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Abstract. Operators of public bicycle sharing systems (BSSs) have to
regularly redistribute bikes across their stations in order to avoid them
getting overly full or empty. We consider the dynamic case where this is
done while the system is in use. There are two main objectives: On the
one hand it is desirable to reach particular target fill levels at the end
of the process so that the stations are likely to meet user demands for
the upcoming day(s). On the other hand operators also want to prevent
stations from running empty or full during the rebalancing process which
would lead to unsatisfied customers. We extend our previous work on the
static variant of the problem by introducing an efficient way to model
the dynamic case as well as adapting our previous greedy and PILOT
construction heuristic, variable neighborhood search and GRASP. Com-
putational experiments are performed on instances based on real-world
data from Citybike Wien, a BSS operator in Vienna, where the model
for user demands is derived from historical data.

1 Introduction

Bicycle Sharing Systems (BSSs) are evolving in large cities all over the world.
They offer various advantages regarding urban development, attractiveness for
citizens, reduce individual motorized traffic and complement public transport.
Furthermore, BSSs also contribute to public health by encouraging people to
do sports [1]. A BSS consists of multiple bike stations distributed over various
strategically favorable positions in the city. A registered user is allowed to rent
a bike at a station and return it later at another station. Due to miscellaneous
factors such as altitude of stations, demographic characteristics, or nearby public
transport stops, some stations tend to run empty whereas others tend to get full.
In case of an empty station, customers are not able to rent bikes while in case
of a full station, customers cannot return their bikes. Therefore, BSS operators
need to redistribute bikes among stations on a regular basis to avoid or at least
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minimize customer dissatisfaction. Usually this task is done by a vehicle fleet
that picks up bikes from stations with excesses of bikes and delivers them to
stations with deficits.

When trying to approach our definition of Balancing Bicycle Sharing Sys-
tem (BBSS) problem, the goal is to find a route for every vehicle with corre-
sponding loading instructions, respectively, so that the system is brought to a
balanced state and is able to fulfill user demands as much as possible. So far,
almost all of our recent work considered only the static variant where it is as-
sumed that the rebalancing process is done while the system is not in use [2–5].
This is a useful approach for BSSs which, e.g., do not operate overnight, and is
also practical for strategic planning to reach desired fill levels in the long term
as it depicts a simplification to the problem. In this work we extend our previous
algorithms for the static case towards the dynamic scenario where we take user
demands over time into account, and try to reduce unfulfilled demands during
the rebalancing process as well as reaching target fill levels for stations at the
end. We propose an efficient way to model and simulate these dynamics as well
as adapt a greedy and PILOT construction heuristic, Variable Neighborhood
Search (VNS) and GRASP accordingly.

2 Related Work

BBSS can be regarded as a special variant of the capacitated single commodity
split pickup and delivery vehicle routing problem. Particular features are that
we allow multiple visits of stations, consider heterogeneous vehicles, and the
possibility of loading or unloading an arbitrary number of bikes.

Most related approaches address the static variant of BBSS and apply Mixed
Integer Programming (MIP) techniques. A direct comparison of existing works
is difficult as most of them consider different problem characteristics. Chemla
et al. [6] propose a branch-and-cut algorithm on a relaxed MIP model in conjunc-
tion with a tabu search for obtaining upper bounds. However, they assume only
a single vehicle and reaching the target fill levels as a hard constraint. Benchi-
mol et al. [7] also consider a single vehicle and balance as a hard constraint and
propose approximation algorithms. Raviv et al. [8] use MIP approaches with
a convex penalty objective function to minimize user dissatisfaction and tour
lengths for multiple vehicles. However, they ignore the number of loading opera-
tions. In our recent works we developed several metaheuristic approaches which
scale well for large instances [3–5]. In particular, we introduced a Greedy Con-
struction Heuristic (GCH) and a VNS approach in [3], a PILOT construction
heuristic and GRASP in [5]. Different strategies for finding meaningful loading
instructions for candidate routes including optimal ones were studied in [2]. In [4]
we refined our concepts and provided more extensive computational analysis.
Di Gaspero et al. [9, 10] investigate Constraint Programming (CP) approaches
in conjunction with ant colony optimization, a smart branching strategy, and
large neighborhood search. They test on the same BBSS variant as we do, but
could not outperform our VNS approach from [3].
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Concerning the dynamic BBSS scenario, there exist only few MIP approaches
so far. Contardo et al. [11] present an approach utilizing Dantzig-Wolfe and
Benders decomposition. They obtain upper and lower bounds for instances with
up to 100 stations, but face significant gaps. Unlike our problem definition, they
focus exclusively on fulfilling user demands but do not consider target fill levels.
Schuijbroek et al. [12] apply a clustering-first route-second strategy. A clustered
MIP heuristic, or alternatively, a CP approach handle the routing problems. In
contrast to our work they define intervals for fulfilling user demands. These are
considered as hard constraints whereas we try to minimize as many unfulfilled
demands as possible. Additionally, they do not consider target fill levels. Chemla
et al. [13] present a theoretical framework to estimate the vehicles’ impacts on
the system and propose heuristic approaches for a single vehicle. Besides, they
suggest a pricing strategy to encourage users to return bikes at stations which
tend to run empty soon. Pfrommer et al. [14] investigate a heuristic for planning
tours with multiple vehicles and also suggest a dynamic pricing strategy. They
periodically recompute truck tours and dynamic prices while the system is active
and test with a simulation based on historic data.

Other related works examine strategic planning aspects of BSSs such as lo-
cation and network design [15, 16] or system characteristics and usage patterns
[17]. However, these aspects are not within the scope of this work.

3 Problem Definition

We consider the dynamic scenario of BBSS, referred to as DBBSS, where rebal-
ancing is done while we simulate system usage by considering expected cumu-
lated user demands. In addition to the input data for the static problem variant
we particularly consider expected user demands from a prediction model.

For the BSS infrastructure we are given a complete directed graph G = (V ∪
{0}, A) where node set V represents rental stations, node 0 the vehicles’ depot,
and arc set A the fastest connection between all nodes. Each arc (u, v) ∈ A is
assigned a weight corresponding to the travel time tu,v > 0 (including average
times for loading and unloading actions). Each station v ∈ V has a capacity
Cv ≥ 0 denoting the total number of bike slots. The initial fill level pv is the
number of available bikes at the beginning of the rebalancing while the target
fill level qv states the desired number of bikes at the end of the rebalancing. For
the rebalancing procedure we are given a fleet of vehicles L = {1, . . . , |L|} where
each vehicle l ∈ L has a capacity Zl > 0. Finally, let t̂max be the time budget
within a vehicle has to finish its route which starts and ends at the depot 0.

Regarding user demands over time we assume the expected cumulated demand
μv(t) ∈ R occurring at each station v ∈ V from the beginning of the rebalancing
process until time t, 0 ≤ t ≤ t̂max to be given as an essentially arbitrary function.
The cumulated demand is calculated by subtracting the expected number of
bikes to be returned from the expected number of bikes to be rent over the
respective time period. An example of a demand function is shown in Figure 1.
Note that we display pv −μv(t) as the dash-dotted line in order to highlight the
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Fig. 1. Example of a demand function and two pickup events

area where unfulfilled demands occur. Thus, a positive slope of μv(t) indicates
that more users are expected to rent bikes than to return them in the time period
t, and vice versa. Demands are always fulfilled immediately as far as possible,
i.e., bikes or parking slots are available. Unfulfilled demands cannot be fulfilled
later and are penalized in the objective function. Let δ̂unf,−v denote the total
amount of unfulfilled bike demands for station v ∈ V , i.e., the number of users
who want to rent a bike but are not able to at the desired station. Analogously,
let δ̂unf,+v refer to the total number of unfulfilled slot demands, i.e., the amount
of users who cannot return bikes as the station is already full.

A solution to DBBSS consists of a route for every vehicle and corresponding
loading instructions for every stop at a station. A route of length ρl is defined as
an ordered, arbitrarily long sequence of stations rl = (r1l , . . . , r

ρl

l ), ril ∈ V where
the depot is assumed to be implicitly added as start and end node. The loading
instruction for vehicle l ∈ L during the i-th stop at station v ∈ V is denoted
as yil,v. Positive values for yil,v denote the corresponding number of bikes to be
picked up, negative values denote deliveries. Feasible solutions must fulfill the
following conditions. For any station, its fill level (i.e., the number of currently
available bikes) must always lie between 0 and its capacity Cv. For any vehicle
l ∈ L the load may never exceed its capacity, i.e., bl ≤ Zl. Moreover, a solution is
only feasible, if and only if no route’s total travel time, denoted by tl, exceeds the
time budget, and additionally, every vehicle must return empty to the depot 0.

The goal is to find a route for each vehicle with corresponding loading instruc-
tions such that the following objective function is minimized:

f(r, y) = ωunf
∑

v∈V

(δ̂unf,−v + δ̂unf,+v ) + ωbal
∑

v∈V

|qv − pv|

+ ωload
∑

l∈L

ρl∑

i=1

|yi
l,ri

l
|+ ωtime

∑

l∈L

tl (1)

Parameters ωunf , ωbal, ωload, and ωtime ≥ 0 are used for controlling the rela-
tive importance of the corresponding term in the objective function. The most
important goal is to minimize unfulfilled demands as well as to minimize the
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deviation from the target fill levels. Secondarily, we also want to keep the total
number of loading instructions and the total driving time as small as possible,
however, those aspects are considered to be clearly less important.

4 Modeling the Dynamic Scenario

In this section we show how DBBSS can be modeled by calculating dynamic
behavior of the system, i.e., considering the user demands, so that it can be
approached by metaheuristics.

4.1 Segments and Events

One of our major aims is to avoid a time discretization of the demand functions
and corresponding fill level calculations as this would introduce errors and is also
time consuming if done in an appropriate resolution. Alternatively, we follow the
approach of splitting each cumulated demand function into weakly monotonic
segments instead of iterating through all discrete time points. Along with the
practically reasonable assumption that the number of segments per station is
relatively small, such an approach is much more efficient.

For this purpose, we split function μv(t) into monotonically weakly increasing
or decreasing segments. Let t0 = (t00, . . . , t

ρ0

0 ) with t00 = 0 be an ordered sequence

of ρ0 extreme values of μv(t) so that μv(t) is weakly monotonic for t ∈ [ti−1
0 , ti0],∀i = 1, . . . , ρ0, see Figure 1. Time ti0, i = 1, . . . , ρ0, refers to the end of the i-th

weakly monotonic segment. In general, let til , ∀l ∈ L, i = 0, . . . , ρl, be the time
when vehicle l performs its i-th stop, i.e.,

til =

⎧
⎪⎪⎨

⎪⎪⎩

0 for i = 0

tsl,r1l
for i = 1 if ρl ≥ 1

ti−1
l + t

ri−1
l

,ri
l

for i = 2, . . . , ρl if ρl ≥ 2.

(2)

For each station v ∈ V we define a data structure which denotes the series of
events Wv = 〈(l1, i1), . . . , (l|Wv|, i|Wv |)〉. Each event (lj , ij), j = 1, . . . , |Wv| with
lj ∈ {0} ∪ L and ij ∈ {1, . . . , ρlj} either refers to a station-visit event, in which
case lj ∈ L indicates the corresponding vehicle and ij the number of its stop,
or an end-of-segment event, in which case lj = 0 and ij denotes the respective

segment of μv(t). Following the above definitions, the time of event (lj , ij) is t
ij
lj
,

and all events in Wv are ordered according to increasing times. Multiple events
occurring at the same time are ordered arbitrarily, except that an end-of-segment
event always appears last.

4.2 Expected Number of Bikes at Stations

For each station and event we need to derive a fill level considering the cumulated
user demand as well as all performed loading or unloading instructions occurred
up to this event.



78 C. Kloimüllner et al.

Let av,j ∈ [0, Cv] denote the expected number of bikes at station v ∈ V and
event j = 1, . . . , |Wv| by considering all expected demands fulfilled as far as
possible and all pickups and deliveries performed up to and including event j.
Note that, as the cumulated user demand is only a forecast model based on
historical data, the fill level of every event may also be fractional. Formally, av,j
is calculated as follows:

av,j =

{
pv for j = 0

max(min(av,j−1 − (μv(t
ij
lj
) − μv(t

ij−1
lj−1

)), Cv), 0) − y
ij
lj

for j = 1, . . . , |Wv|. (3)

End-of-segment events are considered for the correct computation of unfulfill-
able demands. For the ease of notation, the above formula considers them in the
same way as vehicle-visit events. Since no bikes are delivered or picked up by
these events, we define the loading instructions to be yi0 = 0, for i = 1, . . . , ρ0.

With respect to unfulfilled demands, we distinguish between unfulfilled bike

demands δ̂unf,−v and unfulfilled slot demands δ̂unf,+v for each station v ∈ V .
They occur whenever the expected cumulated demand μv(t) over time horizon
t ∈ [0, t̂max] cannot be satisfied, i.e., when μv(t) < 0 ∧ av(t) = 0 or μv(t) > 0 ∧
av(t) = Cv, respectively. Unfulfilled demands occurring at station v between
events j − 1 and j, j = 1, . . . , |Wv|, can formally be described as

δunf,−v,j = max(μv(t
ij
lj
)− μv(t

ij−1

lj−1
)− av,j−1 + y

ij
lj
, 0) (4)

δunf,+v,j = max(−(μv(t
ij
lj
)− μv(t

ij−1

lj−1
))− (Cv − av,j−1)− y

ij
lj
, 0), (5)

and consequently the overall unfulfilled demands are

δ̂unf,−v =

|Wv |∑

j=1

δunf,−v,j , and δ̂unf,+v =

|Wv |∑

j=1

δunf,+v,j . (6)

4.3 Classification of Stations

We assume that the stations are well-designed in a sense that their capacities
are sufficiently large for daily fluctuations, i.e., it will not be necessary to pick
up and deliver bikes to the same station at different times on a single day in
order to fulfill all demands. Furthermore, we have shown in previous work [3]
that the monotonicity restriction (i.e., it is allowed to either only pick up or
deliver bikes at a station) has in practice only a neglectably small impact on
the solution quality but substantially simplifies the problem. Additionally, our
project partner Citybike Wien mentioned that they only perform either pickups
or deliveries at a particular station on the same day. Therefore, we again classify
the stations into pickup stations Vpic ⊆ V and delivery stations Vdel ⊆ V and
impose monotonicity, i.e., allow only the respective operations.

In the static case this classification is done by considering the total deviation
in balance for a particular station, i.e., pv − qv ∀v ∈ V . If this value is less
than 0, then the corresponding station refers to the set of delivery stations, and
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otherwise it is classified as a pickup station. However, in the dynamic case we
have to consider user demands during the rebalancing process along with the
scaling factors in the objective function (1).

Thus, we consider the situation when no rebalancing is done at all. Based on
equation (6) and objective function (1) we determine for each station v ∈ V the
total penalty for slot deficit and bike deficit:

δmissing
v = ωunf δ̂unf,+ + ωbal min(0, av,|Wv | − qv)−

ωunf δ̂unf,− − ωbal min(0, qv − av,|Wv|).
(7)

If δmissing
v < 0, v is a delivery station. If δmissing

v > 0, v is a pickup station.
Otherwise, if δmissing

v = 0, the station is already balanced, and thus, will not be
considered anymore.

4.4 Restrictions on Loading Instructions

For every stop of a vehicle, we need to calculate how many bikes the vehicle
is allowed to pick up or deliver at most so that the capacity constraints are
never violated and unnecessary unfulfilled demands are never introduced. These
bounds are then utilized to set loading instructions for the corresponding vehicle
stops later during the optimization process. Formally, we define slacks Δy−

v ,j and

Δy+
v ,j as the maximum amount of bikes which may be delivered/picked up at

station v and event j = 1, . . . , |Wv|.

Δy−
v,j =

{
max(0, qv − av,|Wv |) for j = |Wv|
min(Cv − av,j ,Δyv,y+1 + δunf,−v,j+1) for j = 1, . . . , |Wv| − 1

(8)

Δy+
v,j =

{
max(0, av,|Wv| − qv) for j = |Wv|
min(av,j ,Δyv,j+1 + δunf,+v,j+1) for j = 1, . . . , |Wv| − 1.

(9)

Note, that we have to iterate backwards by starting with the last event until we
reach the time when the currently considered vehicle stop occurs.

By definition, let Δyunf,+v,j and Δyunf,−v,j denote the slack without including the
last event, i.e., starting with event j = |Wv| − 1. These two terms are used by
the construction heuristic in the next section.

5 Greedy Construction Heuristic

We extend the Greedy Construction Heuristic (GCH) from our previous work [3]
to fit the dynamic case. A vehicle tour is built by iteratively appending stations
from a set of feasible successors F ⊆ V . This set includes each station which can
be improved and is reachable within the vehicles time budget. An improvement
may be achieved if δmissing

v > 0, ∀v ∈ Vpic, or δmissing
v < 0, ∀v ∈ Vdel. Then,

for each station v ∈ F we compute the total number of bikes that can either be
picked up from or delivered to this station:

γv =

{
min(Δy−

v,j , Zl − bl) for v ∈ F ∩ Vpic,

min(Δy+
v,j , bl) for v ∈ F ∩ Vdel.

(10)
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Note that bl denotes the number of bikes currently stored in vehicle l. As shown
in (10), we need the slacks for determining possible loading instructions as they
are calculated by equation (8). In order to guarantee that vehicles return empty
to the depot, we correct the load for pickup stations by estimating the amount of
bikes that can be delivered afterwards in the same fashion as in [3] by recursively
looking forward.

It is necessary to consider impacts of loading instructions on a station with
respect to target fill level and unfulfilled demands separately and weight them
with ωbal and ωunf in the same way as it is done in the objective function (1).
We obtain

g(v) =

⎧
⎨

⎩

ωbal·min(γv ,max(0,av,|Wv |−qv))+ωunf ·min(γv ,Δy
unf,+
v,j )

tu,v
∀v ∈ Vpic,

ωbal·min(γv ,max(0,qv−av,|Wv |))+ωunf ·min(γv ,Δy
unf,−
v,j )

tu,v
∀v ∈ Vdel,

(11)

where tu,v is the travel time from the vehicle’s last stop u to station v. In each
greedy iteration the station with the highest g(v) is appended to the currently
considered vehicle tour. Loading instructions are set as follows:

yv,j = γv if v ∈ Vpic, and yv,j = −γv if v ∈ Vdel (12)

Since in the dynamic case timing is important, we additionally introduce a
term which we refer to as urgency. It states how urgent it is to visit stations with
future unfulfilled demands. We propose two methods to compute this value.

Additive Urgency: For a station v we consider the time of the next period where
unfulfilled demands occur. If the vehicle cannot reach the station until the first
period starts, we consider the next period, and so on. In case a station has no
periods of unfulfilled demands at all or none of them are reachable in time, it is
ignored. Moreover, we introduce an additional scaling factor ωurg which denotes
the importance of urgency. Formally,

uadd =

{
0 if tunfv < tu,v

ωurg · δunf
tunfv

if tunfv ≥ tu,v
(13)

where tunfv is the time left up to the start of the next unfulfilled demand for
station v ∈ V and tu,v is the travel time to the considered station which, by
definition, has to be greater than 0. The greedy value including the urgency of
the visit g′(v) is then calculated as g′(v) = g(v) + uadd.

Multiplicative Urgency: In the multiplicative approach we multiply the basic
g(v) from (11) by an exponential function. Again, we consider the time until the
next unfulfilled demand, analogously as for the additive approach. The term is
computed as

umul = exp(−max(0, tunfv − tu,v) · ωurg). (14)

The greedy value criterion is then extended to g′(v) = g(v) · umul.
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PILOT Construction Heuristic: Due to the nature of greedy algorithms,
shortsighted decisions cannot be completely avoided no matter how we choose the
greedy evaluation criterion. Therefore, we use the PILOT method [18] to address
this drawback. The functionality remains the same as in [5] which extends GCH
by evaluating each potential successor in a deeper way by constructing a complete
temporary route from it, and finally considering its objective value as g(v).

6 Metaheuristic Approaches

In order to further improve the results obtained by the construction heuristics,
we apply Greedy Randomized Adaptive Search (GRASP) and Variable Neigh-
borhood Search (VNS). For both metaheuristic approaches we use an incom-
plete solution representation based on storing for each vehicle l ∈ L its route
rl = (r1l , . . . , r

ρl

l ) only. The loading instructions yil,v, l ∈ L, v ∈ V, i = 1, . . . , ρl
are efficiently calculated during evaluation by applying the same greedy strategy
as in GCH, see Section 5, utilizing the restriction procedure from Section 4.4 to
obtain bounds on the y-variables and accelerate the calculations.

Variable Neighborhood Search: The VNS approach from [3] is adapted with
respect to the procedure for deriving loading instructions. The general layout
and neighborhood structures remain the same. We use remove-station, insert-
unbalanced-station, intra-route-2-opt, replace-station, intra-or-opt, 2-opt*-inter-
route-exchange and intra-route 3-opt neighborhood structures for local improve-
ment within an embedded Variable Neighborhood Descent (VND), while for
shaking we apply move-sequence, exchange-sequence, destroy-&-recreate, and
remove-stations operations.

Greedy Randomized Adaptive Search: We also consider GRASP by ex-
tending the construction heuristics in the same way as in our previous work [5]
with adaptations for the dynamic problem variant. The idea is to iteratively ap-
ply GCH or PILOT from Section 5 and locally improve each solution with VND.
While there we always select the best successor, we use for GRASP a restricted
candidate list with respect to the greedy evaluation criterion. The degree of ran-
domization is controlled by a parameter α ∈ [0, 1]. In the dynamic case we used
the same values which turned out to work best in the static case.

7 Computational Results

We performed comprehensive tests for our DBBSS approaches. Generating new
benchmark instances was necessary in order to introduce the user demand val-
ues. They are based on the same set of Vienna’s real Citybike stations we used in
our previous works [2–5]. Cumulated user demands for the stations are piecewise
linear functions derived from historical data based on an hourly discretization.
The instances we use in this paper contain 30 to 90 stations with different num-
bers of vehicles and different time budgets and are available at1. As the BSS in

1 https://www.ads.tuwien.ac.at/w/Research/Problem_Instances#bbss

https://www.ads.tuwien.ac.at/w/Research/Problem_Instances#bbss
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Table 1. Results of GCH, PILOT, and the variants with VND

Inst. set GCH PILOT GCH-VND PILOT-VND

|V | |L| t̂max #best obj sd t̃tot [s] #best obj sd t̃tot [s] #best obj sd t̃tot [s] #best obj sd t̃tot [s]

30 1 8h 0 54.06 12.50 < 0.1 0 50.98 11.19 0.1 18 50.61 11.56 0.4 13 49.97 10.95 0.4

30 2 4h 0 59.79 15.65 < 0.1 1 55.47 13.78 < 0.1 9 55.87 13.58 0.2 22 54.89 13.44 0.1

60 1 8h 0 186.49 28.14 < 0.1 1 180.59 28.81 0.5 8 180.20 28.72 0.5 23 178.85 29.29 0.9

60 2 4h 0 202.69 31.82 < 0.1 0 191.06 29.98 0.2 9 193.32 30.06 0.4 21 189.69 29.81 0.4

60 2 8h 0 104.49 12.77 < 0.1 0 98.64 11.03 0.9 12 98.00 12.05 2.4 18 96.74 10.80 3.2

60 4 4h 0 118.76 17.38 < 0.1 0 106.98 13.53 0.4 4 108.96 13.34 1.8 26 105.36 13.41 1.3

90 1 8h 0 354.83 34.79 < 0.1 0 346.73 33.49 1.1 6 348.20 34.74 0.7 24 344.99 33.45 1.5

90 2 4h 0 371.13 34.55 < 0.1 0 360.49 36.06 0.5 5 362.74 35.53 0.5 25 358.21 35.09 0.9

90 2 8h 0 232.86 27.07 < 0.1 0 221.02 24.24 2.1 3 223.16 24.71 2.6 27 218.57 23.86 4.1

90 3 8h 0 155.26 19.27 < 0.1 0 144.35 16.80 2.8 6 144.43 17.94 8.6 24 141.25 16.26 6.9

90 4 4h 0 254.25 27.51 < 0.1 0 239.70 27.86 1.0 7 242.91 27.90 2.1 23 237.47 27.63 2.2

90 5 4h 0 210.12 24.26 < 0.1 0 194.03 24.55 1.2 7 195.75 24.38 4.2 23 191.72 23.96 3.3

Total 0 2304.73 285.72 < 0.1 2 2190.04 271.31 10.8 94 2204.15 274.48 24.4 269 2167.71 267.95 25.2

Table 2. Results of static VNS, dynamic VNS, and PILOT-GRASP

Inst. set SVNS DVNS PILOT-GRASP

|V | |L| t̂max #best obj sd #best obj sd #best obj sd

30 1 8h 4 54.90 10.93 20 47.36 10.51 9 47.54 10.57

30 2 4h 4 58.68 13.08 19 50.84 11.50 11 50.84 11.35

60 1 8h 0 197.25 30.01 29 172.30 27.13 4 172.84 26.96

60 2 4h 0 207.09 30.37 22 182.12 29.28 10 183.09 29.13

60 2 8h 0 114.64 12.75 26 91.80 10.63 4 92.30 10.40

60 4 4h 0 126.42 15.11 23 99.24 11.39 7 99.85 11.54

90 1 8h 0 368.18 37.47 19 337.92 32.74 11 338.49 32.23

90 2 4h 0 380.50 38.80 19 349.98 33.97 11 351.05 34.74

90 2 8h 0 242.60 26.09 11 210.62 23.79 19 210.19 23.03

90 3 8h 0 168.99 16.31 11 135.97 15.10 19 135.40 15.06

90 4 4h 0 262.41 30.41 17 225.94 25.77 13 226.39 26.19

90 5 4h 0 216.53 23.76 18 182.03 21.82 12 182.20 22.21

Total 8 2398.19 285.10 234 2086.11 253.63 130 2090.16 253.38

Vienna currently consists of 111 stations and 1300 bicycles the instances used
inhere are realistic and praxis-relevant. For each parameter combination exists
a set of 30 independent instances. All our algorithms are implemented in C++

using GCC 4.6. Each test run was performed on a single core of an Intel Xeon
E5540 machine with 2.53GHz. The scaling factors of the objective function are
set to ωunf = ωbal = 1, ωload = ωtime = 1

100 000 , i.e., an improvement with re-
spect to balance and/or unfulfilled demands is always preferred over reducing
the tour length and/or the number of loading instructions. For the greedy eval-
uation criterion we use multiplicative urgency. We omit a detailed comparison
since the difference between these strategies becomes more significant only on
larger instances with hundreds of stations.

In Table 1 we compare different methods for quickly obtaining good starting
solutions, namely GCH, PILOT, GCH with VND, and PILOT with VND. The
columns show the instance characteristics, and for each algorithm the number
of times the corresponding approach yields the best result (#best), the average
objective values (obj), the standard deviations (sd), and the average CPU-times
˜ttot. The differences of the average objective values are frequently relatively small
due to the weight factors ωload and ωtime, but they are still crucial for evaluating
the quality of solutions. Therefore, the #best numbers give us a better indication
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of which algorithm variants perform best. We observe that PILOT outperforms
GCH on every instance while the additional time is only moderate. This trend
continues when we add VND to further improve the solutions. Not only does
PILOT-VND outperform GCH-VND, but it also requires less time. This is due
to the superior starting solutions, so VND terminates after fewer iterations.

In Table 2 we test our metaheuristic approaches and additionally compare
them to the VNS for the static case from [3], denoted by SVNS. For a reasonable
comparison, SVNS initially converts a DBBSS instance into a static one by
adding for each station the final cumulative user demand to the respective target
value; negative values and values exceeding the station capacity Cv are replaced
by zero and Cv, respectively. The idea is to neglect the timing aspects of station
visits and check if this static VNS is able to find reasonable solutions also for
the dynamic case. To assure always obtaining feasible solutions to DBBSS in
the end, loading instructions for the finally best static solution are recalculated
by the new greedy strategy of the dynamic case. We observe that GCH from
Table 1 already performs a little bit better than the SVNS. DVNS and GRASP
are able to compute results that are more than 10% better than those of SVNS.
Therefore, we conclude that although it is possible to apply algorithms for the
static case to the dynamic scenario, dedicated dynamic approaches taking time-
dependent user demands into account are clearly superior. Among the dynamic
approaches DVNS performs best on most of the considered instances. According
to a Wilcoxon signed-rank test, all observed differences on the overall number of
best solutions among any pair of compared approaches are statistically significant
with an error level of less than 1%.

8 Conclusions and Future Work

In this work we showed how to extend the metaheuristics developed in our pre-
vious work for static BBSS to the significantly more complex dynamic variant.
Starting from a model which can handle essentially arbitrary time-dependent ex-
pected user demand functions, we proposed an efficient way to calculate loading
instructions for vehicle tours. We use an objective function where the weights of
unfulfilled user demands and target fill levels can be adjusted in an easy way.
Practically, this has a high relevance for the BSS operator. We also extended
our previously introduced construction heuristics, VNS and GRASP, so that dy-
namic user demands are considered appropriately. Tests on practically realistic
instances show that the dynamic approaches indeed make sense. Depending on
the available time for optimization, greedy or PILOT construction heuristics are
useful for fast runs, while VNS is most powerful for longer runs.

In future work it would be particularly interesting to also consider the im-
pact of demand shifts among stations when their neighbors become either full
or empty. Especially, when users want to return bikes and an intended target
station is full, this demand obviously will not diminish but be shifted to some
neighboring station(s). Considering this aspect might lead to an even more pre-
cise model, but also increases the model’s complexity significantly.
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