
Visualisation and Graphical
Editing of Answer Sets:

The Kara System

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Christian Kloimüllner
Matrikelnummer 0628060

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Ao.Univ.Prof. Mag.rer.nat. Dr.techn. Hans Tompits
Mitwirkung: Projektass. Dipl.-Ing. Jörg Pührer

Wien, 14.05.2012
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Christian Kloimüllner
Mariazellerstraße 18, 3100 St. Pölten

Hiermit erkläre ich, dass ich diese Arbeit selbstständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
- einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

ii

Deutsche Zusammenfassung

Diese Diplomarbeit beschäftigt sich mit der Visualisierung von Answer Sets für logische Pro-
gramme. Answer-Set Programmierung ist ein deklaratives Programmierparadigma aus dem Be-
reich der logikbasierten künstlichen Intelligenz. Obwohl es in der universitären Forschung eine
etablierte Methode darstellt, fehlen noch Entwicklungswerkzeuge, die es als Problemlösungs-
technik effizienter einsetzbar machen.

Die bereits existierenden Solver berechnen die Answer Sets für ein Answer-Set Programm
und geben diese Answer Sets in Form einer Textausgabe am Bildschirm des Programmierers
aus. Bei steigender Komplexität der Programme wird meistens auch die Ausgabe der Answer
Sets am Bildschirm größer und füllt in der Praxis oftmals mehr als den ganzen Bildschirm aus.
Diese Ausgabe ist für den Programmierer selbst nur mehr sehr schwer oder gar nicht mehr
überschaubar.

In dieser Arbeit wird auf dieses Problem eingegangen und ein Problemlösungsansatz durch
eine bestimmte Visualisierungstechnik erarbeitet, der in dem Tool Kara implementiert wird.
Das Tool verfolgt die Idee, dass der Benutzer durch das Verfassen eines Visualisierungspro-
gramms festlegen kann wie ein Answer Set grafisch dargestellt werden soll. Daraus folgt, dass
durch die Kombination eines Answer Sets mit dem passenden Visualisierungsprogramm die gra-
fische Darstellung des Answer Sets festgelegt wird, welche einfacher zu interpretieren ist als die
direkte Textdarstellung des Solvers.

Dadurch ist es nötig, eine Visualisierungssprache festzulegen mit der der Benutzer die Mög-
lichkeit hat seine erhaltenen Answer Sets grafisch darzustellen. Diese Sprache besteht aus vorde-
finierten, in dieser Diplomarbeit festgelegten Prädikaten, die für Kara eine spezielle Bedeutung
haben. Dadurch wird es ermöglicht, dass der Benutzer auf einfache Weise geometrische Formen
spezifizieren kann. Das Ergebnis der Kombination eines gegebenen Answer Sets und eines Vi-
sualisierungsprogramms ergibt wiederum ein Answer Set, das intern weiterverarbeitet werden
kann.

Desweiteren bietet Kara auch die Möglichkeit für den Benutzer die Visualisierung grafisch
zu bearbeiten. Dadurch können neue Mengen entstehen, die nicht mehr notwendigerweise Ans-
wer Sets des gegebenen Answers-Set Programms darstellen. Dies soll einerseits die Fehlersuche
für den Benutzer erleichtern und andererseits auch die Möglichkeit bieten, durch das Generieren
neuer Answer Sets Testdaten zu erstellen.

Da es es sich nach dem grafischen Bearbeiten der Answer Sets nicht mehr um Answer Sets
des ursprünglichen Answer-Set Programms handelt, wird dem Benutzer desweiteren die Mög-
lichkeit geboten, die bearbeitete grafische Darstellung auf ein entsprechendes Answer Set des
ursprünglichen Answer-Set Programms rückzurechnen. Dies wird im Zuge der Diplomarbeit auf
ein Abduktionsproblem zurückgeführt, wodurch ein Abduktionsprogramm erstellt wird, welches
wiederum durch einen Solver ausgeführt werden kann und ein Answer Set in der ursprünglichen
Kodierung liefert.

Die Arbeit ist wie folgt gegliedert. In Kapitel 1 wird ein allgemeiner Überblick über Answer-
Set Programmierung gegeben sowie die Problematik der Visualisierung von Answer Sets behan-
delt. Desweiteren werden bereits bestehende Lösungen und Werkzeuge besprochen die auf diese
Visualisierungsproblematik eingehen.

iii

Danach wird in Kapitel 2 der formale Hintergrund über Answer-Set Programmierung be-
schrieben, welcher für die anschließenden Teile der Diplomarbeit notwendig ist. Es werden so-
wohl syntaktische als auch semantische Aspekte behandelt und Konventionen eingeführt die in
dieser Arbeit verwendet werden.

Das darauffolgende Kapitel 3 beschäftigt sich mit der Implementierungssicht des im Zuge
dieser Diplomarbeit entwickelten Visualisierungs-Werkzeugs Kara. Es werden die einzelnen
Module vorgestellt sowie diverse implementierte Algorithmen beschrieben und das System so-
wie die Technologien als ganzes vorgestellt.

Das Kapitel 4 beschäftigt sich mit der Benutzersicht von Kara. Es wird der Ablauf dar-
gestellt um Visualisierungen zu erstellen, diese zu bearbeiten und abschließend auch auf die
ausgehende Kodierung rückzurechnen. Im Speziellen wird auch die Sprache genau beschrieben,
welche durch die einzelnen Prädikate spezifiziert ist.

Kapitel 5 dient dazu, mehrere Beispiele verschiedener Visualisierungen anzugeben und diese
zu beschreiben. Es wird darauf geachtet die meisten definierten Prädikate abzudecken um so
deren Verwendung in diversen Visualisierungen praktisch darzustellen.

Kapitel 6 behandelt die bisherigen Visualisierungsansätze in der Literatur. Es werden nicht
nur Visualisierungsansätze bezogen auf die Answer-Set Programmierung beschrieben, sondern
auch solche für andere Formalismen. Bei eng verwandten Visualisierungsansätzen wird ein ge-
nauer Vergleich gegeben und auch ein Beispiel der Visualisierungsprogramme von Kara mit
dem der anderen Werkzeuge verglichen.

Abschließend wird in Kapitel 7 noch eine Zusammenfassung der Diplomarbeit gegeben und
mögliche Erweiterungen für zukünftige Arbeit diskutiert.

Das System Kara sowie dessen Verwendung und theoretischer Hintergrund wurden auf dem
25th Workshop on Logic Programming (WLP 2011) in Wien, präsentiert [1]. Diese Arbeit wurde
durch Mittel des Fonds zur Förderung der wissenschaftlichen Forschung (FWF) unter Projekt
Nr. P21698 unterstützt.

iv

Preface

This thesis deals with the visualisation of answer sets, which are the output of answer-set pro-
grams. Answer-set programming (ASP) is a fully declarative programming paradigm based
on logic programming and non-monotonic reasoning. Although ASP is an acknowledged for-
malism in logic-based artificial intelligence, development tools for supporting the programmer
during coding are missing, which could make it more popular in non-academic settings.

Several highly performant solvers computing answer sets of an answer-set program exist. A
characteristic feature of these solvers is that they return these answer-sets as textual output on
the screen. When the complexity of the problems or the input instances rises, the output of the
solver often gets larger and is probably too large for the user to be analysed or interpreted.

In this thesis, we address this problem by developing an appropriate visualisation system,
Kara, for answer sets. By writing a visualisation program, the user has the possibility to define
the graphical representation of the answer set. Thus, the combination of an answer set with the
corresponding visualisation program defines the visualisation of the answer set, which can then
be interpreted much easier than the textual output of the solver.

In this thesis, a visualisation language is presented with which the user gets the possibility to
specify the graphical representation with ASP itself. The language consists of special predicates
dedicated to several shapes and properties of these representations. Using this information of the
visualisation program, Kara is able to draw the graphical representation of the answer set. The
result of combining a given answer set with a visualisation program written by the user outputs
in turn an answer set, which, when executed by a solver, can then be processed further by Kara.

The tool Kara also allows the user to edit the visualisation graphically and thus to easily
change properties or even graphical objects encoded in the original answer-set program. While
editing, the user may generate new sets of atoms referred to as interpretations which are not
necessarily answer sets of the original answer-set program. This should ease the debugging
process as well and offer the possibility to create new interpretations for test-data generation.

Due to the visualisation language, the answer set of the visualisation is in general not an
answer set of the original answer-set program. Thus, Kara offers the user the possibility to
compute the corresponding interpretation of the original answer-set program from the actual
visualisation. The problem of computing the interpretation corresponding to the original pro-
gram is represented as an abduction problem. This problem is in turn encoded by an abduction
program, which—when executed with a solver—outputs the interpretation corresponding to the
original program.

The thesis is organised as follows. Chapter 1 gives an overview of answer-set program-
ming in general and outlines the problem of visualising answer sets. Furthermore, existing
visualisation tools are presented and described how they addressed the problem of answer-set
visualisation.

Then, in Chapter 2, the formal background of answer-set programming is given. The chapter
covers syntactic as well as semantic aspects of answer-set programming, and conventions are
introduced which are necessary for the subsequent elaboration.

Chapter 3 discusses the implementation view of Kara. All modules as well as the imple-
mented algorithms are described in detail.

v

Chapter 4 describes the user view of the tool. That is, the general workflow how to visualise,
edit, as well as computing the corresponding interpretation of the original answer set is given.
In particular, the language of Kara is described in detail, especially the meaning of the various
predefined visualisation predicates of the language.

Afterwards, in Chapter 5, several examples are examined in order to show the practical
usage of nearly every important predicate of the visualisation language. Moreover, an example
workflow is given how to compute the corresponding interpretation of the original answer set.

Chapter 6 gives an overview of different visualisation approaches for answer sets as well
as for other finite first-order language structures. Similar approaches to the one described in
this thesis are examined in detail and also example visualisations in the respective visualisation
languages are given.

Chapter 7 concludes the thesis and discusses possible extensions for Kara as future work.
The tool itself, as well as its application and theoretical background, was presented at the

25th Workshop on Logic Programming (WLP 2011) in Vienna [1]. This thesis was supported by
the Austrian Science Fund (FWF) under project P21698.

vi

Acknowledgements

First and foremost, I want to thank my supervisor, Ao.Univ.Prof. Hans Tompits, for his valuable
support and guidance during the work on this thesis. In our meetings, we discussed the devel-
opment and features of the visualisation tool as well as the fine art of writing scientific papers.
Thereby, I have learned much about the latter which was tantamount during the writing of this
thesis.

Furthermore, I want to thank Jörg Pührer for his support in developing my tool. He designed
the core plugin SeaLion which is the basis for Kara, providing the basic functionality. More-
over, we had many meetings where we discussed the development status of Kara as well as how
to continue the development of new features. I want to thank him also for his support and help
in the theoretical and formal parts of my work.

I furthermore want to thank Johannes Oetsch for his ideas and support concerning theoretical
aspects during the development of Kara.

Last, but not least, I want to thank my grandparents Franz and Elisabeth for their continuing
support during my whole life. Without them it would not be possible for me to study and
eventually write this thesis. They supported me in any of my life situations no matter whether
they were positive or negative. It is the most valuable thing in life if you know you can count on
someone.

Contents

Contents 1

1 Introduction 3

2 Background 7
2.1 Answer-Set Programming . 7
2.2 Solvers . 13

3 The Kara System 15
3.1 Preliminaries . 15
3.2 System overview . 23

4 Applying Kara 45
4.1 Getting started . 45
4.2 Running a solver . 45
4.3 Visualisation . 47
4.4 Editing . 51
4.5 Export . 54
4.6 Inferring an interpretation . 54

5 Examples 57
5.1 Basic example . 57
5.2 Maze generation . 58
5.3 Graph colouring . 61
5.4 15-puzzle . 63

6 Related work 67
6.1 ASPVIZ . 67
6.2 IDPDraw . 69
6.3 Lonsdaleite . 70
6.4 APE . 70
6.5 DPVis . 70
6.6 Alloy . 71

1

2 CONTENTS

7 Conclusion 73

Bibliography 75

CHAPTER 1
Introduction

Answer-set programming (ASP) is a well-known programming paradigm for declarative prob-
lem solving based on logic programming. The programmer of answer-set programs defines the
structure of solutions in his or her program but is not responsible for how to get the solution to
the problem. As this programming style is based on logic programming, an answer-set program
may contain the following parts:

• facts defining knowledge which is assumed to be true;

• rules to derive new knowledge; and

• constraints to eliminate invalid solutions.

Answer-set programs are written in a language consisting of predicates from first-order logic,
but it is possible to write propositional programs too. Applications of answer-set programming
include Semantic-Web reasoning [2, 3], music composition [4], e-tourism [5], and bioinformat-
ics [6, 7].

For obtaining the solutions of a problem defined by an answer-set program, an ASP solver
is used. Different solvers are available, which are based on different algorithms. The two most
important solvers are Clasp [8] and DLV [9]. Due to increasing solver efficiency, answer-set
programming has gained popularity in academic research.

However, answer-set programming is currently very rarely applied in industrial software
projects, arguably due to the absence of tools for developing answer-set programs. Therefore,
the academic community for ASP started to address this problem and several papers have been
published subsequently as well as approaches for software engineering with ASP were taken
into account. Current topics related to software engineering for ASP are

• debugging [10, 11, 12, 13],

• testing [14, 15], and

3

4 CHAPTER 1. INTRODUCTION

• modular programming [16, 17, 18].

For debugging, a tool called spock [19, 20] has been developed.
The work described in this thesis belongs also to the area of software engineering for ASP.

The usual setting when working with an ASP solver is that its output, the answer sets of a
program, is represented in textual form, containing every literal of the solution, on the screen or
in a file. For many problems, these solutions fill the whole screen or are even longer. Therefore,
it is arguably a hard task to validate as well as to understand the final answer set(s) of a program.
To address this problem, answer-set visualisation tools have been developed. In particular, two
such systems have been developed so far, namely IDPDraw [21] and ASPVIZ [22]. The main
idea behind these tools is to visualise interpretations of answer-set programs in a user-friendly
way. The programmer declares how the interpretation of the answer-set program is mapped to a
suitable graphical representation of the problem, which is done in ASP itself. The output of the
tools is a graphical representation of the program according to its domain, which is much easier
to validate and to understand than a direct textual output. For instance, IDPDraw was used to
visualise the output of the Second ASP Competition [23].

Moreover, there are sometimes situations where it would be beneficial to create and manipu-
late answer sets. Such a situation occurs, for example, in declarative debugging [24], where the
user has to specify expected semantics of a program. There actually was some work [10] on this
topic to take a program P and an expected interpretation I of P as input for another program P ′

whose output gives reasons why the intended interpretation is not an interpretation of P .
Another useful situation to modify answer sets is the testing of post-processing tools. In

most software engineering applications where ASP is applied, answer-set programs are used as
modules in a larger architecture, where problems are relegated to an ASP solver, which returns
the solution of a problem. Then, the answer set must be post-processed by the application.
However, it would be much better to test these post-processing components with easily created
“mock answer sets”.

A third use case, also in connection with mock answer sets, would be in modular answer-set
programming [16]. If a module depends on other modules, which may not be implemented so
far, mock answer sets can be used to test the module without waiting until the other modules are
realised.

There exist also other visualisation tools, realised for different purposes. To wit, Alloy [25]
is a tool for visualising some kind of extended first-order language.1 It depends on signatures,
whereby the user can define types, and supports automatic graph-like visualisation while us-
ing the defined signatures as input. Another approach is to visualise the internal structure of
satisfiability (SAT) problems for which various graph-layouting algorithms were examined [26].

Our work is based on the approach of IDPDraw and ASPVIZ to visualise the output of
answer-set programs. However, a major difference between our approach and these tools is the
possibility in our method to modify the constructed visualisation in an editor and then get the
original interpretation from the newly constructed visualisation interpretation. This makes a
contribution in debugging answer-set programs as well. Consider the case of a semantically in-

1For downloading the tool and a tutorial, see http://www.doc.ic.ac.uk/project/examples/
2007/271j/suprema_on_alloy/Web/index.php.

http://www.doc.ic.ac.uk/project/examples/2007/271j/suprema_on_alloy/Web/index.php
http://www.doc.ic.ac.uk/project/examples/2007/271j/suprema_on_alloy/Web/index.php

5

correct answer-set program. Then, the interpretation and also the visualisation is erroneous too.
The programmer can now modify the visualisation such that it is correct and then infer the orig-
inal interpretation from the visualisation interpretation and compare the correct interpretation
with the semantically incorrect one. This gives evidence for the user which rules are potential
reasons for an inaccurate interpretation.

Besides the feature of modifying the visualisation, there are also many enhancements in the
visualisation language compared to the previous approaches. Examples are the use of automatic
layouting of graphical elements as well as a much richer visualisation language, including the
generation of identifiers on the fly, which is possible by exploiting the use of function symbols.
A more detailed evaluation of the related tools and our work is given in Chapter 6.

The name of our visualisation and visual editing tool is Kara, which is derived from “Kara
Zor-El”, the native Kryptonian name of Supergirl, given that Kryptonians have visual super-
powers on Earth. Kara is implemented within a larger project which is an Eclipse plug-in
and is called SeaLion [27]. It is intended to be a powerful IDE for answer-set programming
supporting all typical features of other IDEs (like for Java, C++, etc.). To fully integrate Kara
into this project, the visualisation tool was also implemented as an Eclipse plug-in depending
on the core features of SeaLion for executing and parsing answer-set programs.

Kara uses the Graphical Editor Framework (GEF) [28] for visualising and editing the in-
terpretations of answer-set programs. Thereby, the user has the possibility to choose one inter-
pretation he or she likes to visualise. The programmer may define a visualisation program, also
written in ASP, which maps the elements of the original interpretation to a visualisation inter-
pretation, which then can be displayed in the graphical editor of Kara. The tool offers a rich
visualisation language including the possibilities to

• automatically visualise graph structures,

• visualise fixed positioned elements,

• automatically visualise arbitrary components, and

• visualise grids.

Supported graphical elements in this tool are rectangles, polygons, ellipses, images, lines, con-
nections between elements, and text elements. These elements can also have properties like
background and foreground colour, line style and width, and many more. A detailed description
of the supported graphical elements and their properties will be given later on.

As described above, Kara also adds the possibility of modifying the visualised interpreta-
tion, which is achieved by using GEF as the underlying framework. Special predicates in the
visualisation language of this tool are used to indicate properties of graphical elements, which
can be changed in order to modify the visualisation. Furthermore, also the creation and deletion
of graphical elements is achieved by special visualisation predicates. After the user has modi-
fied the interpretation, it is possible to calculate the original interpretation from the visualisation
interpretation by using the related entry in the context menu of the editor.

Besides these visualisation and editing features, Kara also supports a convenient export
function to create scalable vector graphics (SVG) of the desired visualisations. There is an option

6 CHAPTER 1. INTRODUCTION

to export the whole content of the editor and one to only export selected graphical elements. This
is a nice feature to get portable graphical representations of solutions to the problem.

CHAPTER 2
Background

In this chapter, we describe some formal preliminaries of answer-set programming. Moreover,
the problem of visualising answer sets is examined in detail.

2.1 Answer-Set Programming

Answer-set programming [29] is based on logic programming as well as on non-monotonic
reasoning and represents a fully declarative way of problem solving. In contrast to conventional
programming languages like Java or C++, in logic programming it is defined how the result
should look like instead of representing how to get the result. PROLOG (“programming in logic”)
is a well known logic-oriented programming language, where the user defines a knowledge base
in a fragment of first-order logic. PROLOG uses the closed-world assumption, meaning that a
negated atom not a is true iff a cannot be deduced, which allows for non-monotonic reasoning.
A drawback of PROLOG is that the body of a rule is processed from left to right, so the order of
the atoms in the body influences the results as well as the performance of the evaluation in the
proof system. ASP overcomes this drawback by providing full declarativity using the answer-set
semantics [30, 31].

The overall approach of the answer-set programming paradigm is depicted in Figure 2.1.
The user encodes a problem instance as a logic program, which is then executed by a solver.
The output of the solver is given by the answer sets of the problem encoding, which are in a
one-to-one correspondence with the solutions of the original problem.

Next, we define syntax and semantics of answer-set programs, and afterwards we give some
information on available solver technology.

Syntax of answer-set programs

Answer-set programs use a first-order language for the definition of their knowledge base.

7

8 CHAPTER 2. BACKGROUND

Problem

Instance

Encoding:

Logic Program
ASP Solver

Model(s)

Solution(s)

Figure 2.1: ASP as a programming paradigm [29].

Definition 2.1. An alphabet A = 〈P,V,F〉 consists of a set P of predicate symbols, a set V of
variables, and a set F of function symbols. Every predicate and function symbol is associated
with an arity, defined as the argument count of the predicate or function symbol. For a predicate
symbol p and a function symbol f , we write p/n and f/n to indicate that p and f have arity n,
respectively. Predicate symbols with arity 0 are called propositional and function symbols with
arity 0 are called constants. We denote the set of all constants by CA.

We use the convention that constant and function symbols always start with lower case letters
whereas variables always start with upper case letters. Furthermore, numbers belong to the set
of constant symbols. We also use the underline symbol (“_”) to refer to an anonymous variable,
where we do not need to give an explicit name to a variable.

Definition 2.2. A string contains arbitrary text between two quotation marks and is treated
exactly the same as a constant symbol.

Example 2.3. The identifiers testC , test1 , and 123 are all constant symbols, because the first
two are starting with a lower case letter and the latter one is a number. Furthermore, the iden-
tifier “foo fighter” defines a string and thus is also a constant symbol. On the other hand, the
identifiers Test ,X , and CamelCase are variables because every identifier is starting with an
upper-case letter. Function symbols with an associated arity can be f /2, func/2 or g/1. ♦

Definition 2.4. Let A = 〈P,V,F〉 be an alphabet. Then, the set TA of terms over A is defined
as follows:

1. Every constant symbol c ∈ CA and every variable V ∈ V is a term.

2. If t1, . . . , tn are terms and f ∈ F a function symbol with arity n, then f (t1, . . . , tn) is
also a term.

3. The only terms are those constructed by means of Conditions 1 and 2.

A predicate with terms as arguments expresses knowledge about the domain. It can define
properties, relationship between constant symbols in the domain, etc. We call such an expression
an atom.

Definition 2.5. Let A = 〈P,V,F〉 be an alphabet. Then, an atom a over A is an expression of
form p(t1, t2, . . . , tn), where p ∈ P is a predicate symbol of arity n and t1, . . . , tn are terms over
A. Moreover, a classical literal is an atom or an atom preceded by the strong negation operator
¬, and a default literal, or simply literal, is a classical literal or a classical literal preceded by
the default negation not.

2.1. ANSWER-SET PROGRAMMING 9

An atom p(t1, t2, . . . , tn) or term f (t1, t2, . . . , tn) is ground iff it contains no variable, oth-
erwise the atom or term is non-ground. Analogously, a literal not a or ¬a is ground iff the atom
a is ground, otherwise the literal is non-ground.

Example 2.6. Consider an alphabet A = 〈P,V,F〉 with CA = {joe,mary}, X,Y ∈ V ,
F = {father/1}, and P = {childOf /2}. Then:

• father(mary) and father(father(mary)) are ground terms;

• father(X) and father(father(Y)) are non-ground terms;

• childOf (joe,mary) is a ground atom;

• childOf (X,Y), childOf (joe, X), and childOf (mary , Y) are non-ground atoms;

• not childOf (joe,mary) and ¬childOf (joe,mary) are ground literals; and

• not childOf (X,Y),¬childOf (joe, X), and childOf (mary , Y) are non-ground literals.

♦

Definition 2.7. A (disjunctive) rule is a pair 〈H,B〉, where H is a set of classical literals and
B is a set of default literals such that H ∪B 6= ∅. A rule r = 〈H,B〉 is usually written as

h1 ∨ h2 ∨ · · · ∨ hn :− b1, b2, . . . bm, not c1,not c2, . . . ,not ck, (2.1)

for H = {h1, . . . , hn} and B = {b1, b2, . . . bm,not c1, not c2, . . . ,not ck}.

We use the following notation to refer to the separate parts of a rule r of form (2.1):

• H(r) = {h1, . . . , hn}, called the head of r;

• B+(r) = {b1, b2, . . . bm}, called the positive body of r;

• B−(r) = {not c1, not c2, . . . ,not ck}, called the negative body of r; and

• B(r) = B+(r) ∪ B−(r), called the body of r.

Example 2.8. Assume an alphabetA = 〈P,V,F〉 with CA = {joe,mary , kate}, X,Y, Z ∈ V ,
P = {childOf /2, grandchildOf /2}, and F = {father/1}.

Given the rule

r = grandchildOf (X ,Z) :− childOf (X ,Y), childOf (Y ,Z),

then H(r) = {grandchildOf (X ,Z)}, B(r) = B+(r) = {childOf (X ,Y), childOf (Y ,Z)},
and B−(r) = ∅.

♦

Next, we define some properties of rules.

10 CHAPTER 2. BACKGROUND

Definition 2.9. A rule is a constraint iff H(r) = ∅, and a fact iff B(r) = ∅. Furthermore, r is
ground iff every literal of r is ground, and r is called propositional iff every predicate of r has
arity 0.

For facts, we often omit the symbol “:− ”, or use a period “.” instead (as is supported by the
syntax of standard ASP solvers).

Moreover, we introduce the term safe rule. It is used to restrict the possible values for
variables occurring in the head of a rule such that no general statements about all objects can be
made.

Definition 2.10. A rule r is safe iff every variable occurring in H(r) ∪ B−(r) also occurs in
B+(r).

Example 2.11. Consider the following rules:

winner(Z) :− wonAgainst(X,Y), (2.2)

canFly(X) :− bird(X), not penguin(X), (2.3)

:− ball(X), not round(X). (2.4)

Rule (2.2) is unsafe because variable Z does not occur in any of its positive body atoms whereas
Rule (2.3) is safe because variable X , used in the head as well as in a negative body atom, also
occurs in the positive body atom bird(X). Finally, Rule (2.4) is also safe because variable X ,
used in the negative body atom round(X), is also used in the positive body atom ball(X). ♦

After introducing the safety property of rules we can define logic programs thus:

Definition 2.12. A (disjunctive) logic program is a finite set of safe rules.

Furthermore, we apply the conditions of rules also on logic programs:

Definition 2.13. A logic program is ground iff every rule of this logic program is ground. Like-
wise, a logic program is propositional iff every rule of it is propositional.

In general, a logic program consists of facts, rules, and constraints. Thus, the variables,
domain, function symbols, as well as predicate symbols are given implicitly by their occurrence
in the program, which yields the definition of the Herbrand base (HB) as well as of the Herbrand
universe (HU) of a program.

Definition 2.14. The Herbrand universe of a program Π, HU (Π), is the set of all terms which
can be constructed from the function symbols and the constants occurring in Π. Moreover, the
Herbrand base of Π, HB(Π), is the set of all ground atoms which can be built by using the
predicate symbols of Π and the terms in HU (Π).

We use the concept of grounding for the process of transforming non-ground programs into
ground ones.

2.1. ANSWER-SET PROGRAMMING 11

Definition 2.15. The grounding of a rule r, denoted by ground(r), is the process of uniformly
substituting every variable occurring in r by a term of HU (Π). The grounding of a logic program
Π, ground(Π), is obtained by grounding every rule of Π.

Example 2.16. Consider the following program Π:

Π = { grandchildOf (X,Z) :− childOf (X,Y), childOf (Y,Z),
childOf (mary , john) :− ,
childOf (john, kate) :−}.

Then, an excerpt of ground(Π) contains the following rules:

grandChildOf (mary , john) :− childOf (mary , kate), childOf (kate, john),
grandChildOf (mary , kate) :− childOf (mary , john), childOf (john, kate),
grandChildOf (john, kate) :− childOf (john,mary), childOf (mary , kate),

grandChildOf (john,mary) :− childOf (john, kate), childOf (kate,mary),
grandChildOf (kate,mary) :− childOf (kate, john), childOf (john,mary),
grandChildOf (kate, john) :− childOf (kate,mary), childOf (mary , john),

childOf (mary , john) :− ,
childOf (john, kate) :− .

♦

Semantics of answer-set programs

After discussing the syntax of answer-set programming, we now examine its semantics. First,
we define the notion of an interpretation.

Definition 2.17. A set of ground classical literals overA is consistent iff it does not contain both
an atom p(X) and its strong negation ¬p(X).

Example 2.18. The set I1 = {p(1, 2, 3),¬p(2, 2, 2), p(5, 2, 1)} of ground classical literals is
consistent, whereas the set I2 = {p(1, 2, 2), p(5, 2, 1),¬p(1, 2, 2)} is not consistent. ♦

Definition 2.19. Let A = 〈P,V,F〉 be an alphabet. Then, an interpretation (over A) is a
consistent set of ground classical literals over A.

Furthermore, we need to define the truth value of ground literals:

Definition 2.20. Let A = 〈P,V,F〉 be an alphabet, I an interpretation over A, and l a ground
literal over A. Then, I |= l is defined as follows:

• if l = a, for an atom a, then I |= l iff a ∈ I;

• if l = ¬a, for an atom a, then I |= l iff ¬a ∈ I; and

• if l = not q, for a classical literal q, then I |= l iff q /∈ I .

Moreover, if I |= l, then l is said to be true under I , otherwise l is false under I .

12 CHAPTER 2. BACKGROUND

Next, we can define the semantics and the applicability of rules in answer-set programs.

Definition 2.21. Let I be an interpretation. A rule r is applicable under I if I |= B(r), otherwise
r is blocked under I .

A rule r is satisfied by I , or r is true under I , symbolically I |= r, if some hi ∈ H(r) belongs
to I or the rule is blocked under I . Otherwise, the rule is unsatisfied by I , or false under I .

Definition 2.22. An interpretation I satisfies a program Π, symbolically I |= Π, iff I satisfies
every rule in Π. If I |= Π, then I is a model of Π.

There can be models of a program Π which contain atoms not necessarily to be true in order
to be a model of Π. Thus, we define the notion of an intended model in form of the minimal-
model semantics.

Definition 2.23. A model I of a program Π is minimal if there is no J ⊂ I which is also a
model of Π.

Example 2.24. Given the program Π, containing the rules

fatherOf (george,william) :− , (2.5)

fatherOf (william,michael) :− , (2.6)

grandfatherOf (X,Z) :− fatherOf (X,Y), fatherOf (Y,Z), (2.7)

and the interpretations

I1 = {fatherOf (george,william), fatherOf (william,michael),

grandfatherOf (george,michael)} and
I2 = {fatherOf (george,william), fatherOf (william,michael),

fatherOf (george,michael), grandfatherOf (george,michael)},

I1 is minimal whereas I2 is not minimal because fatherOf (george,michael) is not necessarily
true. Thus, I1 is the only least model in this example. ♦

After defining minimal models, we are now in the position to define answer sets [30, 31].

Definition 2.25. Let Π be a ground program and I an interpretation. Then, the reduct, ΠI , of Π
with respect to I is given by

ΠI = {H(r) :− B+(r)|r ∈ Π, I |= B(r)}.

The purpose of building a reduct of a program is to remove default negation based on a
candidate interpretation I .

Definition 2.26. An interpretation I is an answer set of a program Π iff I is a minimal model
of ground(Π)I . We write AS (Π) for denoting the set of all answer sets of Π.

2.2. SOLVERS 13

In general, answer-set programs with disjunction and default negation can have no or multi-
ple answer sets.

Example 2.27. Consider the logic program Π1, containing the following rules:

vehicle(mercedes) :− , (2.8)

car(X) ∨ bike(X) :− vehicle(X). (2.9)

Π1 has exactly two answer sets, namely:

AS (Π1) = {{vehicle(mercedes), car(mercedes)}, {vehicle(mercedes), bike(mercedes)}}.

Consider program Π2, comprising the following rules:

penguin(dora) :− , (2.10)

flying(X) :− bird(X), (2.11)

bird(X) :− penguin(X), (2.12)

¬flying(X) :− penguin(X). (2.13)

Π2 has no answer set at all. The atom flying(dora) as well as the strongly negated atom
¬flying(dora) are conflicting and thus there is no consistent interpretation which could be an
answer set of Π2.

Lastly, consider the program Π3, consisting of the single rule

legs(X, 4) :− goat(X). (2.14)

The smallest set of atoms satisfying Π3 is ∅ and due to the minimality criterion of answer
sets it is also be the only answer set, i.e., AS (Π3) = {∅}. ♦

By a positive program we understand a program without disjunction and negation. The
following property is obvious:

Proposition 2.28. Every positive program has at most one answer set.

2.2 Solvers

If the programmer has defined an answer-set program for a specific problem and he or she wants
to compute the solutions, i.e., the answer sets, of the program, a solver must be used. There
are different solvers available, which use different algorithms to compute the answer sets of
a program. This is interesting, because it is possible that the various solvers have a different
performance on specific problems.

Generally, the syntax of different solvers is mostly the same, but some extensions of the
basic language of answer-set programs differ, like for disjunction and aggregate functions. At
the moment, the two most important solvers are Clasp [8] and DLV [9].

There are not only syntactic differences between the solvers but also semantic differences for
aggregate functions and furthermore the solvers support different features. Clasp, for instance,

14 CHAPTER 2. BACKGROUND

does not support disjunction in logic programs whereas DLV does. However, there exists a spe-
cial version of Clasp, called ClaspD, which does support disjunction. Moreover, the concept
of weak constraints is also implemented differently. Weak constraints have an associated weight
and are used as input to the solver to optimise the produced solutions.

DLV provides the grounder and the solver in one component, whereas Clasp is only a solver
and provides no grounding. For grounding the instances as input to Clasp, the tool Gringo is
used.

An example program, which can be parsed by both Gringo and DLV is the following:

mother(andrea, peter).
mother(maria, andrea).
grandmother(GM , C) :− mother(GM ,M),mother(M,C).

A sample execution of DLV with this answer-set program, stored in file test.dlv, yields the
following output:

user@host:~$ dlv test.dlv
DLV [build BEN/Oct 14 2010 gcc 4.4.3]

{mother(andrea,peter), mother(maria,andrea),
grandmother(maria,peter)}

Most solvers support the use of disjunctions as well as function symbols in the program en-
coding. Furthermore, they have built-in arithmetic as well as comparison functions. Another
convenient feature is that solvers allow the use of intervals for specifying facts. For instance, the
following fact defines that the constants 1 to 100 are numbers:

number(1..100).

They also support aggregate functions like count and sum , and in Gringo optimisation func-
tions are supported too, which are syntactically similar to aggregate functions and are called
minimize and maximize. Of course, single and multiple line comments are supported as well.
It is also important to mention that the solvers support multiple command-line parameters which
allow to set options to the solver on startup. An example is to restrict the set of natural numbers,
which can also be set with an meta-parameter in the answer-set program. Gringo also supports
an integrated scripting language, lua, which can be called with an “@” prefix in front of the
function call, as, e.g., in the rule

colour(X,@c(Y)) :− assign(X,Y).

The use of different solvers is also supported in our approach and it is possible to use both
Clasp and DLV for solving and visualising answer-set programs in Kara.

CHAPTER 3
The Kara System

This chapter gives an overview of the visualisation component, describing the integration in
SeaLion, as well as the implementation itself. Moreover, the overall architecture is described
and the process for inferring the original interpretation from the visualisation interpretation is
given in detail (in theoretical as well as in practical terms).

3.1 Preliminaries

First, we examine the problem of visualising answer sets. It is arguably a hard task to evaluate
and analyse answer sets as output by a solver. Consider, e.g., the output of an encoding of a
maze generation problem. Here, a maze is a two-dimensional grid, where every cell contains
either a wall or is empty and it has exactly one entrance and one exit. An answer set of a maze
encoding as output of a solver could be as follows:

e n t r a n c e (1 , 2) e x i t (1 5 , 9) row (1) row (2) row (3) row (4) row (5) row (6) row (7)
row (8) row (9) row (1 0) row (1 1) row (1 2) row (1 3) row (1 4) row (1 5) c o l (1) c o l (2)
c o l (3) c o l (4) c o l (5) c o l (6) c o l (7) c o l (8) c o l (9) c o l (1 0) c o l (1 1) c o l (1 2)
c o l (1 3) c o l (1 4) c o l (1 5) b o r d e r (1 , 1 5) b o r d e r (1 , 1 4) b o r d e r (1 , 1 3) b o r d e r (1 , 1 2)
. . .
w a l l (1 3 , 1 5) w a l l (1 4 , 1 5) w a l l (1 5 , 2) w a l l (1 5 , 3) w a l l (1 5 , 4) w a l l (1 5 , 5)
w a l l (1 5 , 6) w a l l (1 5 , 7) w a l l (1 5 , 8) w a l l (1 5 , 1 0) w a l l (1 5 , 1 1) w a l l (1 5 , 1 2)
w a l l (1 5 , 1 3) w a l l (1 5 , 1 4) w a l l (1 5 , 1 5) w a l l (2 , 1) w a l l (3 , 1) w a l l (4 , 1)
. . .
a d j a c e n t (1 , 7 , 1 , 8) a d j a c e n t (1 , 8 , 1 , 9) a d j a c e n t (1 , 9 , 1 , 1 0) a d j a c e n t (1 , 1 0 , 1 , 1 1)
a d j a c e n t (1 , 1 1 , 1 , 1 2) a d j a c e n t (1 , 1 2 , 1 , 1 3) a d j a c e n t (1 , 1 3 , 1 , 1 4)
a d j a c e n t (1 , 1 4 , 1 , 1 5) a d j a c e n t (2 , 1 , 2 , 2) a d j a c e n t (2 , 2 , 2 , 3) a d j a c e n t (2 , 3 , 2 , 4)
a d j a c e n t (2 , 4 , 2 , 5) a d j a c e n t (2 , 5 , 2 , 6)
. . .
r e a c h (1 3 , 1 3) r e a c h (1 4 , 1 2) r e a c h (1 3 , 1 4) r e a c h (1 4 , 1 4) empty (1 , 2) empty (2 , 2)
empty (2 , 4) empty (2 , 5) empty (2 , 6) empty (2 , 7) empty (2 , 8) empty (2 , 1 0)
empty (2 , 1 2) empty (2 , 1 4) empty (3 , 2) empty (3 , 4) empty (3 , 6)

15

16 CHAPTER 3. THE KARA SYSTEM

Figure 3.1: Example for a user-friendly visualisation of a maze.

This is only a short extract of the whole answer set. Clearly, one will agree that this is very
cumbersome for the user to interpret. Our aim is to look for some visualisation that helps a
programmer to better interpret output like this. An example for a possible visualisation of a
maze problem can be found in Figure 3.1.

A further goal is that also people inexperienced with ASP should be able to interpret the
visualisations of answer sets. To reach this goal, an abstraction has to be made between answer-
set programming itself and the visualisation of the answer set.

Generally, two approaches how to visualise answer sets can be identified:

1. predicates and individuals of the original interpretation are mapped to visualisation pred-
icates; and

2. a generic graph-like representation of the interpretation is employed.

The advantage of the first approach (like seen in Figure 3.1) is that this type of visualisation
can be easily interpreted, because it displays the solution to the problem as natural as possible.
The second type of visualisation can be helpful for expert answer-set programmers but novice
ASP users may not easily understand this kind of visualisation. But there is also a difference in
the visualisation process between these two approaches: While the latter one can be achieved
without any user input to the visualisation, the former one needs information about the visu-
alisation by the user. This information must include which predicates and individuals may be
displayed as which graphical elements. E.g., if the original interpretation contains a predicate
book/1, the user must give the visualisation a “hint” that the book should be displayed as a
rectangle, otherwise the visualisation component cannot know how to display a predicate called
“book”. The best way to define such mappings from the predicate symbols of the domain to
components of the visualisation is to use some kind of declarative language, like XML1 or even
ASP itself. Note that also the generic approach can rely on user input for knowing what to render
as nodes and edges. This is also domain-specific as done in Alloy [25].

1“XML" stands for “eXtensible Markup Language".

3.1. PRELIMINARIES 17

In Kara, both ways of visualisation were implemented. For the former approach, ASP itself
is used as the host language. A so-called visualisation program V is defined, which includes
rules to map predicate symbols of the original interpretation to special visualisation predicates
from a set Pv. Afterwards, these visualisation predicates are post-processed from the visualisa-
tion interpretation Iv and then the visualisation is rendered on the screen.

Problematic with current visualisation tools was the visualisation of problems relying on
grids and the even more difficult problem was the visualisation of graph structures. Kara un-
dergoes this problem with supporting the definition of grids inside its visualisation language
as well as automatically rendering graphs defined in its visualisation language with the built-in
graph-layouting algorithm of the Draw2d library of the Eclipse Graphical Editor Framework.
This is a new feature currently not implemented in other tools, which offers a powerful method
for visualising generic graph structures as well as easily render grids (grids can, e.g., be used for
rendering a Sudoku puzzle2).

Offering these two types of visualisation should improve developing answer-set programs.
However, this is only a first approach and it must be evaluated by programmers in practice. It
has to be adapted in future to fully fit the answer-set programmers needs.

Eclipse

The Eclipse platform is a general tool providing integrated development support for pro-
grammers. The platform itself is written in the Java programming language and provides the
possibility to extend its features through a plug-in system. Originally, Eclipse was intro-
duced for Java developers, but today due to the built-in plug-in system, there are much more
languages supported, like C, C++, Javascript, etc. There are also many tools trying to sup-
port the programmer like graphical representations of the code, test-coverage tools, graphical
editors, and much more. Furthermore, there are also tools which support the programmer with
offering a graphical user interface for versioning tools as well as ticketing systems.

The built-in plug-in system of Eclipse allows to extend the features of the platform as
well as to add new features (e.g., add support for other programming languages or tools for
still existing languages). All elements of the entire Eclipse platform can be reused (e.g.,
editors, markers, syntax highlighting, file comparisons, edit/paste, etc.). In contrast to writing
Eclipse plug-ins, it is also possible to write standalone applications using the components of
the Eclipse platform which is called RCP (Rich Client Platform). The whole plug-in system
of Eclipse is referred to as PDE (Plug-in Development Environment) and features plug-in
development as well as RCP.

Moreover, Eclipse features also a so-called run-configurations environment which is a
very important feature for our work. It allows to configure settings for execution of different
programs written by a software developer. For instance, consider a command-line program
taking several options as input. These command-line options can be configured via the run-
configurations environment and later on the program can be executed with only one click. This
environment can also be used to configure different settings on the compiler, virtual machine, or
the system environment variables.

2Sudoku is a number puzzle, where the numbers must be assigned to grids according to special rules.

18 CHAPTER 3. THE KARA SYSTEM

Writing a new plug-in can be characterised by the following two components:

• a manifest and plugin.xml file specifying build properties and plug-in dependen-
cies; and

• an activator class for plug-in initialising.

When these two components are created, the programmer can start with plug-in develop-
ment. Dependencies defined in the plugin.xml file can either be components of the core
system or other plug-ins. All components which can be used as dependencies in the same plug-
in have their own conventions and thus the manual of the dependencies may be used how to
employ those components.

SeaLion

SeaLion [27] is a an Eclipse plug-in aiming to provide an integrated development environ-
ment (IDE) for answer-set programming. It is the base plug-in for all other components inside
the answer-set programming IDE and thus offering the basic functionality of the IDE. The fea-
tures of the SeaLion IDE include:

• semantic code highlighting in an editor of Eclipse;

• executing answer-set programs through Eclipse run configurations;

• parsing of the output of both Clasp as well as DLV; and

• interpretation view to show the solver output graphically in a tree representation.

The visualisation system introduced in this thesis depends on the SeaLion plug-in using all
its basic feature like the editor with code highlighting, the interpretation view as well as the run-
configurations environment. Moreover, SeaLion offers the possibility to launch a solver (e.g.,
Gringo or DLV) with a specific configuration and later on after the execution finishes receiving
the result as a parsed set of Java objects. It is also possible to inject some configuration-specific
changes before the answer-set program is executed by the solver. Furthermore, the interpretation
view of SeaLion is used for choosing interpretations to visualise as well as to output abduced
interpretations and visualisation interpretations.

Graphical Editing Framework (GEF)

The Graphical Editing Framework (GEF) [28] allows developers to create graphical editors for
use within Eclipse. It is used in our work to provide the graphical representations of the
answer sets as defined by the user as well as to provide editing possibilities to the visualisation.
The two basic components of the framework used for the visualisation component are Draw2d
and GEF.

Draw2d provides layout and rendering functionality on the basis of the Standard Widget
Toolkit (SWT). In our approach, it is used to draw graphical objects like rectangles, circles, etc.

3.1. PRELIMINARIES 19

Controller

View Model

Figure 3.2: Model-View-Controller pattern as implemented in the Graphical Editing Framework.

The other part, GEF, is used to provide a Model-View-Controller (MVC) architecture. Figure 3.2
depicts the framework to organise the various used components.

In general, the model of GEF consists of POJOs (Plain Old Java Objects) which store the
properties and relations between the objects in the graphical view. When the model is built, a
so-called EditPartFactory is used to generate the corresponding controllers to the model
objects based on the factory pattern for generating objects based on parameters in the factory.
The controller objects belong to the class EditPart and are most of the time in a one-to-one re-
lation to the model objects. Note that an EditPart object can itself contain other EditPart
objects (e.g., a container object for figures like rectangles or ellipses). These controllers them-
selves construct the view objects depending on the information in the underlying model objects.
In general, the view objects are figures depending on the Draw2d layout and rendering en-
gine which can be custom compound objects or figures directly provided by Draw2d. Standard
figures provided by Draw2d include, for instance, rectangles, ellipses, polygons, and images.
Moreover, after the view objects are generated the user can see the graphical visualisation in the
editor.

The next feature of the framework are the editing possibilities which can be used by adding
objects from the class EditPolicy. They determine how the created objects can be edited
and provide also callback functions for the controller which can be used to adapt the model,
respectively.

Moreover, the framework also provides a feature allowing for saving the graphical represen-
tations in the editor, but this is not discussed in this work.

The Kara system

The goal of our work was to develop a visualisation component for answer-set programming,
where the visualisation should be as close as possible to the actual problem. The idea is to
translate an answer set of the program to an input format which can then be processed by the vi-
sualisation component. For this translation process, a declarative language has to be determined.
As there are already two successful visualisation approaches available, namely ASPVIZ [22]
and IDPDraw [21], which are using ASP itself to model the visualisation program, also our
tool, Kara, uses ASP as visualisation language.

As stated above, in general, two answer-set programs are needed in order to visualise the
original problem:3

3In fact, it is possible to make “stand-alone” visualisations too. This will be shown later on in Section 5.

20 CHAPTER 3. THE KARA SYSTEM

JRE

Eclipse

SeaLion

GEF
Kara

DLV

Gringo/Clasp

Figure 3.3: Technology stack of the Kara system.

• the original answer-set program; and

• a program mapping the original answer set to an input for the visualisation component.

As described above, the plug-in Kara is implemented within the Eclipse platform, which
itself is executed inside a Java Runtime Environment. The technology stack of the Kara system
is depicted in Figure 3.3. The tool was implemented with Java version 6 but should also
be compatible with upcoming versions of it. Kara depends on two other Eclipse plug-
ins, namely GEF and SeaLion. It also depends on external solvers like DLV and Clasp (in
conjunction with Gringo). The external solvers are not all necessary, but at least one of them
should be available on the user’s system for solving answer-set programs. There can be also
more external solvers but the parser for them is not implemented in the SeaLion plug-in yet.

Although Kara is implemented in Java and is executed within the Eclipse environ-
ment, its implementation contains also two answer-set programs, which are used to ease the
implementation of the layout on the graphical editor. Currently, there is a so-called positioning
script available for DLV as well as for Gringo (these are listed later on).

As it can be seen in Figure 3.3, the interface between Kara and the answer-set program-
ming solvers is the SeaLion plug-in, which has an implemented parser. SeaLion executes
the answer-set program with the configured solver and returns the answer-sets of the program as
Java objects via a listener. Afterwards, the answer sets as well as all parts of them (atoms, lit-
erals, constants, function symbols) can be read, edited, and created via utility methods provided
in SeaLion.

The graphical representation and editing features are done with the GEF plug-in of the
Eclipse framework. Therefore, the MVC structure of the plug-in was implemented in the
Kara system. The model is implemented inside the Kara system as an answer-set represented
by a Java object in the SeaLion core. For every possible visualisation object in the model
answer set, there exists a corresponding Java class in the model. For every object in the visu-
alisation answer set, an instance of the corresponding Java class is created and the properties
of each object is set accordingly to the values in the visualisation answer set.

Furthermore, there is an EditPart for every possible graphical object that is supported
inside this plug-in which are the controllers in the framework. Then, the instances of the class
EditPart create the corresponding graphical objects which are of type Figure but only
standard figures of Draw2d are used. By reading the model properties, the controller sets these
properties on the figures. Moreover, for positioning graphs, the layout algorithm of Draw2d is
used.

3.1. PRELIMINARIES 21

Notation

Some definitions and naming conventions must be introduced in order to fully understand the
technical content of the next chapters. If the name domain program is used, the “original”
answer-set program is meant (i.e., the program the developer has written in order to solve a
given problem) and its answer sets are denoted by I0, . . . , In. The visualisation program, V ,
is an answer-set program mapping an answer set I ∈ {I0, . . . , In} of the domain program to a
graphical representation with its corresponding interpretation Iv. This means that every predi-
cate of the domain program should be assigned with an element in the visualisation. Of course,
for a real-world representation of the problem, it can also be necessary to visualise elements
which are not part of the answer set of the domain program (e.g., for a chessboard problem,
using black and white fields). Predicates with special semantic meaning are introduced in order
to know what the programmer wants to visualise which are called visualisation predicates. Fur-
thermore, there exists also a subset Pi of Pv referred to as integrity predicates which are needed
later when the abduction framework is introduced. Because we also want to edit interpretations,
we use I ′ to denote the modified interpretation corresponding to the answer set I of the domain
program. Accordingly, I ′v denotes the interpretation corresponding to the edited visualisation.

Definition of the syntax

As the prerequisites are now defined, i.e., choosing the technologies and frameworks behind the
implementation, the next step is to define the syntax of the custom (reserved) visualisation pred-
icates for obtaining the input for the visualisation component. The goal is to create “language
elements”, which allow to write short and effective visualisation programs. In general, three
types of visualisation predicates with different meanings were introduced, namely

1. predicates for the definition of elements for the graphical visualisation,

2. predicates for setting properties for the graphical elements; and

3. predicates for defining properties which the user is allowed to change in the visualisation.

The first type of predicates allows the user to create elements in the graphical visualisation,
where the mandatory properties are given as arguments. The second type of predicates, which
are only optional, were introduced to minimise the configuration overhead for the user (e.g.,
most users only want to use black foreground- and white background colour). These predicates
may only be used if the user wants to set optional properties to special values (e.g., setting
the background colour to green). Last but not least, the third type of predicates characterises
those predicates defining the changeable properties of each element. If there is no “changeable
predicate” provided for an element, then no property of this element can be changed.4 As this
type of predicates are referred to the modification of the graphical representation, they are also
used to create new elements, which defines an element to be able to be copied.

All visualisation predicates contain the prefix vis in order to distinguish them from the pred-
icates of the domain program. For example, if the colour predicate is used in the domain pro-
gram, the user uses the viscolour predicate in the visualisation program.

4Note that the position in the graphical editor is always changeable (i.e., x and y coordinates of the elements).

22 CHAPTER 3. THE KARA SYSTEM

Figure 3.4: Custom visualisation of the book example.

For some argument values of visualisation predicates, fixed constant symbols are used (e.g.,
italics and bold font for the line style). If for those special arguments other values than the
defined ones are used, the predicates are simply ignored.

Example 3.1. Assume we are given a domain program determining the position of books and
globes on a shelf. The program has several answer sets, where one of them is the following:

I = {book(s1, 1), book(s1, 3), book(s2, 1), globe(s2, 2)}.

This is a text representation like we receive it from a solver (e.g., on the command line). Each
of the constants s1 and s2 represents a shelf, and the atoms book(X,Y) and globe(X,Y) express
that there is a book or globe in row Y of shelf X , respectively. To visualise this interpretation, a
visualisation program can be written in order to “translate” the atoms of the domain program in
some kind of visualisation. The visualisation program can look as follows:

visline(shelf 1, 10, 40, 80, 40, 0), (3.1)
visline(shelf 2, 10, 80, 80, 80, 0), (3.2)

visrect(f(X,Y), 20, 8) :− book(X,Y), (3.3)
visposition(f(s1, Y), 20 ∗ Y, 20, 0) :− book(s1, Y), (3.4)
visposition(f(s2, Y), 20 ∗ Y, 60, 0) :− book(s2, Y), (3.5)

visellipse(f(X,Y), 20, 20) :− globe(X,Y), (3.6)
visposition(f(s1, Y), 20 ∗ Y, 20, 0) :− globe(s1, Y), (3.7)
visposition(f(s2, Y), 20 ∗ Y, 60, 0) :− globe(s2, Y). (3.8)

It is easy to see that predicates of the interpretation of the domain program are mapped to
visualisation predicates. In the first two rules, two shelfs are generated, where the books and
globes are placed. The predicate visline takes the identifier of the element, the (x, y) position
of the starting and end point, as well as the z-coordinate as arguments. The z-coordinate is used
to determine which element should be rendered if two of them are overlapping. If both elements
have the same z-coordinate, the behaviour of the visualisation is undefined.

Books are represented as rectangles with a width of 20 and a height of 8 and their identifier is
dynamically generated by using a function symbol f(X,Y), where X and Y refer to the logical
position in the domain program. Function symbols have no processing functionality, they are
only used for generating a new individual in the domain by taking some arguments. With the
predicate visposition , the rectangles (i.e., the books) can be placed on the canvas. Shelf 1 has y-
coordinate 20, whereas Shelf 2 has y-coordinate 60. The x-coordinate is calculated dynamically,
where a size of 20 pixels is taken per element (i.e., for globe or book).

3.2. SYSTEM OVERVIEW 23

Figure 3.5: Generic visualisation of the book example.

Rules (3.6)-(3.8) are used to render globes on the canvas. It is quite the same as for books,
with the difference that globes are drawn as circles instead of rectangles.

Important is that the identifiers of the elements are used to refer to this element in the whole
visualisation program. Every element gets a unique identifier in the visualisation program. E.g.,
we use this identifier for rectangles and circles to set the their position on the canvas later on. It
is also possible to use this identifier to set more properties on the elements like colour, line style,
and many more. Elements are not allowed to have the same identifier, because then the correct
intention of the programmer cannot be guaranteed (i.e, to assign the specified property to the
intended element). Therefore, created or copied elements also get a new identifier by Kara.

The visualisation of this example is depicted in Figure 3.4. ♦

Example 3.2. Another possibility for visualisation would be the generic visualisation feature of
Kara. This kind of visualisation yields a graph-like visualisation, where the constants (i.e., s1,
s2, 1, and 3) are rendered as nodes marked as circles. For every predicate (i.e., book and globe),
a simple text node is rendered. Constants are rendered only once for the whole visualisation
program, whereas predicates are rendered per occurrence. Every predicate and constant which
belongs to each other are connected via straight lines, where the label of the line belongs to
the argument count of the constants inside the predicate. The generic visualisation of the book
example can be found in Figure 3.5. ♦

3.2 System overview

This chapter explains the workflow and the architecture of the overall system in detail. Besides
this rather abstract system description, a technology overview is given too.

Workflow

The overall workflow is given in Figure 3.6. Assume that there already exists some domain pro-
gram Π, which is the encoding of a problem which should be solved. Joined with some input and
executed by a solver, the output can comprise several answer sets. Afterwards, the user chooses
one of these answer sets, I , for the visualisation and writes a visualisation program, V , which
is responsible for the mapping between the predicates of Π and their corresponding graphical
visualisation. Thus, dedicated visualisation predicates are defined, which define the graphical
elements as well as their properties (e.g., visrect/3 , viscolor/2 , . . .). The interpretation I is the

24 CHAPTER 3. THE KARA SYSTEM

I

Interpretation I ∪ V ∪ PS

V

Visualisation Program

Solver Iv
Graphical

Representation

Modified
Graphical

Representation
I ′
v

λ(I ′
v
, V)

Abduction Program

SolverI ′

Modified Interpretation

Figure 3.6: Overall workflow of the visualisation system.

input of V and V ∪ I ∪ PS is executed by a solver, which outputs then the visualisation answer
set Iv which is filtered for the visualisation predicates Pv. The program PS is the positioning
script and is responsible for the layout if the user takes advantage of relative positioning features
in his visualisation program. Currently, Kara includes two positioning scripts, one for DLV
and one for Clasp, which can be chosen by the user when making the visualisation. Then, it
is used by Kara to render the desired graphical representation of the problem. Now the user
has the possibility to graphically modify the visualisation in the editor pane of Eclipse. Af-
terwards, the corresponding interpretation I ′ for the modified visualisation interpretation I ′v is
inferred. Because the encoding of I ′v contains only visualisation and auxiliary predicates, it can
be necessary to compute the interpretation I ′ with the original encoding of the domain program.
For inferring I ′, an abduction program λ(I ′v, V) is generated by Kara, which itself is also an
answer-set program and takes as input the graphically modified visualisation interpretation I ′v
as well as the visualisation program V . If the abduction program is executed, it outputs I ′ such
that I ′ ∪ V yields the modified visualisation interpretation I ′v.

Visualisation

As stated in the introduction, the visualisation approach of Kara follows the methods of the
previous systems ASPVIZ and IDPDraw. The general idea of the visualisation is as follows:
Given an interpretation I of a domain program P defined over a first-order alphabet A, I is
joined with the visualisation program V which is written by the user and defined over a first-
order alphabet A′ ⊃ A. A′ contains the predicates of P , function symbols, as well as further
visualisation predicates from a set Pv and some optional auxiliary predicates if needed. Pv
is a set of fixed visualisation predicates, which are needed to define graphical elements like
rectangles, ellipses, etc. as well as their properties like background colour, position, and so on.
An exhaustive list of available visualisation predicates is given in Table 3.1. V , which is itself an
answer-set program, is used to define a mapping of I to some corresponding visualisation. Thus,
the user defines rules which generate for predicates contained in I some visualisation predicates
from Pv. For instance, a simple rule could be the following:

visrect(f(X,Y), 20, 20) :− wall(X,Y).

3.2. SYSTEM OVERVIEW 25

Atom Intended meaning
visellipse(id , height ,width) Defines an ellipse with specified height and width.

visrect(id ,height ,width) Defines an rectangle with specified height and width.

vispolygon(id ,x,y,ord) Defines a point of a polygon. The ordering specifies in which order the
defined are points are connected with each other.

visimage(id ,path) Defines the image given in the specified file.

visline(id ,x1,y1,x2,y2,z) Defines a line between the points (x1, y1) and (x2, y2).

visgrid(id ,rows ,cols ,h , w) Defines a grid, with the specified number of rows and columns. Height and
width define the size of the grid.

visgraph(id) Defines a graph.

vistext(id ,text) Defines a text element.

vislabel(idg ,idt) Sets the text element idt as a label for graphical element (idg). Labels are
supported for the following elements: visellipse/3, visrect/3,
vispolygon/4, and visconnect/3.

visisnode(idn ,idg) Adds the graphical element idn as a node to a graph idg for automatic
layouting. The following elements are supported as nodes: visrect/3,
visellipse/3, vispolygon/4, and visimage/2.

visscale(id ,height ,weight) Scales an image to the specified height and width.

visposition(id ,x,y,z) Puts an element id on the fixed position (x, y, z).

visfontfamily(id ,ff) Sets the specified font ff for a text element tt .

visfontsize(id ,size) Sets the font size size for a text element tt .

visfontstyle(id ,style) Sets the font style for a text element tt to bold or italics.

viscolor(id ,color) Sets the foreground colour for the element id .

visbackgroundcolor(id ,color) Sets the background colour for the element id .

visfillgrid(idg ,idc ,row ,col) Puts element idc in cell (row , col) of the grid idg .

visconnect(idc ,idg1 ,idg2) Connects two elements, ids and idt , by a line such that ids is the source and
idt is the target of the connection.

vissourcedeco(id ,deco) Sets the source decoration for a connection.

vistargetdeco(id ,deco) Sets the target decoration for a connection.

visleft(idl ,idr) Ensures that the x-coordinate of idl is less than that of idr .

visright(idr ,idl) Ensures that the x-coordinate of idr is greater than that of idl .

visabove(idt ,idb) Ensures that the y-coordinate of idt is smaller than that of idb .

visabove(idt ,idb) Ensures that the y-coordinate of idt is smaller than that of idb .

visinfrontof (id1 ,id2) Ensures that the z-coordinate of id1 is greater than that of id2 .

vishide(id) Hides the element id .

visdeletable(id) Defines that the element id can be deleted in the visual editor.

viscreatable(id) Defines that the element id can be created in the visual editor.

vischangable(id ,prop) Defines that property prop can be changed for element id in the visual editor.

vispossiblegridvalues(id ,ide) Defines that graphical element ide is available as possible grid value for a
grid id in the visual editor.

Table 3.1: Predefined visualisation predicates and their intended meaning.

26 CHAPTER 3. THE KARA SYSTEM

This rule of V would generate a rectangle with a width and height of 20 pixels for every wall
of the input interpretation I . The output of V ∪ I ∪ PS , the visualisation interpretation Iv, is
then filtered for the visualisation predicates Pv and is post-processed by Kara to produce the
graphical representation.

First, a super element, InterpretationEditPart, is constructed where all other graph-
ical elements defined by the visualisation answer set are placed on. This element is a simple
panel containing the other elements as children. For constructing and adding the children to
the InterpretationEditPart, Algorithm 1 is used. The atoms of Iv are converted to
model beans containing the data of the graphical elements which should be rendered. First, all
graphical elements of the visualisation interpretation are collected, which are text elements, rect-
angles, images, ellipses, lines, grids, polygons, graphs, as well as connections between elements
in a graph. We use the method getIds() to get the identifiers of a specific predicate in some inter-
pretation. Afterwards, all elements which are either hidden or a child element of another element
must be removed from the set Visible of visible elements. Hidden elements can be used for the
creation of new elements in order to modify the graphical representation whereas child elements
must only be rendered by their parent elements. By using the predicate vishide/1, hidden el-
ements can be defined, whereas elements referenced by vislabel/2, visisnode/2, visfillgrid/4,
or visconnection/2 are used as child elements of their parent container. The parent element of
a label can be a rectangle, a polygon, an ellipse, or a connection, whereas the parent element of
a node or a connection is the graph while the parent element of a grid cell it is the grid itself.
All connections and graphs are also needed separately to calculate the graph layout and set the
target and source connections on all elements connected to each other. Furthermore, we also
need to set all collected elements as a property to every visible element, because, e.g., otherwise
a rectangle would not be able to render its label. After setting target and source connections on
all elements as well as calculating the graph layout for each graph, Algorithm 2 is used in order
to calculate the absolute position of relatively positioned elements. Because the graph layout
was already calculated and the absolute positions were stored in the properties of each node, the
graph elements must be removed from the set of visible elements and the nodes must be added
in order to be rendered on the editor pane. Finally, the set of visible elements is returned by the
procedure.

Algorithm 2 is used for absolutely layout relatively positioned elements. The predicate
vislpos/2 is used by Kara to store the relative position of elements. We need to determine
the set of all vislpos/2 atoms of the interpretation in order to convert them to absolute positions.
We put all vislpos/2 literals in a map called Figures which is sorted accordingly to their y, x as
well as z position. Furthermore, we define two variables, one for storing the x-positions of the
elements and one for storing the y-positions. First we initialise these variables with the first val-
ues of the first figure. Additionally we need to store the maximal y value for every row we have
in the logical positions done with yMax variable. Next, we iterate over all figures and calculate
their absolute positions. Due to the fact that the figures are sorted accordingly to their positions
we only have to insert them after the last inserted figure. In the end we store the calculated
absolute positions directly in the figures which are later on displayed on the screen.

Another feature following from this approach is that one can easily create scalable vector
graphics (SVG) by defining an answer-set program with facts what to draw. This is a much

3.2. SYSTEM OVERVIEW 27

Algorithm 1 Algorithm for converting atoms of Iv to graphical elements in the editor pane.
Input: interpretation Iv
Output: a collection of visible elements visibleElems

Visible ← getIds(vistext) ∪ getIds(visrect) ∪ getIds(visimage) ∪ getIds(visellipse) ∪
getIds(visline) ∪ getIds(visgrid) ∪ getIds(vispolygon) ∪
getIds(visgraph) ∪ getIds(visconnect)

Visible ← Visible \ getIds(vishide) ∪ getIds(vislabel) ∪ getIds(visisnode) ∪
getIds(visfillgrid) ∪ getIds(visconnection)

Connections ← getIds(visconnect)
Graphs ← getIds(visgraph)
for all Connection ∈ Connections do

set target connection in Connection.target
set source connection in Connection.source

end for
add all collected elements (including the hidden ones) to every element
for all Graph ∈ Graphs do

calculate graph-layout for Graph
end for
call Algorithm 2 for positioning relative elements
Visible ← Visible \Graphs
Visible ← Visible ∪Nodes
return Visible

easier approach than to write plain XML. Furthermore, rules can be defined which can generate
an element more than once with one simple statement.

Kara supports also generic visualisations in which the input interpretation I is represented
as a hypergraph without any user input. Thus, no visualisation program is needed in this case.
The construction of such hypergraphs is determined by Algorithm 3. In this method, every
occurrence of a predicate is converted to a node in the visualisation interpretation. Furthermore,
every predicate is assigned a colour, where equal predicate names have also equal colour. Every
constant and function symbol is also converted as a node in the visualisation interpretation.
The only difference to the rendering of predicates is that the constant symbols are rendered
uniquely, which means that if one constant occurs multiple times in the input interpretation I ,
it is rendered only once in the output. If a constant symbol occurs in a specific predicate, it is
connected with this predicate only via an edge in the hypergraph. The label of the edge is the
location of the constant symbol inside the predicate and the edges are assigned the same colour
as their corresponding predicate symbol.

Relative positioning and higher level elements

Kara supports special purpose elements which allow for writing shorter as well as easier vi-
sualisation programs. They are used to release the programmer of the burden of the layouting
problem of the visualisation. Additionally, Kara supports the use of relative positioning to

28 CHAPTER 3. THE KARA SYSTEM

Algorithm 2 Algorithm for converting the relative position to an absolute one.
Input: visualisation interpretation Iv
Output: the absolute positions are set for every figure of the input interpretation Iv

Lpos ← get all vislpos predicates from Iv
Figures ← ∅
for all lit ∈ Lpos do

Figures.put(lit .position, lit .element)
end for
sort Figures according to y, x, z coordinates ascending
Xpositions.put(Figures[1].key .x , {0,Figures[1].value.width})
Ypositions.put(Figures[1].key .y , 0)
yMax ← Figures[1].value.height
for i = 2 to Figures.size do

figure ← Figures[i]
if y coordinate changed then

Ypositions.put(figure.key .y , yMax)
end if
start ← get starting position for this element
if figure.key .x /∈ Xpositions then

Xpositions.put(figure.point .x ,
{start .value.pos + start .value.width,figure.value.width})

update all positions of elements after this element
else if Xpositions[figure.key .x].width < figure.value.width then

Xpositions.put(figure.point .x , {start .value.pos,figure.value.width})
update all positions of elements after this element

end if
yMax ← maximum(yMax ,Ypositions[figure.key .y] + figure.value.width)

end for
store calculated positions in figures

make drawing problems easier, which only rely on relative positions instead of absolute ones.
The first feature to mention is the graph layout. Users only have to define the graph via

dedicated input predicates and Kara is responsible to produce a good layout of the graph on the
editor pane. Internally, this is delegated to the graph-layout algorithm of the Draw2d library,
where the corresponding Java class is called DirectedGraphLayout. This class takes as
input the graph via the Node and Edge classes of the framework. Afterwards, with a simple call
of the static visit method of the DirectedGraphLayout class, all absolute positions are
stored in the data model (i.e., in the nodes and edges). Furthermore, also very good bendpoints5

are calculated.
Kara also supports an element which uses a grid layout for its contained elements. The

user defines a grid with a column and row size as well as a height and width in pixel. Then,

5A bendpoint is a corner of an edge, which is often used for the sake of readability.

3.2. SYSTEM OVERVIEW 29

Algorithm 3 Algorithm for constructing a hypergraph from the input interpretation I .
Input: interpretation I
Output: visualisation interpretation Graph

Graph ← ∅
for all Pred ∈ I .predicates do

Colour ← assignColour(Pred)
Graph ← Graph ∪ constructPredNode(Pred ,Colour)
for Term ∈ Pred .terms do

if Term /∈ Graph then
Graph ← Graph ∪ constructTermNode(Term)
Graph ← Graph ∪ constructConnection(Pred ,Term,Colour)

end if
end for

end for
return Graph

there is the possibility to fill the grid with a special predicate, where the user may only mention
the element to position in the grid as well as the (x , y)-coordinates inside the grid (i.e., the
column and the row). Grids can be very useful to later infer the corresponding interpretation to a
modified visualisation and ease the positioning. Examples for useful grid problems are Sudoku,
15-puzzle, the social golfer problem, as well as the n-queens problem.

The relative positioning is done via special predicates which define the position of an element
relative to another one. Elements can be on the left or on the right side of other elements, or
they can be above or below other elements. Kara also supports an z-axis and thus offers the
possibility for elements to be in front of other elements. The implementation of the relative
positioning is a mix of an answer-set program as well as a specific Java layout algorithm. To
set out the elements logically, an answer-set program is used. In the implementation, there are
two of those: one program for DLV and the other one for Gringo/Clasp. The user provides as
input the visualisation program V as well as the interpretation I to be visualised. Furthermore,
also a layouting program needs to be chosen, either for DLV or for Gringo, depending on the
preferred solver. The respective programs are depicted in Figures 3.7 and 3.8, respectively.

The so-called positioning script defines a logical grid and has rules which identify the ele-
ments needing relative positioning. These are all elements without any visposition/4 predicate
and all visline/6 predicates. Then, there is a rule which guesses a logical position for all rela-
tively positioned elements. Furthermore, there are constraints enforcing that every element must
have exactly one position and that two different elements must not be at the same position. Fi-
nally, there are four constraints that ensure that the positioning constraints of the visualisation
program are fulfilled (i.e., involving the predicates visleft , visright , visbelow , and visabove).

In the DLV script, Rule (3.9) provides the definition of the logical grid which has 15 columns
and 15 rows. Every cell of the logical grid can contain a graphical element. Thus, normally
there is more than one solution for positioning the elements on the grid. Rules (3.10) to (3.15)
are responsible for determining every element of the graphical representation which have a fixed

30 CHAPTER 3. THE KARA SYSTEM

vislogicgrid(15, 15). (3.9)

visfixed(X) :− visline(X, _, _, _, _, _). (3.10)

visfixed(X) :− visposition(X, _, _, _). (3.11)

visfixed(X) :− vishide(X). (3.12)

visfixed(X) :− visisnode(X, _). (3.13)

visfixed(X) :− visfillgrid(_, X, _, _). (3.14)

visfixed(X) :− vislabel(_, X). (3.15)

visshow(X) :− visgraph(X),not visfixed(X). (3.16)

visshow(X) :− visgrid(X, _, _, _, _), not visfixed(X). (3.17)

visshow(X) :− visrect(X, _, _), not visfixed(X). (3.18)

visshow(X) :− visellipse(X, _, _), not visfixed(X). (3.19)

visshow(X) :− vispolygon(X, _, _, _), not visfixed(X). (3.20)

visshow(X) :− visimage(X, _), not visfixed(X). (3.21)

visshow(X) :− vistext(X, _), not visfixed(X). (3.22)

vislpos(N,X, Y, 0) ∨ (3.23)

−vislpos(N,X, Y, 0) :− visshow(N), vislogicgrid(V,W), X <= V, Y <= W,
#int(X),#int(Y),not visfixed(N).

vislpos(N, 0, 0, 0) :− #count{N : visshow(N)} <= 1, visshow(N),not visfixed(N). (3.24)

:− #count{X,Y, Z : vislpos(N,X, Y, Z)} < 1, (3.25)
visshow(N), not visfixed(N).

:− #count{X,Y, Z : vislpos(N,X, Y, Z)} > 1, visshow(N). (3.26)

:− vislpos(N1, X, Y, Z), vislpos(N2, X, Y, Z), N1! = N2. (3.27)

:− visleft(N1, N2), visshow(N1), visshow(N2), vislpos(N1, X1, _, _), (3.28)
vislpos(N2, X2, _, _), X1 >= X2, visshow(N2), vislpos(N1, X1, _, _).

:− visright(N1, N2), visshow(N1), vislpos(N2, X2, _, _), X2 >= X1. (3.29)

:− visabove(N1, N2), visshow(N1), visshow(N2), vislpos(N1, _, Y1, _), (3.30)
vislpos(N2, _, Y2, _), Y1 >= Y2.

:− visbelow(N1, N2), visshow(N1), visshow(N2), vislpos(N1, _, Y1, _), (3.31)
vislpos(N2, _, Y2, _), Y2 >= Y1.

Figure 3.7: Positioning script for DLV.

position. These elements need not be positioned by the script because it is already done so by the
user. Therefore, we use the predicate visfixed/1 to mark these elements as fixedly positioned.
Furthermore, we use the predicate visshow/1 to mark all elements which we want to layout rela-
tively to each other. Rules (3.16) to (3.22) are responsible for this task. Rule (3.23) is disjunctive
to guess a position in the logic grid for each element marked with the predicate visshow/1 and
Rule (3.24) is used if there is only one element for positioning available. Constraints (3.25)
and (3.26) make sure there is exactly one logical position for each element. Constraint (3.27)
in turn is responsible for checking that no two elements are positioned on the same cell of the
logical grid. Finally, Constraints (3.28) to (3.31) are used to make sure that the elements are
correctly aligned according to the relative positioning predicates visleft , visright , visbelow , and

3.2. SYSTEM OVERVIEW 31

visgridposX (0..15). (3.32)

visgridposY (0..15). (3.33)

visfixed(X) :− visline(X, _, _, _, _, _). (3.34)

visfixed(X) :− visposition(X, _, _, _). (3.35)

visfixed(X) :− vishide(X, _, _, _). (3.36)

visfixed(X) :− visisnode(X, _). (3.37)

visfixed(X) :− visfillgrid(_, X, _, _). (3.38)

visfixed(X) :− vislabel(_, X). (3.39)

visshow(X) :− visgraph(X), not visfixed(X). (3.40)

visshow(X) :− visgrid(X, _, _, _, _),not visfixed(X). (3.41)

visshow(X) :− visrect(X, _, _), not visfixed(X). (3.42)

visshow(X) :− visellipse(X, _, _),not visfixed(X). (3.43)

visshow(X) :− vispolygon(X, _, _, _), not visfixed(X). (3.44)

visshow(X) :− visimage(X, _), not visfixed(X). (3.45)

visshow(X) :− vistext(X, _), not visfixed(X). (3.46)

vislpos(N,X, Y, 0) :− vismoreThanOneShow , visshow(N), visgridposX (X), (3.47)
visgridposY (Y), not visfixed(N), not −vislpos(N,X, Y, 0).

−vislpos(N,X, Y, 0) :− vismoreThanOneShow , visshow(N), visgridposX (X), (3.48)
visgridposY (Y), not visfixed(N), not vislpos(N,X, Y, 0).

vismoreThanOneShow :− visshow(X), visshow(Y), X! = Y. (3.49)

vislpos(N, 0, 0, 0) :− visshow(N), not visfixed(N), not vismoreThanOneShow . (3.50)

:− visshow(N), vislpos(N,X1, Y1, Z1), (3.51)
vislpos(N,X2, Y2, Z2), X1! = X2.

:− visshow(N), vislpos(N,X1, Y1, Z1), (3.52)
vislpos(N,X2, Y2, Z2), Y1! = Y2.

:− visshow(N), vislpos(N,X1, Y1, Z1), (3.53)
vislpos(N,X2, Y2, Z2), Z1! = Z2.

:− visfixed(N), vislpos(N, _, _, _). (3.54)

:− not 1 #count{vislpos(N,X, Y, Z) : visshow(N)} 1, visshow(N). (3.55)

:− vislpos(N1, X, Y, Z), vislpos(N2, X, Y, Z), N1! = N2. (3.56)

:− visleft(N1, N2), visshow(N1), visshow(N2), vislpos(N1, X1, _, _), (3.57)
vislpos(N2, X2, _, _), X1 = X2.

:− visright(N1, N2), visshow(N1), visshow(N2), vislpos(N1, X1, _, _), (3.58)
vislpos(N2, X2, _, _), X2 >= X1.

:− visabove(N1, N2), visshow(N1), visshow(N2), vislpos(N1, _, Y1, _), (3.59)
vislpos(N2, _, Y2, _), Y1 >= Y2.

:− visbelow(N1, N2), visshow(N1), visshow(N2), vislpos(N1, _, Y1, _), (3.60)
vislpos(N2, _, Y2, _), Y2 >= Y1.

Figure 3.8: Positioning script for Gringo/Clasp.

32 CHAPTER 3. THE KARA SYSTEM

visabove.

We provide a second script for Gringo/Clasp because the syntax and meanings of certain
concepts are sometimes a bit different than for DLV (e.g., concerning aggregate functions). The
structure of the script is quite the same; in the following we give a short description.

In this script, we use two different predicates for representing the logical grid, namely
visgridposX /1 as well as visgridposY /1, which represent the possible x and y coordinate
(Facts (3.32) and (3.33)). Thus, we have also here 15 rows and 15 columns to align the ele-
ments. The next rules are the same as for the DLV script where we mark the elements as fixedly
positioned with visfixed/1 (Rules (3.34) to (3.39) or as relatively positioned with visshow/1
(Rules (3.40) to (3.46)). Rules (3.47) and (3.48) are used to make the disjunction like in the DLV
script with default negation and to guess a cell for each relatively positioned element. Next,
Rule (3.49) sets the auxiliary predicate vismoreThanOneShow/0 and checks whether there is
more than one element marked with visshow/1 (in the DLV script, we use the count aggregate
for this purpose). Rule (3.50) is only used if there is only one element for positioning. Con-
straints (3.51) to (3.53) are used to make sure that a single element has exactly one position in
the logic grid. Constraint (3.54), then, is used that no fixed elements get relatively positioned
in the logic grid. Constraint (3.55) checks that there is for every visshow/1 element a logical
position assigned in the grid, and Constraint (3.56) is used that not two different elements are
assigned to the same position in the logical grid. Finally, Constraints (3.57) to (3.60) have the
same purpose as in the DLV script.

Prior to execution with a solver, Kara internally builds I ∪ V ∪ PS , where PS stands for
one of the positioning scripts. The output of the solver can now comprise several answer sets,
which contain the position information in their encoding. Now, one answer set is selected and
post-processed by Kara, where Algorithm 2 is used to determine suitable absolute positions
for relative positioned elements. All logical position predicates vislpos/4 are extracted from
the visualisation answer set and the mapping between the logical position of the element and
the figures is stored in Figures , which is sorted first by the logical y-coordinate, second by
the x-coordinate, and lastly by the z-coordinate of the corresponding figures. Xpositions and
Ypositions are used to map the logical (x, y) position of each element to the absolute one.
The layout is constructed like a grid. For every grid position, the element with the largest
width determines the width of the cell in the grid. Furthermore, for every element, the starting
x position is determined, which can be constructed by the starting position of the preceding
element as well as the width of the preceding element. The cell of the current element is then set
to the new width, if there was not already an element at this grid cell or the element has a bigger
width than all other elements inserted before in this cell. If the width of a grid cell is changed, the
positions of all other elements following the current element must be updated with the difference
of the old width and of the width of the current element. Determining the y-coordinate for the
current cell is straightforward, because Figures is sorted according to the y-coordinate. For
every row, the maximal y-coordinate is calculated (according to the starting position of the row
and the maximal height of an element in this row) and set after the y-coordinate changed. In the
end, the calculated positions must be stored in the graphical elements properties.

3.2. SYSTEM OVERVIEW 33

Editing

Once the visualisation is done, the user may want to edit the visualisation, which can have two
reasons:

• the visualisation is incorrect; or

• generating different interpretations.

If the visualisation is incorrect, the user may want to debug the answer-set program. There
already exist several debugging approaches [19, 20, 10] where one needs the answer-set program
P as well as an interpretation I as input. Then, these debugging methods provide reasons why
the given interpretation I is not an answer set of the program P . Thus, someone may construct a
correct interpretation from the incorrect one by graphically editing its visualisation and then use
the constructed interpretation as input for a debugging tool. Of course, before the graphically
modified interpretation I ′v (which contains only visualisation predicates) can be used as an input
for a debugging tool, the corresponding interpretation I ′ must be determined from I ′v. This is
non-trivial and corresponds to an abduction task, which is explained in detail in Section 3.2.

Another use case for editing the graphical visualisation is to generate answer sets for testing
purposes. Consider, e.g., modular programming in ASP, where different modules depend on
other modules. Assume that moduleA depends on the output of moduleB, which is not finished
at the moment whereas A is already finished. In order to test module A, mock answer sets are
needed, which can be generated by using Karas editing feature.

In Kara, the editing of the graphical visualisation is implemented by using the Eclipse
Graphical Editor Framework (GEF) [28]. GEF offers a rich framework for all editing purposes
including the definition of actions as well as commands. Actions are, for instance, rendered in
the context menu of the editor whereas commands correspond directly to the elements properties
on the editor pane (e.g., size, position, creation of elements, etc.). Furthermore, every compo-
nent (in GEF referred to as EditPart) has a method named createEditPolicies which defines
the properties and possibilities of modifying those components. These editing possibilities are
activated by the occurrence of their corresponding predicates defined in Kara. All modifica-
tions the user executes on the editor pane offer a callback, which we use to keep the answer set
behind the graphical representation consistent with the user interaction in the front-end.

Abduction

In the preceding section, we described what applications the visual editing of answer sets can
have and how it is implemented in Kara. This section describes the theoretical details about the
abduction problem of the visual editing.

After the user finished editing the visualisation, the modified visualisation interpretation I ′v
is obtained from which we have to infer a corresponding interpretation I ′. We make use of
abductive reasoning techniques in order to solve this problem.

An abduction problem is defined by a logic theory T and an observationO [32]. The problem
is to find a hypothesis H which explains O, that is such that

• T ∪H is satisfiable and

34 CHAPTER 3. THE KARA SYSTEM

• T |= H → O.

In our case, the logic theory is the visualisation program V , the observation is the modified
visualisation interpretation I ′v, and the desired hypothesis is a corresponding interpretation I ′.
The visualisation program comes as input from the user and the modified visualisation inter-
pretation from Kara as it was kept consistent behind all user operations during the modifying
process of the visualisation. To infer a corresponding interpretation I ′, Kara constructs an
answer-set program λ(I ′v, V), referred to as abduction program, which is itself also an answer-
set program. The input of the abduction program is the modified visualisation interpretation (the
observation) and the visualisation program (the logic theory), and the output (with projection to
the visualisation predicates) is a corresponding interpretation I ′ (the hypothesis).

The first problem faced when inferring I ′ is that the domain of the predicates of the domain
program P must be known for rule safety. A simple approach would be to collect all constants
and function symbols of I ∪V to obtain the domain, but this would be rather inefficient, because
there can be many new constants and function symbols not needed for the abduction process
(i.e., when using auxiliary predicates, constructing new function symbols from constants of I
or deleting elements). Furthermore, if some elements are added to the visualisation interpre-
tation, the abduction program would not work any more due to missing constants or function
symbols. Thus, we chose another approach which constructs rules to compute the domain from
the modified visualisation interpretation. Moreover, there are guessing rules in λ(I ′v, V) which
use the computed domain in order to guess some atoms of the domain program P , referred to as
abducible atoms. These atoms are then used together with the visualisation program V to derive
a hypothetical interpretation I ′′v . We use two types of constraints to ensure that I ′′v coincides with
I ′v, namely:

• the modified visualisation answer set I ′v as constraints; and

• constraints to derive only atoms contained in I ′v.

The visualisation answer set is translated into constraints which ensure that all atoms con-
tained in I ′v are also derived by the abduction program (e.g., from visrect(rect , 20, 20), we
derive :− not visrect(rect , 20, 20)). Furthermore, we make use of negative constraints, which
are used that we derive no visualisation atoms which are not contained in I ′v. For these con-
straints, we use only a special set of predefined predicates Pi ⊂ Pv called integrity predicates.
We did not want to use all of the visualisation predicates because some of them need a very
high preciseness, which is often very hard and sometimes not possible to draw by hand in the
graphical editor like absolute positioned elements (e.g., visline/6, visposition/4, . . .).

Finally, by computing the answer set of the constructed answer-set program λ(I ′v, V) and
projecting it to the guessed atoms of the domain program P , we retrieve the modified interpre-
tation I ′. We assume that for each domain interpretation I , every pair I1 and I2 of answer sets
of V ∪ I ′ do not differ projected to Pi.

Now, the problem described above can be rephrased as follows:

(∗) Given a visualisation program V and an interpretation I ′v, determine an interpretation I ′

such that I ′v coincides with each answer set of V ∪ I ′ on Pi.

3.2. SYSTEM OVERVIEW 35

dom(I ′v, V) = {nonRecAbddom(t) :− vInVAS (~t′) | r ∈ V, v/m ∈ Pv, v(~t′) ∈ H(r),

a(~t) ∈ B+(r),~t = t1, . . . , t, . . . , tn, a/n /∈ Pv,

VAR(t) 6= ∅,VAR(t) ⊆ VAR(~t′)} ∪

{abddom(t):− vInVAS (~t′),nonRecAbddom(X1), . . . ,nonRecAbddom(Xl) |
r ∈ V, v/m ∈ Pv, v(~t′) ∈ H(r), a(~t) ∈ B+(r),~t = t1, . . . , t, . . . , tn,

a/n /∈ Pv,VAR(t) ∩VAR(~t′) 6= ∅,VAR(t) \VAR(~t′) = {X1, . . . , Xl}} ∪
{abddom(X) :− nonRecAbddom(X)},

guess(V) = {a(X1, . . . , Xn):− not ¬a(X1, . . . , Xn), abddom(X1), . . . , abddom(Xn),
¬a(X1, . . . , Xn):− not a(X1, . . . , Xn), abddom(X1), . . . , abddom(Xn) |a/n ∈ Pd},

check(I ′v) = {:− not v(t1, . . . , tn) | v(t1, . . . , tn) ∈ I ′v, v/n ∈ Pi} ∪
{vInVAS (t1, . . . , tn) :− | v(t1, . . . , tn) ∈ I ′v, v/n ∈ Pi} ∪
{:− v(X1, . . . , Xn),not vInVAS (X1, . . . , Xn) | v/n ∈ Pi}.

Figure 3.9: Elements of the abduction program λ(I ′v, V).

Therefore, not all visualisations can be successfully used for abduction. Consider the case of
a visualisation program depending on absolute positions, mostly constructed of visposition/4
atoms. As visposition/4 is not contained in the set Pi of integrity predicates, it will not be used
to build the check part of the abduction program and thus the inferred interpretation may not
be useful. But for most visualisations, it is easy to find a visualisation of the problem which
can be edited and afterwards I ′ can be inferred by using visualisation elements contained in Pi.
Just using relative positioning, grids and graphs, will help to create visualisations which can be
edited successfully because they are contained in Pi.

As described above, we have to determine the predicates and domains of the abducible atoms
as well as choosing the set of integrity predicates from the set of visualisation predicates. To get
the setPa of predicates of abducible atoms, we extract them from the visualisation program. The
idea behind this approach is that if the visualisation is complete, i.e., all elements are visualised
by the user, most of the predicates of the solution of the domain program P should occur some-
where in the body of the visualisation program in order to visualise all elements of the solution.
Thus, we get the set Pa by examining the body of every rule in the visualisation program V and
collecting every predicate not contained in the set of integrity predicates.

After getting the abducible atoms, we then face the problem to determine the abduction
domain Da, where we—as described above—use the visualisation program and construct rules
to identify the constants and function symbols needed for the abduction domain. Consider the
following rules:

visrect(f(Street ,Num), 9, 10) :− house(Street ,Num),
visellipse(sun,Width,Height) :− property(sun, size(Width,Height)),

where Iv consists of the following facts:

visrect(f(bakerstreet , 221b), 9, 10),
visellipse(sun, 10, 11).

36 CHAPTER 3. THE KARA SYSTEM

We do not need to include the function symbol f/2 in the domain, because it is only needed
for the visualisation. On the other hand, if we only extract the constant as well as function
symbols of I ′v, the function symbol size/2 would not be included in the abduction domain,
which means that it would not be possible to infer a corresponding interpretation I ′. The same
problem holds also for deleted elements as well as for newly created elements in the modified
visualisation. Thus, the rules of the abduction program, depicted in Figure 3.9, are used to
undergo these problems.

In the above example, the following rules would be generated to retrieve the abduction do-
main:

abddom(Street) :− visrectInVAS (f(Street , _), _, _),
abddom(Num) :− visrectInVAS (f(_,Num), _, _),

abddom(size(Width,Height)) :− visellipseInVAS (sun,Width,Height).

Thus, here we would retrieve

{bakerstreet , 221b, size(10, 11)}

as the abduction domain. Note that we have to use fresh predicates which we construct by adding
the postfix inVAS to the specific visualisation predicates which are generated in the check(I ′v)
part of Figure 3.9.

As stated above, concerning the integrity predicates Pi, we take only those predicates into
account which can be easily changed (i.e., enumerated) and which do not rely on preciseness.
Thus, we exclude elements like visposition/4, because the user would need to position the
elements such that this visualisation could be an answer set of the visualisation program. Other-
wise, I ′′v and I ′v would not coincide and thus the abduction program would not have any answer
set. But, as said before, most problems can be represented very easily for editing purposes.
Consider, for example, the Sudoku puzzle, where the task is to fill a grid with numbers such that
certain rules are fulfilled. This could be either represented by straight lines defining the different
cells where numbers should be put in or someone can define a grid where the numbers can be
changed easily and later on also a corresponding interpretation I ′ can be inferred.

Next, let us have a look at the abduction program.

Definition 3.3. Let I ′v be an interpretation with atoms over predicates in Pv, V a (visualisation)
program, and Pi ⊆ Pv the fixed set of integrity predicates. Then, the abduction program with
respect to I ′v and V is given by

λ(I ′v, V) = dom(I ′v, V) ∪ guess(V) ∪ V ∪ check(I ′v),

where dom(I ′v, V), guess(V), and check(I ′v) are given in Figure 3.9, for which

(i) nonRecAbddom/1, abddom/1, and vInVAS/n , for all v/n ∈ Pi, are fresh predicates,
where vInVAS/n results from concatenation of the visualisation predicate v with the post-
fix InVAS ,

(ii) VAR(t) denotes the variables occurring in a term (or sequence of terms) t, and

3.2. SYSTEM OVERVIEW 37

(iii) Pd is given by

Pd = {a/n | there are terms t1, . . . , tn such that a(t1, . . . , tn) ∈
⋃
r∈V

B(r) but there are

no terms t′1, . . . , t
′
n such that a(t′1, . . . , t

′
n) ∈

⋃
r∈V

H(r)} \ Pv.

The rules in program dom(I ′v, V) are used to derive the abduction domain Da. The idea
is that the body of the visualisation program mostly contains the non-visualisation predicates
while the head mostly contains the visualisation predicates fromPv which describe the graphical
representation. This information can be used to construct rules computing the abduction domain,
where the visualisation predicates used in the body of the constructed rules may be in the head of
a rule in the visualisation program and the non-visualisation predicate may only be in the body
of the rules but not in the head of a rule in V . All non-visualisation predicates occurring in the
head of a rule in V are auxiliary predicates and thus there may no domain be inferred for them.
The predicate nonRecAbddom/1 is used to avoid infinite groundings.

The next part of the abduction program is guess(V), where the atoms of the domain program
P are guessed, i.e., the abducible atoms. The output of the guessing part is I ′. Finally, check(I ′v)
contains all constraints and auxiliary facts. There are constraints which are responsible that all
atoms contained in I ′v are also contained in the hypothetical visualisation interpretation I ′′v , i.e.,
that no atom from I ′v is missing. Moreover, there are constraints which are responsible that the
abduction derives not more or other visualisation atoms as contained in I ′v. Thus, if the abduction
program successfully outputs an answer set, then I ′v coincides with I ′′v and therefore intuitively
I ′ ∪ V yields the modified visualisation interpretation I ′v.

At first sight, the computation of the abduction domain with the generated domain rules
seems to be straightforward. However, it can happen that in the domain rules not all constants
and function symbols needed for inferring I ′ are derived by the set of domain rules and con-
sequently the abduction program does not yield an answer set in such a case. Consider the
following rules:

viscolor(id1, red) :− color(id1, 1),m(1, red),
viscolor(id2, blue) :− color(id2, 2),m(2, blue).

The domain rules for this example are

nonRecAbddom(id1) :− viscolorInVAS (id1, red),
nonRecAbddom(red) :− viscolorInVAS (id1, red),
nonRecAbddom(id2) :− viscolorInVAS (id2, blue),

nonRecAbddom(blue) :− viscolorInVAS (id2, blue),
abddom(X) :− nonRecAbddom(X).

Here, the auxiliary predicate m/2 is used mapping the numbers assigned in the domain program
to colours. Since the numbers are not used in the visualisation, they cannot be calculated for the
abduction domain, and thus there cannot be any answer set of the abduction program because
the mapping is fixed but the numbers are missing in the abduction domain.

38 CHAPTER 3. THE KARA SYSTEM

For a situation as in the above example, i.e., where the abduction program has no answer set,
Kara allows the user to edit the abduction domain before the abduction program is constructed
and executed.

The following two results characterise the answer sets of the abduction program.

Theorem 3.4. Let I ′v be an interpretation with atoms over predicates in Pv, V a (visualisation)
program, and Pi ⊆ Pv the fixed set of integrity predicates. Then, any answer set I ′′v of λ(I ′v, V)
coincides with I ′v on the atoms over predicates from Pi.

Proof. Towards a contradiction, assume that I ′′v is an answer set of λ(I ′v, V) such that MI′v 6=
MI′′v , where

MI′v = {p(t1, t2, . . . , tn) ∈ I ′v | p/n ∈ Pi} and

MI′′v = {p(t1, t2, . . . , tn) ∈ I ′′v | p/n ∈ Pi}.

We have to check two cases, namely where either there is some p(t1, t2, . . . , tn) ∈ MI′v \MI′′v
or there is some p(t1, t2, . . . , tn) ∈MI′′v \MI′v .

Assume there is some p(t1, t2, . . . , tn) ∈ I ′v such that p(t1, t2, . . . , tn) /∈ I ′′v , where p ∈ Pi.
As p/n ∈ Pi, it follows that

:− not p(t1, t2, . . . , tn) ∈ check(I ′v).

Hence, p(t1, t2, . . . , tn) ∈ I ′′v because otherwise I ′′v would not be an answer set of the abduction
program. But this violates our assumption p(t1, t2, . . . , tn) /∈ I ′′v . Hence, MI′v \MI′′v = ∅, that
is, MI′v ⊆MI′′v .

Now assume that p(t1, t2, . . . , tn) ∈ I ′′v and p(t1, t2, . . . , tn) /∈ I ′v, for some p ∈ Pi. By the
definition of check(I ′v), we have

:− p(t1, t2, . . . , tn), not pInVAS (t1, t2, . . . , tn) ∈ check(I ′v),

where pInVAS is a fresh predicate and results from the concatenation of the predicate p with
the postfix InVAS .

Since p(t1, t2, . . . , tn) ∈ I ′′v , it follows that pInVAS (t1, t2, . . . , tn) ∈ I ′′v must hold. Since
pInVAS is a fresh predicate, we get that p(t1, t2, . . . , tn) ∈ I ′v. This contradicts our assumption
that p(t1, t2, . . . , tn) /∈ I ′v. Hence, MI′′v \MI′v = ∅, and so MI′′v ⊆ MI′v . Consequently, we
obtain that MI′v = MI′′v .

Theorem 3.5. Let I ′v be an interpretation with atoms over Pv, Pi ⊆ Pv the fixed set of integrity
predicates, and V a (visualisation) program such that for every I ′ with atoms over Pd, where

Pd = {a/n | there are terms t1, . . . , tn such that a(t1, . . . , tn) ∈
⋃
r∈V

B(r) but there are

no terms t′1, . . . , t
′
n such that a(t′1, . . . , t

′
n) ∈

⋃
r∈V

H(r)} \ Pv,

every two answer sets I1 and I2 of V ∪ I ′ do not differ on Pi. Then, for any answer set I ′′v of
λ(I ′v, V), a solution I ′ of the abduction problem (∗) is obtained by projecting I ′′v to the predicates
in Pd.

3.2. SYSTEM OVERVIEW 39

Proof. Consider some I ′′v ∈ AS (λ(I ′v, V)) and let I ′ be obtained by projecting I ′′v to the predi-
cates in Pd, i.e., I ′ = {p(t1, t2, . . . , tn) ∈ I ′′v | p/n ∈ Pd}. As I ′ contains only atoms already
present in I ′′v , we have that I ′′v ∈ AS (λ(I ′v, V) ∪ I ′). Furthermore, we can remove the guess
part from the abduction program because these rules construct exactly those literals which are
contained in I ′ and obtain that I ′′v ∈ AS ((λ(I ′v, V) \ guess(V)) ∪ I ′). We can moreover re-
move dom(I ′v, V) from λ(I ′v, V) \ guess(V) because this part is only needed for the guess part
of λ(I ′v, V). Hence, I ′′′v ∈ AS ((λ(I ′v, V) \ (guess(V) ∪ dom(I ′v, V))) ∪ I ′), where I ′′′v is the
projection of I ′′v to the atoms with predicate symbols dom/1 or nonRecDom/1. Lastly, we can
remove check(I ′v) from the abduction program because it only adds fresh predicates vInVAS/n
to I ′′v . Hence, we have Iivv ∈ AS ((λ(I ′v, V) \ (guess(V) ∪ dom(I ′v, V) ∪ check(I ′v))) ∪ I ′), for

Iivv = {p(t1, t2, . . . , tn) ∈ I ′′′v | p 6= vInVAS for every v ∈ Pi}.

Since λ(I ′v, V)\(guess(V)∪dom(I ′v, V)∪check(I ′v)) = V ∪I ′, we have that Iivv ∈ AS (V ∪I ′).
As Iivv coincides with I ′′v on the atoms with predicates from Pi, and since by Theorem 3.4 we
have that I ′′v coincides with I ′v on the atoms with the predicates from Pi, also Iivv coincides with
I ′v on the atoms with the predicates from Pi. Moreover, as Iivv ∈ AS (V ∪ I ′) and every two
answer sets I1 and I2 of V ∪ I ′ do not differ on Pi, I ′v coincides with each answer set of V ∪ I ′
on the atoms with predicates from Pi.

Abduction example

We illustrate the generation of the abduction program using the maze generation problem [33]. A
maze is a two-dimensional grid where every cell is either a wall or is empty and there is exactly
one entrance and one exit in the maze. The maze generation problem is the task to construct
mazes given an initial state such that the following conditions are met:

1. Each cell in an edge of the grid is a wall, except entrance and exit that are empty.

2. There is no 2× 2 square of empty cells or walls.

3. If two walls are on a diagonal of a 2× 2 square, then not both of their common neighbors
are empty.

4. No wall is completely surrounded by empty cells.

5. There is a path from the entrance to every empty cell (a path is a finite sequence of cells,
in which each cell is horizontally or vertically adjacent to the next cell in the sequence).

The maze generation problem was a benchmark for the Second and Third ASP Competi-
tion [23, 34]. An encoding of the maze generation problem is given in Figure 5.2, which is
taken from the Third ASP Competition’s web page. The output of the maze generation problem
contains the predicates wall/2 and empty/2 which must be derived by the domain program P
in order to find correct mazes.

40 CHAPTER 3. THE KARA SYSTEM

grid(X,Y) :− col(X), row(Y).

adjacent(X,Y,X, Y 1) :− grid(X,Y), Y 1 = Y + 1, row(Y 1).

adjacent(X,Y,X, Y 1) :− grid(X,Y), Y 1 = Y − 1, row(Y 1).

adjacent(X,Y,X1, Y) :− grid(X,Y), X1 = X + 1, col(X1).

adjacent(X,Y,X1, Y) :− grid(X,Y), X1 = X − 1, col(X1).

border(1, Y) :− row(Y).

border(X, 1) :− col(X).

border(X,Y) :− row(Y),maxCol(X).

border(X,Y) :− col(X),maxRow(Y).

empty(X,Y) :− inputempty(X,Y).

wall(X,Y) :− inputwall(X,Y).

wall(X,Y) ∨ empty(X,Y) :− grid(X,Y), not border(X,Y), not entrance(X,Y),

not exit(X,Y).

wall(X,Y) :− border(X,Y), not entrance(X,Y), not exit(X,Y).

empty(X,Y) :− entrance(X,Y).

empty(X,Y) :− exit(X,Y).

:− wall(X,Y),wall(X1, Y),wall(X,Y 1),wall(X1, Y 1),

X1 = X + 1, Y 1 = Y + 1.

:− empty(X,Y), empty(X1, Y), empty(X,Y 1),

empty(X1, Y 1), X1 = X + 1, Y 1 = Y + 1.

:− wall(X,Y),wall(Xp1,Yp1), empty(Xp1, Y),

empty(X,Yp1),Xp1 = X + 1,Yp1 = Y + 1.

:− wall(Xp1, Y),wall(X,Yp1), empty(X,Y),

empty(Xp1,Yp1),Xp1 = X + 1,Yp1 = Y + 1.

:− wall(X,Y), not border(X,Y),

not wallWithAdjacentWall(X,Y).

wallWithAdjacentWall(X,Y) :− wall(X,Y), adjacent(X,Y,W,Z),wall(W,Z).

reach(X,Y) :− entrance(X,Y).

reach(XX ,YY) :− adjacent(X,Y,XX ,YY), reach(X,Y), empty(XX ,YY).

:− empty(X,Y), notreach(X,Y).

Figure 3.10: An encoding of the maze generation problem.

The following rules constitute a simple visualisation program, taking for the sake of sim-
plicity only the wall/2 predicates into account:

visrect(f(X,Y), 20, 20) :− wall(X,Y). (3.61)

visbackgroundcolor(f(X,Y), black) :− wall(X,Y). (3.62)

visposition(f(X,Y), X ∗ 20, Y ∗ 20, 0) :− wall(X,Y). (3.63)

visdeletable(ID) :− visrect(ID , _, _). (3.64)

3.2. SYSTEM OVERVIEW 41

Figure 3.11: A possible visualisation of the output of the maze generation problem.

Intuitively, in Rule (3.61), we generate for every wall/2 predicate a rectangle with the newly
constructed identifier f(X,Y) and a width and height of 20 pixels. Rule (3.62) sets for every
rectangle constructed from a wall/2 predicate the background colour to black and Rule (3.63)
sets the absolute position of every rectangle on the grid. The position is calculated by the (x, y)-
coordinates of the wall on the grid and the width and height specified in the visualisation pro-
gram. Rule (3.64) defines every created rectangle of the visualisation as deletable, enabling that
the visualisation can be edited. The corresponding visualisation can be found in Figure 3.11.

An extract of the corresponding visualisation answer set looks as follows:

visbackgroundcolor(f(1, 1), black), visbackgroundcolor(f(1, 3), black), . . . ,
visdeletable(f(1, 1)), visdeletable(f(1, 3)) . . .
visposition(f(1, 1), 20, 20, 0), visposition(f(1, 3), 20, 60, 0), . . . ,
visrect(f(1, 1), 20, 20), visrect(f(1, 3), 20, 20),

Let us now edit the visualisation by deleting one or more walls in the example, e.g., the wall
at position (3, 4), and we want to infer the corresponding interpretation I ′. If inferred, it will
consist only of atoms with predicate wall/2, because that was the only predicate used in our
visualisation program.

First, we create the domain rules:

nonRecAbddom(X) :− visrectInVAS (f(X,Y), 20, 20),
nonRecAbddom(Y) :− visrectInVAS (f(X,Y), 20, 20),
nonRecAbddom(X) :− visbackgroundcolorInVAS (f(X,Y), black),
nonRecAbddom(Y) :− visbackgroundcolorInVAS (f(X,Y), black),
nonRecAbddom(X) :− vispositionInVAS (f(X,Y), X ∗ 20, Y ∗ 20, 0),
nonRecAbddom(Y) :− vispositionInVAS (f(X,Y), X ∗ 20, Y ∗ 20, 0),

abddom(X) :− nonRecAbddom(X).

Recall that we need fresh predicates (with postfix InVAS) for every used visualisation predicate.
As can be seen, for every occurrence of wall/2 in the body of the visualisation program, domain
rules are generated, and there is exactly one domain rule for every term used in the wall/2
predicate.

The next step is to define the guessing rules. As abducible atoms we have only those con-
taining the wall/2 predicate, and we get the following two guessing rules for the walls of the
grid:

wall(A,B) :− abddom(A), abddom(B),not −wall(A,B),
−wall(A,B) :− abddom(A), abddom(B),not wall(A,B).

42 CHAPTER 3. THE KARA SYSTEM

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<svg height="103" width="103" xmlns="http://www.w3.org/2000/svg">
<rect fill="black" height="20" stroke="black" width="20" x="1" y="41"/>
<rect fill="black" height="20" stroke="black" width="20" x="1" y="81"/>
<rect fill="black" height="20" stroke="black" width="20" x="41" y="81"/>
<rect fill="black" height="20" stroke="black" width="20" x="1" y="1"/>
<rect fill="black" height="20" stroke="black" width="20" x="61" y="81"/>
<rect fill="black" height="20" stroke="black" width="20" x="41" y="1"/>
<rect fill="black" height="20" stroke="black" width="20" x="81" y="61"/>
<rect fill="black" height="20" stroke="black" width="20" x="81" y="41"/>
<rect fill="black" height="20" stroke="black" width="20" x="81" y="1"/>
<rect fill="black" height="20" stroke="black" width="20" x="41" y="61"/>
<rect fill="black" height="20" stroke="black" width="20" x="61" y="1"/>
<rect fill="black" height="20" stroke="black" width="20" x="1" y="61"/>
<rect fill="black" height="20" stroke="black" width="20" x="21" y="1"/>
<rect fill="black" height="20" stroke="black" width="20" x="21" y="81"/>
<rect fill="black" height="20" stroke="black" width="20" x="41" y="21"/>
<rect fill="black" height="20" stroke="black" width="20" x="81" y="81"/>

</svg>

Figure 3.12: An SVG file for the maze generation example.

Concerning the check part of the abduction program, for this, we first turn atoms with pred-
icates from Pi contained in the visualisation answer set into constraints. In our example, this
means that we have no constraints for visdeletable/1 and visposition/4 as they are not con-
tained in Pi. Here is a short extract of three constraints from the first part of the check program:

:− not visbackgroundcolor(f(1, 1), black),
:− not visbackgroundcolor(f(1, 3), black),
:− not visrect(f(1, 1), 20, 20).

Afterwards, we need to define the facts for the fresh predicates and the remaining constraints
involving predicates from Pv and the fresh ones. Again, we only take the predicates contained
in Pi into account. A short extract for the visrect/3 predicate is as follows:

visrectInVAS (f(1, 1), 20, 20),
visrectInVAS (f(1, 3), 20, 20),

...
:− visrect(A,B,C), not visrectInVAS (A,B,C).

Finally, we add the visualisation program to the abduction program. After executing this
abduction program with a solver, we get all walls like before except for the removed one, and
thus we have successfully inferred the corresponding interpretation I ′.

Export

Kara supports exporting the graphical visualisation in the SVG format defined by the W3C [35].
The information about the rendering of the components is given by the so-called EditParts of

3.2. SYSTEM OVERVIEW 43

the GEF. Every component respectively element has a corresponding EditPart in the imple-
mentation and thus for every EditPart instance one element in the SVG is generated. An SVG
is a pure XML file and is therefore freely scalable and every tag defines an element with its
properties. Thus, an EditPart in the Java implementation corresponds to one XML tag in the
SVG file and the properties can be set accordingly. The example of the maze generation prob-
lem converted to an SVG file is depicted in Figure 3.12. Note that if the user applies images
to visualisations, like gif or png files, these cannot be directly converted to the SVG. Instead,
they are converted to the Base64 format by the internal Java implementation and then in their
encoded string representation written to the SVG file.

CHAPTER 4
Applying Kara

This chapter explains the systems features from the users view and how the Kara plug-in can
be used.

4.1 Getting started

When Eclipse is started, the first step is to install the SeaLion as well as the Kara plug-in.
At present, SeaLion and Kara are contained in a single package which can be installed using
the following URL:

http://mmdasp.sourceforge.net/sealion/update.

After the whole plug-in is installed, the answer-set programming IDE can be used including all
basic features as well as the visualisation component.

First, a new project should be created as shown in Figure 4.1. Afterwards, it can be opened
by right clicking the project and clicking on “Open Project”. A new answer-set program can
be written by creating a file by right clicking on the project and selecting “New” and “File”. A
screenshot showing part of the editor for answer-set programs is depicted in Figure 4.2, where
on the left-hand side also the project listing is given. All projects are currently open and the files
contained in the project “Test” can be seen, namely domainprog.gr and vis.gr. On the
right, the answer-set programming editor opened with file vis.gr can be seen. If the cursor
is moved over a predicate, then all occurrences of that predicate are highlighted with green
background colour whereas constants and variables are highlighted with a thin black border.

4.2 Running a solver

The plug-in is highly configurable and allows to add as many external tools as the user wants. An
external tool can be, for instance, a grounder or a solver which is needed to execute the answer-
set programs. When a new external tool is added to the plug-in configuration, the user can

45

http://mmdasp.sourceforge.net/sealion/update

46 CHAPTER 4. APPLYING KARA

Figure 4.1: The steps how to create a new project in Eclipse.

also set default options which should normally be set when invoking the grounder respectively
solver. The external tool configuration dialog can be accessed via the file menu “Window” –
“Preferences” which contains an entry on the left called “SeaLion”. Afterwards, on the right-
hand side of the dialog, the external tool configuration setup like shown in Figure 4.3 can be
seen. The figure shows that Gringo, Clasp, as well as DLV are installed, which are also
supported in parsing their answer sets whereas the output of other solvers may not be able to
be parsed by SeaLion. Note that it is nevertheless possible to execute any solver and read its
output on the console embedded in Eclipse.

Run configurations

In Eclipse, there is a feature called run configurations where one can make configurations
how a program should be executed. As Eclipse is implemented as a plug-in system, SeaLion
uses this feature to execute the answer-set programs written by the user with a specific grounder
and solver. The user creates new run configurations, where several settings can be changed. For
instance, the programs to be executed can be defined as well as the preferred solver for the exe-
cution (e.g., piped tool or DLV) and also the command line parameters for the solver. After the
parameters of the run configuration are defined, it can be executed by the user and saved with a
name. Thus, for subsequent executions, only a single click on the run configuration is required.
Figure 4.4 shows how the run configurations dialog can be accessed and how it looks like.

Furthermore, the processing strategy of answer sets can also be chosen if the user wants
to parse it. Currently, there are three processing strategies implemented in the SeaLion core,
namely

• DLV,

• Clasp, and

4.3. VISUALISATION 47

Figure 4.2: On the left-hand side: the project list; on the right-hand side: the editor with semantic
highlighting.

• ASP09.1

Interpretation view

If the user chooses no answer-set processing strategy, the output is directly forwarded to the
embedded console in Eclipse. Otherwise, if a processing strategy is chosen, the interpretation
view is used to output the answer set(s). This is a graphical tree-like visualisation of answer sets
where at the top (as the root node of the tree) the name of the answer set is given. On the second
level, the names of the predicates contained in the answer set are provided, while the third level
lists the constant and variable symbols of the predicates in the answer set.

For illustration, consider a simple domain program comprising the following rules:

book(s1, 1), (4.1)

book(s1, 3), (4.2)

book(s2, 1), (4.3)

globe(s2, 2). (4.4)

When executed with a solver like Gringo, and if the answer set is parsed by SeaLion, we get
the result shown in Figure 4.5.

So far, we described how to execute answer-set programs inside the SeaLion system. Next,
we describe how to visualise them using Kara.

4.3 Visualisation

For visualising answer sets, we need a domain program as well as a visualisation program, where
the latter is responsible for realising the graphical representation. Most often the user wants to
get the answer set for visualisation from a domain program which is executed by a solver as
described above.

1ASP09 was the output format chosen for the Second ASP Competition [23].

48 CHAPTER 4. APPLYING KARA

Figure 4.3: External tools configuration dialog.

Let us take as example the answer set shown in Figure 4.5. Given this answer set, we need to
define a mapping from this answer set to a visualisation. This can be realised by a visualisation
program comprising the following rules:

visline(shelf 1, 10, 40, 80, 40, 0), (4.5)

visline(shelf 2, 10, 80, 80, 80, 0), (4.6)

visrect(f(X,Y), 20, 8) :− book(X,Y), (4.7)

visposition(f(s1, Y), 20 ∗ Y, 20, 0) :− book(s1, Y), (4.8)

visposition(f(s2, Y), 20 ∗ Y, 60, 0) :− book(s2, Y), (4.9)

visellipse(f(X,Y), 20, 20) :− globe(X,Y), (4.10)

visposition(f(s1, Y), 20 ∗ Y, 20, 0) :− globe(s1, Y), (4.11)

visposition(f(s2, Y), 20 ∗ Y, 60, 0) :− globe(s2, Y). (4.12)

This answer-set program defines the mapping between the answer set from the interpretation
view and the graphical representation. Rules (4.5) and (4.6) take care for drawing for each shelf

4.3. VISUALISATION 49

Figure 4.4: Left: access of the run configurations; right: the run configurations dialog.

a line which represent the shelf in the graphical representation. The constants shelf 1 and shelf 2
are the identifiers of each shelf which should be unique in the visualisation program to guarantee
that the visualisation is rendered as intended. The first two arguments after the identifier define
the starting position of the line in form of (x, y)-coordinates. The next two arguments define
the end position of the line and the last argument is the z-coordinate which defines the visible
element if two of them are overlapping.

Rule (4.7) defines that every book is rendered as a rectangle. To this end, we construct a
new identifier from the shelf and row position of the book by using the function symbol f . The
first parameter after the identifier defines the height of the rectangle, whereas the last parameter
defines the width of it. Rules (4.8) and (4.9) are used to define the absolute position of the
book on the editor pane. For the x-position of the book, we multiply the logical row with 20
because every component has a width of 20, and for the y-position, we can take a fixed value
because each shelf has a fixed position on the editor pane. The z-coordinate is not relevant in
this example and thus we set it to 0.

We could use the same code used for the books also for drawing globes, but we want to
distinguish between these two. Thus, we represent globes as circles by using a diameter of 20
which is defined by Rule (4.10). The positioning of globes is exactly the same as for rectangles,
which is realised by Rules (4.11) and (4.12).

After we have written the visualisation program, we can execute the visualisation by first
selecting an answer set from the interpretation view. An interpretation can be selected by right
clicking on it and then clicking on the “Visualisation” entry as seen in Figure 4.6. Note that by
clicking on “Automatic visualisation” no visualisation program is needed and only a graphical
representation which represents the source code of the answer-set program is rendered.

After clicking on visualisation, the run configurations dialog for visualisations open which

50 CHAPTER 4. APPLYING KARA

Figure 4.5: Sample output in the interpretation view of SeaLion.

extends the run configurations dialog of the SeaLion core. On the first tab, called “Visualisa-
tion input”, the user can define the visualisation file and the interpretation which should be used
for visualisation, where the selected interpretation from the interpretation view is preselected.
The next tab, “Solver”, is the same as in the SeaLion core and is used to select the solver with
which the user wants to execute the visualisation. The only new tab is the tag for the “Position-
ing script”, which defines the script which should be used for relative positioning of elements if
the user needs it. Currently, versions for Clasp and DLV are provided. After all settings are
chosen by the user, the visualisation can be executed. In our example, we get the result depicted
in Figure 3.4.

Kara offers a wide variety of visualisation predicates and possibilities. A list with a de-
scription for each visualisation element is given in Table 3.1. Examples for the usage of these
visualisation predicates is given in Chapter 5.

In addition to the predefined visualisation predicates, there are also some predefined con-
stants in Kara for some predicates, which are given in Table 4.1. Additionally, Kara sup-
ports also numbers for color/2 and backgroundcolor/2. If numbers are used, every number is
mapped internally to a colour by Kara and the number is replaced by the corresponding colour.
Moreover, there are further constants for defining changeable properties; the full listing is given
in Table 4.2.

Visualising graph structures

Graph structures can easily be created and visualised in Kara, because the graph needs only be
defined and Kara does the positioning of the graph for the user. The nodes and connections of
a graph can be rendered individually as the user wishes to. For instance, the user can render the
nodes of a graph as rectangles, ellipses, polygons, etc. Graphical elements are defined as usual,
but additionally they are also defined as nodes, which means that the elements are prepared to
take part in a graph. The graph itself is defined via the predicate symbol graph/1 and the node
predicate needs as arguments the identifier of the element, which should be a node, as well as
the identifier of the graph in which the node should be part of.

Example 4.1. The following program renders two nodes of a graph as rectangles with a single

4.4. EDITING 51

backgroundcolor/2 blue, white, green, red, darkblue, darkgray, gray, cyan, orange,
lightblue, lightgray, lightgreen, yellow, black

color/2 blue, white, green, red, darkblue, darkgray, gray, cyan, orange,
lightblue, lightgray, lightgreen, yellow, black

vistargetdeco/2 none, arrow, arrowfilled
vissourcedeco/2 none, arrow, arrowfilled
visfontstyle/2 bold, underline, italic

Table 4.1: Predefined constants for some predicates.

connection between them:

{graph(g) :− ,

rect(a) :− ,

rect(b) :− ,

node(a, g) :− ,

node(b, g) :− ,

connect(c, a, b) :− }.

The graph is positioned automatically by Kara. ♦

Visualising grids

Similar to rendering graph structures, for visualising grids, we define the graphical elements as
usual, using a special predicate visfillgrid/4 to insert the elements into the grid. The grid itself
is defined with predicate visgrid/5, where arguments define the identifier, row count, column
count, height, as well as the width of the whole grid. The predicate visfillgrid/4 takes the
identifier of the grid and the element as argument, as well as the row and the column where to
insert the element in the grid.

Example 4.2. Let g be a grid and r a rectangle. Then, the insert in column 3 and row 3 can be
achieved by visfillgrid(g, r, 3, 3). ♦

4.4 Editing

We now describe how the editing features of Kara can be used. First, the editing possibilities of
a visualisation depend on the visualisation predicates defined in the visualisation program. The
three types of editing features supported are

• the change of properties of graphical elements,

52 CHAPTER 4. APPLYING KARA

Figure 4.6: Steps to execute the visualisation.

• the deletion of elements, and

• the creation of elements.

Changing properties

For changing properties, the user marks the properties which he or she wants to be change-
able with the visualisation predicate vischangable/2. The first argument is the identifier of the
corresponding element and the second argument is the property which should be changeable.
Table 4.2 shows which properties may be changeable if defined by the user for each graphical
element. As well, Table 4.3 lists constants which may be defined to be changeable.

If the user defines for a graphical element that some property is changeable, it can be changed
in the visualisation accordingly.

Example 4.3. The following fact defines that the background colour for some graphical element
with identifier maximus is changeable:

vischangable(maximus, backgroundcolor).

In the visualisation itself, the properties of the element can be changed by right clicking on the
specific element and selecting “Edit properties”. ♦

Changing elements in a grid

A grid can also be changed respectively edited, and thus we define so-called changeable elements
for a grid. This is realised in terms of the predicate vispossiblegridvalues/2 which takes as
arguments the identifier of the grid and the identifier of an element which can be inserted into
the grid.

4.4. EDITING 53

connection foreground colour, line width, line style, label, source decoration, target dec-
oration

ellipse foreground colour, line width, line style, label, background colour, connec-
tion, height, width

image height, width, connection
labels foreground colour, background colour, connection, font family, font size,

font style, text
line foreground colour, line width, line style, label
polygon foreground colour, background colour, connection, label, line style, line

width
rectangle foreground colour, background colour, connection, height, width, line style,

line width

Table 4.2: Properties which can be changed for each element.

Example 4.4. Let g be a grid, b a rectangle with black background colour, and y a rectangle
with yellow background colour. Then,

vispossiblegridvalues(g, b),

vispossiblegridvalues(g, y)

defines that at every position in the grid, a black or a yellow rectangle can be inserted instead of
the element which is currently available in this cell. ♦

In the user interface, the element of each grid cell can be changed by right clicking on the
corresponding element and then clicking on “Change element”. A dialog opens where the new
element can be chosen for insertion.

Deleting elements

If defined in the visualisation program, elements can also be deleted which is done with the
predicate visdeletable/1, taking only the identifier of the deletable element as argument. These
elements can be deleted in the user interface by right clicking them and choosing “Delete”.

Creating elements

Creatable elements can be defined with the predicate viscreatable/1. This predicate takes only
the identifier of the element as argument which should be creatable. All elements which are
creatable appear on the right-hand side in the “Palette” of the GEF graphical editor with their
identifier as description. They can be created by simply dragging them into the editor pane.
Kara then generates a new identifier for them.

54 CHAPTER 4. APPLYING KARA

connection connection
backgroundcolor background colour
color foreground colour
linewidth line width
fontfamily font family
text text
linestyle Line style
height height
width width
fontstyle font style
fontsize font size
sourcedeco source decoration
targetdeco target decoration
label label
color foreground colour

Table 4.3: Changeable constants.

Changing the identifier of an element

It is also possible to change the identifier of a single object if the user wants or needs to do
it. This can be achieved by right clicking the corresponding element and choosing “Change
identifier” and entering a new one.

4.5 Export

Visualisations made with Kara can also be exported in SVG format to achieve better portability
of these visualisations. There are two types of visualisations, namely export the whole visuali-
sation or export only selected parts of the visualisation.2 After clicking the export menu entry,
the user can choose the path where the exported visualisation should be stored in the file system.
If images are used in the visualisation, they are encoded in SVG using Base64 encoding such
that no references to external images are needed.

4.6 Inferring an interpretation

If we already have a visualisation and possibly changed it, a visualisation interpretation can be
obtained from the graphical editor. This is achieved by right clicking somewhere in the editor
and executing the action “Show interpretation”. Afterwards, the interpretation corresponding to
the visualisation appears in the interpretation view of SeaLion. However, this interpretation
contains only visualisation predicates and maybe also auxiliary predicates necessary for the

2They may be selected using the selection tool.

4.6. INFERRING AN INTERPRETATION 55

1

2

3

4

5

Figure 4.7: Abduction steps in Kara.

visualisation program. Now, prima facie we are not interested in the visualisation interpretation
but in the corresponding interpretation of the domain program. This can be done by inferring
this interpretation, by simply choosing the “Infer interpretation” action of the context menu.
Then, the corresponding interpretation with the domain predicates is calculated. If there is a
solution, i.e., an answer set to the abduction problem, the corresponding interpretation appears
in the interpretation view under the name “ABDUCTION”.

There is also a second possibility for inferring an interpretation. To wit, the user can specify
the abduction domain by himself or herself. This can be useful if the user, e.g., creates some
new elements and the abduction domain cannot be exactly calculated by Kara. It is possible to
list several constants as strings, but it is also possible to specify number ranges (e.g., 0-100).

A summary of the abduction steps are depicted in Figure 4.7.

CHAPTER 5
Examples

This chapter demonstrates the features of Kara by showing various examples of visualisation
programs.

5.1 Basic example

The first example is a standalone visualisation dealing with the concept of relative positioning.
We want to draw a house with a roof and on top of the house we want to draw a sun on the left
side. Here, we do not need any domain program because we write directly the visualisation lit-
erals as facts into the visualisation program. However, note that we have to join the visualisation
program with an empty interpretation in order to execute it with the Kara system.

The program consists of the following facts:

visrect(house, 20, 20), (5.1)

visbackgroundcolor(house, red), (5.2)

visellipse(sun, 15, 15), (5.3)

visbackgroundcolor(sun, yellow), (5.4)

vispolygon(roof , 0, 20, 1), (5.5)

vispolygon(roof , 10, 0, 2), (5.6)

vispolygon(roof , 20, 20, 3), (5.7)

visabove(roof , house), (5.8)

visabove(sun, house), (5.9)

visabove(sun, roof), (5.10)

visleft(sun, house), (5.11)

visleft(sun, roof). (5.12)

57

58 CHAPTER 5. EXAMPLES

Figure 5.1: Visualisation of the house example using relative positioning.

Fact (5.1) creates a new rectangle, having identifier house and a width and height of 20 pix-
els. Fact (5.2) uses the identifier house of the rectangle to set its background colour to red. Kara
offers a set of predefined colours which the user can apply as foreground and background colours
to available elements. Other colours than these predefined ones cannot be used. Fact (5.3) cre-
ates a new ellipse (actually, in our case, a circle) with a width and height of 15 pixels and,
analogously to the above, on the rectangle the background colour is set to yellow by referring
to the element with its identifier. Then we need to create an roof, which we want to draw as a
triangle which is not offered as a “ready to use” element by Kara. Thus, we create our triangle
by simply using the polygon element and define three points relatively in pixels. The polygon
element has its own canvas and therefore the points have to be defined on this canvas, but af-
terwards the canvas of the polygon can be positioned everywhere on the canvas of the whole
visualisation. Because the polygon looks different depending in what order the points of it are
connected with each other, we need also an index for every point of the polygon which specifies
the order in which the points are connected. Thus, Fact (5.5) defines the first point of the poly-
gon, the left lower point of the triangle, at position (0, 20), Fact (5.6) defines the middle upper
point, and Fact (5.7) defines the right lower point of the triangle. If these points are connected in
the given order, one obtains a triangle which can then be relative positioned on the editor pane.
The last part of the visualisation program uses relative positioning literals to draw the house with
the sun. Of course, the sun must be the topmost element, which is defined by Facts (5.9) and
(5.10), whereas the house must be under the roof which is taken care of by Fact (5.8). Finally,
we want to draw the sun as the leftmost element and thus are using Facts (5.11) and (5.12).

The visualisation of this program can be found in Figure 5.1.

5.2 Maze generation

The problem description of the maze generation problem, along with its specification as an ASP
program and a simple visualisation, was already given in Section 3.2. Here, we want to give
a more advanced visualisation of this problem as well as to discuss more features of Kara by
explaining the visualisation. We want to use a grid to visualise the maze and afterwards fill the
grid with either an empty element, a wall, an entrance, or an exit. First, let us have a look at the
important predicates for the visualisation: The output predicates are wall/2 as well as empty/2,
but for our visualisation we are also interested in entrance/2 and exit/2. Furthermore, the
encoding also includes two more predicates which are of significance for us, namely maxcol/1
and maxrow/1, which tell us the size of our grid in the visualisation. With this information
about the output predicates, we can already start writing our visualisation program.

5.2. MAZE GENERATION 59

To begin with, we define our grid:

visgrid(maze,ROW ,COL,ROW ∗20+5,COL∗20+5) :− maxcol(COL),maxrow(ROW),
visposition(maze, 0, 0, 0).

The first rule defines a grid with identifier maze and row count ROW as well as column count
COL, and a height of ROW ∗ 20 + 5 and width of COL ∗ 20 + 5. We multiply the row count by
20 because that will be the height of one rectangle respectively one image which we want to use
to fill the grid. At the end, we add 5 pixels to the whole width because we also have to consider
the border of the elements in the grid. We make the same for the width of the grid as for the
height.

After defining the grid, the next task is to define the elements which we want to place inside
the grid. Thus, we first define the empty cells as well as the cells representing the walls:

visrect(wall , 20, 20). (5.13)

visbackgroundcolor(wall , black). (5.14)

visrect(empty , 20, 20). (5.15)

Fact (5.13) has identifier wall and defines the graphical representation for all walls with a width
of 20 and a height of 20 pixels. Fact (5.14) is then used to set for all rectangles representing a
wall the background colour to black. The same as for walls is done for empty cells: they are
represented by a rectangle with a white background colour and also have width and height of 20
pixels. We do not need to set the background colour to white in this case as this is the default
background colour for all graphical elements which can be created.

After having defined how a wall and empty cells in the grid are represented by our visuali-
sation, the next step is to define how the entrance and the exit should look like. This is done as
follows:

visimage(entrance, “wlp11/vis/img/entrance.jpg”),

visscale(entrance, 17, 17),

visimage(exit , “wlp11/vis/img/exit .png”),

visscale(exit , 17, 17).

For representing the entrance and the exit, we want to use images which we saved in our project
folder. The user can take either an absolute or a relative image path, where the root folder for
the relative image path is the project root, whether the visualisation file is in a subfolder or not.
Note that the second argument of the visimage/2 predicate is a string because it can contain
special characters that should not be interpreted by the solver. The visscale/2 predicate is used
to scale images, where we scale both images in our case to a width and height of 18 pixels. We
do not take the full 20 pixels as in the case of the rectangles for walls and empty fields, because
our images have no border.

Next, we define which element to place in which cell of the grid. To this end, we use the
following rules:

60 CHAPTER 5. EXAMPLES

Figure 5.2: An advanced visualisation of the maze generation example with walls, empty fields,
an entrance, and an exit.

visfillgrid(maze, empty , Y,X) :− empty(X,Y),

visfillgrid(maze,wall , Y,X) :− wall(X,Y),

visfillgrid(maze, entrance, Y,X) :− entrance(X,Y),

visfillgrid(maze, exit , Y,X) :− exit(X,Y).

The predicate visfillgrid/4 is used to fill a grid, where

• the first parameter is the identifier of the grid which should be filled,

• the second parameter is the identifier of an element which should be placed on the grid,

• the third parameter defines the column of the grid, and

• the fourth parameter defines the row of the grid.

We need four rules in order to fill the maze with all elements; one rule for each element.
Finally, we add four more facts in order to enable the modification of the visualisation; in

particular, we want to change elements in our maze (e.g., change an empty field into a wall):

vispossiblegridvalues(maze,wall),

vispossiblegridvalues(maze, empty),

vispossiblegridvalues(maze, entrance),

vispossiblegridvalues(maze, exit).

The facts allow that all cells in our maze can be changed with either a wall, an empty field, an
entrance, or an exit.

5.3. GRAPH COLOURING 61

Putting all parts together and visualising a maze interpretation with this visualisation pro-
gram, we get the visualisation shown in Figure 5.2.

Assume now that we want to change the visual representation of the maze and afterwards
infer the corresponding interpretation I ′ of the modified visualisation interpretation I ′v. To this
end, we perform the steps shown in Figure 4.7. When the user right clicks on some cell of the
maze, the context menu for operations are shown. It contains the following entries:

• The delete entry is only shown if the element on which the user clicked is annotated in the
visualisation answer set with the predicate visdeletable/1.

• The “edit properties” action is only activated if the selected element has some properties
marked as changeable by the visualisation answer set.

• The next entry is the one which will be used to change the element in the maze from a
wall to an empty field.

• “Show interpretation” puts the visualisation answer set to the SeaLion visualisation
view, and the “infer interpretation” action will be discussed later on.

• The last two entries are for exporting the current visualisation into SVG format. Either
the whole visualisation can be exported or only the currently selected parts of it.

If we click on the “change element” button, a dialog opens and shows which elements can
be inserted into a grid on the selected position and the current element be removed. The
element names shown in this dialog correspond to the elements which we specified via the
vispossiblegridvalues/2 predicate. Let us, for example, change the element on an empty field
and move forward to step three where we can see that the wall on the second row and the fifth
column is now empty. Then we want to infer the corresponding interpretation to the modified
visualisation interpretation and thus we press “infer interpretation” on the context menu which
automatically infers the interpretation without prompting for any user input. If the abduction
was successful, the user finds the inferred interpretation in the interpretation view of SeaLion
under the name “ABDUCTION”. The other entry, “infer interpretation (specify domain)”, auto-
matically computes the domain for the inferring process and allows the user to edit the computed
domain before constructing the whole abduction program; see Section 3.2 for details when this
is necessary.

5.3 Graph colouring

The following example, the graph colouring problem, illustrates how Kara automatically cal-
culates the layout of a graph such that the user may not worry about positioning every node and
edge of the graph.

The graph colouring problem is the following task: Given a graph, i.e., a collection of nodes
and a symmetric, binary relation on nodes, and a set of n colours, assign each node a colour
such that any two nodes that are linked together have not the same colour.

62 CHAPTER 5. EXAMPLES

First, let us have a look at a domain program solving this problem (in Gringo syntax) for
n = 3:

#const n = 3. (5.16)

1 {color(X, 1..n)} 1 :− node(X). (5.17)

:− edge(X,Y), color(X,C), color(Y,C). (5.18)

Rule (5.17) assigns every node exactly one colour and Rule (5.18) checks that all adjacent
nodes have different colours. The input instance for our example is the following:

node(1..6). (5.19)

edge(3, 5). edge(3, 6). edge(3, 1). edge(3, 4). edge(5, 6). edge(5, 2). (5.20)

edge(5, 4). edge(2, 4). edge(2, 1). edge(2, 6). edge(4, 1). (5.21)

The output of the domain program is the predicate color/2, where the first argument is the
identifier of the node and second is the colour of the node given as an integer. Furthermore, we
retrieve information about the graph via the predicates node/1 and edge/2, for which we need
to define graphical elements for drawing the graph. With this information, we can define the
following visualisation program:

visgraph(g), (5.22)

visisnode(X, g) :− node(X), (5.23)

visellipse(X, 20, 20) :− node(X), (5.24)

vislabel(X, l(X)) :− node(X), (5.25)

vistext(l(X), X) :− node(X), (5.26)

visfontstyle(l(X), bold) :− node(X), (5.27)

visbackgroundcolor(X,COLOR) :− node(X), color(X,COLOR), (5.28)

visconnect(f(X,Y), X, Y) :− edge(X,Y). (5.29)

Fact (5.22) defines a graph with identifier g which is later used to assign nodes to a spe-
cific graph. Rule (5.23) defines every input node as a node in the visualisation using predicate
visisnode/2, where the first parameter is the identifier of the node and second one references the
identifier of a graph. Note that predicate visisnode/2 defines nothing for rendering the element
but that this element with its identifier belongs to a specific graph. The form with which the
element is rendered is defined as usual by predicates like visrect/2 and visellipse/2 such that it
is necessary for every node defined with the predicate visisnode/2 to define also the form with
which it is rendered. Rule (5.24) defines that every node is rendered as an ellipse (in our specific
case, it is a circle), and Rules (5.25), (5.26), as well as (5.27) are used to assign a label to each
node. The predicate vislabel/2 references with its first argument the element to which the label
is assigned and the second argument references a text node which defines the content of the
label. The predicate vistext/2 defines with its second argument the content of label, which can
be a string, and therefore it can have any possible text value and is not interpreted by the solver.
To make the label for the nodes better visible, we want to draw it with bold font style which is

5.4. 15-PUZZLE 63

5

3

1

2

46

Figure 5.3: Custom visualisation of the graph colouring example.

achieved by using predicate visfontstyle/2, which is similar to viscolor/2 because the second
argument is also a predefined constant by Kara, meaning that values other than the ones defined
by Kara are not accepted. Rule (5.28) sets the background colour of each node in accord with
the colour assignment we get from the answer set of the domain program. Here, we have the
nice feature that predicate visbackgroundcolor/2 does not only take names of colours as argu-
ments but also natural numbers. This is because Kara internally maintains a colour table and
the colour corresponding to a natural number is then chosen for visualisation. Thus, the numbers
as outputted by the domain program may not be mapped to colour names. Rule (5.29) creates
the edges of the nodes with predicate visconnect/3, where the first argument is a newly cre-
ated identifier using a function symbol having as argument the two nodes which are connected
with each other. The second argument is the source of the edge and the last one is the target
of the edge. Note that there are also further predicates which can set the source and the target
decoration of an edge (see Table 3.1).

As stated above, we do not make use of any absolute positioning; the whole graph is auto-
matically positioned by Kara. The final visualisation can be found in Figure 5.3.

5.4 15-puzzle

The problem of solving the 15-puzzle, taken from the Second ASP competition [23], is defined
as follows: Given a 4× 4 grid containing numbers 1 to 15 and one blank, the goal is to arrange
the numbers from their initial configuration to a goal configuration by swapping one number at
a time with its adjacent blank position. Let (x, y) be the coordinates of a number on the grid and
(i, j) those of the blank. Then, (x, y) and (i, j) are adjacent if |x− i|+ |y − j| = 1.

Following the guidelines of the Second ASP competition, encodings of the problem use the
following input and output predicates (different encodings for the 15-puzzle can be found on
the web page of the competition): Predicate entry/1 defines a single field on the 15-puzzle (the

64 CHAPTER 5. EXAMPLES

visrect(b(ENTRY), 20, 20) :− entry(ENTRY). (5.30)

vislabel(b(ENTRY), bt(ENTRY)) :− entry(ENTRY). (5.31)

vistext(bt(ENTRY),ENTRY) :− entry(ENTRY). (5.32)

visfontsize(ID , 10) :− vistext(ID , _). (5.33)

visgrid(g(T), 4, 4, 85, 85) :− time(T). (5.34)

visfillgrid(g(0), b(ENTRY), X, Y) :− in0(X,Y,ENTRY). (5.35)

visleft(g(X), g(Y)) :− visgrid(g(X), _, _, _, _), (5.36)

visgrid(g(Y), _, _, _, _), Y = X + 1. (5.37)

visfillgrid(g(T), b(ENTRY), X, Y) :− not move(TB , X, Y), (5.38)

T = TB + 1, (5.39)

visfillgrid(g(TB), b(ENTRY), X, Y), (5.40)

ENTRY ! = 0, time(T). (5.41)

visfillgrid(g(T), b(ENTRY), X, Y) :− not move(TB , X, Y), (5.42)

T = TB + 1, (5.43)

visfillgrid(g(TB), r(TB ,ENTRY), X, Y), (5.44)

ENTRY ! = 0, time(T). (5.45)

visfillgrid(g(T), b(0), X, Y) :− move(TB , X, Y),T = TB + 1. (5.46)

visfillgrid(g(T), r(T ,ENTRY), X, Y) :− T = TB + 1, visfillgrid(g(TB), b(0), X, Y), (5.47)

move(TB , X1, Y 1), (5.48)

visfillgrid(g(TB), b(ENTRY), X1, Y 1). (5.49)

visrect(r(T ,ENTRY), 20, 20) :− visfillgrid(_, r(T ,ENTRY), _, _). (5.50)

vistext(rt(T ,ENTRY),ENTRY) :− visrect(r(T ,ENTRY), _, _). (5.51)

vislabel(r(T ,ENTRY), rt(T ,ENTRY)) :− visrect(r(T ,ENTRY), _, _). (5.52)

viscolor(rt(T ,ENTRY), red) :− vistext(rt(T ,ENTRY), _). (5.53)

Figure 5.4: Visualisation program of the 15-puzzle.

numbers 1 to 15 are defined with this predicate) where 0 denotes the blank. The predicate pos/1
defines the possible values for the x and y position of the fields. The maximum number of steps
is given by predicate maxtime/1 and for every time point one atom exists with predicate time/1.
Finally, predicate symbol in0/3 has as its arguments the (x , y) position and the corresponding
field as its last argument.

The output of the solution is given by atoms with predicate symbol move/3 having the time
stamp as its first argument and the row and column position of the element which should be
moved with the blank as the second and third argument, respectively. At the end, either the
maximum time is reached or the problem instance is solved.

The intent of the visualisation is to show every step for obtaining the solution, i.e., every
move which has to be taken in order to reach the problem solution that all numbers are in as-
cending order on the puzzle. Thus, we use multiple grids in a row on the visualisation, employing

5.4. 15-PUZZLE 65

1 2 3 0

4 5 6 7

8 9 10 11

12 13 14 15

1 2 3 7

4 5 0 11

8 9 6 15

12 13 10 14

1 2 0 3

4 5 6 7

8 9 10 11

12 13 14 15

1 2 3 7

4 5 6 11

8 9 0 15

12 13 10 14

1 2 3 7

4 5 6 11

8 9 10 15

12 13 0 14

1 0 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

1 2 3 7

4 5 6 0

8 9 10 11

12 13 14 15

1 2 3 7

4 5 6 11

8 9 10 15

12 13 14 0

1 2 3 7

4 5 6 11

8 9 10 0

12 13 14 15

1 2 0 7

4 5 3 11

8 9 6 15

12 13 10 14

Figure 5.5: Visualisation of the 15-puzzle.

relative positioning to keep the movements in correct order left to each other. The visualisation
program for the 15-puzzle is depicted in Figure 5.4.

For every field of the 15-puzzle, we create one rectangle which is done by Rule (5.30). These
rectangles are a label in Rule (5.31) with their number as text representation in Rule (5.32). For
every text on our visualisation, we set the font size to 10 pixels which is done by Rule (5.33).

After defining the representation of every single field in our graphical representation, we
define the grids such that for every time point we use a single grid representing the current state
of the puzzle at this time point. This is done by Rule (5.34), where we define for each time
point a grid with four columns and four rows, and with a width and height of 85 pixels. We
use the function symbol g/1 in conjunction with the number of the time point to create the
identifier of the grid. Rule (5.35) constructs the initial grid g(0) from the input predicate in0/3
and refers to the rectangles visualising the fields of the puzzle with function symbol b/1. With
Rule (5.36) we define the relative positioning of our grids using predicate symbol visleft/2.
Rule (5.38) copies all fields which were not moved to the grid of the next time point using
predicate symbol visfillgrid/4. Of course, the blank is not copied because it is moved on every
time point. Rule (5.42) performs exactly the same copy task as the previous rule but only for
red-coloured labels because they have another identifier and should now be converted to a black
label as they have not changed in this time step. Rule (5.46) is used to move the blank field
in the new grid to the position where the moved element was. This can be seen because of the
function b(0), where 0 is referred to the blank as stated above. Now, the last step is to move the
entry, which is defined by predicate move/3, to the position where the blank was. This task is
done by Rule (5.47), where we use as in the previous rule also the function b(0) to refer to the
blank. The last rules are only used to define the red labels for those entries which have changed
at some time point. We introduce two function symbols to this end, namely r/1 to refer to the
rectangle and rt/1 to refer to the text associated to the rectangle. Rule (5.50) is used to create
the rectangle with the new function symbol whereas Rule (5.51) is used to create the text for
this rectangle. Moreover, Rule (5.52) defines the association of the text to the rectangle using
predicate symbol vislabel/2. Finally, Rule (5.53) is used to set the colour of the new created text
to red to indicate that this entry has moved in the current time point.

The visualisation of the 15-puzzle using this visualisation program is depicted in Figure 5.5.

CHAPTER 6
Related work

Kara follows the approach of the two tools ASPVIZ [22] and IDPDraw [21], which we exam-
ine in what follows. To this end, we give a simple example visualisation of a maze which we use
to compare with equivalent visualisations written with ASPVIZ and IDPDraw. Recall that the
problem description for the maze generation problem is given in Section 3.2. The visualisation
program written in Kara looks as follows:

visrect(f (X,Y), 20, 20) :− wall(X,Y), (6.1)

visbackgroundcolor(f (X,Y), black) :− wall(X,Y), (6.2)

visposition(f (X,Y), X ∗ 20, Y ∗ 20, 0) :− wall(X,Y). (6.3)

Rule (6.1) creates a rectangle for every wall in the maze encoding and Rule (6.2) sets the
background colour of the walls to black. Finally, Rule (6.3) sets the position of the rectangles
according to the logical position encoded in the answer set. The visualisation output of this short
visualisation program is given in Figure 3.1.

6.1 ASPVIZ

ASPVIZ was developed at the University of Bath and can produce graphical representations
from answer sets. In ASPVIZ, a special visualisation program V is used to map the atoms of
the answer set to a graphical representation. V is an answer-set program and contains dedicated
visualisation predicates, which is also implemented in Kara this way. However, the visuali-
sation predicates of the two tools are different. ASPVIZ uses brushes to define properties on
elements (e.g., background colour, font weight, etc.), whereas Kara assigns properties directly
to the elements themselves. Both ASPVIZ and Kara use identifiers to refer to the brush (in
ASPVIZ) respectively the element (in Kara). In ASPVIZ, the created brushes may be assigned
to some elements, whereas in Kara, the identifier of the elements are used to assign special visu-
alisation properties of the elements. Furthermore, Kara supports more visualisation predicates

67

68 CHAPTER 6. RELATED WORK

scale_canvas(7, 7). (6.4)

color(white, rgb(255, 255, 255)). (6.5)

color(black , rgb(0, 0, 0)). (6.6)

brush(bwhite). (6.7)

brush_color(bwhite,white). (6.8)

brush_width(bwhite, 1). (6.9)

brush(bblack). (6.10)

brush_color(bblack , black). (6.11)

brush_width(bblack , 1). (6.12)

draw_rect(bwhite, p((X − 1) ∗ 20, (Y − 1) ∗ 20), 20, 20) :− empty(X,Y). (6.13)

fill_rect(bblack , black , p((X − 1) ∗ 20, (Y − 1) ∗ 20), 20, 20) :− wall(X,Y). (6.14)

Figure 6.1: A visualisation program for maze generation in ASPVIZ.

than ASPVIZ to make it easier for the user to define the graphical visualisation of the prob-
lem. Examples are the relative positioning of elements, definition of graphs, where the layout
is calculated automatically, as well as grids, where the content of each cell can be defined sepa-
rately. ASPVIZ supports also the creation of animations by using a special predicate frame/1,
which takes a natural number as argument. The visualisation program may create many answer
sets which are ordered by ASPVIZ according to their frame number and are then displayed in
this order by the animation. ASPVIZ exports every graphical visualisation into SVG files and
therefore does not support the editing of its visualisations, whereas Kara displays the graphical
visualisation in a graphical editor where it can be manipulated. Kara also supports exporting the
created graphical representation into SVG, even when only parts of the graphical representation
are selected. Kara is integrated in Eclipse and therefore can be executed graphically, whereas
ASPVIZ is a command-line tool. Also, the generic visualisation of Kara is not available in
ASPVIZ. This kind of visualisation renders a hypergraph of the answer-set program written by
the user according to its syntactic structure, which cannot be edited.

Both tools are written in Java, where Kara is written within the Eclipse plugin framework
(PDE), and thus are platform independent. Kara supports also a z-index defining which ele-
ment is shown in case two elements are overlapping. This is not implemented in ASPVIZ, but
there is a new version, ASPVIZ-3D, which supports 3-dimensional objects and animations of
them. ASPVIZ supports colours with their RGB value, where a function symbol rgb/3 is used
for representing colours, whereas in Kara full names (e.g., red, blue, green etc.) or integers
(internally mapped to the available colours in Kara) can be used to this end. ASPVIZ uses no
prefix to their visualisation predicates, which can be problematic due to possible name clashes,
while Kara uses the prefix vis to all its available visualisation predicates.

An example visualisation program for the maze generation problem using ASPVIZ syntax
is depicted in Figure 6.1. Here, the visualisation program looks slightly different. First, we have
to scale the canvas1 in order to correctly fit the maze into the graphical output (cf. Fact (6.4)).

1The area where the output fits in is called canvas.

6.2. IDPDRAW 69

Next, the RGB values for the two colours black and white are defined by Facts (6.5) and (6.6).
In contrast to Kara, in ASPVIZ we do not set properties on objects but define brushes, which
set the line style, colour, etc., of the objects. Here, we define two brushes, a black one and a
white one, where we need the white brush for drawing the empty fields and the black brush for
drawing the walls. Fact (6.7) defines first that the constant bwhite is referred to as a brush, and
Fact (6.8) defines that the colour of the brush is white. With Fact (6.9) we state that the line
width associated to the brush has a width of 1, the thinnest value. The same is done for the black
brush which is defined by Facts (6.10) to (6.12). Rule (6.13) renders an empty rectangle with
white border colour for every empty cell in the input interpretation, whereas Rule (6.14) states
that for every wall in the input interpretation a black rectangle is drawn.

6.2 IDPDraw

IDPDraw also uses a visualisation program with special dedicated predicates to create the vi-
sualisation of an answer set of a given domain program. However, IDPDraw does not support
parsing the output of various solvers directly, thus their output must be post-processed (e.g., the
tool sed2 may be used in order for IDPDraw to correctly parse the output). IDPDraw has
another kind of identifiers: As in Kara, IDPDraw uses identifiers for elements, but they are
constructed with multiple arguments at the beginning of the predicate instead of using only the
first argument as is realised in Kara3. IDPDraw neither supports elements like graphs and
grids automatically nor relative positioning. However, graphs and grids can be constructed by
using other (simpler) elements, but it is much more difficult than in Kara. As ASPVIZ, also
IDPDraw supports animations of visualisations, which are played in the graphical user interface
of the tool instead of constructing an animated SVG. The animations are produced by using the
predicates with a postfix “_t” and an additional time argument in the respective atom.

IDPDraw is written in C++ based on the QT framework [36] and is thus platform inde-
pendent, because QT offers a cross-platform application development. In contrast to Kara,
IDPDraw only supports the use of RGB colours. Both tools offer support for a z-index, defining
which elements are shown if two or more of them are overlapping. The editing of visualisations
and inferring the corresponding interpretation of the graphical representation is not supported
by the user interface of IDPDraw as it is supported by Kara. Also, the generic visualisation
feature of Kara is not supported by IDPDraw.

The following program is a visualisation for the maze generation problem in IDPDraw:

idpd_polygon(4, R, C, 0, 0, 1, 0, 1, 1, 0, 1) :− wall(R,C), (6.15)

idpd_xpos(R,C,R− 1) :− row(R), col(C), (6.16)

idpd_ypos(R,C,C − 1) :− row(R), col(C), (6.17)

idpd_color(R,C, 0, 0, 0) :− wall(R,C). (6.18)

In IDPDraw, the background colour is automatically set to white, so it is the best strategy to
create polygons with black background colour to render the walls. In Rule (6.15), the polygons

2http://unixhelp.ed.ac.uk/CGI/man-cgi?sed.
3For generating elements, function symbols may be used.

http://unixhelp.ed.ac.uk/CGI/man-cgi?sed

70 CHAPTER 6. RELATED WORK

are created to represent walls. The first parameter of idp_polygon is the number of vertices
of the polygon, the second and third build the identifier of the object together. Note that the
identifier can be as long as the user wants and thus the predicates can have variable length. The
next arguments of idp_polyogon specify the relative position of each corner of the polygon. As
can be seen, a rectangle is created. In contrast to Kara, IDPDraw uses a separate predicate
for absolute positioning of the elements for every axis. The x-position is set by Rule (6.16)
and the y-position is set by Rule (6.17). The visibility of overlapping elements is controlled in
IDPDraw via predicate idpd_depth which is equivalent to the z-axis in Kara. Rule (6.18) is
used to set a black background colour on all wall elements in the visualisation.

6.3 Lonsdaleite

Another visualisation tool is Lonsdaleite [37], which is specialised to visualise graphs re-
spectively graph structures. Thus, it only supports rendering a problem in a graph structure, but
not other elements as it is possible in ASPVIZ, IDPDraw, and Kara. Lonsdaleite is a very
lightweight tool, consisting only of one Python source file, as it only depends on Python installed
on the target system. The tool renders the graph structure with the support of graphviz4,
where each atom interpreted by Lonsdaleite is mapped to some graphviz setting or prop-
erty and nearly all graphviz settings are supported. Atoms belonging to the dedicated visuali-
sation predicates of Lonsdaleite are prefixed with “graphviz_”, which helps avoiding name
clashes with the domain program. Actually, even the graphviz library need not be available
on the user’s system, because Lonsdaleite offers the possibility to render the visualisation
in a web-browser using the graphviz chart API of Google.

6.4 APE

There exists also an earlier visualisation approach of answer-set programs as a dependency
graph. It is part of an answer-set programming IDE toolset implemented as an Eclipse plu-
gin, called APE [38]. APE uses also the graphical editor framework of Eclipse and GEFs default
user interface framework Draw2d for the visualisation itself. To automatically generate the
graph and its layout, APE relies on the graph drawing component of the Draw2d library, as is
also implemented in Kara.

6.5 DPVis

DPVis [26] is a tool for visualising SAT instances, which displays the SAT problems as variable
interaction graphs as well as resolution graphs. DPVis does not only show static visualisations
of SAT instances, but also shows animations of the change of the problem structure during
the run of the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [39]. DPVis is written
in Java and relies on the yWorks5 graph-layouting framework (recall that Kara uses the

4http://www.graphviz.org/.
5http://www.yworks.com.

http://www.graphviz.org/
http://www.yworks.com

6.6. ALLOY 71

Draw2d graph-layouting framework). Furthermore, DPVis uses the MiniSat solver6 to cal-
culate the solutions to the SAT instances. The user is able to display a partial search tree, which
can be navigated freely, and may zoom as well as set the states of various variables manually.

There is also a variant of DPVis, called 3DVis [26], which supports three-dimensional
visualisations of SAT instances. 3DVis is implemented in C++ using OpenGL and uses the
force-directed graph-drawing algorithm [40] for the three-dimensional visualisation of the SAT
instances. DPVis is platform independent whereas 3DVis only supports Windows and MacOS.

6.6 Alloy

Another tool for visualisation of finite structures is Alloy [25], which features a kind of first-
order language. The user is able to define objects represented as signatures, which can have
properties (e.g., relationships to other objects). By using facts and assertions, the user is able to
define constraints on the structure. Moreover, predicates allow to define instances of the objects
which can be executed afterwards. Signatures are represented as nodes and their relationships
are represented as edges. Thus, the visualisation itself is encoded in the user-defined structure
itself and there is no need for writing any visualisation program. However, this relies on the fact
that the visualisation of those structures is limited to very basic graph-layouts.

If an instance is executed by Alloy, it is checked for consistency. If it is consistent, a model
will be given, otherwise a counterexample is provided. Alloy does not only support graphical
visualisations in its own editor but also allows the user to export the visualisation in DOT or
XML language as well as PNG and PDF.

Further features include syntax highlighting, modularisation of source files, as well as the
ability to configure the SAT solver in the background. The graphical visualisation can be cus-
tomised (but not edited) by the user (e.g., changing the layout or projection of objects and prop-
erties). An example of an Alloy module is the following [25]:

module tour/addressBook2a

abstract sig Target { }
sig Addr extends Target { }
abstract sig Name extends Target { }

sig Alias, Group extends Name { }

sig Book {
addr: Name->Target
}

pred show [b:Book] { some b.addr }

run show for 3 but 1 Book

6http://minisat.se/.

http://minisat.se/

72 CHAPTER 6. RELATED WORK

In Alloy, one can define modules and use them in terms of the keyword import. In
this example, a new module is created with the name tour/addressBook2a. Furthermore,
types are defined using the keyword sig, and subtypes can be created by extending an existing
signature. Attributes of the signatures can be defined within the brackets of the type definition.
Predicates defined with keyword pred are instances of the signatures. In the example above, the
keyword some is used, which refers to a quantifier and means one or more. The run command
is used to execute predicate or functions.

CHAPTER 7
Conclusion

In this work, we presented the tool Kara for visualising and visual editing of answer sets. The
visualisation of answer sets is an important task because the text representation of answer sets
is very cumbersome for humans to be interpreted and checked for correctness. We believe that
visualisations as presented in this work are helpful for a better understanding of the solver output.
Indeed, in most cases, the programmer is able to immediately see whether a solution is correct
or not.

It is a very important property for visualisation tools to have a very easy and fast way to
write visualisation programs such that visualising answer sets is not a time-consuming task for
the user of these visualisation tools. The programmer should focus on the implementation of the
domain program but not on writing visualisations. Kara aims to fulfill this by offering a wide
range of visualisation predicates, the use of identifiers and relative positioning, and the use of
automatically positioned elements. As presented in this thesis, if the user only wants to write a
short visualisation to the problem at hand, he or she can do so, as seen, e.g., by the visualisation
of the maze generation problem which only needs three rules to obtain a visualisation.

The use of identifiers allows to directly refer to each element in the program and set prop-
erties on it such that the user may not give details about all parameters on element creation.
Relative positioning and the predicates for graphs and grids help the user in positioning the
elements in the visualisation without the need to worry about their absolute positions.

A new feature currently not implemented in related tools is the possibility to edit a visu-
alisation, which paves the way for new methods to debug and test answer-set programs. In
case of visualisations of incorrect, i.e., unintended, answer sets, the visualisation can be edited
graphically and then a corresponding, corrected interpretation computed. On the other hand, vi-
sualisations can also be used for generating interpretations which can be of interest if one needs
answer sets for testing post-processing tools or in modular programming to test a module before
other required modules are available.

Kara is implemented within the Eclipse framework, one of the currently most used IDEs for
Java programming, and depends on the SeaLion system. Eclipse offers many plugins, and
thus many programmers are familiar with this IDE, which is in turn beneficial for Kara. Also,

73

74 CHAPTER 7. CONCLUSION

looking at portability of visualisations, Kara offers an SVG export function for all graphical
problem representations.

Although Kara offers a convenient way to realise visualisations, it has to be evaluated fur-
ther as far as usability is concerned. Moreover, concerning future work, a possibility would be
the creation of a command-line version of Kara without the editing feature in order to get fast
visualisations without the use of the Eclipse IDE and which would make it possible to have batch
visualisations to visualise multiple answer sets of a program. Also, for some domain programs,
it might be beneficial to visualise both the input as well as the output, and perhaps bind both
visualisations to each other such that if one is modified the other one changes accordingly. An-
other consideration is the implementation of predicate signatures which would ease the domain
computation in the abduction program. However, this should be implemented in the SeaLion
core as this feature can also be used by the core itself as well as by other plugins integrated in
the SeaLion system.

Bibliography

[1] Christian Kloimüllner, Johannes Oetsch, Jörg Pührer, and Hans Tompits. Kara: A system
for visualising and visual editing of interpretations for answer-set programs. In Proceed-
ings of the 19th International Conference on Applications of Declarative Programming
and Knowledge Management (INAP 2011) and the 25th Workshop on Logic Programming
(WLP 2011), pages 152–164, 1843-11-06, 2011. INFSYS Research Report, Technische
Universität Wien.

[2] Thomas Eiter, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits. Combining
answer set programming with description logics for the semantic web. Artificial Intelli-
gence, 172(12-13):1495–1539, 2008.

[3] Riccardo Rosati. DL+log: Tight integration of description logics and disjunctive datalog.
In Proceedings of the 10th International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR 2006), pages 68–78. AAAI Press, 2006.

[4] Georg Boenn, Martin Brain, Marina De Vos, and John Fitch. Automatic composition of
melodic and harmonic music by answer set programming. In Proceedings of the 24th
International Conference on Logic Programming (ICLP 2008), volume 5366 of Lecture
Notes in Computer Science, pages 160–174. Springer, 2008.

[5] Salvatore Maria Ielpa, Salvatore Iiritano, Nicola Leone, and Francesco Ricca. An ASP-
based system for e-tourism. In Proceedings of the 10th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR 2009), volume 5753 of Lecture
Notes in Computer Science, pages 368–381. Springer, 2009.

[6] Esra Erdem and Elisabeth R. M. Tillier. Genome rearrangement and planning. In Pro-
ceedings of the 20th National Conference on Artificial Intelligence (AAAI 2005), pages
1139–1144, 2005.

[7] Esra Erdem, Vladimir Lifschitz, and Donald Ringe. Temporal phylogenetic networks and
logic programming. Theory and Practice of Logic Programming, 6(5):539–558, 2006.

[8] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. clasp: A
conflict-driven answer set solver. In Proceedings of the 9th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR 2007), pages 260–265.
Springer, 2007.

75

76 BIBLIOGRAPHY

[9] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The DLV System for Knowledge Representation and Reasoning.
ACM Transactions on Computational Logic, 7(3):499–562, 2006.

[10] Johannes Oetsch, Jörg Pührer, and Hans Tompits. Catching the Ouroboros: On debug-
ging non-ground answer-set programs. Theory and Practice of Logic Programming, 10(4-
6):513–529, 2010.

[11] Johannes Oetsch, Jörg Pührer, and Hans Tompits. Stepping through an answer-set pro-
gram. In Proceedings of the 11th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2011), volume 6645 of Lecture Notes in Computer
Science, pages 134–147. Springer, 2011.

[12] Martin Brain and Marina De Vos. Debugging logic programs under the answer set seman-
tics. In Proceedings of the 3rd International Workshop on Answer Set Programming (ASP
2005), volume 142 of CEUR Workshop Proceedings, 2005.

[13] Tommi Syrjänen. Debugging inconsistent answer set programs. In Proceedings of the 11th
International Workshop on Non-Monotonic Reasoning (NMR 2006), pages 77–84, Lake
District, UK, May 2006.

[14] Tomi Janhunen, Ilkka Niemelä, Johannes Oetsch, Jörg Pührer, and Hans Tompits. On
testing answer-set programs. In Proceedings of the 19th European Conference on Artificial
Intelligence (ECAI 2010), pages 951–956, 2010.

[15] Tomi Janhunen, Ilkka Niemelä, Johannes Oetsch, Jörg Pührer, and Hans Tompits. Random
vs. structure-based testing of answer-set programs: An experimental comparison. In Pro-
ceedings of the 11th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR 2011), volume 6645 of Lecture Notes in Computer Science, pages
242–247. Springer, 2011.

[16] Tomi Janhunen, Emilia Oikarinen, Hans Tompits, and Stefan Woltran. Modularity aspects
of disjunctive stable models. Journal of Artificial Intelligence Research, 35:813–857, 2009.

[17] Tomi Janhunen. Modular equivalence in general. In Proceedings of the 18th European
Conference on Artificial Intelligence (ECAI 2008), pages 75–79. IOS Press, 2008.

[18] Emilia Oikarinen and Tomi Janhunen. Modular equivalence for normal logic programs.
In Proceedings of the 17th European Conference on Artificial Intelligence ECAI (ECAI
2006), pages 412–416. IOS Press, 2006.

[19] Martin Brain, Martin Gebser, Jörg Pührer, Torsten Schaub, Hans Tompits, and Stefan
Woltran. “That is Illogical Captain!” – The debugging support tool spock for answer-
set programs: System description. In Proceedings of the 1st International Workshop on
Software Engineering for Answer-Set Programming (SEA 2007), pages 71–85, 2007.

BIBLIOGRAPHY 77

[20] Martin Gebser, Jörg Pührer, Torsten Schaub, Hans Tompits, and Stefan Woltran. spock: A
debugging support tool for logic programs under the answer-set semantics. In Proceedings
of the 21st Workshop on (Constraint) Logic Programming (WLP 2007), pages 258–261.
Technical Report 434, Julius-Maximilians-Universität Würzburg, Institut für Informatik,
2007.

[21] Johan Wittocx. IDPDraw: A tool used for visualizing answer sets. https://dtai.
cs.kuleuven.be/krr/software/visualisation, 2009.

[22] Owen Cliffe, Marina De Vos, Martin Brain, and Julian A. Padget. ASPViz: Declarative
visualisation and animation using answer set programming. In Proceedings of the 24th
International Conference on Logic Programming (ICLP 2008), volume 5366 of Lecture
Notes in Computer Science, pages 724–728. Springer, 2008.

[23] Second Answer-Set Programming Competition. http://dtai.cs.kuleuven.be/
events/ASP-competition/, 2009.

[24] Ehud Y. Shapiro. Algorithmic Program Debugging. PhD thesis, Yale University, New
Haven, CT, USA, May 1982.

[25] Daniel Jackson. Software Abstractions – Logic, Language, and Analysis. MIT Press, 2006.

[26] Carsten Sinz. Visualizing SAT Instances and Runs of the DPLL Algorithm. Journal of
Automated Reasoning, 39:219–243, August 2007.

[27] Johannes Oetsch, Jörg Pührer, and Hans Tompits. The SeaLion has landed: An IDE for
answer-set programming – Preliminary report. In Proceedings of the 19th International
Conference on Applications of Declarative Programming and Knowledge Management
(INAP 2011) and the 25th Workshop on Logic Programming (WLP 2011), pages 141–151,
1843-11-06, 2011. INFSYS Research Report, Technische Universität Wien.

[28] The Eclipse Foundation. Eclipse Graphical Editing Framework. http://www.
eclipse.org/gef/.

[29] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer set programming:
A primer. In Reasoning Web, pages 40–110, 2009.

[30] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic program-
ming. In Proceedings of the Fifth International Conference and Symposium on Logic Pro-
gramming (ICLP 1988), pages 1070–1080, 1988.

[31] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and dis-
junctive databases. New Generation Computing, 9(3/4):365–386, 1991.

[32] Marc Denecker and Antonis C. Kakas. Abduction in logic programming. In Computational
Logic: Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski, Part I,
pages 402–436. Springer, 2002.

https://dtai.cs.kuleuven.be/krr/software/visualisation
https://dtai.cs.kuleuven.be/krr/software/visualisation
http://dtai.cs.kuleuven.be/events/ASP-competition/
http://dtai.cs.kuleuven.be/events/ASP-competition/
http://www.eclipse.org/gef/
http://www.eclipse.org/gef/

78 BIBLIOGRAPHY

[33] Mario Alviano. The maze generation problem is NP-complete. Proceedings of the 11th
Italian Conference on Theoretical Computer Science (ICTCS 2009), 2009.

[34] Third Answer-Set Programming Competition. https://www.mat.unical.it/
aspcomp2011/, 2011.

[35] W3C. SVG working group. http://www.w3.org/Graphics/SVG/.

[36] Nokia. QT Framework. http://qt.nokia.com/.

[37] Lonsdaleite. https://github.com/rndmcnlly/Lonsdaleite, 2011.

[38] Adrian Sureshkumar, Marina De Vos, Martin Brain, and John Fitch. APE: An AnsProlog*
environment. In Proceedings of the 1st International Workshop on Software Engineering
for Answer-Set Programming (SEA 2007), pages 101–115, Tempe, AZ, USA, 2007.

[39] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-
proving. Communications of the ACM, 5:394–397, 1962.

[40] Chris Walshaw. A Multilevel Algorithm for Force-Directed Graph-Drawing. Journal of
Graph Algorithms and Applications, 7(3):253–285, 2003.

https://www.mat.unical.it/aspcomp2011/
https://www.mat.unical.it/aspcomp2011/
http://www.w3.org/Graphics/SVG/
http://qt.nokia.com/
https://github.com/rndmcnlly/Lonsdaleite

	Contents
	Introduction
	Background
	Answer-Set Programming
	Solvers

	The Kara System
	Preliminaries
	System overview

	Applying Kara
	Getting started
	Running a solver
	Visualisation
	Editing
	Export
	Inferring an interpretation

	Examples
	Basic example
	Maze generation
	Graph colouring
	15-puzzle

	Related work
	ASPVIZ
	IDPDraw
	Lonsdaleite
	APE
	DPVis
	Alloy

	Conclusion
	Bibliography

