
Hierarchical Clustering and Multilevel
Refinement for the Bike-Sharing Station

Planning Problem

Christian Kloimüllner and Günther R. Raidl

Institute of Computer Graphics and Algorithms, TU Wien
Favoritenstraße 9–11/1861, 1040 Vienna, Austria
{kloimuellner|raidl}@ac.tuwien.ac.at

Abstract. We investigate the Bike-Sharing Station Planning Problem
(BSSPP). A bike-sharing system consists of a set of rental stations, each
with a certain number of parking slots, distributed over a geographical
region. Customers can rent available bikes at any station and return them
at any other station with free parking slots. The initial decision process
where to build stations of which size or how to extend an existing system
by new stations and/or changing existing station configurations is crucial
as it actually determines the satisfiable customer demand, costs, as well
as the rebalancing effort arising by the need to regularly move bikes from
some stations tending to run full to stations tending to run empty. We
consider as objective the maximization of the satisfied customer demand
under budget constraints for fixed and variable costs, including the costs
for rebalancing. As bike-sharing stations are usually implemented within
larger cities and the potential station locations are manifold, the size
of practical instances of the underlying optimization problem is rather
large, which makes a manual decision process a hardly comprehensible
and understandable task but also a computational optimization very
challenging. We therefore propose to state the BSSPP on the basis of
a hierarchical clustering of the considered underlying geographical cells
with potential customers and possible stations. In this way the estimated
existing demand can be more compactly expressed by a relatively sparse
weighted graph instead of a complete matrix with mostly small non-zero
entries. For this advanced problem formulation we describe an efficient
linear programming approach for evaluating candidate solutions, and for
solving the problem a first multilevel refinement heuristic based on mixed
integer linear programming. Our experiments show that it is possible
to approach instances with up to 2000 geographical cells in reasonable
computation times.

Keywords: Bike-Sharing Station Planning Problem · Hierarchical Clus-
tering · Multilevel Refinement · Facility Location Problem

1 Introduction

Many large cities around the world have already built bike sharing systems
(BSS), and many more are considering to introduce one or extend an existing

one. These systems consist of rental stations around the city or a certain part
of it where customers can rent and return bikes. A rental station has a specific
number of parking slots where a bike can be taken from or returned to. On the
contrary to bike-rental systems, BSSs encourage a short-term usage of bikes. As
bikes are typically returned at a different station than they have been taken
from, a need for active rebalancing arises as the demand for bikes to rent and
parking slots to return bikes is not equally distributed among the stations.

Finding a good combination of station locations and building these stations
in the right size is crucial when planning a BSS as these stations obviously di-
rectly determine the satisfied customer demand in terms of bike trips, the arising
rebalancing effort, and the resulting fixed and variable costs. Stations close to
public transport, business parks, or large housing developments will likely face
a high demand whereas stations in sparser inhabited areas will probably face a
lower demand. However, also the station density and connectedness of the actual
regions to be covered play crucial roles. Some solitary station that is far from
any other station will most likely not fulfill much demand. Moreover, a clever
choice of station locations might also exploit the natural demands and customer
flows in order to keep the rebalancing effort and associated costs reasonable.

As BSSs are usually implemented in rather large cities the problem of find-
ing optimal locations for rental stations and sizing these stations appropriately
is challenging and manually hardly comprehensible. Thus, there is the need for
computational techniques supporting this decision-making. Besides fixed costs
for building the system, an integrated approach should also estimate mainte-
nance and rebalancing costs over a certain time horizon such that overall costs
for the operator can be approximated more precisely. It is further important to
consider the customer demands in a time-dependent way because there usually
exists a morning peak and an afternoon peak which is due to commuters, people
going to work, and students. Between these peaks, the demand of the system is
usually a bit lower. We refer to this problem as Bike Sharing Station Planning
Problem (BSSPP). The objective we consider here is to determine for a specified
total-cost budget and a separate fixed-cost budget a selection of locations where
rental stations of an also to be determined size should be erected in order to
maximize the actually fulfilled customer demand.

In this work, we first concentrate on how to efficiently model the BSSPP such
that we can also deal with very large instances with thousands of considered
geographical cells for customers and potential station locations. To this end we
propose to utilize a hierarchical clustering to express the estimated potential
customer demand on it. We will then describe a linear programming (LP) based
method to evaluate candidate solutions, and finally present a first novel multilevel
refinement heuristic (MLR), based on mixed integer linear programming (MIP),
to approach the optimization problem.

In Section 2 we discuss related work. Section 3 defines the BSSPP formally,
also introducing the hierarchical clustering. Sections 3.3 and 3.4 describe LP
models for determining the actually fulfilled customer demands for a candidate
solution and estimating the required rebalancing effort, respectively. The MLR is

then described in Section 4. First computational results on randomly generated
instances are shown in Section 5, and finally, conclusions are drawn in Section 6.

2 Related Work

There already exists some work which tries to find optimal station locations for
BSSs, although mostly considering different aspects. To the best of our knowl-
edge, Yang et al. [12] were the first who considered the problem in 2010. They
relate the problem to hub location problems, a special variant of the well-known
facility location problem, and propose a mathematical model for it. The con-
sidered objective is to minimize the walking distance by prospective customers,
fixed costs, and, a penalty for uncovered demands. The authors solve the problem
by a heuristic approach in which a first part of the algorithm tries to identify the
location of rental stations and a second, inner part tries to find shortest paths
between origin and destination pairs. The authors illustrate their approach by a
small example consisting of 11 candidate cells for bike stations.

Lin et al. [6] propose a mixed integer non-linear programming model and
solve a small example instance with 11 candidate stations by the commercial
solver LINGO, and furthermore provide a sensitivity analysis. Martinez et al. [8]
develop approaches for a case study within Lisbon having 565 prospective can-
didate stations. They propose a hybrid approach consisting of a heuristic part
utilizing a mixed integer linear programming (MIP) formulation. Locations as
well as the fleet dimension are optimized, e-bikes are also considered, and rebal-
ancing requirements are estimated.

Lin et al. [7] propose a heuristic algorithm for solving the hub location in-
ventory problem arising in BSSPP. They do not only optimize station locations
but their algorithm also identifies where to build bike lanes. As a subproblem
they have to determine the travel patterns of the customers, i.e., solve a flow
problem for a given configuration. They illustrate their approach on a small
example consisting of 11 candidate locations for stations. Saharidis et al. [9] pro-
pose a MIP formulation which minimizes unmet demands and walking distance
for prospective customers. They test their approach in a case study for the city
center of Athens having 50 candidate cells for stations. Chen et al. [1] provide a
mathematical non-linear programming model and solve the problem utilizing an
improved immune algorithm. They define three different types of rental stations
depending on their location (e.g., near a metro station, supermarkets). Their
aim is that stations in the residential area have enough bikes available such that
the morning peak can be managed and that stations near metro lines or impor-
tant places have enough free parking slots available to manage incoming bikes
during the morning peak. They provide a case study for a particular metro line
of Nianjing city including 10 district stations and 31 residential stations. In [2]
Chen and Sun aim at satisfying a given demand and minimizing travel times
of the users. The authors propose an integer programming model which they
solve with the LINGO solver. A computational analysis is provided on a small
example. Frade et al. [3] describe an approach for a case study of the city of

Coimbra, Portugal. They present a compact MIP model which they solve using
the XPRESS solver. Their objective is to maximize the demand covered by the
BSS under budget constraints. They also include the net revenue in their mathe-
matical model which reduces the costs incurred by building the BSS. Their single
test instance consists only of 29 cells or traffic zones, how they call it. Hu et al. [5]
also present a case study for a BSS along a metro line. They aim at minimizing
total costs incurred by building particular BSS stations. In their computational
study they consider three scenarios, each consisting of ten possible station can-
didates. They solve the proposed MIP model by the LINGO solver. Last but
not least, Gavalas et al. [4] summarized diverse algorithmic approaches for the
design and management of vehicle-sharing systems.

We conclude that all previous works on computational optimization ap-
proaches for designing BSS only consider rather small scenarios. Most previous
work accomplishes the optimization with compact mathematical models that are
directly solved by a MIP solver. Such methods, however, are clearly unsuited for
tackling large realistic scenarios of cities with up to 2000 cells or more. In the
following, we therefore propose a novel multilevel refinement heuristic based on
a hierarchical clustering of the demand data.

3 Problem Formalization

The considered geographical area is partitioned into cells. Let S be the set of
cells where a BSS station may potentially be located (station cells), and let V be
the set of cells where some positive travel demand (outgoing, ingoing, or both)
from prospective customers of the BSS exists (customer cells).

To handle such a large number of cells effectively, we consider a hierarchical
abstraction as crucial in order to represent and model the further data in a mean-
ingful and relatively compact form. To this end, we are expecting a hierarchical
clustering of all customer cells V as input.

This hierarchical clustering is given in the form of a rooted tree with the
inner nodes corresponding to clusters and the leafs corresponding to the cells.
All cells have the same depth which is equal to the height of the tree, denoted by
h. Let C = C0 ∪ . . . ∪ Ch be the set of all tree nodes, with Cd corresponding to
the subset of nodes at depth d = 0, . . . , h. C0 = {0} contains only the root node
0 representing the single cluster with all cells, while Ch = V . Let super(p) ∈ C
be the immediate predecessor (parent cluster) of some node p ∈ C \ C0 and
sub(p) ⊂ C be the set of immediate successors (children) of a cluster p ∈ C \Ch.

As the travel demand of potential users varies over time we are given a (small)
set of periods T = {1, . . . , τ} for a “typical” day for which the planning shall
be done. The estimated existing travel demand occurring in each period t ∈ T
from/to any cell v ∈ V is given by a weighted directed graph Gt = (Ct, At).
All relevant outgoing travel demand at a cell v is represented by outgoing arcs
(v, p) ∈ At with p ∈ C and corresponding values (weights) dtv,p > 0, i.e., (v, p)
represents all expected trips from v to any cell represented by p in period t that
might ideally be satisfied, and dtv,p indicates the expected number of these trips.

Moreover, for each time period t ∈ T we are given its duration denoted by δperiod
t

and we are given a global parameter δrent which defines the average duration of
a single trip performed by some user of the BSS.

The following conditions must hold to keep this graph as compact and mean-
ingful as possible: the target node p of an arc (v, p) must not be a predecessor
of v in the cluster tree. Self-loops (v, v), however, are allowed and important
to model demand where the destination corresponds to the origin, arcs repre-
senting a neglectable demand, i.e., below a certain threshold, shall be avoided.
Consequently, if there is an arc (v, p) no further arc (v, q) is allowed to any node
q being a successor or a predecessor of p.

All estimated ingoing travel demand for each cell v ∈ V is given corre-
spondingly by arcs (p, v) ∈ At with p ∈ C with demand values dtp,v ≥ 0, and
corresponding conditions must hold.

Furthermore, it is an important property, that ingoing and outgoing demands
have to be consistent: Let us denote by V (p) the subset of all cells from V
contained in cluster p ∈ C, i.e., the leafs of the subtree rooted in p, and by
C(p) the subset of all the nodes q ∈ C that are part of the subtree rooted in p,
including p and V (p). For any p ∈ C \ V it must hold that∑

(v,q)∈At|v∈V (p),q 6∈C(p)

dtv,q ≥
∑

(q,v)∈At|q∈C(p),v 6∈V (p)

dtq,v (1)

and ∑
(q,v)∈At|q 6∈C(p),v∈V (p)

dtq,v ≥
∑

(v,q)∈At|v 6∈V (p),q∈C(p)

dtv,q. (2)

Condition (1) ensures that the total demand originating at the leafs of the
subtree rooted at p and leading to a destination outside of the tree is never less
than the total ingoing demand at all the cells outside the tree originating from
some cluster inside the tree. Condition (2) provides a symmetric condition for
the total ingoing demand at all the leafs of the tree. Furthermore, for the root
node p = 0, inequalities (1) and (2) must hold with equality.

For each customer cell v ∈ V , we are given a (typically small) set S(v) ⊆ S
of station cells in the vicinity by which v’s demand may be (partly) fulfilled.
Furthermore, let av,s ∈ (0, 1], ∀v ∈ V, s ∈ S(v), be an attractiveness value indi-
cating the expected proportion of demand from v (ingoing as well as outgoing)
that can at most be fulfilled with a sufficiently sized station at s. These at-
tractiveness values will be determined primarily based on the walking distances
among the stations (the value will typically roughly exponentially decrease with
the distance), but can be in general an arbitrary distance decay model. If there
is a one-to-one correspondence of cells in V and S, for each v ∈ V , v ∈ S(v),
av,v = 1 will typically hold.

For the costs of building a station we consider here only a (strongly) sim-
plified linear model, but we distinguish fixed costs for building the station and
initially buying the bikes, variable costs for maintaining the station and the re-
spective bikes, and costs for performing the rebalancing. Let bfix and bvar be the
average fixed and variable costs per bike slot, and let breb be the average costs
for rebalancing one bike per day over the whole planning horizon. The fixed

costs for a station in cell s ∈ S with xs slots are then fixcost(s) = bfix · xs and
the total costs are totalcost(s) = bfix · xs + bvar · xs + breb · Qx(s), where Qx(s)
denotes an estimation for the number of bikes that need to be redistributed from
station s to some other station. We assume here that the size of each station,
i.e., the number of its slots, can be freely chosen from 0 (i.e., no station is built)
up to some maximum cell-dependent capacity zs ∈ N. The determination of the
rebalancing effort for a given candidate solution will be described in Section 3.4.
We remark that this cost model only is a first very rough estimate. Considering
location dependent costs, costs for a station to be built that are independent of
the number of slots, and a more restricted selection of station sizes is left for
future research. We assume that a total budget Btot

max is given as well as a budget
for only the sum of all fixed costs Bfix

max < Btot
max, and both must not be exceeded

in a feasible solution.

3.1 Solution Representation

A solution x = {xs ∈ N | s ∈ S} assigns each station cell s ∈ S an amount of
parking slots to be built, possibly also 0 which would mean that no station is
going to be built in cell s.

3.2 Objective

The goal is to maximize the expected total number of journeys in the system,
i.e., the total demand that actually can be fulfilled at each day over all time
periods, considering the available budgets Btot

max and Bfix
max.

Let D(x, t) be the total demand fulfilled by solution x in time period t ∈ T ,
and let Qx(s) be the required rebalancing effort arising at each station s ∈ S |
xs 6= 0 in terms of the number of bikes to be moved to some other station. The
calculation of these values will be considered separately in Sections 3.3 and 3.4.
The BSSPP can then be stated as the following MIP.

max
∑
t∈T

D(x, t) (3)

∑
s∈S

(bfix · xs + bvar · xs + breb ·Qx(s)) ≤ Btot
max (4)

∑
s∈S

bfix · xs ≤ Bfix
max (5)

xs ∈ {0, . . . , zs} s ∈ S (6)

Inequality (4) calculates the total costs over all stations and ensures that the
total budget is not exceeded, while inequality (5) restricts only the fixed costs
over all stations by the respective budget.

3.3 Calculation of Fulfilled Customer Demand

To determine the overall fulfilled demand for a specific, given solution x and
a certain time slot t ∈ T , we first make the following local definitions. Let

S′ = {s ∈ S | xs 6= 0} correspond to the set of cells where a station actually
is located, V ′ = {v ∈ V | S(v) ∩ S′ 6= ∅} be the set of customer cells whose
demand can possibly (partly) be fulfilled as at least one station exists in the
neighborhood. Moreover, let C ′ = {p ∈ C | V (p)∩V ′ 6= ∅} be the set of all nodes
in the hierarchical clustering representing relevant customer cells, i.e., cells whose
demand can possibly be fulfilled. The set S′(v) = S(v) ∩ V ′, ∀v ∈ V ′ refers to
the existing stations that might fulfill part of v’s demand, and V ′(p) = V (p) ∩
V ′, ∀p ∈ C ′ denotes the existing customer cells contained in cluster p. C ′(p)
refers to the subset of all the nodes q ∈ C ′ that are part of the subtree rooted at
p, including p and V ′(p), and G′ = (C ′, A′) with A′ = {(p, q) ∈ At | p, q ∈ C ′} is
then the correspondingly reduced demand graph.

In the following we use variables u, v, w for referencing customer cells in V ′,
variables p, q for referencing cluster nodes in C ′ (which might possibly also be
customer cells), variable s for station cells in S′, and α, β for arbitrary nodes in
C ′ ∪ S.

We further define for each arc in A′ corresponding to a specific demand an
individual flow network depending on the kind of the arc:

– Arcs (u, v) ∈ A′ with u, v ∈ V ′, including the case u = v:
Gu,vf = (V u,vf , Au,vf) with node set V u,vf = {u} ∪ S′(u) ∪ S′(v) ∪ {v} and arc
set Au,vf = ({u} × S′(u)) ∪ (S′(u)× S′(v)) ∪ (S′(v)× {v}).

– Arcs (v, p) ∈ A′ with v ∈ V ′, p ∈ C ′ \ V ′:
Gv,pf = (V v,pf , Av,pf) with node set V v,pf = {v} ∪ S′(v) ∪ {p} and arc set
Av,pf = ({v} × S′(v)) ∪ (S′(v)× {p}).

– Arcs (p, v) ∈ A′ with p ∈ C ′ \ V ′, v ∈ V ′:
Gp,vf = (V p,vf , Ap,vf) with node set V p,vf = {p} ∪ S′(v) ∪ {v} and arc set
Ap,vf = ({p} × S′(v)) ∪ (S′(v)× {v}).

All arcs (α, β) ∈ Ap,qf of all flow networks have associated corresponding flow
variables 0 ≤ fp,qα,β ≤ dtp,q. The fulfilled demands can be modeled within these

networks as maximum flows. Furthermore, we utilize variables H in
p , H

out
p ∀p ∈

C ′ \ V ′, for the total inflow/outflow at all customer cells V ′(p) originating
at/targeted to cluster nodes from outside cluster p, i.e., C ′ \C ′(p)\V ′. Variables
F in
p , F

out
p , ∀p ∈ C ′ \ V ′, represent the total ingoing/outgoing flows at all cluster

nodes q within cluster p originating at/targeted to customer cells outside cluster
p, i.e., V ′\V ′(p), respectively. The flow variables, however, depend on each other
and the stations’ capacities. A weighting factor ω is used to adjust the number
of trips which can be performed in time period t by using only a single bike. The
following LP is used to compute the total satisfied demand D(x, t) =

max
∑

(v,p)∈A′|v∈V ′

∑
(v,s)∈Av,p

f

fv,pv,s (7)

s.t.
∑

(v,s)∈Av,p
f

fv,pv,s ≤ dtv,p (v, p) ∈ A′ | v ∈ V ′ (8)

∑
(s,v)∈Ap,v

f

fp,vs,v ≤ dtp,v (p, v) ∈ A′ | v ∈ V ′ (9)

fu,vu,s =
∑

s′∈S′(v)

fu,vs,s′ (u, v) ∈ A′ | u, v ∈ V ′,
s ∈ S′(u)

(10)

∑
s′∈S′(u)

fu,vs′,s = fu,vs,v (u, v) ∈ A′ | u, v ∈ V ′,
s ∈ S′(v)

(11)

fv,pv,s = fv,ps,p (v, p) ∈ A′ | v ∈ V ′,
p ∈ C′ \ V ′, s ∈ S′(v)

(12)

fp,vp,s = fp,vs,v (p, v) ∈ A′ | v ∈ V ′,
p ∈ C′ \ V ′, s ∈ S′(v)

(13)

− xs ≤
∑

(p,q)∈A′

∑
(α,s)∈Ap,q

f

fp,qα,s

−
∑

(p,q)∈A′

∑
(s,α)∈Ap,q

f

fp,qs,α

− ω ·
δrent ·

∑
(p,q)∈A′

∑
(α,s)∈Ap,q

f
fp,qα,s

δperiod
t

s ∈ S′ (14)

xs ≥
∑

(p,q)∈A′

∑
(α,s)∈Ap,q

f

fp,qα,s

−
∑

(p,q)∈A′

∑
(s,α)∈Ap,q

f

fp,qs,α

+ ω ·
δrent ·

∑
(p,q)∈A′

∑
(s,α)∈Ap,q

f
fp,qs,α

δperiod
t

s ∈ S′ (15)

H in
p =

∑
(q,v)∈A′|q 6∈C′(p)∪V ′,v∈V ′(p)∑

(s,q)∈Aq,v
f

fq,vs,q

p ∈ C′ \ V ′ (16)

F in
p =

∑
(v,q)∈A′|v 6∈V ′(p),q∈C′(p)\V ′∑

(s,q)∈Av,q
f

fv,ps,q

p ∈ C′ \ V ′ (17)

H in
p ≥ F in

p p ∈ C′ \ V ′ \ {0} (18)

H in
0 = F in

0 (19)

Hout
p =

∑
(v,q)∈A′|v∈V ′(p),q 6∈C′(p)∪V ′∑

(q,s)∈Aq,v
f

fq,vq,s

p ∈ C′ \ V ′ (20)

F out
p =

∑
(q,v)∈A′|q∈C′(p)\V ′,v 6∈V ′(p)∑

(p,s)∈Aq,v
f

fq,vq,s

p ∈ C′ \ V ′ (21)

Hout
p ≥ F out

p p ∈ C′ \ V ′ \ {0} (22)

Hout
0 = F out

0 (23)

0 ≤ fv,pv,s ≤ av,s · dtv,p (v, p) ∈ A′ | v ∈ V ′,
(v, s) ∈ Av,pf

(24)

0 ≤ fp,vs,v ≤ as,v · dtp,v (p, v) ∈ A′ | v ∈ V ′,
(s, v) ∈ Ap,vf

(25)

0 ≤ fp,qα,β ≤ d
t
p,q (p, q) ∈ A′,

(α, β) ∈ Ap,qf | α, β 6∈ V ′
(26)

F in
p , F

out
p ≥ 0 p ∈ C′ \ V ′ (27)

H in
p , H

out
p ≥ 0 p ∈ C′ \ V ′ (28)

Objective function (7) maximizes the total outgoing flow over all v ∈ V ′, i.e.,
the fulfilled demand. Note that this also corresponds to the total ingoing flow
over all v. Inequalities (8) limit the total flow leaving v ∈ V ′, for each demand
(v, p) ∈ A′ | v ∈ V ′ to dtv,p. Inequalities (9) do the same w.r.t. ingoing demands.
Equalities (10) and (11) provide the flow conservation at source and destination
stations s for (u, v) ∈ A′ with u, v ∈ V ′. Equalities (12) provide the flow conser-
vation at the source station in case of an arc (v, p) ∈ A′ towards a cluster node
p, while (13) provide the flow conservation at the destination station in case
of an arc (p, v) ∈ A′ originating at a cluster node p. Inequalities (14) and (15)
provide the capacity limitations at each station v ∈ V ′. It is the accumulated
demand occurring at the particular station including a “compensation term” for
large values of ingoing as well as outgoing demand. The fraction δperiod

t /δrent

represents the number of trips which can ideally be performed in period t using
a single bike. The weighting factor ω is used to adjust this value such that it
better reflects reality as the bike trips are not likely to be performed “optimally”
with respect to the distribution over the whole time period in real world. Equal-
ities (16) compute the total outgoing flow for the leafs of the subtree rooted at
p to any cluster which is not part of the subtree rooted at p. Equalities (17)
compute the total ingoing flow for each cluster node p by considering the in-
going flow from any v ∈ V for which p is not a predecessor to every cluster of
the subtree rooted at p. Inequalities (18) ensure that there must not be more
ingoing flow to clusters of the subtree rooted at p as there is outgoing flow from
the leafs contained in the subtree rooted at p. Equality (19) ensures that at the
top level, i.e., at the root node 0, the outgoing flow from leaf nodes to cluster
nodes and the ingoing flow from cluster nodes to leaf nodes is balanced, i.e, the
same amount. Inequalities (21)–(23) state the corresponding constraints for the
outgoing flow instead of the ingoing flow. Equations (24) and (25) provide the
domain definitions for the flow variables from/to a cell v to/from a neighboring
station s by considering the demand weighted by factor av,s. For all remaining
flow variables, (26) provide the domain definitions based on the demands. The
remaining variables are just restricted to be non-negative in (27) and (28).

3.4 Calculation of Rebalancing Costs

We state an LP for minimizing the total rebalancing effort over all time periods
T at each station s ∈ S′ by choosing an appropriate initial fill level for each
period, ensuring that the whole prospective customer demand is fulfilled. We
estimate the rebalancing effort by considering the necessary changes in the fill
levels inbetween the time periods. The LP uses the following decision variables.
By yt,s we refer to the initial fill level of station s ∈ S′ at the beginning of time
period t ∈ T , and by r+

t,s and r−t,s we denote the number of bikes which need to
be delivered to, respectively picked up from, station s ∈ S′ at the end of period
t ∈ T to achieve the fill levels yt+1,s (or y1,s in case of t = τ).

The accumulated demand Dacc
t,v can be calculated by utilizing the solution of

the previous model from Section 3.3, c.f. inequalities (14) and (15). The following
LP is solved for each station s ∈ S′ | xs 6= 0 independently. For station cells
s ∈ S \ S′, i.e., where no station is actually built in solution x, Qx(s) = 0.

Qx(s) = min
∑
t∈T

r+
t,s + r−t,s (29)

s.t. yt,s + r+
t,s ≥ Dacc

t,s t ∈ T (30)

xs − yt,s + r−t,s ≥ −Dacc
t,s t ∈ T (31)

yt+1,s = yt,s −Dacc
t,s + r+

t,s − r−t,s t ∈ T \ {τ} (32)

y1,s = yτ,s −Dacc
τ,s + r+

τ,s − r−τ,s (33)

0 ≤ yt,s ≤ xs t ∈ T (34)

0 ≤ r+
t,s ≤ Dacc

t,s t ∈ T (35)

0 ≤ r−t,s ≤ −Dacc
t,s t ∈ T (36)

Objective function (29) minimizes the number of rebalanced bikes, i.e., number
of bikes that have to be delivered r+

t,s and number of bikes that have to be picked

up r−t,s. Inequalities (30) compute the number of bikes that have to be delivered
to the corresponding station in order to meet the given demand. Inequalities (31)
compute the number of bikes that have to be picked up from the corresponding
station in order to meet the given demand. Inequalities (32) state a recursion in
order to compute the fill level for the next time period. Inequalities (33) state
that for each station the fill level for the next day has to be again the initial fill
level of the first period. Inequalities (34)–(36) are the domain definitions for the
number of bikes to be moved and the fill level for each time period.

4 Multilevel Refinement Approach

Clearly, practical instances of the problem are far too large to be approached
by a direct exact MIP approach. However, also basic constructive techniques or
metaheuristics with simple, classical neighborhoods are unlikely to yield reason-
able results when making decisions on a low level without considering crucial
relationships on higher abstraction levels, i.e., a more global view. Classical lo-
cal search techniques on the natural variable domains concerning decisions for

individual stations may only fine-tune a solution but are hardly able to overcome
bad solutions in which larger regions need to be either supplied with new sta-
tions or where many stations need to be removed. We therefore have the strong
need of some technique that exploits also a higher-level view, deciding for larger
areas about the supply of stations in principle. Multilevel refinement strategies
can provide this point-of-view.

In multilevel refinement strategies [11] the whole problem is iteratively coars-
ened (aggregated) until a certain problem size is reached that can be reasonably
handled by some exact or heuristic optimization technique. After obtaining a so-
lution at this highest abstraction level, the solution is iteratively extended to the
previous lower level problem instance and possibly refined by some local search,
until a solution to the original problem at the lowest level, i.e., the original prob-
lem instance, is obtained. For a general discussion and the generic framework we
refer to the work of Walshaw [10].

To apply multilevel refinement to BSSPP we essentially have to decide how
to realize the procedures for coarsening an instance for the next higher level,
solving a reasonably small instance, and extending a solution to a solution at
the next lower level. In the following, we denote all problem instance data at
level l by an additional superscript l. By Pl we generally refer to the problem at
level l of the MLR algorithm described here.

4.1 Coarsening

We have to derive the more abstract problem instance Pl+1 from a given instance
Pl. Naturally, we can exploit the already existing customer cell cluster hierar-
chy for the coarsening. Remember that all customer cells appear in the cluster
hierarchy always at the same level. We coarsen the problem by considering the
customer cells and the station cells separately.

Coarsening of customer cells. The main strategy for coarsening the customer
cells is to merge cells having the same parent cluster together with their parent.
This means V l+1 = Clhl−1 or simply V l+1 = Ch−l−1, i.e., each cluster node at
depth h − l − 1 corresponds to a customer cell at level l + 1 representing the
merged set of customer nodes contained in Ch−l−1. The hierarchical clustering
of Pl becomes Cl+1 = C0 ∪ . . . ∪ Ch−l. Remember that we already defined
the function super(p) to return the parent cluster of some node p, and therefore
super(pl) : Cl → Cl+1 also returns the cluster from Cl+1 in which cluster pl ∈ Cl
is merged into. The new demand graph Gt,l+1 = (Ct,l+1, At,l+1) consists of the
arc set At,l+1 =

⋃
(pl,ql)∈At,l(super(pl), super(ql)). This demand graph may again

contain self-loops, but it is still simple, i.e., multiple arcs from At,l may map to
the same single arc in At,l+1 and the respective demand values are merged.
Considering an arc (pl+1, ql+1) ∈ At,l+1, its associated demand is thus

dt,l+1

pl+1,ql+1 =
∑

(pl,ql)∈At,l|pl+1=super(pl),ql+1=super(ql)

dt,l
pl,ql

. (37)

Note that the conditions for a valid demand graph and valid demand values
stated in inequalities (1) and (2) will still hold when aggregating in this way,

since the total ingoing and outgoing demand at each cluster p ∈ Cl+1 (including
the demands from and to all existing subnodes) stays the same.

Coarsening of station cells. To coarsen the station cells we need to define a
hierarchical clustering for them as well. For simplicity we assume from now on
that S = V holds, i.e., there is a one-to-one correspondence of considered station
cells and customer cells. This also appears reasonable in a practical setting. We
can then apply the hierarchical clustering defined for the customer cells also to
the station cells. Maximum station capacities for aggregated stations sl+1 ∈ Sl+1

are naturally calculated by the sum of the respective maximum capacities of the
underlying station cells, i.e., zl+1

sl+1 =
∑
sl∈sub(sl+1) z

l
sl .

Coarsening of neighborhoods. A coarsened neighborhood mapping Sl+1(vl+1)
for each customer cell vl+1 ∈ V l+1 and respective attractiveness values avl+1,sl+1

for station cells sl+1 ∈ Sl+1(vl+1) are determined as follows. The neighborhood
mapping is retained as long as the attractiveness value in the coarsened problem
instance does not fall below a certain threshold λ ∈ (0, 1):

Sl+1(vl+1) =

sl+1 ∈
⋃

vl∈sub(vl+1)

super(Sl(vl)) | avl+1,sl+1 ≥ λ

 (38)

with the aggregated attractiveness values being

avl+1,sl+1 =

1 if vl+1 = sl+1∑
vl∈sub(vl+1)

∑
sl∈sub(sl+1)∩Sl(vl)

(
a
vl,sl

)
|sub(vl+1)|·|sub(sl+1)| if vl+1 6= sl+1.

(39)

4.2 Initialization

The initial problem becomes coarsened until we reach some level l where it can
be reasonably solved as it is then small enough. In our experiments with binary
clustering trees here we are stopping the coarsening when the clustering tree
has no more than 25 = 32 leaf nodes, or in other words, at a height of five.
For initializing the solution at the coarsest level we utilize a MIP model. In this
model, the objective stated in Section 3.2, the demand calculation for every time
period stated in Section 3.3, and the rebalancing LP model stated in Section 3.4
are put together. By solving this model we obtain an optimal solution for the
coarsest level, which forms the basis for proceeding with the next step of the
algorithm, the extension to derive step-by-step a more detailed solutions.

4.3 Extension

In the extension step we derive from a solution xl+1 at level l + 1 a solution xl

at level l, i.e., we have to decide for each aggregated station sl+1 ∈ Sl+1 with
xl+1
sl+1 > 0 slots how they should be realized by the respective underlying station

cells sub(sl+1) at level l. We do this in a way so that the globally fulfilled demand
is again maximized by solving the following MIP.

max
∑
t∈T

D(xl, t) (40)

s.t.
∑
sl∈Sl

(
bfix · xlsl + bvar · xlsl + breb ·Qxl(s

l)
)
≤ Btot

max (41)

∑
sl∈Sl

bfix · xsl ≤ B
fix
max (42)

∑
sl∈sub(sl+1)

xlsl ≤ x
l+1

sl+1 sl+1 ∈ Sl+1 (43)

xlsl ∈ {0, . . . , z
l
s} sl ∈ Sl (44)

The objective (40) maximizes the total satisfiable demand. Inequalities (41) re-
strict the maximum total budget whereas inequalities (42) restrict the maximum
fixed budget. Inequalities (43) are the bounds on the total number of slots for
the station nodes sl ∈ sub(sl+1). The number of parking slots in each cell xlsl is
restricted by the maximum number of parking slots allowed in this cell (44).

5 Computational Results

For our experiments we created seven different benchmark sets1, each one con-
taining 20 different, random instances. We consider instances with 200, 300, 500,
800, 1000, 1500, and 2000 customer cells, where each customer cell is also a pos-
sible location for a station to be built. Customer cells are aligned on a grid in the
plane and euclidean distances have been calculated based on which a hierarchi-
cal clustering with the complete-linkage method was computed. Demands among
the leaf nodes were chosen randomly, considering the pairwise distance between
customer cells, and demands below a certain threshold have been aggregated
upwards in the clustering tree such that the demand graphs get sparser. Only
cells within 200 meters walking distance are considered to be in the vicinity of
a customer cell and respective attractiveness values are chosen randomly but in
correlation with the distances. We set the maximum station size to zs = 40 for
all cells in all test cases. For slot costs we set bfix = 1750 e, and bvar = 1000 e,
which are reasonable estimates in the Vienna area gathered from real BSSs. The
costs for rebalancing a single bike for one day have been estimated with 3 e per
bike and per day. When projecting this cost to the optimization horizon, e.g.,
1 year, we get breb = 365 · 3 = 1095 e. For coarsening of attractiveness values,
we set the corresponding parameter λ = 0 and for adjusting the number of trips
which can be performed in a particular time period t ∈ T by using only a single
bike we set ω = 1.2. Each instance contains four time periods which we selected
as follows: 4:30am to 8:00am, 8:00am to 12:00 Noon, 12:00 Noon to 6:15pm,
and 6:15pm to 4:30am. The duration for each time period t ∈ T has been set
accordingly and the average trip duration has been set to trent = 10 minutes.

1 https://www.ac.tuwien.ac.at/files/resources/instances/bsspp/lion17.bz2

Table 1. Results for the multilevel refinement heuristic (MLR).

Instance MLR

name #runs Btot
max [e] Bfix

max [e] obj #coarsen t̃ime [s] totcost [e] fixcost [e]

BSSPP 200 20 200,000.00 130,000.00 9,651.98 3 46.2 198,000.00 126,000.00
BSSPP 300 20 350,000.00 250,000.00 10,951.79 5 60.8 349,250.00 222,250.00
BSSPP 500 20 500,000.00 350,000.00 16,057.78 6 121.6 497,750.00 316,750.00
BSSPP 800 20 850,000.00 550,000.00 28,862.21 6 263.9 849,750.00 540,750.00
BSSPP 1000 20 1,000,000.00 700,000.00 28,967.58 8 346.7 998,250.00 635,250.00
BSSPP 1500 20 1,500,000.00 1,000,000.00 41,208.19 8 574.5 1,498,475.00 953,575.00
BSSPP 2000 20 2,000,000.00 1,300,000.00 55,892.06 8 803.4 1,999,250.00 1,272,250.00

Average 27,370.22 6.3 912,960.71 580,975.00

All algorithms are implemented in C++ and have been compiled with gcc 4.8.
For solving the LPs and MIPs we used Gurobi 7.0. All experiments were executed
as single threads on an Intel Xeon E5540 2.53GHz Quad Core processor.

Table 1 summarizes obtained results. For every instance set we state the
name containing the number of nodes, the number of different instances we
have tested on (#runs), the maximum total budget (Btot

max), and the maximum
fixed budget (Bfix

max). For the proposed MLR, we list the average objective value
(obj), i.e., the expected fulfilled demand in terms of the number of journeys, the

average number of coarsening levels (#coarsen), the median time (t̃ime), and
the average total costs (totcost) as well as the average fixed costs (fixcost) for
building the number of slots in the solution. Most importantly, it can be seen
that the proposed MLR scales very well to large instances up to 2000 customer
cells.

6 Conclusion and Future Work

We presented an innovative approach to the BSSPP. Previous work only consid-
ers very small instances and case studies to small parts of a city whereas we aim
at solving more realistic large-scale scenarios arising in large cities. As we have
to cope with thousands of customer cells and potential station cells it is most
fundamental to model the potential demands efficiently. To this end, we pro-
posed to use a hierarchical clustering and defining the demand graph on it. This
approach can drastically reduce the data in comparison to a complete demand
matrix with only a very reasonable information loss. Moreover, we provided MIP
formulations to compute the satisfiable demand by given configurations and to
compute the prospective rebalancing costs. Putting them together under the ob-
jective of maximizing the expected satisfied total demand and adding further
constraints for complying with given monetary budget constraints, we obtained
a MIP model that solves our definition of the BSSPP exactly. Because this MIP
model can in practice still only be solved for rather small instances, we further
suggested a multilevel refinement heuristic utilizing the same hierarchical clus-
tering we are given as input. Using this approach we have shown to be able to
solve instances with up to 2000 nodes in reasonable computation times.

In future work it is important to make the cost model more realistic and to
test on more realistic benchmark instances. In particular, we aim at considering
also fixed costs for building a station which are independent of the number of
slots. Furthermore, in practice also only a small, restricted set of different station
configurations is possible per station cell. These extensions introduce interesting
research questions especially in relation to the multilevel refinement procedure.

Acknowledgements

We thank the LOGISTIKUM Steyr, the Austrian Institute of Technology, and
Rosinak & Partner for the collaboration on this topic. This work is supported
by the Austrian Research Promotion Agency (FFG) under contract 849028.

References

1. Chen, J., Chen, X., Jiang, H., Zhu, S., Li, X., Li, Z.: Determining the optimal
layout design for public bicycle system within the attractive scope of a metro
station. Math. Probl. Eng. 2015, 8 pages (2015), Article ID 456013

2. Chen, Q., Sun, T.: A model for the layout of bike stations in public bike-sharing
systems. J. Adv. Transport. 49(8), 884–900 (2015)

3. Frade, I., Ribeiro, A.: Bike-sharing stations: A maximal covering location approach.
Transport. Res. A-Pol. 82, 216–227 (2015)

4. Gavalas, D., Konstantopoulos, C., Pantziou, G.: Design & management of vehicle
sharing systems: A survey of algorithmic approaches. In: Obaidat, M.S., Nicopoli-
tidis, P. (eds.) Smart Cities and Homes: Key Enabling Technologies, chap. 13, pp.
261–289. Elsevier Science (2016)

5. Hu, S.R., Liu, C.T.: An optimal location model for a bicycle sharing program
with truck dispatching consideration. In: IEEE 17th International Conference on
Intelligent Transportation Systems (ITSC). pp. 1775–1780. IEEE (2014)

6. Lin, J.R., Yang, T.H.: Strategic design of public bicycle sharing systems with ser-
vice level constraints. Transport. Res. E-Log. 47(2), 284–294 (2011)

7. Lin, J.R., Yang, T.H., Chang, Y.C.: A hub location inventory model for bicycle
sharing system design: Formulation and solution. Comput. Ind. Eng. 65(1), 77–86
(2013)

8. Martinez, L.M., Caetano, L., Eiró, T., Cruz, F.: An optimisation algorithm to
establish the location of stations of a mixed fleet biking system: An application to
the city of Lisbon. Procedia Soc. Behav. Sci. 54, 513–524 (2012)

9. Saharidis, G., Fragkogios, A., Zygouri, E.: A multi-periodic optimization modeling
approach for the establishment of a bike sharing network: A case study of the city
of Athens. In: Proceedings of the International MultiConference of Engineers and
Computer Scientists 2014 Vol II. pp. 1226–1231. No. 2210 in LNECS, Newswood
Limited (2014)

10. Walshaw, C.: A multilevel approach to the travelling salesman problem. Oper. Res.
50(5), 862–877 (2002)

11. Walshaw, C.: Multilevel refinement for combinatorial optimisation problems. Ann.
Oper. Res. 131(1), 325–372 (2004)

12. Yang, T.H., Lin, J.R., Chang, Y.C.: Strategic design of public bicycle sharing
systems incorporating with bicycle stocks considerations. In: 40th International
Conference on Computers and Industrial Engineering (CIE). pp. 1–6. IEEE (2010)

