill level (i.e.,
the number of currently available bikes) must always lie between 0 and its capacity Cv.
For any vehicle l ∈ L the load may never exceed its capacity, i.e., bl ≤ Zl. Moreover, a
solution is only feasible, if and only if no route’s total travel time, denoted by tl, exceeds
the time budget, and additionally, every vehicle must return empty to the depot 0.

The goal is to find a route for each vehicle with corresponding loading instructions such
that the following objective function is minimized:

f(r, y) = ωunf ∑
v∈V

(δ̂unf,−
v + δ̂unf,+

v ) + ωbal ∑
v∈V
|qv − pv|

+ ωload ∑
l∈L

ρl∑
i=1
|yil,ri

l
|+ ωtime ∑

l∈L
tl (3.23)

Parameters ωunf , ωbal, ωload, and ωtime ≥ 0 are used for controlling the relative importance
of the corresponding term in the objective function. The most important goal is to
minimize unfulfilled demands as well as to minimize the deviation from the target fill
levels. Secondarily, we also want to keep the total number of loading instructions and
the total driving time as small as possible, however, those aspects are considered to be
clearly less important.
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3.4.2 Modeling the dynamic scenario

In this section we show how DBBSS can be modeled by calculating dynamic behavior
of the system, i.e., considering the user demands, so that it can be approached by
metaheuristics.

Segments and Events

One of our major aims is to avoid a time discretization of the demand functions and
corresponding fill level calculations as this would introduce errors and is also time
consuming if done in an appropriate resolution. Alternatively, we follow the approach
of splitting each cumulated demand function into weakly monotonic segments instead
of iterating through all discrete time points. Along with the practically reasonable
assumption that the number of segments per station is relatively small, such an approach
is much more efficient.

For this purpose, we split function µv(t) into monotonically weakly increasing or decreasing
segments. Let t0 = (t00, . . . , t

ρ0
0 ) with t00 = 0 be an ordered sequence of ρ0 extreme values

of µv(t) so that µv(t) is weakly monotonic for t ∈ [ti−1
0 , ti0], ∀i = 1, . . . , ρ0, see Figure 3.10.

Time ti0, i = 1, . . . , ρ0, refers to the end of the i-th weakly monotonic segment. In general,
let til, ∀l ∈ L, i = 0, . . . , ρl, be the time when vehicle l performs its i-th stop, i.e.,

til =


0 for i = 0
tsl,r1

l
for i = 1 if ρl ≥ 1

ti−1
l + tri−1

l
,ri
l

for i = 2, . . . , ρl if ρl ≥ 2.
(3.24)

For each station v ∈ V we define a data structure which denotes the series of events
Wv = 〈(l1, i1), . . . , (l|Wv |, i|Wv |)〉. Each event (lj , ij), j = 1, . . . , |Wv| with lj ∈ {0} ∪ L
and ij ∈ {1, . . . , ρlj} either refers to a station-visit event, in which case lj ∈ L indicates
the corresponding vehicle and ij the number of its stop, or an end-of-segment event, in
which case lj = 0 and ij denotes the respective segment of µv(t). Following the above
definitions, the time of event (lj , ij) is tijlj , and all events in Wv are ordered according
to increasing times. Multiple events occurring at the same time are ordered arbitrarily,
except that an end-of-segment event always appears last.

Expected Number of Bikes at Stations

For each station and event we need to derive a fill level considering the cumulated user
demand as well as all performed loading or unloading instructions occurred up to this
event.
Let av,j ∈ [0, Cv] denote the expected number of bikes at station v ∈ V and event
j = 1, . . . , |Wv| by considering all expected demands fulfilled as far as possible and all
pickups and deliveries performed up to and including event j. Note that, as the cumulated
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user demand is only a forecast model based on historical data, the fill level of every event
may also be fractional. Formally, av,j is calculated as follows:

av,j =
{
pv for j = 0
max(min(av,j−1 − (µv(tij

lj
)− µv(tij−1

lj−1
)), Cv), 0)− yij

lj
for j = 1, . . . , |Wv |.

(3.25)

End-of-segment events are considered for the correct computation of unfulfillable demands.
For the ease of notation, the above formula considers them in the same way as vehicle-visit
events. Since no bikes are delivered or picked up by these events, we define the loading
instructions to be yi0 = 0, for i = 1, . . . , ρ0.

With respect to unfulfilled demands, we distinguish between unfulfilled bike demands
δ̂unf,−
v and unfulfilled slot demands δ̂unf,+

v for each station v ∈ V . They occur whenever
the expected cumulated demand µv(t) over time horizon t ∈ [0, t̂max] cannot be satisfied,
i.e., when µv(t) < 0 ∧ av(t) = 0 or µv(t) > 0 ∧ av(t) = Cv, respectively. Unfulfilled
demands occurring at station v between events j − 1 and j, j = 1, . . . , |Wv|, can formally
be described as

δunf,−
v,j = max(µv(t

ij
lj

)− µv(t
ij−1
lj−1

)− av,j−1 + y
ij
lj
, 0) (3.26)

δunf,+
v,j = max(−(µv(t

ij
lj

)− µv(t
ij−1
lj−1

))− (Cv − av,j−1)− yijlj , 0), (3.27)

and consequently the overall unfulfilled demands are

δ̂unf,−
v =

|Wv |∑
j=1

δunf,−
v,j , and δ̂unf,+

v =
|Wv |∑
j=1

δunf,+
v,j . (3.28)

Classification of Stations

We assume that the stations are well-designed in a sense that their capacities are
sufficiently large for daily fluctuations, i.e., it will not be necessary to pick up and deliver
bikes to the same station at different times on a single day in order to fulfill all demands.
Furthermore, we have shown in previous work [125] that the monotonicity restriction
(i.e., it is allowed to either only pick up or deliver bikes at a station) has in practice only a
neglectably small impact on the solution quality but substantially simplifies the problem.
Additionally, our project partner Citybike Wien mentioned that they only perform either
pickups or deliveries at a particular station on the same day. Therefore, we again classify
the stations into pickup stations Vpic ⊆ V and delivery stations Vdel ⊆ V and impose
monotonicity, i.e., allow only the respective operations.

In the static case this classification is done by considering the total deviation in balance
for a particular station, i.e., pv − qv ∀v ∈ V . If this value is less than 0, then the
corresponding station refers to the set of delivery stations, and otherwise it is classified as
a pickup station. However, in the dynamic case we have to consider user demands during
the rebalancing process along with the scaling factors in the objective function (3.23).
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Thus, we consider the situation when no rebalancing is done at all. Based on equa-
tion (3.28) and objective function (3.23) we determine for each station v ∈ V the total
penalty for slot deficit and bike deficit:

δmissing
v = ωunf δ̂unf,+ + ωbal min(0, av,|Wv | − qv)−

ωunf δ̂unf,− − ωbal min(0, qv − av,|Wv |).
(3.29)

If δmissing
v < 0, v is a delivery station. If δmissing

v > 0, v is a pickup station. Otherwise, if
δmissing
v = 0, the station is already balanced, and thus, will not be considered anymore.

Restrictions on Loading Instructions

For every stop of a vehicle, we need to calculate how many bikes the vehicle is allowed
to pick up or deliver at most so that the capacity constraints are never violated and
unnecessary unfulfilled demands are never introduced. These bounds are then utilized to
set loading instructions for the corresponding vehicle stops later during the optimization
process. Formally, we define slacks ∆y−v,j and ∆y+

v,j as the maximum amount of bikes
which may be delivered/picked up at station v and event j = 1, . . . , |Wv|.

∆y−v,j =
{

max(0, qv − av,|Wv |) for j = |Wv|
min(Cv − av,j ,∆yv,y+1 + δunf,−

v,j+1) for j = 1, . . . , |Wv| − 1
(3.30)

∆y+
v,j =

{
max(0, av,|Wv | − qv) for j = |Wv|
min(av,j ,∆yv,j+1 + δunf,+

v,j+1) for j = 1, . . . , |Wv| − 1.
(3.31)

Note, that we have to iterate backwards by starting with the last event until we reach
the time when the currently considered vehicle stop occurs.

By definition, let ∆yunf,+
v,j and ∆yunf,−

v,j denote the slack without including the last event,
i.e., starting with event j = |Wv| − 1. These two terms are used by the construction
heuristic in the next section.

3.4.3 Greedy Construction Heuristic

We extend the Greedy Construction Heuristic (GCH) from our previous work [125] to
fit the dynamic case. A vehicle tour is built by iteratively appending stations from a
set of feasible successors F ⊆ V . This set includes each station which can be improved
and is reachable within the vehicles time budget. An improvement may be achieved
if δmissing

v > 0, ∀v ∈ Vpic, or δmissing
v < 0, ∀v ∈ Vdel. Then, for each station v ∈ F we

compute the total number of bikes that can either be picked up from or delivered to this
station:

γv =
{

min(∆y−v,j , Zl − bl) for v ∈ F ∩ Vpic,

min(∆y+
v,j , bl) for v ∈ F ∩ Vdel.

(3.32)

Note that bl denotes the number of bikes currently stored in vehicle l. As shown in (3.32),
we need the slacks for determining possible loading instructions as they are calculated by
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equation (3.30). In order to guarantee that vehicles return empty to the depot, we correct
the load for pickup stations by estimating the amount of bikes that can be delivered
afterwards in the same fashion as in [125] by recursively looking forward.

It is necessary to consider impacts of loading instructions on a station with respect to
target fill level and unfulfilled demands separately and weight them with ωbal and ωunf
in the same way as it is done in the objective function (3.23). We obtain

g(v) =


ωbal·min(γv ,max(0,av,|Wv |−qv))+ωunf ·min(γv ,∆yunf,+

v,j )
tu,v

∀v ∈ Vpic,

ωbal·min(γv ,max(0,qv−av,|Wv |))+ωunf ·min(γv ,∆yunf,−
v,j )

tu,v
∀v ∈ Vdel,

(3.33)

where tu,v is the travel time from the vehicle’s last stop u to station v. In each greedy
iteration the station with the highest g(v) is appended to the currently considered vehicle
tour. Loading instructions are set as follows:

yv,j = γv if v ∈ Vpic, and yv,j = −γv if v ∈ Vdel (3.34)

Since in the dynamic case timing is important, we additionally introduce a term which
we refer to as urgency. It states how urgent it is to visit stations with future unfulfilled
demands. We propose two methods to compute this value.

Additive urgency: For a station v we consider the time of the next period where
unfulfilled demands occur. If the vehicle cannot reach the station until the first period
starts, we consider the next period, and so on. In case a station has no periods of
unfulfilled demands at all or none of them are reachable in time, it is ignored. Moreover,
we introduce an additional scaling factor ωurg which denotes the importance of urgency.
Formally,

uadd =

0 if tunf
v < tu,v

ωurg · δunf
tunf
v

if tunf
v ≥ tu,v

(3.35)

where tunf
v is the time left up to the start of the next unfulfilled demand for station v ∈ V

and tu,v is the travel time to the considered station which, by definition, has to be greater
than 0. The greedy value including the urgency of the visit g′(v) is then calculated as
g′(v) = g(v) + uadd.

Multiplicative urgency: In the multiplicative approach we multiply the basic
g(v) from (3.33) by an exponential function. Again, we consider the time until the next
unfulfilled demand, analogously as for the additive approach. The term is computed as

umul = exp(−max(0, tunf
v − tu,v) · ωurg). (3.36)

The greedy value criterion is then extended to g′(v) = g(v) · umul.
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PILOT Construction Heuristic: Due to the nature of greedy algorithms, short-
sighted decisions cannot be completely avoided no matter how we choose the greedy
evaluation criterion. Therefore, we use the PILOT method [157] to address this drawback.
The functionality remains the same as in [109] which extends GCH by evaluating each
potential successor in a deeper way by constructing a complete temporary route from it,
and finally considering its objective value as g(v).

3.4.4 Metaheuristic Approaches

In order to further improve the results obtained by the construction heuristics, we apply
Greedy Randomized Adaptive Search (GRASP) and Variable Neighborhood Search
(VNS). For both metaheuristic approaches we use an incomplete solution representation
based on storing for each vehicle l ∈ L its route rl = (r1

l , . . . , r
ρl
l ) only. The loading

instructions yil,v, l ∈ L, v ∈ V, i = 1, . . . , ρl are efficiently calculated during evaluation by
applying the same greedy strategy as in GCH, see Section 3.4.3, utilizing the restriction
procedure from Section 3.4.2 to obtain bounds on the y-variables and accelerate the
calculations.

Variable Neighborhood Search: The VNS approach from [125] is adapted with
respect to the procedure for deriving loading instructions. The general layout and
neighborhood structures remain the same. We use remove-station, insert-unbalanced-
station, intra-route-2-opt, replace-station, intra-or-opt, 2-opt*-inter-route-exchange and
intra-route 3-opt neighborhood structures for local improvement within an embedded
Variable Neighborhood Descent (VND), while for shaking we apply move-sequence,
exchange-sequence, destroy-&-recreate, and remove-stations operations.

Greedy Randomized Adaptive Search: We also consider GRASP by extending the
construction heuristics in the same way as in our previous work [109] with adaptations
for the dynamic problem variant. The idea is to iteratively apply GCH or PILOT from
Section 3.4.3 and locally improve each solution with VND. While there we always select
the best successor, we use for GRASP a restricted candidate list with respect to the
greedy evaluation criterion. The degree of randomization is controlled by a parameter
α ∈ [0, 1]. In the dynamic case we used the same values which turned out to work best
in the static case.

3.4.5 Computational Results

We performed comprehensive tests for our DBBSS approaches. Generating new benchmark
instances was necessary in order to introduce the user demand values. They are based on
the same set of Vienna’s real Citybike stations we used in our previous works [122, 125, 109].
Cumulated user demands for the stations are piecewise linear functions derived from
historical data based on an hourly discretization. The instances that we use for the
computational results contain 30 to 90 stations with different numbers of vehicles and
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Instance set GCH PILOT GCH-VND PILOT-VND
|V | |L| t̂max #best obj sd t̃tot [s] #best obj sd t̃tot [s] #best obj sd t̃tot [s] #best obj sd t̃tot [s]

30 1 8h 0 54.06 12.50 < 0.1 0 50.98 11.19 0.1 18 50.61 11.56 0.4 13 49.97 10.95 0.4
30 2 4h 0 59.79 15.65 < 0.1 1 55.47 13.78 < 0.1 9 55.87 13.58 0.2 22 54.89 13.44 0.1

60 1 8h 0 186.49 28.14 < 0.1 1 180.59 28.81 0.5 8 180.20 28.72 0.5 23 178.85 29.29 0.9
60 2 4h 0 202.69 31.82 < 0.1 0 191.06 29.98 0.2 9 193.32 30.06 0.4 21 189.69 29.81 0.4
60 2 8h 0 104.49 12.77 < 0.1 0 98.64 11.03 0.9 12 98.00 12.05 2.4 18 96.74 10.80 3.2
60 4 4h 0 118.76 17.38 < 0.1 0 106.98 13.53 0.4 4 108.96 13.34 1.8 26 105.36 13.41 1.3

90 1 8h 0 354.83 34.79 < 0.1 0 346.73 33.49 1.1 6 348.20 34.74 0.7 24 344.99 33.45 1.5
90 2 4h 0 371.13 34.55 < 0.1 0 360.49 36.06 0.5 5 362.74 35.53 0.5 25 358.21 35.09 0.9
90 2 8h 0 232.86 27.07 < 0.1 0 221.02 24.24 2.1 3 223.16 24.71 2.6 27 218.57 23.86 4.1
90 3 8h 0 155.26 19.27 < 0.1 0 144.35 16.80 2.8 6 144.43 17.94 8.6 24 141.25 16.26 6.9
90 4 4h 0 254.25 27.51 < 0.1 0 239.70 27.86 1.0 7 242.91 27.90 2.1 23 237.47 27.63 2.2
90 5 4h 0 210.12 24.26 < 0.1 0 194.03 24.55 1.2 7 195.75 24.38 4.2 23 191.72 23.96 3.3

Total 0 2304.73 285.72 < 0.1 2 2190.04 271.31 10.8 94 2204.15 274.48 24.4 269 2167.71 267.95 25.2

Table 3.7: Results of GCH, PILOT, and the variants with VND.

different time budgets and are available at3. As the BSS in Vienna currently consists
of 111 stations and 1300 bikes the instances used inhere are realistic and relevant for
practice. For each parameter combination exists a set of 30 independent instances. All
our algorithms are implemented in C++ using GCC 4.6. Each test run was performed
on a single core of an Intel Xeon E5540 machine with 2.53GHz. The scaling factors
of the objective function are set to ωunf = ωbal = 1, ωload = ωtime = 1

100 000 , i.e., an
improvement with respect to balance and/or unfulfilled demands is always preferred
over reducing the tour length and/or the number of loading instructions. For the greedy
evaluation criterion we use multiplicative urgency. We omit a detailed comparison since
the difference between these strategies becomes more significant only on larger instances
with hundreds of stations.

In Table 3.7 we compare different methods for quickly obtaining good starting solutions,
namely GCH, PILOT, GCH with VND, and PILOT with VND. The columns show the
instance characteristics, and for each algorithm the number of times the corresponding
approach yields the best result (#best), the average objective values (obj), the standard
deviations (sd), and the average CPU-times t̃tot. The differences of the average objective
values are frequently relatively small due to the weight factors ωload and ωtime, but they
are still crucial for evaluating the quality of solutions. Therefore, the #best numbers
give us a better indication of which algorithm variants perform best. We observe that
PILOT outperforms GCH on every instance while the additional time is only moderate.
This trend continues when we add VND to further improve the solutions. Not only does
PILOT-VND outperform GCH-VND, but it also requires less time. This is due to the
superior starting solutions, so VND terminates after fewer iterations.

In Table 3.8 we test our metaheuristic approaches and additionally compare them to
the VNS for the static case from [125], denoted by SVNS. For a reasonable comparison,
SVNS initially converts a DBBSS instance into a static one by adding for each station

3https://www.ac.tuwien.ac.at/files/resources/instances/bbss/bench3.tar.gz
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Instance set SVNS DVNS PILOT-GRASP
|V | |L| t̂max #best obj sd #best obj sd #best obj sd

30 1 8h 4 54.90 10.93 20 47.36 10.51 9 47.54 10.57
30 2 4h 4 58.68 13.08 19 50.84 11.50 11 50.84 11.35

60 1 8h 0 197.25 30.01 29 172.30 27.13 4 172.84 26.96
60 2 4h 0 207.09 30.37 22 182.12 29.28 10 183.09 29.13
60 2 8h 0 114.64 12.75 26 91.80 10.63 4 92.30 10.40
60 4 4h 0 126.42 15.11 23 99.24 11.39 7 99.85 11.54

90 1 8h 0 368.18 37.47 19 337.92 32.74 11 338.49 32.23
90 2 4h 0 380.50 38.80 19 349.98 33.97 11 351.05 34.74
90 2 8h 0 242.60 26.09 11 210.62 23.79 19 210.19 23.03
90 3 8h 0 168.99 16.31 11 135.97 15.10 19 135.40 15.06
90 4 4h 0 262.41 30.41 17 225.94 25.77 13 226.39 26.19
90 5 4h 0 216.53 23.76 18 182.03 21.82 12 182.20 22.21

Total 8 2398.19 285.10 234 2086.11 253.63 130 2090.16 253.38

Table 3.8: Results of static VNS, dynamic VNS, and PILOT-GRASP.

the final cumulative user demand to the respective target value; negative values and
values exceeding the station capacity Cv are replaced by zero and Cv, respectively. The
idea is to neglect the timing aspects of station visits and check if this static VNS is
able to find reasonable solutions also for the dynamic case. To assure always obtaining
feasible solutions to DBBSS in the end, loading instructions for the finally best static
solution are recalculated by the new greedy strategy of the dynamic case. We observe
that GCH from Table 3.7 already performs a little bit better than the SVNS. DVNS
and GRASP are able to compute results that are more than 10% better than those of
SVNS. Therefore, we conclude that although it is possible to apply algorithms for the
static case to the dynamic scenario, dedicated dynamic approaches taking time-dependent
user demands into account are clearly superior. Among the dynamic approaches DVNS
performs best on most of the considered instances. According to a Wilcoxon signed-rank
test, all observed differences on the overall number of best solutions among any pair of
compared approaches are statistically significant with an error level of less than 1%.

3.4.6 Conclusions and Future Work

In this work we showed how to extend the metaheuristics developed in our previous
work for static BBSS to the significantly more complex dynamic variant. Starting from
a model which can handle essentially arbitrary time-dependent expected user demand
functions, we proposed an efficient way to calculate loading instructions for vehicle tours.
We use an objective function where the weights of unfulfilled user demands and target fill
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levels can be adjusted in an easy way. Practically, this has a high relevance for the BSS
operator. We also extended our previously introduced construction heuristics, VNS and
GRASP, so that dynamic user demands are considered appropriately. Tests on practically
realistic instances show that the dynamic approaches indeed make sense. Depending on
the available time for optimization, greedy or PILOT construction heuristics are useful
for fast runs, while VNS is most powerful for longer runs.

In future work it would be particularly interesting to also consider the impact of demand
shifts among stations when their neighbors become either full or empty. Especially, when
users want to return bikes and an intended target station is full, this demand obviously
will not diminish but be shifted to some neighboring station(s). Considering this aspect
might lead to an even more precise model, but also increases the model’s complexity
significantly. Furthermore, in cooperation with the Austrian Institute of Technology, we
want to extend our techniques to a two-layer optimization approach where an upper
layer is responsible for the long-term planning while our short-term algorithms handle
the daily plans.

3.5 Cluster-First Route-Second Heuristic

This section describes a cluster-first route-second heuristic for BBSS which is extended
in the next section. A logic-based Benders decomposition scheme is introduced and
computational results for this algorithm are provided.

3.5.1 Introduction

Many major cities around the world already augment their public transport by Bike-
Sharing Systems (BSS). They provide an ecofriendly way of traveling in the city and
thus reduce emissions by avoiding some of the city’s motorized traffic. Last but not least,
BSS also motivate the population to do more sports and stay healthy [38]. An important
factor to successfully run a BSS is the availability of bikes as well as empty parking slots
at each station at any time. Especially this aspect is a major challenge and frequently
a problem of existing BSS. Therefore, BSS operators need to continuously redistribute
bikes among stations to increase user satisfaction.

Previous works aimed at providing a solution consisting of a route for every vehicle, and
additionally, an accurate calculation of the loading operations at each stop of the vehicles.
Although the computation of accurate loading instructions makes the problem more
complex it seemed necessary to researchers and practitioners. We have also developed
approaches for this problem definition in our previous work [86, 110, 109, 122, 124, 125]
but after applying our algorithms to the system of Citybike Wien in Vienna we got
valuable feedback from their technicians. They told us that every day they have more
work than they can actually do. Thus, it seems most efficient for them to drive only
with full vehicle loads. In this work we exploit this information and neglect loading
operations which substantially simplifies the problem. Instead, we classify each station as
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either a pickup or a delivery station and only consider for each station how much vehicle
loads we need to service it. Thus, we are using a Cluster-First Route-Second (CF-RS)
approach where we first assign the stations to vehicles, and then, solve the according
routing problem for every vehicle separately.

3.5.2 Problem Definition

Given is a set of nodes V representing the stations, and having associated a capacity Cv.
Stations that need to be visited several times as multiple full loads need to be picked
up or delivered are considered by including a respective number of copies of nodes in
V . We define Vpic ⊆ V as the set of all pickup stations and Vdel ⊆ V as the set of all
delivery stations, i.e., V = Vpic ∪ Vdel. Furthermore, we add a node referred to as 0,
representing the depot, and define V0 = V ∪ {0}. The arc set A represents the fastest
connections between the nodes and every arc has associated a traveltime tuv, and formally,
A = {(u, v) | u ∈ Vpic, v ∈ Vdel} ∪ {(u, v) | u ∈ Vdel, v ∈ Vpic}. Accordingly, we define the
arc set A0 = A ∪ {(0, v) | v ∈ Vpic} ∪ {(v, 0) | v ∈ Vdel}. The corresponding bipartite
graph G is defined as G = (V,A), and graph G0, including the depot, accordingly as
G0 = (V0, A0). By assumption, we are given a homogeneous vehicle fleet L with a
common time budget t̂ wherein technicians have to finish their routes. Additionally, all
vehicles have a common capacity Z defining how many bikes they can transport at the
same time. We assume, that all vehicles have to start empty at the depot and return
empty to the depot. Every station v ∈ V is visited at most once.

Our aim is to service as many stations as possible within the time budgets of the drivers.
Feasible solutions to the problem do not exceed the time budget for any driver, all routes
start with a pickup station and end with a delivery station. Furthermore, the tour must
alternate between pickup and delivery stations. Finally, the solution is represented by an
alternating tour for every vehicle.

3.5.3 Logic-Based Benders Decomposition Scheme

The idea of classical Benders Decomposition is to split the original (compact) model
into two parts, namely a restricted master problem and a subproblem by separating
the variables and using LP duality. Logic-Based Benders Decomposition [72] aims at
extending this approach to a "logical split" of the problem into a master problem and a
subproblem where the subproblem yields Benders cuts through logical deduction. This
means, Benders infeasibility cuts are added to the master problem whenever the solution
of a subproblem is infeasible and the master problem is then resolved with these cuts.

The Assignment Problem (AP)

deals with assigning stations to vehicles and serves as the master problem of this approach.
Much work on the AP in conjunction with Vehicle Routing Problems (VRP) is done with
heuristic approaches (e.g., Genetic Algorithms) as it can be tough to find good routing
costs approximation which can be formulated efficiently inside a MIP. In fact it turned
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out to be the biggest challenge to effectively encode the routing costs approximation into
the MIP model. We need a lower bound on the TSP, because if we would overestimate
the routing costs, obviously the subproblem would always be feasible as the optimal
TSP tour would be lower than the estimation. Thus, our algorithm would terminate
regardless whether the solution is optimal or not. Schuijbroek et al. [140] use a Maximum
Spanning Star which they have proved to be an upper bound on the routing costs for
their problem. However, in our case we need a lower bound, and thus, we ended up
by using a single commodity flow formulation for computing a minimum spanning tree
(MST) for approximating the routing costs in our MIP model. It has several advantages:
It is a standard and well-known problem of graph theory, so it can be formulated very
well inside the MIP and can be solved relatively efficiently. As preprocessing we calculate
an upper bound ω on the assignment per cluster. Thus, we define a variable t = 0. Then,
we seek for the pickup station with the least travel cost from the depot and the delivery
station with the least travel cost to the depot and add these costs to t. Afterwards, we
look for any lowest cost edges to add them also to t as long as t < t̂. The number of nodes
added during this procedure is an upper bound on the maximum assigned stations per
cluster. This helps us to get some bound and our MIP model does not become quadratic
(see Eq. 3.43 in the MIP).

Let xvl ∀v ∈ V0, l ∈ L be 1 if v is assigned to vehicle l, 0 otherwise, yluv ∀(u, v) ∈ A0, l ∈ L
be 1 if there exists an edge from u to v in the MST for vehicle l, 0 otherwise, f luv ∀(u, v) ∈
A0 the flow between nodes u and v for the MST in cluster l and hl be the routing costs
approximation for vehicle l. Moreover, we define the constant τ as the scaling factor for
the MST in the objective function. This scaling factor is used to neglect any influence of
the MST in the objective function because we only want to maximize the total assigned
stations. The MST in the objective function is only used for routing costs approximation.
Then our MIP model is formally defined as follows:

max
∑
l∈L

∑
v∈V

xvl −
∑
l∈L

τ · hl (3.37)

subject to

x0l = 1 ∀l ∈ L (3.38)∑
l∈L

xvl ≤ 1 ∀v ∈ V (3.39)

∑
v∈Vpic

xvl =
∑
v∈Vdel

xvl ∀l ∈ L (3.40)

∑
(0,v)∈A0

f l0v =
∑
v∈V

xvl ∀l ∈ L (3.41)

∑
(u,v)∈A0

f luv −
∑

(v,u)∈A0

f lvu = −1 ∀l ∈ L, u ∈ V (3.42)

f luv ≤ yluv · ω ∀l ∈ L, (u, v) ∈ A0 (3.43)
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∑
(u,v)∈A0

yluv =
∑
v∈V

xvl ∀l ∈ L (3.44)

yluv ≤ xvl ∀l ∈ L, (u, v) ∈ A0 (3.45)
yluv ≤ xul ∀l ∈ L, (u, v) ∈ A0 (3.46)
hl ≥

∑
(u,v)∈A

yluv · tuv ∀l ∈ L (3.47)

hl ≤ t̂ ∀l ∈ L (3.48)
xvl, y

l
uv ∈ {0, 1} ∀v ∈ V0, (u, v) ∈ A0, l ∈ L (3.49)

hl, f
l
uv ∈ R+ ∀(u, v) ∈ A0, l ∈ L (3.50)

The objective function (3.37) maximizes the stations assigned to vehicles and minimizes
the approximated costs by the spanning trees computed for each cluster. Note that not
all stations may be assigned to a cluster as it is not possible to serve all stations within
the given time limit. Inequalities (3.38)–(3.40) constitute the assignment of stations
to the vehicles whereas inequalities (3.41)–(3.46) represent the spanning tree polytope.
Equalities (3.38) state that the depot 0 is included in every cluster. Inequalities (3.39)
ensure that each station is assigned to at most one vehicle, and equalities (3.40) state
that the number of assigned pickup stations must be equal to the number of assigned
delivery stations for each cluster. The spanning tree is modeled by a single commodity
flow formulation where the outgoing flow of the root node for each cluster must be the
number of nodes assigned to that cluster which is ensured by equalities (3.41). For all
other nodes except the root node, equalities (3.42) define that every node must consume
1 flow. Inequalities (3.43) restrict the maximum flow value of each cluster. Furthermore,
these inequalities define the flow to be 0, if the edge is not chosen by the MST (i.e.,
yluv = 0). Equalities (3.44) state that the total number of selected edges for the MST
must be the number of stations assigned to that cluster. Equalities (3.45) and (3.46) state
that the edge (u, v) can only be chosen by the MST, if both nodes u and v are contained
in the cluster l. Equalities (3.47) are used to assign the approximated routing costs for
each vehicle l ∈ L to the variable hl. Inequalities (3.48) ensure that the approximated
routing costs lie within the time budget of each vehicle.

We can extract the assignment of stations from the x-variables. Note that the assignment
may not necessarily be feasible as we only approximate the routing costs. The MST is a
lower bound on the TSP, and therefore, the optimal routing costs may be higher than
the time budget.

Traveling Salesman Problems

have to be solved in our subproblems. After solving the AP we know which stations
have to be serviced by which vehicle. Thus, we have to solve a TSP for each vehicle
separately on the respective subgraph. As the TSP is already a well-studied problem,
we use the State-Of-The-Art TSP solver Concorde [30]. However, Concorde is designed
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for solving only symmetric TSP instances on the complete graph. Thus, we transform
our asymmetric instance into a symmetric one as shown in [77]. Infeasible edges (i.e.,
pickup to pickup and delivery to delivery stations) are modeled by very high routing
costs so that these edges will not be used. Because of the maximum time limit of 480min
in our experiments, we get rather small TSP instances with about 25 stations for each
subproblem. Concorde is able to solve those instances within milliseconds.

By using Concorde and translating the result back, we retrieve an alternating tour through
all stations of the cluster starting and ending at the depot with minimal costs. We have
to check if the costs of the optimal TSP tour are within the common time limit t̂ of the
vehicle. If this is the case, we have found a feasible solution. If this is not the case, we
know that we have an infeasible assignment, because it is not possible to traverse all
stations within the given time limit. Thus, we add a cut for this assignment and resolve
the AP.

If all subproblems are feasible which means that the tours of the vehicles lie within their
time budget, we have found a feasible and optimal solution to our problem and the
algorithm terminates.

Benders infeasibility cuts

are generated whenever we find a cluster which is not feasible due to the time limit of
the vehicles. As we deal with a homogeneous vehicle fleet we can add this cut for each
vehicle. Let C be the the set of all cuts, then the Benders cut is formally defined as:∑
v∈c xvl ≤ |c| − 1 ∀c ∈ C, l ∈ L. This means all sets S ⊆ V0 where ∃c ∈ C : S ⊇ c are

discarded.

For improving the cuts we use the following additional heuristic: When we examine an
infeasible assignment, we try to make the infeasible set smaller to cut off more infeasible
assignments. Thus, we look for two stations, one pickup and one delivery station which
have the least travel costs in the assignment. We remove these stations and try to resolve
the TSP using Concorde. If the assignment stays infeasible we have found a better cut,
and we can prune more infeasible assignments for the next run of the AP.

3.5.4 Computational Results

In this section we compare the Logic-Based Benders Decomposition with the effective and
powerful Variable Neighborhood Search (VNS) from [125]. For comparison, the VNS gets
also the pre-processed instances as input so that it produces alternating tours picking up
as many bikes as possible and delivering as many bikes as possible at every station.

As benchmark set we chose |V | ∈ {10, 20, 30, 60}, |L| ∈ {1, 2} and t̂ ∈ {120, 240, 480}.
The instances have been taken from [125] but now we only consider the type of the
station rather than the exact fill levels.
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The algorithm was implemented in C++ using GCC 4.8.2. For running our tests we used
a single core of an Intel XEON E5540 with 2.53 GHz and 3 GB of memory. As MIP
solver for the AP and Concorde we used CPLEX 12.6.

We set τ = 0.001 for our experiments. The time limit for the Logic-Based Benders
Decomposition was 1 hour and for the VNS we used half an hour. To compare to the
VNS, we count the visited stations at the end of rebalancing. For every benchmark type
we used 30 different instances and calculated the average.

Table 3.9 shows that small instances can easily be solved to optimality by the Logic-Based
Benders Decomposition. Furthermore, all instances up to 30 stations using 2 vehicles
and 8 hours of time budget have been solved to optimality. In overall, we obtained
optimal solutions for 66% of the selected instance sets. In the third column of the
Benders Decomposition we show the approximation quality of the MST for the TSP.
By approximation quality we measure how far off the estimated routing costs of the
MST are compared to the optimal costs of the TSP retrieved by Concorde. Generally,
it looks that approximation quality becomes better with bigger instances although we
sometimes cannot solve all of the instances to optimality. In overall, we have achieved an
approximation quality of 18% with respect to the TSP. The number of iterations and
cuts are moderate for the selected instances.

When comparing the exact Logic-Based Benders Decomposition with the VNS, we noticed
that differences between the exact algorithm and the metaheuristic become bigger when
instance sets are larger although the VNS is most of the time not far off from the exact
solution.

3.5.5 Conclusions and Future Work

We have proposed a novel problem definition for balancing BSS which is at least in
some BSS practically highly relevant (i.e., Citybike Wien), but substantially simplifies
the problem. To solve the problem by an exact approach we have come up with a
Logic-Based Benders Decomposition scheme. The master problem is modeled as an
Assignment Problem and the subproblems as Traveling Salesman Problems accordingly.
It is possible to solve these subproblems with State-Of-The-Art methods, like Concorde,
within milliseconds. Furthermore, we have shown that the Minimum spanning tree is a
reasonable approximation for routing costs in the master problem. However, for bigger
instances with more than 60 stations exact solutions are not always found within the
time limit.

For future work it would be very interesting to investigate Branch-and-Check [150] as
the subproblem can be solved very efficiently using Concorde. Furthermore, we would
like to extend this approach to a heuristic Cluster-First Route-Second algorithm. If the
AP would be solved heuristically, we could treat much bigger instances, probably even
bigger instances than we have solved before (up to 700 stations in [125]). Moreover, as
Concorde is very efficient for solving the TSP it would also be interesting to compare to
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Instance set Logic-Based Benders Decomposition VNS
|V | |L| t̂max Feasible [%] obj qual [%]#iterations #cuts t̃tot [s] obj diff

10 2 120 100.00 6.93 23.15 12.97 15.58 0.39 4.93 -2.00
10 2 240 100.00 8.20 24.56 1.20 0.76 0.06 8.07 -0.13
10 3 120 100.00 7.93 26.55 9.60 14.84 0.32 7.20 -0.73

20 2 120 86.67 7.92 22.97 71.88 149.04 48.98 5.37 -2.56
20 2 240 60.00 15.67 13.76 18.56 63.38 0.56 10.00 -5.67
20 3 120 56.67 11.76 20.82 65.59 163.84 197.22 8.13 -3.63
20 3 240 100.00 16.87 18.26 3.57 3.74 1.43 15.90 -0.97

30 2 120 40.00 8.00 22.98 14.58 14.27 829.56 5.10 -2.90
30 2 240 6.67 21.00 13.61 1.50 0.71 2851.00 9.53 -11.47
30 2 480 100.00 26.47 11.24 2.23 3.09 1.13 19.23 -7.23
30 3 120 10.00 12.00 24.14 1.00 0.00 3597.89 7.70 -4.30
30 3 240 30.00 23.78 14.39 8.00 5.96 7.79 17.53 -6.24

60 3 480 73.33 51.91 9.03 20.36 21.81 456.10 36.10 -15.81

66.41 218.44 18.88 154.80 -63.64

Table 3.9: Results from our computational tests showing Logic-Based Benders Decompo-
sition

a Route-First Cluster-Second algorithm as these approaches got very efficient during the
last decade [115].

3.6 Full-Load Route Planning By Logic-Based Benders
Decomposition

We propose three exact solution approaches: a compact MIP model, a logic-based
Benders decomposition (LBBD), and a variant thereof, namely Branch-and-Check (BAC).
Moreover, we compare with previously proposed and leading metaheuristics allowing
flexible numbers of picked up and delivered bikes, concluding that the restriction to
only full vehicle loads affects the finally achieved balance in practical scenarios indeed
in only minor ways. We introduce the new problem formulation in detail and provide a
compact MIP model there for. Moreover, a logic-based Benders decomposition algorithm
is introduced and also a variant thereof, namely branch-and-check. It is shown how the
cuts can be optimized in order to make the algorithm perform better. In the remainder
computational results are given for the proposed algorithms.
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3.6.1 Problem Statement

We first summarize aspects of existing problem formulations for Balancing Bike Sharing
Systems (BBSS) and then state our new approach, giving respective formal definitions.

Generally, previous works distinguish two types of problem variants for BBSS, namely
the static and the dynamic case.

In the static scenario we are given an initial state of the system, i.e., initial fill levels
for all stations, and a desired target state of the system, i.e., target fill levels or demand
intervals for all stations.

For the static case, a significant variety of different optimization goals has been considered
in the literature, e.g., minimizing the traveling costs [21, 37] where balancing is modeled
as a hard constraint, or minimizing the total number of expected shortages [126].

A quite challenging task is to determine best suited target fill levels for the optimization.
This has to be done with caution because the final state at the end of rebalancing is the
initial state for the next day(s) in the static model. The customer demand of renting and
returning bikes is the crucial factor when target values for the rebalancing operations
have to be determined. Thus, a sophisticated demand prognosis is necessary to estimate
well-suited target values. Rudloff and Lackner [132] build such a prognosis model based
on historical data of the system of Citybike Wien based on various impact factors like
weather, day of the week, time of the day, temperature, etc. They also consider the
influence of entirely full or empty neighboring stations. Han et al. [62] concentrate on
the demand prediction for large-scale BSS. They describe the spatio-temporal correlation
in BSS as an important factor for demand estimation. They verified their model on the
record set they retrieved from the BSS Vélib’ in Paris.

In general, the static problem variant neglects the dynamic interaction between the
customers and the system as it does not consider the user demand during rebalancing
and e.g., is appropriate for overnight rebalancing if the system is not in use during the
night [126].

The dynamic case also considers user interactions during rebalancing. Only few works,
however, exist in this direction. In [86] the user interactions and the demands are
retrieved from historical data and implemented by a probabilistic model of Rudloff and
Lackner [132], and the objective is to minimize unsatisfied user demand as well as to
minimize deviation between initial and desired target fill levels. Contardo et al. [28]
randomly generate demand values and try to minimize shortages and excesses of bikes
over a prospective time horizon.

If the user demand is predicted reasonably well and the rebalancing takes place during
the active times of the PBS, the dynamic case can thus in principle be more accurate
than a static model but is also computationally much more demanding. Under the
assumption that rebalancing should not primarily fulfill short-term needs and station
capacities are reasonably large, static models are generally also accepted as a reasonably
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good approximation for systems where the rebalancing takes place during the operation
hours. We therefore also concentrate on the static case here.

A BBSS Formulation Considering Full Vehicle Loads Only

As motivated already in the introduction, observations at Citybike Wien reveal that
pickup and delivery of full vehicle loads clearly dominates practice. Due to economic
reasons there is a financial limit on the labor costs, and rebalancing is done in such a way
that a practically acceptable but usually not perfect balance of the stations’ fill levels
is achieved. Thus, the number of drivers respectively vehicles and their working times
are a major limit, and the stations should be brought to specified target fill levels as far
as possible, but reaching all of them exactly is (typically) out of question. The drivers
are in principle daily faced with more work than can be feasibly done. Furthermore,
many stations ideally require more than one, sometimes even several full vehicle loads
to be delivered or picked up in order to achieve the desired target state. Most of the
drivers’ working time is consumed by traveling to the individual stations and parking
somewhere nearby, however, required time for loading or unloading less or more bikes
plays a comparably small role, and is frequently also neglected in existing models. In
such a scenario, it becomes obvious that it is clearly most effective to move almost always
approximately full vehicle loads from stations with a substantial excess of bikes to stations
with a substantial demand.

Consequently, we assume in our new BBSS problem formulation that the vehicle is always
either fully loaded with bikes or empty, dropping the consideration of moving only a
certain number of bikes less than the vehicles full capacity. Concerning the objective
function, our goal is to bring as many stations as far as possible to their specified target
fill levels, respecting given working times, and the general constraints for feasible tours.

Considering only full vehicle loads simplifies existing models substantially. Typically,
the consideration of the exact number of bikes to be moved requires an additionally
embedded flow problem to be solved.

Of course, not dealing with partial vehicle loads comes along with a potential loss
of accuracy, but the prediction of user demands which depends on, e.g., the weather,
weekday, events in the stations’ neighborhoods and the influence of neighboring stations
involve in general uncertainties for the calculation of suitable target fill levels that can
be safely assumed to dominate in practice.

Formal Problem Definition

We are given a set of stations S and a set of homogeneous vehicles L. For the vehicles we
are given a common capacity Z and a common time budget t̂ (drivers’ shift times) within
which the vehicles have to finish their routes. For each station s ∈ S we are given the
number of full vehicle loads fs to be delivered (fs ≤ −1) or picked up (fs ≥ 1) such that
the station achieves its (approximately) ideal target fill level. Stations that are already
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at their desired target fill level (or require less than a full vehicle load) are ignored from
any further consideration.

A station, to which bikes shall be delivered is called a delivery station, while a station
from which bikes should be removed is called a pickup station. At pickup stations, only
pickups may be performed, while at delivery stations, only deliveries, and we never allow
more than |fs| visits at each station. Thus, a kind of buffering bikes at some station
and moving them further later is explicitly excluded. Especially in our context with
the consideration of full vehicle loads only, such solutions would not make sense anyway
when the triangle inequality is fulfilled by the traveling times between stations, what can
safely be assumed for practice.

For modeling tours with up to |fs| visits at each station s ∈ S, we define a directed
bipartite graph G = (V,A) as follows. Let Vpic = {(s, i) | s ∈ S ∧ fs ≥ 1, i = 1, . . . , |fs|}
be a set of nodes representing up to |fs| visits at each pickup station, and let Vdel =
{(s, i) | s ∈ S ∧ fs ≤ −1, i = 1, . . . , fs} denote the respective potential visits at the
delivery stations. V = Vpic ∪ Vdel then refers to the joined set of all potential visits, and
the arc set of graph G is given by A = {(u, v), (v, u) | u ∈ Vpic, v ∈ Vdel}.

We further extend the set of stations V by two nodes 0 and 0′ representing the depot
at the beginning and the end of each tour, respectively, obtaining V0 = V ∪ {0, 0′}.
Node 0 is connected to all pickup nodes, while 0′ is connected to all delivery nodes, i.e.,
A0 = A ∪ {(0, v) | v ∈ Vpic} ∪ {(v, 0′) | v ∈ Vdel}, yielding bipartite graph G0 = (V0, A0).
We explicitly omit here an arc (0, 0′) which might be used for representing a vehicle that
stays at the depot and does not do any station visits due to the fundamental assumption
in our modeling that more than enough rebalancing work exists for keeping all vehicles
busy.

Each arc (u, v) ∈ A0 represents an actual trip from the location represented by visit u
to the location represented by visit v and has a corresponding traveling time tuv > 0
associated. This time also includes an estimated time for parking at the destination and
in case of v 6= 0′ for handling the station’s electronic system and for loading or unloading
the bikes.

A solution to our problem is a set of |L| simple paths in G0 from node 0 to node 0′ visiting
all vertices in their vehicle’s l ∈ L corresponding subgraph. Let rl = (r1

l , r
2
l , . . . , r

ρl
l ) be

the successive station visits in the route of vehicle l ∈ L, with ρl being the number of
visits and V (rl) corresponding to the set of station visits contained in route rl. Due to
the bipartite structure of G0, as long as the path is not empty (ρl > 0) each odd stop
must be performed at a pickup station, i.e., r1

l , r
3
l , . . . , r

ρl−1
l ∈ Vpic, while each even stop

takes place at a delivery station, i.e., r2
l , r

4
l , . . . , r

ρl
l ∈ Vdel, and ρl always is even.

A non-empty route rl is feasible with respect to the time budget t̂ iff

t0r1
l

+
ρl−1∑
i=1

tri
l
ri+1
l

+ trρl
l

0′ ≤ t̂. (3.51)
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By assumption all vehicles start empty at the beginning and have to return empty, which
is implicitly guaranteed again by the bipartite graph.

By above definitions, we reduce the BBSS problem as introduced in [125] to a selective
unit-capacity one-commodity pickup and delivery problem with time budgets on a bipartite
graph.

As optimization goal, we consider in this work the maximization of the total number of
station visits

max
∑
l∈L

ρl, (3.52)

which corresponds to twice the number of moved full vehicle loads. By this objective
function, we also minimize the sum of the deviations from the stations’ target fill levels
after the rebalancing, which is

min
∑
s∈S
|fs| −

∑
l∈L

ρl (3.53)

and is the primary objective of previous work such as [41, 40, 70, 125, 126]. In [125] the
objective is particularly given as follows:

min ωbal ∑
s∈S

δs + ωload ∑
l∈L

ρl∑
i=1
|yil,ri

l
|+ ωwork ∑

l∈L
tl, (3.54)

where ωbal, ωload, ωwork are weighting factors, δs = |as − qs| denotes the deviation of the
final fill level as from the target fill level qs at station s ∈ S, yil,ri

l
denotes the number of

bikes loaded (> 0) or unloaded (< 0) by vehicle l ∈ L at station ril , and tl is the total
working time of vehicle l.

Proposition 2. When considering only balance optimization, the objective functions
shown in equation (3.53) and (3.54) correspond to each other (except for rounding errors
resulting from the fact that we now only consider full vehicle loads).

Proof. As we only focus on the balance aspect here, i.e., minimizing the deviation between
final and target fill levels, we set the weighting factors in equation (3.54) to ωbal = 1,
ωload = 0, ωwork = 0, effectively ignoring the second and third term. Equation (3.54) can
then be rewritten as

min
∑
s∈S
|as − qs| = min

∑
s∈Spic

as − qs +
∑
s∈Sdel

qs − as. (3.55)

Let ps be the initial fill level for station s ∈ S, then in a static context, the final fill level
can also be expressed as as = ps −

∑
l∈L

∑ρl
i=1 y

i
l,ri
l
which results in

min
∑
s∈Spic

ps − qs −∑
l∈L

ρl∑
i=1

yil,s

+
∑
s∈Sdel

qs − ps +
∑
l∈L

ρl∑
i=1

yil,s

 . (3.56)
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To show the correspondence of equation (3.53) to equation (3.56), equation (3.53) is
multiplied by the vehicle capacity Z such that the deviation in full vehicle loads is
transformed to the actual deviation in the number of bikes

min Z ·

∑
s∈S
|fs| −

∑
l∈L

ρl

 (3.57)

Required full loads to balance station s ∈ S can be calculated as follows

fs =
⌈
ps − qs
Z

⌉
∀s ∈ Spic, and fs =

⌊
ps − qs
Z

⌋
∀s ∈ Sdel, (3.58)

which can be used in equation (3.57) to get

min Z ·

 ∑
s∈Spic

⌈
ps − qs
Z

⌉
−

∑
s∈Sdel

⌊
ps − qs
Z

⌋
−
∑
l∈L

ρl

 . (3.59)

Let bs =
∑
l∈L |{ril | ril ∈ rl, ril = s}| ∀s ∈ S the number of full vehicle loads delivered to

or picked up at station s ∈ S, then we can rewrite equation (3.59) as

min Z ·

 ∑
s∈Spic

⌈
ps − qs
Z

⌉
−

∑
s∈Sdel

⌊
ps − qs
Z

⌋
−
∑
s∈S

bs

 =

min Z ·

 ∑
s∈Spic

⌈
ps − qs
Z

⌉
−

∑
s∈Sdel

⌊
ps − qs
Z

⌋
−

∑
s∈Sdel

bs −
∑
s∈Spic

bs

 =

min Z ·

 ∑
s∈Spic

(⌈
ps − qs
Z

⌉
− bs

)
−

∑
s∈Sdel

(⌊
ps − qs
Z

⌋
− bs

) =

min
∑
s∈Spic

(
Z ·

⌈
ps − qs
Z

⌉
− Z · bs

)
+

∑
s∈Sdel

(
Z ·

⌈
qs − ps
Z

⌉
+ Z · bs

)
(3.60)

Comparing equation (3.56) with equation (3.60) shows that the terms Z · bs and∑
l∈L

∑ρl
i=1 y

i
l,s correspond to each other as both represent the number of moved bikes by

the vehicles in the system. Moreover, the terms Z ·
⌈
ps−qs
Z

⌉
, Z ·

⌈
qs−ps
Z

⌉
and ps−qs, qs−ps

correspond to each other except for rounding errors due to the consideration of only full
vehicle loads.

Compact Mixed Integer Linear Programming Model

We now formulate the problem as a compact MIP model using assignment variables
xvl ∈ {0, 1} to state the assignment of station visits v ∈ V to vehicles l ∈ L and arc
selection variables yluv ∈ {0, 1} to describe the tour for each vehicle. Subtours are
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eliminated via Miller-Tucker-Zemlin inequalities [96] utilizing further continuous variables
av for the nodes v ∈ V .

max
∑
l∈L

∑
v∈V

xvl (3.61)

s.t.
∑
l∈L

xvl ≤ 1 ∀v ∈ V (3.62)

∑
v∈Vpic

xvl =
∑
v∈Vdel

xvl ∀l ∈ L (3.63)

∑
l′∈L

x(s,i)l′ ≥ x(s,i+1)l ∀s ∈ S, l ∈ L, i = 1, . . . , fs − 1 (3.64)

∑
v∈Vpic

yl0v = 1 ∀l ∈ L (3.65)

∑
v∈Vdel

ylv0′ = 1 ∀l ∈ L (3.66)

∑
(u,v)∈A0

yluv = xul ∀l ∈ L, u ∈ V (3.67)

∑
(u,v)∈A0

yluv = xvl ∀l ∈ L, v ∈ V (3.68)

∑
(u,v)∈A0

yluv =
∑

(v,u)∈A0

ylvu ∀l ∈ L, v ∈ V (3.69)

au − av + |V | · yluv ≤ |V | − 1 ∀l ∈ L, (u, v) ∈ A (3.70)∑
(u,v)∈A0

tuv · yluv ≤ t̂ ∀l ∈ L (3.71)

xvl ∈ {0, 1} ∀l ∈ L, v ∈ V (3.72)
yluv ∈ {0, 1} ∀l ∈ L, (u, v) ∈ A0 (3.73)
1 ≤ av ≤ |V |, av ∈ R ∀v ∈ V (3.74)

The objective function (3.61) maximizes the number of full vehicle loads picked up
and delivered to the stations and thus, the total balance increase in the PBS, compare
equation (3.53). Inequalities (3.62) state that every station visit is performed by at
most one vehicle. By equalities (3.63) we explicitly define that every tour contains
the same amount of pickup visits as delivery visits. Note that these equations are in
principle redundant but we include them nevertheless as they might be helpful from a
computational point of view. Inequalities (3.64) are used for symmetry breaking among
the visits of the same station: The i+ 1-th visit can only be performed when the i-th
visit is performed, for i = 1, . . . , fs − 1 and each station s ∈ S. For each vehicle the
depot’s starting node 0 has to have one outgoing arc (3.65), and similarly, the depot’s
target node 0′ has to have one incoming arc (3.66). The arc selection variables are linked
with the assignment variables as follows: Equalities (3.67) ensure that every node u ∈ V
has one outgoing arc iff it is assigned to vehicle l, i.e., xul = 1, while equalities (3.68)
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guarantee that each node v ∈ V which is assigned to vehicle l ∈ L has to have one
corresponding ingoing arc. Equalities (3.69) express that the number of ingoing arcs has
to be equal to the number of outgoing arcs for each node v ∈ V, l ∈ L. We eliminate
subtours by inequalities (3.70) by computing an ordering of the nodes in variables av.
Inequalities (3.71) guarantee that the routes for each vehicle lie within the allowed time
budget t̂. Finally, (3.72) to (3.74) define the domains of the decision variables.

For small instances, a state-of-the-art MIP solver such as CPLEX is able to directly yield
proven optimal solutions by this model in reasonable time, see the experimental results
in Section 3.6.3. The approach, however, does not scale well to larger instances.

3.6.2 Logic-based Benders decomposition

We first introduce the term LBBD and then describe the application of an LBBD scheme
to BBSS.

Introduction

In 1962 Benders came up with his classical decomposition technique to solve large MIP
problems [9]. This approach is in principle applicable if the problem can be split into a
master problem making use of only a subset of the variables including the complicating
integer variables, and an easier subproblem on the remaining continuous variables when
the master problem variables are assumed to be fixed to certain values. The solution
approach iterates by solving master problem instances and subproblems. After the master
problem is solved, a corresponding subproblem is obtained by fixing the master problem’s
variables in the original formulation to the obtained values. From the solution of the
subproblem’s linear programming (LP) dual one derives feasibility and/or optimality cuts
which are added to the master problem in each iteration. The whole process is repeated
until no further Benders cuts can be derived and an optimal solution has been obtained.

Erdoğan et al. [47] propose a Benders decomposition scheme for solving the static
rebalancing problem arising in BSS. When applying Benders decomposition to VRPs
often the master problem, containing the complicating variables, is hard to solve. Thus,
Lai et al. [89] came up with a hybrid of Benders decomposition and a genetic algorithm
(GA). They solve the master problem by the GA and the subproblems via a MIP model
by a commercial solver.

LBBD generalizes classical Benders decomposition by also allowing integer variables or
even nonlinearities in the subproblem. This is achieved by replacing the LP dual by a
more general concept called inference dual [72]. Typically, Benders cuts are here obtained
via logical deduction. In several applications, in particular in the domain of scheduling,
LBBD achieved remarkable results.

Hooker [71] presents a solution method applicable to generic scheduling problems where
he models the master problem as a MIP and solves the subproblems by constraint
programming (CP). Reported results on the LBBD outperform a pure MIP and and a

87



3. Balancing Bike-Sharing Systems

pure CP approach. Harjunkoski and Grossmann [63] propose a decomposition approach
for multistage scheduling problems. The master problem, an assignment problem, is
modeled as a MIP whereas for the subproblems they employ two strategies for feasibility
checking: One which utilizes a CP approach and another one where a MIP model is used
for the feasibility check. They have shown that the hybrid decomposition approach by
solving the master problem as a MIP and the subproblems with their CP approach has
been superior to a pure MIP or pure CP approach. Furthermore, solving the subproblem,
the sequencing of jobs, with the CP approach has been superior to the feasibility check
by the MIP.

There are two types of Benders cuts, namely, infeasibility cuts and optimality cuts.
Infeasibility cuts state that the current master solution is not feasible and avoid its
generation in future iterations, whereas optimality cuts provide new bounds on the
objective value for the current master problem solution. In every iteration except the
last, one or more cuts are generated where every single cut reduces the master problem’s
search space, or more precisely its underlying LP polytope – the more the better in
general. Thus, it should also be considered to strengthen obtained Benders cuts as far
as possible, which is especially in case of the LBBD frequently done by heuristics or by
constraint programming techniques, cf. the greedy algorithms proposed by Hooker [71].

We note that a technique which is similar to the principles of LBBD is called combinatorial
Benders cuts, cf. Codato and Fischetti [27].

Application to BBSS

The problem consists of an assignment problem (AP) and multiple Hamiltonian path
problems with time budgets that are interconnected. The AP is given in the proposed
model by equations (3.62)–(3.64), the Hamiltonian path problems are represented by
equations (3.69)–(3.71), and the connections between the AP and Hamiltonian path
problems are given by equation (3.67) and (3.68). In the following we decompose the
problem correspondingly by applying LBBD. In this approach, we iteratively solve
a master problem, corresponding to the AP, and subproblems corresponding to the
Hamiltonian path problems but are modeled as ATSPs. The solutions of the subproblems
will yield Benders infeasibility cuts for restricting the master problem in the further
iterations. The following section discusses this decomposition approach in detail.

In the following we show how LBBD is applied to our MIP for BBSS. Section 3.6.2
describes the master problem and states its MIP formulation, while Section 3.6.2 discusses
the subproblem and proposes a corresponding solution approach. Section 3.6.2 shows
how the master problem and subproblem interact and how the algorithm finally yields
an optimal solution. Section 3.6.2 introduces the alternative to LBBD, namely BAC.

Master problem: We decompose the model (3.61)–(3.74) from Section 3.6.1 by fo-
cusing in the master problem on the clustering aspect, i.e., the AP, yielding multiple
Hamiltonian path problems as subproblems. Our method was inspired by the cluster-first
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route-second method introduced by Fisher and Jaikumar [50] and also applied for BBSS
by Schuijbroek et al. [140].

In order to strengthen the master problem such that a relatively meaningful clustering
is determined from the beginning on, it is crucial to estimate the route durations for
the cluster and exclude clusters that obviously cannot be handled by a single vehicle.
Hooker [71] also reveals that it is important, for the success of the approach, to include
a relaxation of the subproblem within the master problem. Ideally, this route duration
estimation should come close to the real minimal Hamiltonian path durations and
introduce only a reasonable overhead in the master problem’s model. However, it is
important that the determined approximate trip durations are guaranteed lower bounds
for the real durations, as otherwise sets of station visits might be excluded from becoming
clusters, despite feasible routes would actually exist for them.

A lower bound for a TSP that can relatively easily be expressed by a linear program
is obtained from the minimum spanning tree relaxation of the TSP. As we can model
the Hamiltonian path problem as an ATSP, we relax the problem of finding an optimal
ATSP tour to the minimum 0-arborescence problem, i.e., a minimum, from the depot
outgoing, arborescence.

The MIP formulation of our master problem primarily uses the assignment variables
xvl, v ∈ V, l ∈ L from the original problem. For determining the lower bounds for the
vehicles’ tour durations via the arborescence polytope, flow variables f luv and arc selection
variables yluv ∈ {0, 1} for all vehicles l ∈ L and arcs (u, v) ∈ A0 are used.

Furthermore, we define β to be an upper bound on the maximal number of station visits
per vehicle. This upper bound is derived by solving the single-vehicle case of the problem
which is given as follows:

max
∑
v∈V

xv (3.75)

s.t. xv ≤ 1 ∀v ∈ V (3.76)∑
v∈Vpic

xv =
∑
v∈Vdel

xv (3.77)

x(s,i) ≥ x(s,i+1) ∀s ∈ S, i = 1, . . . , fs − 1 (3.78)∑
v∈Vpic

y0v = 1 (3.79)

∑
v∈Vdel

yv0′ = 1 (3.80)

∑
(u,v)∈A0

yuv = xu ∀u ∈ V (3.81)

∑
(u,v)∈A0

yuv = xv ∀v ∈ V (3.82)

∑
(u,v)∈A0

yuv =
∑

(v,u)∈A0

yvu ∀v ∈ V (3.83)
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au − av + |V | · yuv ≤ |V | − 1 ∀(u, v) ∈ A (3.84)∑
(u,v)∈A0

yuv · tuv ≤ t̂ (3.85)

xv ∈ {0, 1} ∀v ∈ V (3.86)
yuv ∈ {0, 1} ∀(u, v) ∈ A0 (3.87)
1 ≤ av ≤ |V | ∀v ∈ V (3.88)

This single vehicle case is in practice much easier to solve than our complete problem.
In our test discussed in Section 3.6.3, we typically obtained optimal solutions within
seconds, and stopped the solving after a CPU-time limit of 5min and then took the
obtained rounded down upper bound to the optimal solution value as β.

Given these decision variables, preprocessing values and parameters, the master problem
(MP) is stated as follows:

max
∑
l∈L

∑
v∈V

xvl (3.89)

s.t.
∑
v∈V

xvl ≤ β ∀l ∈ L (3.90)

∑
l∈L

xvl ≤ 1 ∀v ∈ V (3.91)

∑
v∈Vpic

xvl =
∑
v∈Vdel

xvl ∀l ∈ L (3.92)

∑
l′∈L

x(s,i)l′ ≥ x(s,i+1)l ∀s ∈ S, l ∈ L, i = 1, . . . , fs − 1 (3.93)

∑
(0,v)∈A0

yl0v = 1 ∀l ∈ L (3.94)

∑
(u,0′)∈A0

ylu0′ = 1 ∀l ∈ L (3.95)

yluv ≤ xul ∀l ∈ L, u ∈ V, (u, v) ∈ A0 (3.96)
yluv ≤ xvl ∀l ∈ L, v ∈ V, (u, v) ∈ A0 (3.97)∑
(0,v)∈A0

f l0v =
∑
v∈V

xvl + 1 ∀l ∈ L (3.98)

∑
(v,0′)∈A0

f lv0′ = 1 ∀l ∈ L (3.99)

∑
(u,v)∈A0

f luv −
∑

(v,w)∈A0

f lvw = xvl ∀l ∈ L, v ∈ V (3.100)

f luv ≤


(β + 1) · yl0v if u = 0
β · yluv if v ∈ Vpic

(β − 1) · yluv else
∀l ∈ L, (u, v) ∈ A0 (3.101)
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∑
(u,v)∈A0

yluv =
∑
v∈V

xvl + 1 ∀l ∈ L (3.102)

∑
(u,v)∈A0

tuv · yluv ≤ t̂ ∀l ∈ L (3.103)

xvl ∈ {0, 1} ∀l ∈ L, v ∈ V (3.104)
yluv ∈ {0, 1} ∀l ∈ L, (u, v) ∈ A0 (3.105)
f luv ∈ R+ ∀l ∈ L, (u, v) ∈ A0 (3.106)

As in the compact model, the objective function (3.89) to be maximized is the total number
of performed station visits. The maximum number of station visits per vehicle are bounded
upwards by β (3.90), the optimal solution or rounded down upper bound of the single-
vehicle case for which the MIP model is given in Section 3.6.2. Inequalities (3.91) state that
any station visit can only be performed by at most one vehicle. Equations (3.92) ensure
that for every vehicle the number of assigned delivery station visits corresponds to the
number of assigned pickup station visits. Inequalities (3.93) ensure that the i+1-th visit of
a station can only be performed when an i-th visit takes place. Equalities (3.94) and (3.95)
state that each vehicle leaves node 0 once and arrives at 0′ once, respectively. Assignment
variables xvl are linked with the arc selection variables yluv by inequalities (3.96) and (3.97).
It is ensured that an arc (u, v) can only be used in the arborescence if both u ∈ V and
v ∈ V are assigned to vehicle l. Note that these inequalities are in principle redundant
because it is also implicated by the constraints for the flow conservation but we include
them nevertheless as they might be helpful from a computational point of view.

The arborescence is realized by the single commodity flow conservation equations (3.98)–
(3.102). According to (3.98) the amount of flow sent out from the depot at node 0
corresponds to the number of nodes assigned to vehicle l plus one to also reach 0′, i.e., to
get back to the depot. The consumption of this last unit of flow at 0′ is ensured by (3.99).
Equalities (3.100) provide the flow conservation for all station visits v ∈ V , where one unit
of flow is consumed by each station visit assigned to vehicle l ∈ L. Inequalities (3.101) link
the flow variables with the arc selection variables yluv, i.e., a positive flow may only occur
on a selected arc. Equations (3.102) state for each arborescence that the total number of
arcs must be one more than the total number of nodes, i.e., station visits assigned to
vehicle l ∈ L. Inequalities (3.103) ensure that for each vehicle the approximated routing
durations, i.e., the total times of the arborescence, lie within the allowed time budget t̂.
Finally (3.104)–(3.106) are the domain definitions of the decision variables. Variables xvl
and yluv are binary whereas the flow variables f luv are continuous.

Subproblems: A solution to the master problem yields an assignment of stations to
vehicles in variables xvl. Let Gl = (Vl, Al) with node set Vl = {v | v ∈ V, xvl = 1} and
arc set Al = {(u, v) | (u, v) ∈ A, xul = 1, xvl = 1} ∪ {(0, v) | v ∈ V pic, xvl = 1} ∪ {(v, 0) |
v ∈ V del, xvl = 1} be the corresponding subgraph for vehicle l ∈ L. The subproblem
(SP) in our LBBD corresponds then to the task of finding for each vehicle l ∈ L in
its corresponding subgraph Gl a Hamiltonian path from 0 to 0′ visiting each node
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v ∈ Vl ∪ {0, 0′} exactly once and having a total duration that does not exceed t̂. Thus,
our Benders subproblem decomposes into |L| independent Hamiltonian path problems
that are essentially decision variants of the ATSP, when considering that nodes 0 and 0′
actually represent the same depot and might be further connected with an arc (0′, 0).

As sophisticated solvers for the TSP exist, we utilize one of them in our solution approach
instead of implementing one on our own: Concorde [2, 30] is a state-of-the-art TSP solver
for the symmetric traveling salesman problem (STSP) on complete graphs. We convert
each of our directed ATSP instances into an STSP instance by employing the 2-node
transformation described by Jonker and Volgenant [77, 78]. A symmetric auxiliary graph
Gaux = (V aux, Eaux) with associated costs taux : Eaux → R+ is derived. Its set of vertices
consists of two nodes for each one in Vl and two nodes 0 and 0′ representing the depot:
V aux = {v | v ∈ Vl} ∪ {v′ | v ∈ Vl} ∪ {0, 0′}. As Concorde works on a complete graph, we
set Eaux = V aux × V aux and define the edge costs as follows:

taux
vv′ = 0 ∀v ∈ Vl (3.107)
taux
uv = taux

u′v′ =∞ ∀u, v ∈ Vl, u 6= v (3.108)
taux
uv′ = tuv +M ∀(u, v) ∈ Al (3.109)
taux
uv′ =∞ ∀u, v ∈ Vl, u 6= v, (u, v) 6∈ Al (3.110)

Figure 3.11 shows the derivation of the auxiliary graph on an example. Note that the
big-M is needed to ensure that the zero-cost edges between all nodes and their duplicates
(v, v′) are always used in an optimal solution for the converted STSP. Thus, it has to be
ensured that the big-M constant is large enough such that this property is guaranteed.

Proposition 3. There is a one-to-one correspondence between optimal solutions to the
converted STSP with finite objective and optimal solutions for the ATSP.

Proof. Let C be the set of all Hamiltonian cycles in Gaux which contain (v, v′) for all
v ∈ Vl and Caux ∈ C. We define the following corresponding subgraph of Gl, for which
we will prove that it is a Hamiltonian cycle:

C = {(u, v) | u, v′ ∈ Caux, u 6= v} ∪ {(v, u) | u′, v ∈ Caux, u 6= v}.

Due to the fact that the cost between all edges from the original graph (u, v) and all
edges between duplicates (u′, v′) are set to infinity, they will never be part of Caux. Thus,
there are two types of edges contained in Caux: (u, v′) ∈ Eaux representing an outgoing
arc from node u in Gl and (u′, v) ∈ Eaux representing an ingoing arc to node u in the
original graph Gl. As every node u has degree two in Caux and is connected with u′

there must be exactly one v 6= u where v′ is connected with u. The same way there
exists exactly one w 6= u which is connected to u′. Consequently, every node has exactly
one ingoing and exactly one outgoing arc in C. Since the undirected version of C is
exactly Caux after merging all vertices v with v′, it can be concluded that C is weakly
connected. Since it was shown that every node has exactly one ingoing and exactly one
outgoing arc and C is weakly connected, consequently, C has to be a Hamiltonian cycle
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Figure 3.11: An example for the conversion of our subproblem on subgraph Gl into
a symmetric traveling salesman problem instance on an auxiliary graph Gaux. Pickup
stations are referred by p1 and p2, d1 and d2 denote delivery stations, 0 is the depot
and 0′ is the copy of the depot. Note, that Gaux actually is a complete graph. However,
infeasible edges with tuv =∞, ∀(u, v) ∈ Gaux are omitted for the sake of readability. The
optimal solution in Gaux and the corresponding optimal solution in Gl are drawn as bold,
green edges respectively arcs.
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Algorithm 3.1: LBBD for BBSS
1: repeat
2: init: r ← vector of |L| empty routes, cutsAdded ← false
3: Solve MP to obtain subproblems
4: for all l ∈ L do
5: rl ← solution of SP for vehicle l
6: if obj(rl) > t̂ then
7: I ← V (rl)
8: MP← MP ∪ (

∑
v∈I xvl ≤ |I| − 1 ∀l ∈ L)

9: cutsAdded ← true
10: end if
11: end for
12: until not(cutsAdded)
13: return r

in Gl. Moreover, if C is a Hamiltonian cycle in Gl we can construct the corresponding
Hamiltonian cycle Caux in Gaux. Therefore, we have a bijection between all Hamiltonian
cycles in Gl and all Hamiltonian cycles in C. The objectives of these Hamiltonian cycles
is the same except a constant:

tC = tCaux − (|V |+ 2) ·M.

Therefore, if Caux is optimal, the corresponding C also has to be optimal. Moreover, if
C is optimal, it follows that Caux has a minimum objective of all Hamiltonian cycles in
C. By construction all optimal Hamiltonian cycles of Gaux have to be in C and therefore,
Caux is optimal.

An optimal TSP solution on graph Gaux will always connect node 0 to a visit of a pickup
station v ∈ V pic since the costs for traveling from the depot 0 to a delivery station is
infinity. Moreover, when a pickup station has been visited the next visit can only be
performed at a delivery station v ∈ V del since costs for traveling between two pickup
stations is also infinity. The same condition holds for traveling between two delivery
stations. Traveling to the copy of the depot 0′ can only be performed from a delivery
station since the costs for traveling from a pickup station to the copy of the depot is
infinity. Finally, the Hamiltonian path can be obtained by simply excluding the arc
between 0 and 0′ which is performed at no cost.

Iterated Decomposition Procedure and Cut Generation: Algorithm 3.1 shows
an LBBD scheme utilizing cut generation by Benders infeasibility cuts. Variable r denotes
the current solution, i.e., the vector of |L| routes, which are initially all empty. The
function obj(rl) returns the objective value of a single subproblem solution, i.e., the
actual routing costs when the TSP is solved to optimality.
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Algorithm 3.2: Minimize the cutset
init: rl ← Hamiltonian Path for vehicle l in Gl, I ← {I}, MinSize ← |I|
function minimizeCutSet(rl, I,MinSize)

1: for all (u, v) ∈ rl | u /∈ {0, 0′}, v /∈ {0, 0′} do
2: T ← V (rl) \ {u, v}
3: r′l ← solution of SP for stations in T
4: if obj(r′l) > t̂ then
5: if |T | = MinSize then
6: I ← I ∪ {T}
7: else if |T | < MinSize then
8: I ← {T}
9: MinSize ← |T |

10: end if
11: I ← minimizeCutSet(r′l, I,MinSize)
12: MinSize ← |I ′|, I ′ ∈ I
13: end if
14: end for
15: return I

The MP is solved in Line 3 and the assignment of stations to vehicles is retrieved. We
get our subproblems which are solved in the corresponding loop (4) for each vehicle
separately. For every solution to a subproblem we utilize a solution cache. This means,
that if a subproblem is feasible its corresponding Hamiltonian path and the routing costs
are cached for later use. If the subproblem is infeasible it is not going to be cached
because those subproblems result in a cut for the master problem. If we cannot find the
subproblem in our solution cache, then a single subproblem is solved by Concorde (5) and
added to the current solution r as rl. In the subproblem the routing costs are minimized
and if this objective value is greater than the maximal time budget of the vehicles, we
found an infeasible assignment (6). Let I = {r1

l , r
2
l , . . . , r

ρl
l } be a set of station visits

for which the minimal Hamiltonian path from 0 to 0′ is greater than the time budget t̂.
Then, we can build infeasibility cuts of the form∑

v∈I
xvl ≤ |I| − 1 ∀l ∈ L. (3.111)

These cuts are created for each vehicle l ∈ L and added to the MP. They imply that the
simultaneous assignment of the station visits in I – and all supersets of I – to any of the
vehicles is prohibited in subsequent master problem instances.

To make this cut as strong as possible, we try to minimize the infeasible set I of station
visits, which is derived from all currently assigned stations (7) by Algorithm 3.2. Loop (1)
iterates over all edges of a given Hamiltonian path rl = {0, r1

l , . . . , r
ρl
l , 0′} so that all

possible options for minimizing the cutset are evaluated. We extract nodes u and v from
the Hamiltonian path and refer the remaining set as T (2). Two station visits have to
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be removed because the number of pickup and delivery station visits have to be equal
in oder to obtain a feasible route. As edges can only exist between alternating station
types it is ensured that only one pickup and one delivery station visit is removed. Here
again, we utilize the proposed solution cache so that previously evaluated sets of station
visits may not be evaluated multiple times. If the subproblem cannot be found in the
solution cache, the subproblem of finding a Hamiltonian path for the reduced set of
station visits in T is solved (3) and the routing costs are checked for feasibility (4). If
the set T is infeasible we either found an additional cut (5) with equal size of station
visits as the previous found cut(s) or we found a new cut containing less station visits
than all previously found cuts (7). If the routing costs are feasible we did not find any
new cut and do not have to explore this branch of the search tree further. If the routing
costs have been infeasible, we recursively call the function minimizeCutSet (11) to check
all subsets of I which are candidates for a smaller cutset. At the end the set I contains
the smallest possible cutset(s) based on the initial one. It is also possible that I contains
more than one cut because multiple minimum cutsets may exist.

We can perform this algorithm because the subproblem is solved very efficiently by the
Concorde TSP solver.

Vehicle-spanning cuts: Due to the following observation we came up with the idea of
also computing vehicle-spanning cuts instead of only utilizing cuts only for a single vehicle:
Throughout the algorithm, a Benders infeasibility cut is added to the MP whenever an
infeasible vehicle assignment is generated. In a new iteration of the master problem the
MIP solver often tries to move station visits among different vehicles – because then
these new assignments constitute different vehicles than in the cutset – although it may
not be possible to come toward a feasible solution this way. The total (optimal) routing
costs over all vehicles may be larger than the total amount of time budget provided by
all available vehicles.

The idea is to solve the LP relaxation of the following MIP formulation:

min
∑
l∈L

∑
(u,v)∈A0

yluv · tuv (3.112)

s.t.
∑
l∈L

xvl = 1 ∀v ∈ V (3.113)

∑
v∈Vpic

xvl =
∑
v∈Vdel

xvl ∀l ∈ L (3.114)

∑
l′∈L

x(s,i)l′ ≥ x(s,i+1)l ∀s ∈ S, l ∈ L, i = 1, . . . , fs − 1 (3.115)

∑
v∈Vpic

yl0v = 1 ∀l ∈ L (3.116)

∑
v∈Vdel

ylv0′ = 1 ∀l ∈ L (3.117)
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∑
(u,v)∈A0

yluv = xul ∀l ∈ L, u ∈ V (3.118)

∑
(u,v)∈A0

yluv = xvl ∀l ∈ L, v ∈ V (3.119)

∑
(u,v)∈A0

yluv =
∑

(v,u)∈A0

ylvu ∀l ∈ L, v ∈ V (3.120)

au − av + |V | · yluv ≤ |V | − 1 ∀l ∈ L, (u, v) ∈ A (3.121)
xvl ∈ {0, 1} ∀l ∈ L, v ∈ V (3.122)
yluv ∈ {0, 1} ∀l ∈ L, (u, v) ∈ A0 (3.123)
1 ≤ av ≤ |V | ∀v ∈ V (3.124)

This LP relaxation already provides reasonable lower bounds so that at least some
of these vehicle-spanning cuts can be generated. Thus, we take the reduced set of
station visits as solution from the MP but breakup the assignment to the vehicles
and compute the minimal routing costs resulting from an optimal assignment. We
therefore adjusted inequalities (3.91) from the master problem to the following equalities:∑
l∈L xvl = 1 ∀v ∈ V , and changed the objective function to minimize the total routing

costs over all vehicles, i.e., min
∑
l∈L

∑
(u,v)∈A0 y

l
uv · tuv. If these routing costs are higher

than the available time budget of all vehicles together, the set of station visits is not
able to produce a feasible solution in any constellation of assignments. Let hl denote
the minimal computed routing costs for the reduced set of station visits of vehicle l ∈ L,
then we can add a vehicle-spanning cut iff∑

l∈L
hl > |L| · t̂. (3.125)

Let I denote the set of stations used in the currently considered assignment, i.e., I =
{v | xvl = 1, ∀v ∈ V, l ∈ L}. Assume, that inequality (3.125) holds for this assignment.
Then formally, the cut is defined as follows:∑

l∈L

∑
v∈I

xvl ≤ |I| − 1. (3.126)

Branch-and-Check

As an alternative to the classical (logic-based) Benders decomposition method described
in the previous section, we also consider a corresponding Branch-and-Check (BAC)
approach. The term BAC has been originally proposed by Thorsteinsson in [150] and
refers essentially to a classical branch-and-cut, which, however, is re-interpreted in terms
of the Benders decomposition.

Instead of completely resolving the master problem after adding new Benders cuts in
each iteration, BAC essentially solves the master problem only once and adds Benders
cuts on the fly: BAC starts by solving the MIP model of the original master problem
(possibly enhanced by a relaxation of the subproblem) in the usual branch-and-cut fashion.
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When an optimal solution is identified, the subproblem is solved by an auxiliary method
and corresponding Benders cuts are derived as in the original Benders decomposition
method. Now in BAC, however, these Benders cuts are dynamically added to the
currently considered master problem within the branch-and-cut, effectively cutting off
the current solution, and the branch-and-cut process is continued. Any obtained so far
optimal solution to the master problem is “checked” in this way, and the master problem
correspondingly augmented by Benders cuts until at some point the obtained solution
turns out to be feasible and optimal also for the original problem; no further Benders
cuts need then to be added, and the whole BAC can be terminated.

In our implementation of BAC we use again the MIP model proposed in Section 3.6.2.
Remember that this model already includes the 0-arborescence problems as a relaxation
of the subproblems. The subproblems are solved as described before via Concorde and
the derivation of Benders Cuts follows exactly the already described way.

As an improvement to basic LBBD, the Benders subproblem is solved not only for so-far
optimal master problem solutions, but for any encountered feasible master problem
solution resulting in more cuts than the LBBD-based approach. The larger number of
earlier added cuts turned out to be beneficial in the sense that the overall number of
required branch-and-bound nodes and the overall runtime were reduced.

A particular advantage of this BAC is that it is in general able to yield upper as well as
lower bounds and corresponding feasible solutions to the BBSS problem already early
during the optimization. In contrast, classical Benders decomposition with infeasibility
cuts is not directly able to provide lower bounds earlier than at the very end, as the
master problem variables will not get overall feasible assignments before.

Variable Neighborhood Search

For comparison purposes and to further study the impact of the BBSS problem sim-
plification by only considering full loads, we use here the VNS proposed by Rainer-
Harbach et al. [125]. This VNS uses remove-station, insert-unbalanced-station, intra-
route-2-opt, replace-station, intra-or-opt, 2-opt*-inter-route-exchange and intra-route
3-opt neighborhood structures for local improvement within an embedded Variable Neigh-
borhood Descent (VND), and for shaking move-sequence, exchange-sequence, destroy-
&-recreate, and remove-stations operations. The only modification we applied concerns
the objective function, in which we set the weighting factors ωwork and ωload for the
additional terms to consider tour lengths and loading instructions to zero, in order to
follow the same single goal of maximizing the balance gain as we do in our new approaches.
Furthermore, as the balance gain is expressed in the VNS in terms of the number of bikes
and in our case here in station visits, we scale the VNS’s objective values accordingly by
dividing them by the vehicle capacity.
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3.6.3 Computational Results

We have done our computational tests on a rigorous benchmark suite derived from [125]
with instances up to 70 and 120 stations for the multi-vehicle and the single-vehicle
cases respectively. An instance is primarily characterized by the tuple of the number
of stations, the number of vehicles, and the time limit (|V |, |L|, t̂). All algorithms have
been implemented in C++ and have been compiled with g++ 4.8.4. As MIP solver we
used CPLEX 12.6.3 branch-and-cut with default parameters except limiting the number
of used threads to one for a better comparability and restricting the maximum size of
the branch-and-cut tree to 3GB as this is the amount of memory available to one cluster
node in our configuration. All tests have been performed as single threads on an Intel
Xeon E5540 2.53GHz Quad Core processor.

For our tests with multiple vehicles we use instances of 10, 20, 30, 40, 50, 60 or 70
stations, two or three vehicles, and a time budget of either 120, 240, or 480 minutes. For
all instances we employed a maximum CPU time limit of 1 hour. For every combination
(|V |, |L|, t̂), we considered 30 different randomly generated instances which are publicly
available on the web4. These instances have been derived from the real-world scenario at
Citybike Wien, Vienna’s major PBS in the following way. Citybike Wien gave us historic
data sets from year 2011 when the system consisted of 92 renting stations—now the
system has already 120 stations. We enlarged the dataset by 664 artificial stations placed
among the city of Vienna. We have derived travel times tuv by an estimation of the
real-world travel time and further including an estimation for the time needed to park
at the station, i.e., some stations may be better reachable than others. For the existing
stations we, of course, chose their original capacity Cs whereas for the artificial ones we
have chosen the capacities at random. The initial fill level of stations ps has been taken
from a snapshot of 2011 for the existing stations. For the artificial stations we first chose
for some of them initial fill levels at random according to a distribution we observed at
the real stations so that geographically near stations have a similar fill level. For the
other artificial stations we used an interpolation for determining their initial fill level.
We set the target values qs in such a way that there are multiple full vehicle loads needed
in order to bring the system in a balanced state. All tests inhere have been performed
by considering a full vehicle load consisting of Z = 20 bikes. Of course, our approach
works with arbitrary sizes of full vehicle loads, and how an instance for our new problem
formulation is derived by the given data, is explained in the next paragraph. For every
instance set we have chosen a corresponding subset of the 756 available stations where
we first chose a station at random and then selected the |S|+ 1 nearest stations. One
station was randomly selected as the depot for the instance.

Following our new approach, we only consider the movement of full vehicle loads, i.e.,
Z bikes from one station to another. Consequently, we derived each station’s demand
fs of full vehicle loads as defined in equations (3.58). Remember that delivery stations
Sdel have negative demand values fs, while pickup stations are given by positive values;

4https://www.ac.tuwien.ac.at/files/resources/instances/bbss/benchs.tar.gz
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stations with |ps − qs| < Z do not need to be considered in our model and are therefore
discarded. By above definition, it is ensured that we never move more than |ps − qs|
bikes to a station and thus never exceed a station’s capacity.

In the following we analyze the results. Table 3.6.3 shows for every instance configuration
results for the analyzed approaches: Logic-based Benders decomposition (LBBD) and its
variant Branch-and-Check (BAC), compact MIP (see Section 3.6.1), and the variable
neighborhood search (VNS) and the hop-indexed MIP from [125]. The column #best
shows the number of instances where the particular approach achieved the best objective
value among the 5 considered approaches. For BAC, LBBD and the compact MIP we
show also the number of instances for which the corresponding approach returned a
proven optimal solution #opt according to the new problem formulation. Moreover,
we also report the average objective value obj which corresponds to the station visits
respectively twice the number of moved full vehicle loads. For BAC, LBBD and the
compact MIP we take the optimal solution if available. If the optimal solution was not
found we use the best integer solution found so far for BAC and the compact MIP. If
also no integer solution was found we use 0 as the objective value for the corresponding
instance. In the case of LBBD we take either the optimal solution or 0 because for
this approach no bounds can be derived if the approach does not end up with a proven
optimal solution. For VNS and miphop we use the original objective function as defined
in [125] and shown in equation (3.54), only setting the weighting factors to ωbal = 1,
ωload = 0, ωwork = 0 accordingly, as already said we only consider balance optimization
here. For comparing our new approaches with the VNS and miphop we use the following
value: ∑

l∈L
∑ρl
i=1 |yil,ri

l
|

Z
. (3.127)

This value corresponds to twice the number of full vehicle loads moved among the stations
and its average over a particular instance group is reported as obj in Table 3.6.3 for VNS
and miphop.

In Section 3.6.3 we discuss the potential loss when considering only full vehicle loads.
Then, in Section 3.6.3 we point out the advantages of our decomposition approaches and
analyze the number of cuts and iterations of LBBD and its variant BAC and we analyze
the approximation quality of the 0-arborescence in the master problem. Section 3.6.3
analyzes the single-vehicle case of our new problem formulation.

Analyzing the Impact of Considering Full Vehicle Loads Only

We first want to gain an approximate understanding of the loss in solution quality we
obtain by moving from a previous “detailed” model, in which the loading and unloading
of an arbitrary number of bikes is allowed, to our simplified model that considers only
full vehicle loads.

For comparison in Table 3.6.3 we use a hop-indexed MIP model as well as one of the
leading metaheuristic approaches, which is the VNS introduced in Section 3.6.2. Both
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approaches have been proposed in [125]. In the following we will concentrate on the VNS
and BAC because these are the most competitive representatives of the two different
problem formulations.

Remember that the VNS is not limited to full vehicle loads. It tries to find a tour together
with best possible numbers of vehicles to load and unload at each stop. We just scaled
the final overall balance gain, i.e., the sum of all loading instructions at each stop of every
vehicle

∑
l∈L

∑ρl
i=1 |yil,ri

l
|, by dividing it by the vehicle capacity Z, cf. equation (3.127), to

make it comparable to the number of full vehicle loads by which we measure the balance
gain with respect to the number of moved bikes in our new model.

When analyzing the results in Table 3.6.3 one can see that the average objective values
obtained by BAC, which provided the best results for our new problem formulation, and
the VNS correspond closely. Obviously, the simplification of considering only full vehicle
loads has on these instances only a very minor impact. In fact, we could observe that
also the solutions identified by the VNS also almost always transported only full vehicle
loads from one station to another. Obviously, this only holds under our fundamental
assumption that a complete balance with objective value zero, i.e., where all station
demands are fulfilled, is not achievable within the limited working time – and also not
necessary in practice. It can be observed that BAC yields more often the overall best
solution—among the five different approaches—than the VNS (693 versus 618), and a
Wilcoxon signed-rank test comparing BAC with the VNS on each instance set shows
significant advantages with error probabilities of less than 5% for 12 of the 30 classes for
BAC whereas the VNS has significant advantages on 5 of the 30 classes.
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3.6. Full-Load Route Planning By Logic-Based Benders Decomposition

Instance set BAC LBBD Compact
|S| #best #opt t̃ime [s] #best #opt t̃ime [s] #best #opt t̃ime [s]

10 180 180 0.1 180 180 < 0.1 92 177 < 0.1
20 180 180 0.4 179 180 0.2 110 180 0.1
30 178 171 2.2 170 171 0.9 135 166 0.8
40 176 151 12 149 149 4 133 125 36
50 174 124 89.8 124 126 62.2 151 97 558.9
60 171 115 343 111 111 352.4 155 69 1422.7
70 169 106 459.4 101 101 336.5 159 41 1673.6

Total 1228 1027 1014 1018 935 855

Table 3.11: Additional aggregation provided by aggregating only over the number of
nodes for logic-based Benders decomposition, its variant Branch-and-Check, and the
compact mixed-integer linear programming model.

However, we have to note that the VNS often finds very fast high-quality solutions
whereas, at least for the larger instances, the MIP-based approaches, namely LBBD,
BAC, and the compact formulation often need a lot of time for finding an integer solution
or even solve the problem instance to proven optimality. Smaller instances or mid-size
instances, according to our test suite, are however, often solved to proven optimality
within a small amount of time.

We conclude that the disadvantages of the simplified model are very well compensated
by the much better solvability of the new approach.

Analyzing Logic-Based Benders Decomposition and the Compact Model

In Table 3.6.3 additional aggregation of the results is given by providing results for
each individual number of stations. The best results are achieved by utilizing BAC.
This is also the approach which yields the highest number of proven optimal solutions
among the analyzed dataset. As expected the median computation times are better by
applying LBBD than solving the full compact model at once. This further emphasizes
the importance of the decomposition approach we are introducing with this approach.

In Table 3.6.3 we measure various statistics about LBBD and BAC. Column approx
shows the average approximation quality of the 0-arborescence as percentage value which
is computed by (test − topt)/topt, where test are the estimated routing costs by the 0-
arborescence and topt are the optimal routing costs as obtained by the optimal solution
for a subproblem. The average over all computed routes is taken. Column #iter shows
the average number of iterations performed per instance set whereas #cuts shows the
average number of generated cuts. For BAC we use a different nomenclature, namely
#calls as for this variant of LBBD we do not have iterations but we measure the calls to
the LazyConstraintCallback where we generate the Benders infeasibility cuts. Moreover,
columns tmax

master and tmaster state the maximum time used to solve the master problem
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Instance set LBBD BAC
|S| |L| t̂ approx [%] #iter #cuts tmax

master [s] tmaster [s] tmax
sub [s] approx [%] #calls #cuts tmax

sub [s]

10 2 120 1.1 1.1 0.3 0.2 0.1 < 0.1 1.8 1.4 0.3 < 0.1
10 2 240 1.3 1.0 0.0 0.1 < 0.1 < 0.1 1.4 1.0 0.0 < 0.1
10 2 480 1.3 1.0 0.0 < 0.1 < 0.1 < 0.1 1.6 1.0 0.0 < 0.1
10 3 120 0.5 1.1 0.4 0.3 0.1 < 0.1 1.3 1.2 0.1 < 0.1
10 3 240 1.0 1.0 0.0 < 0.1 < 0.1 0.1 1.3 1.1 0.0 < 0.1
10 3 480 1.0 1.0 0.0 < 0.1 0.1 0.1 1.4 1.0 0.0 < 0.1

20 2 120 1.5 1.4 1.0 4.5 0.2 < 0.1 2.1 1.8 0.7 < 0.1
20 2 240 2.3 5.4 13.1 37.2 1.2 0.1 2.3 6.2 11.7 0.2
20 2 480 3.4 1.0 0.0 0.1 < 0.1 0.1 2.5 1.1 0.0 0.6
20 3 120 1.4 1.8 4.3 15.3 0.8 < 0.1 2.0 2.4 3.3 < 0.1
20 3 240 2.0 1.2 0.5 0.5 0.2 < 0.1 1.9 1.1 0.0 < 0.1
20 3 480 2.4 1.0 0.0 0.1 0.1 < 0.1 2.2 1.0 0.0 < 0.1

30 2 120 1.2 1.4 0.9 1.4 0.4 < 0.1 1.8 1.7 0.6 0.1
30 2 240 1.8 11.6 44.6 1925.7 37.5 0.9 1.8 21.2 63.9 0.6
30 2 480 4.8 1.0 0.0 0.6 0.2 0.1 4.2 1.1 0.0 0.1
30 3 120 1.3 2.2 4.5 39.6 2.1 < 0.1 3.2 2.5 2.0 < 0.1
30 3 240 1.9 4.6 21.5 3600.0 298.6 0.8 2.0 13.7 59.5 0.5
30 3 480 3.4 1.0 0.0 0.9 0.2 0.2 3.2 1.1 0.0 0.3

40 2 120 1.8 1.3 0.6 20.8 1.6 < 0.1 3.0 2.2 1.1 < 0.1
40 2 240 1.8 20.0 77.2 3407.2 81.0 0.6 1.7 47.8 159.1 0.5
40 2 480 3.3 4.3 11.0 3012.2 69.0 0.9 2.7 6.1 12.0 1.4
40 3 120 1.7 1.9 3.6 3600.0 122.2 < 0.1 3.3 2.5 2.7 0.1
40 3 240 2.2 6.6 40.4 3600.0 1423.7 0.8 2.1 53.5 274.1 1.7
40 3 480 5.4 1.0 0.0 3.1 0.8 0.6 4.4 1.2 0.0 0.7

50 2 120 2.2 1.7 1.7 112.3 3.7 < 0.1 2.4 2.1 1.1 0.1
50 2 240 2.5 27.1 115.2 3600.0 379.4 1.0 2.2 95.3 306.8 1.2
50 2 480 2.9 14.9 64.3 3600.0 704.0 1.1 2.7 97.2 406.0 3.2
50 3 120 1.9 2.6 7.8 1679.5 44.2 < 0.1 2.8 3.5 7.2 0.1
50 3 240 2.6 6.8 44.8 3600.0 1171.4 0.3 2.4 49.9 267.8 0.7
50 3 480 5.4 1.0 0.0 5.2 2.8 0.5 4.0 2.1 0.1 0.3

60 2 120 1.9 2.1 2.6 988.7 25.3 < 0.1 4.6 2.7 2.1 0.2
60 2 240 2.1 12.0 38.7 2510.5 80.8 0.3 2.2 53.8 176.0 0.9
60 2 480 3.0 11.4 49.4 3600.0 1530.3 1.9 2.8 55.8 195.0 2.0
60 3 120 2.2 2.0 4.9 3600.0 168.1 < 0.1 3.4 4.6 9.3 0.2
60 3 240 2.6 6.7 40.0 3600.0 1036.4 0.5 2.1 36.0 173.9 0.8
60 3 480 3.5 1.6 4.4 3600.0 1006.9 0.5 2.9 18.4 77.4 4.0

70 2 120 1.6 1.3 0.6 17.7 6.8 0.1 5.3 2.0 0.9 0.2
70 2 240 1.6 2.6 5.9 3600.0 652.0 0.6 1.4 16.7 30.0 1.5
70 2 480 3.1 11.5 48.8 3600.0 1758.4 1.1 2.2 60.1 188.3 2.3
70 3 120 1.5 1.7 2.6 33.2 13.8 < 0.1 4.2 4.7 8.6 0.4
70 3 240 2.0 4.2 22.7 3600.0 1053.2 0.5 1.8 22.6 97.9 1.3
70 3 480 4.3 1.0 8.3 3600.0 2429.6 1.7 2.7 15.7 60.4 1.6

Average 2.3 4.5 16.3 2.6 17.1 61.9

Table 3.12: Comparing number of cuts, iterations, approximation quality and the time
needed to solve master problems as well as subproblems.
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and the average time respectively. Column tmax
sub shows the maximum time which was

needed to solve a single subproblem per instance set.

A result of this comparison is that subproblems are relatively easy to solve compared to
the master problems. As seen in Table 3.6.3 the most difficult subproblem needed only
4 seconds to be solved whereas some of the the master problem instances could not be
solved to optimality within 1 hour. What can also be seen is that the approximation via
the 0-arborescence is tight. In many cases we have only 1 to 2 percent deviation from the
optimal routing costs. Furthermore, as expected, subproblems for instances with low time
budget, i.e., 2 hours, are very easy to solve and most often even do not need 0.1 seconds
to be solved. BAC generates much more cuts as LBBD evaluates subproblems only
after optimal solutions to the master problem have been found whereas BAC evaluates
subproblems each time a feasible integer solution has been found. Although, BAC
generates more cuts than LBBD, the quantity of cuts is no guarantee for success at all,
but the quality of the cuts can improve solvability of the problem instance. A phenomenon
we could observe is that often instances with 4 hours time limit are more difficult to solve
and also produce more cuts/iterations. This is because the objective of the problem is
only to maximize the number of station visits. Thus, multiple optimal solutions may
exist, even if stations are near to another. As already said, as the approximation quality
of the 0-arborescence is relatively tight one of the optimal solutions to an instance with
a higher time limit, i.e., 8 hours can be obtained very fast. On the other hand there
are instances with 4 hours time limit that are hard to solve because there may not be
as many optimal solutions as for instances with 8 hours time limit, even for the smaller
instances. What has been observed by the authors and which was the reason to introduce
vehicle-spanning cuts (see also Section 3.6.2) is that the approach often needs many
iterations to prove that there does not exist a solution with a given number of station
visits but there could be many assignments with 2 visits less that are optimal.

Single-Vehicle Case

We have also performed computational tests on the single-vehicle case of the problem
which we have solved by the compact MIP model introduced in Section 3.6.2. This is
also of practical importance for cases where the whole service area is more statically
partitioned into districts and individual drivers/vehicles are then solely responsible for
dedicated districts. Computational results are shown in Table 3.6.3. As the problem
becomes simpler when reducing the number of vehicles we have also provided results for
instances with 90 and 120 stations. For the most difficult instances with 120 stations and
a shift time of 4 hours for the driver we have been able to solve 13 out of 30 instances to
proven optimality. For the remaining instances we have been able to provide results with
an average optimality gap of about 5%.

3.6.4 Conclusions and Future Work

We have introduced and investigated a new problem formulation for BBSS derived from
practical considerations as they appear, e.g., at Citybike Wien, which is computationally
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Instance set Compact
|V | t̂ #opt obj LB UB gap [%] t̃ime [s]

40 120 30 4.07 4.07 4.07 0.00 0.1
40 240 30 10.13 10.13 10.13 0.00 0.2
40 480 29 20.93 20.93 20.98 0.24 0.4

50 120 30 4.00 4.00 4.00 0.00 0.1
50 240 28 10.33 10.33 10.43 1.11 0.4
50 480 29 21.53 21.53 21.59 0.30 1.9

60 120 30 4.07 4.07 4.07 0.00 0.2
60 240 23 10.33 10.33 10.66 3.29 1.6
60 480 27 22.00 22.00 22.16 0.77 7.1

70 120 30 4.00 4.00 4.00 0.00 0.3
70 240 22 10.53 10.53 10.91 3.76 6.8
70 480 21 22.47 22.47 22.90 2.03 15.2

90 120 29 4.00 4.00 4.05 1.13 0.5
90 240 18 10.53 10.53 11.12 5.84 98.3
90 480 17 22.73 22.73 23.34 3.10 23.1

120 120 29 4.00 4.00 4.05 1.13 1.3
120 240 13 10.60 10.60 11.51 9.06 3120.2
120 480 19 23.27 23.27 23.88 2.76 369.6

Average 12.20 12.20 12.44 1.92

Table 3.13: Computational results for the single-vehicle case

substantially simpler to solve than previous BBSS formulations. The key observation is
that an economic maintenance of a PBS rarely allows to bring all stations into perfect
balance w.r.t. precisely specified target fill levels. In practice, usually “more rebalancing
work actually exists than can be typically achieved” with the given number of vehicles
and limited working time of the drivers. Therefore, vehicles almost always move full
vehicle loads among the stations. Moving just very few bikes from one station to another
is basically meaningless in practice.

While previous BBSS models always considered a rather fine-grained planning allowing the
movement of arbitrary numbers of bikes, we restrict our rebalancing tours to the movement
of full vehicle loads from the beginning. This restriction yields substantial simplifications in
the overall model, and consequently, the model can be solved computationally significantly
easier.

For solving this new model, we developed a compact MIP model, an LBBD approach,
and a BAC variant of the latter. The LBBD was inspired by the cluster-first route-second
method because the problem can naturally be split in an assignment part and a routing
part. The integral subproblems turned out to essentially correspond to asymmetric
TSPs, which we solve by the state-of-the-art TSP solver Concorde. From these, Bender’s
infeasibility cuts are derived and iteratively added to the assignment master problem.
In the BAC, we modified the LBBD approach by solving the master problem only once
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and solving corresponding subproblems for any encountered feasible solution. This
modification turned out to further improve the performance in many cases.

Experimental comparisons with a state-of-the-art VNS for a previous fine-grained BBSS
model have shown that our new problem formulation has only a minor impact on the
achievable solution quality. In fact, the advantages of the easier solvability clearly
outweigh the theoretical restrictions introduced by allowing only full vehicle loads. A
Wilcoxon signed-rank test showed that BAC compared to VNS has significant advantages
with an error probability of less than 5% for 12 of the 30 instance sets.

With our LBBD we could solve instances up to 70 stations to proven optimality, which is
a substantial step forward in comparison to previous work with exact approaches. For
the single-vehicle problem, we have solved even larger instances up to 120 stations.

Clearly, the proposed compact MIP, LBBD, and BAC are not the only meaningful
methods to approach the new simplified BBSS problem formulation exactly. State-of-
the-art branch-and-cut solvers for diverse vehicle routing problem variants based on
subtour-elimination constraints can likely be adapted and are then presumably strong if
not superior competitors. Also column generation approaches based on some set covering
formulation appear meaningful.

But also in a purely heuristic context for addressing larger problem instances with possibly
thousands of stations, the simplified modeling approach appears very meaningful and
opens diverse existing methods for vehicle routing problem variants to be adapted with
moderate effort.
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CHAPTER 4
Bike-Sharing Station Planning

Problem

In this chapter, we discuss two works regarding the bike-sharing station planning problem
(BSSPP). The first one computes optimal station locations with arbitrary (continuous)
slot count whereas the second work takes into account predefined station configurations
for each cell of the input. Moreover, the instances used in the second approach are based
on real-world data.

4.1 Introduction

Finding a good combination of station locations and building these stations in the right
size is crucial when planning a PBS as these stations obviously directly determine the
satisfied customer demand in terms of bike trips, the arising rebalancing effort, and the
resulting fixed and variable costs. Stations close to public transport, business parks, or
large housing developments will likely face a high demand whereas stations in sparser
inhabited areas will probably face a lower demand. However, also the station density and
connectedness of the actual regions to be covered play crucial roles. Some solitary station
that is far from any other station will most likely not fulfill much demand. Moreover, a
clever choice of station locations might also exploit the natural demands and customer
flows in order to keep the rebalancing effort and associated costs reasonable.

As PBSs are usually implemented in rather large cities the problem of finding optimal
locations for rental stations and sizing these stations appropriately is challenging and
manually hardly comprehensible. Thus, there is the need for computational techniques
supporting this decision-making. Besides fixed costs for building the system, an integrated
approach should also estimate maintenance and rebalancing costs over a certain time
horizon such that overall costs for the operator can be approximated more precisely. It is
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further important to consider the customer demands in a time-dependent way because
there usually exists a morning peak and an afternoon peak which is due to commuters,
people going to work, and students. Between these peaks, the demand of the system is
usually a bit lower. We refer to this problem as Bike Sharing Station Planning Problem
(BSSPP). The objective we consider here is to determine for a specified total-cost budget
and a separate fixed-cost budget a selection of locations where rental stations of an also to
be determined size should be erected in order to maximize the actually fulfilled customer
demand.

4.2 Related Work

There already exists some work which tries to find optimal station locations for BSSs,
although mostly considering different aspects. Most of the previous approaches are
not entirely coherent and consider different constraints and sometimes also different
optimization goals which makes direct comparisons impossible. Many approaches utilize
mixed integer (non-)linear programming (MIP) as core technology. However, for larger
instances it is usually impossible to solve such models exactly. However, MIP technology
can also be used inside a heuristic method.

To the best of our knowledge, Yang et al. [161] were the first who considered the problem
in 2010. They relate the problem to hub location problems, a special variant of the
well-known facility location problem, and propose a mathematical model for it. The
considered objective is to minimize the walking distance by prospective customers, fixed
costs, and, a penalty for uncovered demands. The authors solve the problem by a
heuristic approach in which a first part of the algorithm tries to identify the location of
rental stations and a second, inner part tries to find shortest paths between origin and
destination pairs. The authors illustrate their approach by a small example consisting of
11 candidate cells for bike stations.

Lin et al. [91] propose a mixed integer non-linear programming model and solve a small
example instance with 11 candidate stations by the commercial solver LINGO, and
furthermore provide a sensitivity analysis.

Martinez et al. [95] propose a hybrid approach consisting of a hourly MIP model which is
embedded into a heuristic approach. They aim to maximize the net revenue of the system
and also consider rebalancing costs but the latter are not explicitly modeled but only
estimated beforehand. The authors aim to solve a real-world problem in Lisbon but only
consider a relatively small part of the city with 565 potential station locations. Results
for four different scenarios with various parameters (e.g., willingness to use electric bikes,
different fee systems) are shown.

Lin et al. [92] again use the same problem formulation as given in [91] and state a
mixed-integer non-linear programming model for it. As they aim to compute a minimum
inventory to fulfill a certain service level the model is non-linear and they conclude that it
is not exactly solvable in practice and thus, propose a heuristic approach for solving the
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problem. The authors introduce a greedy algorithm which starts by opening all possible
station candidates and building all possible bike lanes between stations. Then, they
alternatively close bike stations and bike lanes that result in a largest cost reduction but
are still possible to close with respect to the minimum service level requirement. This
procedure is iterated until some termination criterion is met. For evaluating a solution
Dijkstras shortest path algorithm is used to compute paths between all origin/destination
pairs. Again an illustrative example on a small test instance with 11 possible station
candidates is given and different scenarios are evaluated to provide a sensitivity analysis.

Saharidis et al. [134] propose a pure MIP formulation to the BSSPP in a case study for
the city of Athens. They present a time-discretized model in one hour steps and aim
to minimize the total walking time of the users of the PBS and the unfulfilled demand
of the system. Demands in the city are estimated by analyzing the usage patterns of
the Vélib’ system in Paris. The considered instance for the case study is small and only
considers 50 prospective candidate stations. The authors have been able to solve the
provided instance with CPLEX and considered two case studies: one which assumes that
the new PBS will be used heavily by the Athenians, and a second one, which assumes
that the PBS is not that popular among the Athenian population.

Chen et al. [22] provide a mathematical non-linear programming model and solve the
problem utilizing an improved immune algorithm. They define three different types of
rental stations depending on their location (e.g., near a metro station, supermarkets).
Their aim is that stations in the residential area have enough bikes available such that
the morning peak can be managed and that stations near metro lines or important places
have enough free parking slots available to manage incoming bikes during the morning
peak. They provide a case study for a particular metro line of Nianjing city including 10
district stations and 31 residential stations.

Chen and Sun [23] aim at minimizing the total travel time of the users of the system
which includes times for walking and cycling. They propose a MIP formulation which
they solve by the LINGO solver. They consider multiple time periods and traffic zones
corresponding to origins and destinations of the users of the system and prospective
candidate sites for PBS stations. In the end the authors present a small numerical study
with 20 candidate bike stations and ten traffic zones in detail. Despite the small instance
size, the obtained model is huge and a long time (over a CPU month) was needed to
solve it.

Frade et al. [52] present an exact approach based on MIP modeling. They aim at
maximizing the total satisfiable demand of the system under budget constraints. Their
model is rather simple and they consider building costs per planned slot. However, they
evaluated their model only on a case study for the city center of Coimbra, Portugal,
which is only a small instance with 29 potential stations. The authors evaluated four
different scenarios with various input parameters and solved the proposed model using
the XPRESS solver. As they are utilizing an exact approach, it is not going to scale well
to much larger instances.
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Hu et al. [73] present a small case study for establishing a PBS along a metro line.
Different to most other work they aim at cost minimization, whereas other work aims at
maximizing net revenue, fulfilled customer demand or minimizing unfulfilled demand.
The MIP model is rather simple, and the only considered constraints in their MIP model
are the minimum number of stations that have to be built. The authors show results for
different scenarios based on a dataset of ten possible station candidates.

Ouyang et al. [105] model the problem using a graph theoretic pproach. Their aim is to
ensure reachability and richness. By reachability they define a percentage threshold of
the population that must be covered by the PBS, and by richness hey try to maximize
the number of scenic spots covered by the PBS. The PBS is said to be reachable or a
scenic spot is covered when the entry point or the scenic spot lies within a 200 meter
range of a rental station. This is measured by finding the intersection between circles
with a radius of 200 meters. The authors propose a station decision algorithm and test
their algorithm in two simulations. In [106] Ouyang et al. refined the work and present
the algorithmic components in more detail.

Straub et al. [146] present a semi-automated planning tool based on the optimization
algorithm by Kloimüllner and Raidl [84] and give full details on the development procedure
from the requirement analysis to the frontend of the semi-automated planning tool.

There exists also literature related to this topic. In particular, the problem belongs the
class of facility location problems [129] and more generally to hub location problems [29, 49].
Moreover, a related and currently hot topic is the optimal placement of stations in car
sharing systems [12]. Gavalas et al. [56], for instance, summarized diverse algorithmic
approaches for the design and management of vehicle-sharing systems (e.g., car sharing
and PBS).

We conclude that all previous works on computational optimization approaches for
designing BSS only consider rather small scenarios. Most previous work accomplishes
the optimization with compact mathematical models that are directly solved by a MIP
solver. Such methods, however, are clearly unsuited for tackling large realistic scenarios
of cities with up to 2000 cells or more. In the following, we therefore propose a novel
multilevel refinement heuristic based on a hierarchical clustering of the demand data.

4.3 Problem Definition
We consider a geographical area which is partitioned into discrete cells. Let S denoted
as the set of possible candidate cells where stations may be located, and let V be the
set of cells containing some positive demand of prospective customers. Furthermore,
let m = |S| and n = |V |. In the simplest case S = V holds, meaning that in each
station with positive customer demand a station might be located, however, this does
not necessarily need to be the case.

As it is meaningful to define cells with about 150 × 150 meters, the input size grows
rapidly in larger cities. In particular, it is not meaningful and not practicable anymore
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Figure 4.1: Example of a hierarchical clustering and the corresponding graph Gt

to consider the full origin-destination demand matrix. Instead we use a hierarchical
abstraction as data structure to be able to have a chance for solving such instances and
assume to this end that an hierarchical clustering of the cells is given as input.

This hierarchical clustering is given as a rooted tree where the leaves of the tree correspond
to single cells and all other cells correspond to clusters of cells of the geographical area.
Let h denote the height of the tree and let C = C0∪ . . .∪Ch be the set of all nodes of the
tree. By Cd we denote all nodes at height d = 0, . . . , h of the tree. Set C0 only contains
the root node representing the whole considered area and Ch is the set of original all
cells of the geographical area, i.e., Ch = V . For convenience, we define super(p) ∈ C to
return the parent cluster of node p ∈ C \ {0}, and sub(p) ⊂ C to return the children of
cluster p ∈ C \ V .

To model varying demand throughout the day, we consider by T = {1, . . . , τ} a set of time
periods. We derive a weighted directed graph for each time period t ∈ T : Gt = (Ct, At) of
the full demand matrix by Algorithm 1. An example of the graph Gt on the hierarchically
clustered input data is shown in Figure 4.1. The demand from node v ∈ V to cluster
p ∈ C in time period t ∈ T is denoted by dtv,p > 0. For convenience, we define V (p) ⊆ V
to be subset of all leaf nodes rooted under subtree p ∈ C \ V . Moreover, the set C(p)
contains all nodes which are part of the subtree rooted under p, also including V (p) and p
itself. The derivation of the arc set At of graph Gt,∀t ∈ T can be found in Algorithm 4.1
having parameters Gin , the full demand matrix input graph and θ, a parameter which
defines the minimum demand for an arc in the newly constructed graph.

To keep this demand graph as sparse in order to be able to solve large instances we
define a set of rules for the demands in the input graph. It is not allowed that there
exists demand from a node v to one of its predecessors p, i.e., dtv,p > 0 | v ∈ sub(p) is not
possible. Self-loops, however, are a special case, and are explicitly allowed to model trips
of customers within a cell or cluster. There must not exist arcs with negligible demand,
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Algorithm 4.1: Derivation of At from original graph Gin = (V in , Ain)
Require: graph of full demand matrix Gin = (V in , Ain) | V in = V t, threshold θ

1: At = Ain

2: for all l ∈ {h− 1, . . . , 0} do
3: for all c ∈ Cl do
4: for all v /∈ V (c) do
5: w+ = 0, w− = 0
6: for all (v, p) ∈ At | p ∈ C(c) ∩ Cl+1 do
7: if dv,p < θ then
8: w− = w− + dtv,p
9: At = At \ (v, p)

10: else
11: At = At ∪ (v, p)
12: end if
13: end for
14: for all (p, v) ∈ A | p ∈ C(c) ∩ Cl+1 do
15: if dp,v < θ then
16: w+ = w+ + dtp,v
17: At = At \ (p, v)
18: else
19: At = At ∪ (p, v)
20: end if
21: end for
22: if w− > 0 then
23: At = At ∪ (v, c) with dtv,c = w−

24: end if
25: if w+ > 0 then
26: At = At ∪ (c, v) with dtc,v = w+

27: end if
28: end for
29: end for
30: end for

i.e., arcs with dtv,p < θ where θ is a predefined threshold, are not allowed. These “low”
demands have to be subsumed to a bigger demand at a higher level of the clustering.

Proposition 4. If there already exists an arc (v, p) ∈ At with weight dtv,p ≥ θ, there
cannot exist an arc (v, q) ∈ At | p ∈ sub(q) ∨ p ∈ super(q).

This follows from Algorithm 4.1:

Proof. Given (v, p) ∈ At with dtv,p ≥ θ we distinguish the following two cases:
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Case 1: Let (v, q) ∈ At | p ∈ sub(q). Since p ∈ sub(q) and dtv,p ≥ θ no arc (v, q) is
generated according to Line 7 of Algorithm 4.1.

Case 2: Let (v, q) ∈ At | p ∈ super(q). An arc (v, p) ∈ At can only be generated if
dtv,q < θ according to Line 7. In this case, however, arc (v, q) ∈ At would be
removed according to Line 9 of Algorithm 4.1. Moreover, if dtv,q ≥ θ, then arc (v, p)
is not generated according to Line 7. Thus, only one of these arcs, either (v, p) or
(v, q), can exist in the final arc set At.

An important condition that needs to be ensured is that incoming and outgoing demands
must be consistent. Therefore, for any p ∈ C \ V the following two conditions must hold:∑

(v,q)∈At|v∈V (p),q 6∈C(p)
dtv,q ≥

∑
(q,v)∈At|q∈C(p),v 6∈V (p)

dtq,v (4.1)

and ∑
(q,v)∈At|q 6∈C(p),v∈V (p)

dtq,v ≥
∑

(v,q)∈At|v 6∈V (p),q∈C(p)
dtv,q. (4.2)

Inequality (4.1) ensures that the total demand originating at the leaves of the subtree
rooted at p and leading to a destination outside of the tree is never less than the total
incoming demand at all the cells outside the tree originating from some cluster inside
the tree. Inequality (4.2) provides a symmetric condition for the total incoming demand
at all the leaves of the tree. Furthermore, for the root node equations p = 0 the former
inequalities and the latter inequalities must hold with equality.

An important fact for bike-sharing systems (PBS) is that demand of prospective customers
may not only be fulfilled by its own cell but also by neighbor cells within a reasonable
walking distance. The modeling of these neighbor cells is shown in Figure 4.2. Thus, we
define for each leaf node v ∈ V a set of station cells S(v) ⊆ S which are in neighborhood
of v and with which v’s demand can at least be partly fulfilled. To model partly fulfilled
demand, we introduce an attractiveness value av,s ∈ (0, 1], ∀v ∈ V, s ∈ S(v). This value
determines the percentage of demand of customer cell v which can be maximally fulfilled
at a station at location s. Note, that if v = s, then av,v = 1 will hold.

For each station cell s ∈ S, a set of possible station configurations Ks = {0, . . . , γs} is
specified. The special configuration 0 always corresponds to the case that no station is
built or an existing station is removed. Each other configuration i ∈ Ks has associated
the following values: The number of parking slots is defined by bps

s,i ∈ N, the fixed costs,
i.e., the costs for constructing the station including the purchase of a corresponding
number of bikes are denoted by bcfix

s,i ≥ 0, and the variable costs, i.e., total maintenance
and operating costs over the whole planning horizon, including the maintenance of a
respective number of bikes are denoted by bcvar

s,i ≥ 0. In case the cell contains an already
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Figure 4.2: By modeling the neighbor stations for each customer cell, a separate network
is created for every arc of graph Gt

existing station, bcfix
s,i corresponds to the costs for rebuilding or removing (if i = 0) the

station.

Finally, we are given the following global parameters. Parameter breb ≥ 0 represents
the average costs for rebalancing a single bike per day over the whole planning horizon,
whereas Btot

max and Bfix
max represent the total maximum costs and the maximum fixed

costs respectively. These maximum cost parameters are also denoted as budget. Basically,
when considering two different kind of budgets, possible solution candidates may be
excluded which could achieve better solution quality according to the objective function,
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but having two different budget types is a requirement from practice.

4.4 Hierarchical Clustering and Multilevel Refinement

In this work, we first concentrate on how to efficiently model the BSSPP such that
we can also deal with very large instances with thousands of considered geographical
cells for customers and potential station locations. To this end we propose to utilize a
hierarchical clustering to express the estimated potential customer demand on it. We will
then describe a linear programming (LP) based method to evaluate candidate solutions,
and finally present a first novel multilevel refinement heuristic (MLR), based on mixed
integer linear programming (MIP), to approach the optimization problem.

In Section 4.4.1 we who the solution representation while Section 4.4.2 shows how the
objective is modeled. Sections 4.4.3 and 4.4.4 describe LP models for determining
the actually fulfilled customer demands for a candidate solution and estimating the
required rebalancing effort, respectively. The MLR is then described in Section 4.4.5.
Computational results on randomly generated instances are shown in Section 4.4.6.

4.4.1 Solution Representation

A solution x = {xs ∈ N | s ∈ S} assigns each station cell s ∈ S an amount of parking
slots to be built, possibly also 0 which would mean that no station is going to be built in
cell s.

4.4.2 Objective

The goal is to maximize the expected total number of journeys in the system, i.e., the
total demand that actually can be fulfilled at each day over all time periods, considering
the available budgets Btot

max and Bfix
max.

Let D(x, t) be the total demand fulfilled by solution x in time period t ∈ T , and let Qx(s)
be the required rebalancing effort arising at each station s ∈ S | xs 6= 0 in terms of the
number of bikes to be moved to some other station. The calculation of these values will
be considered separately in Sections 4.4.3 and 4.4.4. The BSSPP can then be stated as
the following MIP.

max
∑
t∈T

D(x, t) (4.3)

∑
s∈S

(bfix · xs + bvar · xs + breb ·Qx(s)) ≤ Btot
max (4.4)

∑
s∈S

bfix · xs ≤ Bfix
max (4.5)

xs ∈ {0, . . . , zs} s ∈ S (4.6)
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Inequality (4.4) calculates the total costs over all stations and ensures that the total
budget is not exceeded, while inequality (4.5) restricts only the fixed costs over all stations
by the respective budget.

4.4.3 Calculation of Fulfilled Customer Demand

To determine the overall fulfilled demand for a specific, given solution x and a certain
time slot t ∈ T , we first make the following local definitions. Let S′ = {s ∈ S | xs 6= 0}
correspond to the set of cells where a station actually is located, V ′ = {v ∈ V | S(v)∩S′ 6=
∅} be the set of customer cells whose demand can possibly (partly) be fulfilled as at least
one station exists in the neighborhood. Moreover, let C ′ = {p ∈ C | V (p) ∩ V ′ 6= ∅} be
the set of all nodes in the hierarchical clustering representing relevant customer cells, i.e.,
cells whose demand can possibly be fulfilled. The set S′(v) = S(v)∩V ′, ∀v ∈ V ′ refers to
the existing stations that might fulfill part of v’s demand, and V ′(p) = V (p)∩V ′, ∀p ∈ C ′
denotes the existing customer cells contained in cluster p. C ′(p) refers to the subset of
all the nodes q ∈ C ′ that are part of the subtree rooted at p, including p and V ′(p), and
G′ = (C ′, A′) with A′ = {(p, q) ∈ At | p, q ∈ C ′} is then the correspondingly reduced
demand graph.

In the following we use variables u, v, w for referencing customer cells in V ′, variables p, q
for referencing cluster nodes in C ′ (which might possibly also be customer cells), variable
s for station cells in S′, and α, β for arbitrary nodes in C ′ ∪ S.

We further define for each arc in A′ corresponding to a specific demand an individual
flow network depending on the kind of the arc:

• Arcs (u, v) ∈ A′ with u, v ∈ V ′, including the case u = v:
Gu,vf = (V u,v

f , Au,vf ) with node set V u,v
f = {u} ∪ S′(u) ∪ S′(v) ∪ {v} and arc set

Au,vf = ({u} × S′(u)) ∪ (S′(u)× S′(v)) ∪ (S′(v)× {v}).

• Arcs (v, p) ∈ A′ with v ∈ V ′, p ∈ C ′ \ V ′:
Gv,pf = (V v,p

f , Av,pf ) with node set V v,p
f = {v} ∪ S′(v) ∪ {p} and arc set Av,pf =

({v} × S′(v)) ∪ (S′(v)× {p}).

• Arcs (p, v) ∈ A′ with p ∈ C ′ \ V ′, v ∈ V ′:
Gp,vf = (V p,v

f , Ap,vf ) with node set V p,v
f = {p} ∪ S′(v) ∪ {v} and arc set Ap,vf =

({p} × S′(v)) ∪ (S′(v)× {v}).

All arcs (α, β) ∈ Ap,qf of all flow networks have associated corresponding flow variables
0 ≤ fp,qα,β ≤ dtp,q. The fulfilled demands can be modeled within these networks as
maximum flows. Furthermore, we utilize variables H in

p , H
out
p ∀p ∈ C ′ \ V ′, for the total

inflow/outflow at all customer cells V ′(p) originating at/targeted to cluster nodes from
outside cluster p, i.e., C ′ \C ′(p)\V ′. Variables F in

p , F
out
p , ∀p ∈ C ′ \V ′, represent the total

ingoing/outgoing flows at all cluster nodes q within cluster p originating at/targeted to
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customer cells outside cluster p, i.e., V ′ \ V ′(p), respectively. The flow variables, however,
depend on each other and the stations’ capacities. A weighting factor ω is used to adjust
the number of trips which can be performed in time period t by using only a single bike.
The following LP is used to compute the total satisfied demand D(x, t) =

max
∑

(v,p)∈A′|v∈V ′

∑
(v,s)∈Av,pf

fv,pv,s (4.7)

s.t.
∑

(v,s)∈Av,pf

fv,pv,s ≤ dtv,p (v, p) ∈ A′ | v ∈ V ′ (4.8)

∑
(s,v)∈Ap,vf

fp,vs,v ≤ dtp,v (p, v) ∈ A′ | v ∈ V ′ (4.9)

fu,vu,s =
∑

s′∈S′(v)
fu,vs,s′ (u, v) ∈ A′ | u, v ∈ V ′,

s ∈ S′(u)
(4.10)

∑
s′∈S′(u)

fu,vs′,s = fu,vs,v (u, v) ∈ A′ | u, v ∈ V ′,
s ∈ S′(v)

(4.11)

fv,pv,s = fv,ps,p (v, p) ∈ A′ | v ∈ V ′,
p ∈ C ′ \ V ′, s ∈ S′(v)

(4.12)

fp,vp,s = fp,vs,v (p, v) ∈ A′ | v ∈ V ′,
p ∈ C ′ \ V ′, s ∈ S′(v)

(4.13)

− xs ≤
∑

(p,q)∈A′

∑
(α,s)∈Ap,qf

fp,qα,s

−
∑

(p,q)∈A′

∑
(s,α)∈Ap,qf

fp,qs,α

− ω ·
δrent ·

∑
(p,q)∈A′

∑
(α,s)∈Ap,qf

fp,qα,s

δperiod
t

s ∈ S′ (4.14)

xs ≥
∑

(p,q)∈A′

∑
(α,s)∈Ap,qf

fp,qα,s

−
∑

(p,q)∈A′

∑
(s,α)∈Ap,qf

fp,qs,α

+ ω ·
δrent ·

∑
(p,q)∈A′

∑
(s,α)∈Ap,qf

fp,qs,α

δperiod
t

s ∈ S′ (4.15)

H in
p =

∑
(q,v)∈A′|q 6∈C′(p)∪V ′,v∈V ′(p)∑

(s,q)∈Aq,vf

f q,vs,q

p ∈ C ′ \ V ′ (4.16)
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F in
p =

∑
(v,q)∈A′|v 6∈V ′(p),q∈C′(p)\V ′∑

(s,q)∈Av,qf

fv,ps,q

p ∈ C ′ \ V ′ (4.17)

H in
p ≥ F in

p p ∈ C ′ \ V ′ \ {0} (4.18)
H in

0 = F in
0 (4.19)

Hout
p =

∑
(v,q)∈A′|v∈V ′(p),q 6∈C′(p)∪V ′∑

(q,s)∈Aq,vf

f q,vq,s

p ∈ C ′ \ V ′ (4.20)

F out
p =

∑
(q,v)∈A′|q∈C′(p)\V ′,v 6∈V ′(p)∑

(p,s)∈Aq,vf

f q,vq,s

p ∈ C ′ \ V ′ (4.21)

Hout
p ≥ F out

p p ∈ C ′ \ V ′ \ {0} (4.22)
Hout

0 = F out
0 (4.23)

0 ≤ fv,pv,s ≤ av,s · dtv,p (v, p) ∈ A′ | v ∈ V ′,
(v, s) ∈ Av,pf

(4.24)

0 ≤ fp,vs,v ≤ as,v · dtp,v (p, v) ∈ A′ | v ∈ V ′,
(s, v) ∈ Ap,vf

(4.25)

0 ≤ fp,qα,β ≤ d
t
p,q (p, q) ∈ A′,

(α, β) ∈ Ap,qf | α, β 6∈ V
′

(4.26)

F in
p , F

out
p ≥ 0 p ∈ C ′ \ V ′ (4.27)

H in
p , H

out
p ≥ 0 p ∈ C ′ \ V ′ (4.28)

Objective function (4.7) maximizes the total outgoing flow over all v ∈ V ′, i.e., the
fulfilled demand. Note that this also corresponds to the total ingoing flow over all v.
Inequalities (4.8) limit the total flow leaving v ∈ V ′, for each demand (v, p) ∈ A′ | v ∈ V ′
to dtv,p. Inequalities (4.9) do the same w.r.t. ingoing demands. Equalities (4.10) and
(4.11) provide the flow conservation at source and destination stations s for (u, v) ∈ A′
with u, v ∈ V ′. Equalities (4.12) provide the flow conservation at the source station
in case of an arc (v, p) ∈ A′ towards a cluster node p, while (4.13) provide the flow
conservation at the destination station in case of an arc (p, v) ∈ A′ originating at a cluster
node p. Inequalities (4.14) and (4.15) provide the capacity limitations at each station
v ∈ V ′. It is the accumulated demand occurring at the particular station including a
“compensation term” for large values of ingoing as well as outgoing demand. The fraction
δperiod
t /δrent represents the number of trips which can ideally be performed in period t
using a single bike. The weighting factor ω is used to adjust this value such that it better
reflects reality as the bike trips are not likely to be performed “optimally” with respect
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to the distribution over the whole time period in real world. Equalities (4.16) compute
the total outgoing flow for the leaves of the subtree rooted at p to any cluster which is
not part of the subtree rooted at p. Equalities (4.17) compute the total ingoing flow
for each cluster node p by considering the ingoing flow from any v ∈ V for which p is
not a predecessor to every cluster of the subtree rooted at p. Inequalities (4.18) ensure
that there must not be more ingoing flow to clusters of the subtree rooted at p as there
is outgoing flow from the leaves contained in the subtree rooted at p. Equality (4.19)
ensures that at the top level, i.e., at the root node 0, the outgoing flow from leaf nodes
to cluster nodes and the ingoing flow from cluster nodes to leaf nodes is balanced, i.e,
the same amount. Inequalities (4.21)–(4.23) state the corresponding constraints for the
outgoing flow instead of the ingoing flow. Equations (4.24) and (4.25) provide the domain
definitions for the flow variables from/to a cell v to/from a neighboring station s by
considering the demand weighted by factor av,s. For all remaining flow variables, (4.26)
provide the domain definitions based on the demands. The remaining variables are just
restricted to be non-negative in (4.27) and (4.28).

4.4.4 Calculation of Rebalancing Costs

We state an LP for minimizing the total rebalancing effort over all time periods T at each
station s ∈ S′ by choosing an appropriate initial fill level for each period, ensuring that
the whole prospective customer demand is fulfilled. We estimate the rebalancing effort
by considering the necessary changes in the fill levels inbetween the time periods. The
LP uses the following decision variables. By yt,s we refer to the initial fill level of station
s ∈ S′ at the beginning of time period t ∈ T , and by r+

t,s and r−t,s we denote the number
of bikes which need to be delivered to, respectively picked up from, station s ∈ S′ at the
end of period t ∈ T to achieve the fill levels yt+1,s (or y1,s in case of t = τ).

The accumulated demand Dacc
t,v can be calculated by utilizing the solution of the previous

model from Section 4.4.3, c.f. inequalities (4.14) and (4.15). The following LP is solved
for each station s ∈ S′ | xs 6= 0 independently. For station cells s ∈ S \ S′, i.e., where no
station is actually built in solution x, Qx(s) = 0.

Qx(s) = min
∑
t∈T

r+
t,s + r−t,s (4.29)

s.t. yt,s + r+
t,s ≥ Dacc

t,s t ∈ T (4.30)
xs − yt,s + r−t,s ≥ −Dacc

t,s t ∈ T (4.31)
yt+1,s = yt,s −Dacc

t,s + r+
t,s − r−t,s t ∈ T \ {τ} (4.32)

y1,s = yτ,s −Dacc
τ,s + r+

τ,s − r−τ,s (4.33)
0 ≤ yt,s ≤ xs t ∈ T (4.34)
0 ≤ r+

t,s ≤ Dacc
t,s t ∈ T (4.35)

0 ≤ r−t,s ≤ −Dacc
t,s t ∈ T (4.36)

Objective function (4.29) minimizes the number of rebalanced bikes, i.e., number of
bikes that have to be delivered r+

t,s and number of bikes that have to be picked up
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r−t,s. Inequalities (4.30) compute the number of bikes that have to be delivered to the
corresponding station in order to meet the given demand. Inequalities (4.31) compute the
number of bikes that have to be picked up from the corresponding station in order to meet
the given demand. Inequalities (4.32) state a recursion in order to compute the fill level
for the next time period. Inequalities (4.33) state that for each station the fill level for the
next day has to be again the initial fill level of the first period. Inequalities (4.34)–(4.36)
are the domain definitions for the number of bikes to be moved and the fill level for each
time period.

4.4.5 Multilevel Refinement Approach

Clearly, practical instances of the problem are far too large to be approached by a direct
exact MIP approach. However, also basic constructive techniques or metaheuristics with
simple, classical neighborhoods are unlikely to yield reasonable results when making
decisions on a low level without considering crucial relationships on higher abstraction
levels, i.e., a more global view. Classical local search techniques on the natural variable
domains concerning decisions for individual stations may only fine-tune a solution but are
hardly able to overcome bad solutions in which larger regions need to be either supplied
with new stations or where many stations need to be removed. We therefore have the
strong need of some technique that exploits also a higher-level view, deciding for larger
areas about the supply of stations in principle. Multilevel refinement strategies can
provide this point-of-view.

In multilevel refinement strategies [159] the whole problem is iteratively coarsened
(aggregated) until a certain problem size is reached that can be reasonably handled
by some exact or heuristic optimization technique. After obtaining a solution at this
highest abstraction level, the solution is iteratively extended to the previous lower level
problem instance and possibly refined by some local search, until a solution to the original
problem at the lowest level, i.e., the original problem instance, is obtained. For a general
discussion and the generic framework we refer to the work of Walshaw [158].

To apply multilevel refinement to BSSPP we essentially have to decide how to realize
the procedures for coarsening an instance for the next higher level, solving a reasonably
small instance, and extending a solution to a solution at the next lower level. In the
following, we denote all problem instance data at level l by an additional superscript l.
By Pl we generally refer to the problem at level l of the MLR algorithm described here.

Coarsening

We have to derive the more abstract problem instance Pl+1 from a given instance Pl.
Naturally, we can exploit the already existing customer cell cluster hierarchy for the
coarsening. Remember that all customer cells appear in the cluster hierarchy always at
the same level. We coarsen the problem by considering the customer cells and the station
cells separately.
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Coarsening of customer cells: The main strategy for coarsening the customer cells
is to merge cells having the same parent cluster together with their parent. This means
V l+1 = C l

hl−1 or simply V l+1 = Ch−l−1, i.e., each cluster node at depth h − l − 1
corresponds to a customer cell at level l+1 representing the merged set of customer nodes
contained in Ch−l−1. The hierarchical clustering of Pl becomes C l+1 = C0 ∪ . . . ∪ Ch−l.
Remember that we already defined the function super(p) to return the parent cluster
of some node p, and therefore super(pl) : C l → C l+1 also returns the cluster from C l+1

in which cluster pl ∈ C l is merged into. The new demand graph Gt,l+1 = (Ct,l+1, At,l+1)
consists of the arc set At,l+1 =

⋃
(pl,ql)∈At,l(super(pl), super(ql)). This demand graph may

again contain self-loops, but it is still simple, i.e., multiple arcs from At,l may map to the
same single arc in At,l+1 and the respective demand values are merged. Considering an
arc (pl+1, ql+1) ∈ At,l+1, its associated demand is thus

dt,l+1
pl+1,ql+1 =

∑
(pl,ql)∈At,l|pl+1=super(pl),ql+1=super(ql)

dt,l
pl,ql

. (4.37)

Note that the conditions for a valid demand graph and valid demand values stated in
inequalities (4.1) and (4.2) will still hold when aggregating in this way, since the total
ingoing and outgoing demand at each cluster p ∈ C l+1 (including the demands from and
to all existing subnodes) stays the same.

Coarsening of station cells: To coarsen the station cells we need to define a hi-
erarchical clustering for them as well. For simplicity we assume from now on that
S = V holds, i.e., there is a one-to-one correspondence of considered station cells and
customer cells. This also appears reasonable in a practical setting. We can then ap-
ply the hierarchical clustering defined for the customer cells also to the station cells.
Maximum station capacities for aggregated stations sl+1 ∈ Sl+1 are naturally calculated
by the sum of the respective maximum capacities of the underlying station cells, i.e.,
zl+1
sl+1 =

∑
sl∈sub(sl+1) z

l
sl
.

Coarsening of neighborhoods: A coarsened neighborhood mapping Sl+1(vl+1) for
each customer cell vl+1 ∈ V l+1 and respective attractiveness values avl+1,sl+1 for station
cells sl+1 ∈ Sl+1(vl+1) are determined as follows. The neighborhood mapping is retained
as long as the attractiveness value in the coarsened problem instance does not fall below
a certain threshold λ ∈ (0, 1):

Sl+1(vl+1) =

sl+1 ∈
⋃

vl∈sub(vl+1)
super(Sl(vl)) | avl+1,sl+1 ≥ λ

 (4.38)

with the aggregated attractiveness values being

avl+1,sl+1 =

1 if vl+1 = sl+1∑
vl∈sub(vl+1)

∑
sl∈sub(sl+1)∩Sl(vl)

(
a
vl,sl

)
|sub(vl+1)|·|sub(sl+1)| if vl+1 6= sl+1.

(4.39)
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Initialization

The initial problem becomes coarsened until we reach some level l where it can be
reasonably solved as it is then small enough. In our experiments with binary clustering
trees here we are stopping the coarsening when the clustering tree has no more than
25 = 32 leaf nodes, or in other words, at a height of five. For initializing the solution
at the coarsest level we utilize a MIP model. In this model, the objective stated in
Section 4.4.2, the demand calculation for every time period stated in Section 4.4.3, and
the rebalancing LP model stated in Section 4.4.4 are put together. By solving this model
we obtain an optimal solution for the coarsest level, which forms the basis for proceeding
with the next step of the algorithm, the extension to derive step-by-step a more detailed
solutions.

Extension

In the extension step we derive from a solution xl+1 at level l + 1 a solution xl at level l,
i.e., we have to decide for each aggregated station sl+1 ∈ Sl+1 with xl+1

sl+1 > 0 slots how
they should be realized by the respective underlying station cells sub(sl+1) at level l. We
do this in a way so that the globally fulfilled demand is again maximized by solving the
following MIP.

max
∑
t∈T

D(xl, t) (4.40)

s.t.
∑
sl∈Sl

(
bfix · xlsl + bvar · xlsl + breb ·Qxl(sl)

)
≤ Btot

max (4.41)

∑
sl∈Sl

bfix · xsl ≤ Bfix
max (4.42)

∑
sl∈sub(sl+1)

xlsl ≤ x
l+1
sl+1 sl+1 ∈ Sl+1 (4.43)

xlsl ∈ {0, . . . , z
l
s} sl ∈ Sl (4.44)

The objective (4.40) maximizes the total satisfiable demand. Inequalities (4.41) restrict
the maximum total budget whereas inequalities (4.42) restrict the maximum fixed budget.
Inequalities (4.43) are the bounds on the total number of slots for the station nodes
sl ∈ sub(sl+1). The number of parking slots in each cell xl

sl
is restricted by the maximum

number of parking slots allowed in this cell (4.44).

4.4.6 Computational Results

For our experiments we created seven different benchmark sets1, each one containing 20
different, random instances. We consider instances with 200, 300, 500, 800, 1000, 1500,
and 2000 customer cells, where each customer cell is also a possible location for a station
to be built. Customer cells are aligned on a grid in the plane and euclidean distances

1https://www.ac.tuwien.ac.at/files/resources/instances/bsspp/lion17.bz2

https://www.ac.tuwien.ac.at/files/resources/instances/bsspp/lion17.bz2
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Instance MLR
name #runs Btot

max [e] Bfix
max [e] obj #coarsen t̃ime [s] totcost [e] fixcost [e]

BSSPP_200 20 200,000.00 130,000.00 9,651.98 3 46.2 198,000.00 126,000.00
BSSPP_300 20 350,000.00 250,000.00 10,951.79 5 60.8 349,250.00 222,250.00
BSSPP_500 20 500,000.00 350,000.00 16,057.78 6 121.6 497,750.00 316,750.00
BSSPP_800 20 850,000.00 550,000.00 28,862.21 6 263.9 849,750.00 540,750.00
BSSPP_1000 20 1,000,000.00 700,000.00 28,967.58 8 346.7 998,250.00 635,250.00
BSSPP_1500 20 1,500,000.00 1,000,000.00 41,208.19 8 574.5 1,498,475.00 953,575.00
BSSPP_2000 20 2,000,000.00 1,300,000.00 55,892.06 8 803.4 1,999,250.00 1,272,250.00

Average 27,370.22 6.3 912,960.71 580,975.00

Table 4.1: Results for the multilevel refinement heuristic (MLR).

have been calculated based on which a hierarchical clustering with the complete-linkage
method was computed. Demands among the leaf nodes were chosen randomly, considering
the pairwise distance between customer cells, and demands below a certain threshold have
been aggregated upwards in the clustering tree such that the demand graphs get sparser.
Only cells within 200 meters walking distance are considered to be in the vicinity of a
customer cell and respective attractiveness values are chosen randomly but in correlation
with the distances. We set the maximum station size to zs = 40 for all cells in all test
cases. For slot costs we set bfix = 1750 e, and bvar = 1000 e, which are reasonable
estimates in the Vienna area gathered from real BSSs. The costs for rebalancing a single
bike for one day have been estimated with 3 e per bike and per day. When projecting
this cost to the optimization horizon, e.g., 1 year, we get breb = 365 · 3 = 1095 e. For
coarsening of attractiveness values, we set the corresponding parameter λ = 0 and for
adjusting the number of trips which can be performed in a particular time period t ∈ T
by using only a single bike we set ω = 1.2. Each instance contains four time periods
which we selected as follows: 4:30am to 8:00am, 8:00am to 12:00 Noon, 12:00 Noon to
6:15pm, and 6:15pm to 4:30am. The duration for each time period t ∈ T has been set
accordingly and the average trip duration has been set to trent = 10 minutes.

All algorithms are implemented in C++ and have been compiled with gcc 4.8. For solving
the LPs and MIPs we used Gurobi 7.0. All experiments were executed as single threads
on an Intel Xeon E5540 2.53GHz Quad Core processor.

Table 4.1 summarizes obtained results. For every instance set we state the name containing
the number of nodes, the number of different instances we have tested on (#runs), the
maximum total budget (Btot

max), and the maximum fixed budget (Bfix
max). For the proposed

MLR, we list the average objective value (obj), i.e., the expected fulfilled demand in
terms of the number of journeys, the average number of coarsening levels (#coarsen),
the median time (t̃ime), and the average total costs (totcost) as well as the average fixed
costs (fixcost) for building the number of slots in the solution. Most importantly, it can
be seen that the proposed MLR scales very well to large instances up to 2000 customer
cells.
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4.5 Solving Large-Scale Instances Based on Real-World
Data

In this section we consider real-world instances of the Bike-Sharing Station Planning
Problem (BSSPP) from the city of Vienna. It is an integrated approach where we
do not only compute optimal station locations but also considering the rebalancing
effort and compute suggestions for initial inventory at the bike-sharing stations. We
introduce a refinement step based on local-search techniques and are given possible station
configuration and the prices therefore. Results are shown for up to 4000 prospective
station candidates and customer cells.

The remainder of this section is structured as follows. In Section 4.5.1, the solution
representation of the problem is given. Then, in Section 4.5.2, the optimization goal
is formalized. The multilevel refinement approach is explained in Section 4.5.3 and
computational results are presented in Section 4.5.4.

4.5.1 Solution Representation

A solution x = (xs)s∈S with xs ∈ Ks assigns each station cell s ∈ S a valid configuration
xs ∈ Ks (which might also be the “no-station” configuration 0).

4.5.2 Optimization Goal

The goal is to maximize the total number of trips in the system, i.e., the total demand
that can be fulfilled at each day over all time periods, considering a maximum total
budget Btot

max as well as a maximum budget for the overall fixed costs Bfix
max alone.

Let D(x, t) be the total demand fulfilled by solution x in time period t ∈ T , and let Qx(s)
be the required rebalancing effort arising at each station s ∈ S | xs 6= 0 in terms of the
number of bikes to be moved to some other station. The calculation of these terms via
MIP models was already presented in detail in [84].

The corresponding optimization problem can then be stated as follows.

max
∑
t∈T

D(x, t) (4.45)

∑
s∈S

(
bcfix
s,xs + bcvar

s,xs + breb ·Qx(s)
)
≤ Btot

max (4.46)

∑
s∈S

bcfix
s,xs ≤ B

fix
max (4.47)

xs ∈ Ks s ∈ S (4.48)

The objective function (4.45) maximizes the total satisfiable demand for each time period
t ∈ T . The left side of inequality (4.46) calculates the total costs by summing up the fixed
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and variable costs resulting from a change in station configurations and the rebalancing
costs. Inequality (4.47) restricts the maximum fixed costs of the new system and in (4.48)
domain definitions for the decision variables are given.

4.5.3 Multilevel Refinement Approach

In our opinion, for this type of problem, single construction heuristics based on greedy
principles are not the ultimate choice as solution technique and neither is a direct
application of classical local-search based metaheuristics like variable neighborhood
search and iterated local search. We think that these strategies are not able to grasp the
connections and interactions between all the clusters and leaf nodes in large instances.
In this context many local decisions are not the way to go. One has to find a solution
method which is able to overlook the complete and complex problem more as a whole.
An intuitive way of achieving this, is to apply the so called multilevel refinement approach
which is stated in pseudo-code in Algorithm 2.8.

Initially, it was thought as an additional ingredient to any metaheuristic to improve its
solutions. However, we are going to use the approach as the main solution technique.
This technique fits to the already given hierarchical clustering of the geographic cells,
as we can do the coarsening accordingly, level by level, until we reach a problem size
that can be reasonably well solved. We, then compute an initial solution by the initialize
procedure and finally, extend and refine the solution until we obtain a solution to the
original input instance.

In the following the coarsen, initialize, extend, and refine functions are explained in detail.

Coarsening

In the coarsening, we iteratively merge neighboring clusters into larger clusters according
to the already given hierarchical clustering.

Coarsening of customer cells: As illustrated in Figure 4.3, in the coarsening step,
customer cells are merged together into their parent cluster, so that the problem becomes
smaller and gets easier solvable.

The outgoing demand of a node p that corresponds to the merging of nodes V (p) is the
demand

∑
(v,q)∈At|v∈V (p),q /∈C(p) d

t
v,q and the ingoing demand of p is the total demand of

nodes V (p), i.e.,
∑

(q,v)∈At|v∈V (p),q /∈C(p) d
t
q,v.

Coarsening of station cells: Merging a set of station cells, each representing possible
station configurations with different associated costs, is, however, not as straight-forward.
Considering all possible combinations of station configurations appears not meaningful,
since the resulting number of these combinations would grow exponentially with the
number of merged original station configurations. Furthermore, in particular on higher
abstraction levels, individual station configurations do not play a practically significant
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Figure 4.3: Example of a coarsening step in the hierarchical clustering of customer cells.
The leaf nodes are merged with their parent nodes to form new leaf nodes in the coarsened
tree.

role anymore. A simpler approximate model for the number of possible parking slots and
corresponding costs appears thus reasonable for practice.

We apply the following continuous linear model as approximation for the possibilities
at each station cell s ∈ Sl. Let bps

s be the maximum number of bike parking slots at
prospective station s. The possible number of bike parking slots at s can be chosen
freely from the (continuous) interval [0, bps

s ] where the upper bound bps
s will be chosen as

explained below. Consequently, a solution to P l is a vector containing for each station
cell the selected number of bike parking slots, i.e., x = (xs)s∈Sl with xs ∈ [0, bps

s ]. Costs
are calculated in dependence of xs as follows:

bcfix
s (xs) = bcfix,a

s · xs + bcfix,b
s (4.49)

bcvar
s (xs) = bcvar,a

s · xs + bcvar,b
s (4.50)

For original station cells s ∈ S0 we assume bps
s = maxi∈Ks b

ps
s,i and the model parameters

bcfix,a
s , bcfix,b

s , bcvar,a
s , and bcfix,b

s are determined as follows:

bcfix,a
sl+1 =

∑
sl∈sub(sl+1)

bcfix,a
sl

and bcfix,b
sl+1 = 1

|sub(sl+1)|
∑

sl∈sub(sl+1)
bcfix,b
sl

(4.51)

bcvar,a
sl+1 =

∑
sl∈sub(sl+1)

bcvar,a
sl

and bcvar,b
sl+1 = 1

|sub(sl+1)|
∑

sl∈sub(sl+1)
bcvar,b
sl

(4.52)
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The aggregation of station nodes with their approximate cost models is then done as
follows. Let sub(sl+1) ⊆ Sl denote the set of all station cells at level l which are to be
aggregated into sl+1 ∈ Sl+1. The maximum number of parking slots naturally is the sum
of the maximum values over all station nodes to be aggregated:

bps
sl+1 =

∑
sl∈sub(sl+1)

bps
sl

(4.53)

The model parameters are aggregated as follows:

Attractiveness values: As we coarsen the problem, we also have to aggregate the
attractiveness values of merged stations for the merged customer cells. Hence, we take
a weighted average value of all attractiveness values of all respective pairs of customer
cells and station cells. In more detail, let pl, ql ∈ Ch−l−1 and vl+1 the node arising from
merging all the nodes contained in the subtree rooted at pl and let sl+1 be the resulting
station from merging the stations in the subtree rooted at ql. Then, we compute the
attractiveness values as follows

avl+1,sl+1 =



1 if v = s∑
v∈V (p)

∑
s∈V (q)(av,s·maxi∈Ks{b

ps
s,i})∑

v∈V (p)

∑
s∈V (q) maxi∈Ks{b

ps
s,i}

if l = 0, v 6= s∑
vl∈V l(pl)

∑
sl∈V l(ql)

(
a
vl,sl
·b̂ps
sl,l

)
∑

vl∈V l(pl)

∑
sl∈V l(ql) b̂

ps
sl,l

if l > 0, v 6= s

(4.54)

It is impossible to keep the original attractiveness values when coarsening the problem.
Of course, we have to find a method to keep deviation to original attractiveness values to
a minimum. We take the average between all pairs of customer cells and station cells
weighted by the maximum possible parking slots at the particular stations. At level 0 we
have to compute this value and find the maximum through all configurations Ks for the
station s, and for all other levels we simply take the maximum parking slots as computed
by the coarsening of the stations. If the customer cell v and the station cell s refer to the
same cell, we set the attractiveness value to 1 which implies that every demand within
this cell, i.e., self loops, are always satisfiable.

Initialization

Looking at Algorithm 2.8 Line 6 we have to initialize the solution at some reasonably
coarsened level. We solve it via a MIP model when an appropriate level l, where the
problem is well solvable, is reached. Parts of the model have been already shown, like
calculating fulfillable demands or rebalancing costs in [84] and the optimization goal in
Section 4.5.2.

As it is not important and also not meaningful to make decisions about exact station
configurations in all levels l > 0 we use continuous variables xflex

s,l for computing a
completely flexible number of slots per station. The value 0 means no station is going to



4. Bike-Sharing Station Planning Problem

be built. Note, that variables are also indexed by the level l ≥ 0 for which we compute
the number of slots for the various stations. However, it is important that all stations
which are going to be planned have a minimum number of slots which we denote as
xflex

min. We need this condition because it is not meaningful to plan a number of slots for a
specific station under a particular minimum slot count. If the minimum slot count of
some station configuration at level l = 0 is greater than the slot count planned at level
l = 1 the information obtained through the coarsening and extension steps would be
useless since no station can be built in this scenario. Due to this constraint, we introduce
additional variables gs ∈ {0, 1} that decide whether a station is to be built in cell s ∈ S
or not.

The calculation of the demand is done by the linear program D(x, t) defined in [84] but
extended with an additional index for modeling the time periods.

Rebalancing effort is determined by the linear program Qx(s) is also defined in [84].
For the initialization it is also enriched by an additional index regarding the various
prospective station candidates.

By Ap,qf,l we denote the flow network of nodes/clusters (p, q) in level l. The set Sl
corresponds to a set of possible station candidates at level l.

The MIP model for initialization of the solution at the coarsest level lmax is finally defined
as follows.

max
∑
t∈T

 ∑
(v,p)∈At,lmax |v∈V lmax

∑
(v,s)∈Av,pf,lmax

f t,v,pv,s

 (4.55)

s.t. inequalities from D(x, t) hold, see [84]. (4.56)
inequalities from Qx(s) hold, see [84]. (4.57)∑
s∈S

(
bcfix · xflex

s,lmax + bcvar · xflex
s,lmax + breb ·

(∑
t∈T

(
r+
t,s + r−t,s

)
+ ro

s

))
≤ Btot

max (4.58)∑
s∈S

bcfix · xflex
s,lmax ≤ Bfix

max (4.59)

xflex
s,lmax ≥ gs · xflex

min ∀s ∈ Slmax (4.60)
xflex
s,lmax ≤ gs · xflex

min ∀s ∈ Slmax (4.61)
xflex
s,lmax ≥ 0 ∀s ∈ Slmax (4.62)
gs binary ∀s ∈ Slmax (4.63)
f t,v,pα,β ≥ 0 ∀t ∈ T, (p, q) ∈ Almax , (α, β) ∈ Ap,qf,lmax (4.64)
r+
t,s, r

−
t,s, yt,s ≥ 0 ∀s ∈ Slmax , t ∈ T (4.65)

ro
s ≥ 0 ∀s ∈ Slmax (4.66)
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The objective (4.55) is to maximize the overall prospective demand. All inequalities
defined in the maximum flow polytope (4.56) and all inequalities of the rebalancing
polytope (4.57) must hold. The total budget (4.58) and the maximum allowed fixed
budget (4.59) have to be respected. Inequalities (4.60) and (4.61) are used to ensure that
a minimum number of stations is going to be built, if a station should be built in the
particular station cell s ∈ S. Domain definitions are given in (4.62)–(4.66). All variables
are continuous except the gs | s ∈ S variables which are binary decision variables.

At an appropriate level of the coarsening, the proposed MIP model is able to yield near
optimal solutions in a reasonable runtime when solved with a state-of-the-art MIP solver
such as Gurobi. As the underlying mathematical model is difficult to solve because of
numerical issues and precision, it is useful to give the MIP solver a reasonable optimality
gap. The actual optimality gap could vary from problem to problem and should be set
according to practical observations. This initial solution is then further extended using
the extension algorithm proposed in the next section.

Extension

The extension is done heuristically as in the lower levels the instance size gets larger and
utilizing a MIP formulation becomes time consuming. We use a simple heuristic which is
fast as after the extension step the solution is refined using local search.

For each station in the upper level we try to divide the number of slots to the corresponding
children of this cluster node in the lower level. We make use of a priority queue which
is sorted according to the highest possible demand which can be fulfilled by each node
in the lower level. Thus, we compute the demand LP D(x, t) with setting the solution
vector x to the highest possible slot count so that we know how much demand this node
would fulfill in the ideal case. At the end, the new solution for the lower level may
be infeasible due to violations of the budget restrictions. If this is the case, we try to
iteratively remove stations until we again reach a valid solution. For removal, we choose
the station with the lowest satisfied demand.

At the end of the algorithm we obtain a valid solution for the lower level.

Refinement

As the solution evaluation is done by executing two linear-programming (LP) models,
namely D(x, t) to calculate the demand and Qx(s) to estimate the rebalancing costs
from [84], it is expensive. Therefore, refinement is done by local search, but only a limited
amount of time. The following neighborhoods are iterated in the given, static order until
a predefined time limit or local optimum has been reached.

Change station: This neighborhood removes a station, i.e., assigns a station the 0
configuration and assigns another customer cell which has currently a 0 configuration
some other configuration.
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Add station: This neighborhood assigns a station, which has currently the 0 configura-
tion, a new one. Here, also to concentrate on promising stations, the station among
the 0 configuration stations is chosen, which has the highest demand.

Change configuration: This neighborhood changes the configuration of an arbitrary
station candidate.

We consider only moves that construct valid solutions as it does not make sense to work
with infeasible moves/solutions as repairing infeasible solutions consumes too much time
due to the expensive evaluation function. Fixed and variable costs are checked before
solution evaluation to avoid calling the LP for infeasible solutions. However, it can
happen that newly computed solution is still infeasible when considering rebalancing
costs. This information is retrieved from the LP and if this is the case the solution is
simply discarded.

4.5.4 Computational Results

We derived our test instances2 from real-world data of the city of Vienna. The whole
city was partitioned into cells and a full demand matrix on these cells is given. Different
instance sizes have been generated by picking some cells from the whole instance. The
clustering on these instances was computed using the Nearest Point Algorithm. Consider
cluster pu and cluster pv, where V (pu) = {u1, . . . , un}, V (pv) = {v1, . . . , vm}. Among the
remaining clusters, the nearest neighbor is chosen as follows:

dpu,pv = min
u∈V (pu),v∈V (pv)

{dist(u, v)} (4.67)

The graph Gt = (Ct, At) was derived by utilizing Algorithm 4.1. Therefore, we set
θ = 0.01. The attractiveness values have also been given as input as a full matrix
of attractiveness values between the different cells. However, to have computationally
tractable instances we consider only subset of neighbors for a single cell. For instances
with 20 and 50 customer cells we consider 10 neighbors for each cell, for instances with
300, 500 and 750 cells, 7 neighbors, for instances with 1,000 and 2,000 cells, 5 neighbors
and for instances with 2,500, 3,000, 3,500, and 4,000 cells 3 neighbors. The neighbors
with highest attractiveness values are taken. Configurations have been set as follows for
all customer cells of the instances:

∀s ∈ S : Ks = {(0, 0, 0), (10, 17500, 10000), (20, 25000, 20000), (40, 30000, 40000)}

These tuples represent the number of slots to be built for the particular configuration, its
fixed and variable costs. Rebalancing a single bike for a single day has been estimated
with 3 e which is breb = 365 · 3 = 1095 e for a whole year which is equal to the planning
horizon. The parameter for adjusting the attractiveness values is set accordingly to λ = 0.

2https://www.ac.tuwien.ac.at/files/resources/instances/bsspp/lion19.bz2

https://www.ac.tuwien.ac.at/files/resources/instances/bsspp/lion19.bz2
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Instance Multilevel Refinement Heuristic
#cells Btot

max [e] Bfix
max [e] obj #coarsen time [s] totcost [e] fixcost [e]

20 100,000.00 80,000.00 0.79 2 167.03 82,598.27 52,500.00
50 200,000.00 160,000.00 45.85 2 3,775.28 200,000.00 122,500.00
300 1,200,000.00 960,000.00 160.18 4 4,635.18 1,200,000.00 752,500.00
500 2,200,000.00 1,760,000.00 451.90 5 8,720.94 2,115,602.79 1,155,000.00
750 3,350,000.00 2,680,000.00 665.62 7 8,588.95 2,428,067.58 1,365,000.00

1,000 4,500,000.00 3,600,000.00 876.77 6 6,532.26 3,343,472.61 1,872,500.00
2,000 9,000,000.00 7,200,000.00 1,125.29 8 11,460.01 6,565,538.53 3,920,000.00
2,500 10,000,000.00 8,000,000.00 1,214.90 8 12,434.51 7,707,661.10 4,462,500.00
3,000 12,000,000.00 9,600,000.00 1,315.58 9 12,464.25 9,321,026.50 5,460,000.00
3,500 15,000,000.00 12,700,000.00 1,435.98 9 13,255.25 11,277,185.57 6,702,500.00
4,000 17,000,000.00 13,600,000.00 1,213.81 9 13,518.10 10,841,911.99 6,510,000.00

Average 773.33 6.27 8,686.52 3,265,499.73 3,101,000.00

Table 4.2: Results for the multilevel refinement heuristic.

As the visualization component (see later) uses only one time interval, we also use only
one time interval for our computational tests and set its duration to 1440 minutes. We
introduced a flexible number of time intervals as it is important for practice. In our first
experiments, however, we use only one time interval, as the visualization component is
currently only able to visualize one time interval. This time interval uses an average
prospective user demand over a whole day. We stop the coarsening step when we reached
a maximum number of 128 customer cells. We set the time limit for the local search
component to 15 seconds.

All algorithms are implemented in C++ and have been compiled with gcc 5.5.0. For
solving the LPs and MIPs we used Gurobi 7.0. All experiments were executed as single
threads on an Intel Xeon E5540 2.53GHz Quad Core processor. We executed a single run
per instance which seems meaningful in the context of a long-term planning problem.

Result of the proposed method are shown in Table 4.2. For each instance we show the
number of customer cells/station candidates (#cells), the maximum total budget (Btot

max),
the maximum budget for the fixed costs (Bfix

max), the objective value of the solution, i.e.,
number of trips (obj), the number of levels to be coarsened in the clustering tree such that
we reach our goal number of nodes to initialize the solution (#coarsen), the time needed
to find the solution (time), the total and the fixed costs of the found solution (totcost)
and (fixcost). As shown in Table 4.2, the approach is able to solve instances derived
from real-world data with up to 4,000 customer cells. Interesting is that for the instance
with 1,000 customer cells we need less coarsening steps than for the instance with 750
customer cells, but this also strongly depends on the clustering and the depth of the
original cluster tree. The second thing which looks interesting is that the fulfilled demand
of the instance with 4,000 cells is less than the fulfilled demand for some instances with
fewer customer cells. This happens because the refinement, i.e., local search, has fewer
iterations for the instance with 4,000 customer cells and the addStation neighborhood is
often successful. A detailed visualization of the solution found for the instance with 50
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customers cells is given in Figure 4.4.

4.6 Conclusions and Future Work
We presented an innovative approach to the BSSPP. Previous work only considers very
small instances and case studies to small parts of a city whereas we aim at solving more
realistic large-scale scenarios arising in large cities. As we have to cope with thousands of
customer cells and potential station cells it is most fundamental to model the potential
demands efficiently. To this end, we proposed to use a hierarchical clustering and defining
the demand graph on it. This approach can drastically reduce the data in comparison to
a complete demand matrix with only a very reasonable information loss. Moreover, we
provided MIP formulations to compute the satisfiable demand by given configurations and
to compute the prospective rebalancing costs. Putting them together under the objective
of maximizing the expected satisfied total demand and adding further constraints for
complying with given monetary budget constraints, we obtained a MIP model that solves
our definition of the BSSPP exactly. Because this MIP model can in practice still only be
solved for rather small instances, we further suggested a multilevel refinement heuristic
utilizing the same hierarchical clustering we are given as input.

Regarding the hierarchical clustering, we introduced an algorithm which constructs
a sparse graph on clustered input data from the original full demand matrix. This
drastically reduces the input size of the problem instance. We developed a refinement
method based on local search for the multilevel refinement approach which improves the
solutions after each extension step in the algorithm. Wee considered two problem variants,
one considering flexible/fractional number of slots and one considering particular station
configurations . Obviously, considering stations configurations increases the complexity of
the algorithm and makes practical solvability more difficult but nevertheless is practically
much more relevant.

In our first approach by solving the extension phase with a MIP model we solved randomly
generated instances with 2000 stations. In the second approach we derived instances
which are based on real-world data from the city of Vienna. Results seem reasonable
and we were able to solve instances with 4000 prospective station candidates which
demonstrate scalability of the proposed approach. Using the provided visualization the
solutions can also visually be verified.

In future work we want to extend our benchmark suite with also other cities like e.g.,
Linz in Austria. Furthermore, the whole Vienna instance consists of 7216 prospective
stations cells and it is interesting which instance sizes the proposed multilevel refinement
can solve. Moreover, it is also interesting to study alternatives and improvements to the
extension heuristic and the refinement part of the algorithm. Last but not least tests on
small instances can be performed where exact solutions are compared to solutions of the
multilevel refinement heuristic.
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Figure 4.4: A solution to the instance for 50 customer cells is visualized. Station cells
are marked by green rectangles. The darker a customer cell, the more demand is fulfilled
for this cell. Flows between station cells are represented by green lines. The thicker a
line, the more demand flows across the line. The visualization frontend tool has been
engineered by Markus Straub and can be found under https://bit.do/planbiss.

https://bit.do/planbiss




CHAPTER 5
Districting and Routing Problem

for Security Control

The last combinatorial optimization problem considered in this thesis is the Districting
and Routing Problem for Security Control (DRPSC). First, we propose an approach
inspired from the route elimination algorithm of Nagata and Bräysy [101] and then we
present a variant of the problem with soft time windows and propose an efficient method
for computing optimal arrival times.

5.1 Introduction

As in the area of private security control constant surveillance of an object might not be
economically viable or even necessary, security firms face the problem of sending security
guards to visit a large number of sites multiple times over the course of a day in order to
fulfill their custodial duty.

Security companies have to schedule tours for their employees in order to cover all needed
visits of all objects under their guardianship. The complexity of this task leaves a high
potential for solving this problem by algorithmic techniques to minimize the number of
needed tours. Thus, we propose the Districting and Routing Problem for Security Control
(DRPSC) which consists of a districting part and a routing part. In the districting part
all objects should be partitioned into a minimum number of disjoint districts, such that
a single district can be serviced by a single security guard within each working day of
a planning horizon. Given such a partitioning a routing problem has to be solved for
each combination of district and day. We seek for a tour starting and ending at a central
location which satisfies a maximum tour duration and the time window constraints
for each requested visit. In case multiple visits are required at an object in the same
period, there typically has to be a separation time between consecutive visits to ensure a
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districts
tour day 1
tour day 2

Figure 5.1: Example for a solution to the DRPSC [116]. This solution consists of four
districts given in red. Blue and orange lines show tours for different days as visits of
buildings may vary depending on the particular day. All tours for all districts and days
must not exceed a given makespan. The objective value, which should be minimized, is
the number of districts.
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better distribution over time. To minimize the number of districts, it is important to
minimize the duration of the planned tours in order to incorporate as many objects into
the resulting districts as possible, which shows the inseparability of the districting and
routing parts. A possible solution to the DRPSC is shown in Figure 5.1.

5.2 Solving the DRPSC by a Route Elimination
Algorithm

This section provides construction heuristics for the DRPSC and also proposes an iterative
destroy & recreate algorithm which is able minimize the routes needed for doing all visits
of all objects.

We address the routing part by an exact mixed integer linear programming formu-
lation (MIP) and a routing construction heuristic (RCH) with a subsequent variable
neighborhood descent (VND). For the districting part we propose an iterative destroy &
recreate (IDR) approach based on an initial solution identified by a districting construction
heuristic (DCH).

This section is structured as follows. In Section 5.2.1 a formal problem definition of the
DRPSC is given followed by a survey of related work in the literature in Section 5.2.2.
The proposed algorithms for solving the routing subproblem and the districting problem
are described in Sections 5.2.3 and 5.2.4, respectively. Computational results are shown
and discussed in Section 5.2.5.

5.2.1 Problem Definition

This section formalizes the DRPSC. We are given a set of objects I = {1, . . . , n} and a
starting location, which we call in relation to the usual terminology in vehicle routing
depot 0. There are p planning periods (days) P = {1, . . . , p}, and for each object i ∈ I a
set of visits Si = {i1, . . . , i|Si|} is defined. Not all visits, however, have to take place in
each period. The visits requested in period j ∈ P for object i ∈ I are given by subset
Wi,j ⊆ Si.

For each visit ik ∈ Si, i ∈ I, k = 1, . . . , |Si|, we are given its duration tvisit
ik
≥ 0 and a

time window Tik = [T e
ik
, T l

ik
], during which the whole visit has to take place. The time

windows of successive visits of an object may also overlap but visit ik always has to
take place before a visit ik′ with k, k′ ∈ Wi,j , k < k′ and they must be separated by a
minimum duration of tsep. The maximum duration of each planned tour must not exceed
a global maximum duration tmax.

Next, we define underlying graphs on which our proposed algorithms operate. For each
period j ∈ P we define a directed graph Gj = (V j , Aj) where V j refers to the set
of visits requested at corresponding objects, i.e., V j =

⋃
i∈IWi,j , and the arc set is:

Aj = {(ik, i′k′) | ik ∈ Wi,j , i
′
k′ ∈ Wi′,j} \ {(ik, ik′) | ik, ik′ ∈ Wi,j , k

′ ≤ k}. We have arc
weights associated with every arc in Aj which are given by ttravel

i,i′ , the duration of the
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fastest connection from object i to object i′. We assume that the triangle inequality holds
among these travel times. Let us further define the special nodes 00 and 01 representing
the start and end of a tour and the augmented node set V̂ j = V j ∪ {00, 01}, ∀j ∈ P .
Accordingly, we add outgoing arcs from node 00 to all visits ik ∈ V j and arcs from all
visits ik ∈ V j to node 01, formally, Âj = Aj ∪ {(00, ik) | ik ∈ V j} ∪ {(ik, 01) | ik ∈ V j}.
Consequently, we define the augmented graph Ĝj = (V̂ j , Âj).

The goal of the DRPSC is to assign all objects in I to a smallest possible set of districts
R = {1, . . . , δ}, i.e., to partition I into δ disjoint subsets Ir, r ∈ R, with Ir ∩ Ir′ = ∅ for
r, r′ ∈ R, r 6= r′ and

⋃
r∈R Ir = I, so that a feasible tour τr,j exists for each district Ir,

r ∈ R and each planning period j ∈ P . A tour τr,j = (τr,j,0, τr,j,1, . . . , τr,j,lr,j , τr,j,lr,j+1)
with τr,j,0 = 00, τr,j,lr,j+1 = 01, lr,j =

∑
i∈Ir |Wi,j |, and τr,j,1, . . . , τr,j,lr,j ∈

⋃
i∈Ir Wi,j has

to start at the depot node 00, has to perform each visit ik ∈ Wi,j in the respective
sequence for each object i ∈ Ir exactly once, and finally has to return back to the depot,
i.e., reach node (01). A tour τr,j is feasible if each visit τr,j,u, u = 0, . . . , lr,j +1 takes place
in its time window Tik , where waiting before a visit is allowed, the minimum duration
tsep between visits of the same object is fulfilled, and the total tour duration does not
exceed tmax.

Note that the routing part can be solved for a given district Ir and each period j ∈ P
independently and consists of finding a feasible tour τr,j .

5.2.2 Related Work

To the best of our knowledge there is no work covering all the aspects of the DRPSC as
considered here. The similarity of the DRPSC to the vehicle routing problem with time
windows (VRPTW), however, leads to a huge amount of related work. A majority of the
approaches in the literature aim at minimizing the total route length without taking the
makespan into account [32, 93, 98, 102, 103, 114, 143, 155]. As the practical difficulty
usually increases when makespan minimization is considered, specialized algorithms have
been developed for the traveling salesman problem with time windows (TSPTW) [24, 54],
which is the specialization of the VRPTW to just one tour. The routing part of the
DRPSC is similar to the TSPTW as the aim is to find a feasible tour of duration less
than a prespecified value which is related to the minimization problem of the TSPTW. In
the TSPTW, however, multiple visits of the same objects and a separation time between
them are not considered. Interestingly, López-Ibáñez et al. [94] showed that by adapting
two state-of-the-art metaheuristics for travel time minimization of the TSPTW [93, 103]
to makespan minimization it is possible to outperform the specialized algorithms. Many
of the proposed approaches focus on first minimizing the number of needed routes and
only in a second step minimizing the travel time or makespan, e.g., by using a hierarchical
objective function [102, 114]. Nagata and Bräysy [101] propose a route minimization
heuristic which in particular tries to minimize the number of routes needed to solve
the VRPTW. They also rely on a destroy-and-recreate heuristic which iteratively tries
to delete one route while maintaining an ejection pool (EP). The EP stores all objects
which are yet to be inserted. The algorithm tries to identify objects which are difficult to
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insert in one of the current routes and utilizes this information for choosing objects to be
removed and re-inserted. As this approach produced excellent results we adopt this basic
idea of the destroy-and-recreate heuristic here.

Exact solution approaches for the VRPTW were proposed by Ascheuer et al. [4] who
developed a branch-and-cut algorithm using several valid inequalities and were able to
solve most instances with up to 50–70 nodes. Baldacci et al. [6] introduce the ngL-tour
relaxation. By using column generation as well as dynamic programming they are able
to solve instances with up to 233 nodes to optimality and report new optimal solutions
that have not been found previously. A current state-of-the-art method for heuristically
solving several variants of the VRPTW is a hybrid genetic algorithm (GA) by Vidal et
al. [155]. As many other approaches described in the literature [102, 114] they use a
penalty function for handling infeasible routes, which is described in [102]. In the GA
the initial solutions are created randomly but there are also more elaborate construction
heuristics available: Solomon [143] proposes several algorithms for constructing only
feasible solutions by extending the well-known savings heuristic, a nearest neighbor
heuristic, and insertion heuristics using different criteria. Numerous simple construction
heuristics for the asymmetric TSPTW are also proposed by Ascheuer et al. [4].

5.2.3 Routing Problem

An important factor when approaching the DRPSC is a practically efficient approach
to the underlying routing problems. This part is embedded in the whole approach for
optimizing the districting as a subcomponent which is called when the feasibility of a
district needs to be checked. As already mentioned, this subproblem is similar to the
well-known TSPTW which has been exhaustively studied in the literature. There is,
however, one substantial and significant difference: objects have to be visited several
times per period and between every two visits of the same object there has to be a specific
separation time. Nevertheless, many fruitful ideas of the literature can be adopted to our
problem.

As a single routing problem is solved for each period j ∈ P and each district r ∈ R
independently, we are given one graph Gjr = (V j

r , A
j
r). The node set is defined as

V j
r = V j∩

⋃
i∈Ir Wi,j and the arc set as Ajr = Aj \{(ik, i′k′) | ik /∈ V j

r ∨i′k′ /∈ V j
r }. Similarly,

we define the augmented graph containing the tours’ start and end nodes 00 and 01 as
Ĝjr = (V̂ j

r , Â
j
r) where V̂ j

r = V̂ j ∩
⋃
i∈Ir Wi,j and Âjr = Âj \ {(ik, i′k′) | ik /∈ V̂ j

r ∨ i′k′ /∈ V̂ j
r }.

For computing the duration of a tour τ we first define the arrival and waiting times for each
visit of the tour. Moreover, let us define the auxiliary function κ : V j

r 7→ I which maps the
visit ik ∈ V j

r , to its corresponding object i ∈ Ir, and the auxiliary function γ : V j
r 7→ N

which maps visit ik ∈ V j
r , to its corresponding index in the set of visits for this particular

object. For every visit ik ∈ V j
r , aik denotes the arrival time at the object, whereas a00 and

a01 denote the departure and arrival time for the depot nodes 00 and 01, respectively. Let
twait
τu = max(0, T eτu −max(aτu−1 + tvisit

τu−1 + ttravel
κ(τu−1),κ(τu), aκ(τu)γ(τu)−1 + tvisit

κ(τu)γ(τu)−1
+ tsep))

denote the waiting time before a visit τu can be fulfilled. We aim at finding a feasible
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tour τ = (00, τ1, . . . , τl, 01), τ1, . . . , τl ∈ V j
r , l = |V j

r | through all visits starting and ending
at the depot such that the total tour duration T (τ) = a01 − a00 does not exceed tmax.

Exact Mixed Integer Linear Programming Model

The following compact mixed integer programming (MIP) model operates on the previ-
ously defined and reduced graph Gjr and is based on Miller-Tucker-Zemlin (MTZ) [96]
constraints. We use binary decision variables yik,i′k′ ∀(ik, i

′
k′) ∈ Ajr which are set to 1 if

the arc between the k-th visit of object i and the k′-th visit of object i′ is used in the
solution, and 0 otherwise. We model arrival times by additional continuous variables
aik ∀ik ∈ V j

r and ensure by these variables compliance with the time windows and the
elimination of subtours. For each district r ∈ R and each period j ∈ P we solve the
following model:

min
∑
ik∈V jr

(twait
ik

+ tvisit
ik

) +
∑

(ik,i′k′ )∈Â
j
r

(yik,i′k′ · t
travel
κ(ik),κ(i′

k′ )
) (5.1)

s.t.
∑

(ik,i′k′ )∈Â
j
r

yik,i′k′
=

∑
(i′
k′ ,ik)∈Âjr

yi′
k′ ,ik

∀ik ∈ V j
r (5.2)

∑
(00,ik)∈Âjr

y00,ik = 1 (5.3)

∑
(ik,01)∈Âjr

yik,01 = 1 (5.4)

aik − ai′
k′

+ tmax · (1− yi′
k′ ,ik

) ≥ ttravel
κ(i′

k′ ),κ(ik) + tvisit
i′
k′

∀ik ∈ V̂ j
r , (ik, i′k′) ∈ Âjr (5.5)

aik + ttravel
0,κ(ik) · (1− y00,ik) ≥ ttravel

0,κ(ik) ∀(00, ik) ∈ Âjr (5.6)

twait
ik

+ tmax · (1− yik,i′k′ ) ≥ ai′k′ − aik − t
travel
κ(ik),κ(i′

k′ )
− tvisit

ik

∀ik ∈ V̂ j
r , (ik, i′k′) ∈ Âjr (5.7)

aik−1 ≤ aik − t
sep ∀ik, ik−1 ∈ V j

r (5.8)∑
(ik,i′k′ )∈Â

j
r

yik,i′k′
= 1 ∀ik ∈ V j

r (5.9)

T eik ≤ aik ≤ T
l
ik
− tvisit

ik
∀ik ∈ V j

r (5.10)
yik,i′k′

∈ {0, 1} ∀(ik, i′k′) ∈ Âjr (5.11)

The objective function (5.1) minimizes the total makespan within which all object visits
take place by summing up all visit times, travel times, and waiting times. Equalities (5.2)
ensure that the number of ingoing arcs is equal to the number of outgoing arcs for
each node ik ∈ V j

r . Equalities (5.3) and (5.4) ensure that there must be exactly one
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ingoing and outgoing arc for the depot in each period j ∈ P . Inequalities (5.5) are
used to recursively compute the arrival times for every visit. If an edge (ik, i′k′) is
not used, then the constraint is deactivated. These inequalities can be individually
lifted by using (T l

i′
k′
− tvisit

i′
k′

) + (ttravel
κ(i′

k′ ),κ(ik) + tvisit
i′
k′

) instead of ttmax, which is also done in
our implementation. Inequalities (5.6) set the start time at the depot for each period.
Inequalities (5.7) compute the waiting time at the k-th visit of object i before traveling
to the k′-th visit of object i′. We need these waiting times twait

ik
∀ik ∈ V j

r for the objective
function to minimize the makespan of the route. These inequalities can also be lifted by
replacing tmax with the term (T li′

k′
− tvisit

i′
k′

) − T lik − t
travel
κ(ik),κ(i′

k′ )
− tvisit

ik
. Inequalities (5.8)

model the minimum time required between two different visits of the same object, i.e.,
ensure the separation time tsep. Inequalities (5.9) state that there must exist an ingoing
and an outgoing arc for the k-th visit of object i, if this particular visit is requested in the
considered period j ∈ P . It is ensured that every time window of every visit ik ∈ V j

r is
fulfilled in (5.10). In (5.11) the domain definitions for the binary edge-decision variables
yik,i′k′

are given.

In the context of the districting problem we use this model only for checking feasibility
which can usually be done faster than solving the optimization problem to optimality. To
this end we replace the objective function by min{0} and add the following constraints
for limiting the makespan to tmax:

∑
ik∈V jr

(twait
ik

+ tvisit
ik

) +
∑

(ik,i′k′ )∈Â
j
r

(yik,i′k′ · t
travel
κ(ik),κ(i′

k′ )
) ≤ tmax (5.12)

Heuristics

For larger districts the exact feasibility check using the MIP model might be too slow,
hence we also propose a faster greedy construction heuristic followed by a variable
neighborhood descent.

Given a sequence of visits τ , we first determine if a tour can be scheduled such that the
time window constraints of all visits are satisfied. For this purpose, we compute the
earliest possible arrival time aik for each visit and minimize waiting times.

Feasibility of a tour: Since the (intermediate) tour τ starts at the depot at the earliest
possible time, the departure at the depot a00 is set to 0. For each subsequent visit τu,
the arrival time aτu is the maximum of T eτu and the arrival time at the preceding visit
aτu−1 including visit time tvisit

τu−1 and travel time ttravel
κ(τu−1),κ(τu) from the preceding visit’s

object κ(τu−1) to the current visit’s object κ(τu). The depot has no requested visit times,
therefore we define tvisit

00 = tvisit
01 = 0. Furthermore, for each object i the separation time

tsep between visit ik and ik−1 for all k > 1 has to be respected. Formally:



5. Districting and Routing Problem for Security Control

a00 = 0

aτu =



max{T eτu , aτu−1 + tvisit
τu−1 + ttravel

κ(τu−1),κ(τu)}
for u > 1, γ(τu) = 1

max{T eτu , aτu−1 + tvisit
τu−1 + ttravel

κ(τu−1),κ(τu),

aκ(τu)γ(τu)−1 + tvisit
κ(τu)γ(τu)−1

+ tsep}
for u > 1, γ(τu) > 1

a01 = aτl + tvisit
τl

+ ttravel
κ(τl),0

If for any arrival time aik with ik ∈ V j
r the following condition is violated, the sequence

of visits is infeasible:

aik + tvisit
ik
≤ T l

ik
(5.13)

The resulting tour duration T (τ) = a01 − a00 can be minimized while keeping τ feasible
by delaying the departure at the depot by the so called forward time slack proposed by
Savelsbergh [136] for the TSPTW. The forward time slack F (τu, τu′) for the partial tour
τ ′ = τu, . . . , τu′ adapted to our problem is

F ′(τu, τu′) =



T lτu − t
visit
τu − aτu

for u = u′

F ′(τu, τu′−1)− T lτu′−1
+ T lτu′ − t

visit
τu′
− ttravel

κ(τu′−1),κ(τu′ )

for u′ > 1, γ(τu′) = 1

min{F ′(τu, τu′−1)− T lτu′−1
+ T lτu′ − t

visit
τu′
− ttravel

κ(τu′−1),κ(τu′ )
,

F ′(τu, τκ(τu′ )γ(τu′ )−1)− T lτκ(τu′ )γ(τu′ )−1
+ T lu′ − tvisit

τu′
− tsep}

for u′ > 1, γ(τu′) > 1
F (τu, τu′) = min

v=u,...,u′
{F ′(τu, τv)} (5.14)

The tour duration of tour τ must not exceed tmax. Formally, if

T (τ)−min(F (00, 01),
l∑

u=1
twait
τu ) < tmax (5.15)

holds, the sequence τ is feasible, otherwise infeasible.
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Routing Construction Heuristic: We developed a Routing Construction Heuristic
(RCH) based on an insertion heuristic by starting from a partial tour τ ′ = (00, 01)
containing only the start and end nodes and iteratively adding all visits ik ∈ V j

r to τ ′. A
2-step approach is used, where we first order the visits according to some criteria and
then insert them at the first feasible or best possible insert position, respectively. For the
insertion order we compute the flexibility value of each visit ik ∈ V j

r where visits with
less flexibility are inserted first:

flex(ik) = T lik − T
e
ik
− tvisit

ik
(5.16)

flex(i(1 )
k ) ≤ flex(i(2 )

k ) ≤ · · · ≤ flex(i(|V
j
r |)

k ) (5.17)

Visits with less flexibility may be more difficult to insert as they need to be scheduled at
a very specific time. Ties are broken randomly.

In a second phase we start by trying to insert the first visit, i.e., i(1 )
k , into the partial tour

τ ′. We start at the front, i.e., try to insert it after the start node 00, and move backwards
to the end. Then, we either stop when we found the first feasible insert position in the
first feasible variant or we compute insertion costs for each possible insert position and
insert the visit at the position with the minimum costs for the best possible insertion
variant. We define these costs as:

dik,u′ =

aτu′ + tvisit
τu′

+ ttravel
κ(τu′ ),κ(τu) − aτu if (5.19) and (5.20) hold

∞ otherwise
(5.18)

These insertion costs dik,u′ determine the amount of time by which the visit τu has to
be moved backwards in order to insert the new visit τu′ . Note that dik,u′ may also be
negative, if the space for insertion of visit τu′ is bigger than necessary. However, this is
desirable as we use those insert positions more likely which have bigger gaps and smaller
gaps are kept for later inserts. In Section 5.2.5 we compare both, the first feasible and
the best possible variant, to each other in terms of solution quality and runtime.

We further maintain global variables for the forward time slack F (τ ′) and all arrival times
aτu of each partial tour τ ′ computed during the execution of the insertion heuristic. For
an insertion to be feasible, the latest allowed arrival time at visit τu′ must be greater or
equal to the earliest possible arrival at that visit considering the previous visit’s earliest
arrival, its visit time and the travel time between τu−1 and τu′ . Furthermore, the earliest
departure at τu′ including the travel time between τu′ and τu must be smaller or equal
to the earliest arrival at τu delayed by the forward time slack of the partial tour from
τu to the depot. Using the definition of the forward time slack in equality (5.14) and if
inequality (5.13) holds, then the insertion is feasible if, in addition, also the following
two inequalities hold:
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T lτu′ − t
visit
τu′
≥ max{aτu−1 + tvisit

τu−1 + ttravel
κ(τu−1),κ(τu′ ), aκ(τu)γ(τu)−1 + tvisit

κ(τu)γ(τu)−1
+ tsep} (5.19)

aτu′ + tvisit
τu′

+ ttravel
κ(τu′ ),κ(τu) ≤ aτu + F (τu, 01) (5.20)

Local improvement: If the solution found by the RCH is infeasible we additionally
employ a VND to reduce the number of infeasibilities and possibly come to a feasible
solution. First, we insert each infeasible visit ik into the tour on the position u′ where the
costs dik,u′ are minimum. We use a lexicographical penalty function to penalize infeasible
tours where the first criterion is the number of time window violations and the second
criterion is the duration of the route as proposed by López-Ibáñez et al. [93]. We use
three common neighborhood structures from the literature and search them in a best
improvement fashion in random order while respecting the visit order:

Swap: This neighborhood considers all exchanges between two distinct visits.

2-opt: This is the classical 2-opt neighborhood for the traveling salesman problem where
all edge exchanges are checked for improvement.

Or-opt: This neighborhood considers all solutions in which sequences of up to three
consecutive visits are moved to another place in the same route.

If at some point during the algorithm the value of the penalty function is zero we
terminate with a feasible solution.

5.2.4 Districting Problem

In the previous section we have already introduced a fast heuristic for efficiently testing
feasibility of a given set of objects by building a single tour for each period through all
requested visits of these objects. In the districting part of the DRPSC we face the problem
of intelligently assigning objects to districts such that the number of districts is minimized.
For checking the feasibility of this assignment we use the previously introduced RCH.
Alternatively, we could also use our MIP model for solving these subproblems but, as we
will see in Section 5.2.5, it is too slow to be used in practical scenarios. We propose a
DCH and an iterative destroy & recreate algorithm where the former generates an initial
solution and the latter tries to iteratively remove districts.

Districting Construction Heuristic

Starting with one district, objects are iteratively added to the existing districts r ∈ R.
Whenever adding an object i ∈ U to any of the available districts r ∈ R would make the
assignment infeasible, i ∈ U is added to a newly created district r′. The overall DCH is
shown in Algorithm 5.1 and explained below.
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Algorithm 5.1: Districting Construction Heuristic
1: init: R← {1}, U ← sort(I)
2: for all i ∈ U do
3: inserted ← false
4: for all r ∈ R do
5: if insert(i, r) then
6: inserted ← true
7: break
8: end if
9: end for

10: if not inserted then
11: r′ ← create |R|+ 1-th new empty district
12: R← R ∪ {r′}
13: insert(i, r′)
14: end if
15: end for

First, the set of districts R is initialized with the first empty district 1 and the set of objects
I is sorted by extending the flexibility values as defined in equation (5.16) from visits to
objects. All objects are sorted by the sum of their flexibility values

∑
j∈P

∑
ik∈Wi,j

flex(ik)
in ascending order. As in the RCH, the resulting set U is denoted as the set of unscheduled
visits. The DCH terminates when all i ∈ U have been scheduled (2) and, as a consequence,
all requested visits have been inserted successfully and we obtain a feasible solution to
the DRPSC. The insertion of object i into district r (lines 5 and 13) is accomplished by
checking for each scheduled visit ik ∈Wi,j if ik can be feasibly inserted into the particular
district r (for the definition of feasibility of a tour see also Section 5.2.3). In line 5
the DCH inserts i either into the first feasible or into the best possible insert position,
as described in Section 5.2.3. The insert function returns false, if no feasible insertion
position is found for at least one ik ∈Wi,j , ∀j ∈ P . It returns true, if a feasible insertion
position is found for each visit ik ∈ Wi,j , ∀j ∈ P . If the loop over all districts (line 4)
terminates without finding any feasible insertion position the variable inserted stays false
and a new empty district is created in line 11. The proposed constructive algorithm will
terminate with a feasible solution after |U | iterations.

Iterative Destroy & Recreate

Nagata and Bräysy [101] proposed a route elimination algorithm for reducing the number
of vehicles needed in the VRPTW. We apply the basic idea to the districting problem.
The algorithm starts with the initial assignment where every object is reached by a
separate route. Then, one district r ∈ R is chosen for elimination at a time, maintaining
all now unassigned objects in an ejection pool (EP). Then, it is tried to assign all objects
of the EP to the remaining districts R \ {r}. If this is successful, the number of districts
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Algorithm 5.2: District elimination algorithm
1: init: EP ← ∅, ci ← 0 ∀i ∈ I
2: choose a district rdel ∈ R for deletion
3: R← R \ {rdel}
4: EP ← EP ∪ {i | i ∈ Irdel}
5: while EP 6= ∅ ∧ termination criterion not met do
6: iins ← arg maxi∈EP {ci}
7: Rf ← feasible districts for assignment of iins

8: ciins ← ciins + |R| − |Rf |
9: if Rf 6= ∅ then

10: assign object iins to a randomly chosen feasible district r ∈ Rf
11: else
12: select random district rins ∈ R
13: assign object iins to district rins

14: call VND for district rins (see Section 5.2.3)
15: while ∃ an infeasible tour for any period of district rins do
16: idel ← arg mini∈Irins{ci}
17: Irins ← Irins \ {idel}
18: EP ← EP ∪ {idel}
19: call VND for district rins (see Section 5.2.3)
20: end while
21: end if
22: end while

could be reduced by one and another district is chosen for elimination. We adapt this
idea to the DRPSC and use the result of the DCH described in Section 5.2.4 as initial
solution.

Let the assignment of an object i ∈ I to a district r ∈ R be feasible if and only if a
feasible tour can be scheduled for all assigned visits of all objects for each period. Let
ci be a penalty value of object i ∈ I denoting failed attempts of inserting object i into
a district. Each time a visit cannot be inserted, this penalty value is increased by one,
revealing objects which are difficult to assign to one of the available districts.

If the EP becomes empty, a feasible assignment of objects to districts is found. Subse-
quently, another iteration is started, destroying a district and reassigning its objects to
the remaining ones. The overall district elimination algorithm is shown in Algorithm 5.2.

First, the EP is initialized to the empty set and the penalty values of all objects are set
to 0. Starting with the solution provided by DCH a district is chosen for elimination
in line 2. One of the following strategies is applied uniformly at random for selecting a
district for elimination:
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Minimum number of scheduled visits: This implies that only a minimum number
of visits has to be reinserted to regain a feasible solution.

Shortest tour duration: Selecting a district where the maximum tour duration over
all periods is minimal can be promising because this district might lead to a district
with visits of shorter durations resulting in easier insert operations.

Maximum waiting times: Selecting a district with a loose schedule may indicate less
or shorter visits, making them easier to reinsert.

After deleting a district all objects of this district are moved to the EP (line 4). As long
as the EP contains objects, we try to assign each object to one of the remaining districts.
An object with maximum penalty value is chosen for the next assignment (6). For the
chosen object iins the feasible districts for assignment are computed. If there is at least
one feasible district for an assignment of object iins (9) we assign the object to such a
district uniformly at random (10). If it is not possible to feasibly assign the object iins to
any of the remaining districts we randomly choose a district for assignment (11). Then,
we apply the VND described in Section 5.2.3 trying to make the district feasible. If this
is not possible and the assignment is still infeasible we iteratively try to remove objects
with lowest penalty values from this district rins in the following loop (15), remove them
from district rins (17), and finally add them to the EP (18). Then again, we call the
VND from Section 5.2.3 trying to make the resulting tour from the actual assignment
feasible. After an iteration of the outer loop the object with highest penalty value of the
EP has been inserted and other objects previously assigned to this district may have been
added to the EP. The idea behind this approach is to insert difficult objects first and
temporarily remove easy to insert objects from the solution to reinsert them later. When
the EP is empty, a new best assignment with one district less is found. This algorithm
iterates until a termination criterion, e.g., a time limit is met.

5.2.5 Computational Results

To evaluate our proposed algorithm computational tests are performed on a benchmark
set of instances. As the DRPSC is a new problem we created new instances1 based
on the characteristics of real-world data provided by an industry partner. The main
characteristics of real-world data are: Most of the time windows are of medium size, the
depot is centralized among the objects, travel times are rather small with respect to visit
times and the number of visits of the objects is usually ranged from 1 to 4. The distance
matrix is taken from TSPlib instances and we added the depot, the visits and the time
windows in the following way: The depot is selected by taking the node for which the
total distance to all other nodes is a minimum. Each node of the original instance has
between 1 and v visits, where v is a parameter of the instance. Small time windows have
a length between 5 and 30 minutes, medium time windows have a length of 2, 3, 4, or 5

1https://www.ac.tuwien.ac.at/files/resources/instances/drpsc/hm16.tar.gz

https://www.ac.tuwien.ac.at/files/resources/instances/drpsc/hm16.tar.gz
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Instance RCH RCH-VND MIP Rel. Difference

name |I| |V | α β v obj t[s] obj t[s] UB LB Gap t[s] ∆MIP ∆RCH

burma14_01 13 19 0 0.2 2 495.80 < 0.01 333.49 0.03 332.62 332.62 0.00% 2025.56 0.26% 48.67%
burma14_02 13 20 0 0.2 2 624.47 < 0.01 374.60 0.02 352.93 343.50 2.67% 3600.00 8.30% 66.70%
burma14_03 13 21 0 0.2 2 525.49 0.01 440.86 0.05 433.42 421.91 2.66% 3600.00 4.30% 19.20%
burma14_04 13 19 0 0.2 2 607.11 < 0.01 397.14 0.03 395.15 387.89 1.84% 3600.00 2.33% 52.87%
burma14_05 13 22 0 0.2 2 606.07 < 0.01 409.24 0.03 356.71 337.43 5.40% 3600.00 17.55% 48.10%
burma14_06 13 19 0 0.2 2 409.54 < 0.01 273.28 0.01 272.93 272.93 0.00% 2318.17 0.13% 49.86%
burma14_07 13 23 0 0.5 2 714.04 < 0.01 508.69 0.05 493.48 456.82 7.43% 3600.00 10.20% 40.37%
burma14_08 13 17 0 0.5 2 372.63 < 0.01 312.70 0.02 311.10 311.10 0.00% 2.09 0.51% 19.16%
burma14_09 13 21 0 0.5 2 416.55 < 0.01 370.61 0.04 360.71 360.71 0.00% 3.35 2.67% 12.40%
burma14_10 13 20 0 0.5 2 386.02 < 0.01 342.00 0.02 336.25 336.25 0.00% 10.74 1.68% 12.87%

Table 5.1: Results of the MIP, RCH, and RCH-VND for the routing part.

hours, and visits with large time windows are unrestricted. For the instance generation
the length of a time window is assigned randomly to a visit based on parameter values α
and β: a small time window is chosen with probability α, a medium time window with
probability β, and a large time window with probability 1 − α − β. Furthermore, we
enforce that small and medium time windows of visits of the same object do not overlap
and we choose the visit time uniformly at random from 3 to 20 minutes. For all our
instances we set tsep to 60 minutes and tmax to 10 hours.

The algorithm is implemented in C++ using Gurobi 6.5 for solving the MIP. For each
combination of configuration and instance we performed 20 independent runs for the
IDR while for the routing part we performed only one run because all tested algorithms
for the routing part are deterministic. All runs were executed on a single core of an Intel
Xeon processor with 2.54 GHz. The iterative destroy & recreate algorithm is terminated
after a maximum of 900 CPU seconds. The MIP model for the routing part was aborted
after 3600 CPU seconds.

In the first set of experiments the routing part of the DRPSC is examined more closely
to evaluate RCH in comparison to the MIP model. Then, several configurations of our
proposed algorithm for the whole problem are investigated.

Routing Part

First, the methods for the routing part are evaluated on a separate set of benchmark
instances. In Table 5.1 the MIP model is compared to RCH, and RCH with the subsequent
VND, denoted by RCH-VND. As the goal for the routing part is to minimize the makespan
of a specific route, the maximum tour duration constraint is relaxed and the resulting
makespan is given in minutes in the column obj. In the first four columns the instance
parameters are specified. Sequentially, the instance name, the number of objects |I|, the
maximum number of nodes of all objects |V |, the percentage of small (α), and medium
time windows (β) and the maximum number of visits per objects v is given. For the
RCH and RCH-VND we give the objective value (makespan in minutes) and the time
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needed for solving the instance. Then, the upper bound (UB), the lower bound (LB),
the final optimality gap, and the time spent by Gurobi for solving the MIP model is
shown. In the two remaining columns we present the relative gap between the MIP and
RCH-VND ∆MIP = (objRCH-VND − LB)/objRCH-VND as well as the relative gap between
RCH and RCH-VND ∆RCH = (objRCH − objRCH-VND)/objRCH-VND.

In Table 5.1 we see that the MIP model is able to solve easier instances to optimality,
but soon has very high running times. RCH-VND yields very reasonable solutions with
objective values close to the LB of the MIP for most cases. When looking at the relative
gap between the RCH and RCH-VND (∆RCH), we can conclude that the VND improves
greatly on the objective value with only a minor increase in running time. Moreover,
∆MIP reveals that RCH-VND produces results close to the results of the MIP, and for
those instances where the relative gap between the MIP and RCH-VND is greater than
10%, the MIP also has a relatively larger gap between UB and LB.

As we require a fast method for deciding if a route is feasible within the districting
problem, we conclude that RCH-VND is a reasonable choice.

Districting Part

For testing the proposed algorithms for the DRPSC we used three different configurations.
In the IDR-DCHf algorithm we used the DCH for generating an initial feasible solution
candidate with the first feasible strategy in contrast to the IDR-DCHb where we used a
best possible strategy. Both configurations are compared with the IDR-SCH, where a
simple construction heuristic (SCH) as proposed by Nagata and Bräysy [102] is used. In
the SCH each object is put in a separate district which results in a trivial initial solution
candidate.

In Table 5.2 the results of the experiments are shown. Columns obj show the average
objective value, i.e., the minimum number of districts at the end of optimization, after
the full run of IDR while columns obj f and objb show the average objective value, i.e., the
average number of districts, after the respective construction heuristic. Columns t∗ show
the median time in seconds after which the best solution has been found during the run
of IDR while tf and objb show the median time after which the respective construction
heuristic has found an initial solution. Columns sd show the standard deviation of the
objective value for 20 runs of a single instance.

We observe that for most instances the final objective value of the IDR is the same for
all three configurations. There are, however, differences for the construction heuristics
alone and DCHb for most but not all instances better results but needed more time. The
IDR-SCH works surprisingly well and was able to find good results in about the same
amount of time as the other two (more sophisticated) configurations.
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Instance IDR-SCH IDR-DCHf IDR-DCHb

name runs |I| |V | α β v obj sd t∗[s] objf tf [s] obj sd t∗[s] objb tb obj sd t∗[s]

st70_1 20 69 105 0.1 0.7 2 3.0 0.0 11 6 < 0.1 3.0 0.0 5 5 0.1 3.0 0.0 9
st70_2 20 69 91 0.1 0.7 2 3.0 0.0 4 6 < 0.1 3.0 0.0 6 5 0.1 3.0 0.0 6
st70_3 20 69 106 0.1 0.7 2 3.0 0.0 11 6 < 0.1 3.0 0.0 13 5 0.1 3.0 0.0 11

rd100_1 20 99 152 0.1 0.5 2 6.0 0.0 8 9 < 0.1 6.0 0.0 10 9 0.1 6.0 0.0 14
rd100_2 20 99 160 0.1 0.5 2 6.0 0.0 16 8 0.1 6.0 0.0 14 8 0.1 6.0 0.0 6
rd100_3 20 99 152 0.1 0.5 2 6.0 0.0 3 7 0.1 6.0 0.0 2 8 0.1 6.0 0.0 7
tsp225_1 20 224 334 0.2 0.7 2 11.0 0.0 47 13 0.2 11.0 0.0 64 13 0.4 11.0 0.0 121
tsp225_2 20 224 341 0.2 0.7 2 11.0 0.0 46 13 0.3 11.0 0.0 67 13 0.5 11.0 0.0 36
tsp225_3 20 224 332 0.2 0.7 2 10.0 0.0 226 12 0.3 10.0 0.0 257 12 0.5 10.0 0.0 177
gr48_1 20 47 120 0.2 0.7 4 5.0 0.0 6 8 < 0.1 5.0 0.0 4 7 < 0.1 5.0 0.0 14
gr48_2 20 47 115 0.2 0.7 4 5.0 0.0 12 7 < 0.1 5.0 0.0 7 7 < 0.1 5.0 0.0 10
gr48_3 20 47 125 0.2 0.7 4 4.0 0.0 527 7 < 0.1 4.0 0.0 438 6 < 0.1 4.0 0.0 488

berlin52_1 20 51 133 0.0 0.7 4 5.0 0.0 3 6 < 0.1 5.0 0.0 2 7 0.1 5.0 0.0 7
berlin52_2 20 51 130 0.0 0.7 4 5.0 0.0 5 7 < 0.1 4.0 0.0 142 6 0.1 5.0 0.0 1
berlin52_3 20 51 140 0.0 0.7 4 5.0 0.0 19 7 < 0.1 5.0 0.0 14 6 0.1 5.0 0.0 16

ft70_1 20 69 167 0.1 0.5 4 8.0 0.0 12 12 < 0.1 8.0 0.0 12 10 0.1 8.0 0.0 18
ft70_2 20 69 180 0.1 0.5 4 8.0 0.0 33 11 < 0.1 8.0 0.0 15 11 0.1 8.0 0.0 18
ft70_3 20 69 144 0.1 0.5 4 7.0 0.0 41 9 < 0.1 7.0 0.0 36 9 0.1 7.0 0.0 19

ch150_1 20 149 360 0.2 0.5 4 11.0 0.0 589 15 0.2 11.0 0.0 480 15 0.4 11.2 0.4 881
ch150_2 20 149 402 0.2 0.5 4 12.0 0.0 342 17 0.2 12.0 0.0 338 15 0.4 12.0 0.0 387
ch150_3 20 149 357 0.2 0.5 4 11.0 0.0 655 14 0.2 11.0 0.0 520 13 0.4 11.0 0.0 808

Table 5.2: Results of the DCH and IDR for the districting part.

5.3 Efficient Consideration of Soft Time Windows in a
Large Neighborhood Search

The approach described in Section 5.2 considers time windows in a strict sense. In
practice, however, small time window violations typically do not matter much, and a
larger flexibility in respect to them often allows substantially better solutions. In this
section, we consider the Districting and Routing Problem for Security Control with Soft
Time Windows (DRPSC-STW). Soft time windows may be violated to some degree, and
their violation is considered in the objective function by penalty terms. In this context,
the subproblem of determining optimal visiting times for a given candidate tour so that
the total time window penalty is minimized arises. We call this problem Optimal Arrival
Time Problem (OATP).

To classify the DRPSC-STW in context of the vehicle routing literature, one can see it
as a periodic vehicle routing problem with soft time windows with additional constraints
concerning separation time and maximum tour duration, where objects may have to be
visited multiple times in each period. Separation-time constraints are a minimum time
difference between two consecutive visits of the same object in a tour. Moreover, each
tour for every district and period must not exceed a given maximum tour duration.

In this work, we primarily focus on the OATP and how it can be effectively solved. To
this end we propose an approach based on linear programming (LP) and a faster heuristic
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approach using greedy techniques and dynamic programming. These mechanisms are
embedded in a large neighborhood search (LNS) [113].

5.3.1 Related Work

We put our attention here on previous work dealing with soft time window. Although
much more work is done on problem types with hard time windows, there already exists
a significant number of works which introduce efficient methods to effectively handle soft
time window constraints.

Ibaraki et al. [75] proposed a dynamic programming (DP) based approach to determine
optimal starting times in conjunction with soft time windows which is applicable to
a wider range of routing and scheduling applications. The total penalty incurred by
time window violations is minimized. Compared to our approach they consider more
general piecewise-linear penalty functions. Unfortunately, their approach is not directly
applicable in our context as we have to additionally consider minimum separation times
between visits of the same objects (i.e., objects can only be visited again if a minimum
separation time between two consecutive visits is considered) and a maximum tour length.
However, we will show later how this efficient DP method can nevertheless be utilized to
some degree in our case.

Hashimoto et al. [64] extended the work of Ibaraki et al. to also consider flexible traveling
times, which are also penalized if violated. They show, however, that the problem
becomes NP-hard in case.

Taillard et al. [147] solve the vehicle routing problem with soft time windows by using
tabu search. They do not consider any penalties for arriving too early but introduce a
“lateness penalty” into the objective function. This penalty value is weighted by a given
factor and the problem can be transformed into the vehicle routing problem with hard
time windows by setting the weight factor to ∞.

Another work which shows the efficiency of applying DP for solving problems with soft
time windows is by Ioachim et al. [76]. They solve the shortest path problem with time
windows and linear node costs, where the linear node costs correspond to the modeling
of soft time windows.

Fagerholt [48] published an approach for ship scheduling with soft time windows. He
argues that by considering soft time windows, solution quality can be drastically improved
and in practice small time window violations do not really matter. As in our work, a
maximum allowed time window violation is used and earlier and later service is penalized.
The approach can handle also non-convex penalty functions whereas in the literature
most often only convex penalty functions are considered. The proposed solution approach
uses a discretized time network in which nodes are duplicated according to possible
start/arrival times. On the obtained shortest path network problem DP is applied for
obtaining optimal arrival times.
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To summarize related work, DP can frequently be an effective tool to determine optimal
arrival/service times when considering soft time windows. Certain specificities of problems
like maximal total tour duration and other constraints, however, frequently become an
obstacle and prohibit the direct application of an efficient DP as the subproblem of
determining optimal arrival times becomes NP hard. Nevertheless, DP may still be an
important ingredient to deal with such situations in practice.

5.3.2 Problem Definition

In the DRPSC-STW we are given a set of objects I = {1, . . . , n} and a depot 0, which is
the start and end of each route. Travel times among the objects and the depot are given by
ttravel
i,i′ > 0 for i, i′ ∈ I ∪{0}. We assume the triangle inequality to hold among these travel
times. For every object i ∈ I we are given a (small) number of visits Si = {i1, . . . , i|Si|},
and we are given a set of periods P = {1, . . . , p}. As not all visits have to take place in
every period, subsets Wi,j ⊂ S contain the visits of object i requested in period j for all
i ∈ I, j ∈ P . The depot is visited two times, namely at the start of the tour and at the
end of the tour. To ease modeling we define 00 to be the departure from the depot at
the beginning and 01 to be the arrival at the depot at the end.

Each visit ik ∈ Si, i ∈ I is associated with a visit time tvisit
ik

and a particular time window
Tik = [T e

ik
, T l

ik
] in which the whole visit should preferably take place, already including

its visit time. Visits ik ∈ Si of an object i ∈ I have to be visited in the given order, i.e.,
visit k has to be performed before visit k′ iff k < k′.

Time windows of the visits are now softened such that an earlier start or later finishing
of the service at an object is allowed. The maximum allowed earliness and lateness
are, however, restricted by ∆, yielding the hard time windows T h

ik
= [T he

ik
, T hl

ik
] =

[T e
ik
−∆, T l

ik
+ ∆], which must not be violated in any feasible solution.

An additional important requirement in the context of our security application is that
any two successive visits ik, ik+1 ∈Wi,j of the same object i ∈ I must be separated by a
minimum separation time tsep. Obviously, visiting an object twice without a significant
time inbetween would not make much sense. The maximum duration of any tour is given
by tmax.

Solutions to the DRPSC-STW are given by a tuple (D, τ, a) where D = {D1, . . . , Dm}
is the partitioning of objects into districts, τ = (τr,j)r=1,...,m, j∈P are the routes for
each district and period, and a denotes the respective arrival times. Each tour τr,j =
(τr,j,0, . . . , τr,j,lr,j+1) with lr,j =

∑
i∈Dr |Wi,j | starts and ends at the depot, i.e., τr,j,0 = 00

and τr,j,lr,j+1 = 01, ∀r = 1, . . . ,m, j ∈ P , and performs each visit in the respective
ordering of the sequence. Each visit of a tour τr,j,u has to be associated with a specific
arrival time ar,j,u and thus, a = (ar,j,u)r=1,...,m, j=1,...,p, u=1,...lr,j+1. An object always is
immediately serviced after arrival but waiting is possible before leaving the object. A tour
is feasible, if all visit, travel, and separation times are considered, each visit is performed
at least within its hard time window and the total tour duration does not exceed tmax.
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While in our previous work [116] the primary objective was to minimize the number
of districts (m), we consider this number now as pre-specified. For example, it can be
obtained in a first optimization round by our previous method based on the hard time
windows only. Now, in the DRPSC-STW, our objective is to minimize the total penalty
incurred by all time window violations, which is

min
m∑
r=1

∑
j∈P

lr,j∑
u=1

ωr,j,u (5.21)

with

ωr,j,u =


T e
ik
− ar,j,u if ar,j,u < T e

ik

ar,j,u + tvisit
ik
− T l

ik
if ar,j,u + tvisit

ik
> T l

ik

0 otherwise
(5.22)

5.3.3 Optimal Arrival Time Problem

When approaching the DRPSC-STW with an LNS in Section 5.3.5, we will have to
solve for each tour in each period of each candidate solution the following subproblem:
Given a candidate tour τr,j = (τr,j,0, . . . , τr,j,lr,j+1) for some district r = 1, . . . ,m and
period j = 1, . . . , p, what are feasible arrival times ar,j,u for the visits u = 1, . . . , lr,j + 1
minimizing

∑lr,j
u=1 ωr,j,u? Remember that the solution must obey the minimum separation

time tsep between any two successive visits of the same object and the maximum tour
duration tmax. We call this subproblem Optimal Arrival Time Problem (OATP).

As we consider in the OATP always only one specific tour τr,j , i.e., r and j are known
and constant, we omit these indices in the following for simplicity wherever this is
unambiguous. In particular, we write τ for the current tour, l for the tour’s length,
τh for the h-th visit, ah for the respective arrival time, and ωh for the respective time
window penalty. Moreover, we introduce some further notations and definitions used in
the next sections. Let us more generally define the time window penalty function ρh(t)
for visit τh = ik when arriving at time t as the following piecewise linear function, see
also Figure 5.2:

ρh(t) =



∞ if t < T e
ik
−∆

T e
ik
− t if T e

ik
−∆ ≤ t < T e

ik

t+ tvisit
ik
− T l

ik
if T l

ik
< t+ tvisit

ik
≤ T l

ik
+ ∆

∞ if t > T l
ik

+ ∆
0 otherwise.

Let V = {ik | i ∈ Dr, ik ∈Wi,j} be the set of all object visits in the current tour. We
define the auxiliary function κ : V 7→ Dr mapping visit ik ∈ V to its corresponding object
i ∈ Dr, and function σ(h) which finds the nearest successor index h′ of the visit τh′ with
h < h′ ≤ l and κ(τh) = κ(τh′) if such a successive visit of the same object exists; otherwise
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T e −∆ T e
T l T l + ∆

t

ρ
h
(t

)

∞

Figure 5.2: The time window penalty function ρh(t).

σ(h) returns −1. Correspondingly, function σ−1(h) returns the nearest predecessor index
h′ of the visit τh′ with 1 ≤ h′ < h and κ(τh) = κ(τh′) if such a predecessor exists and −1
otherwise. For convenience, we also define ζh = tvisit

τr,j,h
+ ttravel

κ(τr,j,h),κ(τr,j,h+1) as the sum of
the visiting time of the hth visit and the travel time from the hth visit to the (h+ 1)st
visit.

Lower and Upper Bounds for Arrival Times

We compute lower and upper bounds for each visit’s arrival time by determining routes in
which we perform each visit as early as possible and as late as possible. For determining
the earliest arrival time at the first visit we have to consider the maximum of the travel
time from the depot to the first visit and the earliest possible time of the first visit’s hard
time window. The earliest possible arrival time for all other visits h = 1, . . . , l can be
computed recursively by considering the dependency on the previous visit h− 1, i.e., the
visit time and travel time to the current visit h, the beginning of the hard time window
T e
τh
−∆ of the current visit h, and the separation time from a possibly existing previous

visit of the same object σ−1(h) in the tour. This yields:

aearliest
h =


−∞ if h < 0
T e

00 if h = 0
max

{
aearliest
h−1 + tvisit

τh−1 + ttravel
τh−1,τh , T

e
τh
−∆, aearliest

σ−1(h) + tsep
}

if h > 0

When scheduling a latest tour the last visit of the tour has to be scheduled before arriving
at the depot where also the travel time to the depot has to be considered, but on the
other hand we have to also consider the end of the hard time window T l

τl
+ ∆ of the last

visit. For all other visits we can compute their latest possible arrival time by considering
the next visit’s arrival time, the travel time to the next visit, and the visit time at the
current visit, the end of the hard time window of the current visit, i.e., T l

τl
+ ∆, and
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the separation time by considering a possibly existing successive visit σ(h) of the same
object where κ(τh) = κ(τh′) with h < h′:

alatest
h =


∞ if h < 0
T l

01 if h = l + 1
min

{
alatest
h+1 − tvisit

τh
− ttravel

τh,τh+1 , T
l
τh

+ ∆, alatest
σ(h) − t

sep
}

if 0 ≤ h ≤ l

If for some h, aearliest
h > alatest

h , we immediately terminate as this OATP instance, i.e.,
underlying route, cannot have a feasible solution.

Linear Programming Model

The OATP is not an NP-hard optimization problem. We can solve it exactly by means
of linear programming (LP) as we show in the following.

Variables aik represent the arrival time of the k-th visit of object i, variables pe
ik

are used
to compute the penalty when starting the service of visit ik too early, and variables pl

ik
are used for the penalty when finishing the service of visit ik too late. The LP is defined
as follows:

min
∑
ik∈V

pe
ik

+ pl
ik

(5.23)

s.t. ttravel
0,κ(aτ1 ) + aτl + tvisit

τl
+ ttravel

κ(τl),0 − aτ1+ ≤ tmax (5.24)

aτ1 ≥ ttravel
0,aτ1

+ T e
00 (5.25)

aτl + tvisit
τal

+ ttravel
κ(τl),0 ≤ T

l
01 (5.26)

aτi ≥ aτi−1 + tvisit
aτi−1

+ ttravel
κ(τi−1),κ(τi) ∀τi ∈ τ, i = 2, . . . , l (5.27)

aik ≥ aik′ + tvisit
ik′

+ tsep ∀ik, ik′ ∈ V, k > k′ (5.28)

T e
ik
−∆ ≤ aik ≤ T

l
ik

+ ∆− tvisit
ik

∀ik ∈ V (5.29)
pe
ik
≥ T e

ik
− aik ∀ik ∈ V (5.30)

pl
ik
≥ aik + tvisit

ik
− T l

ik
∀ik ∈ V (5.31)

aik , p
e
ik
, pl
ik
≥ 0 ∀ik ∈ V (5.32)

Objective function (5.23) minimizes the total penalty incurred by too late or too early
arrival times of visits. Inequality (5.24) ensures that the makespan of the tour does not
exceed the maximum allowed duration tmax. Otherwise, the given visit order would be
infeasible. Inequality (5.25) models the travel time from the depot to the first visit of
the given order, i.e., the first visit can only be started after traveling from the depot to
this visit. Inequality (5.26) specifies that the tour has to end latest at the end of the
time window of the second visit of the depot. Inequalities (5.27) ensure that all travel
times between consecutive object visits and visit times are respected. Inequalities (5.28)
guarantee the minimum separation time between two consecutive visits of the same
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Algorithm 5.3: Hybrid Heuristic for OATP
1: Input: Tour τ
2: if not Feasible(τ) then
3: return ∞
4: end if
5: if GreedyHeuristic(τ) = 0 then
6: return 0
7: end if
8: return DPBasedHeuristic(τ)

object. Inequalities (5.29) ensure consideration of the hard time windows. The penalty
values are computed by inequalities (5.30) and (5.31). If a visit is scheduled too early,
then T e

ik
− aik > 0 and an early penalty is incurred. Obviously, if the earliness penalty

pe
ik
> 0, then aik + tvisit

ik
− T l

ik
< 0 and thus, pl

ik
= 0. This holds vice versa if the

lateness penalty pl
ik
> 0. If a visit is scheduled within its time window [T e

ik
, T l

ik
], then

pe
ik

= pl
ik

= 0 as T e
ik
−aik ≤ 0 and aik + tvisit

ik
−T l

ik
≤ 0 and pe

ik
, pl
ik
≥ 0, ∀ik ∈ V according

to equations (5.32).

5.3.4 Hybrid Heuristic for the OATP

While the above LP model can be solved in polynomial time, doing this many thousands
of times within a metaheuristic for the DRPSC-STW for evaluating any new tour in
any period of any district in any candidate solution is still a substantial bottleneck. We
therefore consider a typically much faster heuristic approach in the following, which, as
our experiments will show, still yields almost optimal solutions. We call this approach
Hybrid Heuristic (HH) for the OATP as it is, in fact, a sequential combination of different
individual components.

The overall approach is shown in Algorithm 5.3, and the individual components are
described in detail in the subsequent sections. First, we show how to efficiently check
the feasibility of a given instance (line 2), then, we apply a fast greedy heuristic which
tries to solve the problem without penalties (line 5) using an earliest possible start time
strategy. Finally, we apply an efficient DP-based heuristic to obtain a solution for the
OATP.

Feasibility Check

The feasibility of a given tour, i.e., existence of feasible arrival times, can be efficiently
checked by calculating the minimum tour duration and comparing it to tmax. The
minimum tour duration can be determined by fixing the arrival time at the depot to
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aearliest
l+1 and calculating the latest arrival times recursively backwards:

ams
h =


∞ if h < 0
aearliest
h if h = l + 1

min
{
ams
h+1 − tvisit

τh
− ttravel

τh,τh+1 , T
l
τh

+ ∆, ams
σ(h) − t

sep
}

if 0 ≤ h ≤ l

The tour is feasible iff ams
l+1 − ams

0 ≤ tmax holds.

Greedy Heuristic

A fast heuristic for solving the OATP is a greedy strategy that starts each visit as early
as possible without violating any soft time window. If this heuristic is successful, no
penalty occurs and the obtained solution is optimal. We can formulate this approach as
follows:

agreedy
h =


−∞ if h < 0
max

{
T e

00 + ttravel
0,κ(τ1), T

e
τh

}
if h = 1

max
{
agreedy
h−1 + tvisit

τh−1 + ttravel
τh−1,τh , T

e
τh
, agreedy
σ−1(h) + tsep

}
if h > 1

If for some h, agreedy
h > alatest

h , then the greedy heuristic cannot solve this problem
instance and terminates.

Efficiently Solving a Relaxation by Dynamic Programming

The greedy strategy is fast, works reasonably well, and frequently yields an optimal
solution for easy instances. When the constraints become tighter, however, it often fails.
Therefore, we finally use a second, more sophisticated heuristic based on the following
considerations.

The required minimum separation times for visits of same objects make the OATP, in
contrast to other problems aiming at finding arrival times introducing a minimum penalty,
e.g. [75], inaccessible for an efficient exact DP approach. One would need to somehow
consider also all objects’ last visits when storing and reusing subproblem solutions in the
DP recursion.

However, in a heuristic approach we can exploit an efficient DP for the relaxed variant of
the OATP in which we remove the separation time constraints. We denote this relaxed
OATP by OATPrel. As will be shown in Section 5.3.4, we will modify our instance data
before applying this DP in order to obtain a heuristic solution that is feasible for our
original OATP.

To solve OATPrel we apply DP inspired by Ibaraki et al. [75]. In contrast to this former
work, however, we consider a maximum tour duration.

Let gh(t, t0) be the minimum sum of the penalty values for visits τ0, . . . , τh under the
condition that all of them are started no later than at time t and the depot is left earliest
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at time t0 with t − t0 ≤ tmax. Here we assume that T e
00 ≤ t0. Then, gh(t, t0) can be

expressed recursively by:

g0(t, t0) =
{
∞ if t < t0

0 otherwise
gh(t, t0) = min

aearliest
h

≤t′≤min{t,t0+tmax}
gh−1(t′ − ζh−1, t0) + ρh(t′) if h > 0

Here, we assume the minimum of an empty set or interval to be∞. The overall minimum
time penalty of the tour τ is then minaearliest

0 ≤t0≤alatest
0

gl+1(T l
01 , t0). Thus, solving OATPrel

corresponds to finding a departure time t0 from the depot which minimizes function
f rel = gl+1(T l

01 , t0).

Let t0 be the value for which f rel = gh(T l
01 , t0) yields a minimum penalty. Optimal arrival

times for the visits and the arrival time back at the depot can now be expressed by:

arel
l+1 = arg min

T e
00
≤t≤T l

01

gl+1(t, t0)

arel
h = arg min

T e
00
≤t≤arel

h+1−ζh
gh(t, t0) if 0 ≤ h ≤ l

(5.33)

Now, let us consider the task of efficiently computing gh(t, t0) in more detail. Recall
that our time window penalty function ρh(t) is piecewise linear for all visits τ1, . . . , τl
and they have all the same shape as shown in Figure 5.2. Therefore, gh(t, t0) is also
piecewise linear. We store these piecewise linear functions of each recursion step of the
DP algorithm in linked lists, whose components represent the intervals and the associated
linear functions.

An upper bound for the total number of pieces in the penalty functions for all the visits
τ0, . . . , τl+1 is 5l + 2 = O(l). The computation of gh−1(t− ζh−1, t0) + ρh(t) and gh(t, t0)
from gh−1(t, t0) and ρh(t) can be achieved in O(h) time, since the total number of pieces
in gh−1(t, t0) and ρh(t) is O(h). In order to calculate the function gl+1(T l

01 , t0) for a given
tour, we compute gh(t, t0) for all 1 ≤ h ≤ l + 1. This can be done in O(l2) time.

Now that we know how to efficiently calculate the minimum time window penalty value
for a given departure time from the depot t0, we draw our attention to the problem
of finding a best departure time such that the overall penalty value for a given tour is
minimized. Formally, we want to minimize function g′(t0) = gl+1(T l

01 , t0) on interval
t0 ∈ [aearliest

0 , alatest
0 ]. Enumerating all possible t0 values is obviously not a reasonable way

to tackle this problem. Fortunately, there is a useful property of function g′(t0) which
enables us to search more efficiently for its minimum.

Proposition 5. Earliest optimal arrival times can only be delayed further when the depot
departure time increases. More formally, let a0

h for h = 0, . . . , l + 1 be earliest optimal
arrival times calculated by g′(t0) for some t0 and a1

h for h = 0, . . . , l + 1 be the earliest
optimal arrival times calculated by g′(t′0) for some t′0. Then t0 ≤ t′0 =⇒ a0

h ≤ a1
h for

h = 0, . . . , l + 1.
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Figure 5.3: Visualization of the two case distinctions used in the proof of Proposition 5.

Proof. We show this with a proof by contradiction. Without loss of generality, suppose
there is a visit h with a0

h−1 ≤ a1
h−1 and a1

h < a0
h. Let us consider two relevant cases in

detail. Other cases can be refuted using similar arguments.

Case 1: Assume a1
h is scheduled earlier than a0

h and a1
h < T e

τh
, see Figure 5.3a. a1

h could
only have been scheduled earlier than a0

h falling below T e
τh

threshold if and only if
one of its subsequent visits τh+1, . . . , τl+1 was forced to start earlier. This can only
happen if the arrival time constraint, where we have to be back at the depot, is
more tightened. But this clearly cannot be the case here, since t0 + tmax ≤ t′0 + tmax.
In other words, delaying the departure time at the depot also delays the arrival
time constraint, when we have to be back at the depot.

Case 2: Assume a1
h is scheduled earlier than a0

h and a0
h > T l

τh
− tvisit

τh
, see Figure 5.3b.

Since a0
h − a0

h−1 > a1
h − a1

h−1, it is easy to see that a0
h can be moved further to the

left without introducing more penalty. Therefore, a0
h cannot be the optimal start

time for the visit h, since the T l
h constraint violation caused by a0

h can be reduced
further.

Proposition 6. ∀t′0, t′′0 | g′(t′0) < g′(t′′0), t′0 < t′′0 =⇒ ∀t0 ≥ t′′0 : g′(t′′0) < g′(t0).

Proof. Let aearliest′
h for h = 0, . . . , l + 1 be the earliest possible arrival times when fixing

t′0 as the departure time from the depot and aearliest′′
h for h = 0, . . . , l + 1 the earliest

possible arrival times when fixing t′′0 as the departure time from the depot. Furthermore,
we define a′′h for h = 0, . . . , l + 1 to be earliest optimal arrival times calculated by g′(t′′0).

We have shown that the earliest optimal arrival times can only be delayed further when
postponing the departure time from the depot. Thus, the only way the overall penalty
value can be increased is when pushing t0 to the future causes more T l threshold violations
than what you can save by reducing T e threshold violations.
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More formally, if we have g′(t′0) < g′(t′′0) with t′0 < t′′0, then there must exist aearliest′′
k >

T lτk − t
visit
τk

with aearliest′
k < aearliest′′

k and aearliest′′
k = a′′k for some k ∈ {0, . . . , l + 1}. In

other words, if the overall penalty value increases, then there are visits whose earliest
possible arrival times are pushed furhter to the future exceeding T l thresholds by t′′0 and
their optimal arrival times are equal to earliest possible arrival times.

It is easy to see that once the earliest possible start time aearliest
h starts to increase, it

continues to increase strictly monotonically with an increasing departure time from the
depot. Therefore, the overall penalties will increase strictly monotonically from t′′0 on with
an increasing departure time from the depot until the solution becomes infeasible.

These properties show that g′(t0) is in general a “U-shaped” function when disregarding
all infeasible solutions yielding ∞, and we can use a bisection method to search efficiently
for a minimum. The calculation of f rel in this way is shown in Algorithm 5.4.

At each iteration step the middle point t of current search interval is sampled and we
calculate an approximate subgradient Og′(t) of g′ at t by Og′(t) = g′(t+ δ)− g′(t) where
δ is a small constant value. If the subgradient Og′(t) > 0, we know that t is in the strictly
monotonically rising piece of g′ and we continue our search in the left half. Otherwise
the search continues in the right half. The bisection method proceeds until the search
interval becomes smaller than some predetermined value ε.

DP-Based Heuristic for OATP

Obviously, OATPrel corresponds to the original OATP if there are no objects that are
visited multiple times or

∑σ(h)−1
i=h ζi ≥ tsep for h = 1, . . . , l with σ(h) 6= −1. The main idea

of our second heuristic is to increase the ζi values as necessary so that
∑σ(h)−1
i=h ζi ≥ tsep

holds for all h = 1, . . . , l with σ(h) 6= −1. Then, when applying the DP, its solution will
obviously fulfill the separation-time constraint.

Let visits τk and τk′ with k < k′ and
∑k′−1
i=k ζi < tsep be two visits which take place

at the same object. Then, one or more ζi ∈ {ζk, . . . , ζk′−1} must be extended so that∑l−1
i=k ζi = tsep. In order to decide which ζi we want to extend, we first calculate waiting

times for all visits with earliest possible arrival times.

The waiting time at the visit τh is the amount of time we are forced to wait at the visit
τh−1 before we can travel to visit τh. Recall that we are forced to wait at visit τh−1
if ah−1 + ζh−1 < T e

τh
. Thus, the waiting times with earliest possible arrival times can

be expressed as wearliest
h = max

{
0, aearliest

h − aearliest
h−1 − ζh−1

}
, h = 1, . . . , l. Using these

waiting times as guidance, we extend the ζi value at the visit τi with the maximum
waiting time wearliest

i = max
{
wearliest
k , . . . , wearliest

l−1

}
where ties are broken randomly. The

rationale behind this idea is that large wearliest
h values often indicate the visits in an optimal

solution, where extra waiting time actually is introduced to satisfy the separation-time
constraints.
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Algorithm 5.4: Calculation of f rel

Require: aearliest
0 , alatest

0
1: init: a← aearliest

0 , b← alatest
0 , v1 ← f rel ← g′(a)

2: if v1 = 0 or v1 =∞ or Og′(t) > 0 then
3: return v1
4: end if
5: while b− a > ε do
6: t← a+ b−a

2
7: v2 ← g′(t)
8: if v2 < f rel then
9: f rel ← v2

10: end if
11: if f rel = 0 or v1 = v2 then
12: break
13: end if
14: if v2 =∞ or Og′(t) ≤ 0 then
15: a← t
16: else
17: b← t
18: end if
19: v1 ← v2
20: end while
21: return f rel

Utilizing waiting times computed by earliest possible arrival times works well for the
majority of instances but for some instances the ζh values are altered unfavorably so
that the instances become infeasible. To counteract this problem, we propose alternative
waiting times which are calculated using arrival times with minimum tour duration:
wms
h = max

{
0, ams

h − ams
h−1 − ζh−1

}
, ∀h = 1, . . . , l. Visits with waiting times larger than

0 indicate visits in the tour with minimum tour duration for which additional waiting
time had to be introduced in order to satisfy separation-time constraints. Using wms

h

waiting times we can effectively complement situations where the approach utilizing
wearliest
h values yields infeasible or low-quality solutions. Therefore, we solve the DP-based

heuristic twice, using both wearliest
h and wms

h and take the best solution.

Even if the solution of this DP-based heuristic does not guarantee optimality in gen-
eral, it works well in practice, producing near optimal solutions in significantly shorter
computation times than the exact LP approach.
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5.3.5 Large Neighborhood Search for the DRPSC-STW

Our overall approach for solving the DRPSC-STW follows the classical large neighborhood
search metaheuristic [113] with an embedded variable neighborhood descent (VND) for
local improvement.

We define our destroy and repair methods as follows. In order to destroy a current
solution candidate, we select two out of m districts uniformly at random and remove
all objects from these districts. The removed objects are copied to a so called ejection
pool. Then, we apply the repair phase of the district elimination algorithm proposed by
Prischink et al. [117]. The algorithm continues until all objects in the ejection pool are
reassigned to the available districts. Using this destroy and repair methods, we guarantee
that the solution stays feasible with the same number of districts. At each LNS iteration
a VND is applied to locally improve the incumbent solution.

Variable Neighborhood Descent

We use three common neighborhood structures from the literature and search in a best
improvement fashion. We apply these neighborhoods in the given order since we could
not identify any significant advantages using different orderings. Infeasible solutions are
discarded.

2-opt: Classical 2-opt neighborhood where all edge exchanges are considered.

swap: Exchanges all pairs of distinct visits within a route.

or-opt: Moves sequences of one to three consecutive visits at another place in the route.

The proposed VND is performed separately for each route of every district. Our local
improvement component could also be very well parallelized since different routes can be
optimized independently of each other, however this is not in the scope of this work. Since
routes having no penalties are already optimal, they are excluded from local improvement.

5.3.6 Computational Results

For the computational results, we used the instances which have been created by
Prischink et al. [117]. In a first optimization round, we solve the districting part of the
DRPSC-STW by means of the district elimination algorithm proposed by Prischink et al.,
based on the hard time windows only, generating input2 for the subsequent time window
penalty minimization round with the LNS algorithm. As global parameters we have
chosen tmax to be 12 hours and the maximum allowed penalty ∆ = 60 minutes, which rep-
resent typical values used in practical settings. Furthermore, we set HH (Algorithm 5.3)
specific parameters δ = 1 and ε = 30, which have been determined empirically. For our
test instances, they give good balance between computational speed and accuracy. Every

2 https://www.ac.tuwien.ac.at/files/resources/instances/drpsc/evoc17.tgz

https://www.ac.tuwien.ac.at/files/resources/instances/drpsc/evoc17.tgz
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Instance LNS-LP LNS-HH

name runs |I| |V | α β v #best obj [s] t̄ [s] #eval #best obj [s] t̄ [s] #eval

berlin52_1 20 51 133 0.0 0.7 4 13 476.9 640.2 499,624.3 20 29.9 298.0 757,181.5
berlin52_2 20 51 130 0.0 0.7 4 13 235.1 662.5 525,862.1 19 7.9 239.0 586,096.8
berlin52_3 20 51 140 0.0 0.7 4 5 3,230.9 900.0 595,039.3 15 1,169.7 900.0 938,946.7

ch150_1 20 149 360 0.2 0.5 4 4 88,910.1 900.0 663,320.8 16 55,234.8 900.0 1,308,850.8
ch150_2 20 149 402 0.2 0.5 4 0 164,399.8 900.0 662,869.3 20 80,989.3 900.0 1,257,789.1
ch150_3 20 149 357 0.2 0.5 4 3 78,979.9 900.0 748,549.8 17 36,370.5 900.0 1,620,281.2

ft70_1 20 69 167 0.1 0.5 4 2 5,035.8 900.0 993,374.5 18 1,196.9 900.0 2,815,488.6
ft70_2 20 69 180 0.1 0.5 4 1 3,087.0 900.0 975,529.6 20 464.2 878.3 2,719,290.8
ft70_3 20 69 144 0.1 0.5 4 3 5,602.2 900.0 918,004.6 17 1,509.0 900.0 2,496,826.1

gr48_1 20 47 120 0.2 0.7 4 8 92,669.4 900.0 284,934.1 12 70,082.1 900.0 443,507.7
gr48_2 20 47 115 0.2 0.7 4 3 9,445.5 900.0 851,306.0 17 4,233.1 900.0 2,296,485.5
gr48_3 20 47 125 0.2 0.7 4 5 28,606.2 900.0 392,935.5 15 24,982.1 900.0 615,803.7

rd100_1 20 99 152 0.1 0.5 2 3 25,824.7 900.0 876,710.0 17 11,050.4 900.0 2,289,110.3
rd100_2 20 99 160 0.1 0.5 2 4 22,367.5 900.0 828,483.6 16 7,618.6 900.0 2,123,393.7
rd100_3 20 99 152 0.1 0.5 2 4 12,132.5 900.0 826,517.7 17 2,136.9 900.0 2,036,959.2

st70_1 20 69 105 0.1 0.7 2 5 15,052.1 900.0 755,594.8 16 4,380.1 900.0 1,761,210.0
st70_2 20 69 91 0.1 0.7 2 4 18,622.9 900.0 806,985.2 16 8,228.9 900.0 2,126,834.2
st70_3 20 69 106 0.1 0.7 2 3 7,022.6 900.0 696,001.3 20 380.5 673.1 1,140,718.4

tsp225_1 20 224 334 0.2 0.7 2 0 272,118.2 900.0 969,287.0 20 183,974.1 900.0 1,904,494.3
tsp225_2 20 224 341 0.2 0.7 2 0 340,426.5 900.0 692,597.6 20 293,867.6 900.0 1,375,567.5
tsp225_3 20 224 332 0.2 0.7 2 0 161,586.6 900.0 710,581.4 20 141,153.5 900.0 1,471,799.2

Average 4.0 64,563.4 884.5 727,338.5 17.5 44,240.9 828.0 1,623,173.1

Table 5.3: Results of the LNS with embedded LP and HH as solution evaluation function

instance was given a maximum allowed time limit of 900 seconds for the execution of the
LNS and we have performed 20 runs for every instance. All tests have been executed as
single threads on an Intel Xeon E5540 2.53GHz Quad Core processor. The algorithms
have been written in C++ and have been compiled with gcc-4.8 and for solving the LP
we used Gurobi 7.0.

In Table 5.3 the results of the LNS-LP and LNS-HH can be found. In the instance
column, we specify the instance parameters. Sequentially, the name of the used TSPlib
instance (refer to Prischink et al. [117] for a more detailed description), the number of
runs performed, the number of objects |I|, the total number of visits |V |, the percentage of
large time windows (α), the percentage of mid-sized time windows (β) and the maximum
number of allowed visits per object v is given. For the LNS-LP and LNS-HH the number
of times the corresponding approach yields the best result, the average objective value
over all runs of the instance, the average runtime, and the average number of objective
function evaluations are given. Results show clearly that LNS-HH yields better objective
values than LNS-LP since it is able to perform much more iterations within the given
time limit due to fast objective function evaluations. It is also obvious that by increasing
the instance size, the advantage of the efficient HH evaluation function is getting more
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pronounced. Moreover, a Wilcoxon signed-rank test shows that all observed differences on
the overall number of best solutions among the LNS-LP and the LNS-HH are statistically
significant with an error level of less than 1%.

We can conclude that LNS-HH is superior compared to LNS-LP due to significant
performance advantage in the evaluation function, even though the HH-based evaluation
function is only a heuristic method which in general does not yield proven optimal
solutions although it can be observed that the optimality gap of HH is in most cases
neglectably small.

5.4 Conclusions and Future Work

In this work we introduced a new vehicle routing problem which originates from the
security control sector. The goal of the Districting and Routing Problem for Security
Control is to partition a set of objects under surveillance into disjoint clusters such that
for each period a route through all requested visits can be scheduled satisfying complex
time window constraints. As the objects may require multiple visits, there needs to
be a minimum separation time between each two visits which imposes an interesting
additional challenge. The proposed heuristic solution approach starts with a greedy
construction heuristic followed by an iterate destroy and recreate algorithm. The latter
works by iteratively destroying districts and trying to insert the resulting unassigned
objects into the other districts. The computational results reveal that the MIP model is
able to solve smaller instances of the routing problem to optimality and that the quality
of the initial solutions of the districting problem has only a minor influence on the final
solution quality. There are several possibilities for extending this algorithm in future
work. As the feasibility check for a district is time-consuming a caching mechanism to
prevent checking the same assignment of objects all over again seems promising. This
could even be extended to checking subsets of such assignments, which also must be
feasible if any superset of these objects results in feasible routes. Another idea is to use
neighborhood structures which exchange objects of two or more distinct clusters.

We also analyzed the DRPSC-STW where the DRPSC is extended by soft time windows.
This problem is of high practical relevance as it is possible to significantly improve
solution quality by introducing only a negelectable penalty.

As metaheuristic we propose an LNS for approaching the DRPSC-STW. A critical
bottleneck of our LNS is the evaluation of solution candidates where one has to find the
minimum penalty given a particular visit order. We show that this evaluation function
can be efficiently implemented by an LP-based approach, and furthermore we developed
a sophisticated hybrid heuristic which was able to drastically outperform the LP-based
variant.

We have formulated an efficient method to determine optimal arrival times of a given
visit order which can be embedded inside a metaheuristic framework to solve the penalty
minimization part of the DRPSC-STW. On the one hand this is not only relevant for the
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DRPSC-STW, as soft time windows play in general an important role in many practical
scenarios.

Future research goals include the extension of the current LNS by incorporating adap-
tiveness into the destroy and repair moves. Furthermore, the authors want to note that
it is also possible to extend the VND local search into a VNS by including a shaking
neighborhood like randomized k-swap neighborhood, c.f. [34]. This way, one can combine
micro- and macro-diversifications during the search.





CHAPTER 6
Conclusions and Future Work

This work considered three different COPs with a strong background to real-world
problems, two of them arising in bike-sharing systems and another vehicle routing
problem from the domain of security control.

The BBSS problem was and still is a hot topic in combinatorial optimization as the
number of PBSs is rising worldwide because cities want to benefit from its opportunities.
As seen in the related work, there exists a large number of publications on BBSS, however
many of them have different problem formulations or different optimization goals which
makes a direct comparison hard to impossible.

For the static variant of BBSS, as it appears at Citybike Wien, we proposed efficient
metaheuristics based on VNS which are able to provide good solutions in reasonable
computation times. It has been one of the first metaheuristics solving large-scale instances
up to 700 stations. Moreover, a time-indexed as well as a hop-indexed MIP model have
been developed which, however, are only be able to solve small instances for the problem.
For larger instances, also the developed GRASP yielded excellent results. A key aspect
in our metaheuristics is the efficient calculation of loading instructions, for which we
studied different approaches with different precision and runtimes. We compared four
different approaches where three of them efficiently yielded optimal loading instructions
based on maximum-flow formulations and linear programming as well as a greedy-based
one outperforming the others in computation time.

For the dynamic case we extended the heuristic and metaheuristic methods from the
static case to also include the calculation for the dynamic factors, i.e., the user demand.
We, therefore, came up with a novel computation method for handling the dynamics
occurring in conjunction with the user demand. Instead of discretizing time, as it is done
in other works, we split up the user demand function into monotonically increasing and
decreasing segments, which on the one hand resulted in faster computation times and on
the other hand improved the accuracy of the computations.
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In addition, to solve large-scale instances of the BBSS problem to optimality, we introduced
a new simplified problem formulation that also complies with practical requirements. We
allow only to transport full-vehicle loads of bikes from one station to another. Based on
this problem formulation and an elaborated logic-based Benders decomposition, as well
as a variant thereof, called branch-and-check, we have been able to solve instances up to
90 stations to proven optimality, which was not achieved in the literature before.

When solving the BSSPP, we introduced a novel approach that is not only applicable
to the domain of bike sharing, but potentially also to other location-planning problems
where large instance sizes need to be solved. Practical problem sizes of large cities, such
as Vienna, are usually too big to be handled with traditional (meta)heuristic methods.
Thus, instead of using a classical demand matrix, we applied a hierarchical clustering and
determined aggregated demands for arcs on the respective cluster tree. As optimization
technique, we came up with a multilevel refinement approach which can effectively use the
hierarchically clustered input data by coarsening up the clustering tree until an instance
size is reached which can be easily solved and then, propagate solution information
downwards until a final solution to the original instance is obtained. Moreover, as shown
in the case of the BSSPP, the proposed method has an exceptional scalability.

When approaching the DRPSC, we present an efficient route elimination algorithm which
iteratively removes routes from a solution by maintaining a cleverly organized ejection
pool such that object visits can be inserted into the remaining routes. Additional local
search with smart neighborhoods complement the effectiveness of the algorithm. Moreover,
we also considered soft time windows in a variant of the problem called DRPSC-STW.
We found two efficient methods of computing arrival times for a given visit order of
objects, so that the makespan is optimal in the case of soft time windows. We show that
the problem is solvable in polynomial time by developing a linear-programming model.
Furthermore, we developed a much faster hybrid heuristic which was able to compute
the optimal solution in nearly all scenarios but is a much faster algorithm than the linear
programming model. This hybrid heuristic embedded within a large neighborhood search
showed exceptionally good results on the considered instance set. The hybrid heuristic
could also be used in other problems as it combines an exact dynamic programming
approach with a kind of bisection search. Moreover, we included proofs showing under
which circumstances the hybrid heuristic yields proven optimal solutions.

6.1 Future Work

For the BBSS problem it would be promising to develop a (very) large neighborhood
search (LNS) with the provided methods for the static problem formulation as ingredients.
For instance, the VNS could be used to construct solutions and the MIP models could
be used to optimize subproblems, i.e., some variables could be fixed and some could be
optimized by the MIP. Furthermore, there exists also an approach for the static BBSS
problem with constraint programming by Di Gaspero et al. [40, 41] which can possibly also
be included in an LNS. This is also a viable option for the dynamic problem variant, to
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hybridize the already realized algorithms and check if results can be improved. Regarding
the full-load route planning it would make sense to investigate an approach where the
clustering part is done heuristically, in order to possibly achieve better scalability on
larger instances.

For the BSSPP, several opportunities and research directions are possible. A POP-
MUSIC [148] based approach could be a promising algorithm to be implemented for
large-scale optimization. Furthermore, the solution evaluation is currently done exactly
by solving an LP with many variables and constraints which restricts scalability. Instead,
a heuristic approach for evaluating solutions could be developed, see also [12]. This would
make the approach even more performant which could be useful to get more iterations of
the algorithm and might improves the solution quality. Furthermore, there is still space for
improvement regarding the extension heuristic. There, it would also be of interest to see
how different extension techniques perform. Of course, it is important to solve instances
for different cities and discuss the results with practitioners. Furthermore, this general
and novel approach should definitely be also applied to other large-scale combinatorial
optimization problems such as other facility location problems, the traveling salesman
problem, and the vehicle routing problem.

Within the DRPSC there are many questions and problem variants that should also be
considered for practice. In practice, it is often important to have a balanced workload
for the members of the security staff. However, if the routes should be balanced within
the objective function, it, nevertheless, makes no sense to artificially stretch routes such
that they get balanced. The consideration of these aspects results in a bi-objective
optimization problem. The objective function of the upper level is to optimize the
deviation between the respective route lengths, and in the lower level, the route duration
has to be minimized for each route such that routes and arrival times stay plausible.
For the original problem with hard or soft time windows the developed approach based
on the route elimination algorithm performs well, but a hybridization with some mixed
integer linear programming technique might make sense for possibly further improving
results. Additionally, we would like to derive dual bounds on the objective value. This
might be achieved by considering certain relaxations of the underlying combinatorial
optimization problem.





Bibliography

[1] R. K. Ahuja, Ö. Ergun, J. B. Orlin, and A. P. Punnen. A survey of very large-scale
neighborhood search techniques. Discrete Applied Mathematics, 123(1–3):75–102,
2002.

[2] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. TSP cuts which do not conform
to the template paradigm. In M. Jünger and D. Naddef, editors, Computational
Combinatorial Optimization: Optimal or Provably Near-Optimal Solutions, vol-
ume 2241 of Lecture Notes in Computer Science, pages 261–303. Springer Berlin
Heidelberg, 2001.

[3] R. Aringhieri, M. Bruglieri, F. Malucelli, and M. Nonato. Metaheuristics for a
vehicle routing problem on bipartite graphs with distance constraints. In 6th
Metaheuristics International Conference, pages 77–82, Vienna, Austria, 2005.

[4] N. Ascheuer, M. Fischetti, and M. Grötschel. Solving the asymmetric travelling
salesman problem with time windows by branch-and-cut. Mathematical Program-
ming, 90(3):475–506, 2001.

[5] E. Balas. The prize collecting traveling salesman problem. Networks, 19(6):621–636,
1989.

[6] R. Baldacci, A. Mingozzi, and R. Roberti. New state-space relaxations for solving the
traveling salesman problem with time windows. INFORMS Journal on Computing,
24(3):356–371, 2012.

[7] A. Baltz and A. Srivastav. Approximation algorithms for the euclidean bipartite
TSP. Operations Research Letters, 33(4):403–410, 2005.

[8] R. Bellman. Dynamic programming. Dover Books on Computer Science. Dover
Publications, 2013.

[9] J. F. Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4(1):238–252, 1962.

[10] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena
Scientific, 1997.



[11] A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of satisfiability, volume
185 of Frontiers in Artificial Intelligence and Applications. IOS Press Amsterdam,
2009.

[12] B. Biesinger, B. Hu, M. Stubenschrott, U. Ritzinger, and M. Prandtstetter. Opti-
mizing charging station locations for electric car-sharing systems. In B. Hu and
M. López-Ibáñez, editors, Evolutionary Computation in Combinatorial Optimiza-
tion, volume 10197 of Lecture Notes in Computer Science, pages 157–172. Springer
International Publishing, 2017.

[13] C. Blum. Beam-ACO–hybridizing ant colony optimization with beam search: an
application to open shop scheduling. Computers & Operations Research, 32(6):
1565–1591, 2005.

[14] C. Blum. Beam-ACO for the longest common subsequence problem. In IEEE
Congress on Evolutionary Computation, pages 1–8. IEEE, 2010.

[15] C. Blum and G. R. Raidl. Hybrid Metaheuristics: Powerful Tools for Optimization.
Artificial Intelligence: Foundations, Theory, and Algorithms. Springer International
Publishing, 2016.

[16] C. Blum and A. Roli. Hybrid metaheuristics: An introduction. In C. Blum, M. J. B.
Aguilera, A. Roli, and M. Sampels, editors, Hybrid Metaheuristics: An Emerging
Approach to Optimization, volume 114 of Studies in Computational Intelligence,
pages 1–30. Springer Berlin Heidelberg, 2008.

[17] C. Blum, M. J. B. Aguilera, A. Roli, and M. Sampels. Hybrid Metaheuristics:
An Emerging Approach to Optimization, volume 114 of Studies in Computational
Intelligence. Springer Berlin Heidelberg, 2008.

[18] C. Blum, J. Puchinger, G. R. Raidl, and A. Roli. Hybrid metaheuristics in
combinatorial optimization: A survey. Applied Soft Computing, 11(6):4135–4151,
2011.

[19] L. Caggiani, R. Camporeale, M. Ottomanelli, and W. Y. Szeto. A modeling
framework for the dynamic management of free-floating bike-sharing systems.
Transportation Research Part C: Emerging Technologies, 87:159–182, 2018.

[20] D. Chemla, F. Meunier, and R. W. Calvo. Bike sharing systems: Solving the static
rebalancing problem. Discrete Optimization, 10(2):120–146, 2013.

[21] D. Chemla, F. Meunier, and R. W. Calvo. Bike sharing systems: Solving the static
rebalancing problem. Discrete Optimization, 10(2):120–146, 2013.

[22] J. Chen, X. Chen, H. Jiang, S. Zhu, X. Li, and Z. Li. Determining the optimal
layout design for public bicycle system within the attractive scope of a metro
station. Mathematical Problems in Engineering, 2015, 2015. Article ID 456013.



[23] Q. Chen and T. Sun. A model for the layout of bike stations in public bike-sharing
systems. Journal of Advanced Transportation, 49(8):884–900, 2015.

[24] C.-B. Cheng and C.-P. Mao. A modified ant colony system for solving the travelling
salesman problem with time windows. Mathematical and Computer Modelling, 46
(9–10):1225–1235, 2007.

[25] B. V. Cherkassky and A. V. Goldberg. On implementing the push—relabel method
for the maximum flow problem. Algorithmica, 19(4):390–410, 1997.

[26] A. A. Ciré, E. Çoban, and J. N. Hooker. Logic-based benders decomposition for
planning and scheduling: a computational analysis. The Knowledge Engineering
Review, 31(5):440–451, 2016.

[27] G. Codato and M. Fischetti. Combinatorial Benders’ cuts for mixed-integer linear
programming. Operations Research, 54(4):756–766, 2006.

[28] C. Contardo, C. Morency, and L.-M. Rousseau. Balancing a dynamic pub-
lic bike-sharing system. Technical Report CIRRELT-2012-09, Université de
Montréal, Montréal, Canada, March 2012. URL https://www.cirrelt.ca/
DocumentsTravail/CIRRELT-2012-09.pdf.

[29] I. Contreras. Hub location problems. In G. Laporte, S. Nickel, and F. Saldanha da
Gama, editors, Location Science, pages 311–344. Springer International Publishing,
2015.

[30] W. Cook. Concorde TSP solver. http://www.math.uwaterloo.ca/tsp/
concorde/, 2011. [Online; accessed 06-May-2015].

[31] C. Cotta, M. Sevaux, and K. Sörensen. Adaptive and Multilevel Metaheuristics,
volume 136 of Studies in Computational Intelligence. Springer-Verlag Berlin Hei-
delberg, 2008.

[32] R. F. Da Silva and S. Urrutia. A general VNS heuristic for the traveling salesman
problem with time windows. Discrete Optimization, 7(4):203–211, 2010.

[33] G. B. Dantzig. Maximization of a linear function of variables subject to linear
inequalities. New York, 1951.

[34] T. Davidović, P. Hansen, and N. Mladenović. Variable neighborhood search for
multiprocessor scheduling problem with communication delays. In Proceedings of
4th Metaheuristics International Conference, volume 4, pages 737–741, 2001.

[35] L. Davis. Handbook of genetic algorithms. Van Nostrand Reinhold, 1991.

[36] C. Defryn, K. Sörensen, andW. Dullaert. Integrating partner objectives in horizontal
logistics optimisation models. Omega, 82:1–12, 2019.

https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2012-09.pdf
https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2012-09.pdf
http://www.math.uwaterloo.ca/tsp/concorde/
http://www.math.uwaterloo.ca/tsp/concorde/


[37] M. Dell’Amico, E. Hadjicostantinou, M. Iori, and S. Novellani. The bike sharing
rebalancing problem: Mathematical formulations and benchmark instances. Omega,
45:7–19, 2014.

[38] P. DeMaio. Bike-sharing: History, impacts, models of provision, and future. Journal
of Public Transportation, 12(4):41–56, 2009.

[39] G. Desaulniers, J. Desrosiers, and M. M. Solomon. Column Generation. Springer
US, 2005.

[40] L. Di Gaspero, A. Rendl, and T. Urli. A hybrid ACO+CP for balancing bicycle
sharing systems. In M. J. Blesa, C. Blum, P. Festa, A. Roli, and M. Sampels,
editors, Hybrid Metaheuristics, volume 7919 of Lecture Notes in Computer Science,
pages 198–212. Springer Berlin Heidelberg, 2013.

[41] L. Di Gaspero, A. Rendl, and T. Urli. Constraint-based approaches for balancing
bike sharing systems. In C. Schulte, editor, Principles and Practice of Constraint
Programming, volume 8124 of Lecture Notes in Computer Science, pages 758–773.
Springer Berlin Heidelberg, 2013.

[42] M. Dorigo and M. Birattari. Ant colony optimization. In C. Sammut and G. I.
Webb, editors, Encyclopedia of machine learning, pages 36–39. Springer US, 2011.

[43] M. Dorigo and C. Blum. Ant colony optimization theory: A survey. Theoretical
computer science, 344(2–3):243–278, 2005.

[44] M. Dorigo and G. Di Caro. Ant colony optimization: a new meta-heuristic. In
Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No.
99TH8406), volume 2, pages 1470–1477. IEEE, 1999.

[45] C. Duin and S. Voß. Steiner tree heuristics — a survey. In H. Dyckhoff, U. Derigs,
M. Salomon, and H. C. Tijms, editors, Operations Research Proceedings 1993, pages
485–496. Springer Berlin Heidelberg, 1994.

[46] C. Duin and S. Voß. The pilot method: A strategy for heuristic repetition with
application to the steiner problem in graphs. Networks, 34(3):181–191, 1999.

[47] G. Erdoğan, G. Laporte, and R. W. Calvo. The static bicycle relocation problem
with demand intervals. European Journal of Operational Research, 238(2):451–457,
2014.

[48] K. Fagerholt. Ship scheduling with soft time windows: An optimisation based
approach. European Journal of Operational Research, 131(3):559–571, 2001.

[49] R. Z. Farahani, M. Hekmatfar, A. B. Arabani, and E. Nikbakhsh. Hub location
problems: A review of models, classification, solution techniques, and applications.
Computers & Industrial Engineering, 64(4):1096–1109, 2013.



[50] M. L. Fisher and R. Jaikumar. A generalized assignment heuristic for vehicle
routing. Networks, 11(2):109–124, 1981.

[51] I. A. Forma, T. Raviv, and M. Tzur. A 3-step math heuristic for the static
repositioning problem in bike-sharing systems. Transportation Research Part B:
Methodological, 71:230–247, 2015.

[52] I. Frade and A. Ribeiro. Bike-sharing stations: A maximal covering location
approach. Transportation Research Part A: Policy and Practice, 82:216–227, 2015.

[53] C. Fricker and N. Gast. Incentives and redistribution in homogeneous bike-sharing
systems with stations of finite capacity. EURO Journal on Transportation and
Logistics, 5(3):261–291, 2016.

[54] L. M. Gambardella, E. Taillard, and G. Agazzi. MACS-VRPTW: A multiple
ant colony system for vehicle routing problems with time windows. In D. Corne,
M. Dorigo, F. Glover, D. Dasgupta, P. Moscato, R. Poli, and K. V. Price, editors,
New Ideas in Optimization, chapter 5, pages 63–76. McGraw-Hill, UK, 1999.

[55] A. Gauthier, C. Hughes, C. Kost, S. Li, C. Linke, S. Lotshaw, J. Mason, C. Pardo,
C. Rasore, B. Schroeder, and X. T. no. The Bike-share Planning Guide. Institue
for Transportation & Development Policy, 2013.

[56] D. Gavalas, C. Konstantopoulos, and G. Pantziou. Design and management of
vehicle-sharing systems: a survey of algorithmic approaches. In M. S. Obaidat
and P. Nicopolitidis, editors, Smart Cities and Homes: Key Enabling Technologies,
chapter 13, pages 261–289. Elsevier, 2016.

[57] M. Gendreau. An introduction to tabu search. In F. W. Glover and G. A.
Kochenberger, editors, Handbook of metaheuristics, volume 57 of International
Series in Operations Research & Management Science, chapter 2, pages 37–54.
Springer US, 2003.

[58] M. Gendreau and J.-Y. Potvin. Handbook of metaheuristics, volume 272 of Interna-
tional Series in Operations Research & Management Science. Springer International
Publishing, 2019.

[59] M. Gendreau, J. Nossack, and E. Pesch. Mathematical formulations for a 1-full-
truckload pickup-and-delivery problem. European Journal of Operational Research,
242(3):1008–1016, 2015.

[60] F. Glover and M. Laguna. Tabu search. In D.-Z. Du and P. M. Pardalos, editors,
Handbook of combinatorial optimization, pages 2093–2229. Springer US, 1998.

[61] F. W. Glover and G. A. Kochenberger. Handbook of metaheuristics, volume 57 of
International Series in Operations Research & Management Science. Springer US,
2003.



[62] Y. Han, E. Côme, and L. Oukhellou. Towards bicycle demand prediction of
large-scale bicycle sharing system. In Transportation Research Board 93rd Annual
Meeting, pages 1–17, 2014.

[63] I. Harjunkoski and I. E. Grossmann. Decomposition techniques for multistage
scheduling problems using mixed-integer and constraint programming methods.
Computers & Chemical Engineering, 26(11):1533–1552, 2002.

[64] H. Hashimoto, T. Ibaraki, S. Imahori, and M. Yagiura. The vehicle routing problem
with flexible time windows and traveling times. Discrete Applied Mathematics, 154
(16):2271–2290, 2006.

[65] H. Hernández-Pérez and J.-J. Salazar-González. A branch-and-cut algorithm for a
traveling salesman problem with pickup and delivery. Discrete Applied Mathematics,
145(1):126–139, 2004.

[66] H. Hernández-Pérez and J.-J. Salazar-González. Heuristics for the one-commodity
pickup-and-delivery traveling salesman problem. Transportation Science, 38(2):
245–255, 2004.

[67] H. Hernández-Pérez and J.-J. Salazar-González. The one-commodity pickup-and-
delivery traveling salesman problem: Inequalities and algorithms. Networks, 50(4):
258–272, 2007.

[68] H. Hernández-Pérez, I. Rodríguez-Martín, and J. J. Salazar-González. A hybrid
GRASP/VND heuristic for the one-commodity pickup-and-delivery traveling sales-
man problem. Computers & Operations Research, 36(5):1639–1645, 2009.

[69] H. Hernández-Pérez, J. J. Salazar-González, and B. Santos-Hernández. Heuris-
tic algorithm for the split-demand one-commodity pickup-and-delivery travelling
salesman problem. Computers & Operations Research, 97:1–17, 2018.

[70] S. C. Ho and W. Szeto. Solving a static repositioning problem in bike-sharing
systems using iterated tabu search. Transportation Research Part E: Logistics and
Transportation Review, 69:180–198, 2014.

[71] J. N. Hooker. Planning and scheduling by logic-based Benders decomposition.
Operations Research, 55(3):588–602, 2007.

[72] J. N. Hooker and G. Ottosson. Logic-based Benders decomposition. Mathematical
Programming, 96(1):33–60, 2003.

[73] S.-R. Hu and C.-T. Liu. An optimal location model for a bicycle sharing program
with truck dispatching consideration. In 17th International IEEE Conference on
Intelligent Transportation Systems (ITSC), pages 1775–1780. IEEE, 2014.

[74] T. Ibaraki and Y. Nakamura. A dynamic programming method for single machine
scheduling. European Journal of Operational Research, 76(1):72–82, 1994.



[75] T. Ibaraki, S. Imahori, M. Kubo, T. Masuda, T. Uno, and M. Yagiura. Effective local
search algorithms for routing and scheduling problems with general time-window
constraints. Transportation Science, 39(2):206–232, 2005.

[76] I. Ioachim, S. Gélinas, F. Soumis, and J. Desrosiers. A dynamic programming
algorithm for the shortest path problem with time windows and linear node costs.
Networks, 31(3):193–204, 1998.

[77] R. Jonker and T. Volgenant. Transforming asymmetric into symmetric traveling
salesman problems. Operations Research Letters, 2(4):161–163, 1983.

[78] R. Jonker and T. Volgenant. Transforming asymmetric into symmetric traveling
salesman problems: erratum. Operations Research Letters, 5(4):215–216, 1986.

[79] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combi-
natorica, 4(4):373–395, 1984.

[80] L. G. Khachiyan. A polynomial algorithm in linear programming. In Doklady
Academii Nauk SSSR, volume 244, pages 1093–1096, 1979.

[81] B.-M. Kim, C. Kloimüllner, and G. R. Raidl. Efficient consideration of soft time
windows in a large neighborhood search for the districting and routing problem for
security control. In B. Hu and M. López-Ibáñez, editors, Evolutionary Computation
in Combinatorial Optimization, volume 10197 of Lecture Notes in Computer Science,
pages 91–107. Springer International Publishing, 2017.

[82] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

[83] C. Kloimüllner and G. R. Raidl. Full-load route planning for balancing bike sharing
systems by logic-based Benders decomposition. Networks, 69(3):270–289, 2017.

[84] C. Kloimüllner and G. R. Raidl. Hierarchical clustering and multilevel refinement
for the bike-sharing station planning problem. In R. Battiti, D. E. Kvasov, and Y. D.
Sergeyev, editors, Learning and Intelligent Optimization, volume 10556 of Lecture
Notes in Computer Science, pages 150–165. Springer International Publishing, 2017.

[85] C. Kloimüllner and G. R. Raidl. A novel approach for solving large-scale instances
in the bike sharing station planning problem. Technical report, Institute of Logic
and Computation, TU Wien, 2019. submitted to 13th Learning and Intelligent
Optimization Conference.

[86] C. Kloimüllner, P. Papazek, B. Hu, and G. R. Raidl. Balancing bicycle sharing
systems: An approach for the dynamic case. In C. Blum and G. Ochoa, editors,
Evolutionary Computation in Combinatorial Optimisation, volume 8600 of Lecture
Notes in Computer Science, pages 73–84. Springer Berlin Heidelberg, 2014.



[87] C. Kloimüllner, P. Papazek, B. Hu, and G. R. Raidl. A cluster-first route-second
approach for balancing bicycle sharing systems. In R. Moreno-Díaz, F. Pichler, and
A. Quesada-Arencibia, editors, Computer Aided Systems Theory – EUROCAST
2015, volume 9520 of Lecture Notes in Computer Science, pages 439–446. Springer
International Publishing, 2015.

[88] E. Klotz and A. M. Newman. Practical guidelines for solving difficult linear
programs. Surveys in Operations Research and Management Science, 18(1):1–17,
2013.

[89] M.-C. Lai, H. Sohn, and D. Bricker. A hybrid Benders/genetic algorithm for vehicle
routing and scheduling problem. International Journal of Industrial Engineering:
Theory, Applications and Practice, 19(1), 2012.

[90] G. Laporte, F. Meunier, and R. W. Calvo. Shared mobility systems. 4OR, 13(4):
341–360, 2015.

[91] J.-R. Lin and T.-H. Yang. Strategic design of public bicycle sharing systems
with service level constraints. Transportation Research Part E: Logistics and
Transportation Review, 47(2):284–294, 2011.

[92] J.-R. Lin, T.-H. Yang, and Y.-C. Chang. A hub location inventory model for
bicycle sharing system design: Formulation and solution. Computers & Industrial
Engineering, 65(1):77–86, 2013.

[93] M. López-Ibáñez and C. Blum. Beam-ACO for the travelling salesman problem
with time windows. Computers & Operations Research, 37(9):1570–1583, 2010.

[94] M. López-Ibáñez, C. Blum, J. W. Ohlmann, and B. W. Thomas. The travelling
salesman problem with time windows: Adapting algorithms from travel-time to
makespan optimization. Applied Soft Computing, 13(9):3806–3815, 2013.

[95] L. M. Martinez, L. Caetano, T. Eiró, and F. Cruz. An optimisation algorithm to
establish the location of stations of a mixed fleet biking system: An application to
the city of Lisbon. Procedia – Social and Behavioral Sciences, 54:513–524, 2012.

[96] C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming formulation of
traveling salesman problems. Journal of the ACM, 7(4):326–329, 1960.

[97] N. Mladenović and P. Hansen. Variable neighborhood search. Computers &
Operations Research, 24(11):1097–1100, 1997.

[98] N. Mladenović, R. Todosijević, and D. Urošević. An efficient GVNS for solving
traveling salesman problem with time windows. Electronic Notes in Discrete
Mathematics, 39:83–90, 2012.



[99] P. Moscato and C. Cotta. A gentle introduction to memetic algorithms. In
F. Glover and G. A. Kochenberger, editors, Handbook of metaheuristics, pages
105–144. Springer US, 2003.

[100] P. Moscato, C. Cotta, and A. Mendes. Memetic algorithms. In G. C. O. V.
Babu, editor, New optimization techniques in engineering, volume 141 of Studies in
Fuzziness and Soft Computing, pages 53–85. Springer Berlin Heidelberg, 2004.

[101] Y. Nagata and O. Bräysy. A powerful route minimization heuristic for the vehicle
routing problem with time windows. Operations Research Letters, 37(5):333–338,
2009.

[102] Y. Nagata, O. Bräysy, and W. Dullaert. A penalty-based edge assembly memetic
algorithm for the vehicle routing problem with time windows. Computers &
Operations Research, 37(4):724–737, 2010.

[103] J. W. Ohlmann and B. W. Thomas. A compressed-annealing heuristic for the
traveling salesman problem with time windows. INFORMS Journal on Computing,
19(1):80–90, 2007.

[104] I. H. Osman and G. Laporte. Metaheuristics: A bibliography. Annals of Operations
Research, 63(5):511–623, 1996.

[105] W. Ouyang, C. W. Yu, K.-M. Yu, K.-J. Lin, J.-H. Yu, H.-W. Chang, L.-L. Tai, and
C.-H. Lin. Station decision problem in bicycle ad hoc networks. In 9th Interna-
tional Conference on Ubiquitous Intelligence and Computing and 9th International
Conference on Autonomic and Trusted Computing, pages 876–881. IEEE, 2012.

[106] W. Ouyang, C. W. Yu, K.-M. Yu, K.-J. Lin, H.-W. Chang, H.-N. Hsieh, L.-L.
Tai, and C.-H. Lin. Solving station decision problem in bicycle ad hoc networks.
International Journal of Ad Hoc and Ubiquitous Computing, 16(2):93–102, 2014.

[107] P. S. Ow and T. E. Morton. Filtered beam search in scheduling. The International
Journal Of Production Research, 26(1):35–62, 1988.

[108] A. Pal and Y. Zhang. Free-floating bike sharing: Solving real-life large-scale static
rebalancing problems. Transportation Research Part C: Emerging Technologies, 80:
92–116, 2017.

[109] P. Papazek, G. R. Raidl, M. Rainer-Harbach, and B. Hu. A PILOT/VND/GRASP
hybrid for the static balancing of public bicycle sharing systems. In R. Moreno-Díaz,
F. Pichler, and A. Quesada-Arencibia, editors, Computer Aided Systems Theory
– EUROCAST 2013, volume 8111 of Lecture Notes in Computer Science, pages
372–379. Springer Berlin Heidelberg, 2013.

[110] P. Papazek, C. Kloimüllner, B. Hu, and G. R. Raidl. Balancing bicycle sharing
systems: An analysis of path relinking and recombination within a GRASP hybrid.



In T. Bartz-Beielstein, J. Branke, B. Filipič, and J. Smith, editors, Parallel Problem
Solving from Nature – PPSN XIII, volume 8672 of Lecture Notes in Computer
Science, pages 792–801. Springer International Publishing, 2014.

[111] J. Pfrommer, J. Warrington, G. Schildbach, and M. Morari. Dynamic vehicle redis-
tribution and online price incentives in shared mobility systems. IEEE Transactions
on Intelligent Transportation Systems, 15(4):1567–1578, 2014.

[112] S. Pirkwieser and G. R. Raidl. A variable neighborhood search for the periodic
vehicle routing problem with time windows. In C. Prodhon et al., editors, Proceed-
ings of the 9th EU/MEeting on Metaheuristics for Logistics and Vehicle Routing,
Troyes, France, 2008.

[113] D. Pisinger and S. Ropke. Large neighborhood search. In M. Gendreau and J.-Y.
Potvin, editors, Handbook of Metaheuristics, volume 146 of International Series in
Operations Research & Management Science, chapter 13, pages 399–419. Springer
US, 2010.

[114] E. Prescott-Gagnon, G. Desaulniers, and L.-M. Rousseau. A branch-and-price-
based large neighborhood search algorithm for the vehicle routing problem with
time windows. Networks, 54(4):190–204, 2009.

[115] C. Prins, P. Lacomme, and C. Prodhon. Order-first split-second methods for
vehicle routing problems: A review. Transportation Research Part C: Emerging
Technologies, 40:179–200, 2014.

[116] M. Prischink. Metaheuristics for the districting and routing problem for security
control. Master’s thesis, TU Wien, Institute of Computer Graphics and Algorithms,
May 2016. supervised by G. Raidl, B. Biesinger, and C. Kloimüllner.

[117] M. Prischink, C. Kloimüllner, B. Biesinger, and G. R. Raidl. Districting and
routing for security control. In M. J. Blesa, C. Blum, A. Cangelosi, V. Cutello,
A. D. Nuovo, M. Pavone, and E.-G. Talbi, editors, Hybrid Metaheuristics, volume
9668 of Lecture Notes in Computer Science, pages 87–103. Springer International
Publishing, 2016.

[118] R. Rahmaniani, T. G. Crainic, M. Gendreau, and W. Rei. The benders decompo-
sition algorithm: A literature review. European Journal of Operational Research,
259(3):801–817, 2017.

[119] G. R. Raidl. A unified view on hybrid metaheuristics. In F. Almeida, M. J.
Blesa Aguilera, C. Blum, J. M. Moreno Vega, M. Pérez Pérez, A. Roli, and
M. Sampels, editors, Hybrid Metaheuristics, pages 1–12. Springer Berlin Heidelberg,
2006.

[120] G. R. Raidl. Decomposition based hybrid metaheuristics. European Journal of
Operational Research, 244:66–76, 2015.



[121] G. R. Raidl and J. Puchinger. Combining (integer) linear programming techniques
and metaheuristics for combinatorial optimization. In C. Blum, M. J. B. Aguilera,
A. Roli, and M. Sampels, editors, Hybrid metaheuristics: An Emerging Approach
to Optimization, volume 114 of Studies in Computational Intelligence, pages 31–62.
Springer-Verlag Berlin Heidelberg, 2008.

[122] G. R. Raidl, B. Hu, M. Rainer-Harbach, and P. Papazek. Balancing bicycle sharing
systems: Improving a VNS by efficiently determining optimal loading operations.
In M. J. Blesa, C. Blum, P. Festa, A. Roli, and M. Sampels, editors, Hybrid
Metaheuristics, volume 7919 of Lecture Notes in Computer Science, pages 130–143.
Springer Berlin Heidelberg, 2013.

[123] G. R. Raidl, T. Baumhauer, and B. Hu. Speeding up logic-based benders’ decompo-
sition by a metaheuristic for a bi-level capacitated vehicle routing problem. In M. J.
Blesa, C. Blum, and S. Voß, editors, Hybrid Metaheuristics, volume 8457 of Lecture
Notes in Computer Science, pages 183–197. Springer International Publishing, 2014.

[124] M. Rainer-Harbach, P. Papazek, B. Hu, and G. R. Raidl. Balancing bicycle sharing
systems: A variable neighborhood search approach. In M. Middendorf and C. Blum,
editors, Evolutionary Computation in Combinatorial Optimization, volume 7832
of Lecture Notes in Computer Science, pages 121–132. Springer Berlin Heidelberg,
2013.

[125] M. Rainer-Harbach, P. Papazek, B. Hu, G. R. Raidl, and C. Kloimüllner. PILOT,
GRASP, and VNS approaches for the static balancing of bicycle sharing systems.
Journal of Global Optimization, 63(3):597–629, 2015.

[126] T. Raviv, M. Tzur, and I. A. Forma. Static repositioning in a bike-sharing system:
models and solution approaches. EURO Journal on Transportation and Logistics,
2(3):187–229, 2013.

[127] C. Reeves. Genetic algorithms. In M. Gendreau and J.-Y. Potvin, editors, Handbook
of metaheuristics, volume 146 of International Series in Operations Research &
Management Science, chapter 5, pages 109–139. Springer US, 2010.

[128] M. Resende and C. Ribeiro. Greedy randomized adaptive search procedures. In
F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, volume 57 of
International Series in Operations Research & Management Science, pages 219–249.
Springer US, 2003.

[129] C. S. ReVelle and H. A. Eiselt. Location analysis: A synthesis and survey. European
Journal of Operational Research, 165(1):1–19, 2005.

[130] F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint programming. Elsevier,
2006.



[131] C. Rudloff and B. Lackner. Modeling demand for bicycle sharing system – neighbor-
ing stations as a source for demand and a reason for structural breaks. Technical
report, Austrian Institute of Technology, Vienna, Austria, 2013.

[132] C. Rudloff and B. Lackner. Modeling demand for bikesharing systems. Transporta-
tion Research Record: Journal of the Transportation Research Board, 2430:1–11,
2014.

[133] A. s Frank, E. Triesch, B. Korte, and J. Vygen. On the bipartite travelling salesman
problem. Technical Report 98866-OR, Research Institute for Discrete Mathematics,
1998.

[134] G. K. Saharidis, A. Fragkogios, and E. Zygouri. A multi-periodic optimization
modeling approach for the establishment of a bike sharing network: a case study
of the city of athens. In S. I. Ao, O. Castillo, C. Douglas, D. D. Feng, and J.-
A. Lee, editors, Proceedings of The International MultiConference of Engineers
and Computer Scientists 2014, volume 2210 of Lecture Notes in Engineering and
Computer Science, pages 1226–1231. Newswood Limited, 2014.

[135] J.-J. Salazar-González and B. Santos-Hernández. The split-demand one-commodity
pickup-and-delivery travelling salesman problem. Transportation Research Part B:
Methodological, 75:58–73, 2015.

[136] M. W. P. Savelsbergh. The vehicle routing problem with time windows: Minimizing
route duration. ORSA Journal on Computing, 4(2):146–154, 1992.

[137] M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer
programming problems. ORSA Journal on Computing, 6(4):445–454, 1994.

[138] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1998.

[139] B. Schroeder. Bicycle Sharing 101: Getting the Wheels Turning. Moonshine Media,
2014.

[140] J. Schuijbroek, R. C. Hampshire, and W.-J. van Hoeve. Inventory rebalancing and
vehicle routing in bike sharing systems. European Journal of Operational Research,
257(3):992–1004, 2017.

[141] M. Sevaux and K. Sörensen. Hamiltonian paths in large clustered routing problems.
In Proceedings of the EU/MEeting 2008 workshop on metaheuristics for logistics
and vehicle routing, EU/ME, volume 8, pages 411–417, 2008.

[142] A. Shurbevski, H. Nagamochi, and Y. Karuno. Approximating the bipartite TSP
and its biased generalization. In S. P. Pal and K. Sadakane, editors, Algorithms
and Computation, volume 8344 of Lecture Notes in Computer Science, pages 56–67.
Springer International Publishing, 2014.



[143] M. M. Solomon. Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations Research, 35(2):254–265, 1987.

[144] K. Sörensen and N. Vergeylen. The bike request scheduling problem. In R. Moreno-
Díaz, F. Pichler, and A. Quesada-Arencibia, editors, Computer Aided Systems
Theory – EUROCAST 2015, volume 9520 of Lecture Notes in Computer Science,
pages 294–301. Springer International Publishing, 2015.

[145] A. Srivastav, H. Schroeter, and C. Michel. Approximation algorithms for pick-and-
place robots. Annals of Operations Research, 107(1–4):321–338, 2001.

[146] M. Straub, C. Rudloff, A. Graser, C. Kloimüllner, G. R. Raidl, M. Pajones, and
F. Beyer. Semi-automated location planning for urban bike-sharing systems. In
Proceedings of the 7th Transport Research Arena (TRA 2018), pages 1–10, Vienna,
Austria, 2018.

[147] É. Taillard, P. Badeau, M. Gendreau, F. Guertin, and J.-Y. Potvin. A tabu search
heuristic for the vehicle routing problem with soft time windows. Transportation
Science, 31(2):170–186, 1997.

[148] É. D. Taillard and S. Voss. Popmusic — partial optimization metaheuristic under
special intensification conditions. In Essays and surveys in metaheuristics, volume 15
of Operations Research/Computer Science Interfaces Series, chapter 27, pages 613–
629. Springer US, 2002.

[149] E.-G. Talbi, editor. Hybrid Metaheuristics, volume 434 of Studies in Computational
Intelligence. Springer-Verlag Berlin Heidelberg, 2013.

[150] E. S. Thorsteinsson. Branch-and-check: A hybrid framework integrating mixed
integer programming and constraint logic programming. In T. Walsh, editor,
Principles and Practice of Constraint Programming – CP 2001, volume 2239 of
Lecture Notes in Computer Science, pages 16–30. Springer Berlin Heidelberg, 2001.

[151] C.-K. Ting and X.-L. Liao. The selective pickup and delivery problem: Formulation
and a memetic algorithm. International Journal of Production Economics, 141(1):
199–211, 2013.

[152] P. J. Van Laarhoven and E. H. Aarts. Simulated annealing. In Simulated annealing:
Theory and applications, volume 37 of Mathematics and Its Applications, chapter 2,
pages 7–15. Springer Netherlands, 1987.

[153] N. A. Vergeylen. A novel approach to city bicycle repositioning. PhD thesis,
University of Antwerp, Faculty of Applied Economics, April 2018. supervised by
K. Sörensen.

[154] N. A. Vergeylen, K. Sörensen, and D. P. Cuervo. Solution space analysis for the
bike request scheduling problem. Technical Report 2018-005, University of Antwerp,



Antwerp, Belgium, February 2018. URL https://repository.uantwerpen.
be/docman/irua/eda2ca/149166.pdf.

[155] T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins. A hybrid genetic algorithm
with adaptive diversity management for a large class of vehicle routing problems
with time-windows. Computers & Operations Research, 40(1):475–489, 2013.

[156] P. Vogel, B. A. Neumann Saavedra, and D. C. Mattfeld. A hybrid metaheuristic
to solve the resource allocation problem in bike sharing systems. In M. J. Blesa,
C. Blum, and S. Voß, editors, Hybrid Metaheuristics, volume 8457 of Lecture Notes
in Computer Science, pages 16–29. Springer International Publishing, 2014.

[157] S. Voß, A. Fink, and C. Duin. Looking ahead with the PILOT method. Annals of
Operations Research, 136:285–302, 2005.

[158] C. Walshaw. A multilevel approach to the travelling salesman problem. Operations
Research, 50(5):862–877, 2002.

[159] C. Walshaw. Multilevel refinement for combinatorial optimisation problems. Annals
of Operations Research, 131(1–4):325–372, 2004.

[160] L. A. Wolsey. Integer Programming. Wiley, 1998.

[161] T.-H. Yang, J.-R. Lin, and Y.-C. Chang. Strategic design of public bicycle sharing
systems incorporating with bicycle stocks considerations. In The 40th International
Conference on Computers Indutrial Engineering, pages 1–6. IEEE, 2010.

https://repository.uantwerpen.be/docman/irua/eda2ca/149166.pdf
https://repository.uantwerpen.be/docman/irua/eda2ca/149166.pdf


Dipl.-Ing. Christian Kloimüllner
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