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Abstract

Many open problems in the field of graph theory are concerned with the existence or
non-existence of graphs with certain properties. In this thesis we consider three such
graph theoretic problems and develop algorithms to search for graphs with the wanted
properties. Although we cannot use computer search to prove the non-existence of a
graph with certain properties within a usually infinite set of graphs, we can apply our
algorithms to prove the non-existence for all graphs up to a certain size. For some
(sub-)problems we focus on developing a practically effective algorithm that only checks if
a given graph satisfies certain properties. This can then be combined with an enumeration
and filtering approach to search for such graphs. As tool set for our algorithms we use
various techniques from the field of combinatorial optimization. Strictly speaking the
problem of searching for a graph with certain properties is not an optimization problem,
but many graph properties are defined via substructures that minimize or maximize an
objective.

The first problem we consider is about the existence of uniquely hamiltonian planar
graphs with minimum degree three. A prominent conjecture of Bondy and Jackson states
that such graphs do not exist. To search for such graphs we consider two different kinds of
approaches. The first approach tries to find uniquely hamiltonian graphs with minimum
degree three and an embedding minimizing the number of crossings and the number of
degree two vertices. We formalize an optimization problem for this purpose and propose
a general variable neighborhood search (GVNS) for solving it heuristically. The different
types of used neighborhoods also include an exponentially large neighborhood that is
effectively searched by means of branch-and-bound. To check feasibility of neighbors
we need to solve hamiltonian cycle problems, which is done in a delayed manner to
minimize the computational effort. We compare three different configurations of the
GVNS. Although our implementation could not find a uniquely hamiltonian planar graph
with minimum degree three disproving Bondy and Jackson’s conjecture, we were able to
find uniquely hamiltonian graphs with one vertex of degree two and crossing number four
for all graph orders from 10 to 100. In a second approach we are searching for planar
graphs with minimum degree three that contain a stable fixed edge cycle (SFE-cycle) or
equivalently a stable cycle with one vertex of degree two. We show that such a graph can
be used to construct a uniquely hamiltonian planar graph with minimum degree three.
For generating candidate graphs we use the program plantri and for checking if they
contain an SFE-cycle we propose three approaches. Two of them are based on integer
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linear programming (ILP) and the other is a cycle enumeration algorithm. To reduce
the search space we prove several properties a minimum planar graph with minimum
degree three containing an SFE-cycle must satisfy, the most significant being triangle
freeness. Comparing the three algorithms shows that the enumeration is more effective
on small graphs while for larger graphs the ILP-based approaches perform better. Finally,
we use the enumeration approach together with plantri to prove that there does not
exist a planar graph with minimum degree three that contains an SFE-cycle with 24 or
fewer vertices. This verifies Bondy and Jackson’s conjecture for all graphs with up to 25
vertices.

In the second part of this thesis we formulate an algorithm for finding smooth graphs,
a special subclass of hamiltonian 4-regular graphs, with small independence numbers.
To this end we formalize a family of satisfaction problems and propose a branch-and-
bound based approach for solving them. Strong bounds are obtained by exploiting
graph-theoretic aspects including new results obtained in cooperation with leading
graph theorists. Based on a partial solution we derive a lower bound by computing an
independent set on a partial graph and finding a lower bound on the size of possible
extensions. The algorithm is used to test conjectured lower bounds on the independence
numbers of smooth graphs and some subclasses of smooth graphs. In particular for the
whole class of smooth graphs we test the lower bound of 2n/7 for all smooth graphs with
at least n ≥ 12 vertices and can prove the correctness for all 12 ≤ n ≤ 24. Furthermore,
we apply the algorithm on different subclasses, such as all triangle free smooth graphs.

Finally, in the third part we are considering an extension of the minor concept to
transitioned graphs, which arise in the context of the cycle double cover conjecture. This
famous conjecture is strongly related to the compatible circuit decomposition (CCD)
problem. A recent result by Fleischner et al. (2018) gives a sufficient condition for the
existence of a CCD in a transitioned 2-connected eulerian graph, which is based on an
extension of the definition of K5-minors to transitioned graphs. Graphs satisfying this
condition are called sup-undecomposable K5 (SUD-K5)-minor-free graphs. We formulate
a generalization of this property by replacing the K5 by a 4-regular transitioned graph
H, which is part of the input. Furthermore, we consider the decision problem of checking
for two given graphs if the extended property holds. We prove that this problem is
NP-complete but can be solved in polynomial time if the size of H is fixed. We then
formulate an equivalent problem, present a mathematical model for it, and prove its
correctness. This mathematical model is then translated into a mixed integer linear
program (MILP) and a boolean satisfiability problem (SAT) for solving it in practice.
Non-trivial symmetry breaking constraints are proposed, which improve the solving times
of both models considerably. Compared to the MILP model the SAT approach performs
significantly better. We used the faster SAT approach to further test graphs of graph
theoretic interest and were able to get new insights. Among other results we found
snarks with 30 and 32 vertices that do not contain perfect pseudo-matchings, that are
spanning subgraphs consisting of K2 and K1,3 components whose contraction lead to
SUD-K5-minor-free graphs.



Kurzfassung

Viele ungelöste Probleme aus dem Gebiet der Graphentheorie beschäftigen sich mit der
Existenz oder Nichtexistenz von Graphen mit vorgegebenen Eigenschaften. Wir behandeln
in dieser Arbeit drei Probleme dieser Art und entwickeln Algorithmen, um nach Graphen
mit den gewollten Eigenschaften zu suchen. Die Suche mittels Computer nach Graphen
mit vorgegebenen Eigenschaften kann aufgrund des zumeist unendlich großen Suchraums
die Nichtexistenz nicht beweisen. Allerdings können wir die Algorithmen verwenden um
die Nichtexistenz für alle Graphen bis zu einer gewissen Größe zu zeigen. Für manche
(Teil-)Probleme werden wir uns auf Algorithmen konzentrieren, welche für einen gegebenen
Graphen überprüfen, ob dieser die vorgegebenen Eigenschaften hat oder nicht. Dies kann
dann mit einer Enumeration von Graphen und darauffolgendem Filtern kombiniert
werden. Als Basis für unsere Algorithmen verwenden wir verschiedene Techniken der
kombinatorischen Optimierung. Die Suche nach Graphen mit vorgegebenen Eigenschaften
stellt formal kein Optimierungsproblem dar, aber oftmals sind die gewollten Eigenschaften
durch Substrukturen definiert, welche eine Zielfunktion minimieren oder maximieren.

Das erste Problem, dass wir behandeln, bezieht sich auf eindeutig hamiltonsche planare
Graphen mit Minimalgrad drei. Eine berühmte Vermutung von Bondy und Jackson
besagt, dass solche Graphen nicht existieren. Wir analysieren zwei Problemvarianten um
nach solchen Graphen zu suchen. In der ersten Variante suchen wir nach in die Ebene
eingebetteten eindeutig hamiltonschen Graphen mit Minimalgrad drei, welche die Anzahl
der Überkreuzungen und die Anzahl der Knoten vom Grad zwei minimieren. Dazu formu-
lieren wir ein Optimierungsproblem und beschreiben einen General Variable Neighborhood
Search (GVNS) Ansatz um es heuristisch zu lösen. Unter den Nachbarschaften ist auch
eine exponentiell große Nachbarschaft, welche mithilfe von Branch-and-Bound durchsucht
wird. Um die Gültigkeit von Lösungen zu überprüfen müssen wir hamiltonsche Kreis-
probleme lösen. Dies passiert verzögert zuerst mittels einer Heuristik und gegebenenfalls
erst dann exakt um den Rechenaufwand zu minimieren. In unseren Tests vergleichen wir
drei verschiedene Konfigurationen der GVNS. Unsere Implementierung konnte keinen
eindeutig hamiltonschen planaren Graphen mit Minimalgrad drei finden, dafür jedoch für
alle Knotengrade von 10 bis 100 eindeutig hamiltonsche Graphen mit nur einem Knoten
vom Grad zwei und zwei Überkreuzungen.

In der zweiten Variante suchen wir nach planaren Graphen mit Minimalgrad drei welche
einen Stable Fixed Edge Cycle (SFE-Cycle) enthalten, oder äquivalent einen stabilen

ix



Kreis mit einem Knoten vom Grad zwei. Wir zeigen, dass ausgehend von so einem
Graphen ein eindeutig hamiltonscher planarer Graph mit Minimalgrad drei konstruiert
werden kann. Um Kandidatengraphen zu generieren verwenden wir das Programm
plantri und um zu überprüfen ob sie einen SFE-Cycle beinhalten schlagen wir drei
Lösungsmethoden vor. Zwei davon basieren auf Integer Linear Program (ILP) und der
dritte auf einer Enumeration von Kreisen. Um den Suchraum zu verkleinern beweisen
wir mehrere Eigenschaften, welche ein minimaler planarer Graph mit Minimalgrad drei,
der einen SFE-Cycle besitzt, erfüllen muss. Die wichtigste Eigenschaft ist dabei, dass der
minimale Graph dreiecksfrei sein muss. In unseren Tests schneidet der auf Enumeration
basierende Algorithmus für kleinere Graphen besser ab und die auf ILP basierenden
Algorithmen für größere Graphen. Um systematisch nach einem minimalen Gegenbeispiel
zu suchen verwenden wir den enumerationsbasierten Algorithmus zusammen mit plantri.
Mit den computationalen Tests kontte bewiesen werden, dass es keinen planaren Graphen
mit Minimalgrad drei mit bis zu 24 Knoten gibt, der einen SFE-cycle beinhaltet. Dies
impliziert, dass Bondy und Jackson’s Vermutung für alle Graphen bis zu 25 Knoten wahr
ist.

Im zweiten Teil dieser Arbeit formulieren wir einen Algorithmus um nach smooth Graphs,
einer speziellen Teilklasse von 4-regulären hamiltonschen Graphen, mit kleiner Unab-
hängigkeitszahl zu suchen. Wir formulieren dazu eine Familie von Problemen und einen
Branch-and-Bound Ansatz um diese zu lösen. Um starke Schranken zu erhalten nützen
wir graphentheoretische Resultate im Bezug auf smooth Graphs. Basierend auf einer
partiellen Lösung berechnen wir eine unabhängige Menge und verwenden diese um ei-
ne untere Schranke für die Unabhängigkeitszahl für alle möglichen Erweiterungen der
partiellen Lösung zu berechnen. Wir verwenden dann den Algorithmus um verschiedene
Vermutungen in Bezug auf unterschiedliche Teilklassen der smooth Graphs, wie zum
Beispiel die dreicksfreien smooth Graphs, und ihre Unabhängigkeitszahlen zu überprüfen.
Insbesondere haben wir für alle smooth Graphs mit 12 ≤ n ≤ 24 Knoten verifiziert, dass
sie eine Unabhängigkeitszahl von mindestens 2n/7 haben.

Im dritten Teil der Arbeit modellieren wir eine Erweiterung des Konzepts von Mino-
ren auf Graphen mit Durchgangssystemen, welche im Kontext der Cycle Double Cover
Vermutung auftreten. Diese Vermutung steht in Beziehung mit dem Compatible Circuit
Decomposition (CCD) Problem. Kürzlich bewiesen Fleischner et al. (2018) eine hinrei-
chende Bedingung für die Existenz von einem CCD in einem 2-zusammenhängenden
Eulerschen Graphen mit einem Durchgangssystem. Diese Bedingung basiert auf einer
Erweiterung vonK5-Minoren auf Graphen mit einem Durchgangssystem. Graphen, welche
diese Bedingung erfüllen, werden sup-undecomposable K5 (SUD-K5)-minor free Graphs
genannt. Wir verallgemeinern diese Bedingung indem wir den K5 durch einen beliebi-
gen 4-regulären Graphen H mit einem Durchgangssystem, welcher Teil des Inputs ist,
ersetzen. Weiters formulieren wir das Entscheidungsproblem ob zwei gegebene Graphen
diese erweiterte Bedingung erfüllen. Wir zeigen, dass das Problem NP-vollständig ist
und in polynomieller Zeit gelöst werden kann, wenn die Größe des Graphen H fixiert
ist. Dann formulieren wir ein mathematisches Modell für dieses Problem und beweisen



dessen Korrektheit. Dieses Modell wird schließlich verwendet um ein Mixed Integer Li-
near Program (MILP) und ein boolean Satisfiability Problem zu formulieren. Weiters
entwickeln wir nichttriviale Bedingungen zur Brechung von Symmetrien, welche das
Lösen von beiden Modellen bedeutend beschleunigen. Im Vergleich ist das Lösen des
SAT Modells signifikant schneller als das Lösen des MILP Modells. Unter Benutzung
des SAT Modells testeten wir graphentheoretisch interessante Instanzen und konnten
neue Einblicke gewinnen. Unter anderem fanden wir Snarks mit 30 und 32 Knoten,
welche keinen spannenden Teilgraphen bestehend aus K2 und K1,3 Komponenten, dessen
Kontraktion zu einem SUD-K5-minor free Graph führt, beinhalten.
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CHAPTER 1
Introduction

In the modern age of the internet where "everyone seems to be connected to everything",
many aspects of social life and technological advancements can be viewed as deeply
interconnected networks. Examples reach from modeling molecules in chemistry and
communication networks in computer science to street networks and friendship relation
graphs in social media. The field of graph theory mathematically formalizes such networks
and provides the basic tools for analyzing them. Already in 1736 Leonhard Euler used
graphs to prove that it is impossible to walk through the city of Königsberg and cross
every of its seven bridges exactly once. Like in many fields of mathematics proving
the existence of a structure can be done by providing an example, but disproving the
existence needs a formalism and often heavy theoretical work. Formally a graph consists
of entities that we call vertices and edges that connect two vertices, see Definition 2.1.1
in Chapter 2 for more details.

Many unsolved problems in the field of graph theory are concerned with the existence
or non-existence of graphs with certain properties. To prove the non-existence one
can use graph theoretical results to derive a contradiction from the assumption of the
existence of such graphs. On the other hand, to prove the existence one can construct
an example graph with the wanted properties. For some problems it may be possible
to use well-known graphs as basic building blocks to construct more complex graphs
by hand. Another approach is to use computers to search for example graphs. One
advantage of using computers is that one can systematically search through all finitely
many graphs up to a certain size. This can be used to either find an example graph or
show the non-existence for all graphs with up to a certain number of vertices. Being able
to verify a conjecture for small graphs helps to strengthen the belief that a conjecture
might be true but, unfortunately, cannot be used as a proof for the non-existence, since
there are in general infinitely many graphs.

Searching for a graph with certain properties algorithmically can be decomposed into two
stages. The first stage constructs suitable candidate graphs and the second stage checks
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1. Introduction

for a candidate graph if it satisfies the wanted properties. Depending on the approach
one can focus more on the first stage or the second. In the extreme case of only focusing
on the first stage we get an algorithm that only constructs candidate graphs that already
satisfy all wanted properties. If we want to focus only on the second stage, we can use
in the first stage a precomputed set of candidate graphs or a third party enumeration
algorithm to obtain a well-known class of candidate graphs.

In the context of these two stages we distinguish two kinds of problems. The first problem
searches for a given order n ∈ N for a graph with n vertices that satisfies all wanted
properties. We call this kind of problems existence problems, since they ask for the
existence of a graph. Such problems can be solved by incorporating both stages. On
the other hand, if we only focus on the second stage we consider the following kind of
problems: Given a graph G, does G satisfy all the wanted properties? We call such
problems validation problems. Existence problems can be theoretically viewed as decision
problems but also as search problems, see Section 2.2 for more details. Clearly validation
problems can also be viewed as decision problems. Interestingly, many graph theoretic
properties can be expressed as searching for a substructure in a given graph and therefore,
also most of the validation problems can also be interpreted as search problems.

In this thesis we are considering different existence and validation problems corresponding
to open problems in graph theory. All problems that we are considering can also be
interpreted as optimization problems. We use this fact and take advantage of the rich
tool set available to solve combinatorial optimization problems (COPs). Therefore, most
of the solving methods presented in this thesis are based on combinatorial optimization
approaches.

The idea of using computer algorithms for solving graph theoretic problems is not
new. There are algorithms for finding graphs with special structures, for example planar
graphs [12] or snarks [14], and for generating conjectures [16]. The approach for generating
planar graphs is used in Chapter 3.

This thesis is split into three parts. In the first part we are developing algorithms to search
for uniquely hamiltonian planar graphs with minimum degree three. These are graphs
that can be drawn without crossings on the plane and contain exactly one hamiltonian
cycle, which is a cycle containing all vertices of the graph, see Section 2.1 for formal
definitions. Bondy and Jackson [10] conjectured that no such graphs exist, i.e., every
uniquely hamiltonian planar graph must have vertices of degree two. In 2014 Fleischner
constructed non-planar uniquely hamiltonian graphs with minimum degree four [27].
This result, which was for the graph theory community quite surprising, leads to the
guess that also Bondy and Jackson’s conjecture is wrong. This motivates our work on
algorithms for finding uniquely hamiltonian planar graphs with minimum degree three to
either disprove Bondy and Jackson’s conjecture or to verify it for small graphs.

We consider two different kinds of approaches to search for such graphs. The first approach
searches heuristically for uniquely hamiltonian graphs drawn on the plane minimizing
the number of crossings and the number of degree two vertices. We further restrict the
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problem to only allow crossings between edges that are not part of the hamiltonian cycle.
This helps us to combinatorially define the drawing in the plane by fixing a hamiltonian
cycle with n vertices and bipartitioning the other edges. One partition represents then
all edges drawn in the interior of the cycle and the other partition the edges in the
exterior of the cycle. The number of crossings can then be easily calculated given the
two partitions. Using this solution representation we develop a metaheuristic based on
general variable neighborhood search (GVNS). Each neighborhood adds edges, removes
them, changes the bipartition, or applies a combination of those three. As an interesting
subproblem, we consider finding an optimal bipartition of a given set of edges. We
formalize this as a very large scale neighborhood structure and find the optimal solution
using a branch-and-bound procedure.

With the heuristic approach we can hope to find a uniquely hamiltonian planar graph
with minimum degree three, but we are not able to verify Bondy and Jackson’s conjecture
for small graphs. To that end we also develop exact approaches to search for uniquely
hamiltonian planar graphs with minimum degree three. We transform the problem of
searching for a uniquely hamiltonian graph into a problem of searching for a graph
containing a so called stable fixed edge cycle (SFE-cycle), which is a cycle C and an edge
e such that no other cycle exists that contains e and all vertices of C. We then develop
two exact approaches to check for a graph if it contains an SFE-cycle. One approach
is based on integer linear program (ILP) and the other based on a cycle enumeration
scheme together with an appropriate data structure for storing cycles. To verify Bondy
and Jackson’s conjecture for small graphs we study properties of a minimum counter
example, i.e., a minimum graph according to the number of vertices and edges that
is uniquely hamiltonian, planar, and has minimum degree three. Finally, we combine
everything together with a planar graph generation program and are able to verify Bondy
and Jackson’s conjecture for graphs with up to 25 vertices.

In the second part of this thesis we develop an algorithm to construct smooth graphs
with small independence numbers. Smooth graphs are a special subclass of 4-regular
hamiltonian graphs, see Definition 4.2.1 in Section 4.2 for a formal definition. The
independence number is the size of the largest set of vertices that are all pairwise
not adjacent. We propose an algorithm to construct smooth graphs minimizing the
independence number that is based on branch-and-bound. Starting with the hamiltonian
cycle we iteratively partition the vertices such that each partition forms an additional
cycle at the end. To prune partially constructed graphs we compute a lower bound for
the independence number of any extension of the partial graph. The computation of the
lower bounds is based on graph-theoretic results and uses a fast heuristic to compute
an approximation for the independence number of the partial graph. The algorithm
is then used to test the conjecture that every smooth graph with n > 11 vertices has
independence number greater than or equal to 2n/7, which we could verify for all graphs
with 11 < n ≤ 24 vertices. Furthermore, we apply restrictions to the smooth graphs to
check lower bounds on the independence number for some subclasses.

In the last part of this thesis we develop algorithmic approaches for checking if a
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transitioned graph contains a sup-(H,S)-transition-minor for some other transitioned
graph (H,S). This terminology was introduced by Fleischner et al. [33] for H = K5
and is an extension of the minor relation to transitioned graphs. In their work they
proved that a transitioned 2-connected eulerian graph that is sup-undecomposable K5
(SUD-K5)-minor-free has a compatible circuit decomposition (CCD). This result solves
the CCD problem for this class of graphs. The CCD problem is strongly related to the
famous cycle double cover (CDC) conjecture. To verify the existence of SUD-K5-minors
we generalize the problem to sup-(H,S)-minors for any transitioned graph (H,S) and
develop a mathematical model that can be used to decide whether such a transition-minor
exists or not. Because of the complex nature of the definition of a sup-(H,S)-minor
this model is non-trivial. We use the model to develop an approach based on a mixed
integer linear program (MILP) and a boolean satisfiability problem (SAT). To test the
approaches we use instances based on the class of snarks, which is motivated by the CDC
conjecture.

1.1 Structure of the Thesis
In Chapter 2 the graph theoretic definitions and notations on which this thesis is based
are presented. Furthermore, we review some fundamental problem families and some
basic definitions of complexity theory. Moreover, we introduce some selected solving
methods for COPs. We focus only on the methods that are also used in this work, i.e.
certain exact approaches but also (meta)-heuristics.

Chapter 3 is dealing with algorithms to search for uniquely hamiltonian planar graphs
with minimum degree three. In this context we consider a GVNS-based metaheuristic
to find uniquely hamiltonian graphs embedded in the plane minimizing the number of
crossings and the number of degree two vertices. This algorithm and the computational
results have been published in:

B. Klocker, H. Fleischner, and G. R. Raidl. Finding uniquely hamiltonian graphs of
minimum degree three with small crossing numbers. In Hybrid Metaheuristics: 10th
International Workshop, HM 2016, volume 9668 of LNCS, pages 1–16. Springer,
2016.

Moreover, a presentation on this work has been given:

B. Klocker. Heuristic approaches for finding uniquely hamiltonian graphs of
minimum degree three with small crossing numbers. Austrian Workshop on Meta-
heuristics 11, Graz, Austria, 2016.

Furthermore, we consider two exact approaches to search for planar graphs with mini-
mum degree three that contain SFE-cycles, which could be used to construct uniquely
hamiltonian planar graphs with minimum degree three. This work has been submitted
to:
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1.1. Structure of the Thesis

B. Klocker, H. Fleischner, and G. R. Raidl. A lower bound for the smallest uniquely
hamiltonian planar graph with minimum degree three. Technical Report AC-TR-
19-007, Algorithms and Complexity Group, TU Wien, 2019. Submitted to Applied
Mathematics and Computation.

Moreover, a presentation of preliminary results has been given:

B. Klocker. Searching uniquely hamiltonian planar graphs with minimum degree
three. Graph Theory Workshop on How to Span a Graph, Bucharest, Romania,
2018.

In Chapter 4 we present a branch-and-bound approach for finding smooth graphs with
small independence numbers. This work has been published in:

B. Klocker, H. Fleischner, and G. R. Raidl. Finding smooth graphs with small
independence numbers. In MOD 2017: Machine Learning, Optimization, and Big
Data – Third International Conference, volume 10710 of LNCS, pages 527–539.
Springer, 2018.

Chapter 5 is dedicated to transition minors. We develop a mathematical model to check for
a transitioned graph if it contains a sup-transition minor of some other transitioned graph.
Based on the model we propose and compare a MILP approach and a SAT approach.
The mathematical model together with the MILP approach has been submitted to:

B. Klocker, H. Fleischner, and G. R. Raidl. A Model for Finding Transition-Minors.
Technical Report AC-TR-18-009, Algorithms and Complexity Group, TU Wien,
2018. Submitted to Discrete Applied Mathematics.

Furthermore, the SAT approach together with symmetry breaking improvements for the
MILP and the SAT approaches have been published in:

B. Klocker, H. Fleischner, and G. Raidl. A SAT Approach for Finding Sup-
Transition-Minors. In Learning and Intelligent Optimization, LNCS. Springer, 2019.
To appear.

Some computational results concerning perfect pseudo-matchings (PPMs) in snarks have
also been submitted to Ars Combinatoria:

H. Fleischner, B. Bagheri Gh., and B. Klocker. Perfect pseudo-matchings in cubic
graphs. Technical report, Algorithms and Complexity Group, TU Wien, 2019.
Submitted to ARS COMBINATORIA.
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Finally, we also want to mention the following publication, which resulted from an
industry collaboration:

B. Klocker and G. R. Raidl. Solving a weighted set covering problem for improving
algorithms for cutting stock problems with setup costs by solution merging. In
Computer Aided Systems Theory – EUROCAST 2017, Part I, volume 10671 of
LNCS, pages 355–363, Gran Canaria, Spain, 2018. Springer.

Its topic is not related to graph theory or graph construction, but to combinatorial
optimization in general. Because of the only loose relation to the core topic of this thesis,
we decided to not include further details in this thesis.

Finally, we conclude this thesis in Chapter 6 and propose some ideas for future research.
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CHAPTER 2
Methodology

In this chapter we first present the graph theoretic basics on which this thesis builds. Then
we cover three types of problems: decision problems, search problems, and optimization
problems with their subclass of combinatorial optimization problems (COPs). As we
will see, we can interpret the former two as special cases of optimization problems.
Furthermore, all problems we are considering in this thesis can be interpreted as COPs.
To solve such problems we consider different types of solution approaches. In this section
we only focus on solution approaches relevant for the work presented in this thesis.
To that end we briefly review different exact solution approaches, such as complete
enumeration, branch-and-bound, (mixed) integer programming, and boolean satisfiability
problem (SAT) solving. Furthermore, we present basic heuristic techniques such as
greedy construction heuristics and local search as well as metaheuristics such as variable
neighborhood search and very large scale neighborhood search (VLSN).

2.1 Graph Theoretic Basics
In this section we cover graph theoretic concepts used in this work. We start with basic
definitions and notations and then cover advanced topics, which we need later on. Our
notation is based on [11], [22], and [80].

2.1.1 Basic Definitions and Notations

First we introduce the most general term of graph we are using in this work, the undirected
multigraphs, which we simply call graphs.

Definition 2.1.1. We denote by P2(X) the set of all unordered pairs of elements in
a set X, i.e. P2(X) = {S ⊆ X | |S| = 2}. A graph is a triple G = (V,E, ψ), where V
is the finite vertex set, E the finite edge set and ψ : E → P2(V ) a function that maps
each edge e to its two incident vertices, which we also call the end vertices of e. We
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2. Methodology

abbreviate e = uv if e ∈ E is incident to u, v ∈ V , i.e. ψ(e) = {u, v}. Note that this is
just a notation and cannot be interpreted as an equality relation in the general case. If
e = uv and f = uv for e, f ∈ E with e 6= f we call e, f multiple edges. To distinguish
between different graphs we also use the notation G = (VG, EG, ψG) or we simply write
V (G) := VG and E(G) := EG. The number of vertices |V (G)| of a graph G is also called
the order of G.

Note that in contrast to the notation of [11] and [22] we do not allow loops in our
multigraphs. This definition often varies between authors. Another work that does not
allow loops in multigraphs is [18].

Definition 2.1.2. Let G = (V,E, ψ) be a graph. We say a vertex v ∈ V and an
edge e ∈ E are incident if e = vw for some w ∈ V . Furthermore, a vertex v ∈ V is
adjacent to a vertex w ∈ V if there is an edge e = vw. Similarly, an edge e1 ∈ E is
incident to an edge e2 ∈ E if both are incident to a common vertex v ∈ V . For a vertex
v ∈ V we write E(v) = {e ∈ E | v ∈ ψ(e)} for the set of all edges incident to v and
N(v) = {v′ ∈ V | ∃e ∈ E : e = vv′} for the set of all vertices adjacent to v, which we
call the neighbors of v. The degree d(v) of a vertex v ∈ V is defined by d(v) := |E(v)|.
The minimum degree of a graph G is denoted by δ(G) := minv∈V d(v). Analogously, the
maximum degree of a graph G is defined by ∆(G) := maxv∈V d(v). A graph is called
k-regular if δ(G) = ∆(G) = k. A 3-regular graph is also called a cubic graph.

Parts of this work focus only on simple undirected graphs.

Definition 2.1.3. A graph is called simple if it has no multiple edges. For simple graphs
G = (V,E, ψ) we can interpret E ⊆ P2(V ), which defines the function ψ implicitly. We
simply write G = (V,E), in this case the notation e = uv can now be read as an equality
relation if we interpret uv as {u, v}.

The following graphs are important examples of simple graphs.

Example 2.1.1. The complete graph Kn = (V (Kn), E(Kn)) over n vertices is defined
by V (Kn) = {1, . . . , n} and E(Kn) = {e ⊆ V | |e| = 2}. In a complete graph there is
exactly one edge between any pair of vertices. Therefore, the complete graph Kn is a
simple graph that maximizes the number of edges over n vertices.

Other examples are the complete bipartite graphs Kn,m. A bipartite graph is a graph
whose vertices can be partitioned into two sets such that the vertices in each set are all
pairwise not adjacent, see also the definition of an independent set in Definition 2.1.13.
The complete bipartite graph Kn,m = (V (Kn,m), E(Kn,m)) is now defined by

V (Kn,m) = V1 ∪ V2 = {1, . . . , n} ∪ {n+ 1, . . . , n+m},

E(Kn,m) = {uv | u ∈ V1, v ∈ V2} .
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2.1. Graph Theoretic Basics

In this sense the complete bipartite graph Kn,m is a simple graph that maximizes the
number of edges in a bipartite graph if one vertex partition has n vertices and the
other m.

Basic operations on graphs are vertex and edge deletions.

Definition 2.1.4. Let G = (V,E, ψ) be a graph. For a subset V0 ⊆ V we denote by
G− V0 the graph after removing all vertices V0 and all edges that are incident to at least
one of the vertices in V0 from G. For singletons we just write G− v instead of G− {v}.
Furthermore, if we want to focus on the remaining vertices Y := V \ V0 and not on the
deleted vertices we call the subgraph G− V0 the subgraph of G induced by Y and denote
it by G[Y ].

The graph obtained after removing a set of edges E0 ⊆ E from G is denoted by G− E0
or in the case of a singleton G− e instead of G− {e}.

Another basic relation is the notion of subgraph.

Definition 2.1.5. Let G be a graph. Any graph obtained after deleting edges and
vertices from G is called a subgraph of G. Formally a subgraph can be described by
(G− E0)− V0 for some V0 ⊆ V and E0 ⊆ E. If we want to remove a whole subgraph H
from G we also write G−H instead of G− V (H).

We continue with basic objects inside a graph.

Definition 2.1.6. Let G = (V,E, ψ) be a graph. A walk in G is a sequence W :=
v0, e1, v1, . . . , v`−1, e`, v` of vertices vi ∈ V and edges ei ∈ E such that ei = vi−1vi for all
i ∈ {1, . . . , `}. The integer ` is then called the length of W . A walk W is called closed if
v` = v0. Furthermore, a walk W is called a trail if all edges are different, i.e. ei 6= ej for
all i 6= j. A closed trail is called a circuit.

A path is a simple graph P whose vertices can be arranged in a linear sequence such that
two vertices are adjacent if and only if they are consecutive in the sequence. The two
vertices of degree one in a path, i.e. the vertex at the beginning and the end of the linear
sequence, are also called end vertices. Furthermore, a cycle is a simple graph C whose
vertices can be arranged in a cyclic sequence such that two vertices are adjacent if and
only if they are consecutive in the cyclic sequence.

Note that some authors define paths and cycles in terms of trails where all vertices
are different, except the first and the last in the case of a cycle. Those two definitions
are not equivalent since one path interpreted as a subgraph may be represented as two
different trails, depending on at which vertex the trail starts. One cycle of length ` may
be represented as 2` different trails depending on where the trail starts and in which
direction it goes. This differentiation is important if we want to count paths or cycles in
which case we always use our definition in the sense of subgraphs. To represent a path
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or a cycle we can use the notation of any trail corresponding to them, or in the case of
simple graphs we can also just use a sequence of vertices.

With the help of paths we can now define connected graphs.

Definition 2.1.7. A graph G = (V,E, ψ) is called connected if any two vertices v1, v2 ∈ V
can be connected by a path in G, i.e., there exists a path with v1 and v2 as end vertices.
The maximal connected subgraphs of a graph G are called the connected components of
G.

Furthermore, we can define edge and vertex connectivity.

Definition 2.1.8. Let G = (V,E, ψ) be a graph. Let V be partitioned into two non-
empty sets X and Y = V \X, we denote by E[X,Y ] ⊆ E all edges with one end vertex in
X and the other in Y . Such a set E[X,Y ] is then called an edge cut of G. If |E[X,Y ]| = 1
then this edge e ∈ E[X,Y ] is called a bridge of G. A graph without a bridge is called
bridgeless. Note that a bridgeless graph may not be connected. The graph G is called
k-edge-connected if there does not exist any edge-cut with less than k edges. Furthermore,
the edge connectivity λ(G) of G if |V (G)| ≥ 2 is defined as the maximum k for which G
is still k-edge-connected.

A set of vertices V0 ⊆ V is called a vertex cut, if G− V0 is disconnected. If v is a vertex
cut, then we call v a cut vertex of G, which is sometimes also called articulation point
of G. The vertex-connectivity or just connectivity κ(G) of G is the minimum size of a
vertex set S ⊆ V such that S is a vertex cut or G − S contains only one vertex. The
graph G is called k-vertex-connected or just k-connected if κ(G) ≥ k.

Going into more detail we can distinguish different types of edge cuts.

Definition 2.1.9. An edge cut E[X,Y ] is called essential if the induced subgraphs G[X]
and G[Y ] both contain at least one edge. If G[X] and G[Y ] both contain a cycle we call
the edge cut E[X,Y ] a cyclical edge cut.

Finally, a graph G is called essentially k-edge connected if it has no essential edge cut
with fewer than k edges. Analogously, it is called cyclically k-edge connected if it has no
cyclical edge cut with fewer than k edges.

Clearly every cyclical edge cut is also an essential edge cut and therefore we get the
following lemma.

Lemma 2.1.1. An essentially k-edge connected graph is also cyclically k-edge connected.

We also get the other direction if the graph has a high enough minimum degree as
Fleischner mentioned in [28].

Lemma 2.1.2. A graph G with λ(G) ≥ k
2 + 1 is essentially k-edge connected if and only

if it is cyclically k-edge connected.
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Proof. We only need to show that every essential edge cut E[X,Y ] with |E[X,Y ]| < k is
also a cyclical edge cut. Assume that such a cut is not a cyclical edge cut. That means
w.l.o.g that G[X] does not contain any cycles and therefore E(G[X]) ≤ V (G[X])− 1 =
|X| − 1. Summing up over the degrees of the vertices in X we get

|X|
(
k

2 + 1
)
≤
∑
v∈X

d(v) = |E[X,Y ]|+ 2|E(G[X])| < k + 2|X| − 2.

Since X contains an edge we know |X| ≥ 2 and therefore we get a contradiction by

k − 2 > |X|
(
k

2 − 1
)
≥ k − 2.

In this work we often focus on special types of cycles, such as dominating or hamiltonian
cycles.

Definition 2.1.10. Let G = (V,E, ψ) be a graph. A cycle C in G is called dominating if
for each edge e = uv ∈ E either u or v is in V (C). A subgraph H of G is called spanning
if V (H) = V (G). We also call a spanning subgraph a factor of G. A k-factor of G is a
k-regular factor of G. Furthermore, a cycle C in G is called hamiltonian if each vertex of
G is visited in C, i.e. C is a spanning subgraph of G. A graph is called hamiltonian if it
contains a hamiltonian cycle.

In the way that hamiltonian cycles visit all vertices eulerian tours visit all edges.

Definition 2.1.11. Let G = (V,E, ψ) be a connected graph. A tour of G is a closed
walk in G that visits every edge G at least once. An eulerian tour is a tour of G that
visits every edge of G exactly once, i.e. it is a tour and a trail. A graph that contains an
eulerian tour is called an eulerian graph.

Eulerian graphs can be easily characterized by the following notion.

Definition 2.1.12. A graph G is called even if all vertices have even degrees.

The connection between even graphs and eulerian graphs is stated in the following
theorem, see for example [11].

Theorem 2.1.3. A graph is eulerian if and only if it is connected and even.

Some authors such as Fleischner allow eulerian graphs to be disconnected and define
the eulerian graphs to be what we call even graphs, but this theorem states that for
connected graphs those two definitions coincide.

Another property of graphs we are using is the independence number.
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Definition 2.1.13. Let G = (V,E, ψ) be a graph. An independent set of G is a vertex
set I ⊆ V such that there is no edge e = ij for i, j ∈ I in G, i.e. all vertices of I are
pairwise not adjacent. The independence number α(G) of a graph G is the size of the
largest independent set of G.

Related to independent sets is the notion of graph colorability.

Definition 2.1.14. A k-vertex-coloring or alternatively a k-coloring of a graph G is
a function c : V (G) → {1, . . . , k} such that for each edge e = vw ∈ E(G) the two end
vertices have different colors, i.e. c(v) 6= c(w). In this context the colors are the integers
{1, . . . , k} but could be replaced by any set of colors with cardinality k.

A graph G is k-colorable if there exists a k-coloring for G. Furthermore, χ(G) denotes
the chromatic number of G, which is the smallest k ∈ N for which G is k-colorable.

We can also color edges, which leads to edge-colorings.

Definition 2.1.15. A k-edge-coloring of a graph G is a function c : E(G)→ {1, . . . , k}
such that for each edge e = vw ∈ E(G) all incident edges have different colors, i.e.

c(e) 6= c(e′) ∀e = vw ∈ E(G),∀e′ ∈ (E(v) ∪ E(w)) \ {e} .

A graph G is k-edge-colorable if there exists a k-edge-coloring for G. Furthermore, χ′(G)
denotes the edge chromatic number of G, which is the smallest k ∈ N for which G is
k-edge-colorable. The edge chromatic number of G is also called the chromatic index of
G.

2.1.2 Graph Isomorphisms

Most books define homomorphisms only on simple graphs, but we are using a more
general definition on graphs. A definition of isomorphisms on graphs is given in [11],
which is slightly different from our definition. Our definition does not consider an edge
mapping as part of the isomorphism but ensures that such a mapping exist. This implies
that our definition coincides with the classical definitions for the case of simple graphs as
for example in [22].

Definition 2.1.16. Let G = (V,E, ψ) and G′ = (V ′, E′, ψ′) be two graphs. A homo-
morphism between G and G′ is a function f : V → V ′ such that for each pair of vertices
u, v ∈ V it holds

| {e ∈ E | e = uv} | = |
{
e′ ∈ E′ | e′ = f(u)f(v)

}
|,

i.e. the function preserves the number of edges between mapped vertices.

We use now the definition of homomorphisms to define ismorphisms and automorphisms
on graphs.
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Definition 2.1.17. Let G = (V,E, ψ) and G′ = (V ′, E′, ψ′) be two graphs. A ho-
momorphism f between G and G′ is a isomorphism if f is bijective and f−1 is also
a homomorphism between G′ and G. Two graphs are isomorphic if there exists an
isomorphism between them. An isomorphism between a graph and itself is called an
automorphism. The set of automorphisms on a graph G form with the composition
operator a group, which we call Aut(G), the automorphism group of G.

2.1.3 Perfect Pseudo-Matchings

We introduce here a generalization of perfect matchings. Definitions of perfect matchings
can be found in many standard books such as [80], but the terminology of perfect
pseudo-matchings (PPMs) is uncommon outside the research areas of this work.

Definition 2.1.18. Let G = (V,E, ψ) be a graph. A pseudo-matching M is a subgraph of
G in which all connected components are either isomorphic to the K2 or K1,3. Connected
components of a pseudo-matching that are isomorphic to the K1,3 are called claws. A
perfect pseudo-matching (PPM) is a pseudo-matching that is also a spanning subgraph of
G, i.e. contains all vertices of G. A matching M is a pseudo-matching where all connected
components are isomorphic to the K2, i.e. a 1-regular subgraph of G. A matching can
equivalently be interpreted as a set of edges that are all pairwise not incident, but we are
using the definition as a subgraph.

In the context of 3-regular graphs PPMs are strongly related to dominating cycles in the
same way as perfect matchings are related to hamiltonian cycles: The edge complement
of a dominating/hamiltonian cycle induces a PPM/perfect matching. Note that in the
other direction it is not true since the edge complement of a PPM/perfect matching may
not even induce a cycle, in general it just induces a 2-regular graph, i.e. a collection of
cycles.

2.1.4 Crossing Number and Planar Graphs

To formally define crossing numbers we follow the definitions of [80].

Definition 2.1.19. Let G = (V,E, ψ) be a graph. A curve is the image of a continuous
function from [0, 1] to R2. A drawing of G in the plane is a function f that maps each
vertex v ∈ V to a point in R2 and each edge e = uv ∈ E to a curve in R2 that connects
the point f(u) with f(v). W.l.o.g. we can restrict our drawings such that no three curves
have a common point, no vertex image f(v) is part of a curve f(e) if v is not an endpoint
of e and two different curves have at most one common point, i.e. |f(e1) ∩ f(e2)| ≤ 1 if
e1 6= e2. This can always be achieved by slightly moving the curves. A common point of
two curves, which is not a common endpoint of the curves is called a crossing.

We can define a graph structure on the images of a drawing. The edge set is the set of
curves, the vertex set the set of points f(v) for v ∈ V . For an edge e = uv the curve f(e)
has endpoints f(u) and f(v). We call this graph the associated graph of the drawing f .
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Note that in [80] they only allow polygonal curves in a drawing, but we omit that for
simplicity, since the definitions are equivalent. We can now use the definition of a drawing
to define the crossing number of a graph and planar graphs.

Definition 2.1.20. The crossing number ν(G) of a graph G is the minimum number of
crossings of any drawing of G in the plane.

A graph G is called planar if it has crossing number ν(G) = 0. In this case a drawing
with no crossings is called a planar embedding and the associated graph structure of the
drawing a plane graph.

Each drawing f of a planar graph G with no crossings defines formally different plane
graphs, but all are isomorphic to G.

Definition 2.1.21. A region is an open subset of R2 where any two points can be
connected by a curve. For a plane graph G = (V,E, ψ) the maximal regions of R2 \
(V ∪

⋃
e∈E e) are called the faces F (G) of G. Since all edges e ∈ E are compact sets in

R2 their union is bounded and therefore there is exactly one unbounded face, which is
called the outer face. All other faces are called inner faces.

With the definition of faces we can define the dual graph of a plane graph.

Definition 2.1.22. Let G = (V,E, ψ) be a plane graph with δ(G) ≥ 2. The dual graph
of G is a graph G∗ = (V ∗, E∗, ψ∗) whose vertices V ∗ correspond to the faces of G, i.e.
each vertex is a point inside a face of G. For an edge e ∈ E that borders the faces F1
and F2 the dual graph contains an edge e∗ that connects the vertex corresponding to F1
with the vertex corresponding to F2. The curve e∗ can be drawn in such a way that it
crosses the edge e exactly once and no other edges of G or of G∗, see Figure 2.1 for two
examples.

Note that we restricted the definition of dual graphs to plane graphs with δ(G) ≥ 2. This
restriction ensures that every plane graph has a dual that has no self-loops and therefore
is again a graph. If we would allow self loops in graphs we could lift this restriction, as it
is done in most graph theory books, such as [80].

The definition of the dual graph is not unique, since we have some freedom where to
place vertices and how to draw the curves, but regardless how we draw them the resulting
graph structure is always isomorphic and therefore we simply talk of the dual graph.

For a connected plane graph with δ(G) ≥ 2 one can verify that G∗∗ = G, i.e. G is the
dual graph of its dual graph G∗. A 2-edge-cut in G corresponds to two parallel edges
in G∗ and vice versa. Therefore, the dual graph G∗ of G is simple if and only if G is
3-edge-connected.

Note that two isomorphic plane graphs may have non-isomorphic dual graphs. Further-
more, a planar graph G may have different plane drawings f and f ′ such that the two

14



2.1. Graph Theoretic Basics

Figure 2.1: Two plane drawings of a planar graph whose associated plane graphs have
non-isomorphic dual graphs. The plane graphs are drawn with black circled vertices and
black solid edges and the associated dual graphs are drawn with red squared vertices and
red dashed edges.

associated plane graphs have non-isomorphic duals. An example of such a graph G is
given in Figure 2.1 and the fact that the two dual graphs are non-isomorphic can easily be
seen by the sets of vertex degrees {3, 3, 4, 4} 6= {3, 3, 3, 5}. If G is simple and 3-connected,
a theorem by Whitney shows that this cannot happen [11].

Theorem 2.1.4. Let G be a simple 3-connected planar graph, then the duals of the
associated graphs of all planar embeddings of G are all isomorphic.

With that theorem we can define the dual graph of a simple 3-connected planar graph as
the dual graph of the associated graph of any planar embedding of G. The proof of the
following theorem is left as an exercise to the reader.

Theorem 2.1.5. Let G be a simple 3-connected planar graph, then the dual graph of G
is also 3-connected.

A classical result for planar graphs is the following, see for example [80].

Theorem 2.1.6 (Euler’s Formula). For a connected plane graph G = (V,E, ψ) with
v = |V |, e = |E|, and f the number of faces of G, it holds

v − e+ f = 2.

Note that Euler’s Formula shows that the number of faces of a plane graph depend only
on the number of vertices and edges of the graph. Therefore, the plane graph associated
with every planar embedding must have the same number of faces. We can now define
the number of faces |F (G)| of a planar graph G to be the number of faces of any plane
graph associated with any planar embedding of G. In this case Euler’s Formula is also
valid for planar graphs.
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2.2 Decision Problems, Search Problems, and
Combinatorial Optimization Problems

In this work we are generally considering two kinds of problems. Problems of the form
“Does there exist a graph G with properties φ(G)?”, which we call existence problems,
and problems of the form “Given a graph G, does G have properties φ(G)?”, which we
call validation problems. Existence problems may be impossible to solve by a computer
if the answer is “No”. Therefore, we replace them by a problem of the form “Given
an integer n ∈ N, does there exist a graph G with properties φ(G) with n vertices?”.
Considering this replaced form both kinds of problems are formally decision problems.
We formally define a decision problem similarly to Korte and Vygen [58].

Definition 2.2.1. A decision problem is a pair (X,Y ) where X is the set of inputs and
Y ⊆ X the set of inputs for which the answer to the decision problem is “Yes”.

Note that Korte and Vygen additionally restricted the input set X to be a language
decidable in polynomial time. This would formally restrict our inputs to being strings,
but for us inputs are most of the time a set of graphs or integers. We only consider
decision problems for which there exists a string encoding of the set X such that the
encoded elements correspond to a language decidable in polynomial time. For a definition
of a language decidable in polynomial time we refer the interested reader to [58].

Example 2.2.1. As mentioned before the two kinds of problems we are considering are
both decision problems. An existence problem can be translated to a decision problem
(X,Y ) with

X ⊆ N, Y := {n ∈ X | ∃ graph G satisfying φ(G) with n vertices} .

Furthermore, a validation problem can be translated to a decision problem (X,Y ) with
X being an infinite set of graphs and Y := {G ∈ X | φ(G)}.

Note that in order to check if there exists a graph with properties φ(G) one approach is to
enumerate candidate graphs and check for all of them if they satisfy φ(G). In this sense
validation problems often arise as subproblems of existence problems. This search for a
graph φ(G) can also be viewed as a form of a so called search problem. The difference to
the interpretation of a decision problem is that in the case of a search problem we do not
just get a “Yes” or “No” but in the case of a “Yes” we get a witness, in our case a graph
G satisfying φ(G).

But not only existence problems can be viewed as search problems, also many validation
problems, in fact all validation problems we are considering, can be viewed as search
problem. Most properties φ(G) in graph theory ask for the existence of an object, such
as a cycle, or a set of vertices. In this case we can interpret the validation problem
as searching for such an object. Let us first formally define what a search problem is
similarly to Schrijver [70].
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Definition 2.2.2. A search problem is a relation R ⊆ X × Y for some input set X and
search space Y . The problem is now to find for an input x ∈ X an element y ∈ Y such
that (x, y) ∈ R or return “No” if no such y ∈ Y exists.

Note that Schrijver defined search problems on some alphabet Σ and uses X = Y = Σ∗,
but we omit this restriction for the same reasons as above in the case of the decision
problem. Schrijver also mentions that a decision problem can be interpreted as a special
case of a search problem R ⊆ (X,Y ) with a singleton Y = {∅} such that the yes instances
are exactly the ones where (x, ∅) ∈ R.

Example 2.2.2. Our existence problems can be formulated as search problems with
X ⊆ N, Y a set of graphs, and

R := {(n,G) ∈ (X,Y ) | φ(G) ∧ |V (G)| = n} .

A representation of a validation problem as a search problem depends on the properties φ.

For example consider the hamiltonian cycle problem, which decides if a graph G contains
a hamiltonian cycle. We can formulate this problem as a search problem with X a set of
graphs, Y the set of all cycles in the graphs of X, and

R := {(G,C) ∈ (X,Y ) | C is a hamiltonian cycle of G} .

Our approaches for solving search problems and decision problems are based on combina-
torial optimization approaches, which can be seen as a generalization of search problems.
Given a search problem R ⊆ X × Y and a fixed instance x ∈ X. Then there is a set
of feasible solutions Yx := {y ∈ Y | (x, y) ∈ R}, which we are searching for. To find
such solutions we can give all solutions y ∈ Y an objective value in such a way that
the objective values of solutions in Yx have smaller objective values than all the other
solutions and then try to minimize the objective value. This can be done by defining the
objective function f : Y → R by

f(y) =
{

0, if (x, y) ∈ R
1, otherwise.

But we can do even more, we can rate how infeasible a solution outside of Yx is. In this
way we can steer a possible search into a direction of solutions that are close to being in
Yx. This is basically the reason why search problems can often be solved effectively by
a combinatorial optimization approach. Furthermore, we can, if we want, add different
objectives to solutions in Yx to find an even better solution as soon as we found one in
Yx. Let us formally define a COP as it is done in [39].

Definition 2.2.3. An instance of an optimization problem is a pair (F, c) with F being
the set of feasible solutions and c : F → R the cost function or objective function. A
optimization problem is a set of instances and searches for a given instance (F, c) for a
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globally optimal solution, that is a feasible solution f ∈ F with c(F ) ≤ c(y) for all y ∈ F .
An optimization problem is a combinatorial optimization problem (COP) if the set of
feasible solutions F is finite for each instance.

Note that as we defined optimization problems we only allow minimization problems.
This can be extended by also allowing maximization problem in which case a globally
optimal solution f ∈ F is given if c(F ) ≥ c(y) for all y ∈ F . We can transform a
minimization problem into a maximization problem and vice versa by multiplying the
objective function by −1. We also call an optimization problem that minimizes the
objective a minimization problem and one that maximizes the objective a maximization
problem.

Example 2.2.3. As an example we consider how to usefully turning a search problem
into a COP. We consider the hamiltonian cycle problem as mentioned in Example 2.2.2.
Let X be the set of possible input graphs. Then we defined for each graph G ∈ X an
instance of an optimization problem. The set of feasible solutions F is the set of all cycles
C in G. Furthermore, the objective value of a cycle C is its length f(C) = `(C) and we
want to maximize the objective.

All in all we get a combinatorial maximization problem. If we found a globally optimal
solution for an instance we can check if its length equals |V (G)| in which case we found
a hamiltonian cycle or else it is a “No” instance. Note that by trying to maximize the
cycle length we also guide the search into a direction of long cycles and therefore possible
hamiltonian cycles.

Another famous example of a COP, which can be seen as generalization of the hamiltonian
cycle problem, is the following, see [58].

Problem 2.2.1 (traveling salesperson problem (TSP)). Given are a complete graph
Kn together with edge costs ce ∈ R≥0 for each e ∈ E(Kn). Find a hamiltonian cycle C
minimizing its total cost

c(C) :=
∑

e∈E(C)
ce.

2.3 Computational Complexity
In this section we present the complexity class NP , which is important in classifying the
asymptotic complexity of many problems that we are considering. Before we can define
NP, we define P as in [58].

Definition 2.3.1. The set P consists of all decision problems for which there exist a
polynomial-time algorithm.

Note that we did not define formally what a polynomial-time algorithm is. Since this
definition requires heavy formalism based on Turing machines we refer the interested
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reader to [58] or any other introductory book to complexity theory. To define NP we
use a similar definition as in [58] noting again as for Definition 2.2.1 that we chose for
simplicity to operate on arbitrary sets instead of languages.

Definition 2.3.2. A decision problem (X,Y ) is in NP if there exists a polynomial p
and a decision problem (X ′, Y ′) in P with X ′ ⊆ X × C for some set C, such that

• ∀(x, c) ∈ X ′ : length(c) ≤ p(length(x)),

• x ∈ Y ⇐⇒ ∃c ∈ C : (x, c) ∈ Y ′.

By length we mean here the length of an encoding of the elements in X and in C. An
element c ∈ C with (x, c) ∈ Y ′ is called a certificate for x. A polynomial-time algorithm
for solving the problem (X ′, Y ′), i.e. checking if (x, c) ∈ Y ′, is called a certificate-checking
algorithm.

It is easy to see that P ⊆ NP, but it is still an open problem if this subset relation is
proper. This problem whether P = NP is one of the most famous and important open
problems in theoretical computer science.

Example 2.3.1. Let us consider the hamiltonian cycle problem as in Example 2.2.2
interpreted as a decision problem. We can use as set C the set of cycles in the graphs
that we already used in the definition of the associated search problem. We define

X ′ := {(G,C) | C is a cycle of G} , Y ′ := {(G,C) | C is a hamiltonian cycle of G} .

Clearly checking for a given graph G and a cycle C, if C is a hamiltonian cycle of G can
be done in polynomial time. Furthermore, a cycle of a graph G is a subgraph of G and
therefore can be encoded in linear space of G. This shows that the hamiltonian cycle
problem is in NP.

Note that we used in Example 2.3.1 as possible certificates the same set as we defined
our search space in the search problem variant. This can be done for any search problem
R ⊆ X × Y if the size of any y ∈ Y with (x, y) ∈ R is polynomially bounded by the size
of x and if checking if (x, y) ∈ R can be done in polynomial time. All search problems
satisfying these properties have corresponding decision problems in NP.

The same argumentation works for COPs (F, c), if the size of any f ∈ F is bounded
polynomially by the size of the instance and if computing c(f) can be done in polynomial
time for any f ∈ F .

Note that the definition of NP is asymmetric in the sense of “Yes” and “No” instances.
Therefore, one may consider the complement of an NP problem, which may not be in
NP anymore.
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Definition 2.3.3. Let P = (X,Y ) be a decision problem. The complement of P is the
decision problem (X,Y \X), i.e. the “Yes” instances of the complement are exactly the
“No” instances of the original problem and vice versa. The class co-NP consists of the
complements of all problems in NP.

Next we want to define NP-complete problems, which are in some sense the hardest of
all NP problems. Before we can define NP-completeness, we need to define polynomial
transformations.

Definition 2.3.4. Let P1 = (X1, Y1) and P2 = (X2, Y2) be two decision problems. A
polynomial transformation from P1 to P2 is a function f : X1 → X2 computable in
polynomial time such that f(x1) ∈ Y2 if and only if x1 ∈ Y1.

Note that polynomial transformations are also called Karp reductions, see [70], or many-
one reductions, see [20]. The idea of polynomial transformations is to express that
problem P1 is not harder than problem P2 in the sense of a polynomial hierarchy. This
implies especially that, if P2 ∈ P and there is a polynomial transformation from P1
to P2 then P1 must also be in P, the same holds also for NP. We can now define
NP-completeness.

Definition 2.3.5. A decision problem P is NP-complete, if

• P ∈ NP, and

• for all problems P ′ ∈ NP there exist a polynomial transformation from P ′ to P .

Note that formally search problems and optimization problems cannot be in NP or
NP-complete since they are no decision problems. To be able to measure the complexity
of search and optimization problems we define being NP-hard. To do that we need to
generalize polynomial transformations to so called polynomial reductions, see [58].

Definition 2.3.6. Let P and P ′ be two decision, search, or optimization problems. A
polynomial reduction from P ′ to P is an algorithm that uses an oracle for P to solve P ′
in polynomial time. An oracle is a constant time solver for the given problem P and is
assumed to be given. If P is a decision problem (X,Y ) then an oracle returns in constant
time if a given instance x ∈ X is in Y or not. Furthermore, if P is a search problem
R ⊆ X × Y then an oracle returns for a given x ∈ X in constant time either a y ∈ Y
with (x, y) ∈ R or “No” if no such y exists. Finally, if P is an optimization problem,
then an oracle returns for a given instance I = (F, c) in constant time a globally optimal
solution f ∈ F .

With that we can define what an NP-hard problem is.

Definition 2.3.7. Let P be a decision, search, or optimization problem. Then, P is
called NP-hard if there exists a polynomial reduction from P ′ to P for all P ′ ∈ NP.

20



2.3. Computational Complexity

Note that all NP-complete problems are also NP-hard but not the other way around.
One common way of proving NP-completeness for a problem P is to find a polynomial
transformation from an already known NP-complete problem Q to P . Similarly one can
prove NP-hardness for a problem P by finding a polynomial reduction from an already
known NP-hard problem Q to P .

Clearly this strategy only works as long as we already know one NP-complete problem.
The first problem that could be proven to be NP-complete was the SAT, which we are
presenting in the following, see also [58].

Definition 2.3.8. Let X be a set of boolean variables. A truth assignment for X is a
function T : X → {TRUE, FALSE} that assigns each variable a truth value. The set of all
literals over X is given by

L := X ∪ {x̄ | x ∈ X}

where x̄ represents the logical negation of the variable x. Therefore, a truth assignment T
for X can be uniquely extended to L by defining T (x̄) = TRUE if and only if T (x) = FALSE.
A clause over X is now represented by a set of literals over X and can be interpreted as
a logical disjunction. Therefore, we say a clause is satisfied by a truth assignment T for
X if at least one of the literals of the clause are assigned to TRUE. Finally, a family of
clauses is satisfiable if there exists a truth assignment T for X that satisfies all clauses of
the family.

A finite family of clauses over some set X can be interpreted and written as a boolean
formula in conjunctive normal form (CNF). In this sense we call a finite family of clauses
also CNF.

Example 2.3.2. Let X = {x1, x2, x3}, then the family

{{x1, x̄2}, {x1, x3}, {x̄1, x̄2, x̄3}}

can be written as
(x1 ∨ ¬x2) ∧ (x1 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3).

Furthermore, the truth assignment T : x1 7→ TRUE, x2 7→ TRUE, x3 7→ FALSE satisfies all
three clauses. Therefore, the given family of clauses is satisfiable.

Problem 2.3.1 (boolean satisfiability problem (SAT)). Given a CNF ∆, is ∆ satisfiable?

Cook [19] used in 1971 the expressiveness of boolean formulas in CNF to prove the
following important theorem.

Theorem 2.3.1. SAT is NP-complete.
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2.3.1 Enumeration

The most basic approach for solving a COP given an instance (F, c) is enumerating all
feasible solutions f ∈ F , computing for each of them c(f), and remembering the solution
with the smallest found cost. This kind of approach is sometimes called enumeration,
total enumeration, or exhaustive search, see for example [58].

Example 2.3.3. As an example consider the TSP, see Problem 2.2.1. A simple enu-
meration approach for solving the TSP for a complete graph Kn with costs (ce)e∈E(Kn)
would be to enumerate all permutations π of V (Kn) = {1, . . . , n}. We can associate with
each permutation a cycle in Kn that visits the vertices in the order π(1), π(2), . . . , π(n).
Then we compute of each such cycle the total costs and remember the cycle with the
lowest costs.

Note that two permutations π1 and π2 lead to the same cycle in Kn if there is a k ∈
{1, . . . , n−1} such that π1(i) = π2(i+k) for all i ∈ {1, . . . n−k} and π1(i) = π2(i+k−n)
for all i ∈ {n−k+1, . . . , n}. To avoid this duplication we can only consider permutations
π with π(1) = 1. But there are still pairs of permutations π1 and π2 that lead to the
same cycle. Namely, if π1(i) = π2(n − i + 2) for i ≥ 2 and π1(1) = π2(1) = 1, which
corresponds to visiting the same cycle in opposite directions. One way to avoid also those
duplicates is to consider only permutations π with π(1) = 1 and π(2) < π(n).

Techniques of avoiding to generate the same feasible solution multiple times, such as the
one explained in Example 2.3.3, are called symmetry breaking. They are important for
well performing enumeration approaches but are also used in many other approaches.

2.3.2 Branch-and-Bound

To avoid enumerating all feasible solutions of the search space one technique is the
branch-and-bound approach. The main idea is to use a divide and conquer approach
to iteratively split the problem into subproblems building up a search tree. At each
vertex of the search tree a lower bound for the best possible cost that can be achieved
in this subproblem is calculated. If this cost is larger than the cost of the currently
best known solution to the original problem, then we can drop this subproblem, since it
cannot contain a global optimum.

Let for the following (F, c) be an instance of an optimization problem we want to solve.
To present an abstract branch-and-bound approach as it is done in [58] we represent
subproblems formally as subsets of the search space F , i.e. sets of feasible solutions. In a
concrete implementation subproblems are not represented as sets of feasible solutions,
since this would require enumerating all feasible solutions. Often subproblems are
represented by partial solutions and correspond to the set of all feasible solutions that
can be constructed by starting from this partial solution. We require now two problem
specific components.
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• A method branch that formally partitions a subproblem F0 ⊆ F into at least two
non-empty disjoint subproblems F1, . . . , Fk with

⋃k
i=1 Fi = F0.

• A method bound that computes a lower bound L(F0) for the costs of all solutions
in a given subproblem F0 ⊆ F , i.e. it must hold L(F0) ≤ c(f) for all f ∈ F0.

For a given branch and a bound method the branch-and-bound algorithm is given in
Algorithm 2.1.

Algorithm 2.1: Branch-and-Bound
Input: An instance (F, c) of a COP
Output: A globally optimal solution f∗ ∈ F

1 Initialize the tree T := ({F} , ∅) to the tree with only one vertex F ;
2 Mark the vertex F as active;
3 Set the upper bound U :=∞ or apply a heuristic to get a valid upper bound U ;
4 while There exists an active vertex F0 ∈ V (T ) do
5 Mark F0 as non-active;
6 Apply branch on F0 to get a partition F0 = F1

·
∪ . . .

·
∪ Fk;

7 for i← 1 to k do
8 if Xi = {f} for some f ∈ F and c(f) < U then
9 Set U := c(f) and f∗ = f ;

10 else
11 Apply bound to get a lower bound L := L(F0);
12 if L < U then
13 Add vertex Fi to T , i.e. T := (V (T ) ∪ {Fi}, E(T ) ∪ {{F, Fi}});
14 Mark Fi as active;
15 end
16 end
17 end
18 end
19 return f∗

Note that the performance of the branch-and-bound in general depends on the order in
which the subproblems are processed, i.e. how an active vertex F0 ∈ V (T ) gets chosen.
This design decision is called search strategy. As search strategy one can use depth-first-
search or breadth-first-search, but often combinations of them are used together with
heuristic decisions.

Example 2.3.4. A naive branch-and-bound approach for the TSP based on the same idea
as the enumeration approach presented in 2.3.3 can be defined as follows. Subproblems
correspond to partial solutions, i.e. an injective function π(k) : {1, . . . , k} → {1, . . . , n}.
Such a partial solution π(k) represents the subproblem of all permutations that coincide
with π(k) on {1, . . . , k}. The starting problem, the whole search space can then be
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interpreted as the subproblem corresponding to the function π(1) : 1 7→ 1, which only
maps the first vertex to itself.

The branching procedure can now be described as extending a partial solution by
one mapping. Formally, given a partial solution π(k) and still unmapped indices
I := {1, . . . , n} \

{
π(k)(j) | j ∈ 1, . . . , k

}
= {i1, . . . , in−k}, we consider all n − k pos-

sible extensions of the form

π
(k+1)
j := π(k) ∪ (k + 1, ij)

for j ∈ {1, . . . , n− k}.

As a trivial lower bound L(π(k)) we simply use the already fixed edges

L(π(k)) :=
k−1∑
j=1

cπ(j)π(j+1).

This is a lower bound since by definition of the TSP adding more edges e to the partial
solution would only increase the costs since ce ≥ 0 for all e ∈ E.

The performance of the branch-and-bound procedure strongly depends on the quality of
the lower bounds. If they are weak then the branch-and-bound approach degenerates to
a total enumeration approach.

2.3.3 (Mixed) Integer Linear Programming

A powerful tool for solving COPs are integer linear programs (ILPs) formulations
and existing solving techniques. Since integer linear programming is based on linear
programming, we first introduce linear programming. This section is based on [81] and [4].

Linear Programming

Definition 2.3.9. A linear program (LP) over n ∈ N variables is specified by a cost
vector c ∈ Rn, disjoint finite index sets M1,M2,M3, for each index i ∈M1 ∪M2 ∪M3 a
constraint coefficient vector ai ∈ Rn and a scalar bi ∈ R, and disjoint subsets N1 and N2
of {1, . . . , n}. A solution to the LP is given by values for the variables x ∈ Rn solving

minimize c′x
s.t. a′ix ≥ bi ∀i ∈M1,

a′ix ≤ bi ∀i ∈M2,

a′ix = bi ∀i ∈M3,

xj ≥ 0 ∀j ∈ N1,

xj ≤ 0 ∀j ∈ N2.
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The function x 7→ c′x is called objective function or cost function. A vector x satisfying
all the constraints but not necessarily minimizing the objective function is called a feasible
solution. The set of all feasible solutions is also called the feasible region.

Note that we only defined the LP as a minimization problem, but we also consider a
maximization problem as a valid LP, which can be turned into a minimization problem
by multiplying the cost vector c with −1.

The above definition of LP is nice for modeling given problems but quite text intensive
for handling and using it in a theoretical manner as we do in the following. Therefore,
we propose a much simpler representation, which we call reduced LP to avoid confusion.

Definition 2.3.10. A reduced LP is specified by an m× n constraint matrix A ∈ Rm×n,
a vector b ∈ Rm, and a cost vector c ∈ Rn. The reduced LP is then specified by

minimize c′x
s.t. Ax ≥ b.

Note that the inequality Ax ≥ b is considered element-wise.

The feasible region of a reduced LP can be described by {x ∈ Rn | Ax ≥ b}. We call
such a set for any matrix A and vector b a polyhedron.

By using the rows of the matrix A as vectors ai, it is easy to see that every reduced LP
is also an LP. To see that every LP can be transformed to a reduced LP we have to
specify how to transform constraints associated with indices from M2 and M3 and the
constraints of the form xj ≥ 0 and xj ≤ 0. For constraints of the form a′ix ≤ bi we can
simply multiply ai and b with −1 and get a new equivalent constraint −a′ix ≥ −bi. An
equality constraint a′ix = bi can be replaced by two constraints a′ix ≥ bi and −a′ix ≥ −bi.
Last but not least, constraints of the form xj ≥ 0 or xj ≤ 0 can be transformed by adding
a new row with the j-th unit vector or −1 times the j-th unit vector to A together with
a 0 to b. Note that this also shows that the feasible region of any LP can be described
by a polyhedron.

We describe now in the following the idea of a solution method, called Simplex method,
which is commonly used for solving LPs in practice. A detailed description of the method
is out of scope for this work, and we refer the interested reader to [4]. One key property
for this algorithm is that the feasible region of an LP is always convex. Furthermore,
because of the convexity of the objective function every local optimum is also a global
optimum.

Lemma 2.3.2. The feasible region of an LP is convex.

Proof. It is enough to show it for a reduced LP with constraint matrix A. Let x and y
be two feasible solutions. Then we get for any λ ∈ [0, 1] that

A (λx + (1− λ)y) = λAx + (1− λ)Ay ≥ λb + (1− λ)b = b
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and therefore z = λx + (1− λ)y is a feasible solution.

Definition 2.3.11. A feasible solution x of an LP with cost vector c is called a local
optimum if there exists an ε > 0 such that for any feasible solution y with ‖x− y‖ ≤ ε it
holds that c′x ≤ c′y.

Theorem 2.3.3. Every local optimum x of an LP is also a global optimum.

Proof. Let ε be as in the definition of the local optimum x and y 6= x ∈ Rn any feasible
solution not equal to x. Since the feasible region is convex, see Lemma 2.3.2, we know
that z = x + (y− x) ε

‖y−x‖ is a feasible solution and ‖x− z‖ ≤ ε. Therefore, we get

c′x ≤ c′
(

x + (y− x) ε

‖y− x‖

)
= c′x + c′(y− x) ε

‖y− x‖ ,

which implies c′(y− x) ≥ 0 and thus c′x ≤ c′y.

The next important result is that it is enough to check the extreme points of the feasible
region for a local/global optimum in an LP.

Definition 2.3.12. A point x ∈ P of a polyhedron P is called an extreme point of P if
there are no y, z ∈ P \ {x} such that x = λy + (1− λ)z for some λ ∈ [0, 1].

The following theorem is a combination of Theorem 2.8 and Corollary 2.3 in [58].

Theorem 2.3.4. For any LP exactly one of the following holds.

1. The feasible region is empty,

2. the optimal cost is −∞, i.e. there exist feasible solutions with arbitrary low costs,

3. the nonempty feasible region has no extreme points and there exists an optimal
solution, or

4. there exists an optimal solution that is an extreme point.

We want to avoid case 3 in Theorem 2.3.4 to be able to only search for extreme points.
This can be done by transforming the LP into a so called standard form.

Definition 2.3.13. An LP of the form

minimize c′x
s.t. Ax = b

x ≥ 0

with A ∈ Rm×n and b ∈ Rm is said to be in standard form.
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See [58] for the proof of the following theorem.

Theorem 2.3.5. Every LP can be transformed into an equivalent LP in standard form.

For LPs in standard form we get that they contain an extreme point if they are non-empty,
see Corollary 2.2 in [58].

Theorem 2.3.6. An LP in standard form has either an empty feasible region or its
feasible region has at least one extreme point.

We can describe now the basic procedure of the Simplex method. Given an LP, we
transform it into an equivalent LP in standard form. Then we search for an extreme
point, which must exist by Theorem 2.3.6, using an auxiliary LP for which we already
know an extreme point, see [58] for more details. Having an extreme point, we try to
improve it by moving along edges of the geometric border of the feasible region. If we
cannot find any edge such that moving along this edge improves the current costs, we
know that the current extreme point is a local optimum and therefore a global optimum
by Theorem 2.3.3. If at some point there is an infinitely long edge that improves the
costs, then we know that the optimal cost is −∞.

Note that although the simplex method is commonly used in practice to solve LPs it has
an exponential worst case running time. The ellipsoid method, see [58], on the other
hand has polynomial running time but often performs worse than the simplex method for
practical applications. There are other approaches for solving LPs based on interior-point
methods. In contrast to the Simplex method that moves along the border of a polyhedron
to find an optimal solution, interior point methods move in the interior of the polyhedron
to find an optimal solution.

Mixed Integer Linear Programs

Since LPs can be solved in polynomial time we cannot directly use them to solve NP-hard
problems as long as P = NP is not proved. By adding integrality constraints we get the
much more powerful concept of mixed integer programs, see [81].

Definition 2.3.14. A mixed integer linear program (MILP) is given by a m× n matrix
A ∈ Rm×n, a m× p matrix G ∈ Rm×p, a vector c ∈ Rn, a vector h ∈ Rp, and a vector
b ∈ Rm. The problem is then to find a vector x ∈ Rn and a vector y ∈ Np solving

minimize c′x + h′y
s.t. Ax +Gy ≥ b

x ≥ 0,y ≥ 0,y is integral

If n = 0, i.e. all variables are integer, we call it integer linear program (ILP).
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Note that in a MILP in contrast to an LP the y variables are only allowed to be integers.
We use here a slightly different definition of MILP than in [81] to stay consistent with
our definition of LPs. As in the case of LPs we can also allow maximization problems,
constraints of the form a′x + g′y ≤ b or a′x + g′y = b and have unbounded or only
non-positive variables and transform them into the above form of a MILP. Therefore, we
also speak of a MILP if we do maximize or have such kind of constraints or variables.

To denote the feasible region for a MILP we use the shorter notation

{z ∈ Rn × Zp | Az ≥ b} .

This is possible since we can rewrite the inequalities x ≥ 0 and y ≥ 0 to be part of the
matrix A.

The expressiveness of MILPs can be seen in the fact that solving a general ILP is NP-
hard, see [81], which implies that every problem in NP can be polynomially reduced to
solving an ILP.

LP-based Branch-and-Bound

In the following we describe a general approach for solving MILPs based on branch-and-
bound, see [81] for more details. Note that the approach described here is just a basic
method and competitive solvers implement highly non-trivial additional improvements.
For a competitive solver, see for example IBM ILOG CPLEX Optimizer1 or Gurobi
Optimizer2.

As described in Section 2.3.2 we need to specify a branch method and a bound method
to fully specify a branch-and-bound procedure. The idea of the branching is to split
the search space into two halves by adding a new constraint and its complement to
the MILP. Therefore, subproblems are represented by the base MILP plus additionally
added constraints. In each node of the branch-and-bound procedure, corresponding to a
subproblem represented by a MILP, we solve the so called LP relaxation.

Definition 2.3.15. Given a MILP

minimize c′x + h′y
s.t. Ax +Gy ≥ b

x ≥ 0,y ≥ 0,y is integral

the LP relaxation is the linear program

minimize c′x + h′y
s.t. Ax +Gy ≥ b

x ≥ 0,y ≥ 0

relaxing the integrality condition of y.
1https://www.ibm.com/analytics/cplex-optimizer (accessed 09/2019)
2https://www.gurobi.com (accessed 09/2019)
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Theorem 2.3.7. Given a MILP, the optimal value zLP of the LP relaxation is a lower
bound of the corresponding MILP. This lower bound is called dual bound.

Proof. The only difference between the MILP and its LP relaxation is, that the feasible
region of the LP relaxation is a superset of the feasible region of the MILP. Therefore,
every optimal solution of the MILP is a feasible solution of the LP relaxation with the
same objective value. Thus, an optimal solution of the LP relaxation has costs at least
as low as any optimal solution of the MILP.

Consider now some subproblem corresponding to some MILP. Then we solve the LP
relaxation using for example the Simplex method. If the LP relaxation is infeasible, we
know that the subproblem has no feasible solution and can drop this subproblem. This
case is also called pruning by infeasibility. Otherwise, let (x∗,y∗) be an optimal solution
of the LP relaxation.

If all variables in y∗ are integral we got an optimal solution of the subproblem. We can
therefore update the global upper bound U in Algorithm 2.1 if applicable and then drop
this subproblem. This is also called pruning by optimality. Otherwise, let y∗i be any
non-integral variable. We can then split the problem into two by adding to one problem
the constraint yi ≤ by∗i c and to the other the constraint yi ≥ dy∗i e. Clearly any feasible
integer solution to the subproblem is either feasible in the first or in the second of those
two new problems giving us a formal partition of the solutions of the subproblem as it is
necessary for the branch method. In contrast to the formal condition that subproblems
are non-empty in the definition of branch-and-bound this may not be the case for this
procedure. But since the current solution (x∗,y∗) of the LP relaxation is infeasible in
both problems, this is enough to avoid infinite branching loops. The choice of the variable
y∗i strongly influences the performance of the branch-and-bound. A reasonable choice
would be to use the most fractional variable, i.e., the variable with the largest distance
to the next integer value, but there also exist more sophisticated approaches.

The bound method can simply be described as using the dual bound, i.e. the optimal
objective value of the LP relaxation. If the dual bound is larger than or equal to the
current global upper bound (see U in Algorithm 2.1) then this subproblem gets also
dropped, which is called pruning by bound in this case.

The performance of this branch-and-bound approach strongly depends on the quality
of the dual bounds. Note that different MILP representations of the same feasible
region may result in different LP relaxations. Therefore, it is important to choose a
good representation of the MILP that results in strong dual bounds. In this context we
introduce a relation between formulations of the feasible area of a MILP, see [81].

Definition 2.3.16. A polyhedron P ⊆ Rn+p is a formulation for a set Z ⊆ Rn × Zp if
Z = P ∩ (Rn × Zp). Given two formulations P1 and P2 of a set X, we say that P1 is at
least as strong as P2 if P1 ⊆ P2, and stronger as P2 if P1 ( P2. Furthermore, if neither
P1 ⊆ P2 nor P2 ⊆ P1 we say the two formulations are incomparable.
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Branch-and-Cut

As we saw already in the previous section there can be different formulations of the same
feasible region for a MILP. One way to improve the strength of a formulation is to add
valid cuts, see [81].

Definition 2.3.17. An inequality a′z ≤ b0 with a ∈ Rn+p and b0 ∈ R is a valid inequality
for a set Z ⊆ Rn × Zp if a′z ≤ b0 for all z ∈ Z.

Given a formulation P of a set Z, then we can search for a valid cut a′z ≤ b0 for
Z with

{
z ∈ Rn+p | a′z ≤ b0

}
6⊇ P and add it to P resulting in the new formulation

P ′ := P ∩
{
z ∈ Rn+p | a′z ≤ b0

}
, which is stronger than P . The task to find good valid

inequalities, which do not blow up the model and strengthen it substantially, is non-trivial,
for more details see [81].

Given an optimal solution to the LP relaxation of a MILP, we call a valid inequality a cut
if the current solution does not satisfy the inequality. The problem of finding a new cut
for a given solution of the LP relaxation is called separation problem. The technique of
iteratively adding cuts to strengthen the formulation by solving the separation problem
is called cutting plane method. Branch-and-cut can be seen as incorporating the cutting
plane method into the branch-and-bound procedure presented previously. At each node
of the branch-and-bound tree, before we solve the LP relaxation, we search for cuts to
add to the current formulation. If we cannot find anymore suitable cuts we solve the LP
relaxation of the final formulation and proceed with pruning or branching as described
in the branch-and-bound procedure.

Until now, we defined branch-and-cut to only add cuts at the nodes as it is also done
in [81]. But we are also interested in another use case of branch-and-cut in which we
dynamically add inequalities that cut away unwanted integer solutions. This can be
helpful in situations where the original formulation of the MILP has a lot of constraints
C, maybe even exponential many, and generating all of them would blow up the model
significantly. In this case we formally consider at the beginning only a small subset
C0 ⊆ C of the constraints, resulting in a larger feasible region Z0 ⊇ Z.

Consider now the original formulation P of Z, which is described by C, and the new
formulation P0 ⊇ P of Z0 described by C0. We start now the branch-and-cut procedure
working on the formulation P0. At each node if the solution of the LP relaxation is not in
P we search for a violated constraint C ∈ C and add it to the formulation. The problem
of finding such a violated constraint is again called the separation problem. Note that
this procedure works without generating all the constraints describing P , only the logic
of them has to be incorporated into solving the separation problem, which is strongly
problem specific. The constraints in C \ C0 are often called lazy constraints.

A famous example for using lazy constraints are the subtour inequalities in the context
of the TSP, see for example [3]. Exponential many inequalities ensure that for every
proper subset V0 of the vertex set V at least two edges between the vertices of V0
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and V \ V0 are used. As it turns out in many situations dynamically generating those
constraints in a branch-and-cut procedure result in a better performance than a more
compact formulation, such as the Miller-Tucker-Zemlin (MTZ) formulation. Important
for the effectivity of the branch-and-cut procedure is that in most practical cases only
few constraints out of the exponential many get really generated and added.

2.3.4 SAT Solving

As mentioned in Section 2.2 SAT is NP-complete and heavily studied in literature. This
focus led to performant solvers for solving SAT instances in practice. This section is
based on the book [6].

Using the expressiveness of boolean formulas one approach of solving any decision problem
is to reduce it to SAT and use a powerful SAT solver to solve it. Therefore, we can
see SAT as a modeling language with performant solvers. In this sense SAT can be
compared to MILP as a modeling language, although MILP solvers can solve discrete
optimization problems and SAT solvers can only solve decision problems. Note that there
exist extensions of SAT such as the maximum satisfiability problem (MAX-SAT) that
are also able to model optimization problems, see [6].

In this section we present the basic solving approach of most modern SAT solvers. There
are many different solution approaches for solving a SAT instance, but one technique
based on conflict driven clause learning (CDCL) is especially successful and is used
nowadays in most competitive SAT solvers. This can be seen as an extension of the
Davis–Putnam–Logemann–Loveland (DPLL) algorithm, which we present first.

The basic idea of DPLL is to systematically try out truth values for variables, resulting
in a search tree, and use unit resolution to detect infeasibility of a branch as early as
possible.

Definition 2.3.18. Given two clauses Ci and Cj and a variable P with P ∈ Ci and
P̄ ∈ Cj , the clause (Ci \ {P}) ∪ (Cj \ {P̄}) is called a P -resolvent or simply resolvent
that is obtained by resolving Ci and Cj . If |Ci| = 1 or |Cj | = 1 this technique is called
unit resolution.

It is easy to see that if Ci and Cj are satisfied then any resolvent of them must also be
satisfied. The technique of resolving is used to learn new clauses for a given set of clauses.
Whenever our CNF contains a clause with only one literal we can fix the truth value of
this literal and apply unit resolution to all clauses that contain the negated literal. We
can then do this iteratively if more clauses with only one literal arise. Before we can
describe the algorithm DPLL, we need one more notation.

Definition 2.3.19. Let ∆ be a CNF and L a literal. Then we define the conditioning
operator by

∆|L =
{
C \ {L̄} | C ∈ ∆, L /∈ C

}
.

It is easy to see that ∆|L is equivalent to ∆ ∧ L, i.e. fixing the literal L to true in ∆.
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Let UNIT_RESOLUTION denote the procedure of applying iteratively all possible unit
resolutions to a CNF ∆ and returning a pair (I,Γ), where I is a set of the fixed literals
and Γ is the CNF obtained after conditioning ∆ on all literals in I. The basic DPLL
algorithm is now shown in Algorithm 2.2.

Algorithm 2.2: DPLL
Input: A CNF ∆
Output: Either a feasible set of literals satisfying ∆ or UNSATISFIABLE

1 (I,Γ) := UNIT_RESOLUTION(∆);
2 if Γ = ∅ then
3 return I
4 else if ∅ ∈ Γ then
5 return UNSATISFIABLE
6 else
7 Select a literal L from Γ;
8 if R = DPLL(Γ|L) 6= UNSATISFIABLE then
9 return R∪ I ∪ {L}

10 else if R = DPLL(Γ|L̄) 6= UNSATISFIABLE then
11 return R∪ I ∪ {L̄}
12 else
13 return UNSATISFIABLE
14 end

One of the drawbacks of the DPLL algorithm is that it does not consider the reason
why a CNF is unsatisfiable. This leads to the fact that the same contradiction may be
produced for different branches of the search tree, since the contradiction does not depend
on all the previously fixed variables. Therefore, modern SAT solver incorporate conflict
driven clause learning (CDCL) to learn conflicts also for other branches of the search tree.
Whenever UNIT_RESOLUTION returns an empty Γ the solvers derive a conflict clause and
add this conflict clause globally to the CNF ∆. This leads to the point that we do not
need the search tree anymore, since we can simply only consider the current branch of
fixed literals and whenever we learn a new clause undo some decisions and start again
with the extended CNF.

Note that an empty ∆ reached through unit resolution may lead to multiple different
conflict clauses and the choice of which to use are non-trivial details of the different
implementations. One possible choice is to use the clause consisting of the negations
of all the literals fixed for the current branch that were used during the unit resolution
process to obtain the contradiction.

Another implementation detail that may highly impact the performance of the solver
is the selection of the next literal L of Γ to fix. Furthermore, other additional features
occurring in many solvers are deletion of learned clauses after some time and restarts to
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avoid being stuck in a difficult part of the search area, see [6] for more details. Moreover,
some solvers may also include more advanced resolution techniques additionally to unit
resolution.

2.4 Heuristic and Metaheuristic Approaches

In the previous section we saw methods for solving COPs in an exact way. That
means that the algorithms guarantee to return an optimal solution when the algorithm
terminates and one exists. For NP-hard optimization problems all exact approaches
need exponential running time as long as P = NP is not proven. This often results in
long running times in practice, especially for large instances. The idea of heuristics is
to compute a promising solution in a short time. The solution may not be optimal and
there are in general no quality guarantees in contrast to approximation algorithms, but
in practice the objective value may frequently be close to the optimal one.

A technique for developing heuristics is the use of metaheuristics. Sörensen and Glover
define metaheuristics as follows [76].

Definition 2.4.1. A metaheuristic is a high-level problem-independent algorithmic
framework that provides a set of guidelines or strategies to develop heuristic optimization
algorithms.

Note that we also use the term metaheuristic to describe problem specific algorithms
that are based on a metaheuristic framework. One important principle of metaheuristics
is the balance of diversification and intensification of the search, see [8]. Those terms are
based on a theoretical model of the search space as metric space based on a similarity
measure. Similar solutions that can be derived from each other by only small changes
are close together in the search space and completely different solutions are far away
from each other. In this context intensification means finding the best solution in a small
subarea of the search space while diversification means diversifying the search over the
whole search space searching in completely different areas.

Many metaheuristics got developed over time, see [35], and therefore we only present
those metaheuristics here that we use in this work. In this section we present first one
of the most basic ingredients of many metaheuristics, the greedy construction heuristic,
which is a problem specific heuristic. Then we present the local search heuristic followed
by variable neighborhood search based metaheuristics and very large scale neighborhood
search (VLSN).

2.4.1 Greedy Construction Heuristic

Many metaheuristics such as variable neighborhood search based metaheuristics need a
starting solution, which they can then subsequently improve. For that one normally uses
problem specific construction heuristics, one common scheme of them is called greedy
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construction heuristic. The basic idea is to build up a partial solution and iteratively
add new components that look the most promising until we get a complete solution.

The problem specific ingredients of a greedy construction heuristic is a representation of
partial solutions, a starting partial solution S0, for each partial solution S a set E(S)
of possible extensions and a rating function r(e, S) for each extension e ∈ E(S). As we
assume minimization, a lower rating is better. The pseudo-code for a general greedy
construction heuristic with those ingredients is given in Algorithm 2.3.

Algorithm 2.3: Greedy Construction Heuristic
Input: An instance of a combinarial optimization problem
Output: A partial solution S that cannot be extended anymore

1 S := S0;
2 while E(S) 6= ∅ do
3 e := arg mine∈E(S) r(e, S);
4 S := S extended with e;
5 end
6 return S

If a partial solution is already a feasible solution to the problem we call it complete. It is
important to note that the design of the greedy construction heuristic has to be chosen
in such a way that a partial solution is always complete whenever there is no possible
extension for it. Otherwise, no feasible solution can be returned.

Example 2.4.1. Let us consider an instance of the TSP, i.e. a complete graph Kn with
edge costs ce for each e ∈ E(Kn). There are many different possibilities how to design a
construction heuristic for the TSP, see [66]. We consider in this example the so called
nearest neighbor heuristic.

The idea of the heuristic is to incrementally create a path and add in each iteration an
unvisited vertex that is the nearest to the current end of the path. The considered paths
start at an arbitrary vertex v0 ∈ V (Kn). As partial solutions we use paths in Kn starting
at v0. The starting solution S0 is the path of length zero starting and ending at v0. For
a path S an extension can be described by an unvisited vertex and therefore we can
define E(S) := V (Kn) \ V (S). Furthermore, we define the rating r(v, S) for a path S
connecting v0 with w and a vertex v ∈ E(S) to be r(v, S) := cvw. A path S connecting
v0 with w gets extended by a vertex v by adding the vertex v and the edge vw to S.

Note that with the above described configuration the greedy construction heuristic returns
only a path and we need to close the path by finally adding the edge between the two
end vertices to get a hamiltonian cycle.
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2.4.2 Local Search

The technique of local search is used in many metaheuristics for intensifying the search,
but it can also be used as a standalone improvement heuristic. The main idea is to try
to iteratively improve a solution by doing small modifications. To formalize this idea we
use the concept of neighborhoods.

Definition 2.4.2. Given an instance (F, c) of a COP, a neighborhood of a solution f ∈ F
is a set of solutions N(f) ⊆ F . A neighborhood structure N is then a function that maps
every solution to its neighborhood, i.e. N : F → 2F , f 7→ N(f).

Often neighborhood structures are described by move operations. A move is a description
how to modify a solution to get to its neighbors. The neighborhood N(f) of a solution f
is then defined by the solutions obtained by applying all possible moves to the solution f .

Example 2.4.2. Consider again an instance of the TSP. A popular neighborhood
structure for the TSP is the so called k-opt neighborhood structure for some fixed k ∈ N,
k ≥ 2, see [66]. Given a hamiltonian cycle C we describe a move by removing k edges
and adding k edges in such a way that the result is again a hamiltonian cycle. The
neighborhood N(C) associated with this move consists then of all hamiltonian cycles
that differ from C in at least two and at most k edges, i.e.

N(C) :=
{
C ′ hamiltonian cycle of Kn | C 6= C ′ ∧ |E(C ′) \ E(C)| ≤ k

}
.

Given a neighborhood structure N the standalone local search procedure is given in
Algorithm 2.4

Algorithm 2.4: Local Search
Input: An instance (F, c), a starting solution f0 ∈ F , and a neighborhood

structure N
Output: A solution f ∈ F with c(f) ≤ c(f0)

1 f := f0;
2 while ∃f ′ ∈ N(f) with c(f ′) < f do
3 f := f ′

4 end
5 return f

An important implementation detail for a local search procedure is how we search through
the current neighborhood. There are three established variants. The first is called first
improvement and enumerates through the neighborhood until it finds a f ′ ∈ N(f) with
c(f ′) < f and returns it. In the second variant, which is called best improvment, we
always iterate through the whole neighborhood and search for a solution f ′ with the lowest
costs, i.e., a best neighbor. Last but not least, in random improvement we randomly
select a neighbor f ′ and test if c(f ′) < f .
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Note that the third variant differs from the other two because we cannot directly use it
in Algorithm 2.4 since we never know if there exists a f ′ ∈ N(f) with c(f ′) < f as long
as we do not find such one randomly. Therefore, local search with random improvement
discards worse solutions but continues with the next iteration until a termination criterion
is satisfied, e.g. a certain number of successive unsuccessful iterations has been reached.

First and best improvement have the advantage that they can prove that a solution
cannot be improved by this neighborhood. We call such a solution a local optimum,
similarly as we defined it for the continuous LP problem, see Definition 2.3.11.

Definition 2.4.3. Given a neighborhood structure N , a solution f is called a local
optimum with respect to N if c(f) ≤ c(f ′) for all f ′ ∈ N(f).

Theorem 2.4.1. Using local search with a neighborhood structure N and with first
improvement or best improvement returns a local optimum with respect to N .

2.4.3 Variable Neighborhood Search

Theorem 2.4.1 in the previous section can also be considered a weakness of local search
since the cost of a local optimum may be much worse than the cost of the global optimum.
In this sense we say that local search gets stuck in a local optimum. Therefore, many
metaheuristics are designed to overcome this weakness of getting stuck in a local optimum.
This section is based on the book chapter [42].

One simple approach is to use multiple different neighborhood structures instead of
only one. Given neighborhood structures N1, N2, . . . , Nk the variable neighborhood
descent (VND) approach systematically searches through all of them until none of the
neighborhoods yield an improvement on the current solution. A pseudo-code for this
approach is given in Algorithm 2.5.

Algorithm 2.5: VND
Input: An instance (F, c), a starting solution f0 ∈ F , and neighborhood

structures N1, . . . , Nk

Output: A solution f ∈ F with c(f) ≤ c(f0)
1 f := f0, i := 1;
2 while i ≤ k do
3 f ′ := arg minx∈Ni(f) c(x);
4 if c(f ′) < c(f) then
5 f := f ′, i := 1;
6 else
7 i := i+ 1;
8 end
9 end

10 return f
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One important design decision for VND is the order of the neighborhood structures.
Every time an improvement is found the neighborhood index is traditionally reset to 1,
this leads to the fact that neighborhood structures with smaller index get potentially
searched through much more often than the ones with larger indices. Therefore, the order
of the neighborhood structures has a high impact on the performance of the algorithm.

For multiple neighborhood structures N1, . . . , Nk we say a solution f is a local optimum
with respect to N1, . . . , Nk if it is a local optimum with respect to Ni for all i ∈ {1, . . . , k}.
With this definition the following holds.

Theorem 2.4.2. Applying VND with neighborhood structures N1, . . . , Nk results in a
local optimum with respect to N1, . . . , Nk.

Note that VND normally uses best improvement or next improvement to search through
one neighborhood. Therefore, the neighborhoods need to be small such that enumerating
through them can be done in reasonable time. In this sense VND is only focusing on
intensification within a small area of the search space and still gets stuck in local optima,
although this time with respect to all neighborhood structures N1, . . . , Nk.

One approach to allow much larger neighborhood structures that cannot be enumerated
in reasonable time is called reduced variable neighborhood search (RVNS). This approach
can be described by simply replacing the best improvement in line 3 of Algorithm 2.5
with random improvement, i.e. selecting a random neighbor instead of searching for the
best neighbor. This random improvement step is in this context called shaking. If we do
not find an improvement in all k neighborhood structures in this case it might just be
bad luck and therefore we repeat the whole procedure many times until some stopping
criterion reached. See Algorithm 2.6 for a pseudo-code.

There can be many different kinds of stopping criteria including a time limit, a reached
solution quality, a total number of iterations, or a number of iterations in which no
improvement was found.

Since we have no limit in the size of neighborhoods for the RVNS approach we can even
use one neighborhood structure in which every neighborhood N(f) is the whole search
space F . If we have such a neighborhood or at least neighborhood structures that satisfy⋃k
i=1Ni(f) = F for every f ∈ F , we get a nice theoretical property. Namely, that if we

let the algorithm run indefinitely, i.e. use no stopping criterion, then we find a globally
optimal solution with probability 1. Unfortunately the algorithm cannot prove optimality
and stop, therefore we never know if the current found solution is a global optimum or
not.

In terms of intensification versus diversification RVNS strongly focuses on diversification.
To balance this and add an intensification step one extension of RVNS is called basic
variable neighborhood search (BVNS), which applies a local search after each shaking.
Therefore, we need another neighborhood structure N additionally to N1, . . . , Nk. Then
we can describe BVNS by adding a local search step with the neighborhood structure N
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Algorithm 2.6: RVNS
Input: An instance (F, c), a starting solution f0 ∈ F , and neighborhood

structures N1, . . . , Nk

Output: A solution f ∈ F with c(f) ≤ c(f0)
1 f := f0;
2 while Stopping criterion is not met do
3 i := 1;
4 while i ≤ k do
5 f ′ := Random solution in Ni(f) ; // Shaking
6 if c(f ′) < c(f) then
7 f := f ′, i := 1;
8 else
9 i := i+ 1;

10 end
11 end
12 end
13 return f

after line 5 in Algorithm 2.6, i.e. f ′ := LOCAL_SEARCH(f ′,N ). Note that we only use the
result of the local search if it is better than the current solution f .

Finally, we can extend now BVNS by replacing the local search step through a whole
VND step based on multiple neighborhood structures N1, . . . ,Nk. This algorithm is then
called general variable neighborhood search (GVNS), see Algorithm 2.7.

2.4.4 Very Large Scale Neighborhood Search

As we saw in the previous section choosing small neighborhoods for local search or VND
results in being stuck in a local optimum that may be far worse than the globally optimal
solution. Another approach besides BVNS or GVNS to avoid this is using a much larger
neighborhood structure. Of course this still may get stuck in a local optimum, but
hopefully this local optimum is then already globally optimal or close to it. The class
of very large scale neighborhood search (VLSN) algorithms are based on large, often
exponentially large, neighborhoods that cannot be enumerated in reasonable time, see [63].
Instead of enumerating it such a large neighborhood is then either restricted to some
smaller set of especially promising neighbors, searched through heuristically, or searched
through using a more sophisticated exact approach to find the best neighbor. Often,
problem specific solution approaches based on LP, MILP, or dynamic programming (DP)
are used to search through the large neighborhood.

One specific metaheuristic, which is part of the class of VLSN algorithms, is the so
called large neighborhood search (LNS) [63]. The neighbors of an LNS neighborhood
are specified by all solutions that are reachable by a specified destruction and repairing
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Algorithm 2.7: GVNS
Input: An instance (F, c), a starting solution f0 ∈ F , shaking neighborhood

structures N1, . . . , Nk, and VND neighborhood structures N1, . . . ,Nk
Output: A solution f ∈ F with c(f) ≤ c(f0)

1 f := f0;
2 while Stopping criterion is not met do
3 i := 1;
4 while i ≤ k do
5 f ′ := Random solution in Ni(f) ; // Shaking
6 f ′ := VND(f ′,N1, . . . ,Nk);
7 if c(f ′) < c(f) then
8 f := f ′, i := 1;
9 else

10 i := i+ 1;
11 end
12 end
13 end
14 return f

method. In each iteration one (often randomly) chosen destruction is applied and then a
repair method is applied to get again a complete feasible solution.

In Chapter 3 we propose a combination of a GVNS and VLSN approach, by incorporating
a large neighborhood in the GVNS framework. Such combinations of metaheuristics
are called hybrid metaheuristics, see [64, 7]. The class of hybrid metaheuristics does
not only contain combinations of two or more metaheuristics but also combinations of
metaheuristics with exact approaches.
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CHAPTER 3
Searching For Uniquely

Hamiltonian Planar Graphs

In this chapter we present two kinds of approaches to search for uniquely hamiltonian
planar graphs with minimum degree three. After a general introduction we present in the
first part a heuristic to search for uniquely hamiltonian graphs minimizing the crossing
number and the number of degree two vertices. Then, in the second part, we search for
planar graphs containing stable cycles from which we can construct uniquely hamiltonian
graphs.

3.1 Introduction
A lot of research in graph theory focuses on hamiltonian cycles. The problem of finding
hamiltonian cycles is well studied from a theoretical [37] and practical point-of-views as
a special case of the TSP [3]. An interesting topic in graph theory is the question of how
many hamiltonian cycles a given graph has. A simpler version of this question only asks
if there is exactly one hamiltonian cycle in a given graph.

In this chapter we are only concerned with undirected simple graphs and just write graph
for this type of graphs.

Definition 3.1.1. A graph G = (V,E) is uniquely hamiltonian if and only if it contains
exactly one hamiltonian cycle.

One type of problem in the area of uniquely hamiltonian graphs is to determine for
a given class of graphs if it contains a uniquely hamiltonian graph. Already in 1946
Smith proved that every edge of a 3-regular graph is contained in an even number of
hamiltonian cycles, which was published by Tutte [79]. Clearly, this result implies that
3-regular graphs can never be uniquely hamiltonian. This was then further improved by
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Thomason [77] who showed that all graphs where all vertices have odd degrees cannot be
uniquely hamiltonian. As an implication we get that every uniquely hamiltonian graph
must contain at least two vertices of even degree.

The aforementioned early results show that vertex degrees play an important role
for uniquely hamiltonian graphs. Bondy and Jackson [10] provided an upper bound of
c log2(8n)+3 with c ≈ 2.41 for the smallest vertex degree δ(G) for a uniquely hamiltonian
graph G. Abbasi and Jamshed [1] could improve the upper bound to c log2(n) + 2 with
c ≈ 1.71. Naturally, the question arises how tight this upper bound is.

Already in 1980 Entringer and Swart [23] found uniquely hamiltonian graphs with
minimum degree three. Their graphs have only two vertices of degree four and all other
vertices have degree three, which is as close as we can get to 3-regular uniquely hamiltonian
graphs by Thomason’s theorem. Sheehan conjectured in 1975 that there do not exist 4-
regular uniquely hamiltonian graphs. If we allow parallel edges, Fleischner [26] constructed
infinitely many 4-regular uniquely hamiltonian multigraphs. This construction could not
be extended to simple graphs and therefore Sheehan’s conjecture is still an open problem.

Another question raised by Bondy [9] asks whether there exists a uniquely hamiltonian
graph with minimum degree four. This question got answered by Fleischner [27] who
constructed an infinite family of uniquely hamiltonian graphs that only have vertices of
degree four and 14. The big gap between the best known minimum degree δ(G) = 4 and
the upper bound δ(G) ≤ c log2(n) + 2 remains an open problem.

If we consider only planar graphs Bondy and Jackson [10] provided a much smaller upper
bound of δ(G) ≤ 3 by showing that a planar uniquely hamiltonian graph has at least two
vertices of degree two or three. Clearly, there exist planar uniquely hamiltonian graphs
with δ(G) = 2, for example the cycle graphs Cn. Bondy and Jackson conjectured that
every planar uniquely hamiltonian graph contains a vertex of degree two, i.e. δ(G) ≤ 2
for planar uniquely hamiltonian graphs, which would close the gap for the case of planar
graphs.

Since the construction of uniquely hamiltonian graphs with minimum degree four by
Fleischner was quite surprising for the scientific community, one may guess that there exist
also planar uniquely hamiltonian graphs with minimum degree three. Unfortunately, the
techniques used by Fleischner to construct uniquely hamiltonian graphs with minimum
degree four cannot directly be applied to planar graphs. This motivates the computer-
aided search for such graphs on which we focus in this chapter.

The following definition is useful for both types of approaches that we are going to
consider.

Definition 3.1.2. Let G be a graph. A fixed edge cycle (FE-cycle) is a pair (C, e)
where C is a cycle of G and e an edge occurring in C. An FE-cycle is called uniquely
hamiltonian if C is hamiltonian and there is no other hamiltonian cycle containing the
edge e. Furthermore, a graph that contains a uniquely hamiltonian FE-cycle is called a
fixed edge uniquely hamiltonian graph (FEUHG).
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Note that an FEUHG may contain multiple FE-cycles with different fixed edges. The
importance of FEUHGs is that we can transform them to uniquely hamiltonian graphs.
A similar transformation was first mentioned by Leder in his master thesis [59].

Proposition 3.1.1. Let G be an FEUHG. Then there exists a uniquely hamiltonian
graph G′ with |V (G′)| = 2|V (G)| − 2 and δ(G′) ≥ δ(G). Furthermore, if G is planar then
G′ is also planar.

Proof. Let (C, e) with e = uv be a uniquely hamiltonian FE-cycle of G. We construct
G′ by starting with two copies G∗ and G∗∗ of G − e. We then identify the vertices
u∗ ∈ V (G∗) with u∗∗ ∈ V (G∗∗) and v∗ ∈ V (G∗) with v∗∗ ∈ V (G∗∗) to glue the two copies
together. The hamiltonian cycle C naturally implies a hamiltonian cycle C ′ in G′ by
using two copies of C − e and connecting them. It is also stable since if there would be
another hamiltonian cycle C ′′ in G′ then it must be different in one of the two copies.
Considering the edges of the cycle in this copy together with the edge e gives us then a
cycle in G that is different to C and also a hamiltonian cycle of G containing e, which is
a contradiction.

Clearly, |V (G′)| = 2|V (G)|−2 holds. All vertices in the two copies have the same degrees
as in the original graph except for the identified vertices u∗ and v∗, but the degrees of
those two can only increase and therefore we have δ(G′) ≥ δ(G). Furthermore, if G is
planar we can find a planar embedding such that e is on the outer face and then removing
e, adding the copy of the embedding and identifying u∗ and v∗ with their copies can be
done without any crossings. Therefore, G′ is also planar.

Note that Leder connected the vertices u∗ with u∗∗ and v∗ with v∗∗ using new edges
instead of identifying them, which results in a slightly larger graph with the advantage
that all vertices in the copies have the same degrees as in the original graph. This is
especially important for regular graphs, since it is regularity-preserving.

3.2 Metaheuristic Approach to Minimize the Number of
Crossings and Vertices of Degree Two

In this section we transform the problem of finding a uniquely hamiltonian planar graph
with minimum degree three into a bi-objective optimization problem that minimizes
the crossing number and the number of vertices with degree two. To solve this prob-
lem approximately we propose a GVNS heuristic. The GVNS framework was already
successfully applied to other graph theoretical problems, see, e.g., [16].

As the search space increases exponentially with increasing number of vertices a heuristic
could be beneficial compared to an exact approach, for exact approaches see Section 3.3.
One of our proposed neighborhood structures is exponentially large and we use a branch-
and-bound procedure to find the best neighbor in its neighborhoods. This embeds the
idea of a VLSN [63] in our GVNS. We will see that the bottleneck in our algorithm,
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which consumes most of the running time, are the expensive unique hamiltonicity checks.
To reduce the number of such checks we keep infeasible, not uniquely hamiltonian,
solutions formally in our neighborhood. Only after finding the best neighbor we apply a
Lin-Kerninghan Heuristic (LKH) [44] and in a later step we use Concorde1 to check for
feasibility.

In the next section we describe some transformations of the problem and formally state the
resulting optimization problem. In Section 3.2.2 we describe our GVNS framework and
the neighborhood structures in detail. The comparison of three different configurations
and the experimental results are presented in Section 3.2.3. Finally, we conclude with
Section 3.2.4 and propose some further research ideas.

3.2.1 Problem Description

In graph theory an important and challenging open question is whether or not a uniquely
hamiltonian planar graph with minimum degree three (UHPG3) exists [10]. Bondy and
Jackson [10] conjectured that every planar uniquely hamiltonian graph contains a vertex
of degree two, i.e., that no UHPG3 exists. So far, however, neither could a UHPG3 be
found nor could it be proven that none exists.

Using Proposition 3.1.1 we see that to disprove Bondy and Jackson’s conjecture, it would
be enough to find a planar FEUHG with minimum degree three. We concentrate now
on the optimization problem variant of finding a graph G with a given number of nodes
n = |V | that as far as possible corresponds to a UHPG3. To this end, we relax the
conditions that the graph must be planar and must have minimum degree three and
instead minimize the deviations from these properties.

To our knowledge, the problem of finding graphs that as far as possible correspond
to a UHPG3 has so far not been considered in a more systematical, and in particular
computational way.

More specifically, we consider the bi-objective optimization problem to find a FEUHG G
together with a drawing in the plane and minimize

• the number of edge crossings and

• the number of vertices with degree two.

To obtain a single-objective optimization problem we linearly combine these two objectives
with corresponding weights α and β.

Since the problem of computing the crossing number of a graph is NP-hard (see [34]), it
makes sense to approximate this value. We do this by allowing only crossings between
edges that are not part of one fixed uniquely hamiltonian FE-cycle of the graph. This
relaxation allows us to fix a hamiltonian FE-cycle in advance and then only concentrate

1http://www.math.uwaterloo.ca/tsp/concorde/ (accessed 01/2016)
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1 2 3 4 5 6 7 8 9 10

Figure 3.1: Example solution with two crossings and no nodes of degree two. Edges of
the hamiltonian cycles are bold and chords are colored red and blue.

on the problem of adding additional edges (chords) between vertices that are no neighbors
on the cycle. Since the added chords are not allowed to cross with an edge of the
hamiltonian cycle, there are only two possibilities how to draw a chord: either outside
the cycle or inside the cycle. We encode this two states, inside or outside, of a chord by
two colors.

Let us assume without loss of generality that V = {1, . . . , n} and our predefined FE-
cycle (C, e) visits the nodes in the natural order from 1 to n before getting back to 1.
Furthermore, we assume without loss of generality that e = {1, 2}. If we fix the chords
and their colors it is easy to derive the minimal number of crossings. To see this, we draw
the nodes from 1 to n on one line, such that the hamiltonian cycle consists of this line
together with a half circle connecting the vertices n and 1. We draw now every chord as
a half circle, either above the line or below the line depending on the color of the chord.
Figure 3.1 illustrates this construction with an example. For this construction we get
that two chords (i, j) and (k, `) with 1 ≤ i < j ≤ n and 1 ≤ k < ` ≤ n cross if and only
if their corresponding half circles cross. This is the case if and only if the two chords
have the same color and

i < k < j < ` or k < i < ` < j (3.1)

holds. Notice that in any drawing of the graph, two chords, which are on the same side
of the graph and satisfy (3.1), cross at least once. This implies the optimality of our
construction.

All together we get the following optimization problem.
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Problem 3.2.1. Given an integer n ∈ N, let the vertex set be V = {1, . . . , n} and the
FE-cycle (C, e) as described above. Furthermore, let

H = {{i, j} | i = 1, . . . , n− 2, j = i+ 2, . . . , n} \ {{1, n}}

be the set of all possible chords. A candidate solution is represented by (H, c), where
H ⊆ H is the subset of selected chords and c : H → {0, 1} specifies their coloring by
assigning either 0 or 1.

minimize
H⊆H

c:H→{0,1}

α ·
∑
{i,j}∈H

|{{k, `} ∈ H : c({i, j}) = c({k, `}), i < k < j < `}|

+ β ·

n−
∣∣∣∣∣∣
⋃

{i,j}∈H
{i, j}

∣∣∣∣∣∣
 (3.2)

s.t. there is no hamiltonian cycle in the graph (V,E) with E = C ∪H
containing the edge e = {1, 2} and at least one chord.

(3.3)

Note that fixing the fixed edge e = {1, 2} eliminates some symmetries. Be aware that a
vertex has degree three or more if and only if it is incident to at least one chord in H.
Therefore, the union in the second part of the objective expression (3.2) contains exactly
all vertices of degree three or more. In the following we refer to Constraint (3.3) also
simply as unique hamiltonicity.

The problem of checking if a given (planar) graph contains a hamiltonian cycle is NP-
complete. Therefore, the problem of checking if a given (planar) graph contains no
hamiltonian cycle is in co-NP. If co−NP 6= NP this would also imply that the latter
problem is not in NP. Thus, checking only feasibility in our model is already a hard
problem.

3.2.2 General Variable Neighborhood Search with Delayed Feasibility
Checking

In this section we present our algorithmic approach to tackle the optimization problem
described in Section 3.2.1. As mentioned checking only feasibility of an instance in our
model is already a hard problem. Therefore, the use of heuristics, instead of an exact
algorithm, appears appropriate. We propose a GVNS as framework to solve the problem
heuristically [41] and combine it with Concorde for checking feasibility w.r.t. unique
hamiltonicity. Remember that a solution is represented by the set of chords H and the
associated coloring c for each chord in H. We start with the empty initial solution H = ∅,
i.e., just the cycle C without any chords, as this is always a feasible solution.

The GVNS contains a VND for locally improving candidate solutions in systematic ways
according to five different types of neighborhood structures, and a parameterized shaking
neighborhood structure for diversifying the search. In the following we describe these
neighborhood structures and the corresponding search algorithms.
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VND Neighborhoods

The following types of neighborhoods and respective algorithms to search them are
considered within the VND. From those neighborhoods different specific configurations
are considered in the computational tests. All these neighborhoods are searched in a
best-improvement fashion, and ties are broken randomly.

Changing color of k chords [cchol(k)]: This neighborhood consists of all solutions
where the colors of k chords are flipped for some parameter k ≥ 1. The size of the
neighborhood is therefore mk where m is the number of chords in the current solution.
We apply this neighborhood structure for k = 1 and k = 2 since the neighborhood is
relatively small and easy to search. Since only the colors of chords are changed, the
structure of the solution graph stays the same, and therefore the unique hamiltonicity is
still valid for each neighbor of a feasible incumbent solution. To calculate the objective
gain of a neighbor incrementally we simply count the number of crossings with the old
color and with the new color and take the difference.

Removing k chords and adding ` new chords [remadd(k, `)]: This neighborhood
consists of all solutions where exactly k chords are removed from the current solution and
` new chords are added. The size of the neighborhood is therefore mk(M −m)` where m
is the number of chords in the current solution and M is the number of possible chords
(M = (n− 2)(n− 1)/2− 1). For ` > 0 the neighborhood may contain solutions that are
infeasible as they are not uniquely hamiltonian. Instead of checking feasibility immediately
for each neighbor, which can be time-expensive, we first evaluate all neighboring solutions
according to our objective function, filter out any solutions that are not better than our
incumbent, and sort all better solutions according to their objective function gain. Only
then we consider these solutions according to decreasing gain, check the feasibility of
each w.r.t. unique hamiltonicity, and immediately return with the first, and thus best,
feasible solution. To calculate the objective gain of a neighbor incrementally we count
the crossings of the removed edges and the crossings of the added edges and take the
difference. Additionally, we have to check all vertices incident to removed and added
edges if their degree decreased to two or increased to three or higher. In case there are
multiple, i.e., equally good, best neighbors, all of these are checked for feasibility and
one is chosen at random. This random tie breaking turned out to be crucial for the
performance. The procedure of checking unique hamiltonicity gets described later on in
this section. In case of ` = 0 we do not need this check as a solution obtained from a
feasible solution by just removing chords cannot become infeasible. The values used for
k and ` gets described later.

Computing optimal crossings [compcross]: This is an exponentially large neigh-
borhood consisting of all solutions that have the same underlying graph as the current
solution but different colors on the chords. The size of this neighborhood is thus 2m − 1,
where m is the number of chords in the current solution. Instead of a naive enumeration
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we search this neighborhood in an effective way by a branch-and-bound procedure to
obtain a best possible coloring of the chords. The crossings of the current solution can be
used as a good initial upper bound, which is in many cases already tight. In every level
of the search tree we assign one color to one chord. The sequence of chords is predefined
randomly and used to determine which chord is colored next. As a branching strategy,
we use depth-first search. To compute a local lower bound we use the crossings of the
currently assigned chords and add for every not assigned chord the minimum of crossings
to the assigned chords for the two colors. As already mentioned, finding the optimal
crossings is an NP-hard problem, but with the described branch-and-bound procedure it
can be computed relatively fast compared to the effort that is needed to check for unique
hamiltonicity.

Split crossings [splitcross]: This neighborhood is a special subset of the neighborhood
remadd(2, 2) that tries to resolve a crossing by splitting. More precisely for every crossing
pair of chords {i, j} and {k, `} with i < k < j < ` we construct a new solution by
removing these two edges and adding the chords {i, `} and {k, j} instead. There are two
exceptions: if j = k + 1 the edge {k, j} would be no chord and therefore this case is
skipped. Similarly, case i = 1 and ` = n is excluded since these two vertices are already
connected in the original hamiltonian cycle. If the chords {i, `} or {k, j} already exist in
the current solution, this neighbor is skipped. If the newly added edges do not generate
other crossings and the new graph is still uniquely hamiltonian we get a solution with
one crossing less. The size of this neighborhood is equal to the number of crossings in
the current solution and is therefore typically a small subset of remadd(2, 2).

Merge crossings [mergecross]: This neighborhood is a special subset of the neigh-
borhood remadd(1, 2) that tries to resolve a crossing by merging the crossing point into
one of the neighboring vertices. We generate up to four new solutions for every pair of
crossing chords {i, j} and {k, `} with i < k < j < ` by applying the following operations:

1. Remove {i, j} and add {i, k} and {k, j}.

2. Remove {i, j} and add {i, `} and {j, `}.

3. Remove {k, `} and add {i, k} and {i, `}.

4. Remove {k, `} and add {k, j} and {j, `}.

Cases where the edges to be added do not correspond to valid chords or where they
already exist in the solution are skipped again.

VND Neighborhood Selection

In our experiments in Section 3.2.3, we consider three different configurations of VND
neighborhood, which are shown in Table 3.1. The VND considers the stated specific
neighborhoods in the listed order.
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Table 3.1: Three different neighborhood structure sets used to compare with each other.

slim set medium set thick set

1. cchol(1) 1. cchol(1) 1. cchol(1)
2. cchol(2) 2. cchol(2) 2. cchol(2)
3. remadd(1, 0) 3. remadd(1, 0) 3. remadd(1, 0)
4. remadd(0, 1) 4. remadd(0, 1) 4. remadd(0, 1)

5. splitcross 5. splitcross
6. mergecross 6. mergecross
7. compcross 7. compcross
8. remadd(1, 1) 8. remadd(1, 1)
9. remadd(2, 1) 9. remadd(2, 1)

10. remadd(2, 2)

It is important to notice that all neighborhoods choose the candidates randomly if their
improvements are the same. This implies that the slim neighborhood set is still capable of
reaching all feasible solutions. The neighborhoods that do not require rechecking unique
hamiltonicity are listed before the expensive neighborhoods that require rechecking. The
only exception to this rule is the compcross neighborhood, which may also need significant
time for larger graphs as it solves an NP-hard problem by branch-and-bound.

Shaking

To diversify the search, the GVNS applies the following shaking operation parameterized
by k ∈

{
3, . . . ,

⌊
n
2
⌋}
. Considering the chords in an order of non-increasing number of

crossings, k chords are deleted from the current solution. If there are less than k chords
in the current solution we delete them all. Be aware that there are in general multiple
chords with the same number of crossings (most of them have no crossings in a good
solution), and they are then considered in a random order. Thus, there also is a significant
randomization involved. Since we do not know in advance how many chords a solution has,
it is so far not guaranteed that in principle our GVNS can reach every possible solution
from an incumbent solution. Therefore, we add as last shaking operation the removal of
all chords. In other words this last shaking operation corresponds to a complete restart
of the GVNS, and we trust on the VND to add chords again.

Thus, our shaking neighborhoods do not contain the complete solution space but rather
a cone of all solutions we can get by removing chords from the current solution. Just
removing chords in the shaking has the advantage that we never violate unique hamil-
tonicity, and thus we always get a feasible solution without overhead. It would be difficult
to generate a random solution in the complete feasible solution space since we would have
to check for unique hamiltonicity until we find a solution satisfying it. This would cost a
lot of time, which is not our intention behind shaking. However, our overall approach
guarantees that every feasible solution can in principle be found by descending from one
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of the solutions generated by shaking. This can easily be seen by the fact that every
solution can be constructed by adding chords from the empty solution.

Checking Unique Hamiltonicity

In this section we describe the procedure we apply to check if a given solution is uniquely
hamiltonian, i.e., satisfies (3.3). The running time of this procedure is crucial for the
success of the algorithm since it is the bottleneck of the GVNS as we will see in the
experimental results in Section 3.2.3.

As we only check unique hamiltonicity for neighbors that would improve the current
solution we can descend to the neighbor whenever the condition is satisfied. This means
that the number of procedure calls where the condition is satisfied corresponds to the
number of local improvements. However, it is possible that any number of neighbors get
checked before one is found that satisfies condition (3.3). Therefore, we do not have a
better bound on the number of negative procedure calls than the current neighborhood
size.

Since the hamiltonian cycle problem is a special case of the well studied TSP, there
already exist a lot of practically well performing algorithms to approach the hamiltonian
cycle problem. To model the hamiltonian cycle problem as a TSP one simply assigns all
pairs of nodes corresponding to edges in the graph, i.e., E, unit costs and all other pairs
of nodes larger costs. The question whether or not a hamiltonian cycle exists is then
equivalent to the question whether or not a tour with costs |V | exists. If we want to fix a
subset of edges E′ ⊆ E, then we can give them zero costs. The question if a hamiltonian
cycle containing all edges in E′ exists is then equivalent to the question if a tour with
costs |V | − |E′| exists. Thus, we can also model a fixed edge hamiltonian cycle problem.

To check condition (3.3), more specifically we need to check if a hamiltonian cycle
containing edge (1, 2) and edge e for any chord e ∈ H exists. This means, we have to
solve |H| TSPs before we know for sure that condition (3.3) is satisfied. If at some point
we find a hamiltonian cycle we can stop and know that the condition is not satisfied.

Clearly, solving |H| TSPs would be very time-expensive. Fortunately, we can apply an
improvement in our case that takes into account that the considered candidate solution
graph is a neighbor of our current solution for which we already know that it satisfies
condition (3.3). Remember that the only situation where we have to recheck the condition
is for neighbors where we removed k chords and added ` > 0 new chords. In this situation
it is sufficient to check if there exists a hamiltonian cycle containing the edge (1, 2) and at
least one of the newly added chords. Therefore, we only have to solve ` TSPs to perform
this check.

As we already mentioned there may be many more negative procedure calls than positive
ones and therefore we need a solver that is able to find hamiltonian cycles fast. Thus,
we decided to use a heuristic to find hamiltonian cycles. We use Helsgaun’s version of
the LKH, which is faster than exact approaches but can still solve many problems to
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optimality [44]. If one run of the LKH does not find a hamiltonian cycle we apply ten
further runs of the heuristic. If it still does not find a hamiltonian cycle we assume that
the graph does not contain anyone. To avoid that the algorithm returns an infeasible
solution as an optimal solution at the end we use Concorde to check for hamiltonian cycles.
As Concorde needs much more time than the LKH, we only call Concorde whenever a
neighbor would lead to a new best solution and the LKH did not find a cycle in any run.

This means it may happen that an infeasible neighbor gets visited if it is no new best
solution. In this case LKH calls, where we assume that the current solution is feasible,
are not correct anymore. This is no problem since as soon as the search visits a neighbor
that would be a new best solution, Concorde gets applied and shows that the neighbor is
infeasible. As we will see in Section 3.2.3 this situation almost never happens for small
vertex degrees.

Further Improvements. To further improve the running time of checking unique
hamiltonicity we exploit the fact that only small parts of the graph change when doing
local improvements. Obviously the same hamiltonian cycles may frequently appear in
the investigated graphs having only small differences. The idea is now to store found
hamiltonian cycles in an appropriate data structure that allows us to check for a new
graph if it contains a cycle from the data structure quickly. If searching through this
data structure can be done reasonably fast, this will improve the overall running time.
We can represent a cycle or a whole graph by the set of its edges. Thus, we need a data
structure that stores sets and can compute subset queries quickly. This problem is known
as the containment query problem [17]. It is the complementary problem of the better
known subset query problem, which furthermore corresponds to the well-known partial
match problem [48].

For our purposes we used a trie data structure presented in [5]. Note that we only store
the set of chords used in the hamiltonian cycle. Checking if a subset exists in such a data
structure needs exponential time in the worst case. Nevertheless, it is still much faster to
search in this data structure than searching a hamiltonian cycle in practice, as we will
see in Section 3.2.3. There would also be more sophisticated data structures for storing
sets (see for Example [43]). In our case we do not need such complex data structures
since our practical tests indicated that the simple data structure’s time consumption
is almost neglectable in comparison to the effort for finding hamiltonian cycles in the
remaining cases.

3.2.3 Computational Results

Our GVNS approach is implemented in C++ and compiled with g++ 4.8.4. We used the
LKH implementation. For heuristically searching for hamiltonian cycles we use LKH2.
The Concorde implementation3 uses CPLEX4 12.6.2 for solving. All tests were performed

2http://www.akira.ruc.dk/~keld/research/LKH/ (accessed 01/2016)
3http://www.math.uwaterloo.ca/tsp/concorde/ (accessed 01/2016)
4https://www.ibm.com/analytics/cplex-optimizer (accessed 01/2016)
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Table 3.2: Results for the three different configurations.

slim set medium set thick set

n best avg. t[s] med. best avg. t[s] med. best avg. t[s] med.

10 0.50 0.50 56.83 0.50 0.50 37.77 0.50 0.50 21.33
15 0.50 0.50 5.45 0.50 0.50 4.92 0.50 0.50 15.77
20 0.50 0.50 13.23 0.50 0.50 12.29 0.50 0.50 21.71
25 0.50 0.50 50.25 0.50 0.50 48.92 0.50 0.50 82.42
30 0.50 0.50 234.60 0.50 0.50 75.03 0.50 0.50 301.92
35 0.50 0.50 139.81 0.50 0.50 209.68 0.50 0.50 442.44
40 0.50 0.50 369.86 0.50 0.50 277.22 0.50 0.60 426.32
45 0.50 0.55 1020.10 0.50 0.53 714.29 0.50 0.70 1510.86
50 0.50 0.74 144.20 0.50 0.56 1007.63 0.50 0.81 321.41
60 0.50 0.93 19.52 0.50 0.82 43.22 0.50 0.94 99.78
70 0.50 0.97 35.76 0.50 0.76 238.53 0.50 1.00 306.56
80 0.50 0.96 71.46 0.50 0.90 68.08 1.00 1.20 564.71
90 0.75 1.04 128.52 0.50 0.95 130.56 1.00 1.46 1260.14

100 1.00 1.00 183.33 0.50 0.96 173.95 0.50 1.66 570.27

on a single core of an Intel Xeon E5540 processor with 2.53 GHz and 10 GB RAM. The
input of our algorithm is simply the number of vertices n ∈ N. For all tests we used the
weights α = 0.25 and β = 1 (see (3.2)). This implies that all solution graphs with an
objective value smaller than 1 have minimum degree three.

As the instances we used different n values between 10 and 100. We ran all three
configurations (see Table 3.1) for every instance 20 times with different seed values and a
maximal execution time of 3600 seconds per run. In Table 3.2 we see the results for the
three different configurations for different instances n. The columns best contain the best
value found in all 20 runs for one configuration. The columns avg. contain the averages
of the results over the 20 runs and the columns t[s] med. contain the medians of the
times until the best solution was found in each run in seconds. For every instance and
every of the three column types we marked the best value of the three configurations by
displaying it bold.

As we can see, on average, the medium set found better solutions than the other two
configurations. Note that the running times until the best solution was found are only
comparable if the corresponding solutions are equally good. Therefore, it makes no sense
to compare the time medians for the instances with n ≥ 45. To verify that the medium
solution performs better than the other two solutions we applied a Wilcoxon signed-rank
test. We use a p-value of 5% for the significance value. As a result, we get that the
medium set computed for the instances n = 50, 60, 70 significantly better results than
the slim set and for all instances with n ≥ 40 significantly better results than the thick
set. For all other instances the difference was not significant. We also compared the
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slim set with the thick set and interestingly the slim set computed for the instances
n = 40, 45, 80, 90, 100 significantly better solutions than the thick set.

To compare the running times until the best solution was found we also applied the test
for the running times, but only for the instances with n ≤ 40. If we compare the medium
set and the slim set there is only for the instance n = 30 a significant difference, where
the medium set is significantly faster than the slim set. If we compare the slim or the
medium set with the thick set, we get that both are for the instances with 15 ≤ n ≤ 35
significantly faster than the thick set. For n = 10 the thick set is the fastest on average
and compared to the slim set it is also significantly faster.

From these tests we get the intuition that the neighborhood remadd(2,2) is toolarge and
not beneficial for graphs of medium size or larger sizes. Only for graphs with size around
n = 10 the neighborhood is small enough to be beneficial. We need, however, more
neighborhoods than only adding and removing chords, as in the slim set, to find good
solutions for larger instances. It is also interesting that the slim set has no significant
speed gain compared to the medium set. From the best column of the medium set we
see that we found a solution with an objective of 0.5 for all given instances. This means
that these solution graphs have minimum degree three and exactly two crossings in the
drawing. We also applied some test runs for all other n values between 10 and 100 and
found a solution with an objective of 0.5 for every n ∈ {10, . . . , 100}.

Note that the solutions of our problem, as we stated it, are not uniquely hamiltonian, they
are FEUHG. That means to get a uniquely hamiltonian graph we need to duplicate it as
described in Proposition 3.1.1, but then the crossings get also duplicated. Therefore, all
our solutions with an objective of 0.5 induce uniquely hamiltonian graphs with minimum
degree three that have embeddings with four crossings. Therefore, our results impose the
following question.

Question 3.2.1. Does there exist a uniquely hamiltonian graph with minimal degree
three and a crossing number smaller than four?

Table 3.3 contains the number of performed local search improvements for each neighbor-
hood and each instance with the medium set configuration. The numbers are averaged
over all 20 runs with 20 different seeds. The column name ra(x, y) stands for remadd(x, y),
splitcr for splitcrossing, mergecr for mergecrossing and compcr for compcrossing.

Since the shake operations only remove chords, the neighborhood remadd(0, 1), which
only adds one chord, is applied after shaking several times. This explains why this
neighborhood is used much more often than the other neighborhoods.

To find out which part of the algorithm consumes the most time we can identify three
subroutines that have an exponential worst case running time. The first one is Concorde,
which gets applied whenever the search finds a new best solution for which the LKH did
not find a second hamiltonian cycle. The second one is the solver of the containment
query problem, which uses a trie data structure to check if a cycle that was already found
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Table 3.3: Number of improvements found in the different neighborhood structures for
the medium set configuration.

n cchol(1) cchol(2) ra(1, 0) ra(0, 1) splitcr mergecr compcr ra(1, 1) ra(2, 1)

10 2667 60 0 314 452 677 197 0 3898 4
15 6551 3872 18 279 279 522 856 3126 3202 204
20 3904 1887 19 202 046 1599 1371 1732 2211 128
25 2676 1179 26 133 997 1293 1287 1311 1675 86
30 1828 646 34 92 814 1201 1152 895 1334 63
35 1257 501 23 63 717 1013 958 550 1054 44
40 999 375 24 48 623 844 828 482 869 38
45 756 248 32 36 387 769 770 284 794 30
50 595 193 20 28 707 661 640 232 656 26
60 365 107 25 18 612 553 564 99 559 17
70 264 75 15 12 953 398 410 77 390 12
80 201 53 17 9572 330 336 50 328 9
90 147 37 17 7184 258 283 39 263 8

100 123 29 10 5891 221 229 27 212 5

is contained in the current candidate. The third one is the branch-and-bound procedure
to calculate the optimal colors of the chords such that they have a minimal number of
crossings.

Table 3.4 lists running time information and additional information for these three
subroutines and the LKH subroutines with the medium set configuration. The column
HC-Checks contains the number of graphs for which we had to test the unique hamiltonicity
constraint and the UHG column contains the number of graphs that satisfied the unique
hamiltonicity constraint. The column calls contains the number of Concorde calls and
the column rate contains the number of graphs that got discarded by a containment
query relative to the overall number of discarded graphs. The columns t[s] contain the
overall time used for all corresponding calls in seconds. The time columns represent
median values and the other columns represent average values over all different seeds.
As we can see the three mentioned subroutines are in total extremely fast compared to
the LKH subroutines, which have to get applied often. Therefore, the LKH subroutines
are clearly the bottleneck of the whole GVNS. Another interesting fact is that Concorde
never found a hamiltonian cycle in any of the runs. This means that whenever LKH did
not find a second hamiltonian cycle the graph was in fact uniquely hamiltonian.

The fact that the rates of the containment queries increase with increasing n can be
explained as follows. First of all, for two solutions that are similar it is more likely that
they both contain the same hamiltonian cycle than for solutions that are completely
different. This implies that as long as the search is concentrated in a local area the
containment queries are effective. Only the shaking methods guide the search out of such
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Table 3.4: Hard subproblem statistics for the medium set configuration.

LKH Concorde Containment Queries B&B

n HC-Checks UHG t[s] calls t[s] rate t[s] t[s]

10 1 467 893 255 790 1356 7 0 4.8% 3 0
15 1 607 901 258 962 2480 10 0 5.5% 4 0
20 1 456 778 200 372 3230 14 0 7.5% 7 0
25 1 151 036 137 859 3421 17 0 10.1% 8 0
30 929 408 99 379 3490 20 1 12.3% 9 0
35 761 117 70 547 3512 24 1 14.5% 10 0
40 653 680 55 017 3518 26 1 17.2% 11 0
45 570 683 42 607 3521 30 1 19.3% 12 0
50 493 993 34 275 3523 33 2 21.3% 13 0
60 425 704 23 800 3523 40 3 28.5% 14 0
70 323 338 16 864 3528 46 5 30.6% 14 1
80 277 038 12 984 3525 52 9 34.2% 13 1
90 246 591 10 072 3515 60 11 39.1% 17 2

100 204 408 8324 3510 65 14 41.3% 21 4

a local area. The simple fact that for larger n the search in the local neighborhoods needs
longer implies that it can do less shaking than for smaller n. Therefore, the containment
queries are more effective for larger n.

We want to mention that we tested the algorithm also for n > 100. For these instances the
running times of the subproblems exploded and the GVNS could do only few iterations
in reasonable time, which lead to poor quality solutions.

3.2.4 Conclusions and Future Work

In this section we presented a new optimization problem for finding uniquely hamiltonian
graphs of minimum degree three with small crossing numbers. We proposed a GVNS
framework to solve the problem heuristically. We applied different neighborhood structures
including a large one and different configurations, which we compared in experimental
tests. The bottleneck of the proposed algorithm is checking unique hamiltonicity for
every neighbor, to stay in the feasible area. With an implementation of this framework
we were able to find uniquely hamiltonian graphs of minimum degree three with only
four crossings for many different instances, which naturally gives rise to the question if
we can do better.

Future work may be to develop an exact algorithm for the proposed problem and compare
the two algorithms for small instances. One problem of the proposed heuristic is that the
constraint of unique hamiltonicity is completely independent of the objective function.
If we could measure how promising a graph is according to the unique hamiltonicity
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constraint, we could better guide the search. Furthermore, it would be interesting to
test if other heuristics than the LKH or other variants of the LKH for checking unique
hamiltonicity perform better.

3.3 Searching for Stable Cycles

In this section we present approaches to systematically search through planar graphs
up to a certain order to either find a counterexample to the conjecture of Bondy and
Jackson or to establish a new lower bound for the order of a UHPG3. A lower bound of
18 vertices was proven recently by Goedgebeur et al. [36] who developed a construction
procedure for generating all non-isomorphic graphs with a given number of hamiltonian
cycles, which works especially well for a small number of cycles like in the case of uniquely
hamiltonian graphs. As we will see in Theorem 3.3.16, we improve this lower bound to
25 vertices.

Instead of directly searching for uniquely hamiltonian planar graphs we focus in this
section on searching for a planar graph with minimum degree three containing a so-called
stable fixed edge cycle (SFE-cycle). In Section 3.3.1 we show that such a graph would
imply the existence of a UHPG3. We then can prove strong properties for a minimum
planar graph with minimum degree three that contains an SFE-cycle. This helps us to
search for such a graph more effectively.

Our overall approach is to use the tool plantri [12] to generate representants of all
isomorphism classes of planar graphs with minimum degree three of some given order.
Then we check for each of these graphs if they contain an SFE-cycle or not. To that end
we formulate three problem variants that decide for a given input graph if it contains an
SFE-cycle, a dominating SFE-cycle, or a dominating SFE-cycle with some additional
properties, respectively. The third problem variant is used for checking if a graph is a
potential minimum counterexample. We prove in Section 3.3.3 that the stable cycle of a
minimum counterexample must satisfy those additional properties. In Section 3.3.3 we
also prove some properties a graph must satisfy to be a minimum counterexample, one of
which is the strong property of triangle freeness. To effectively generate such candidate
graphs we use plantri to construct dual graphs with minimum degree four.

For solving the three problem variants we propose an ILP-based approach and an
enumeration scheme. Using both approaches helps us to verify the results and allows us
comparing the performances for different graph sizes. As already mentioned the main
result of this section is a new lower bound of 25 vertices for the smallest UHPG3.

In the following we focus only on planar graphs. In Section 3.3.1 we present the reductions
from uniquely hamiltonian to stable cycles and the first two of the three problems that we
consider. Two different solution approaches for solving the problems are then presented
in Section 3.3.2. In Section 3.3.3 we focus on properties a minimum counterexample must
satisfy and formulate the third problem variant. We then apply our algorithms presented
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in Section 3.3.2 on different instance groups and summarize the results in Section 3.3.5.
Finally, we conclude with Section 3.3.6 and propose some further research ideas.

3.3.1 Reduction to Stable Fixed Edge Cycles

In this section we reduce the search for uniquely hamiltonian planar graphs with minimum
degree three to the search for planar graphs with minimum degree three with an SFE-cycle.

We start with defining what we mean by an SFE-cycle continuing Definition 3.1.2.

Definition 3.3.1. Let G be a graph. An FE-cycle (C, e) is called maximal if there is
no FE-cycle (C ′, e) in G with V (C ′) ) V (C). Moreover, an FE-cycle (C, e) is called
dominating if C is edge-dominating in G, i.e. for all edges e = vw ∈ G either v or w is in
V (C). Finally, a maximal FE-cycle (C, e) is called a stable fixed edge cycle (SFE-cycle) if
there is no other FE-cycle (C ′, e) with C ′ 6= C and V (C ′) = V (C).

We call a graph containing an SFE-cycle a stable fixed edge graph (SFE-graph).

In the following result we present the transformation by Leder [59] that transforms a
graph containing a dominating SFE-cycle into an FEUHG preserving planarity.

Theorem 3.3.1. Let G be a graph with minimum degree three containing a dominating
SFE-cycle (C, e). Then there exists an FEUHG G′ with minimum degree three whose
uniquely hamiltonian FE-cycle satisfies |V (G′)| ≤ 2|V (G)| − |V (C)|. Furthermore, if G
is planar, then G′ is also planar.

Proof. We apply iteratively a planarity preserving transformation that constructs from a
graph G with a dominating SFE-cycle (C, e) a new graph G′ with a dominating SFE-cycle
(C ′, e′) such that the number of unvisited vertices by the cycle is reduced by one. The
order of the new graph is at most increased by one per iteration. Let w ∈ V (G) \ V (C)
be an unvisited vertex. If w has no neighbors of degree three, we can just remove the
vertex w and define G′ = G \ v and (C ′, e′) = (C, e).

In the other case let w1 be a neighbor of degree three. If w1 is the only neighbor of degree
three we connect w1 with any other neighbor w2 of w and define G′ = G \ v ∪ (w1, w2)
and (C ′, e′) = (C, e). Any cycle in G′ that contains the edge (w1, w2) can be translated to
a cycle in G containing the vertex w. Therefore, (C, e) being stable implies that (C ′, e′)
is stable.

If w has exactly two neighbors of degree three w1 and w2 we can connect those two and
remove the vertex w, i.e. G′ = G \ v ∪ (w1, w2), and (C ′, e′) = (C, e). Again any cycle in
G′ that contains the edge (w1, w2) corresponds to a cycle in G containing w and therefore
this implies that (C ′, e′) is stable.

The most interesting case is if w has at least three neighbors of degree three. Let e1 and
e2 be the other two edges incident to w1 that are not incident to w. Let x1 6= w and
x2 6= w be the other end vertex of e1 and e2. We remove now the vertex w and connect
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Figure 3.2: Transformation used for removing unvisited vertices. The dominating cycle
is visualized by the red edges. The dashed edge is used if there is only one degree three
neighbor and the two new vertices are only inserted if there are three or more degree
three neighbors.

all other neighbors of w with degree three to w1. To preserve the stability of the cycle
we need to add two more vertices v1 and v2 placed on the edges e1 and e2 and connect
them, see Figure 3.2. Formally we define

G′ = G \ {w, e1, e2} ∪ {v1, v2, (v1, v2), (w1, v1), (w1, v2), (v1, x1), (v2, x2)}⋃
w′∈N(w):w′ 6=w1,deg(w′)=3

(w′, w1)

and C ′ = C \ {(w1, x1), (w1, x2)} ∪ {(w1, v1), (w1, v2), (v1, x1), (v2, x2)}. If the fixed edge
was e1 or e2 we define as fixed edge e′ = {w1, v1} respectively e′ = {w1, v2}, otherwise
e′ = e.

A cycle in G′ that uses exactly one edge between two neighbors of w can be transformed
to a cycle in G that visits w. Furthermore, a cycle in G′ that uses two edges between two
neighbors of w, i.e. visits w1 in between those two edges, and still visits the new vertices
v1 and v2 can again be transformed to a cycle in G that visits w. Therefore, one can
verify that the stability of (C, e) in G and its implied maximality imply that the new
FE-cycle (C ′, e′) is also stable.

Note that the transformations in all three cases above are planarity preserving, see also
Figure 3.2. Furthermore, the first cases only remove one vertex and only the last case
removes one vertex and adds two new vertices, which results in |V (G′)| ≤ |V (G)| + 1.
Applying this transformation in sequence to all unvisited vertices V (G) \V (C) in G gives
us then a graph G′ and an SFE-cycle (C ′, e′) that is hamiltonian. We note now that a
hamiltonian SFE-cycle is nothing else than a uniquely hamiltonian FE-cycle.

Proposition 3.1.1 and Theorem 3.3.1 together give us that if we find a planar graph with
minimum degree three having a dominating SFE-cycle this would disprove the conjecture
by Bondy and Jackson. To search for such graphs we want to develop algorithms that
can check for a graph if it contains a dominating SFE-cycle, i.e. we want to solve the
following problem.
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Problem 3.3.1. Given a graph G, does G contain a dominating SFE-cycle?

But we can go one step further and even relax the dominating condition. To do that we
need to restrict us to 2-connected graphs, which is not really a restriction since every
graph with minimum degree 3 with a dominating cycle must be 2-connected. The next
theorem presents a planarity-preserving transformation from a 2-connected SFE-graph
with minimum degree three to a graph with minimum degree three that contains a
dominating SFE-cycle.

Proposition 3.3.2. Given a 2-connected graph G with minimum degree three that
contains an SFE-cycle C. Then there exists a 2-connected graph G′ with minimum degree
three that contains a dominating SFE-cycle and |V (G′)| ≤ |V (G)|. If C is not dominating
then |V (G′)| < |V (G)|. Furthermore, if G is planar then G′ is planar.

Proof. If C is dominating we can choose G′ = G and are done. Otherwise, let H be a
non-trivial connected component of G \ V (C). We contract now H in G to one vertex
w. The 2-connectedness of G implies now that w has degree at least two. If the degree
is two we can replace w and its two incident edges by one edge and get again a graph
with minimum degree three. Furthermore, every cycle in this new graph that contains
this new edge can be transformed to a cycle in G that contains a path through the
connected component of H. If the degree of w is larger than three we get also a graph
with minimum degree three and again every cycle that contains w in the new graph can
be transformed to a cycle in the original graph containing a path through the connected
component of H. This implies that the FE-cycle (C, e) is in both cases also stable in the
new graph.

Applying the above procedure for every non-trivial connected component of G \ V (C)
we get a graph where (C, e) is dominating and still stable. Since we only contracted
connected subgraphs in the above procedure, we get that V (G′) < V (G) and that G′ is
planar if G is planar.

Let us consider now the following conjecture.

Conjecture 3.3.1. There does not exist a 2-connected planar SFE-graph with minimum
degree three.

Proposition 3.1.1, Theorem 3.3.1, and Proposition 3.3.2 imply the following theorem.

Theorem 3.3.3. Conjecture 3.3.1 is equivalent to Bondy and Jackson’s conjecture.

To search for such graphs we need to check if a given graph is an SFE-graph, i.e. solve
the following problem.

Problem 3.3.2. Given a 2-connected graph G, is G an SFE-graph?
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3.3.2 Algorithmic Approaches

In this section we present two approaches, one based on ILP and one based on cycle
enumeration. For the ILP-based approach we present a basic method and some algorithmic
improvements for solving it. The algorithmic improvements and also the cycle enumeration
approach use a data structure for storing and querying the found cycles, which we also
present in this section. Nevertheless, the problem can also be solved with the basic ILP
approach, which does not use the data structure. This is important for verifying the
results independently.

Basic ILP Approach

We simply check for each edge e0 ∈ E(G) if there is any SFE-cycle with the fixed edge
e0. To do that we search for a maximal cycle containing the edge e0, avoiding all cycles
found until now. Whenever we find an FE-cycle we check if it is stable or not. This
procedure is repeated until no new FE-cycle is found.

An ILP model is used for finding new cycles and another one for checking if a cycle is
stable. We denote the set of all already found cycles for the edge e0 by C. Moreover, let
w be a fixed end vertex of e0. The following ILP model is for finding new cycles.

max
∑

v∈V (G)
xv (3.4)

s.t.
∑

e∈E(v)
ye = 2xv ∀v ∈ V (G) (3.5)

∑
e∈E[V ′,V (G)\V ′]

ye ≥ 2xv ∀∅ 6= V ′ ⊆ V (G) \ {w} , v ∈ V ′ (3.6)

ye0 = 1 (3.7)∑
v∈V (G)\V (C)

xv ≥ 1 ∀C ∈ C (3.8)

ye, xv ∈ {0, 1} ∀e ∈ E(G),∀v ∈ V (G) (3.9)

The boolean x-variables indicate if a vertex is part of the cycle or not and the boolean
y-variables if an edge is part of the cycle or not. To ensure that each found cycle is
maximal we maximize the number of vertices in the cycle, see (3.4). We use here a
classical approach for modeling cycles in an undirected version: For eliminating subtours
we use cut constraints originally proposed for the TSP by Dantzig et al. [21], see (3.6). As
it is standard with this approach the exponential many subtour elimination constraints
get added to the program dynamically in a branch-and-cut manner using a fast max-flow
algorithm for separating cuts in the LP-relaxation. Constraint (3.7) ensures that e0 is
part of the cycle and constraints (3.8) guarantee that we find a new maximal cycle that
was not found before.
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Note that for similar problems models based on directed edge variables frequently result
in better performance than the undirected variant, since the directed variant has a tighter
LP-relaxation [81]. However, as we will see in Section 3.3.5 the graph sizes we are mainly
concerned with are so small that the ILP models get solved fast, and our experiments
indicated that the overhead of a directed model does not pay off in our case.

For each cycle C we find with this model we solve the following ILP model to check
if the cycle is stable. This time we do not need the x-variables since we already know
which vertices must be part of the cycle. Therefore, we can use any model for finding
hamiltonian cycles, such as the following. Let G′ = G[V (C)] be the graph induced by
the vertex set V (C).

max 0 (3.10)
s.t.

∑
e∈E(v)∩E(G′)

ye = 2 ∀v ∈ V (C) (3.11)

ye0 = 1 (3.12)∑
e∈E[V ′,V (C)\V ′]

ye ≥ 2 ∀∅ 6= V ′ ⊆ V (C) \ {w} (3.13)

∑
e∈E(G′)\E(C)

ye ≥ 2 (3.14)

ye ∈ {0, 1} ∀e ∈ E(G′) (3.15)

Note that this model has no meaningful objective function as we are interested just in the
fact whether or not a feasible solution exists. We use again cut constraints for eliminating
subtours, see (3.13). To ensure that the cycle is different from the already found cycle C
we ensure with Constraint (3.14) that the new cycle contains edges that do not appear
in the old cycle.

This basic approach needs to solve many ILP models to check if a given graph contains
an SFE-cycle. Although the basic approach has an overhead for each ILP model it needs
to solve, it is still important since we can use it to check our results and especially to
verify the correctness of the enumeration approach.

To improve this basic approach we want to add in an advanced approach constraints
like (3.8) dynamically. This results in cycles that may not be maximal. The following
data structure helps us to store cycles and detect non-maximal cycles.

Data Structure For Storing Cycles

To be able to check if a new found cycle C is a potential maximal cycle for some fixed edge
we need to check if there exists for each edge e ∈ E(C) an already found cycle C ′ that
contains e and V (C) ( V (C ′). To that end we store each cycle we find in an appropriate
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data structure. Furthermore, the data structure helps us to search for SFE-cycles in the
end.

The above query problem is an extension of the containment query problem, which is a
widely studied problem [17, 72, 5]. For every known data structure for these problems
it holds that either the query time is in Ω(N) or storage size is in 2Ω(n) where N is the
number of stored sets and n is the alphabet size, which is in our case the number of
vertices of the graph. If this must hold is an open question, although some theoretical
lower bounds for computation times or storage size got already established [48].

Note that we already considered the containment query problem in the context of
finding uniquely hamiltonian planar graphs with small crossing numbers, see the end of
Section 3.2.2. This time we are dealing with an extension of this problem and therefore
we focus on a simple solution based on the Hasse diagram [68]. Furthermore, since we
build up the data structure during the execution of our algorithm we have to balance the
query times and the size of the data structure. Because we are searching for maximal
cycles and in the case of Problem 3.3.1 for dominating cycles the vertex complements
of such cycles tend to be small sets. Therefore, we focus on the vertex complements
V (G) \ V (C) in our data structure. The worst case size of the Hasse diagram is O(N2),
which is in our case normally much smaller than 2Ω(n), especially if we only consider
dominating cycles.

Additionally, to the Hasse diagram of all vertex complements of found cycles we store a
hash map mapping vertex complements X and edges e to the number of found cycles
m(X, e) with vertex complement X containing the edge e. If m(X, e) ≥ 2 we know that
cycles with the vertex complement X cannot be SFE-cycles for the edge e. Furthermore,
we use a special value of m(X, e) = ∞ if there exists a cycle with a smaller vertex
complement Y ( X that contains e, in this case no cycle with the vertex complement X
can be a maximal FE-cycle for the edge e.

For each new cycle C we first check if its vertex complement X is already in the Hasse
diagram, if not we add it. Then we adaptm(X, e) for all edges e in the cycle. Furthermore,
we need to search for all Y ( X inside the Hasse diagram and set m(X, e) =∞ for all e
where m(Y, e) 6= 0. Note that we only need to search for direct neighbors in the Hasse
diagram since if Y1 ( Y2 ( X we know that m(Y1, e) 6= 0 implies m(Y2, e) = ∞ 6= 0.
Last but not least, we need to search for all Z ) X inside the Hasse diagram and set
m(Z, e) =∞ for all edges e ∈ E(C).

Whenever we have a vertex complement X for which all values of m(X, e) for all edges e
are either 0 or ∞ we can remove it, since the corresponding cycles are all not relevant
anymore. This helps us to keep the size of the data structure small, which is relevant
if we find many not maximal cycles. After we added all found cycles we can use this
data structure to check if there is any SFE-cycle by simply checking if for any vertex
complement X and edge e we have m(X, e) = 1.
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Advanced ILP Approach

We use now the previously presented data structure to improve the performance of our
ILP approach. First of all we do not want to search for cycles for each edge e separately,
since we can reuse a cycle for all its edges. To that end we split the approach into two
phases, the first phase searches for maximal cycles and the second phase checks if one
of them is an FE-cycle for some fixed edge e. All cycles we find in the first phase get
added to the data structure. The second phase searches then the data structure for
cycles C with m(X(C), e) = 1 and checks if (C, e) is an SFE-cycle in the same way as
we presented for the basic ILP approach.

To search for new maximal cycles for arbitrary fixed edges we add new boolean variables
ze for e ∈ E(G) to our model that describe that the edge e is a potential fixed edge. We
then replace the constraints (3.7) by the following constraints where C represents the set
of all so far found cycles:

ze ≤ ye ∀e ∈ E(G) (3.16)∑
e∈E

ze ≥ 1 (3.17)

∑
v/∈V (C)

xv ≥ ze ∀C ∈ C,∀e ∈ E(C) : m(X(C), e) ≥ 1. (3.18)

Constraints (3.16) ensure that a fixed edge must always be part of the cycle and Con-
straint (3.17) enforces that there is at least one fixed edge. Furthermore, constraints (3.18)
guarantee that the newly found cycle is a new maximal cycle for the fixed edge e if ze is
active.

To further speed up the approach we treat constraints (3.18) as lazy constraints and solve
the model only once instead of restarting the solver after each found cycle for the updated
model. That means whenever we find a new cycle, i.e., an integer solution to the current
model, we add for all edges e with m(X(C), e) = 1 the respective Constraint (3.18)
dynamically. Formally this results in the end in an infeasible model but by collecting
all the cycles gathered during the execution we get a complete collection of all potential
maximal cycles. We can then execute phase two as explained above to check if any of
the gathered cycles in the data structure is an SFE-cycle for some edge.

Note that since we do not have a fixed edge e in the model, we have to specify what we
use as vertex w in constraints (3.6). This vertex should always be part of the cycle. To
that end we enumerate over all vertices in V (G), starting with the first as w. Then we
apply the first phase and afterwards we forbid this vertex in all following runs by forcing
xv = 0 and chose the next vertex as w. The successive runs are much faster than the first
ones since the model gets easier to solve and fewer cycles get found with each forbidden
vertex. After all this we apply phase two to the current data structure.

If we are searching for dominating cycles we can improve this by only looking at an edge
e ∈ E(G) and using the fact that one of the ends of this edge must be part of the cycle.
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Therefore, we only need to apply the first phase two times. Furthermore, we will see in
Section 3.3.3 that if we search for a minimum counterexample we can identify vertices
that must always be part of the cycle, see Proposition 3.3.6, and therefore can use such a
vertex as w and have to apply the first phase only once.

Cycle Enumeration Approach

In the above ILP approach we directly searched for maximal cycles. The idea of the
alternative cycle enumeration approach is to enumerate all cycles in the graph and let our
data structure do the work of filtering out the maximal ones. To speed up the algorithm
we try to identify as early as possible if a cycle may be maximal and do not add it to the
data structure if this is not the case.

The basic idea is to build a path recursively and try all possibilities to extend it until
we can close the path to a cycle. We keep track of the two ends of the path and all the
edges in the graph that are only incident to unvisited vertices or ends. Then for the end
vertex with fewer remaining incident edges we try every such edge as an extension of the
path. We call an edge a closing edge if it connects the two end vertices, and we call the
resulting cycle the corresponding cycle to this closing edge. Whenever we find a closing
edge, we can add the corresponding cycle to our data structure. However, before we close
a cycle we try all non-closing edges and check if at least one of them leads to at least
one cycle. In this case we know that the corresponding cycle of the current closing edge
cannot be maximal.

To further speed up this algorithm we use five different states for vertices: unvisited,
visited, end, fixed, and dropped. The vertices within the path are visited and
the two end vertices have state end. For a vertex that is not in the path and has at
some point only one incident edge left we know that it cannot be part of the cycle. We
set the state to dropped and remove its incident edge.

If we search for dominating cycles we know that one of the two end vertices of each edge
must be part of the cycle. Whenever we drop a vertex we can mark its only remaining
unvisited adjacent vertex as fixed. Furthermore, if at some point a fixed vertex gets
dropped we know that this path can never lead to a dominating cycle. To check for a
closing edge if the corresponding cycle is dominating we keep during the whole algorithm
track of the number of edges for which none of the two end vertices is part of the current
path. A closing edge corresponds to a dominating cycle if and only if this number is zero
at this point.

What remains is to specify with which vertex we start the algorithm. To do that we can
iterate over all possible starting vertices in the same way as described for the advanced
ILP approach and apply the algorithm to each of them. Whenever we used a start vertex
and applied the algorithm we forbid it by setting its status to dropped in the following
runs.
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3.3.3 Properties of a Minimum Counterexample

In this section we discuss some properties a minimum planar, 2-connected SFE-graph
with minimum degree 3, i.e. a minimum counterexample to Conjecture 3.3.1, must have.
By minimum we mean w.r.t. the following relation:

G = (V,E) ≤ G′ = (V ′, E′)⇔ |V | < |V ′| ∨ (|V | = |V ′| ∧ |E| ≤ |E′|)

For the whole section let G = (V,E) be a minimum counterexample and let (C, e) be the
SFE-cycle. The following notations will be useful.

Definition 3.3.2. A vertex v of G is called a small vertex if its degree d(v) ≤ 3 and if
it is not incident to the fixed edge e. Otherwise, a vertex v is called a large vertex. If a
large vertex has a degree larger than three it is called a really large vertex and otherwise
it is called a fixed large vertex.

A vertex in V (C) is called a cycle vertex and a vertex in V \ V (C) is called an outer
vertex.

We write V l(G) for the set of all large vertices in G and V s(G) for the set of all small
vertices in G. Furthermore, we write V lc(G), V lo(G), V sc(G), V so(G) for the set of all
large cycle vertices, large outer vertices, small cycle vertices, and small outer vertices,
respectively.

The following statement about the maximal FE-cycle C follows directly from Proposi-
tion 3.3.2.

Corollary 3.3.4. C is dominating.

Furthermore, we can prove the following connectedness result.

Proposition 3.3.5. G is 3-connected.

Proof. Assume G is not 3-connected. Hence, there are two vertices v and w such that
G \ {v, w} is not connected. Let V1 be the vertex set of a component of G \ {v, w} that
does not contain the fixed edge. Let H = G[V1 ∪ {v, w}] be the subgraph of G induced
by V1 ∪ {v, w}. We consider the graph G′ = (V ′, E′) = (V (H), E(H) ∪ {vw}). Since G
is 2-connected we know that the degree of v and w in G′ is at least two. If the degree of
v in G′ is two we can consider the other neighbor x 6= w of v in G′. We get that V1 \ x is
a nonempty component of G \ {x,w}. It is nonempty since otherwise x would have only
the neighbors v and w in G, which contradicts the minimum degree of 3.

Therefore, we can choose w.l.o.g. the vertices v and w in such a way that the vertex set
V1 is minimal and therefore v and w have degree 3 or higher in G′.

Now, C together with the edge vw induce a cycle C ′ in G′. The stability of the FE-cycle
(C, e) implies the stability of the FE-cycle (vw,C ′) in G′. But this is a contradiction to
G being a minimum counterexample.
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Proposition 3.3.6. Every neighbor of a large vertex is in V (C).

Proof. Assume a neighbor w of a large vertex v is not in V (C). Then we can remove
the edge vw and still have the same SFE-cycle. If w has now degree 2 we remove it and
replace it with an edge. Furthermore, if v was a fixed large vertex and has degree two
now, we remove it and replace it with an edge, which is now the new fixed edge. This
leads to a contradiction of G being a minimum counterexample.

Proposition 3.3.7. Every edge between large vertices is in E(C).

Proof. An edge between large vertices that is not in E(C) could be removed, which
would result in a smaller graph that is planar, 2-connected, still has minimum degree 3,
and still contains an SFE-cycle. This, however, contradicts the assumption that G is a
minimum counterexample.

Corollary 3.3.8. There is no large vertex with at least three large vertex neighbors in G
and there is no cycle consisting only of large vertices in G.

Proof. If there would be a large vertex with at least three large vertex neighbors, then
there is at least one large neighbor whose connecting edge is not part of the cycle C,
which is a contradiction to Proposition 3.3.7.

Furthermore, if there would be a cycle only of large vertices in G, then by Proposition 3.3.7
all its edges must be part of C, which means that it equals C. Let v ∈ V (C) be a large
vertex in this case. Then there exists one edge e = vw incident to v that is not in
E(C). Since v is large we know by Proposition 3.3.6 that w ∈ V (C) and therefore by our
assumption that w is a large vertex. But this is a contradiction to Proposition 3.3.7.

Lemma 3.3.9. The number of small vertices |V s(G)| is equal to∑
v∈V lc(G)

(d(v)− 2) +
∑
v∈V lo

d(v) + 2 |{vw ∈ E(G) \ E(C) : v, w ∈ V sc(G)}|+ 4|V so(G)|.

Proof. Each small cycle vertex w has exactly one incident edge vw that is in E(G)\E(C).
This means that counting the small cycle vertices is the same as counting the half edges
that are in E(G) \ E(C) and are connected to a small cycle vertex. There are now three
possibilities for v. Either it is in V o(G), in V lc(G), or in V sc(G).

A vertex v in V lc(G) has d(v) − 2 incident edges that are not part of the cycle. By
Proposition 3.3.6 and Proposition 3.3.7 those edges must be incident to a small cycle
vertex. Therefore, each large cycle vertex v is connected to d(v)− 2 small cycle vertices
via edges in E(G) \ E(C).

Moreover, an outer vertex v must be connected to d(v) small cycle vertices, clearly via
edges in E(G) \ E(C), by Proposition 3.3.6 and Corollary 3.3.4.
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Adding this up over all outer vertices and large cycle vertices gives us the number of small
cycle vertices that are either connected to a large cycle vertex or to an outer vertex via
an edge in E(G)\E(C). The remaining small cycle vertices must now all be connected to
exactly one other small cycle vertex via an edge in E(G) \E(C). Therefore, the number
of such remaining cycle vertices equals

2 |{vw ∈ E(G) \ E(C) : v, w ∈ V sc(G)}| .

What remains is now to add |V so| to the sum to get the number of all small vertices,
which results in the theorem’s statement.

For the next statement we introduce the notion of very small vertices.

Definition 3.3.3. A small vertex is called very small if all its neighbors are small.

Furthermore, we need the notion of a maximum pseudo-matching based on Defini-
tion 2.1.18.

Definition 3.3.4. A maximum pseudo-matching in a graph G is a pseudo-matching M
in G that maximizes the number of vertices |V (M)|.

Lemma 3.3.10. Let Gvs be the graph induced by all very small vertices in G and Mvs

a maximum pseudo-matching in Gvs. Then it holds that

2 |{vw ∈ E(G) \ E(C) : v, w ∈ V sc(G)}|+ 4|V so(G)| ≥ 2|V (Gvs)| − |V (Mvs)|.

Proof. We begin by defining a pseudo-matching M in Gvs. For each very small outer
vertex v for which all three neighbors are also very small we add the claw with center v
to the pseudo-matching M . Furthermore, for each very small outer vertex v that has at
least one very small neighbor and at least one not very small neighbor we add an edge
between v and one of its very small neighbors to M . Last but not least, we add for all
very small cycle vertices that are connected to other very small cycle vertices via an edge
e in E(G) \ E(C) this edge e to M .

Note now that

X := 2 |{vw ∈ E(G) \ E(C) : v, w ∈ V sc(G)}|+ 4|V so(G)|

is equal to the number of small vertices that are not connected to a large vertex by any
edge in E(G) \ E(C). By the construction of our pseudo-matching M there are three
different types of very small vertices in V (Gvs) \ V (M) = V1 ∪ V2 ∪ V3. Let V1 be all very
small cycle vertices that are connected to another small but not very small cycle vertex
via an edge in E(G) \ E(C). Furthermore, let V2 be all very small outer vertices that
are connected to three small but not very small cycle vertices. Finally, let V3 be all very
small cycle vertices that are connected to a very small outer vertex that has exactly two
very small neighbors and the edge connecting the other very small neighbor is part of M .
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We define now for each vertex in v ∈ V (Gvs) \ V (M) an additional small cycle vertex wv
that is not very small but also not connected to a large vertex by any edge in E(G)\E(C).
Furthermore, those vertices wv are all different for different vertices v ∈ V (Gvs) \ V (M).

For v ∈ V1 we define wv to be the small neighbor of v via an edge in E(G) \ E(C). For
v ∈ V2 we define wv to be any neighbor of v and for v ∈ V3 we define wv to be the third
neighbor of the outer vertex that is not a very small vertex.

With that we get that

X ≥ |V (Gvs) ∪ {wv : v ∈ V (Gvs) \ V (M)}|
= |V (Gvs)|+ |V (Gvs \ V (M)}| = 2|V (Gvs)| − |V (M)|.

The Lemma follows now from the fact that Mvs is a maximum pseudo-matching and
therefore by definition |V (M)| ≤ |V (Mvs)|.

Theorem 3.3.11. Let Gvs be defined as in Lemma 3.3.10 and Cvs
odd be the number of

connected components in Gvs with an odd number of vertices. Then

|V s(G)| ≥
∑

v∈V l(G)
(d(v)− 2) + |V (Gvs)|+ Cvs

odd,

holds, which is equivalent to

|E(G)| ≤ |V s(G)|+ |V (G)| − 1
2(|V (Gvs)|+ Cvs

odd).

Proof. The first statement follows from Lemma 3.3.9, Lemma 3.3.10, and the fact that
the connected components of a pseudo-matching always have an even number of vertices
and therefore

|V (Mvs)| ≤ |V (Gvs)| − Cvs
odd.

To see the equivalence with the second statement we do the following equivalence
transformations.

|V s(G)| ≥
∑

v∈V l(G)
(d(v)− 2) + |V (Gvs)|+ Cvs

odd

⇔ |V s(G)| ≥
∑

v∈V (G)
(d(v)− 2)− |V s(G)|+ |V (Gvs)|+ Cvs

odd

⇔ 2|V s(G)| ≥ 2|E(G)| − 2|V (G)|+ |V (Gvs)|+ Cvs
odd

⇔ |E(G)| ≤ |V s(G)|+ |V (G)| − 1
2(|V (Gvs)|+ Cvs

odd).

An important property of a minimum counterexample, which helps much in searching for
counterexamples, is the following.
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Theorem 3.3.12. G is triangle-free.

Proof. Assume G contains a triangle T . We distinguish whether G can get embedded
into the plane such that T is a 3-face in this embedding or not. If there is no such
embedding, we know that the removal of T would split G into two components. Since G
is 3-connected, there must be an edge from every vertex of T to each component. This
implies that all vertices of T are large, which is a contradiction to Corollary 3.3.8.

In the other case we know that there is an embedding of G such that T is a 3-face. Let
u, v, w be the three vertices of the 3-face T . We distinguish now two cases.

1. T does not contain the fixed edge e. We distinguish again three cases.

a) If all three vertices are small, we can contract them all into one vertex of
degree three. Every maximal FE-cycle in the original graph corresponds now
to a maximal FE-cycle in the new graph and vice versa. This implies that the
corresponding cycle (C̃, e) in the new graph is again an SFE-cycle with the
same fixed edge e as in the original graph. This is a contradiction to G being
a minimum counterexample.

b) If one vertex is large and the other two are small, we say w.l.o.g. the large
vertex is u and we can shrink the two small vertices v and w together. There
are now again two cases. If the cycle C in the original graph contains the
path v, u, w, then the new graph has an SFE-cycle that visits all vertices of C
(including the new merged vertex instead of w and x) except v. If the cycle C
contains the path v, w, then (C, e) transforms into an SFE-cycle containing
the same vertices as C (except the new merged vertex instead of v, w).

c) If two vertices are large and one is small, we get by Proposition 3.3.7 that
the edge between the two large vertices is used by the cycle C. If we remove
now this edge there is clearly no cycle containing all vertices of C anymore.
Moreover, C transforms into a cycle containing all vertices except one of
the large vertices, call it v. This cycle must be stable since every cycle that
contains all vertices of C except v can be transformed into a cycle containing
all vertices in the original graph.

d) If all vertices of the triangle are large, we get by Corollary 3.3.8 a direct
contradiction.

2. If T contains the fixed edge, w.l.o.g. let vw be the fixed edge. In this case v and w
are large vertices by definition and therefore by Corollary 3.3.8 we get that u is a
small vertex and by Proposition 3.3.6 that u is in C. Let x be the third neighbor
of u, then the edge ux must be part of C. We merge now the triangle to one new
vertex z and consider the to C corresponding cycle C̃ together with the fixed edge
xz. Every cycle containing the edge xz corresponds to a cycle in the original graph
containing all three vertices of T and the edge vw. This implies that (C̃, ẽ = xz) is
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an SFE-cycle in the new graph, which is a contradiction to G being a minimum
counterexample.

The next theorem shows an even stronger connectedness of a minimum counterexample.

Definition 3.3.5. A graph G is called essentially k-edge connected if there does not
exist a set of at most k − 1 edges whose removal would split G into components such
that at least two of the components are non-trivial, i.e. contain more than one vertex.

Theorem 3.3.13. G is essentially 4-edge connected.

Proof. Assume G contains three edges e1, e2, e3 whose removal disconnect G into two
non-trivial components G1, G2. Assume w.l.o.g. that the fixed edge e is not in G1. Let
ei = viwi with vi ∈ G1 and wi ∈ G2. The three vertices v1, v2, and v3 have degree at
least two in G1.

Since C is dominating and since G1 and G2 are both non-trivial we know that C must
use two of the three cut edges. W.l.o.g. let C use the edges e1 and e2. The cycle C
corresponds to a path P in G1 going from v1 to v2.

If we consider the graph G′ consisting of G1 together with an edge connecting v1 with v2
(if they are not already connected) we can extend P with this new edge to an FE-cycle
C ′ in G′ by fixing the edge between v1 and v2. We distinguish now two cases, if v3 is in
V (C ′) or not.

If v3 is not in V (C ′) we know that C ′ is stable since, if there would exist another FE-cycle
with the same fixed edge that contains the same or more vertices we could remove the
fixed edge from it and get a different path P ′ in G1. We could then replace the path P
in C with P ′ and get a contradiction to the stability of C. The graph G′ may contain
vertices of degree two. If v1 or v2 have degree two we can replace them in G′ with an
edge, which will then be the new fixed edge. Furthermore, if v3 has degree two we can
simply replace it with an edge since v3 is not used in the cycle C ′. Note that G′ must
contain at least 4 vertices since otherwise we could easily find a cycle that also contains
v3, which would be a contradiction to the maximality of C ′. Therefore, after the removals
described above the remaining graph is still not empty, it has minimum degree three, is
planar, is smaller than G, and has an SFE-cycle, which is a contradiction.

The remaining case is that v3 is in V (C ′). Here G1 must contain a path P1 from v2 to v3
containing at least all the vertices of P . If there would not exist such a path we could
contract G2 in G to a vertex x and fix the edge from x to v2. Then the cycle consisting
of P and the edges v1x and v2x is again stable. This can be seen since the only other
possibility would be to use the edges v2x and v3x but then the remaining path after
removing those two edges would have the properties of P1, which we assumed does not
exist.
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With the same argumentation we can prove the existence of a path P2 from v1 to v3 in
G1 that contains at least all the vertices of P . We contract now the component G1 in G
to a vertex x and get a new graph G′. Clearly, the cycle C corresponds to a new cycle
C ′ using the edges w1x and w2x. The fixed edge of C ′ is still the same fixed edge as the
one of C (which was not in the contracted G1). If there would exist now a second cycle
containing the fixed edge and at least the same vertices as C ′ in G′ this second cycle
must use either w1x and w3x or it uses w2x and w3x, since otherwise it would contradict
the stability of C. But if such a cycle exists we could replace the two edges with either
P1 or P2 and would get a cycle in the original graph G, which would again contradict
the stability of C.

The following corollary summarizes now all properties for a minimum counterexample G
if we do not know the FE-cycle (C, e). Since we do not know the fixed edge we define for
the corollary that the small vertices are exactly the vertices of degree 3 and the large
vertices are the vertices of degree larger than 3.

Corollary 3.3.14. Let G = (V,E) be a minimum planar, 2-connected SFE-graph with
minimum degree 3. Furthermore, let Gvs be the graph induced by all very small vertices
in G. Then the following properties hold.

• G is 3-connected.

• G is essentially 4-edge connected.

• G contains no triangles.

• There is no large vertex in G with at least three large vertex neighbors.

• There is no cycle of large vertices in G.

• Let Cvs
odd be the number of connected components in Gvs with an odd number of

vertices, then it holds that

|E(G)| ≤ |V s(G)|+ |V (G)| − 1
2(|V (Gvs)|+ Cvs

odd).

Corollary 3.3.14 summarizes all the properties a graph must satisfy, but we can also
consider the properties a potential SFE-cycle must satisfy such as Corollary 3.3.4 and
Proposition 3.3.6. To search for a minimum SFE-graph it is enough to solve for each
graph satisfying the properties from Corollary 3.3.14 the following problem.

Problem 3.3.3. Given a graph G, does G contain a dominating SFE-cycle (C, e)
containing all neighbors of large vertices of G?

Note that the algorithms presented in Section 3.3.2 can all also solve Problem 3.3.3.
For the ILP-based approaches we can fix neighbors of large vertices by forcing the
corresponding x-variables to one and for the enumeration approach we can set the status
of neighbors of large vertices to fixed at the beginning of the algorithm.
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3.3.4 Systematic Search for a Minimum Counterexample

In this section we describe how we use the results from Corollary 3.3.14 to do a compu-
tationally effective search for a minimum counterexample. We use plantri [12], a tool
for generating exactly one representant of all isomorphism classes of planar graphs of a
given order. It furthermore can effectively create only 3-connected graphs with a given
minimum degree.

Our first approach was to directly generate representants of 3-connected planar graphs
and then filter them by the properties from Corollary 3.3.14. This results in a bad
performance since the filtering will be the bottleneck due to the restrictive condition of
triangle freeness. To be able to incorporate triangle freeness into the generation process
we generate representants of the dual graphs instead of the original graphs.

Note that for a 3-regular planar graph the dual is well-defined by Theorem 2.1.4 and
again 3-regular by Theorem 2.1.5. We can then translate the triangle freeness of the
original graphs to minimum degree four in the dual graph, which can be handled by
plantri in a performant way. Note that there might still be triangles in the resulting
graph that are not faces, but those would lead to a triangle of large vertices, which is also
forbidden by the conditions in Corollary 3.3.14 and therefore get filtered out afterwards.

In order to generate all candidate graphs with up to n vertices we need to generate all
dual graphs with up to n−2 vertices. This can be seen by the fact that |E(G)| ≥ 2|F (G)|
in triangle free planar graphs and therefore

|F (G)| = |E(G)| − |V (G)|+ 2 ≥ 2|F (G)| − |V (G)|+ 2⇒ |F (G)| ≤ |V (G)| − 2.

Furthermore, we get an upper bound for the number of edges by

|E(G)| = |F (G)|+ |V (G)| − 2 ≤ |F (G)|+ n− 2.

To summarize the total process given a maximum target graph size n, we let n∗ iterate
from 8 to n− 2 and use plantri to generate all 3-connected planar graphs with minimum
degree 4, n∗ vertices, and at most n∗ + n − 2 edges. Then we build the duals of all
generated representants and filter them by the conditions in Corollary 3.3.14. The
resulting graphs are all possible candidate graphs with size up to n. Then we can use
any of our three approaches to check if one of them contains a candidate SFE-cycle by
solving Problem 3.3.3.

Note that the step of building the duals can be parallelized in plantri by splitting the
search space into junks, which are of reasonable similar sizes. Therefore, we can parallelize
the whole process, which we heavily use to get our computational results.

3.3.5 Computational Results

In this section we present computational tests and results of our algorithms in a two-
folded manner. On the one hand we use three structurally different classes of graphs
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and test and compare our approaches on them. On the other hand, we use the best
performing approach to systematically search for a minimum counterexample, which will
computationally prove the main result of this section, Theorem 3.3.16.

All tests and computations are performed on machines with Intel Xeon E5-2640 v4
processors with 2.4GHz using at most 8GB RAM per thread. The tests performed
on the instance sets are each done on a single core and for searching for a minimum
counterexample we made use of up to 320 cores split over 16 machines in a parallelized
fashion. Furthermore, the implementations are done in C++ and for the ILP approaches
we use Gurobi Optimizer 8.15 to solve.

Instance Sets

We describe here three different instance sets I1, I2, and I3 that we use for testing our
algorithms. The instance sets I1 and I2 are for the problems 3.3.1 and 3.3.2. The third
instance set is for Problem 3.3.3.

The first set I1 consists of up to 5000 random 3-regular planar graphs for each graph
order from 6 to 59. Note that for order 6 to 9 there are fewer than 5000 isomorphism
classes and therefore we simply use a representant of each of them. For all other orders
we sample 5000 different representants.

The second set I2 gets constructed in the following way. For each order from 6 to 59
take up to 5000 different representants of random 3-regular planar graphs as before, then
randomly insert into every edge of the graph a vertex of degree 2 with 2% probability. The
probability was chosen in such a way that the resulting graphs with around 20 vertices
contain SFE-cycles with a probability of around 50%, which was evaluated experimentally.
For larger graphs up to 59 vertices the probability of containing an SFE-cycle increases
but the probability of containing a dominating SFE-cycle decreases, see also Figure 3.4.

The third set I3 consists for each n∗ from 8 to 59 of up to 5000 random graphs that
satisfy all properties of Corollary 3.3.14, i.e. are possible candidates for a minimum
counterexample, and have n∗ faces.

To generate the instance sets we used plantri for creating graphs with the desired
properties and selected with a given probability the graphs. For the sets of I3 we used
plantri on the dual graphs with minimum degree four. For the orders 6–14 in the case
of I1 and I2 and for the orders 8–17 in the case of I3 we enumerated all representants
and randomly chose 5000 of them. For all other orders we used a feature from plantri
that can partition the search space into sets of similar size and enumerate through one
of those sets effectively. Then we randomly select a set, generate graphs from this set
and keep a graph with a small probability of 1/2 000 000 in the case of I1 and I2 and
1/1 000 000 in the case of I3 until we have two graphs, or we enumerated the whole set.
Then we start with another randomly selected set (same sets can get selected multiple
times) until we have 5000 graphs not allowing duplicates.

5https://www.gurobi.com (accessed 09/2019)
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Note that this procedure selects not uniform from the whole search space since the
splitting of the search space by plantri is limited and there might be large sets in this
partition. The probability of a graph depends on the order of enumeration of those sets,
the graphs enumerated first have the highest selection probabilities and the graphs at
the end the lowest. But for our purposes this biased selection is sufficient. To select
truly uniformly for the three different search spaces would be non-trivial and presumably
computationally far too expensive.

The instance sets and the source code of the implementations of our algorithms can be
downloaded from https://www.ac.tuwien.ac.at/research/problem-instances.

Testing the Three Approaches on the Three Instance Sets

To verify the correctness of our approaches and to compare their performance we applied
all three approaches on our instance sets. For instance sets I1 and I2 we test two problem
variants, Problem 3.3.1, which searches for dominating SFE-cycles and Problem 3.3.2,
which searches for any SFE-cycle. For graphs of the instance set I3 we only consider
the variant of Problem 3.3.3, which searches for potential SFE-cycles in a minimum
counterexample. For each instance set, problem variant, and order n we use a running
time limit of one hour to solve all the up to 5000 graphs of order n.

Figure 3.3 compares the average running times per graph of the three algorithms for the
different graph orders and problem variants in seconds. Note that the graph orders in
instance set I3 denote the order of the dual graph and therefore the number of faces of
the original graph. We only display data points for orders for which at least 30 graphs
could get solved within the one hour time limit.

As we can see, our enumeration algorithm performs best on small graphs and does not
scale well for larger graphs. Furthermore, for small graphs the advanced ILP approach
performs better than the basic ILP approach. For larger graphs of the instance set I1
and I2 the basic ILP approach performs better than the advanced ILP approach. This
can be explained by the fact that the basic ILP approach has to solve many more ILPs
than the advanced ILP approach. For small graphs those ILP models are so easy to solve
that the overhead of starting the solver outweighs the actual solving time. On the other
hand, for larger graphs the models get harder to solve and the simplicity of the models
in the basic ILP approach compared to the advanced ILP approach compensates the
overhead of solving more models.

For the instance set I3 the models stay easy to solve also for larger graphs since a lot of
vertices can be fixed in the cycle due to the definition of Problem 3.3.3 and therefore the
advanced ILP approach performs better than the simple ILP approach over all orders.
Our enumeration performs better than the ILP approaches for searching for a minimum
counterexample up to a dual graph order of 19. This will be important, when we want to
search for a smallest counterexample.

Instance set I2 is important to also test positive instances, i.e. graphs that contain
SFE-cycles. Although the three algorithms could not solve all graphs in the given time

74

https://www.ac.tuwien.ac.at/research/problem-instances


3.3. Searching for Stable Cycles

20 40 60

# Vertices

10−2

100

102

se
co

n
d

s
p

er
gr

ap
h

I1 - Dominating SFE-Cycle

10 20 30 40

# Vertices

I1 - SFE-Cycle

20 40

# Vertices

10−2

100

102

se
co

n
d

s
p

er
gr

ap
h

I2 - Dominating SFE-Cycle

20 40

# Vertices

I2 - SFE-Cycle

10 20 30 40 50 60

# Faces

10−2

100

102

se
co

n
d

s
p

er
gr

ap
h

I3

Basic ILP Advanced ILP Enumeration

Figure 3.3: Average running time comparison of the three different algorithms on the
three instance sets.

limit, we compared the results of the solved graphs between the three approaches and
can conclude that for each of the tested graphs the approaches coincide in their decision
between containing an SFE-cycle or not. It may be that the approaches find different
SFE-cycles if they exist. In Figure 3.4 we see for the two different variants for instance
set I2 for each graph order how many graphs could get checked within the time limit and
how many SFE-graphs were found by the basic ILP approach. The other two approaches
were able to check only the same amount of graphs or less for each graph order.
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Figure 3.4: Number of tested graphs in instance set I2 compared to number of found
SFE-graphs.

To better understand the difference between the basic ILP approach and the advanced
ILP approach we analyze the number of ILPs solved for each single graph. Figure 3.5
shows the number of ILPs solved per graph for each graph order and problem variant for
the two different ILP approaches.

As we can see the basic ILP approach needs to solve many more models than the advanced
approach. The difference is especially big for the instance set I3 where the advanced
approach needs to solve only up to 5 models per graph on average. The basic model
needs to solve on average multiple hundred models per graph for the larger I3 instances.

Searching for Minimum Counterexamples with up to 24 Vertices

In this subsection we describe the results of applying the approach described in Sec-
tion 3.3.4 to search for a minimum counterexample. As we saw before the enumeration
approach performs best for Problem 3.3.3 on graphs with up to 19 faces. We will see that
the vast majority of candidate graphs with up to 24 vertices have 19 or fewer vertices
and therefore we will use the enumeration approach for checking if any of the candidate
graphs contain an SFE-cycle. Note that we also use the enumeration approach for graphs
with more than 19 faces for simplicity. One could instead use the advanced ILP-approach
for all graphs with 20 or more faces, which may be important if we want to go further
and check graphs with more than 24 vertices.

Table 3.5 shows the results of our search. Each row lists the results for the generated graphs
with a given number of vertices, which is displayed in the first column. Furthermore,
the column part. gives the number of parallel threads used to generate the graphs, filter
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Figure 3.5: Number of ILPs solved per graph of the two different ILP approaches on the
three instance sets.

them and check them for SFE-cycles. The third and fourth column show the number
of graphs that got checked for SFE-cycles by solving Problem 3.3.3 and the number of
graphs that were filtered out by the properties of Corollary 3.3.14.

Since we are interested in the running time of the slowest thread, this is given in seconds
by column max t[s]. The next three columns list summed running times of all threads
in hours. Column total gives the total CPU time of everything together, generation,
filtering, and checking. Moreover, columns gen. and check give the total CPU times for

77



3. Searching For Uniquely Hamiltonian Planar Graphs

Table 3.5: Results for Candidate Graphs with up to 24 Vertices.

# Graphs Total CPU times [h]

#F part. checked filtered max t[s] total gen. check C/G SFE

6 1 1 0 <1 <1 <1 <1 8.0 0
7 1 1 0 <1 <1 <1 <1 15.0 0
8 1 4 0 <1 <1 <1 <1 14.8 0
9 1 12 2 <1 <1 <1 <1 15.9 0

10 1 61 6 <1 <1 <1 <1 17.6 0
11 1 371 57 1 <1 <1 <1 18.6 0
12 1 2927 588 8 <1 <1 <1 21.0 0
13 1 24 957 6806 50 <1 <1 <1 23.9 0
14 32 228 793 78 750 184 <1 <1 <1 27.7 0
15 128 2 090 930 862 784 644 3 <1 3 29.2 0
16 512 14 750 689 7 746 354 1316 25 <1 24 25.1 0
17 512 45 728 911 57 554 063 2160 79 1 76 19.8 0
18 512 36 650 395 211 986 918 1486 71 2 67 16.2 0
19 512 6 061 407 283 793 146 328 27 13 14 14.2 0
20 512 201 991 145 836 208 1370 106 106 <1 13.2 0
21 512 1309 24 624 586 9464 1100 1100 <1 13.0 0
22 512 5 598 097 151 153 12 544 12 544 <1 20.8 0

generation and checking respectively. As we can see the highest running time is used
to generate graphs with 22 faces although only 600 000 such graphs get generated in
the end and only 5 of them get really checked. This shows that the bottleneck of the
current approach is not solving Problem 3.3.3 but to quickly generate graphs satisfying
the properties of Corollary 3.3.14.

The column C/G lists the average number of cycles the algorithm found per graph. Note
that those cycles may not even be maximal and are simply added to the data structure
for storing cycles to check at the end if some of them are SFE-cycles. Finally, the column
SFE shows that none of the generated graphs contain any SFE-cycles.

Those computational results prove the following lemma.

Lemma 3.3.15. There does not exist any planar graph with minimum degree three and
at most 24 vertices that contains an SFE-cycle.

Definition 3.3.6. A cycle C in a graph G is called stable if there exists no other cycle
C ′ 6= C with V (C ′) ⊇ V (C).

With that we can finally prove our main theorem.
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Theorem 3.3.16. There does not exist any planar graph with minimum degree three
having at most 25 vertices that contains a stable cycle. This implies that Bondy and
Jackson’s conjecture holds for graphs with up to 25 vertices.

Proof. Clearly, every uniquely hamiltonian cycle is a stable cycle and therefore we only
need to prove the first statement. Assume that there exists a planar graph G with
minimum degree three having at most 25 vertices that contains a stable cycle C. W.l.o.g.
let G be a minimum by the relation defined at the beginning of Section 3.3.3. There are
now two cases, either G is 3-regular or it contains a vertex v with degree at least four.

In the first case we know that C cannot be uniquely hamiltonian and therefore there
must exist a vertex u that is not part of C. W.l.o.g. we can assume that all neighbors of
u are part of C since otherwise we can contract the whole component of vertices that
are not part of C. Note that this implies that the neighbors of u are not connected by
an edge since this would imply that C is not maximal. What we do now is remove the
vertex u and connect two of its neighbors with a new edge. What remains is a planar
graph containing a stable cycle with up to 24 vertices and one vertex w of degree two.

If, on the other hand, C is hamiltonian and G contains a vertex v with degree at least
four we know that at least two of the incident edges to v are not part of the cycle C, let
e = vw be one of them. Because G is a minimum we know that w must have degree three
since otherwise we could remove e and get a smaller graph with the same properties. We
remove now the edge e from G and get a graph with up to 25 vertices and one vertex w
of degree two containing a stable cycle.

We got in both cases a planar graph containing a stable cycle with exactly one vertex
w of degree two having at most 25 vertices. In both cases we replace w and its two
remaining incident edges by one new edge e′ and get a new graph G′, which has at most
24 vertices and minimum degree three. If w is not in V (C) then C is also a stable cycle
in G′ and therefore also an SFE-cycle in G′. Otherwise, we can replace the edges e1 and
e2 in C by the new edge e′ and get a new cycle C ′ in G′. The stability of C in G implies
now that (C ′, e′) is an SFE-cycle in G′. Therefore, we get in both cases a contradiction
to Lemma 3.3.15.

Another interesting implication of Lemma 3.3.15 concerns uniquely hamiltonian planar
graphs with vertex connectivity two.

Theorem 3.3.17. There does not exist any planar graph with minimum degree three
and vertex connectivity two having at most 46 vertices that contains a stable dominating
cycle.

Proof. We assume there exists such a graph G with a stable dominating cycle C. Let
v, w be a 2-vertex cut of G and C be the smallest component of G \ {v, w}. Furthermore,
let v, w be in such a way that |V (C)| is as small as possible. Clearly, |V (C)| ≤ 22. We
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define now G′ as the graph induced by the vertex set V (C) ∪ {v, w} and add the edge
e′ = vw if it is not already part of G′.

Since C is dominating we know that C traverses v and w. We define C ′ by restricting
C to G′ and adding the edge vw to C ′, which gives us a dominating cycle in G′. The
stability of C in G implies now the stability of the FE-cycle (C ′, e′) in G′. Furthermore,
since we chose v, w in such a way that |V (C)| is as small as possible we know that the
degree of v and w in G′ is at least three. Therefore, G′ has minimum degree three, which
is a contradiction to Lemma 3.3.15.

3.3.6 Conclusion

In this section we focused on systematically searching for uniquely hamiltonian planar
graphs with minimum degree three. To this end we reduced the search to planar graphs
with minimum degree three that contain an SFE-cycle. The fundamental approach was
to generate candidate graphs using the external tool plantri and then check for each of
the generated graphs if they contain a stable fixed edge cycle (SFE-cycle).

We formulated three different problem variants. They ask if a given graph contains an
SFE-cycle, a dominating SFE-cycle, or a dominating SFE-cycle with some additional
properties, respectively. We proved additional properties an SFE-cycle of a minimum
counterexample must satisfy and use them in the problem variant three. To solve the
problem variants we proposed three different approaches, two based on integer linear
programming and one based on cycle enumeration.

To effectively search for a minimum planar SFE-graph with minimum degree three
we proved several properties that a minimum counterexample must satisfy, see Corol-
lary 3.3.14 for a summary. The property that helps the most in reducing the search space
is triangle freeness.

We tested our three algorithms on a selection of random instances for the three different
problem variants. Most of the time the enumeration approach performs better for small
graphs and the ILP-based approaches for larger graphs. Finally, we generated all planar
3-regular triangle-free graphs with minimum degree three and up to 24 vertices using
plantri to create the dual graphs. Then, we filtered the graphs using the properties
of Corollary 3.3.14 and applied the enumeration approach to the remaining graphs to
check if they contain an SFE-graph. The computations for searching for a minimum
counterexample were heavily parallelized and used a total of 1.59 CPU years with a
bottleneck in generating all planar 3-regular triangle-free graphs with minimum degree
three and up to 24 vertices.

The computational results show that no planar SFE-graph with minimum degree three
with up to 24 vertices exists. This implies the main result that no UHPG3 with up to 25
vertices exists and no UHPG3 with connectivity two with up to 46 vertices exists.

To be able to further increase the lower bound of 25 vertices in the future we have to
focus on the fast generation of planar 3-connected triangle-free graphs with minimum
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degree three as this was the bottleneck in our search for a minimum counterexample.
Furthermore, if we can solve this bottleneck, the usage of the presented ILP-based
approaches instead of the enumeration approach for the larger graphs will be crucial.
If also those approaches are too slow, one could try to use constraint programming
(CP) or SAT-based approaches and compare them to the ILP-based approaches. Last
but not least, there might be additional properties that we can prove for a minimum
counterexample leading to a more effective search. This might also help to solve the
bottleneck of generating candidate graphs.
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CHAPTER 4
Finding Smooth Graphs with
Small Independence Numbers

In this chapter we consider different open problems regarding lower bounds for classes of
smooth graphs, a subclass of 4-regular graphs. We propose and apply a branch-and-bound
approach to search for smooth graphs with small independence numbers.

4.1 Introduction
In graph theory independent sets are well studied objects and the independence number of
a graph is a central characteristic, which is strongly related to many important properties.
One natural research subject is to find lower and upper bounds for the independence
number for general graphs, see for Example [38], or for specific subclasses of graphs, see
for Example [73].

In this chapter we focus on the independence number of smooth graphs, a subclass of 4-
regular hamiltonian graphs. For a complete definition of smooth graphs see Definition 4.2.1
in Section 4.2. Smooth graphs and their independence numbers got already studied in
depth from a graph-theoretic perspective by Fleischner, Sabidussi and Sarvanov [31, 29].

We are interested in lower bounds on the independence number of smooth graphs. In
this context Sarvanov stated the following conjecture [69].

Conjecture 4.1.1. Every smooth graph G with n > 11 vertices has independence
number α(G) ≥ 2

7n.

Our main goal is to design an algorithm that can check lower bounds on the independence
number for smooth graphs and either prove them for all graphs with a given number of
vertices or disprove them by finding a graph with a smaller independence number.
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By using Brooks’ Theorem [15] we get a lower bound on the independence number for
all 4-regular graphs.

Theorem 4.1.1. Every 4-regular graph with n vertices that is not the K5 is 4-colorable.
This implies that every such graph has an independent set of size at least n/4.

This property, together with the fact that we only consider graphs containing a hamiltonian
cycle and therefore have an independence number of at most n/2, give us an interval of
possible lower bounds.

We describe a branch-and-bound algorithm that heavily depends on the graph-theoretic
results and bounds to search through the space of possible graphs in an effective way.
The main idea is to use a heuristic to compute a large independent set together with
the graph-theoretic bounds to detect infeasible subproblems as early as possible. For
complete solutions we use an ILP model to compute their independence number and to
check if they are feasible.

In the next section we formally define smooth graphs and state the problem framework.
In Section 4.4 we infer some useful bounds and properties using already existing graph-
theoretic results, and in Section 4.5 we describe how to use those bounds and properties to
compute a usually tight bound on the independence number of a partial solution in order
to detect infeasibility as early as possible. In Section 4.6 we present some computational
results for four different problem variants. Finally, we conclude with Section 4.7 and
propose promising future work.

4.2 Problem Formulation

Note that in contrast to Chapter 3 we are considering in this chapter general graphs that
may contain multiple edges, as defined in Definition 2.1.1. We are interested in 4-regular
hamiltonian graphs G = (V,E) with a fixed hamiltonian cycle H. If we consider the
graph G−E(H) after removing the edges of the cycle H we get a 2-regular graph that
consists of a set of cycles.

Definition 4.2.1. Let G be a 4-regular graph with a hamiltonian cycle H. The cycles
of G− E(H) are called inner cycles of G. Furthermore, G is called smooth if the inner
cycles are “non-selfcrossing” in the sense that the cyclic order of its vertices agrees with
their cyclic order in H.

An example for a smooth graph is given in Figure 4.1.

Based on Sarvanov’s conjecture [69] we formulate the following decision or search problem.

Problem 4.2.1. Given n ∈ N as input, does there exist a smooth graph with n vertices
and independence number smaller than 2

7n?
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Figure 4.1: Smooth graph with twelve vertices and three inner cycles in different colors.

This problem can be generalized to the following family of problems by restricting the
smooth graphs by some properties P and testing a lower bound of qn for some q ∈

(
1
4 ,

1
2

]
.

Problem 4.2.2 (Existence of Smooth Graphs with Small Independence Numbers
(ESSI(q,P)) ). Given n ∈ N as input, does there exist a smooth graph with n vertices
that satisfies properties P and has independence number smaller than qn?

4.3 Algorithmic Approach

In this section we present a branch-and-bound approach that solves ESSI(q,P), i.e. it
checks for a given n ∈ N if there exists a smooth graph with n vertices and independence
number smaller than qn that satisfies the conditions P. The conditions of P can get
added to the branch-and-bound approach in a problem-specific manner.

4.3.1 Solution Representation

If we assume that the hamiltonian cycle and therefore the order of the vertices in the
hamiltonian cycle is given, every inner cycle of a smooth graph is already uniquely
determined if we only know the set of its vertices. W.l.o.g. we assume the vertex set
V = {1, . . . , n} to be ordered so that the hamiltonian cycle visiting the vertices in the
order 1, . . . , n is fixed. Therefore, we only have to partition the vertex set {1, . . . , n} into
sets of size at least three and the result represents a smooth graph. For the rest of the
algorithmic description section we use a partitioning of the ordered vertex set {1, . . . , n}
into sets of size at least three as a solution representation.

4.3.2 Core Algorithm

The core algorithm is based on the branch-and-bound principle, see Section 2.3.2 The
branching is done by assigning the next not yet assigned vertex in the order of the
hamiltonian cycle to an already existing partition or to a new partition. The start
solution is the solution where no vertex is assigned. After assigning a vertex to a partition
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we check if the resulting partial solution satisfies all bounds and if there is a theoretical
possibility to complete it to a solution that satisfies the wanted conditions. We call a
partial solution that fails this check an infeasible partial solution. If the current partial
solution is infeasible, we can cut off this branch and continue with the next partial solution.
The infeasibility check of partial solutions is described in more detail in Section 4.5. Note
that in contrast to the classical branch-and-bound procedure described in Section 2.3.2,
which solves an optimization problem, we use here multiple lower bounds and do not
compare them to our global best found objective, but to the given bound qn.

Whenever the branching reaches a complete solution, where all vertices are assigned to
partitions, we compute its independence number and check the conditions P. Note that
computing the independence number is NP-hard for the class of smooth graphs [31]. We
compute it by solving the ILP

max
∑
v∈V

xv

s.t. xv + xw ≤ 1 ∀e ∈ E(G), e = vw

xv ∈ {0, 1} ∀v ∈ V (G)

As search strategy we use depth first search. Although for searching through the whole
tree in order to obtain all feasible graphs, the search strategy is irrelevant since we are not
reusing information of found solutions, it may be relevant for finding a feasible solution
as fast as possible.

4.4 Bounds and Other Useful Properties

To reduce the search space for our problem we first derive some bounds and other
properties for smooth graphs that may have an independence number smaller than qn.
We mainly use the results of Fleischner, Sabidussi and Sarvanov to infer bounds and
other properties [31, 29]. Those are then used for checking infeasibility and recognizing
infeasible partial solutions as early as possible.

We consider the problem ESSI(q,P) and we assume that the satisfaction properties P and
the factor q are fixed. For the rest of this section we assume that G∗ is a smooth graph
with n vertices that satisfies the properties P and has independence number α(G∗) < qn,
i.e. G∗ is a solution to the problem ESSI(q,P). Let r∗ be the number of inner cycles of
G∗.

Fleischner and Sarvanov proved in [29] the following theorem.

Theorem 4.4.1. Let G be a smooth graph with n vertices and r the number of inner
cycles. Then the following holds.

α(G) ≥ n− r
3 (4.1)
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We use this theorem to compute a lower bound of r∗.

Corollary 4.4.2. For G∗ and r∗ the following holds.

r∗ ≥ n− 3dqne+ 3 (4.2)

Proof. Since the independence number α(G∗) is integral we get from (4.1) that α(G∗) ≥⌈
n−r∗

3

⌉
.

α(G∗) < qn⇒
⌈
n− r∗

3

⌉
< qn⇔

⌈
n− r∗

3

⌉
≤ dqne − 1

⇔ n− r∗

3 ≤ dqne − 1⇔ r∗ ≥ n− 3dqne+ 3

Inequality (4.1) can be strengthened if we exclude one special graph, which we call G(2).
G(2) is defined for even n and is the unique simple smooth graph with only two inner
cycles. G(2) is unique since the only possibility to being simple and having only two inner
cycles is if all even vertices are in one inner cycle and all odd vertices are in another
inner cycle. By excluding G(2) Fleischner and Sarvanov [29] proved the following stronger
inequality.

Theorem 4.4.3. Let G be a smooth graph with n vertices that is not isomorphic to G(2)

and let r be the number of inner cycles. Then the following holds.

α ≥ n− r + 1
3 (4.3)

Fleischner and Sarvanov stated this theorem with another equivalent condition. They
proved Theorem 4.4.3 first for multigraphs and then showed that it also holds for simple
graphs that have three consecutive vertices in different inner cycles. Putting this two
conditions together we get that two consecutive vertices lie in different cycles, since the
graph must be simple. Therefore, if three consecutive vertices never lie in three different
inner cycles it must hold that vertex k and vertex k + 2 always lie in the same inner
cycle. This further implies that all even vertices form one inner cycle and so do all odd
vertices. Therefore, the only graph that does not satisfy both conditions is G(2).

As before we can use this theorem to compute a stronger lower bound for r∗.

Corollary 4.4.4. If G∗ is not isomorphic to G(2) the following holds.

r∗ ≥ n− 3dqne+ 4 (4.4)

Proof. The proof is analogous to the proof of Corollary 4.4.2 by replacing (4.1) with (4.3).
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Another useful theorem is the following from [30].

Theorem 4.4.5 (Cycle-Plus-Triangles Theorem). Let G be a smooth graph where all
inner cycles are triangles, i.e. have length three. Then G is 3-colorable.

In [29] the following corollary of the cycle-plus-triangle theorem is stated.

Corollary 4.4.6. Let G be a smooth graph with n vertices where all inner cycles have
length smaller than or equal to four. Let r be the number of inner cycles and r3 be the
number of inner cycles of length three. Then the following holds.

α(G) ≥ n− (r − r3)
3 (4.5)

Let for the following corollary r∗3 be the number of inner cycles of length three of G∗.

Corollary 4.4.7. G∗ has either an inner cycle with length greater than four or the
following holds.

r∗ ≥ n− 3dqne+ 3 + r∗3 (4.6)

Proof. The proof is analogous to the proof of Corollary 4.4.2 by replacing (4.1) with (4.5).

Until now, we only provided lower bounds for r∗, but by using Theorem 4.4.5 we can
also compute the following upper bound.

Corollary 4.4.8. Let G∗ and r∗ be as described at the beginning of the section. Then
r∗ < qn holds.

Proof. We remove vertices for each inner cycle with length greater than three until every
inner cycle has length three. For each removed vertex we connect the two neighbors in
the inner cycle and the two neighbors in the hamiltonian cycle. The result is a smooth
graph G′ with n′ = 3r∗ where all inner cycles are triangles. Removing vertices and adding
edges can only decrease the independence number since every independent set in the
transformed graph is also an independent set in the original graph. Therefore, we know
α(G′) ≤ α(G∗) and we can conclude the proof using Theorem 4.4.5 as follows.

qn > α(G∗) ≥ α(G′) = n′

3 = r∗
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4.5 Checking Infeasibility
To check if a given partial solution is infeasible, we use the bounds and properties from
Section 4.4, and compute an as tight lower bound for the independence number of any
completion of the partial solution as possible. Let S be a partial solution, i.e. S is a
partitioning of a subset of the vertices of G.

To be able to use the lower bound from Corollary 4.4.4 for r, we need to exclude the
graph G(2). To do this we check the conditions P for the unique graph G(2) and compute
the independence number of it before we execute the branch-and-bound algorithm. Let
rLB be the lower bound for the number of inner cycles r, which we get from (4.4).
Furthermore, let rUB = bqnc be the upper bound for the number of inner cycles r, which
we get from Corollary 4.4.8.

If |S| > rUB, the given partial solution is infeasible. Let k =
∑
P∈S |P | be the number of

fixed vertices in S and
` :=

∑
P∈S:|P |<3

3− |P |

the number of vertices that are at least needed to complete all partitions of S. Furthermore,
let Ri := |{P ∈ S : |P | ≥ i}| be the number of partitions in S with at least i vertices.
Now we can show the following theorem.

Theorem 4.5.1. Let S be a partial solution and rUB, rLB, k, ` and (Ri)i≥3 be as
described above. With that we can define the following value.

m := max
[
0,min

(
5−max

(
3,max

P∈S
|P |
)
, n− 3dqne+ 3−R4

)]
.

If there exists a feasible completion of S, the following holds.

k + `+m+ 3 max(0, rLB − |S|) ≤ n (4.7)

Proof. First of all every completion of S must complete all partitions P ∈ S with |P | < 3,
which implies that at least ` vertices must be added to the k existing ones. If |S| < rLB

we know that a completion of S with the desired properties must have at least rLB

different partitions and therefore 3(rLB − |S|) additional vertices must be added.

By Corollary 4.4.7 either the completion must contain a partition of size at least five
or (4.6) must hold. To get a partition of size five we can add

max(0, 5−max(3,max
P∈S
|P |))

additional vertices to the largest partition. Otherwise, to satisfy (4.6) we need to have
n− 3dqne+ 3 many partitions of size at least four. We have at the moment R4 many
inner cycles with length at least four and therefore we need max(0, n− 3dqne+ 3−R4)
many additional vertices to get enough inner cycles of length four.

Plugging everything together and considering that in total we have n vertices we get (4.7).
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If (4.7) is violated, we know that S is infeasible.

We covered now the cases where we can determine that S is infeasible without even
computing an independent set. Now we compute an independent set on the partial graph
of S, which is the graph induced by all fixed vertices VS =

⋃
P∈S P . By the branching

rules we know that VS = {1, . . . , k} for some k ≤ n.

The partial graph GS = (VS , ES , ψS) consists of the fixed vertices and all possible edges
between those vertices. Since we do not know if a partition P ∈ S with |P | ≥ 3 is already
complete or not, we also do not know if the vertices min(P ) and max(P ) are connected
or not. We want that every independent set in GS is also an independent set in G and
therefore we have to add those edges to ES . Therefore, ES consists of the edges of the
hamiltonian cycle between 1, . . . , k and the inner edges between the partitions i.e. edges
of the form e = ikik+1 or e = i1i` where P = {i1, i2, . . . , i`} ∈ S with i1 < i2 < · · · < i`
and k ∈ {1, . . . , `− 1}.

To compute an independent set on GS we use the minimum-degree greedy algorithm [40].
In each iteration this algorithm adds a vertex with the minimum degree to the inde-
pendent set and removes the vertex and all its neighbors from the graph. Besides good
approximation ratios the greedy algorithm is also fast, it can be implemented in O(k)
time.

Let I be the independent set found by the minimum-degree greedy on the graph GS .
Our goal is now to find a good lower bound on how many additional vertices can be
added to I in each completion of S.

Theorem 4.5.2. Let S be a partial solution and I an independent set on the graph GS.
Furthermore, let k, `, m and rUB be as described in Theorem 4.5.1 and let

nmax
I := |I ∩ {1, k} |+ |I ∩ {minP : P ∈ S}|+ |I ∩ {maxP : P ∈ S}|.

Then there exists for every completion G of S an independent set IG with

|IG| ≥ |I|+

[
n− k − nmax

I −min
(
rUB − |S|, n−k−`−m3

)]
3 . (4.8)

Proof. Let G be an arbitrary completion of S. First of all we upper bound the number of
inner cycles r of G. Clearly we know r ≤ rUB. Furthermore, by using the same reduction
as in the proof of Theorem 4.5.1 with r instead of rLB we get

k + `+m+ 3 max(0, r − |S|) ≤ n⇒ r ≤ n− k − `−m
3 + |S|. (4.9)

Now we can compute a lower bound on the independence number of G. Let VI ⊆ VG \VS
be the set of all vertices in G that are not in VS and are adjacent to one of the vertices
in I. The vertices of VI are either connected to I via the hamiltonian cycle, which is
only possible if the vertex 1 or the vertex k is in I, or via an inner cycle, which is only
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possible for the end vertices minP and maxP of an inner cycle P ∈ S. Therefore, we
can bound the size of VI by

|VI | ≤ |I ∩ {1, k}|+ |I ∩ ({minP : P ∈ S}|+ |I ∩ {maxP : P ∈ S})| = nmax
I .

We consider now the residual graph Grem after removing the vertices VS and VI from G,
which is a graph with n− k − |VI | vertices. We complete the independent set I by an
algorithm that is similar to the minimum-degree greedy algorithm. Instead of always
taking a vertex with the minimum degree we take the minimum remaining vertex, i.e.
the first vertex in the order of the hamiltonian cycle that is not adjacent to any vertex in
the independent set so far.

Let I0 = I be the start set and Ii the set after iteration i and let vi be the vertex added
in iteration i. Furthermore, let Pi be the partition in G of the vertex vi and Gi be
the remaining graph in iteration i, G0 = Grem. We distinguish two cases, the case if
vi = min(Pi) is the first vertex in Pi or not. Since we selected vi as the first vertex in the
order of the hamiltonian cycle that is still in Gi−1 we know that the preceding neighbor
of vi in the hamiltonian cycle is not in Gi−1 and therefore we obtain that the degree
dGi−1(vi) of vi in Gi−1 is smaller than or equal to three. If vi 6= min(Pi) we also know
that one neighbor in the inner cycle containing vi is a predecessor of vi in the hamiltonian
cycle and therefore it is also not in Gi−1, which gives us dGi−1(vi) ≤ 2. Summing up the
removed vertices during the greedy algorithm over all iterations we get

n− k − |VI | =
x∑
i=1

dGi−1(vi) + 1 ≤ x+ 3(r − |S|) + 2(x− r + |S|)

⇒x ≥ n− k − |VI | − r + |S|
3 ≥

n− k − |VI | −min
(
rUB − |S|, n−k−`−m3

)
3 .

In total, we constructed a new independent set IG with |I|+x elements and therefore (4.8)
holds.

If P is not empty we can calculate problem specific bounds for those constraints and
check them. To summarize this section Algorithm 4.1 describes the whole procedure for
checking infeasibility.

4.5.1 Symmetry Breaking

Until now the branch-and-bound procedure considers many isomorphic graphs, such
as all rotations alongside the hamiltonian cycle and their reversals. In this section we
describe how we break those symmetries.

To this end we define the gap sequence of a complete solution.

Definition 4.5.1. Let S be a complete solution, i.e., a partitioning of the vertex set
V = {1, . . . , n}. Let Pi ∈ S be the partition of vertex i and let gi be the gap between
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Algorithm 4.1: Checking Infeasibility
Input: n, q, P and a partial solution S
Output: Either INFEASIBLE or POSSIBLY_FEASIBLE

1 Compute rLB, rUB, k, `, m;
2 if |S| > rUB then
3 return INFEASIBLE
4 end
5 if (4.7) is not satisfied then
6 return INFEASIBLE
7 end
8 Construct GS and apply minimum-degree greedy to get independent set I;
9 Compute V max

I ;

10 if |I|+ max
(

0,
⌈

[n−k−nmax
I −min(rUB−|S|,n−k−`−m

3 )]
3

⌉)
≥ qn then

11 return INFEASIBLE
12 end
13 if Problem specific bound check for P fails then
14 return INFEASIBLE
15 end
16 return POSSIBLY_FEASIBLE

vertex i and its successor j in the partition Pi, i.e., let j = min{j ∈ Pi : j > i} if this set
is not empty or j = min{j ∈ Pi : j < i} otherwise and gi = j − i if j > i or gi = j + n− i
otherwise. We call the sequence (gi)ni=1 the gap sequence of S.

If two S have the same gap sequence they are not only isomorphic but also exactly the
same according to the vertex labeling. We break those symmetries by ensuring that
the gap sequence is minimal according to the lexicographical order under all rotations
alongside the hamiltonian cycle and their reversals. Be aware that rotating alongside the
hamiltonian cycle simply means shifting the gap sequence, but reversing the hamiltonian
cycle is a non-trivial change in the gap sequence.

We can compute the gap sequence not only for complete solutions but also for partial
solutions. In some cases the next gap is not yet known and instead of calculating a
gap we can calculate a lower bound and an upper bound for the gap. With the lower
and upper bounds we can check if there is a rotation that always leads to a smaller gap
sequence. We can also compute lower and upper bounds for the reversed gap sequence
and also check if reversing leads to a smaller gap sequence.

If we found a rotation or a reversed rotation that always leads to a smaller gap sequence,
we can fathom the current branch and continue with the next one.

92



4.6. Computational Results

Table 4.1: Results for selected values of n for Problem 1 and Problem 2

Problem 1 Problem 2

n∗∗ t[s] candidates t[s] candidates

8 < 1 1 < 1 1
11 < 1 3 < 1 1
15 < 1 5 < 1 0
18 94 2298 33 259
22 25 443 5795 5047 145
25 > 5 000 000 > 330 000 4 868 324 160 556
29 > 5 000 000 > 1463 > 5 000 000 > 60 713

4.6 Computational Results

In this section we present computational results for instances to four different problems.
Our algorithm is implemented in C++ and compiled with g++ 4.8.4. To solve the ILP
model for finding a maximum independent set we used Gurobi Optimizer 7.0.11. All
tests were performed on a single core of an Intel Xeon E5540 processor with 2.53 GHz
and 2 GB RAM.

We consider four different variants of the problem. The first and original variant is
with q1 = 2

7 and with an empty constraint set P1 = ∅. The second problem is also
with q2 = 2

7 but with the additional constraint that all inner cycles have length at
most four, i.e. P2 = {(R5 = 0)}. The third problem is with q3 = 5

16 and P3 =
{(all inner cycles have length 4)}. The fourth problem is with q4 = 0.334 and P4 =
{(G contains no triangles)}. The motivations behind the choices of P are explained
subsequently.

4.6.1 Problem 1

We tested the implementation for n ∈ {6, . . . , 29}. The algorithm found for n = 8 one
feasible solution and n = 11 two feasible solutions. For all larger n it could not find any
feasible solutions. Furthermore, the algorithm was able to finish the branch-and-bound
search for all n ≤ 24, which proves that for n = 8 and n = 11 the found feasible solutions
are the only ones and for all other n ≤ 24 there does not exist any feasible solution. For
n > 24 it could not finish the search within 5 000 000 seconds.

The interesting values of n are the ones where 2n/7 is only a little bit larger than b2n/7c,
since then it may be easier to find a graph with independence number b2n/7c. Therefore,
we are especially interested in the values n ≡ 1 (mod 7) and n ≡ 4 (mod 7). Table 4.1
summarizes the results and running times for those values and compares them with the
results of Problem 2. Column t[s] shows the run time in seconds and column candidates

1https://www.gurobi.com (accessed 09/2019)
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the number of complete solutions that got checked by the ILP solver.

4.6.2 Problem 2

Problem 2 is a more restricted variant of Problem 1 and was tested to check if the
restriction helps speeding up the search. Especially the bound corresponding to the value
m can be improved through this restriction. We tested again all inputs n ∈ {6, . . . , 29}.
For n = 8 and n = 11 the algorithms found one solution, the second solution of n = 11
contains an inner cycle of length five. For all larger n it also could not find any feasible
solution.

Through the speedup compared to Problem 1 the algorithm was able to finish the search
for all n ≤ 28 and therefore proves for all 11 < n ≤ 28 that there does not exist a feasible
solution. For n = 29 it could not finish the search within 5 000 000 seconds. Table 4.1
summarizes the results and running times and compares them with Problem 1.

4.6.3 Problem 3

Fleischner conjectured that smooth graphs only containing inner cycles of length four with
at least 12 vertices have independence number at least 5n/16. This was the motivation to
consider this problem with q3 = 5

16 . Our algorithm was able to disprove the conjecture by
finding 36 smooth graphs with 20 vertices and independence number 6 < qn = 20 · 5/16
containing only inner cycles of length four. Furthermore, it could find feasible graphs
with 24 vertices and independence number 7 < qn = 24 · 5/16.

Clearly we only have to consider values for n with n ≡ 0 (mod 4). For n = 8 we found
the same graph as in Problem 1 and 2, for n = 12 and n = 16 the algorithm could prove
that there are no feasible graphs. For n = 20 it could finish the search and prove that
the found 36 feasible graphs are the only ones but for n = 24 the search did not finish in
under 5 000 000 seconds.

The run time until the first solution got found for n = 20 was 11 minutes and for n = 24
it was 11 hours. For n = 28 the algorithm could not finish in reasonable time and also
did not find a feasible solution in the first 5 000 000 seconds run time.

4.6.4 Problem 4

For triangle-free smooth graphs it is proven that 4n/13 is a valid lower bound for the
independence number [49]. This raises the question if it is possible to reach this lower
bound or if there exists a stronger lower bound. We use q = 0.334 since we want to check
if there exist triangle-free smooth graphs with independence number smaller than or
equal to n/3 and therefore we could use for q any value 1/3 + ε with a small ε > 0. The
algorithm was not able to find a graph with independence number smaller than n/3 but
it was able to find graphs with independence number n/3. It could solve the instances
up to n = 26 in under 5 000 000 seconds.
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4.7 Conclusion and Future Work
In this chapter we formalized a family of problems for finding smooth graphs with small
independence numbers. We proposed an algorithm for solving problems of this family that
is based on branch-and-bound. To increase the effectivity of the algorithm by computing
good bounds, we used graph-theoretic results to obtain properties and bounds for the
number of inner cycles and their sizes. Using those results we proposed a procedure
for computing a strong lower bound on the independence number of partial solutions
to detect infeasibility as early as possible. We applied our algorithm to four different
problems and reported the results and the running times for different graph sizes. Doing
this we could disprove one conjecture and find more support for other conjectures for
small graphs.

Future work may be to compare different heuristics for computing independent sets for
partial solutions. Furthermore, one idea could be to search for a minimum feasible graph,
which may enable some reduction properties and therefore some stronger bounds, as
we did it for uniquely hamiltonian graphs in Section 3.3.3. Additionally, it would be
interesting to use a metaheuristic to solve our problems, which would allow searching
larger smooth graphs with small independence numbers heuristically.
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CHAPTER 5
Sup-Transition Minor Free

Graphs

In this chapter we are concerned with searching for sup-transition minors, an extension
of the minor concept to transitioned graphs. We are developing a mathematical model
for modeling sup-transition minors. Based on the model we propose a MILP and a SAT
approach. We improve the approaches with non-trivial symmetry breaking constraints
and finally compare the two approaches and use them to derive new graph theoretic
insights.

5.1 Introduction

The cycle double cover (CDC) conjecture is a longstanding famous conjecture in graph
theory.

Definition 5.1.1. A cycle double cover (CDC) of a graph G is a multiset of cycles in G
such that each edge of G is contained in exactly two cycles.

Conjecture 5.1.1 (CDC conjecture). Every bridgeless graph contains a CDC.

This already over 40 years old conjecture is well studied and was originally posed by
Szekeres [75] and Seymour [71]. Jaeger reduced the problem from general bridgeless
graphs to the class of all snarks [45]. There are several similar definitions of snarks, but
we use the same definition as Jaeger does.

Definition 5.1.2. A snark is a simple cyclically 4-edge connected cubic graph with
chromatic index four.
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Note that by Lemma 2.1.2 a snark is also essentially 4-edge connected.

Finding a CDC in a snark, or in general in a 3-regular graph, is correlated to the
compatible circuit decomposition (CCD) problem, which is formulated on graphs with a
transition system. A transition system is a collection of transitions, where each transition
represents a set of two adjacent edges. For a formal definition see Definition 5.2.1 in
Section 5.2.1. The CCD problem asks for a given 2-connected eulerian graph G and a
transition system T if there exists a set of circuits in G such that each edge is contained
in exactly one circuit and none of its circuits contain both edges of any transition T in T .

One correlation between the CDC conjecture and the CCD problem can be seen via line
graphs.

Definition 5.1.3. Let G be a graph. The line graph L(G) of G is defined by V (L(G)) :=
E(G) and for each vertex v ∈ V and e1, e2 ∈ E(v), e1 6= e2 we add an edge connecting
e1 with e2 to E(L(G)). Note that if e1 and e2 are parallel edges then e1 and e2 are
connected in L(G) also with two parallel edges.

Theorem 5.1.1. Consider for a 3-regular graph G its 4-regular line graph L(G) together
with two transitions per vertex as shown in Figure 5.1. If the line graph together with
the given transition system contains a CCD, one can construct a CDC of the original
graph G.

Proof. Let C be the set of circuits in L(G) corresponding to the CDC. Note that a
all vertices in L(G) have degree two and therefore cannot be used twice in a circuit
C ∈ C since this would imply that C contains all edges of the transitions at this vertex.
Therefore, all C ∈ C are cycles in L(G). The vertices of a cycle in L(G) form an edge
sequence in G corresponding to a trail in G. The collection of those trails in G covers
every edge in G exactly twice since the circuits in C cover every vertex in L(G) exactly
twice. We can split up the trails in G to cycles in G and get a CDC in G.

Another correlation between the CCD problem and the CDC conjecture for 3-regular
simple graphs can be seen by the following construction.

Theorem 5.1.2. Let G be a 3-regular simple triangle-free graph and H the graph obtained
from G after contracting each edge of a PPM M of G. Now we define a transition system
on H by adding transitions between two edges if and only if their corresponding edges in
G are adjacent, see Figure 5.2 for an illustration. Then, if H contains a CDC, one can
construct from it a CDC in the original graph G containing the 2-factor Q = E(G)−M
as a subset.

Proof. Consider a CDC C in H. Each C ∈ C can be extended to a circuit C ′ in G by using
the contracted edges. With this extension the circuits {C ′ | C ∈ C} cover all contracted
edges in M twice and all edges in Q once. But Q is a 2-factor and therefore consists of a
set of cycles. Adding this set of cycles to {C ′ | C ∈ C} we get CDC of G that contains
the cycles of Q as a subset.
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G

L(G)

Figure 5.1: Transformation of a part of a 3-regular graph G into its line graph L(G) and
two transitions per vertex, represented by a red vee (∨) between their two edges. The
vertices of G are represented by black circles, the edges of G by black solid lines, the
vertices of L(G) by red squares, and the edges of L(G) by red dashed lines.

⇒ ⇒

Figure 5.2: Example contraction of parts of a PPM. The edges of the PPM getting
contracted are drawn dashed. The transitions in the resulting graph are represented by a
vee (∨) between the two edges of the transition.

Note that triangle-freeness is needed to ensure that the graph does not contain self-loops
after contracting a claw, but it may contain parallel edges. Using this theorem we get
that to prove the existence of a CDC in a 3-regular simple triangle-free graph it suffices
to find a PPM such that its contraction leads to a transitioned graph containing a CCD.
Since the number of vertices of the contracted graph is at most half of the number of
vertices of the original graph, it may be faster to find a CCD in the much smaller graph
than a CDC in the original graph. On the other hand, if a snark contains a CDC one
cannot conclude that it also contains a perfect matching whose contraction leads to a
graph with a CCD; the Peterson graph is a counter example. If we allow PPMs, this
direction is still an open problem.

Already in 1980 Fleischner [25] proved that every 2-connected planar eulerian graph has
a CCD regardless of the structure of the transition system. This result was generalized
by Fan and Zhang [24] who proved that whenever the graph has no K5-minor it has
a CCD. These two results both only use the graph structure and ignore the transition
system. In order to include the structure of the transition system, Fleischner et al. [33]
extended the definition of transition minors to transitioned graphs and proved that if a
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transitioned 2-connected eulerian graph is sup-undecomposable K5 (SUD-K5)-minor-free,
it contains a CCD, which is a generalization of Fan and Zhang’s result. For a definition
of SUD-K5-minor-free graphs see Definition 5.2.7 and Example 5.2.1 in the next section.

This recent result of Fleischner et al. leads to the question of how to check for a graph
if it contains a SUD-K5-minor. This task is not easy because of the complex nature of
the definition of a SUD-K5-minor. Because of this difficulty Fleischner et al. could not
provide a snark and a PPM whose contraction leads to a graph that is SUD-K5-minor-free
but has a K5-minor, i.e. an example in the context of snarks where the new theorem is
stronger than the old theorem.

In this chapter we analyze the problem of finding a SUD-K5-minor and formulate a
generalization that checks if a graph is sup-(H,S)-minor-free. Furthermore, we prove
some complexity results for this problem concerning NP-hardness and solvability in
polynomial time if H is fixed. Then, we develop a mathematical model for testing the
existence of sup-(H,S)-minors and prove its correctness. Based on the model, we propose
a MILP and a SAT model. We then compare and use those two approaches to get further
graph theoretic insights.

There is no literature yet that is concerned with finding SUD-K5-minors, although the
problem of finding K5-minors is well analyzed. Robertson and Seymour proved that
checking if a graph contains a K5-minor can be done in polynomial time [67]. We use
the same proof-idea to prove that checking whether a graph contains a SUD-K5-minor
can be done in polynomial time. The polynomial algorithm described in the proof of
Robertson and Seymour is not practically applicable since its computation time has large
constants and polynomial factors. A more practical algorithm was provided by Reed
and Li who proved that checking if a graph contains a K5-minor can be done in linear
time [65]. This algorithm heavily depends on the fact that a 4-connected graph contains
no K5-minor if and only if it is planar and that checking planarity can be done in linear
time. Since there is no known extension of planarity to transitioned graphs that would
lead to a connection between planarity and the existence of a SUD-K5-minors, this linear
time approach cannot easily be extended to checking the existence of SUD-K5-minors.

To improve the solving times of the MILP as well as the SAT model we propose a
non-trivial symmetry breaking based on graph automorphisms of the two input graphs
(G, T ) and (H,S). The idea of breaking symmetries using automorphism groups has been
studied in a general context, see e.g. [2], and in problem-specific contexts, see e.g. [47].
We extend the definition of automorphisms to transitioned graphs and propose problem
specific symmetry breaking constraints based on a vertex mapping between the two input
graphs (G, T ) and (H,S).

In the next section we introduce the problem existence of sup-transition minors (ESTM),
its equivalent problem existence of basic sup-reduced-transition minors (EBSRTM) and
prove the complexity results. A mathematical model for EBSRTM is then presented
in Section 5.3.2, which also includes the correctness proof of the model. Based on the
mathematical model a MILP is presented in Section 5.4 and a SAT model in Section 5.5.
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Then we discuss symmetry breaking constraints, which can be used in the MILP and in
the SAT model, in Section 5.6. The computational results of the MILP and the SAT
model are presented in Section 5.8. Finally, we conclude with Section 5.9 and propose
possible future work.

5.2 Problem Formulation

Before we can formulate the problem we need some mathematical notations and graph
theoretic definitions. For a partial function α : A 9 B we use the following notations.
For a subset X ⊆ A we write α[X] := {b ∈ B | ∃a ∈ X : b = α(a)} for the image of X
under α and for a ∈ A we simply write α[a] := α[{a}]. Similarly, for a subset Y ⊆ B
we write α−1[Y ] := {a ∈ A | α(a) ∈ Y } for the preimage of Y under α and for b ∈ B we
simply write α−1[b] := α−1[{b}]. Note that α−1[b] may be empty if α is not surjective. If
α is injective we denote by α−1 : B 9 A the inverse partial function of α and α−1(b) = a
if and only if α(a) = b. Furthermore, we denote by dom(α) = α−1[B] ⊆ A the domain of
α.

5.2.1 Basic Definitions

We define a transition system as in [33] but use a different notation, which will be useful
later on.

Definition 5.2.1 (Transition System). Let G be a graph. A transition system of G
is a set T ⊆ V × P2(E) of transitions that satisfies the following. Each transition
T ∈ T with T = (v, {e1, e2}) has to satisfy {e1, e2} ⊆ E(v). We use the projections
π1(T ) := v and π2(T ) := {e1, e2} to denote the values of T . Furthermore, we write
T (v) := {T ∈ T | π1(T ) = v} for the set of all transitions at vertex v. The transitions at
a vertex v must all be edge-disjoint, i.e.

π2(T1) ∩ π2(T2) = ∅ ∀v ∈ V,∀T1 ∈ T (v),∀T2 ∈ T (v) : T1 6= T2

The graph G with a non-empty transition system T is called a transitioned graph and
denoted by (G, T ). A completely transitioned graph is a transitioned graph where for each
vertex each incident edge is in one transition of the vertex, i.e. E(v) =

⋃
T∈T (v) π2(T ) for

all v ∈ V (G). For every subgraph H of G, T |H = {T ∈ T | π2(T ) ⊆ E(H)}. Clearly, a
connected completely transitioned graph is eulerian.

The following two definitions are adopted from [33].

Definition 5.2.2 (separator). Let G be a graph. A vertex subset U is a separator
of G separating G to G1, G2 if E(G) = E(G1) ∪ E(G2), V (G1) ∩ V (G2) = U , and
E(G1) ∩E(G2) = ∅. We call U a t-separator if |U | = t. We say a separator U separating
subgraphs X1, X2 of G if U is a separator of G separating G to G1, G2 with Xi ⊆ Gi,
i = 1, 2.
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Definition 5.2.3 (bad-cut-vertex). Let (G, T ) be a transitioned graph. A 1-separator
{v} separating G to G1, G2 is a bad-cut-vertex if (v,E(v) ∩ E(G1)) ∈ T (v) implying that
|E(v) ∩ E(G1)| = 2.

Definition 5.2.4 (minor). Let G be a graph. H is a minor of G if and only if H can
be derived from G by deletion of vertices, deletion of edges and contraction of edges.

For our purposes we use the following equivalent representation of H. The vertices of H
correspond to non-empty vertex-disjoint connected subgraphs of G. We can formalize this
by a partial surjective function ϕ : V (G) 9 V (H), which maps vertices in G to vertices
in H. Note that ϕ is a partial function, which means that there might be vertices in G
that do not get mapped on vertices in H. Furthermore, the preimage ϕ−1[w] ⊆ V (G) for
each w ∈ V (H) must be connected in G.

The edges of H correspond to edges of G. We can again formalize this by a partial
injective and surjective function κ : E(G) 9 E(H), which maps an edge in G to its
corresponding edge in H. The end vertices of an edge κ(e) ∈ E(H) correspond to the
connected subgraphs that contain the end vertices of the edge e in G. Formally this
means

ψH(κ(e)) = ϕ [ψG(e)] ∀e ∈ dom(κ). (5.1)

Note that we also do not allow loops for minors, even if you could generate one by
contracting some edges. Next we define a transition minor as in [33] but with a different
notation.

Definition 5.2.5 (transition minor). Let (G, T ) be a transitioned graph and H a minor
of G with correspondence maps ϕ and κ. We define a transition system S on H as
follows. We keep all transitions whose edges do not get deleted or contracted; formally
that means:

S ′ := {(ϕ(π1(T )), κ[π2(T )]) | T ∈ T , π1(T ) ∈ dom(ϕ), π2(T ) ⊆ dom(κ)} . (5.2)

The transitioned graph (H,S ′) is called a reduced transition minor of (G, T ).

If w ∈ V (H) is a vertex of degree four and there exists a transition between two of the
incident edges, we also want to add a transition between the other two edges. Formally
we get all in all the following transition system

S := S ′(w) ∪
{
(w,E(w) \ π2(T )) | w ∈ V (H), deg(w) = 4, T ∈ S ′(w)

}
. (5.3)

We call the transition graph (H,S) a transition minor of (G, T ).

The next two definitions are generalizations of the definitions of a SUD-K5 and of
SUD-K5-minor-free from [33].
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v0

v1

v2v3

v4

Figure 5.3: The completely transitioned graph UD-K5 with transitions represented by a
vee (∨) between their two edges.

Definition 5.2.6 (sup-(H,S)). Let (H,S) be a completely transitioned 4-regular graph.
A transitioned graph (H ′,S ′) is a sup-(H,S) graph if the following holds.

The graph H ′ can be decomposed into |E(H)|+ |V (H)| connected edge-disjoint subgraphs

{Pf | f ∈ E(H)} ∪ {Qw | w ∈ V (H)}

as follows.

1. The graphs {Qw | w ∈ V (H)} are vertex-disjoint connected subgraphs of H ′.

2. Each Pf for f ∈ E(H) with f = w1w2 is a path in H ′ joining V (Qw1) and V (Qw2),
and all {Pf | f ∈ E(H)} are internally disjoint.

3. Let Q+
w be the subgraph of H ′ induced by E(Qw) and the four adjacent paths Pf

for f ∈ E(w). Furthermore, let S(w) =
{
S1
w = (w, {f1, f2}), S2

w = (w, {f3, f4})
}
.

Then the subgraph Q+
w has a bad 1-separator {uw} separating H1

w and H2
w such

that Pf1 ∪ Pf2 ⊆ H i
w and Pf3 ∪ Pf4 ⊆ H3−i

w for some i ∈ {1, 2}.

Definition 5.2.7 (sup-(H,S)-minor-free). Let (H,S) be a completely transitioned 4-
regular graph. A transitioned graph (G, T ) is sup-(H,S)-minor-free if and only if it does
not have any eulerian transition minor (H ′,S ′) that is a sup-(H,S) graph.

Example 5.2.1 (SUD-K5). The completely transitioned four-regular graph (H,S), called
undecomposable K5 (UD-K5), is defined by H = K5 and

S = {(vi, {vi−1vi, vivi+1}), (vi, {vi−2vi, vivi+2}) | i ∈ Z5} ,

see Figure 5.3. With this notation a sup-(H,S) graph is called a sup-undecomposable K5
(SUD-K5). If a graph is sup-(H,S)-minor-free it is called a SUD-K5-minor-free graph.
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We are focusing in this chapter primarily on the following question.

Problem 5.2.1 (existence of sup-transition minors (ESTM)). Given a transitioned
graph (G, T ) and a completely transitioned 4-regular graph (H,S), does there exist an
eulerian transition minor of (G, T ) that is a sup-(H,S) graph?

Note that ESTM is the inverse problem of asking if a transitioned graph (G, T ) is
sup-(H,S)-minor-free. Next we prove the following two complexity theorems.

Theorem 5.2.1. ESTM is NP-complete.

Theorem 5.2.2. ESTM restricted to simple graphs is NP-complete.

Formally it would be enough to prove that ESTM is in NP and that ESTM restricted
to simple graphs is NP-hard. But since the NP-hardness proof for ESTM restricted
to simple graphs is based on the same idea as the NP-hardness proof for the general
ESTM, we first proof the more basic statement for the general ESTM.

We use the following lemmas to prove Theorem 5.2.1.

Lemma 5.2.3. If a graph H is a minor of a graph G with |V (H)| = |V (G)|, then H is
a subgraph of G.

Proof. We cannot contract any edges in G to get H, since that would reduce the number
of vertices. Therefore, we only remove edges from G to get H, which results in a subgraph
of G.

Lemma 5.2.4. Let (H,S) be a completely transitioned graph and (H ′,S ′) a sup-(H,S)
graph. Then H is a minor of H ′.

Proof. By contracting the paths Pf to one edge f and the connected subgraphs Qw to
one vertex w we get exactly H. Therefore, H is a minor of H ′.

Lemma 5.2.5. The minor relation is transitive, i.e. if H is a minor of H ′ and H ′ is a
minor of G, then H is also a minor of G.

Proof. A minor can be constructed by a finite number of edge removals, vertex removals
and edge contractions. If we apply the steps from G to H ′ and then the steps from H ′

to H we still only applied a finite number of steps and got from G to H. Therefore, H is
also a minor of G.

Proof of Theorem 5.2.1. First we prove that ESTM is in NP. As a solution representa-
tion we use a transitioned graph (H ′,S ′) with at most |V (G)| vertices together with the
minor correspondence maps ϕ : V (G) 9 V (H ′) and κ : E(G) 9 E(H ′), the decomposi-
tion {Pf | f ∈ E(H)} ∪ {Qw | w ∈ V (H)} of H ′ and the sequence of 1-separator vertices
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(uw)w∈V (H). The size of the solution representation is polynomial in the input size.
Furthermore, checking for a given solution representation if (H ′,S ′) is by the embeddings
ϕ and κ an eulerian transition minor of (G, T ) can be done in polynomial time. Last but
not least, using the given decomposition and 1-separator vertices it can be checked in
polynomial time if (H ′,S ′) is a sup-(H,S)-graph. Therefore, ESTM is in NP.

To prove that ESTM is NP-hard we define a polynomial-time reduction from the NP-
hard Hamiltonian cycle problem to ESTM. Let G be a simple graph for which we want
to check if it contains a Hamiltonian cycle. We define a double cycle graph H with
n := |V (G)| vertices, i.e.

V (H) := {1, ..., n}.

The edges of H form two Hamiltonian cycles in H, i.e.

E(H) = {e1, ..., e2n}

with ψ(ei) = ψ(ei+n) = {i, i+ 1} for i < n and ψ(en) = ψ(e2n) = {1, n}. Furthermore,
we define a complete transition system S on H by adding transitions between all parallel
edges of H, i.e.

S(i) := {(i, {ei, ei+n}), (i, {ei−1, ei−1+n})} ∀i > 1

and
S(1) = {(1, {e1, en+1}), (1, {en, e2n})} .

Additionally, we define a transitioned graph (G2, T ) by duplicating all edges in G and
adding transitions between them, i.e.

V (G2) = V (G),
E(G2) =

{
e, e′ | e ∈ E(G)

}
,

T (v) =
{
(v,
{
e, e′

}
) | e ∈ E(v)

}
∀v ∈ V (G2).

Together (G2, T ) and (H,S) form an instance of ESTM. What is left to prove is that
(G2, T ) has an eulerian transition minor that is a sup-(H,S) graph if and only if G has a
Hamiltonian cycle.

If (G2, T ) has an eulerian transition minor (H ′,S ′) that is a sup-(H,S) graph then we
get by Lemma 5.2.4 that H is a minor of H ′ and by Lemma 5.2.5 that H is a minor of
G2. Since V (H) = n = V (G2) we get by Lemma 5.2.3 that H is a subgraph of G2. This
implies that G2 has a Hamiltonian cycle and therefore G has one, too.

On the other hand, if G has a Hamiltonian cycle C, taking the edges in C and the
duplicates of them we get a subgraph H ′ of G2 that is isomorphic to H. By adding
all transitions between two parallel edges in H ′ to a transition system S ′ on H ′ we get
that (H ′,S ′) is an eulerian transition minor of G2 and that the transition system S ′
corresponds to the transition system S on H. Therefore, (H ′,S ′) is trivially a sup-(H,S)
graph.
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Proof of Theorem 5.2.2. In Theorem 5.2.1, we already proved that ESTM is in NP,
which implies that it is also in NP if we restrict it to simple graphs. Similar to the
proof of Theorem 5.2.1 we prove hardness by reducing the Hamiltonian cycle problem to
ESTM. Let G be an instance of a Hamiltonian cycle problem. Instead of replacing edges
in G by double edges as we did in the proof of Theorem 5.2.1, we replace this time each
edge e by a subgraph Ae. Each such subgraph Ae contains a K4 of which two vertices
are connected to the one end vertex of e and the other two edges are connected to the
other end vertex of e, see Figure 5.4. Let G′ be the resulting graph after replacing all
edges e in G by the respective subgraphs Ae. We call the vertices in G′ that correspond
to a vertex in G original vertices.

Furthermore, let H be a cycle of length n = |V (G)| and let H ′ be the result after replacing
all edges e in H by the subgraph Ae. We define the transition systems T and S on G′
and H ′ by adding for each subgraph Ae the transitions as shown in Figure 5.4. The
obtained graph H ′ is 4-regular and (H ′,S) is completely transitioned. All in all we get
that ((G′, T ), (H ′,S)) is an instance of ESTM restricted to simple graphs.

We prove now that G has a Hamiltonian cycle if and only if there exists an eulerian
transition minor of (G′, T ) that is a sup-(H ′,S) graph, i.e. that ((G′, T ), (H ′,S)) is a
positive instance of ESTM.

⇒: Assume G has a Hamiltonian cycle C. We construct a corresponding subgraph H ′′
in G′ by adding for each edge e ∈ E(C) the subgraph Ae to H ′′. Since the length
of the cycle C is also n we get that H ′′ is isomorphic to H ′. Furthermore, the
transitions in H ′′ correspond to the transitions in H ′ and therefore H ′′ is trivially
a sup-(H ′,S) graph. On the other hand, due to its construction H ′′ together with
all transitions in H ′′ is an eulerian transition minor of G′.

⇐: Let (H ′′,S ′) be an eulerian transition minor of (G′, T ) and a sup-(H ′,S) graph.
Note that there exists a Hamiltonian path in each Ae, e ∈ E(H ′) from v1 to v2
and therefore H ′ has a Hamiltonian cycle. The graph H ′ has |V (H)|+ 4|E(H)| =
n + 4n = 5n vertices and therefore the Hamiltonian cycle is of length 5n. By
definition of a sup-(H ′,S) graph the cycle in H ′ corresponds to a cycle in H ′′ with
at least the same number of vertices. Therefore, H ′′ has a cycle of length at least
5n. Since H ′′ is a minor of G′, we get that also G′ contains a cycle C ′ of length at
least 5n.
Let (v1, ..., vN ) be the vertex sequence of C ′ with N ≥ 5n. By construction of
G′ five consecutive vertices in C ′ contain at least one original vertex. Thus, C ′
contains at least n original vertices, i.e., all original vertices. Furthermore, if vi and
vj are original vertices and all vertices between them in C ′, i.e. vk for i < k < j,
are not original, then vi and vj must both be part of a common subgraph Ae, and
therefore they are connected by e in G. Thus, if we remove all non-original vertices
from the vertex sequence (v1, ..., vN ) we get a new vertex sequence in G of length
n in which all consecutive vertices are connected. Therefore, G is a Hamiltonian
graph.
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v1 v2e
⇒ v1 v2

Ae

Figure 5.4: The graph Ae, which replaces an edge e in G and H. The transitions are
represented by a vee (∨) between their two edges.

5.2.2 Problem Transformation

Definition 5.2.8 (basic-sup-(H,S)). Let (H,S) be a completely transitioned 4-regular
graph. A transitioned graph (H ′,S ′) is a basic-sup-(H,S) graph if the following holds.

The graph H ′ can be decomposed into |V (H)| many connected vertex-disjoint subgraphs

{Rw | w ∈ V (H)}

and |E(H)| many edges {f ′ | f ∈ E(H)}. For each edge f = w1w2 ∈ E(H) the edge f ′
connects the subgraphs Rw1 and Rw2 . For a vertex w ∈ V (H) let R+

w be the subgraph of
H ′ induced by E(Rw) and the four adjacent edges f ′ for f ∈ E(w).

There exists an ordering of the outgoing edges of w by

E(w) = {f1, f2, f3, f4}

such that the following holds.

• The two transitions in S(w) are S1
w = (w, {f1, f2}) and S2

w = (w, {f3, f4}).

• There exists a transition S′w in S ′ such that the form of Rw and the transition S′w
satisfy one of the four possibilities (see Figure 5.5):

1. Rw is only one vertex w′ and S′w = (w′, {f ′1, f ′2}) ∈ S ′(w′)

2. Rw is a K2 with two vertices w′ and w′n, where w′n is of degree two with two
incident edges f ′1 and f ′w. Moreover, S′w = (w′, {f ′w, f ′2}) ∈ S ′(w′).

3. Rw is a cycle of length two, i.e. two vertices w′ and w′n and two parallel edges
f ′w and f ′′w connecting them. Furthermore, w′n has degree four and is incident
to f ′1 and f ′2 and S′w = (w′, {f ′w, f ′′w}) ∈ S ′(w′).
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w′

f ′1 f ′2

f ′3f ′4

case 1

w′

w′n
f ′w

f ′1

f ′2

f ′3f ′4

case 2

w′

w′n

f ′wf ′′w

f ′1 f ′2

f ′3f ′4

case 3

w′

w′n
f ′w

f ′1

w′′n
f ′′w

f ′2

f ′3f ′4

case 4

Figure 5.5: The four possibilities for Rw and R+
w including the transition S′w. The solid

edges represent the edges of Rw and the dashed edges the four additional edges of R′w.
The transition is represented by a vee (∨) between its two edges.

4. Rw consists of a vertex w′ and two vertices w′n and w′′n and two edges f ′w and f ′′w
connecting w′ with w′n and w′ with w′′n. Furthermore, w′n is incident to f ′1, w′′n
is incident to f ′2, w′ is incident to f ′3 and f ′4, and S′w = (w′, {f ′w, f ′′w}) ∈ S ′(w′).

Note that we did not specify the order of the edges f1, f2, f3, and f4 except that there
must be transitions (w, {f1, f2}) and (w, {f3, f4}) in S(w). Therefore, we could always
interchange f1 and f2 with f3 and f4 in the second condition. The condition only has to
hold for one of the two possibilities.

Definition 5.2.9 (basic-sup-(H,S)-reduced-minor-free). Let (H,S) be a completely
transitioned 4-regular graph. A transitioned graph (G, T ) is basic-sup-(H,S)-reduced-
minor-free if and only if it does not have any reduced transition minor (H ′,S ′) that is a
basic-sup-(H,S) graph.

Problem 5.2.2 (existence of basic sup-reduced-transition minors (EBSRTM)). Given
a transitioned graph (G, T ) and a completely transitioned 4-regular graph (H,S), does
there exist a reduced transition minor of (G, T ) that is a basic-sup-(H,S) graph?

Theorem 5.2.6. EBSRTM is equivalent to ESTM.

Proof. Let ((G, T ), (H,S)) be a positive instance of EBSRTM, i.e. there exists a reduced
transition minor (H ′,S ′) of (G, T ) that is a basic-sup-(H,S) graph. We have to prove
that this instance is also a positive instance of ESTM. First of all the reduced transition
minor can be extended to a transition minor (H ′,S ′′) of (G, T ) by adding opposite
transitions for degree four vertices. For every vertex w ∈ V (H) there exists a subgraph
Rw of H ′ that is of one of the four forms described in Definition 5.2.8 and shown in
Figure 5.5. In all four cases every vertex in R+

w has degree two or four. Since every vertex
in H ′ occurs in one Rw, we get that H ′ is eulerian.
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It remains to show that (H ′,S ′′) is a sup-(H,S) graph. For each edge f ∈ E(H) we use
the graph induced by the single edge f ′ ∈ E(H ′) as path Pf . For each vertex w ∈ V (H)
we use the subgraph Rw as Qw. All defined subgraphs are connected and edge-disjoint
since the graphs Rw are vertex-disjoint and the edges f ′ are all different and always
connect two different subgraphs Rw1 and Rw2 .

By definition of f ′ the path Pf only consists of f ′ and it connects the subgraphs
Rw1 = Qw1 and Rw2 = Qw2 if f = w1w2. The paths Pf are also internally disjoint
since the edges f ′ are all different. Furthermore, by definition the graphs Qw = Rw are
vertex-disjoint connected subgraphs. The subgraphs Q+

w = R+
w have in all four cases a

bad 1-separator {uw := w′} separating H1
w and H2

w where H2
w is the graph induced by

{f ′3, f ′4} (in Figure 5.5 the lower part of the graphs below the vertex w′) and H1
w is the

rest of R+
w , i.e. the graph induced by E(R+

w) \ {f ′3, f ′4}. It is a bad 1-separator since by
definition we get in all four cases

(w′, E(w′) ∩ E(H1
w)) ∈ S ′′(w′).

Furthermore, we have {f ′1, f ′2} ⊆ H1
w and {f ′3, f ′4} ⊆ H2

w, which concludes the proof that
(H ′,S ′′) is a sup-(H,S) graph. Therefore, the instance ((G, T ), (H,S)) is also a positive
instance of ESTM.

Now, let ((G, T ), (H,S)) be a positive instance of ESTM, we want to show that it is also
a positive instance of EBSRTM. Let (H ′,S ′) be an eulerian transition minor of (G, T )
that is a sup-(H,S) graph. By removing the transitions in S ′ that do not correspond to
a transition in T , see (5.3), we get a reduced transition minor (H ′,S ′′) of (G, T ).

For each vertex w ∈ V (H) the subgraph Q+
w of H ′ has a bad 1-separator uw separating

H1
w and H2

w. Without loss of generality let S1
w := (uw, E(uw) ∩ E(H1

w)) ∈ S ′(uw). If
S1
w /∈ S ′′(uw) we know that deg(uw) = 4 and that S2

w := (uw, E(uw) \ S1
w = E(uw) ∩

E(H2
w)) ∈ S ′′(uw). In this case we exchange S1

w and H1
w with S2

w and H2
w so that we

always have
S1
w := (uw, E(uw) ∩ E(H1

w)) ∈ S ′′(uw).

Furthermore, we can assume without loss of generality that the paths Pf only consist of
single edges, since otherwise we could move some edges from Pf to one of the subgraphs
Qw until Pf only consists of one edge. Let Q1

w := Qw ∩H1
w and Q2

w := Qw ∩H2
w. Now we

contract all edges in Q2
w such that only the vertex uw remains. Furthermore, we contract

all edges in E(Q1
w) \ S1

w, i.e. all edges in Q1
w that are not in the transition S1

w. Starting
from Qw and applying those contractions we call the resulting graph Rw. Applying
these contractions to all graphs Qw for w ∈ E(H) we call the whole resulting graph H ′′,
which is a minor of H ′. Let S ′′′ be the corresponding transition system of H ′′ such that
(H ′′,S ′′′) is a reduced transition minor of (H ′,S ′′). We still have S1

w ∈ S ′′′ since we did
not contract any of the edges incident to uw. Let R+

w be the graph Rw together with the
four adjacent paths Pf , each consisting of only one edge, for f ∈ E(w). To see that R+

w

has one of the four forms shown in Figure 5.5, we only have to distinguish different cases
for the degree of the vertex uw in Q1

w:
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1. If uw has degree 0 in Q1
w, this would imply that Qw only consists of the vertex uw

and therefore Rw only consists of the vertex uw, which results in case 1.

2. If uw has degree 1 in Q1
w, this would imply that Rw is a K2, which results in case 2.

3. If uw has degree 2 in Q1
w, there are two possibilities. If uw is not a cut vertex of

Q1
w, then Rw is a digon (two vertices and two parallel edges), which results in case

3. Otherwise, if uw is a cut vertex of Q1
w then Rw is a path of length two, which

results in case 4.

Note that the degree of uw in Q1
w is at most two, since π2(S1

w) = E(uw) ∩ E(H1
w) and

|π2(S1
w)| = 2. In each of the four cases the transition S′ is exactly the transition drawn

in the figure. Therefore, we just proved that (H ′′,S ′′′) is a basic-sup-(H,S) graph. Since
(H ′,S ′′) is a reduced transition minor of (G, T ) and (H ′′,S ′′′) is a reduced transition
minor of (H ′,S ′′), we get by transitivity that (H ′′,S ′′′) is a reduced transition minor of
(G, T ). All in all we proved that the given instance ((G, T ), (H,S)) is also a positive
instance of EBSRTM.

With that result we can prove that EBSRTM and therefore also ESTM can be solved in
polynomial time if k = |V (H)| is fixed.

Theorem 5.2.7. ESTM can be solved in polynomial time if k = |V (H)| is fixed.

Proof. By Theorem 5.2.6 it is enough to prove this for EBSRTM. The proof is similar to
the one in [67].

Notice that every basic-sup-(H,S) graph (H ′,S ′) satisfies |V (H ′)| ≤ 3|V (H)|. This
implies that for a fixed k = |V (H)| there are only finite many possible graphs (H ′,S ′)
that can be a basic-sup-(H,S) graph for any graph (H,S) with |V (H)| = k. We can
formulate now an algorithm that first generates all possible graphs (H ′,S ′) and then
checks for each of them if it is a basic-sup-(H,S) graph and if it is a reduced transition
minor of (G, T ). Since the size of the graphs H ′ and H are bounded, checking if (H ′,S ′)
is a basic-sup-(H,S) graph can be done in constant time. What is left is to prove that
checking if (H ′,S ′) is a reduced transition minor of (G, T ) can be done in polynomial
time in m = |V (G)| + |E(G)| if k′ = |V (H ′)| ≤ 3k is fixed. By definition (H ′,S ′) is a
reduced transition minor of (G, T ) if and only if there exist partial mappings ϕ and κ as
described in Definition 5.2.4 such that S ′ equals the set defined in (5.2).

Since κ must be a partial injective and surjective function and since each vertex of H ′
has at most degree four, there are at most

|E(G)||E(H′)| ≤ m2k′ ≤ m6k

many possibilities to define κ by choosing exactly one edge in G for each edge in H ′.
Since k is fixed this number is polynomial in m and therefore we can generate all those
possibilities and check for each of them if there exists an adequate partial mapping ϕ
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satisfying all needed properties. Therefore, let κ be a fixed partial injective and surjective
function from E(G) to E(H ′) for the rest of this proof.

Let
V0 :=

⋃
e∈dom(κ)

ψG(e) ⊆ V (G)

be the set of all vertices in G that are incident to a mapped edge of κ. Since κ is injective
and surjective, we have |dom(κ)| = |E(H ′)| ≤ 2k′ and therefore |V0| ≤ 2|dom(κ)| ≤ 4k′.
Since ϕ must satisfy (5.1), ϕ must be defined on each vertex in V0 and only two values
for ϕ(v) are possible for each v ∈ V0. Thus, the number of possible definitions of ϕ on V0
is smaller than or equal to

2|V0| ≤ 24k′ ≤ 212k

and is therefore constant in m. We can again generate all those possibilities and check
for each of them if there exists an adequate extension of ϕ to the whole vertex set V .
Let therefore be ϕ already fixed and defined on V0.

By using κ and the partially defined ϕ on V0 the transition set defined in (5.2) is already
well-defined, and we can compute it and check if it equals the transition set S ′. If the
two transition sets do not match we can discard this possibility. In the case when the
two transition sets are equal we only have to check if we can extend ϕ to V in such a
way that ϕ is a partial surjective function and that each preimage ϕ−1[w] is a connected
vertex set in G for each w ∈ V (H ′). Since ϕ as defined already on V0 satisfies (5.1) we
already know that it is surjective without extending it at all. Therefore, we only have
to extend it in such a way that each preimage ϕ−1[w] is a connected vertex set in G
for each w ∈ V (H ′). The existence of such an extension is equivalent to the existence
of disjoint spanning trees Tw in G for each w ∈ V (H ′), such that the already defined
sets ϕ−1[w] ∩ V0 ⊆ Tw for each w ∈ V (H ′). Without loss of generality we can search for
spanning trees Tw such that all leaf vertices of Tw are in V0.

Let w ∈ V (H ′) be an arbitrary vertex. For each incident edge f in E(w) we know by (5.2)
that exactly one vertex in G incident to κ−1(f) is mapped to w under the already defined
part of ϕ on V0. Therefore, |ϕ−1[w] ∩ V0| ≤ degH′(w) ≤ 4 for each w ∈ V (H ′). Putting
everything together we get that Tw has at most four leaf vertices for each w ∈ V (H ′).
Since Tw is a tree it holds that |E(Tw)| = V (Tw)− 1, which implies that Tw has at most
two vertices that have degree three or larger in Tw. These vertices could be in V \V0. The
number of possible selections of such vertices of degree three or larger in Tw outside of V0
for all w ∈ V (H ′) is bounded by |V (G)|2(|V (H′)|+1) ≤ m2k+2 and is therefore polynomial
in m. We can again iterate through all such possible selections of vertices of degree three
or larger in Tw and check for each of them if we can construct the trees Tw such that
they satisfy all needed properties. Let Vw ⊆ V \ V0 be the fixed selected set of vertices of
degree three or larger in Tw outside of V0 for each w ∈ V (H ′).

We construct now all possible labeled simple trees with the vertices Vw ∪
(
ϕ−1[w] ∩ V0

)
.

Since those are at most six vertices, the number of such labeled trees is finite. We can
again iterate through all combinations of labeled trees Lw for all w ∈ V (H ′) and check if
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the following holds for at least one of them. For each w ∈ V (H ′) and its current labeled
tree Lw we check if we can replace the edges of Lw by paths in G to get a tree Tw in
G. Since the trees Tw in G must be vertex disjoint for each w ∈ V (H ′) all those paths
in G replacing the edges of the labeled trees must be vertex disjoint. Therefore, what
remains to check is if there exist vertex disjoint paths in G connecting all vertex pairs
ψLw(e) for each edge e ∈ Lw and each w ∈ V (H ′). Note that the number of such pairs
can be bounded by∑

w∈V (H′)
|E(Lw)| =

∑
w∈V (H′)

|V (Lw)| − 1 ≤
∑

w∈V (H′)
5 = 5|V (H ′)| = 5k′ ≤ 15k,

which is assumed to be constant. This problem can be solved for a bounded number
of pairs in polynomial time in the size of G and therefore in m, as proven in [67]. This
concludes our proof.

5.3 Modeling
In this chapter we present a mathematical model for solving the problem EBSRTM that
can be expressed as a MILP, cf. Section 5.4, or as a SAT model, cf. Section 5.5. First we
present the model, and then we prove that the model really solves EBSRTM, since this
is not obvious.

A naive model would need variables for representing the unknown graph (H ′,S ′) and
constraints to ensure that (H ′,S ′) is a reduced transition minor of the given (G, T ) and
that (H ′,S ′) is a basic-sup-(H,S). Such a naive model would be quite large since we do
not even know the size of (H ′,S ′). Furthermore, formulating the constraints would be
nontrivial and likely need a lot of additional auxiliary variables. The model we present
does not describe the graph (H ′,S ′) directly. It just consists of mappings between (G, T )
and (H,S) and constraints to ensure that a valid intermediate graph (H ′,S ′) exists.

5.3.1 Towards a Model

Let (G, T ) and (H,S) be given as the input. Let us assume now that there exists a
reduced transition minor (H ′,S ′) of (G, T ) that is a basic-sup-(H,S) graph, i.e. that the
given instance is a yes instance of EBSRTM. This situation and the notation that we
introduce in the following is visualized in Figure 5.6.

By the definition of a minor there exist partial mappings ϕ′ : V (G) 9 V (H ′) and
κ′ : E(G) 9 E(H ′) where ϕ′ is surjective and κ′ is injective and surjective. By the
definition of a basic-sup-(H,S) graph we can define the following natural partial mappings.
The vertex mapping ϕ′′ : V (H ′) 9 V (H) maps each vertex in the subgraph Rw to w
for each w ∈ V (H). Since each Rw is non-empty, ϕ′′ is surjective. The edge mapping
κ′′ : E(H ′) 9 E(H) maps each edge f ′ to its corresponding edge f ∈ E(H) for each
f ∈ E(H) as defined in Definition 5.2.8. By definition this partial mapping is injective
and surjective.

112



5.3. Modeling

w

Sw

(H,S)

w′

S′w

(H ′,S ′)

vw

Tw

C2
w

C1
w

(G, T ) ϕ′−→
κ′

ϕ′′−−→
κ′′

κ

ϕ

Figure 5.6: Exemplary visualization of the two input graphs together with the intermediate
graph H ′.

Using the above mappings we can define partial mappings from G to H by composing
them. We define the two functions

ϕ := ϕ′′ ◦ ϕ′ : V (G) 9 V (H),

and
κ := κ′′ ◦ κ′ : E(G) 9 E(H).

Since ϕ′ and ϕ′′ are surjective also ϕ is surjective and since κ′ and κ′′ are injective and
surjective also κ is injective and surjective.

We denote for each w ∈ V (H) the transition Sw := S1
w ∈ S as defined in Definition 5.2.8.

Each such transition Sw is associated via Definition 5.2.8 with a transition S′w in S ′.
Furthermore, by this definition we have π1(S′w) =: w′ ∈ ϕ′′−1[w]. Moreover, since S′w is
in S ′ we get by definition of a reduced transition minor that

Tw := (vw, κ′−1[π2(S′w)]) ∈ T

for some vw ∈ ϕ′−1[w′] ⊆ ϕ−1[w].

To model the fact that each vertex set ϕ′−1[x] must be connected in G for each x ∈ V (H ′)
and to model the four different possible structures of each Rw, we further introduce
for each w ∈ V (H) two trees C1

w and C2
w. The two trees cover the connected subgraph

ϕ−1[w] and share exactly one common vertex vw = π1(Tw).
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The tree C2
w represents a spanning tree of ϕ′−1[w′] in G, where w′ is as specified in

Definition 5.2.8 for each w ∈ V (H). The tree C1
w represents a spanning tree of {vw},

{vw} ∪ ϕ′−1[w′n], or {vw} ∪ ϕ′−1[{w′n, w′′n}] depending on the possible four cases for the
form of Rw. Since the two trees share one vertex this ensures that the vertex set
ϕ−1[w] = V (C1

w) ∪ V (C2
w) is connected in G. We have to distinguish the two trees to

formulate the constraint that the edges of Tw must be part of C1
w ∪ κ−1[π2(Sw)]. Since

we are only concerned with connectivity for the trees C1
w and C2

w we define them not
as subtrees of G but as simple trees with vertices V (Ciw) ⊆ V (G) and for each edge in
E(Ciw), which is represented as a set of two vertices, there must exist at least one edge
in G whose end vertices are exactly those two vertices.

In case 3 of Definition 5.2.8 it may be that ψG(κ′−1(f ′w)) 6= ψG(κ′−1(f ′′w)). In this case
only one of those two edges is included in the tree C1

w. Therefore, for this case we have
to reformulate the condition that the edges of Tw must be part of C1

w ∪ κ−1[π2(Sw)]. To
do this we introduce a new partial injective mapping θ : E(G) 9 V (H) to our model,
which only maps an edge to the vertex w if Rw is of the form of case 3 of Definition 5.2.8
and ψG(κ′−1(f ′w)) 6= ψG(κ′−1(f ′′w)). With that mapping we can reformulate the condition
such that the edges of Tw must be part of C1

w ∪ κ−1[π2(Sw)] ∪ θ−1[w].

With the above motivation we are ready to formulate our model.

5.3.2 The Model

Let (G, T ) and (H,S) be given as the input. We use the following additional notation in
the model. If Ciw is a simple tree with vertices in G we define

Eiw :=
{
e ∈ E(G) | ψ(e) ∈ E(Ciw)

}
as the set of all edges in G whose end vertices are connected in Ciw by an edge. The
model is now defined as finding

1. a partial surjective function ϕ : V (G) 9 V (H),

2. a partial injective and surjective function κ : E(G) 9 E(H),

3. a partial injective function θ : E(G) 9 V (H),

4. for each w ∈ V (H) a pair (Tw, Sw) of transitions with Tw ∈ T and Sw ∈ S(w),

5. for each w ∈ V (H) two simple trees C1
w and C2

w with V (Ciw) ⊆ V (G) for i = 1, 2,

such that

E(Ciw) ⊆ ψG[E(G)] ∀w ∈ V (H),∀i ∈ {1, 2} (5.4)
κ(e) = f ⇒ ϕ[ψG(e)] = ψH(f) ∀e ∈ E(G),∀f ∈ E(H) (5.5)
V (C1

w) ∪ V (C2
w) = ϕ−1[w] ∀w ∈ V (H) (5.6)
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{π1(Tw)} = V (C1
w) ∩ V (C2

w) ∀w ∈ V (H) (5.7)
π2(Tw) ⊆ κ−1[π2(Sw)] ∪ θ−1[w] ∪ E1

w ∀w ∈ V (H) (5.8)(
κ−1[π2(Sw)] ∩ E(π1(Tw))

)
∪ θ−1[w] ⊆ π2(Tw) ∀w ∈ V (H) (5.9)

e ∈ dom(κ) ∧ κ(e) ∈ π2(Sw)⇒ ψG(e) ∩ V (C1
w) 6= ∅ ∀w ∈ V (H),∀e ∈ E(G) (5.10)

e ∈ dom(κ) ∧ κ(e) ∈ E(w) \ π2(Sw)⇒
ψG(e) ∩ V (C2

w) 6= ∅
∀w ∈ V (H),∀e ∈ E(G) (5.11)

v ∈ V (C1
w) \ {π1(Tw)} ∧ degC1

w
(v) = 1

∧ v /∈
⋃
ψG[θ−1[w]]⇒ E(v) ∩ κ−1[π2(Sw)] 6= ∅

∀w ∈ V (H),∀v ∈ V (G) (5.12)

EC1
w

(π1(Tw)) ⊆ ψG[π2(Tw)] ∀w ∈ V (H) (5.13)
θ(e) = w ⇒ ψG(e) ⊆ V (C1

w) ∀e ∈ E(G), ∀w ∈ V (H) (5.14)
θ(e) = w ⇒ ψG(e) /∈ E(C1

w) ∀e ∈ E(G), ∀w ∈ V (H) (5.15)

Constraints (5.4) ensure that the trees Ciw are simple trees where each simple edge
corresponds to at least one edge of G. Constraints (5.5) couple the edge map κ with the
vertex map ϕ, similar to condition (5.1). Furthermore, conditions (5.6) guarantee that
the two trees C1

w and C2
w together really cover ϕ−1[w] and together with constraints (5.7)

this ensures that ϕ−1[w] is connected in G. Constraints (5.7) furthermore enforce that
π1(Tw) gets mapped to w under ϕ. Constraints (5.8) ensure that the edges of a transition
Tw get either mapped directly to edges of Sw (see f ′1, f ′2 in case 1 and f ′2 in case 2 of
Definition 5.2.8), or correspond to edges of C1

w (see f ′w in case 2 or f ′w, f ′′w in case 3 or 4),
or get mapped to w by θ (f ′′w in case 3 of Definition 5.2.8 if ψG(κ′−1(f ′w)) 6= ψG(κ′−1(f ′′w))).
On the other hand, constraints (5.9) guarantee that the only edges that are incident to
π1(Tw) and get mapped under κ to an edge in π2(Sw) are in π2(Tw). Furthermore, those
constraints ensure that only edges in π2(Tw) may be mapped to w under θ.

An edge in G that gets mapped under κ to π2(Sw) must be incident to a vertex in C1
w,

which is ensured by conditions (5.10). This forces edges like f ′1 or f ′2 in Definition 5.2.8 to
be incident to a vertex of the upper tree. On the other hand, conditions (5.11) guarantees
that edges that get mapped under κ to E(w) \ π2(Sw) are incident to a vertex of C2

w.
This forces edges like f ′3 and f ′4 in Definition 5.2.8 to be incident to a vertex of the lower
tree.

Constraints (5.12) are the most complex ones of the model. They are needed to avoid
situations like one similar to case 4 of Definition 5.2.8 where f ′2 is not incident to w′′n
but to w′n. In this case a leaf vertex of the upper tree would have no incident edge in
dom(κ). On the other hand, it may happen in case 3 if ψG(κ′−1(f ′w)) 6= ψG(κ′−1(f ′′w))
that one leaf vertex of the upper tree also has no incident edge but is still representing a
valid case. But then we can ensure that this leaf vertex is incident to the edge that gets
mapped to w by θ. Therefore, to exclude the unwanted situation described above, which
is similar to case 4, but to include the wanted cases in case 3, we need constraints (5.12).

Constraints (5.13) guarantee that all edges in the upper tree that are incident to π1(Tw)
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are represented in G by edges in π2(Tw). Furthermore, constraints (5.14) enforce that
if an edge e gets mapped by θ to a vertex w that both incident vertices of e are in the
upper tree C1

w and (5.15) ensures that the edge e itself is not represented by an edge in
C1
w.

Theorem 5.3.1. For the above model exists a valid solution if and only if ((G, T ), (H,S))
is a yes instance of EBSRTM.

We split this theorem into two parts, proofing each direction independently. Theorem 5.3.1
then directly follows Proposition 5.3.2 and Proposition 5.3.4.

Proposition 5.3.2. If ((G, T ), (H,S)) is a yes instance of EBSRTM there exists a valid
solution in the above model.

Proof. Let ((G, T ), (H,S)) be a yes instance of EBSRTM and (H ′,S ′) a reduced transition
minor of (G, T ) that is a basic-sup-(H,S) graph. In the first part of the proof we derive
the partial mappings ϕ, κ, θ, the transitions Sw and Tw for w ∈ V (H), and the trees Ciw
for w ∈ V (H), i ∈ {1, 2}. In the second part we prove that the constraints (5.4)–(5.15)
are satisfied. Let ϕ′ and κ′ be the correspondence functions of the minor H ′ of G, see the
second part of Definition 5.2.4. W.l.o.g. we assume that dom(ϕ′) is minimal, i.e. after
removing any vertex from dom(ϕ′) the conditions of Definition 5.2.4 are not satisfied
anymore. We need the following property for the minimal ϕ′.

Lemma 5.3.3. Every vertex v ∈ dom(ϕ′) is either incident to an edge e ∈ dom(κ′) or a
cut vertex of ϕ′−1[ϕ′(v)].

Proof. Assume there is a vertex v ∈ dom(ϕ′) that is not incident to any edge in dom(κ′)
and is no cut vertex of ϕ′−1[ϕ′(v)]. We prove now that removing the vertex v from ϕ′

still leads to a valid vertex mapping for Definition 5.2.4, which then is a contradiction
to the minimality of ϕ′. Let ϕ′ = ϕ′ \ {(v, ϕ′(v))} be the reduced mapping. We need to
prove all conditions of Definition 5.2.4 for ϕ′. First of all ϕ′−1[ϕ′(v)] is non-empty since
H ′ is four regular and therefore there exists an edge f ∈ E(H ′) that is incident to ϕ′(v).
Then we have

ϕ′(v) ∈ ψH(f) = ϕ′[ψG(κ′−1(f))] = ϕ′[ψG(κ′−1(f))],

which implies that ϕ′−1[ϕ′(v)] is non-empty. Furthermore, ϕ′−1[ϕ′(v)] = ϕ′−1[ϕ′(v)] \ {v}
is connected since v was not a cut vertex of ϕ′−1[ϕ′(v)]. Last but not least (5.1) is also
valid for ϕ′ since v was not incident to any edges in dom(κ′).

Let the subgraphs Rw for w ∈ V (H) and the edges f ′ of H ′ for f ∈ E(H) be as described
in Definition 5.2.8. We define a new surjective function ϕ′′ : V (H ′)→ V (H) and a partial
injective and surjective function κ′′ : E(H ′) 9 E(H) by

ϕ′′(x) = w ∀x ∈ Rw, ∀w ∈ V (H)
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and
κ′′(f ′) = f ∀f ∈ E(H).

Function ϕ′′ is well-defined and surjective since the vertex sets of the non-empty subgraphs
Rw partition the vertex set V (H ′). The partial function κ′′ is well-defined and injective
since the edge f ′ is different for each f ∈ E(H). This can be seen by the fact that
| {f ′ | f ∈ E(H)} | = |E(H)| in Definition 5.2.8. Furthermore, κ′′ is surjective since there
exists an edge f ′ for every f ∈ E(H).

Now we can concatenate the given functions and get the surjective partial functions
ϕ : V (G) 9 V (H) and κ : E(G) 9 E(H) by ϕ = ϕ′′ ◦ ϕ′ and κ = κ′′ ◦ κ′. Since both κ′
and κ′′ are injective κ is also injective. Moreover, since the four maps ϕ′, ϕ′′, κ′, and κ′′
are surjective the maps ϕ and κ are also surjective.

In the following we use the notation in Definition 5.2.8, which is possible since we know
that (H ′,S ′) is a sup-(H,S) graph. For each vertex w ∈ V (H) let S′w ∈ S ′(w′) be the
transition at vertex w′ defined in Definition 5.2.8. Since the transition S′w is in the
reduced transition minor (H ′,S ′) of (G, T ) there must exist a transition Tw ∈ T with
κ′[π2(Tw)] = π2(S′w) and ϕ′(π1(Tw)) = π1(S′w) = w′. Furthermore, for w ∈ V (H), let
Sw := S1

w = (w, {f1, f2}) as specified in Definition 5.2.8. With this we defined for each
vertex w ∈ V (H) the pair (Tw, Sw). For a vertex w ∈ V (H) we define the simple graph
Gw = (Vw, Ew) by Vw := ϕ′−1[V (Rw)] and

Ew :=
{
ψG(e) | e ∈ κ′−1[E(Rw)] ∨ ∃x ∈ V (Rw) : ψG(e) ⊆ ϕ′−1[x]

}
.

We know that ϕ′−1[x] is connected in G for every x ∈ V (Rw), and for each edge
f∗ ∈ E(Rw) with ψH′(f∗) = {x1, x2} the edge κ′−1(f∗) connects ϕ′−1[x1] with ϕ′−1[x2].
From that follows that Gw is connected. We can now define C2

w to be a spanning tree of
the vertex set ϕ′−1[w′] in Gw.

To define C1
w let V 1

w be the vertex set containing vw := π1(Tw) and ϕ′−1[w′n] if the vertex
w′n exists together with ϕ′−1[w′′n] if the vertex w′′n exists. The vertex set V 1

w is connected
in Gw since ϕ′−1[w′n] is connected if existent, ϕ′−1[w′′n] is connected if existent, the edge
κ′−1(f ′w) connects vw with ϕ′−1[w′n] if existent, and if ϕ′−1[w′′n] exists it is connected to
vw by κ′−1(f ′′w). We define now C1

w to be a spanning tree of V 1
w in Gw. In case 3 of

Definition 5.2.8 we require from C1
w w.l.o.g. that vw is a leaf vertex in C1

w connected by
ψG(κ′−1(f ′w)). This is possible since V 1

w \ {vw} = ϕ′−1[w′n] is still connected.

Furthermore, for a vertex w ∈ V (H) in case 3 of Definition 5.2.8 we define θ(κ′−1(f ′′w)) = w
if ψG(κ′−1(f ′′w)) 6= ψG(κ′−1(f ′w)). If κ′−1(f ′′w) is a parallel edge to κ−1(f ′w) and in the
other three cases of Definition 5.2.8 no edge maps to w, i.e. θ−1[w] = ∅. By definition
θ is injective since the edges κ−1(f ′′w) are incident to two vertices in ϕ′−1[Rw] and the
sets ϕ′−1[Rw] are disjoint for different vertices w. What remains is now to show that the
constraints (5.4)–(5.15) hold, which we prove in the following.

(5.4) Constraints (5.4) are satisfied since C1
w and C2

w are subtrees of Gw and since
E(Gw) = Ew ⊆ ψG[E(G)] by definition.
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(5.5) Let e ∈ E(G) and f ∈ E(H) with κ(e) = f , i.e. κ′′(κ′(e)) = f . By definition of
κ′′ we get κ′(e) = f ′ and by (5.1) we get ψ′H(f ′) = ϕ′[ψG(e)]. Let f = w1w2 then
we know by Definition 5.2.8 that f ′ connects the subgraphs Rw1 and Rw2 in H ′,
i.e. f ′ = x1x2 with x1 ∈ V (Rw1) and x2 ∈ V (Rw2). By definition of ϕ′′ we get
ϕ′′(x1) = w1 and ϕ′′(x2) = w2 and plugging everything together we get

ϕ[ψG(e)] = ϕ′′[ϕ′[ψG(e)]] = ϕ′′[ψ′H(f ′)] = ϕ′′[{x1, x2}] = {w1, w2} = ψH(f).

(5.6) By the definition of C1
w and C2

w we have

V (C1
w) ∪ V (C2

w) = V (Gw) = ϕ′−1[V (Rw)] = ϕ′−1[ϕ′′−1[w]] = ϕ−1[w].

(5.7) Let w ∈ V (H) then by definition of C1
w and C2

w we get (5.7) by the fact that
ϕ′−1[w′n] and ϕ′−1[w′′n] are disjoint to ϕ′−1[w′] and because ϕ′(π1(Tw)) = w′ by
definition of Tw.

(5.8) Let w ∈ V (H) and e ∈ π2(Tw). Then we know by the definition of Tw that
κ′(e) = f∗ ∈ π2(S′w). In all four cases in the Definition 5.2.8 the edges of π2(S′w)
are either f ′i for some fi ∈ π2(Sw), f ′w, or f ′′w. If f∗ = f ′i for some fi ∈ π2(Sw) we
get e = κ−1(fi) ∈ κ−1[π2(Sw)].
Next we show that ψG(κ−1(f ′w)) is in E(C1

w) in the cases 2 to 4 of Definition 5.2.8.
In case 2 the only edge between π1(Tw) and ϕ′−1[w′n] in C1

w is ψG(κ−1(f ′w)) and
therefore it must be part of C1

w since C1
w is a spanning tree. In case 3 we di-

rectly forced ψG(κ−1(f ′w)) to be a part of C1
w. Furthermore, in case 4 both edges

ψG(κ−1(f ′w)) and ψG(κ−1(f ′′w)) must be part of C1
w since otherwise the subgraphs

ϕ′−1[w′n] and ϕ′−1[w′′n] would not be connected. Therefore, if f∗ = f ′w we directly
get e ∈ E1

w. We already proved for the case 4 that ψG(κ′−1(f ′′w)) ∈ E(C1
w) and

therefore also in case 4 if f∗ = f ′′w we get e ∈ E1
w.

The only remaining case is case 3 and if f∗ = f ′′w. Then either κ′−1(f ′′w) is parallel to
κ′−1(f ′w), which would imply again ψG(κ′−1(f ′′w)) ∈ E(C1

w) or θ(κ′−1(f ′′w)) = θ(e) =
w and therefore e ∈ θ−1[w]. All in all we just proved (5.8).

(5.9) Let w ∈ V (H) and e ∈ κ−1[π2(Sw)] ∩ E(π1(Tw)). Let f = κ(e) = κ′′(κ′(e)), then
we know by definition of κ′′ that κ′(e) = f ′. Since e is incident to π1(Tw), we get
by (5.1) that f ′ is incident to ϕ′(π1(Tw)) = w′. We know now that f ∈ π2(Sw)
and that f ′ is incident to w′, which implies that f ′ ∈ π2(S′w). This can easily be
checked in all four cases of Definition 5.2.8. But since π2(S′w) = κ′[π2(Tw)] we get
that e ∈ κ′−1[π2(S′w)] = π2(Tw).
On the other hand, if e ∈ θ−1[w] this means that we are in case 3 of Definition 5.2.8
and e = κ′−1(f ′′w) ∈ κ′−1[π2(S′w)] = π2(Tw). All in all we proved (5.9).

(5.10) Let w ∈ V (H), e ∈ dom(κ), and f = κ(e) ∈ E(w). Then we know by definition of
κ that κ′(e) = f ′ and since f is incident to w we get that f ′ is incident to a vertex
in Rw. If f ∈ π2(Sw), this implies by the notation of Definition 5.2.8 that f = fi
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with i ∈ {1, 2}. In all four cases f ′i is either in π2(S′w) or is incident to w′n or w′′n
for i ∈ {1, 2}. If f ′i ∈ π2(S′w) we get e = κ′−1(f ′i) ∈ π2(T ′w), which implies that e is
incident to vw ∈ V (C1

w). On the other hand, if f ′i is incident to w′n or w′′n, we also
get that e = κ′−1(f ′i) is incident to a vertex in ϕ′−1[{w′n, w′′n}] ⊆ V (C1

w). With that
we proved (5.10).

(5.11) With the same notation as for constraints (5.10) if f ∈ E(w) \ π2(S) we get f ′ = f ′i
with i ∈ {3, 4} and in all four cases of Definition 5.2.8 those edges are incident to
w′. This implies that e = κ′−1(f ′) is incident to an edge in ϕ′−1[w′] = V (C2

w) and
therefore we showed (5.11).

(5.12) Let w ∈ V (H), vw := π1(Tw), and v ∈ V (C1
w) \ {vw} with |EC1

w
(v)| = 1 and

v /∈
⋃
ψG[θ−1[w]]. Now we use Lemma 5.3.3 and obtain that v ∈ V (C1

w) ⊆ Vw =
ϕ′−1[V (Rw)] is either incident to an edge e ∈ dom(κ′) or a cut vertex of ϕ′−1[ϕ′(v)].
Since v ∈ V (C1

w) \ {vw}, we know ϕ′(v) 6= w′ and therefore that ϕ′−1[ϕ′(v)] ⊆ C1
w.

If v would be a cut vertex of ϕ′−1[ϕ′(v)] this would imply that degC1
w

(v) ≥ 2,
which is a contradiction to our assumption. Therefore, v is not a cut vertex of
ϕ′−1[ϕ′(v)] and we get that v is incident to an edge e ∈ dom(κ′). There are now
two possibilities for f ′ = κ′(e), either f ′ ∈ dom(κ′′) or f ′ ∈ {f ′w, f ′′w}. In the first
case we know f ′ ∈ dom(κ′′) and that f ′ is incident to ϕ′(v) ⊆ {w′n, w′′n}. We
can check in all four cases of Definition 5.2.8 that this implies either f ′ = f ′1 or
f ′ = f ′2, which further implies f ∈ {f1, f2} = π2(Sw). In this case we are done since
e ∈ E(v) ∩ κ−1[π2(Sw)] 6= ∅.

On the other hand, the second case if f ′ ∈ {f ′w, f ′′w} implies e ∈ π2(Tw). Since
v 6= vw we get that v is the other incident vertex of e, i.e. e = vvw. Let
x = ϕ′(v), then ψH′(f ′) = ϕ′[ψG(e)] = {x,w′}. We know in the case f ′ = f ′w
that f ′1 or in the case that f ′ = f ′′w that f ′2 is incident to x; let f ′i denote this
incident edge in both cases. From this we get that ei := κ′−1(f ′i) is incident
to a vertex in ϕ′−1[x]. By the definition of E(Gw) = Ew all edges in Gw that
connect ϕ′−1[w′] with ϕ′−1[x] are edges in ψG[κ′−1[E(Rw)]]. Since vw ∈ ϕ′−1[w′]
and v ∈ ϕ′−1[x] are vertices of the connected subtree C1

w of Gw there must exist an
edge ẽ ∈ κ′−1[E(Rw)] that connects ϕ′−1[w′] with ϕ′−1[x] such that ψG(ẽ) ∈ E(C1

w).
In all four cases of the Definition 5.2.8 the only two possibilities for ẽ are κ′−1(f ′w)
and κ′−1(f ′′w). If κ′(ẽ) = f ′ we get by the injectivity of κ′ that ẽ = e and therefore
ψG(e) ∈ E(C1

w), but then we know that there is no other edge in C1
w that is incident

to v, which implies ϕ′−1[x] = {v} and therefore that ei is incident to v, which
implies ei ∈ E(v) ∩ κ−1[π2(Sw)].

The last case we need to check is if κ′(ẽ) 6= f ′i . Since ψH′(κ′(ẽ)) = ϕ′[ψG(ẽ)] =
{w′, x} = ψH′(f ′i) this can only happen in case 3 of Definition 5.2.8 and if f ′ = f ′′w
and ẽ = κ′−1[f ′w]. But in this case we ensured that w = θ(κ′−1(f ′′w)) = θ(κ′−1(f ′)) =
θ(e), which implies e ∈ θ−1[w], which is a contradiction since v ∈ ψG(e) =⋃

[ψG[θ−1[w]]]. All in all we showed that (5.12) holds.
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(5.13) Let w ∈ V (H) and {vw, v} ∈ EC1
w

(π1(Tw)). By definition of C1
w this implies

that there exists an edge e ∈ E(G) with ψG(e) = {vw, v}. By definition of
Ew ⊇ EC1

w
(vw) either e ∈ κ′−1[E(Rw)] or ψG(e) ⊆ ϕ′−1[x] for some x ∈ V (Rw).

Since vw is the only vertex of ϕ′−1[w′] in C1
w we get that ϕ′[v] 6= ϕ′[vw] and therefore

that e ∈ κ′−1[E(Rw)]. Either κ′(e) = f ′w or κ′(e) = f ′′w but in both cases we know
that e ∈ π2(Tw). Therefore, we always get that {vw, v} = ψG(e) ∈ ψG[π2(Tw)],
which implies (5.13).

(5.14) Let w ∈ V (H), and e ∈ E(G) with θ(e) = w. By definition of θ this implies that
the structure of Rw equals the one of case 3 of Definition 5.2.8 and e = κ′−1(f ′′w),
which implies e ∈ π2(Tw). Since ψH′(f ′′w) = {w′, w′′n}, we know that e is incident
to a vertex in ϕ−1[w′′n]. Since e is incident to vw and ϕ−1[w′′n] ⊆ V (C1

w) we get
ψG(e) ⊆ V (C1

w), which finishes the proof for (5.14).

(5.15) These constraints follow directly from our definition of θ. We only define it in case
3 and only if ψG(κ′−1(f ′′w)) 6= ψG(κ′−1(f ′w)). Since we also define C1

w in this case
in such a way that vw has degree 1 with the only incident edge ψG(κ′−1(f ′w)), we
know that ψG(κ′−1(f ′′w)), which is also incident to vw, is not in E(C1

w).

Proposition 5.3.4. If there exists a valid solution in the model given at the beginning
of this section the instance ((G, T ), (H,S)) is a yes instance of EBSRTM.

Proof. Let

(ϕ, κ, θ, (Tw)w∈V (H), (Sw)w∈V (H), (C1
w)w∈V (H), (C2

w)w∈V (H))

be a valid solution of the model. The proof consists of the following steps. We define a
transitioned graph H ′, proof that H ′ is a minor of G, define a transition system S ′ on
H ′ in such a way that (H ′,S ′) is a reduced transition minor of (G, T ) and finally prove
that (H ′,S ′) is a basic-sup-(H,S)-graph.

Before we define the graph H ′, we introduce some notation that we use during the proof.
For a vertex w ∈ V (H) we define vw := π1(Tw) and denote a possible extension of E1

w by

E1
w := E1

w ∪ θ−1[w].

Lemma 5.3.5. For an edge e ∈ E1
w we get ψG(e) ⊆ V (C1

w).

Proof. For e ∈ E1
w the lemma follows by definition of E1

w and for e ∈ θ−1[w] it follows
from (5.14).

We describe now for each vertex w ∈ V (H) a graph Rw. These graphs are then used to
form the graph H ′.

120



5.3. Modeling

Definition 5.3.1 (Rw). To describe Rw we distinguish the following four cases.

1. degC1
w

(vw) = 0: In this case Rw consists only of one vertex w′ (see case 1 in
Figure 5.5).

2. degC1
w

(vw) = 1 ∧ |κ[π2(Tw)]| = 1: In this case Rw consists of two vertices w′ and
w′n and an edge f ′w connecting them (see case 2 in Figure 5.5).

3. degC1
w

(vw) = 1 ∧ |κ[π2(Tw)]| = 0: In this case Rw consists of two vertices w′ and
w′n and two parallel edges f ′w and f ′′w connecting them (see case 3 in Figure 5.5).

4. degC1
w

(vw) = 2: In this case Rw consists of three vertices w′, w′n, and w′′n and
two edges f ′w connecting w′ and w′n and f ′′w connecting w′ and w′′n (see case 4 in
Figure 5.5).

Note that degC1
w

(vw) ≤ 2, which follows from (5.13) by

degC1
w

(vw) = |EC1
w

(vw)| ≤ |ψG[π2(Tw)]| ≤ |π2(Tw)| = 2.

To conclude that the above cases cover all possible cases we need to show that κ[π2(Tw)] ≤
1 holds when degC1

w
(vw) = 1. In this case we know that there exists an edge e ∈

E1
w ∩ E(vw), which implies by (5.13) that

ψG(e) ∈ EC1
w

(vw) ⊆ ψG[π2(Tw)]

and therefore there must exist an edge ẽ ∈ π2(Tw) with ψG(ẽ) = ψG(e) ⊆ V (C1
w).

Furthermore, this implies by (5.5), (5.6), and the fact that we have no loops in H that
ẽ /∈ dom(κ). Since |π2(Tw)| = 2, this gives us κ[π2(Tw)] ≤ 1.

We can now define the vertex set of the graph H ′ as the disjoint union of the vertex sets
of all graphs Rw. Formally this means

V (H ′) :=
⊎

w∈V (H)
V (Rw).

We define one more notation, which we use in the rest of the proof. In case 4 of
Definition 5.3.1 we know that degC1

w
= 2 and therefore the tree C1

w decomposes after
removing the vertex vw into two subtrees, which we denote by C1,1

w and C1,2
w . Before we

define edges between the subgraphs Rw we describe a partial vertex mapping ϕ′ : V (G) 9
V (H ′).

Definition 5.3.2 (ϕ′ : V (G) 9 V (H ′)). For a vertex w ∈ V (H) we distinguish again
the four cases (see Definition 5.3.1).

1. ϕ′(v) := w′ ∀v ∈ V (C2
w).
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2.+ 3. ϕ′(v) := w′ ∀v ∈ V (C2
w), ϕ′(v) := w′n ∀v ∈ V (C1

w) \ {vw}.

4. ϕ′(v) := w′ ∀v ∈ V (C2
w), ϕ′(v) := w′n ∀v ∈ V (C1,1

w ),
ϕ′(v) := w′′n ∀v ∈ V (C1,2

w ).

To prove that ϕ′ is well-defined we need to show that no vertex maps to more than one
vertex, that means that all occurring sets in the universal quantifiers are disjoint. For
two vertices w1, w2 ∈ V (H) with w1 6= w2 and i, j ∈ {1, 2} we get from (5.6) that

V (Ciw1) ∩ V (Cjw2) ⊆ ϕ−1[w1] ∩ ϕ−1[w2] = ∅.

Therefore, it remains to check that the universal quantifiers are disjoint within the cases
of one vertex w ∈ V (H). In the case 1 there is only one universal quantifier. In the cases
2 and 3 the two sets V (C2

w) and V (C1
w) \ {vw} are disjoint since V (C1

w) ∩ V (C2
w) = {vw}

by (5.7). Furthermore, in case 4 we know by definition of C1,1
w and C1,2

w that its vertex
sets are disjoint. Since for i ∈ {1, 2} the tree C1,i

w is a subtree of C1
w that does not contain

vw, its vertex set is disjoint with V (C2
w) with the same argumentation as in the cases 2

and 3.

Lemma 5.3.6. The above defined partial function ϕ′ is surjective.

Proof. We prove that for all w ∈ V (H) all vertices of Rw are in the image of ϕ′, this is
enough since V (H ′) =

⊎
w∈V (H) V (Rw). In all four cases w′ is in the image of ϕ′ since

vw ∈ V (C2
w) by (5.7) and therefore ϕ′(vw) = w′. In the cases 2 and 3 there exists a vertex

in v ∈ V (C1
w) \ {vw} since the degree of vw in C1

w is one and therefore ϕ′(v) = w′n. In
case 4 both C1,1

w and C1,2
w are by construction non-empty and therefore w′n and w′′n are

both in the image of ϕ′.

Lemma 5.3.7. For each vertex x ∈ V (H ′) the vertex set ϕ′−1[x] is connected in G.

Proof. We distinguish again the four cases. In all four cases ϕ′−1[w′] = V (C2
w) is

connected in G since C2
w is a tree and (5.4) holds. In the cases 2 and 3 we have

ϕ′−1[w′n] = V (C1
w) \ {vw}, which is connected since C1

w is a tree, the vertex vw has degree
one in C1

w, which implies that after removing the vertex the result is still a tree, and (5.4).
Furthermore, in case 4 we have ϕ′−1[w′n] = V (C1,1

w ) and ϕ′−1[w′′n] = V (C1,2
w ), which are

both vertex sets of connected subtrees of C1
w. The connectedness in G follows again

by (5.4).

Lemma 5.3.8. It holds that dom(ϕ′) = dom(ϕ) and for v1, v2 ∈ dom(ϕ) it holds that
ϕ(v1) 6= ϕ(v2)⇒ ϕ′(v1) 6= ϕ′(v2).

Proof. By the definition of ϕ′, (5.6), and (5.7) we get

dom(ϕ′) =
⋃

w∈V (H)
V (C1

w) ∪ V (C2
w) (5.6)=

⋃
w∈V (H)

ϕ−1[w] = ϕ−1[V (H)] = dom(ϕ).
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The second statement follows from the fact that ϕ′[ϕ−1[w]] = V (Rw) for all w ∈ V (H)
and that V (Rw1) ∩ V (Rw2) = ∅ for two different vertices w1, w2 ∈ V (H).

Using ϕ′ we can now define edges that connect the subgraphs Rw. For each edge f ∈ E(H)
we add an edge f ′ to H ′ with

ψH′(f ′) := ϕ′[ψG(κ−1(f))].

First of all since κ is injective and surjective the inverse function κ−1 is well-defined.
Furthermore, we have to prove that |ϕ′[ψG(κ−1(f))]| = 2. By using (5.5) we get
ϕ[ψG(κ−1(f))] = ψH(f) and therefore ψG(κ−1(f)) ⊆ dom(ϕ). By Lemma 5.3.8, we get
ψG(κ−1(f)) ⊆ dom(ϕ′). Since ψG(κ−1(f)) has two elements and ϕ[ψG(κ−1(f))] = ψH(f)
has still two elements we get by Lemma 5.3.8 that ϕ′[ψG(κ−1(f))] has also two elements.

All in all we can define now the edge set of H ′ by

E(H ′) :=
{
f ′ | f ∈ E(H)

}
∪̇

⊎
w∈V (H)

E(Rw).

The graph H ′ is therefore fully defined. To prove that H ′ is a minor of G we use the
vertex mapping ϕ′ and a surjective edge mapping κ′ : E(G) 9 E(H ′), which we define in
the following.

Definition 5.3.3 (κ′ : E(G) 9 E(H ′)). To define the preimages of edges in Rw we
distinguish for each vertex w ∈ V (H) the four cases of Definition 5.3.1.

1. There are no edges in Rw.

2. From (5.13) we know EC1
w

(vw) ⊆ ψG(π2(Tw)). Since EC1
w

(vw) has one element it
follows that there exists a unique edge e ∈ π2(Tw) such that ψG(e) ∈ EC1

w
(vw),

which implies e ∈ E1
w ∩ π2(Tw). Using this edge e we define κ′(e) := f ′w.

3. In this case we have |κ[π2(Tw)]| = 0, which is equivalent to κ−1[E(H)]∩π2(Tw) = ∅.
This implies κ−1[π2(Sw)] ∩ π2(Tw) = ∅. Using (5.8) we can derive

(5.8)⇒π2(Tw) ⊆ κ−1[π2(S)] ∪ θ−1[w] ∪ (E(vw) ∩ E1
w)

⇒π2(Tw) ⊆
(
κ−1[π2(S)] ∩ π2(Tw)

)
︸ ︷︷ ︸

∅

∪θ−1[w] ∪ (E(vw) ∩ E1
w).

Since θ is injective θ−1[w] contains at most one edge and therefore we can write
π2(Tw) = {e1, e2} with e1 ∈ E1

w and e2 is either in θ−1[w] or in E1
w. We define now

κ′(e1) := f ′w and κ′(e2) := f ′′w.

4. Again by (5.13) we know EC1
w

(vw) ⊆ ψG(π2(Tw)). Since EC1
w

(vw) has in this case
two elements it follows that EC1

w
(vw) = ψG(π2(Tw)). Let π2(Tw) = {e1, e2}. Since

ψG(π2(Tw)) = EC1
w

(vw) contains two edges where one is connecting vw to C1,1
w and
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the other is connecting vw to C1,2
w we can say w.l.o.g. that ei connects vw and a

vertex in V (C1,i
w ) for i ∈ {1, 2}. Using this notation we define κ′(e1) := f ′w and

κ′(e2) := f ′′w.

Furthermore, for an edge f ∈ E(H) we define κ′(κ−1(f)) := f ′, which is well-defined
since κ is injective and surjective.

We have to prove now that κ′ is well-defined, i.e. that no edge in E(G) has more
than one image under κ′. First of all we note that in all four cases only edges from
E1
w := E1

w ∪ θ−1[w] get mapped to an edge f ′w or f ′′w.

By Lemma 5.3.5 an edge e ∈ E1
w always has ψG(e) ⊆ V (C1

w). For two different vertices
w1, w2 ∈ V (H), w1 6= w2 we always have E1

w1 ∩E1
w2 = ∅ since by (5.6) we get V (C1

w1) ∩
V (C1

w2) ⊆ ϕ−1[w1] ∩ ϕ−1[w2] = ∅.

Furthermore, by the definition of κ′ an edge never gets mapped to both f ′w and f ′′w
for a vertex w. It remains to show that an edge in dom(κ) gets not mapped to any
edges f ′w or f ′′w for any w ∈ V (H). By (5.5) we get for an edge e ∈ dom(κ) that
ϕ[ψG(e)] = ψH(κ(e)) and therefore e is not in E1

w since all edges in E1
w are incident to

two vertices in V (C1
w) ⊆ ϕ−1[w], which would imply ϕ[ψG(e)] = {w} 6= ψH(κ(e)), which

is a contradiction. Therefore, we get E1
w ∩ dom(κ) = ∅ for all w ∈ V (H). This finishes

the proof that κ′ is well-defined.

Lemma 5.3.9. κ′ is injective and surjective

Proof. In the definition of κ′ we defined in all cases for each edge in E(H ′) exactly one
preimage that maps under κ′ to this edge. This implies directly both, that κ′ is injective
and surjective.

Lemma 5.3.10. The graph H ′ is a minor of G.

Proof. We already defined a partial vertex mapping ϕ′ : V (G) 9 V (H ′) and a partial
edge mapping κ′ : E(G) 9 E(H ′). In Lemma 5.3.6 we showed that ϕ′ is surjective, in
Lemma 5.3.7 we showed that all preimages ϕ′−1[x] are connected in G for all x ∈ V (H ′),
and in Lemma 5.3.9 we showed that κ′ is injective and surjective. The only remaining
condition of H ′ being a minor of G is (5.1). To prove this we distinguish again the four
cases as we did in Definition 5.3.3.

1. E1
w is empty

2. Let e = κ′−1(f ′w), then e ∈ E1
w ∩ π2(Tw), which implies ψG(e) = {vw, v} for some

v ∈ V (C1
w) \ {vw}. Therefore, we get

ϕ′[ψG(e)] =
{
ϕ′(vw), ϕ′(v)

}
=
{
w′, w′n

}
= ψH′(f ′w) = ψH′(κ′(e)).
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3. Let e1 and e2 be as in case 3 of the definition of κ′. For i ∈ {1, 2} we have by
Lemma 5.3.5 ψG(ei) = {vw, v} with v ∈ V (C1

w) and v 6= vw . This implies for
i ∈ {1, 2} that

ϕ′[ψG(ei)] =
{
ϕ′(vw), ϕ′(v)

}
=
{
w′, w′n

}
= ψH′(f ′w) = ψH′(f ′′w) = ψH(κ′(ei)).

4. Let e1 and e2 be as in case 4 of the definition of κ′ . Then we get ψG(ei) = {vw, vi}
with vi ∈ V (C1,i

w ) and vi 6= vw for i ∈ {1, 2}. With that we can follow (5.1) for
i = 1, 2.

ϕ′[ψG(e1)] =
{
ϕ′(vw), ϕ′(v1)

}
=
{
w′, w′n

}
= ψH′(f ′w) = ψH(κ′(e1))

ϕ′[ψG(e2)] =
{
ϕ′(vw), ϕ′(v2)

}
=
{
w′, w′′n

}
= ψH′(f ′′w) = ψH(κ′(e2))

Finally for e ∈ dom(κ) with κ(e) = f we get

ψH′(κ′(e)) = ψH′(f ′) = ϕ′[ψG(κ−1(f))] = ϕ′[ψG(e)].

All in all we proved (5.1) for all e ∈ dom(κ′).

To get a reduced transition minor of (G, T ) we define S ′ as in (5.2) using ϕ′ and κ′.
Therefore, we get by definition that (H ′,S ′) is a reduced transition minor of (G, T ).

In the second part we want to prove that (H ′,S ′) is a basic-sup-(H,S)-graph. We already
defined the connected subgraphs Rw for each w ∈ V (H), they are by definition all vertex
disjoint. We also defined the edges f ′ ∈ E(H ′) for each f ∈ E(H).

Lemma 5.3.11. For each edge f ∈ E(H) with ψH(f) = {w1, w2} the edge f ′ connects
the subgraphs Rw1 and Rw2 of H ′.

Proof. Let e = κ−1(f) ∈ E(G) and ψG(e) = {v1, v2} then by definition we get

ψH′(f ′) = ϕ′[ψG(κ−1(f))] = ϕ′[{v1, v2}].

By using (5.5) we get ϕ[{v1, v2}] = ψH(f) = {w1, w2} and therefore w.l.o.g. vi ∈ ϕ−1[wi],
which implies by definition of ϕ′ that ϕ′(vi) is defined and in Rwi . Therefore, f ′ connects
the vertices ϕ′(v1) ∈ V (Rw1) and ϕ′(v2) ∈ V (Rw2).

For the rest of the proof let w ∈ V (H) be fixed. Furthermore, let {f1, f2} = π2(Sw) and
let {f3, f4} = EH(w) \ {f1, f2} be the remaining edges (note that w has degree four,
since H is 4-regular). Since H is completely transitioned we get that (w, {f3, f4}) is also
a transition in S(w). Let ei = κ−1(fi), which is well-defined since κ is surjective. By
definition of κ′ we get κ′(ei) = f ′i . Before we prove the final lemma, we need the following
lemmas.
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Lemma 5.3.12. The only edges in H ′ that are incident to at least one vertex in Rw
are the edges f ′1, f ′2, f ′3, f ′4 and the edges f ′w and f ′′w if they exist. Furthermore, for
i ∈ {1, 2, 3, 4} the edges f ′i are incident to exactly one vertex xi in Rw and xi = w′ if
i ∈ {3, 4}.

Proof. Let E′w be the set of all edges that are incident to at least one vertex in Rw. Since
f ′w and f ′′w are by definition incident to two vertices of Rw if they exist and since V (Rw1)
and V (Rw2) are disjoint for w1 6= w2 we know that f ′w and f ′′w are in E′w if they exist and
f ′w1 and f ′′w1 are not in E′w if w1 6= w. Furthermore, from Lemma 5.3.11 follows that f ′ is
incident to a vertex of Rw if and only if w ∈ ψH(f). Therefore, we get

E′w ∩
{
f ′ | f ∈ E(H)

}
=
{
f ′ | f ∈ EH(w)

}
=
{
f ′1, f

′
2, f
′
3, f
′
4
}
.

Lemma 5.3.11 also gives us that the edges fi are incident to exactly one vertex in Rw,
since the other vertex must be in another subgraph Rw2 with w2 6= w since we do not
allow loops in H. Let xi ∈ Rw be the unique incident vertex of f ′i . By (5.11) we get
ψG(ei) ∩ V (C2

w) 6= ∅ for i ∈ {3, 4}. Let vi ∈ ψG(ei) ∩ V (C2
w) for i ∈ {3, 4}, which implies

ϕ′(vi) = w′ and all in all we get

ψH′(f ′i) = ϕ′[ψG(κ−1(fi))] = ϕ′[ψG(ei)] 3 ϕ′(vi) = w′.

Therefore, we know that w′ is incident to f ′i and since there exists exactly one vertex in
Rw that is incident to f ′i we get xi = w′ for i ∈ {3, 4}.

Lemma 5.3.13. The edges f ′i are incident to w′ if and only if ei ∈ π2(Tw) for i ∈ {1, 2}.

Proof. If ei ∈ π2(Tw) we get

ψH′(f ′i) = ϕ′[ψG(κ−1(fi))] = ϕ′[ψG(ei)] 3 ϕ′(vw) = w′.

For the other direction we first note that by (5.10) we get that ei is incident to a vertex
in V (C1

w) for i ∈ {1, 2}. If f ′i is incident to w′ we get

w′ ∈ ψH′(f ′i) = ϕ′[ψG(κ−1(fi))] = ϕ′[ψG(ei)],

which implies that ei is incident to a vertex v that is in ϕ′−1[w′] = V (C2
w). By (5.4) we

get that ei is only incident to one vertex in ϕ−1[w] = V (C1
w) ∪ V (C2

w). Therefore, we
know that ei is incident to a vertex that is in V (C1

w) and in V (C2
w), which can only be

vw by (5.7). All in all we get ei ∈ κ−1[π2(Sw)] ∩ E(π1(Tw)) ⊆ π2(Tw) by (5.9).

What remains to prove that (H ′,S ′) is a sup-(H,S)-graph is the following lemma.

Lemma 5.3.14. There exists a transition S′w in S ′ such that the form of Rw and the
transition S′w satisfy one of the four possibilities (see Figure 5.5):

1. Rw is only one vertex w′ and S′w = (w′, {f ′1, f ′2}) ∈ S ′(w′).
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2. Rw is a K2 with two vertices w′ and w′n, where w′n is of degree two with two incident
edges f ′1 and f ′w. Moreover, S′w = (w′, {f ′w, f ′2}) ∈ S ′(w′).

3. Rw is a cycle of length two, i.e. two vertices w′ and w′n and two parallel edges f ′w
and f ′′w connecting them. Furthermore, w′n has degree four and is incident to f ′1
and f ′2 and S′w = (w′, {f ′w, f ′′w}) ∈ S ′(w′).

4. Rw consists of a vertex w′ and two vertices w′n and w′′n and two edges f ′w and f ′′w
connecting w′ with w′n and w′ with w′′n. Furthermore, w′n is incident to f ′1, w′′n is
incident to f ′2, w′ is incident to f ′3 and f ′4, and S′w = (w′, {f ′w, f ′′w}) ∈ S ′(w′).

Proof. First we define the transition S′w by S′w := (w′, κ′[π2(Tw)]). In the next step we
prove that S′w is in S ′. By (5.7), which implies vw ∈ V (C2

w), and the definition of ϕ′ in
all four cases we get vw ∈ dom(ϕ′) and ϕ′(vw) = w′. By definition of S ′ it only remains
to show

π2(Tw) ⊆ dom(κ′). (5.16)

to imply that S′w ∈ S ′. We show (5.16) together with the rest of the lemma by case
distinction of the four cases of Definition 5.3.1.

1. In this case E1
w is empty. By Lemma 5.3.12, we get that f ′i is incident to w′ for

i ∈ {1, 2} and by Lemma 5.3.13 this implies that ei ∈ π2(Tw) for i ∈ {1, 2}. Since
π2(Tw) has two elements, we get π2(Tw) = {e1, e2} ⊆ dom(κ′). By definition of
κ′ this implies π2(S′w) = κ′[π2(Tw)] = {κ′(e1), κ′(e2)} = {f ′1, f ′2}. With that we
proved the lemma for case 1.

2. Let e be the only edge in π2(Tw)∩dom(κ). Since e ∈ dom(κ) we get |ϕ(ψG(e))| (5.5)=
|ψH(κ(e))| = 2, and therefore ψG(e) * V (C1

w). This implies by (5.14) that e /∈
θ−1[w] and that e /∈ E1

w. From (5.8) we then get e ∈ κ−1[π2(Sw)]. Therefore,
κ(e) ∈ π2(Sw) = {f1, f2} and by exchanging f1 and f2 if needed we get κ(e) = f2,
which implies e = e2.
Let now ẽ := κ′−1(f ′w). By definition of κ′ this implies ẽ ∈ π2(Tw). Furthermore,
by definition of κ′ we know ẽ ∈ E1

w, which implies ẽ 6= e2. Therefore, we found
the two edges of π2(Tw) = {ẽ, e2} and both of them are in dom(κ′) (note that
e2 ∈ dom(κ) ⊆ dom(κ′)), which implies (5.16).
For the edges of S′w we get

π2(S′w) = κ′[π2(Tw)] = κ′[{ẽ, e2}] =
{
κ′(ẽ), κ′(κ−1(f2))

}
=
{
f ′w, f

′
2
}
.

It remains to show that w′n has degree two and is incident to f ′1 and f ′w. By
definition of f ′w it is incident to w′n, so we have to show that the only other incident
edge to w′n is f ′1. By Lemma 5.3.12, we get that the only possible other incident
edges are f ′1 and f ′2 and by Lemma 5.3.13 we get that f ′2 is incident to w′ and
therefore not to w′n.
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Assume f ′1 would not be incident to w′n. By Lemma 5.3.12, we get that f ′1 is incident
to w′ and by Lemma 5.3.13 that e1 ∈ π2(Tw). But then f1 = κ(e1) ∈ κ[π2(T )] 3
κ(e2) = f2, which is a contradiction to the fact that |κ[π2(T )]| = 1 and that κ is
injective.

3. By definition of κ′ in this case we get directly (5.16) and also κ′[π2(Tw)] = {f ′w, f ′′w}.
By definition of Rw in this case it is a cycle of length two consisting of two parallel
edges f ′w and f ′′w connecting two nodes w′ and w′n. Therefore, it only remains to
show that w′n has degree four and is connected by f ′1 and f ′2. By Lemma 5.3.12, we
get that the only other possible incident edges to w′n are f ′1 and f ′2.
To show that f ′i is incident to w′n for i ∈ {1, 2} we show that it is not incident to w′,
which is enough by Lemma 5.3.12. This is equivalent to showing that ei /∈ π2(Tw)
for i ∈ {1, 2} by Lemma 5.3.13. For i ∈ {1, 2} the fact ei /∈ π2(Tw) follows directly
from the fact that ei ∈ dom(κ) and |κ[π2(Tw)]| = 0 in this case. All in all we
showed that the incident edges of w′n are exactly f ′w, f ′′w, f ′1, and f ′2.

4. By definition of κ′ in this case we get directly (5.16) and also κ′[π2(Tw)] = {f ′w, f ′′w}.
By definition of Rw in this case it consists of a vertex w′ and two vertices w′n and w′′n
and two edges f ′w and f ′′w connecting w′ with w′n and w′ with w′′n. By Lemma 5.3.12,
we get that f ′3 and f ′4 are incident to w′ and therefore it only remains to show that
f ′1 is incident to w′n and f ′2 is incident to w′′n.
As shown in case 4 of the definition of κ′ we know that the edges of π2(Tw) are in
E1
w and therefore ei /∈ π2(Tw) for i ∈ {1, 2}. By Lemma 5.3.13, we get that f ′i is

not incident to w′ and therefore that f ′i is incident to w′n or to w′′n for i ∈ {1, 2}.
We know in this case that the two trees C1,i

w are both nonempty subtrees of C1
w for

i ∈ {1, 2}. If C1,i
w consists only of one vertex, we know that this vertex has degree 1

in C1
w. On the other hand, if C1,i

w has more than one vertex we know that C1,i
w has

at least two leaf vertices of degree 1 and at least one of them has also degree 1 in
C1
w. Therefore, we know that in any case there exists a vertex vi ∈ V (C1,i

w ) that
has degree 1 in C1

w for i ∈ {1, 2}.
Assume that there exists an edge e ∈ θ−1[w] then by (5.9) we know e ∈ π2(Tw) but
we already know that both edges of π2(Tw) are in E1

w, which is a contradiction
to (5.15). Therefore, we know θ−1[w] = ∅ in this case.
Putting everything together we get

vi ∈ V (C1
w) \ {π1(Tw)} ∧ degC1

w
(vi) = 1 ∧ v /∈

⋃
ψG[θ−1[w]],

which implies by (5.12) that E(vi)∩κ−1[π2(Sw)] 6= ∅. Since E(v1)∩E(v2)∩dom(κ) =
∅ and the fact that κ−1[π2(Sw)] = {e1, e2} we get by exchanging e1 with e2 if needed
that ei ∈ E(vi) ∩ κ−1[π2(Sw)] for i ∈ {1, 2}. But this implies

ψH′(f ′i) = ϕ′[ψG(κ−1(fi))] = ϕ′[ψG(ei)] 3 ϕ′(vi) ∀i ∈ {1, 2}

and therefore f ′1 is incident to ϕ′(v1) = w′n and f ′2 is incident to ϕ′(v2) = w′′n.
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With Lemma 5.3.14 we finished the proof that (H ′,S ′) is a sup-(H,S)-graph and all
together that (G, T ) has a basic-sup-(H,S)-reduced transition minor.

5.4 Mixed Integer Linear Programming Model
In this section we derive a MILP model from the mathematical model described in
Section 5.3.2 in order to practically solve it. Let ES

G denote the set of simple edges
ψG[E(G)].

To model the partial functions ϕ, κ, and λ we use boolean variables xwv for v ∈ V (G) and
w ∈ V (H), which are true if and only if ϕ(v) = w, boolean variables yfe for e ∈ E(G) and
f ∈ E(H), which are true if and only if κ(e) = f , and boolean variables zwe for e ∈ E(G)
and w ∈ V (H), which are true if and only if θ(e) = w. Furthermore, to describe the
transitions Tw and Sw we use boolean variables awT for w ∈ V (H) and T ∈ T representing
Tw = T and boolean variables bwS for w ∈ V (H) and S ∈ S(w) representing Sw = S.

To describe the trees Ciw we use boolean variables hi,wv for v ∈ V (G), i ∈ {1, 2}, and
w ∈ V (H) that encode v ∈ V (Ciw) and boolean variables ti,wv1,v2 for {v1, v2} ∈ ψG[E(G)],
i ∈ {1, 2}, and w ∈ V (H) that encode that the simple edge {v1, v2} is in E(Ciw). Note
that the variables ti,wv1,v2 are directed, i.e. for {v1, v2} ∈ ψG[E(G)] there exist two variables
ti,wv1,v2 and ti,wv2,v1 . To eliminate subtours in the trees Ciw, which form together a forest, we
use a MTZ formulation using continuous variables uv for v ∈ V (G) [62].

The following first part of the constraints is concerned with ensuring the properties of
the mappings ϕ, κ, λ, and θ, and the tree structure of the trees Ciw.∑
w∈V (H)

xwv ≤ 1 ∀v ∈ V (G) (5.17)

∑
v∈V (G)

xwv ≥ 1 ∀w ∈ V (H) (5.18)

∑
f∈E(H)

yfe ≤ 1 ∀e ∈ E(G) (5.19)

∑
e∈E(G)

yfe = 1 ∀f ∈ E(H) (5.20)

∑
w∈V (H)

zwe ≤ 1 ∀e ∈ E(G) (5.21)

∑
e∈E(G)

zwe ≤ 1 ∀w ∈ V (H) (5.22)

∑
T∈T

awT = 1 ∀w ∈ V (H) (5.23)

∑
S∈S(w)

bwS = 1 ∀w ∈ V (H) (5.24)
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ti,wv1,v2 + ti,wv2,v1 ≤ h
i,w
vj

∀ {v1, v2} ∈ ES
G,

∀w ∈ V (H),∀i, j ∈ {1, 2}
(5.25)

∑
v1∈NG(v)

ti,wv1,v = hi,wv −
∑

T∈T (v)
awT

∀v ∈ V (G),∀i ∈ {1, 2} ,
∀w ∈ V (H)

(5.26)

uv ≤ (|VG| − |VH |)(1−
∑

T∈T (v)
w∈V (H)

awT ) ∀v ∈ V (G) (5.27)

uv1 − uv2 + 1 ≤ (|VG| − |VH |+ 1)(1−
∑

w∈V (H)
i∈{1,2}

ti,wv1,v2) ∀ {v1, v2} ∈ ES
G (5.28)

Constraints (5.17), (5.19), and (5.21) ensure that ϕ, κ, and θ are partial functions.
Furthermore, constraints (5.18) guarantee that ϕ is surjective, (5.20) ensure that κ is
injective and surjective, and (5.22) guarantee that θ is injective. The fact that there
should be exactly one transition Tw ∈ T and Sw ∈ S(w) for each w ∈ V (H) is ensured
by constraints (5.23) and (5.24). Note the difference that Tw can be any transition in T
but Sw must be a transition at the vertex w, i.e. in S(w).

Constraints (5.25) couple the vertex variables h with the directed edge variables t for
each tree Ciw. To enforce the tree structure of all Ciw we ensure that each vertex in the
tree has exactly one incoming arc except the root vertex, which has no incoming arc and
that there are no cycles. Together, this is enough to guarantee the tree structure. As
root vertex for each tree Ciw we use the vertex vw = π1(Tw), which must be part of both
trees by (5.7). Constraints (5.26) specify that each vertex in a tree except the root has
exactly one incoming arc and that the root has no incoming arcs. To enforce connectivity
we use the MTZ formulation, which is realized by the constraints (5.27) and (5.28). The
second part of the MILP is concerned with ensuring constraints (5.4)–(5.15).

yfe ≤ xw1
v + xw2

v

∀e ∈ E(G), ∀v ∈ ψG(e),
∀f ∈ E(H), ψH(f) = {w1, w2}

(5.29)

yfe ≤ xwv1 + xwv2

∀e ∈ E(G), ψG(e) = {v1, v2} ,
∀f ∈ E(H),∀w ∈ ψH(f)

(5.30)

h1,w
v + h2,w

v = xwv +
∑

T∈T (v)
awT ∀v ∈ V (G), ∀w ∈ V (H) (5.31)

∑
T∈T (v)

awT ≤ xwv ∀v ∈ V (G), ∀w ∈ V (H) (5.32)

awT + bwS − 1 ≤
∑

f∈π2(S)
yfe + zwe

t1,wv1,v2 + t1,wv2,v1

∀T ∈ T ,∀e = v1v2 ∈ π2(T )
∀w ∈ V (H),∀S ∈ S(w),

(5.33)

awT + bwS − 1 ≤ 1−
∑

e∈E(π1(T ))\π2(T )
yfe

∀T ∈ T ,∀w ∈ V (H),
∀S ∈ S(w),∀f ∈ π2(S)

(5.34)
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awT ≤ 1−
∑

e∈E(G)\π2(T )
zwe ∀T ∈ T ,∀w ∈ V (H) (5.35)

bwS +
∑

f∈π2(S)
yfe − 1 ≤

∑
v∈ψG(e)

h1,w
v

∀w ∈ V (H), ∀S ∈ S(w),
∀e ∈ E(G)

(5.36)

bwS +
∑

f∈E(w)\π2(S)
yfe − 1 ≤

∑
v∈ψG(e)

h2,w
v

∀w ∈ V (H), ∀S ∈ S(w),
∀e ∈ E(G)

(5.37)

bwS + h1,w
v − 1−

∑
T∈T (v)

awT ≤
1
2

∑
v2∈NG(v)

t1,wv,v2

+t1,wv2,v +
∑

e∈E(v)
zwe +

∑
e∈EG(v)
f∈π2(S)

yfe

∀w ∈ V (H), ∀S ∈ S(w),
∀v ∈ V (G)

(5.38)

awT ≤ 1− t1,wv,π1(T ) − t
1,w
π1(T ),v

∀T ∈ T , ∀w ∈ V (H),
∀v ∈ N(π1(T )) \

⋃
ψG[π2(T )]

(5.39)

zwe ≤
1
2

∑
v∈ψG(e)

h1,w
v ∀e ∈ E(G), ∀w ∈ V (H) (5.40)

zwe ≤ 1− tv1,v2 − tv2,v1 ∀e = v1v2 ∈ E(G), ∀w ∈ V (H) (5.41)
xwv ∈ {0, 1} ∀v ∈ V (G), ∀w ∈ V (H) (5.42)
yfe ∈ {0, 1} ∀e ∈ E(G),∀f ∈ E(H) (5.43)
zwe ∈ {0, 1} ∀e ∈ E(G), ∀w ∈ V (H) (5.44)
awT ∈ {0, 1} ∀T ∈ T , ∀w ∈ V (H) (5.45)
bwS ∈ {0, 1} ∀w ∈ V (H), ∀S ∈ S(w) (5.46)

hi,wv ∈ {0, 1}
∀v ∈ V (G),∀i ∈ {1, 2} ,

∀w ∈ V (H)
(5.47)

ti,wv1,v2 ∈ {0, 1}
∀ {v1, v2} ∈ r[E(G)],

∀i ∈ {1, 2} , ∀w ∈ V (H)
(5.48)

0 ≤ uv ≤ |VG| − |VH | ∀v ∈ V (G) (5.49)

By the index range of the variables ti,wv1,v2 constraints (5.4) are implicitly satisfied. Con-
straints (5.29) and (5.30) ensure constraints (5.5). Furthermore, constraints (5.31)
and (5.32) together enforce (5.6) and (5.7). Constraint (5.8) are realized by (5.33) and
constraints (5.9) by (5.34) and (5.35). Moreover, (5.36) ensure (5.10) and (5.37) en-
sures (5.11). Furthermore, (5.12) are guaranteed by (5.38) and (5.13) by (5.39). Last
but not least (5.40) ensure (5.14) and (5.41) ensure (5.15).
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5.5 SAT Model

As an alternative to the MILP model presented in Section 5.4 we present in this sction a
SAT model based on the mathematical model given in Section 5.3.2.

Most constraints of the mathematical model can more or less directly be translated
into SAT clauses. One critical aspect is how to model the tree Ciw for w ∈ V (H) and
i ∈ {1, 2}. Constraints (5.6) and (5.7) ensure that the subgraph Cw formed by C1

w and
C2
w together is a tree and all trees Cw are disjoint for w ∈ V (H). Combining all trees

Cw for w ∈ V (H) we obtain a forest and for each of the trees Cw we define a unique
root π1(Tw) by (5.7). When modeling the forest in a directed fashion, we then only have
to take care to avoid any cycles. There are different techniques in literature to model
acyclicity in SAT models. Some of those techniques are summarized in [46]. We use the
approach based on a transitive closure for ensuring acyclicity in our model. Our SAT
model uses the following variables:

• xwv for v ∈ V (G), w ∈ V (H) represents ϕ(v) = w,

• yfe for e ∈ E(G), f ∈ E(H) represents κ(e) = f ,

• zwe for e ∈ E(G), w ∈ V (H) represents θ(e) = w,

• awT for w ∈ V (H), T ∈ T represents T = Tw,

• bwS for w ∈ V (H), S ∈ S(w) represents S = Sw,

• oi,wv for v ∈ V (G), w ∈ V (H), i ∈ {1, 2} represents v ∈ V (Ciw),

• pi,wa for a ∈ A(G), w ∈ V (H), i ∈ {1, 2} represents a ∈ A(Ciw),

• tv1,v2 for v1, v2 ∈ V (G) is the transitive closure relation of all pi,wa variables.

The trees Ciw are modeled as a directed rooted out-trees and the variables pi,wa decide
which directed arcs are part of the tree. Set A(G) is the set of all directed arcs of edges
in G when eliminating parallel edges, i.e.

A(G) := {(v, w), (w, v) | e = vw ∈ E(G)} .

So for every pair of adjacent vertices in G there are two arcs in opposite direction in
A(G). We write Ain(v) for the ingoing arcs at v and Aout(v) for the outgoing arcs at v.
In the following we list all constraints of our SAT model. For simplicity, we present the
constraints in the form of propositional logic formulas. To transform them into clauses
we use De Morgan’s law and the distributive property. One alternative would be to use
Tseitin transformations [78], although for the constraints we are using the number of
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resulting clauses using the naive transformation is still small and therefore this is not
needed. In the following we use for a given v ∈ V (G), w ∈ V (H), and i ∈ {1, 2}

oneIn(v, i, w) :=
( ∨
a∈Ain(v)

pi,wa

)
∧

∧
a1,a2∈Ain(v)

a1 6=a2

(
¬pi,wa1 ∨ ¬p

i,w
a2

)
.

The basic structures as defined in the mathematical model are expressed by

¬(xw1
v ∧ xw2

v ) ∀v ∈ V (G),∀w1, w2 ∈ V (H), w1 6= w2 (5.50)∨
v∈V (G)

xwv ∀w ∈ V (H) (5.51)

¬(yf1
e ∧ yf2

e ) ∀e ∈ E(G), ∀f1, f2 ∈ E(H), f1 6= f2 (5.52)
¬(yfe1 ∧ y

f
e2) ∀e1, e2 ∈ E(G), e1 6= e2, ∀f ∈ E(H) (5.53)∨

e∈E(G)
yfe ∀f ∈ E(H) (5.54)

¬(zw1
e ∧ zw2

e ) ∀e ∈ E(G),∀w1, w2 ∈ V (H), w1 6= w2 (5.55)
¬(zwe1 ∧ z

w
e2) ∀e1, e2 ∈ E(G), e1 6= e2,∀w ∈ V (H) (5.56)

¬(awT1 ∧ a
w
Tw

) ∀w ∈ V (H),∀T1, T2 ∈ T , T1 6= T2 (5.57)∨
T∈T

awT ∀w ∈ V (H) (5.58)

¬(aw1
T ∧ a

w2
T ) ∀w1, w2 ∈ V (H), w1 6= w2, ∀T ∈ T (5.59)

¬(bwS1 ∧ b
w
S2) ∀w ∈ V (H),∀S1, S2 ∈ S(w), S1 6= S2 (5.60)∨

S∈S(w)
bwS ∀w ∈ V (H) (5.61)

oi,wv →
∨

T∈T (v)
awT ∨ oneIn(v, i, w) ∀v ∈ V (G), w ∈ V (H), i ∈ {1, 2} (5.62)∨

T∈T (v)
awT → oi,wv ∧

∧
a∈Ain(v)

¬pi,wa ∀v ∈ V (G), w ∈ V (H), i ∈ {1, 2} (5.63)

¬oi,wv →
∧

a∈Ain(v)∪Aout(v)
¬pi,wa ∀v ∈ V (G), w ∈ V (H), i ∈ {1, 2} (5.64)

¬(tv1,v2 ∧ tv2,v1) ∀a = (v1, v2) ∈ A(G) (5.65)
tv1,v2 ∧ tv2,v3 → tv1,v3 ∀a = (v1, v2) ∈ A(G), v3 ∈ V (G) (5.66)∨
w∈V (H),i∈{1,2}

pi,wa → tv1,v2 ∀a = (v1, v2) ∈ A(G). (5.67)

Constraints (5.50), (5.52), (5.55), (5.57), and (5.60) ensure that ϕ, κ, θ, w 7→ Tw, and
w 7→ Sw are partial functions with the special restriction that Sw ∈ S(w). Furthermore,
constraints (5.51) and (5.54) enforce that ϕ and κ are surjective. On the other hand,
constraints (5.53), (5.56), and (5.59) ensure that κ, θ, and w 7→ Tw are injective. Note
that the mathematical model does not state directly that w 7→ Tw should be injective,
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but it does indirectly by constraints (5.6) and (5.7). Additionally, constraints (5.58)
and (5.61) guarantee that there exists a Tw and a Sw for each w ∈ V (H).

Constraints (5.62)–(5.64) characterize three types of vertices in G. The root vertices of
the trees Ciw, which are defined by the vertices of the transitions Tw by (5.7), do not
have any ingoing arcs in Ciw. Other vertices in Ciw that are not roots have exactly one
ingoing arc in Ciw and vertices that are not in Ciw have no ingoing or outgoing arc in Ciw.
Last but not least, constraints (5.65)–(5.67) ensure that the trees Ciw have no cycles by
using the transitive closure variables tv1,v2 similarly as it is described in [46]. Instead of
having just one variable, which represents if a directed edge is part of the forest, we use
in our case the disjunction

∨
w∈V (H),i∈{1,2,} p

i,w
a for an arc a. With this we ensured all

structural properties formulated in the mathematical model. What is left is to model
constraints (5.4)–(5.15), which is achieved by

yfe → (xw1
v1 ∧ x

w2
v2 ) ∨ (xw1

v2 ∧ x
w2
v1 )

∀e = v1, v2 ∈ E(G),
∀f = w1w2 ∈ E(H)

(5.68)

o1,w
v ∨ o2,w

v ↔ xwv ∀v ∈ V (G),∀w ∈ V (H) (5.69)∨
T∈T (v)

awT ↔ o1,w
v ∧ o2,w

v ∀v ∈ V (G),∀w ∈ V (H) (5.70)

∨
T∈T

e∈π2(T )

awT →
∨

S∈S(w)

(
bwS ∧

∨
f∈π2(S)

yfe

)

∨zwe ∨ p
1,w
(v1,v2) ∨ p

1,w
(v2,v1)

∀e = v1v2 ∈ E(G),
∀w ∈ V (H)

(5.71)

awT ∧ bwS → ¬
∨

f∈π2(S)
yfe

∀w ∈ V (H), ∀S ∈ S(w),
∀T ∈ T , ∀e ∈ E(π1(T )) \ π2(T )

(5.72)

awT → ¬zwe
∀w ∈ V (H),

∀T ∈ T , ∀e ∈ E(π1(T )) \ π2(T )
(5.73)

bwS ∧
∨

f∈π2(S)
yfe → o1,w

v1 ∨ o
1,w
v2

∀w ∈ V (H), ∀S ∈ S(w),
∀e = v1v2 ∈ E(G)

(5.74)(
bwS ∧

∨
f∈E(w)\π2(S)

yfe

)
→ o2,w

v1 ∨ o
2,w
v2

∀w ∈ V (H), ∀S ∈ S(w),
∀e = v1v2 ∈ E(G)

(5.75)

bwS ∧ o1,w
v ∧

∧
v′∈N(v)

¬p1,w
(v,v′) ∧

∧
e∈E(v)

¬zwe

→
( ∨
e∈E(v),f∈π2(S)

yfe ∨ o2,w
v

) ∀w ∈ V (H), ∀S ∈ S(w),
∀v ∈ V (G)

(5.76)

awT → ¬p
1,w
(π1(T ),v) ∧ ¬p

1,w
(v,π1(T ))

∀w ∈ V (H),∀T ∈ T ,
∀v ∈ N(π1(T )) \

⋃
rG[π2(T )]

(5.77)

zwe → (o1,w
v1 ∧ o

1,w
v2 ) ∀w ∈ V (H),∀e = v1v2 ∈ E(G) (5.78)
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zwe → (¬p1,w
(v1,v2) ∧ ¬p

1,w
(v2,v1)) ∀w ∈ V (H),∀e = v1v2 ∈ E(G). (5.79)

Constraints (5.4) are already satisfied implicitly and constraints (5.5)–(5.8) are realized
by constraints (5.68)–(5.71) respectively. Furthermore, constraints (5.9) are guaranteed
by (5.72) and (5.73). All the other constraints (5.10)–(5.15) are modeled via (5.74)–(5.79)
respectively.

5.6 Symmetry Breaking
The input graphs G and H, especially H, often have symmetries leading to symmetric
solutions in our model. To avoid those we analyze the structure of the symmetries in G
and H and incorporate symmetry breaking constraints into our model.

To formalize the concept of symmetries in transitioned graphs we extend the definition
of homomorphisms on graphs to transitioned graphs. Note that our definition of a graph
homomorphism in Definition 2.1.16 does not specify which edge of parallel edges get
mapped to which edge, since it is only defined on vertices and ensures that the number
of edges between two vertices is correct. Therefore, using such homomorphisms cannot
eliminate edge symmetries. If we would want to also eliminate edge symmetries this
would lead to more complex symmetry breaking constraints and would only help in cases
where there are a lot of parallel edges.

We can extend the definition of homomorphisms to transitioned graphs by enforcing that
it also preserves transitions in the following way.

Definition 5.6.1. A homomorphism between two transitioned graphs (G, T ) and (H,S)
is a vertex mapping f : V (G) 7→ V (H) such that f is a homomorphism between G and
H and induces a mapping between the edges g : E(G) → E(H) according to the end
vertex relation of f , i.e

f [ψ(e)] = ψ(g(e)) ∀e ∈ E(G),

such that transitions are preserved, i.e.

(f(v), {g(e1), g(e2)}) ∈ S ∀T = (v, {e1, e2}) ∈ T .

An isomorphism between (G, T ) and (H,S) is a bijective homomorphism f between (G, T )
and (H,S) whose inverse is a homomorphism between (H,S) and (G, T ). Furthermore,
an automorphism of a transitioned graph (G, T ) as an isomorphism from (G, T ) to itself,
we write Aut(G, T ) for the group of all automorphisms on (G, T ).

Given input graphs (G, T ) and (H,S) we can use automorphisms to transform feasible
solutions into other feasible solutions. More formally for any feasible solution and any
pair of automorphisms f ∈ Aut(G, T ) and g ∈ Aut(H,S) of which at least one is not
the identity we can construct another feasible solution by replacing all vertices in G
according to f and all vertices in H according to g. Since f and g preserve all edges and
all transitions this is sufficient to get a new feasible solution.
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5. Sup-Transition Minor Free Graphs

Next we propose an approach how to eliminate some of those symmetries. Let S be a
feasible solution with vertex mapping ϕ : V (G) 9 V (H). We assume that V (G) and
V (H) are totally ordered sets. We can define for any pair of automorphisms f ∈ Aut(G, T )
and g ∈ Aut(H,S) a sequence αf,g := (αf,gw )w∈V (H) by

αf,gw := min f [ϕ−1[g(w)]]

which is well-defined since ϕ is surjective. The sequence αf,g contains the smallest vertex
of each preimage of ϕ after applying the automorphisms f and g to the solution. The
idea is to enforce that α := αidV (G),idV (H) is lexicographically minimal compared to all
αf,g for all pairs of automorphisms f ∈ Aut(G, T ) and g ∈ Aut(H,S), i.e.

α ≤lex α
f,g ∀f ∈ Aut(G, T ),∀g ∈ Aut(H,S). (5.80)

Note that there may be multiple different feasible solutions with the same sequence α
and therefore this only eliminates some symmetries. Such different solutions with the
same α may differ in the mapped edges or transitions, or differ in vertices in G that
are not mapped by ϕ or are not the smallest vertices of the preimages of ϕ. But if H
is simple this restriction eliminates all symmetries occurring only in H, i.e. if we only
apply an automorphism in Aut(H,S) \

{
idV (H)

}
to a feasible solution satisfying (5.80)

the resulting solution will not satisfy (5.80). To formalize (5.80) in such a way that it
can be modeled in a MILP or a SAT formulation we have to expand the definition of a
lexicographical ordering. Condition (5.80) is equivalent to

∀w ∈ V (H), ∀f ∈ Aut(G, T ),∀g ∈ Aut(H,S) :

αw ≤ αf,gw ∨ ∃w′ < w : αw′ < αf,gw′

⇔(∀v < αw : f(v) /∈ ϕ−1[g(w)]) ∨ (∃w′ < w : ∀v ≤ αw : f(v) /∈ ϕ−1[g(w′)]).

This constraint is still complicated and results in a lot of constraints in SAT or MILP
models. To avoid bloating the models we consider only the variant for the smallest vertex
w0 := min(V (H)) of H. Then the condition can be simplified using orbits.

Definition 5.6.2. Let f be an automorphism on a transitioned graph (G, T ). The set

orb(v) :=
{
v′ ∈ V | ∃f ∈ Aut(G, T ) : f(v) = v′

}
is called the orbit of v ∈ V . Orbits are the equivalence classes of the equivalence
relation corresponding to Aut(G, T ) in which two vertices are equivalent if there exists
an automorphism mapping one vertex to the other.

Using the definition of orbits we can simplify our condition for the special case w0

f(v) /∈ ϕ−1[g(w0)] ∀v < αw0 ,∀f ∈ Aut(G, T ), ∀g ∈ Aut(H,S)
⇔v′ /∈ ϕ−1[w] ∀v < αw0 , ∀v′ ∈ orb(v),∀w ∈ orb(w0)
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5.6. Symmetry Breaking

⇔ϕ(v′) = w → αw0 ≤ v ∀v ∈ V (G), ∀v′ ∈ orb(v),∀w ∈ orb(w0)
⇔ϕ(v) = w → ∃v′′ ≤ v′ : ϕ(v′′) = w0 ∀v′ ∈ V (G),∀v ∈ orb(v′),∀w ∈ orb(w0)
⇔ϕ(v) = w → ∃v′ ≤ min orb(v) : ϕ(v′) = w0 ∀v ∈ V (G),∀w ∈ orb(w0). (5.81)

Another specialization of (5.80) is if we only consider automorphisms on H, i.e. fix
f = idV (G). In this case we simply have αgw := α

idV (G),g
w = minϕ−1[g(w)] = αg(w), i.e.

the α values are simple permutations of each other based on g. Therefore, the symmetry
breaking condition holds if and only if

(αw)w∈V (H) ≤lex (αg(w))w∈V (H) ∀g ∈ Aut(H,S). (5.82)

Note that (αw)w∈V (H) ≤lex (αg(w))w∈V (H) if and only if for the first vertex w for which
αw 6= αg(w), αw < αg(w) holds. Since all values in αw are different we know that
αw = αg(w) if and only if w = g(w). Therefore, if w is the first value where they are
different this implies that g fixes all w′ < w, i.e. g(w′) = w′ for all w′ < w.

Definition 5.6.3. Let S ⊆ V (G), then the stabilizer of Aut(H,S) with respect to S
is defined by AutS(H,S) := {g ∈ Aut(H,S) | ∀s ∈ S : g(s) = s}, which is a subgroup of
Aut(H,S). We can again define stabilizer orbits according to the automorphisms in the
stabilizer, i.e. orbS(v) := {v′ ∈ V | ∃f ∈ AutS(G, T ) : f(v) = v′} .

With this definition we can reformulate (5.82) in the following way:

αw < αg(w) ∀w ∈ V (H),∀g ∈ Aut{w′∈V (H):w′<w}(H,S) : g(w) 6= w

⇔αw < αw′′ ∀w ∈ V (H),∀w′′ ∈ orb{w′∈V (H):w′<w}(w) \ {w} .

The condition αw < αw′′ can be expressed such that the statement is equivalent to

ϕ(v) = w′′ → ∃v′ < v : ϕ(v′) = w
∀v ∈ V (G),∀w ∈ V (H),

∀w′′ ∈ orb{w′∈V (H):w′<w}(w) \ {w} .
(5.83)

To model constraints (5.81) and (5.83) we use the inequalities

xwv ≤
∑

v′≤min orb(v)
xw0
v′ ∀v ∈ V (G),∀w ∈ orb(w0) (5.84)

xw
′′

v ≤
∑
v′<v

xwv′
∀v ∈ V (G), ∀w ∈ V (H),

∀w′′ ∈ orb{w′∈V (H):w′<w}(w) \ {w}
(5.85)

for the MILP model and the constraints

xwv →
∨

v′≤min orb(v)
xw0
v′ ∀v ∈ V (G),∀w ∈ orb(w0) (5.86)

xw
′′

v →
∨
v′<v

xwv′
∀v ∈ V (G), ∀w ∈ V (H),

∀w′′ ∈ orb{w′∈V (H):w′<w}(w) \ {w}
(5.87)

for the SAT model.

137



5. Sup-Transition Minor Free Graphs

(G, T )
⇒

Aux(G, T )

Figure 5.7: Construction example of the auxiliary graph for a part of a transitioned
graph (G, T ). The newly added artificial vertices have color 2, which is drawn white and
the original vertices have color 1, which is drawn black.

5.6.1 Finding all Automorphisms and Stabilizers

To add constraints (5.84)–(5.85) or (5.86)–(5.87) to our model we need to compute the
automorphism group Aut(G, T ), its orbits, the automorphism group Aut(H,S), its orbits,
and the orbits orb{w′∈V (H):w′<w}(w) of the stabilizers for each w ∈ V (H).

The problem of computing a set of generators of the automorphism group of a simple
graph is well studied. It is closely related to the famous graph isomorphism problem.
Since no polynomial time algorithm is known for the graph isomorphism problem, which
can be reduced to computing generators of the automorphism group of the graph, all
proposed algorithms in literature require exponential time in general. Nevertheless, if we
restrict the problem to graphs with bounded degree, like it is the case for the input graph
H, which is always 4-regular, there are polynomial time algorithms, see [60]. On the
other hand, there are well performing algorithms in practice, which can handle graphs
with unbounded degree. See for example McKay and Piperno [61] where they solved the
problem for graphs with several thousand vertices in reasonable time.

The algorithm of McKay and Piperno and also other algorithms in the literature working
similarly get as an input a simple undirected graph G = (V,E) with a vertex coloring
c : V → {1, . . .m} and compute a generator of Autc(G), which is the subgroup of Aut(G)
that preserves the colors given by c, i.e.

Autc(G) := {f ∈ Aut(G) | c(f(v)) = c(v) ∀v ∈ V (G)} .

Since we need to compute automorphism groups of transitioned multigraphs, we need
to transform our graphs in such a way that we can apply McKay’s algorithm to it. Let
(G, T ) be a transitioned graph. We construct an auxiliary graph Aux(G, T ) by inserting
in each edge e = v1v2 of G two vertices wv1

e and wv2
e . This gives us immediately a simple

graph. Furthermore, for each transition t = (v, e1, e2) ∈ T we add an edge between the
vertices wve1 and wve2 . We also define a coloring c on the auxiliary graph by coloring all
original vertices with the color 1 and all artificially added vertices with the color 2. See
Figure 5.7 for an example on how to construct the auxiliary graph for a part of a given
transitioned graph (G, T ).

Theorem 5.6.1.

Aut(G, T ) =
{
f |V (G) | f ∈ Autc(Aux(G, T ))

}
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Proof. By adding the two artificial vertices with a second color between each edge we can
associate with each automorphism in the auxiliary graph a vertex mapping and an edge
mapping in the original graph. The edge mapping is defined by mapping an edge e1 to
an edge e2 if the two artificial vertices on e1 get mapped to the two artificial vertices on
e2 in the auxiliary graph. Furthermore, since there are edges between two added vertices
wve1 and wve2 if and only if there is a transaction (v, {e1, e2}) in the original graph we
also get that the mappings are transition-preserving. On the other hand, given a vertex
mapping and an edge mapping as in the definition of an automorphism in a transitioned
graph, we can use those to formulate an edge-preserving vertex mapping on the auxiliary
graph.

Theorem 5.6.1 shows us that we can use the auxiliary graph Aux(G, T ) to get the
automorphism group of a transitioned graph (G, T ) by using an algorithm to compute
Autc(Aux(G, T )). What remains is how to compute the orbits and the orbits of the
stabilizers, which can be done with the Schreier-Sims algorithm [74]. To get the orbits of
the stabilizers we may have to reorder our vertices (which in effect changes the needed
stabilizers) according to the result of the Schreier-Sims algorithm. This is no problem for
our model, since the order of the vertices is only relevant for the symmetry breaking and
can therefore be adjusted.

5.7 Systematically Checking PPMs of Snarks

One application of solving ESTM with our MILP approach or our SAT approach as
motivated in Section 5.1 is to verify if the contraction of a PPM in a snark is SUD-
K5-minor-free and therefore contains a CCD, which would imply the existence of a
CDC in the snark. To that end we want to analyze all snarks with up to a certain
size if they contain a PPM whose contraction leads to a planar, a K5-minor-free, a
SUD-K5-minor-free, or a CCD-containing graph.

Fortunately, there exist already collections of all snarks with up to 36 vertices, see [13].
Therefore, we can iterate through all snarks with up to a certain size and apply the
following algorithm to them. The algorithm enumerates all PPMs iteratively by ordering
the vertices of the snark and always trying to add all possible edges or claws to the
pseudo-matching that contain the smallest not yet visited vertex of the snark. Then it
checks for each generated PPM if its contraction leads to a planar graph. If it does not
find such a matching it checks for K5-minor-free contractions, if this also is not the case
it checks for SUD-K5-minor-free contractions and otherwise it checks for CCD-containing
contractions. Using this algorithm one can specify for each snark the type of the strongest
matching found for this snark.
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5.8 Computational Results

To compare the SAT and MILP model we implemented both in C++ using Glucose 4.11

to solve the SAT model and Gurobi Optimizer 8.12 to solve the MILP model. We
also tested the impact of the symmetry breaking constraints for both models. To get
the automorphism groups as described in Section 5.6.1 we used nauty 2.63 [61] and to
get a strong generating set we used the implementation of the Schreier-Sims algorithm
contained in the nauty program. All tests were performed on a single core of an Intel
Xeon E5-2640 v4 processor with 2.40GHz and 8GB RAM.

5.8.1 Instance Sets

We consider four different instance sets S1, S2, G1, and G2 two of them represent graph
theoretic use cases and one represents the most general case. As discussed in Section 5.1
there are two correlations between the CCD and CDC, one via the line graph of a
3-regular graph and the other via contractions of a PPM of a 3-regular graph. The first
correlation is not interesting for us, since the line graph of a 3-regular graph is larger
than the original graph, the second correlation, however, gives us in general a graph with
at most half the number of vertices and is therefore the use case we test in S1 and S2.
Note that we can restrict our instances to contractions of PPMs of snarks as discussed
in Section 5.1. For both sets S1 and S2 we use a snark together with a PPM of the
snark to build a transitioned graph as described already in Section 5.1. We contract all
components of the matching and add then a transition between the two remaining edges
of each original vertex of the snark, which gives us a 4-regular completely transitioned
graph.

To generate instance set S1 we use all snarks with up to 26 vertices plus 1000 snarks
with 28 vertices and compute for each of them three random perfect matchings. For
each snark and each of its perfect matchings we build the resulting transitioned graph as
described above and use it as (G, T ), and as transitioned graph (H,S) we use the graph
UD-K5 as defined in Example 5.2.1. As source for the snarks with up to 28 vertices we
used the lists published by Brinkmann et al. [13].

For instance set S2 we consider all possible PPMs of each snark with up to 22 vertices.
Again we construct the transitioned graph (G, T ) as described above. Note that by the
cyclically 4-edge connectedness and the 3-regularity of a snark it follows that a snark
contains no cycles of length three and therefore that after contracting a K2 or a claw
there will be no loop. As (H,S) we use again the UD-K5 from Example 5.2.1. When we
construct all possible PPMs of a snark we first compute its automorphism group using
the nauty tool from McKay et al. [61], which we then also apply to filter out all PPMs
that lead after contraction to isomorphic transitioned graphs.

1https://www.labri.fr/perso/lsimon/glucose (accessed 09/2019)
2https://www.gurobi.com (accessed 09/2019)
3http://pallini.di.uniroma1.it/ (accessed 09/2019)
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5.8. Computational Results

Table 5.1: Computation results for instance set S1.

MILP MILPsym SAT SATsym

|V (C)| |I| |Ifeas| |Iinf| tfeas[s] tinf[s] |Itl| tfeas[s] tinf[s] |Itl| tfeas[s] tinf[s] tfeas[s] tinf[s]

10 4 4 0 < 1 - 0 < 1 - 0 < 1 - < 1 -
18 8 8 0 3 - 0 4 - 0 < 1 - < 1 -
20 24 24 0 2 - 0 2 - 0 < 1 - < 1 -
22 124 121 3 4 2035 0 5 727 0 < 1 11 < 1 1
24 620 604 16 8 3600 15 6 2955 2 < 1 26 < 1 2
26 5188 5124 64 12 3600 64 9 3600 58 < 1 78 < 1 4
28 4000 3970 30 19 3600 30 14 3600 30 < 1 166 < 1 7

The instances of the first two instance sets always used for (H,S) the graph UD-K5. To
also test the more general problem for a general (H,S) we created the other instance
sets G1 and G2. There we use a randomly generated completely transitioned 4-regular
(multi-)graph with n vertices as (G, T ) and a random completely transitioned 4-regular
(multi-)graph with k vertices as (H,S). To randomly generate a 4-regular graph with
l vertices we start with l vertices and no edges and add random edges until the graph
is 4-regular. Then we randomly partition the four edges incident to each vertex into
two partitions of size two to define the two transitions. The instance set G1 consists
of 30 instances for all combinations of 9 ≤ n ≤ 15 and 5 ≤ k ≤ 7, which gives us 630
instances. Finally, the instance set G2 considers larger graphs using 30 instances for all
combinations with 16 ≤ n ≤ 30 and 6 ≤ k ≤ 10.

5.8.2 Comparing the MILP with the SAT Model

We compare the running times of four algorithms for the given instances, solving the
original MILP model, the MILP model with the symmetry breaking constraints (5.84)–
(5.85), which we call MILPsym, the SAT model, and the SAT model with the symmetry
breaking constraints (5.86)–(5.87), which we call SATsym.

Table 5.1 lists the computational results for instance set S1 for all four algorithms.
The instances are grouped by the number of vertices |V (C)| of the snark C used for
the generation, one column per group. Column |I| contains the numbers of instances,
|Ifeas| the numbers of feasible instances, and |Iinf| the numbers of infeasible instances.
The time columns tfeas[s] and tinf[s] list median running times of all feasible instances
respectively the infeasible instances in seconds rounded to integer. Furthermore, for the
MILP approaches columns Itl contain the numbers of instances that could not be solved
within the CPU-time limit of 3600 seconds. The best running times of the groups of
feasible instances and infeasible instances are marked bold.

As we can see the SAT based approaches outperform the MILP approaches considerably
and the symmetry breaking constraints improve the running times for the infeasible
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Table 5.2: Computation results for instance set S2.

MILP MILPsym SAT SATsym

|V (C)| |I| |Ifeas| |Iinf| tfeas[s] tinf[s] |Itl| tfeas[s] tinf[s] |Itl| tfeas[s] tinf[s] tfeas[s] tinf[s]

18 98 15 83 2 194 0 1 9 0 0.04 0.12 0.04 0.04
20 1116 416 700 3 468 6 2 24 0 0.05 0.28 0.05 0.06
22 10 694 4873 5821 4 1173 892 3 74 0 0.06 0.78 0.06 0.08

instances, especially for the SAT approaches but also for the MILP approaches.

To further compare the four approaches we applied a Wilcoxon signed-rank test for each
pair of them using a p-value of 5%. The algorithm MILPsym is significantly faster than
MILP for the instance groups with |V (C)| ≥ 24, for the infeasible but also for the feasible
instances. The two SAT approaches are significantly faster than both MILP approaches
for all instance groups except for |V (C)| = 18 and the infeasible instances of |V (C)| = 22
since those are too few to get a significant result. In fact the SAT approaches are faster on
almost all instances except a few feasible instances. For the SAT approaches the variant
without the symmetry breaking constraints is significantly faster on all feasible instance
groups with |V (C)| ≥ 22 although the difference in the values is only within hundredth
of seconds. On the other hand, for the infeasible instance groups with |V (C)| ≥ 24 the
approach with the symmetry breaking constraints is significantly faster.

Table 5.2 shows the computational results for instance set S2. The columns are the
same as in Table 5.1. The results are similar as for instance set S1, but this time
MILPsym can solve all instances within the time limit. Applying the Wilcoxon signed-
rank test we get that MILPsym is significantly faster than MILP except for the infeasible
instance group with |V (C)| = 18. Both SAT approaches are significantly faster than the
MILP approaches for all instance groups. This time SAT is not significantly faster than
SATsym on the feasible instance groups, SATsym is even significantly faster than SAT
for the feasible instance group with |V (C)| = 22. For the infeasible instances SATsym is
significantly faster.

Table 5.3 shows the computation results for the instance set G1. We group the instances
by the number of vertices of the input graphs G and H. We do not distinguish between
feasible and infeasible instance groups in this table, since the running time characteristics
are similar for both types of instances. Columns t[s] show the median running time for
all instances of the instance group. Again both SAT approaches could solve all instances
within one hour and outperform the MILP approaches. This time the differences between
the models with symmetry breaking constraints and without are smaller, since the
probability that a random graph has symmetries is small. Now the SAT approaches are
on all instances faster than the MILP approaches. Between the MILP model there are
only few instance groups where there is a significant difference in the running times in
favor of both models. The situation between the two SAT models is similar although
there are slightly more instance groups where SATsym is significantly faster.
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Table 5.3: Computation results for instance set G1.

MILP MILPsym SAT SATsym

|V (G)| |V (H)| |I| |Ifeas| |Iinf| t[s] |Itl| t[s] |Itl| t[s] t[s]

09 5 30 15 15 106 0 91 0 < 1 < 1
09 6 30 4 26 440 1 409 0 1 < 1
09 7 30 0 30 2059 11 2735 14 < 1 < 1
10 5 30 19 11 90 1 87 1 < 1 < 1
10 6 30 4 26 1939 12 1862 10 1 1
10 7 30 0 30 3600 16 3600 16 2 1
11 5 30 25 5 42 1 19 0 < 1 < 1
11 6 30 9 21 2777 14 3600 16 3 2
11 7 30 1 29 3600 22 3600 20 3 3
12 5 30 28 2 50 1 17 0 < 1 < 1
12 6 30 21 9 2204 13 2124 11 3 2
12 7 30 1 29 3600 30 3600 30 8 7
13 5 30 28 2 23 2 26 2 < 1 < 1
13 6 30 20 10 3600 17 2055 13 4 4
13 7 30 7 23 3600 30 3600 27 14 13
14 5 30 30 0 24 0 30 0 < 1 < 1
14 6 30 28 2 562 7 823 8 2 2
14 7 30 8 22 3600 29 3600 27 27 28
15 5 30 30 0 30 0 24 0 < 1 < 1
15 6 30 29 1 670 2 1475 11 3 2
15 7 30 18 12 3600 26 3600 27 27 30

All instances in all three instance sets S1, S2, and G1 could be solved within the time
limit of one hour by both SAT approaches. Clearly the MILP approach already reached
the time limit for most instances in G1 and therefore we tested only the SAT approaches
on the instance set G2 to analyze the limits of them. Figure 5.8 shows the median
running times of SATsym for different sizes of |G| and |H|. As we can see the running
time heavily depends on the size of H and not so strongly on the size of G. For |H| = 10
and |G| ≥ 20 we run into the time limit of one hour in most of the instances. Similarly,
as for instance set G1 also in G2 the running times for SATsym and SAT are similar.

5.8.3 Characterizing all Snarks with Up to 32 Vertices

Using SATsym we also implemented the framework described at the end of Section 5.7.
We use Boost’s implementation of the Boyer-Myrvold planarity test to check for planar
graphs. Furthermore, we use a simple SAT model for checking if a graph contains a
K5-minor and another SAT model for checking if it has a CCD. Since the bottleneck of
this framework are the solving times for checking SUD-K5-minor-freeness, the running
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Figure 5.8: Median running times of SATsym for instance set G2.

time improvements by the SAT model compared to the MILP model are crucial to check
for all snarks with up to 32 vertices if they contain a planar contraction, a K5-minor-free
contraction, a SUD-K5-minor-free contraction, or a CCD-containing contraction of a
PPM. From the 1 918 812 tested snarks we found

• 25 248 snarks that do not contain a planar contraction of a PPM,

• 19 130 snarks that do not contain a K5-minor-free contraction of a PPM,

• 1095 snarks that do not contain a SUD-K5-minor-free contraction of a PPM,

• 0 snarks that do not contain a contraction of a PPM that has no CCD.

The found snarks can be downloaded from
https://www.ac.tuwien.ac.at/klocker-snark-collections/. Up until now it was not known
if there exist snarks that do not have a PPM whose contraction leads to planar/K5-
minor-free/SUD-K5-minor-free graphs. With our implementation we could find many
examples of snarks that have those properties. Nevertheless, all tested snarks always had
a PPM whose contraction leads to a graph that has a CCD. Therefore, it remains an
open question if there exists a snark that does not have a PPM whose contraction leads
to a CCD-containing graph.

5.9 Conclusion and Future Work
In this chapter we formulated the new problem ESTM for checking if a transitioned
graph contains a sup-(H,S) transition minor, which is a generalization of sup-K5-minors
defined by Fleischner et al. [33]. A complexity analysis of the problem showed that it
is NP-complete, even if restricted to simple graphs. Furthermore, it can be solved in
polynomial time if the size of H is fixed. We also came up with an equivalent problem
EBSRTM, which is used as base problem for our models.

In the next step we formulated a mathematical model, which uses simple mathematical
objects such as partial functions and trees together with a set of constraints in logical
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form. It does not directly model the intermediate graph, which needs to be a transition
minor of the input graph (G, T ) and a sup-(H,S) graph, but ensures with its constraints
on the two input graphs the existence of such. Since it is not trivial that this model solves
the problem EBSRTM we provided a thorough proof of the equivalence in Section 5.2.

From the mathematical model we derived in a more or less straightforward manner a
MILP with which we can solve the problem EBSRTM in practice. Furthermore, we also
derived a SAT model from the mathematical model. To improve the solving times of both
models we developed symmetry breaking constraints that are based on the automorphism
groups of both input graphs restricted by the additional structure given through the
transition systems.

We tested both models on four different instance sets. Two of them are motivated
by the CDC conjecture and are based on contractions of PPM of snarks. The other
instances are randomly generated to consider the whole scope of the problem. In our
computational study we could verify that the SAT approach outperforms the MILP
approach significantly and the symmetry breaking constraints could improve the running
times especially for proving infeasibility. Through our tests we were able to find graphs
that are contractions of perfect matchings of snarks and contain a K5-minor but no
SUD-K5-minor. Such graphs were not known before and show that the theorem about
the existence of CCDs by Fleischner et al. [33] is indeed stronger than the theorem by
Fan and Zhang [24].

Furthermore, using the SAT model in a framework we systematically checked PPM
contractions of all snarks with up to 32 vertices and were able to find many snarks that
do not have PPMs whose contraction leads to SUD-K5-minor-free graphs, which answers
a previously open problem. We also could verify that all snarks with up to 32 vertices
have a PPM whose contraction leads to a graph containing a CCD. Whether or not all
snarks have this property is still an open problem. If this is the case it would imply the
correctness of the CDC conjecture.

In future work the presented mathematical model may be used to develop other algorithms
for this problem, which may be able to solve the problem even faster. One approach could
be a CP model that uses non-binary variables to represent the mappings between the
two input graphs. If we want to test large graphs, also a heuristic approach for finding
sup-(H,S) minors in reasonable time would be interesting, although such an algorithm
would not be able to prove that there does not exist such a transition minor.

Furthermore, the framework for finding snarks that do not contain a SUD-K5-minor-
free contraction of a PPM may be improved by adding symmetry breaking during the
enumeration of the PPMs. Moreover, a desirable extension would be to effectively search
for a PPM in a given snark such that the resulting contracted graph is SUD-K5-minor-free
instead of enumerating over all PPMs. Adding this additional level of searching for a
PPM adds a new dimension of complexity, especially since we want to find a PPM for
which our model is infeasible.
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CHAPTER 6
Conclusions

In this thesis we considered different open problems in graph theory that are concerned
with the existence or non-existence of graphs with certain properties. We developed
algorithms using techniques from combinatorial optimization to search for such graphs.
In some cases we could find intended graphs and therefore solve the open problem and in
other cases we verified for all graphs with up to a certain size that no graph with the
wanted properties exists. For all considered problems the application of our algorithms
gave us new graph theoretic insights but also the developed algorithms themselves
present a valuable tool set for similar problems and provide a foundation for researching
algorithmic approaches for graph construction problems.

The first problem we considered is concerned with planar uniquely hamiltonian graphs.
Bondy and Jackson conjectured that there does not exist a uniquely hamiltonian planar
graph with minimum degree three (UHPG3). We showed that to disprove this conjecture
it would be enough to find a uniquely hamiltonian planar graph with at most one
degree two vertex. A degree two vertex can be interpreted as a fixed edge in the unique
hamiltonian cycle, which allows us to search for fixed edge uniquely hamiltonian graphs
(FEUHGs) that are planar and have minimum degree three.

In a first approach we reformulated the problem as an optimization problem that given
a fixed number of vertices n searches for an FEUHG with n vertices that minimizes
the number of crossings and the number of degree two vertices. We proposed a general
variable neighborhood search (GVNS) approach to search for such graphs. The algorithm
only considers solutions where all crossings appear between chords, which are the edges
that are not in the hamiltonian cycle. This leads to a deterministic number of crossings
given a bi-partitioning of the chords without directly modeling a drawing in the plane.
The algorithm starts with a cycle graph consisting only of a hamiltonian cycle and no
chords, which is a feasible solution, and uses neighborhoods to add or remove chords or
to change the bi-partitioning of the chords. Whenever we add edges we need to recheck
if the resulting graph is still uniquely hamiltonian, which is done with a Lin-Kerninghan
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Heuristic (LKH) and with Concorde whenever we find a new global optimum. One
neighborhood aims for an optimal bi-partitioning of the chords, which is an NP-hard
problem on its own and gets solved with a branch-and-bound procedure. Using the
approach we could find FEUHGs with minimum degree three and two crossings for
all graph sizes between 10 and 100, but we could not find any planar FEUHGs with
minimum degree three. To overcome the drawback of a heuristic it would be interesting
in the future to develop an exact approach for solving this problem so that we can prove
that there do not exist graphs with fewer crossings. Furthermore, to guide the search for
good graphs it would be interesting to develop a measure how unique a hamiltonian cycle
is in the sense of how much must be changed so that another hamiltonian cycle exists.

In a second approach we reduced the problem of finding a UHPG3 to finding a planar
graph with minimum degree three that contains a stable fixed edge cycle (SFE-cycle).
We proposed two exact approaches to check if a graph contains an SFE-cycle, one is
based on integer linear program (ILP) and the other on a cycle enumeration using a
data structure for storing found cycles. Furthermore, we investigated properties that a
minimum counterexample, i.e. a planar graph with minimum degree three that contains
an SFE-cycle with a minimum number of vertices and edges, must satisfy. Beside other
properties we proved that a minimum counterexample must be triangle-free, which
reduces the search space a lot. Comparing the two approaches showed that the ILP-
based approach performs better for larger graphs with 19 or more vertices and the cycle
enumeration based approach is superior for smaller graphs. Using the cycle enumeration
approach we could verify that no minimum counterexample with 24 or fewer vertices
exists which implies that Bondy and Jackson’s conjecture is true for all graphs with
up to 25 vertices. To further increase this lower bound one would have to solve the
bottleneck of generating suitable candidate graphs by either providing a fast algorithm
to generate triangle-free 3-connected planar graphs or proving even stronger properties
for the minimum counterexample leading to an easier construction of candidates.

The second research area we considered are smooth graphs, which are a special class
of 4-regular hamiltonian graphs, with small independence numbers. Besides other open
questions for subclasses of smooth graphs Sarvanov conjectured that every smooth graph
with n > 11 vertices has independence number larger than or equal to 2n/7. In this
context we developed a branch-and-bound framework to search for a given n ∈ N, a
ratio 0 < q < 1, and a set of additional properties P for a smooth graph with n vertices
that satisfies P and has independence number smaller than qn. One important aspect of
the branch-and-bound procedure is computing lower bounds for partial solutions. To
this end we developed multiple lower bound criteria based on the theoretic work of
Fleischner, Sabidussi, and Sarvanov. Furthermore, a fast greedy algorithm is used to
compute independent sets for partial solutions. We applied our approach to four different
problems and could verify Sarvanov’s conjecture for all smooth graphs with up to 24
vertices. Last but not least, we could find smooth graphs with n = 20 and n = 24
vertices, where all inner cycles have length four, with independence number smaller than
5n/16, which answers a previously open question. As we did for uniquely hamiltonian
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graphs one approach to decrease the search space for this problem would be to research
properties of a minimum smooth graph with independence number less than 2n/7.

Finally, the third research area we considered are transition minors, an extension of
the minor concept to transitioned graphs, which appears in the context of compatible
circuit decomposition (CCD) and the cycle double cover (CDC) conjecture. Fleischner
et al. proved in a previous work that a transitioned graph contains a CCD if it is
sup-undecomposable K5 (SUD-K5)-minor-free. We showed that the problem of checking
SUD-K5-minors can be done in polynomial time and generalized the problem replacing
the K5 by a transitioned input graph as second input leading to an NP-hard problem.
To solve the generalized problem we developed a mathematical model. The main strength
of the model is that it is equivalent to the existence of the wanted intermediate transition
minor without modeling the minor itself. One of the main tasks of this research was
proving this non-trivial equivalence.

We then used the mathematical model to formulate a mixed integer linear programming
(MILP) model and a boolean satisfiability problem (SAT). Furthermore, we proposed
symmetry breaking constraints for our models based on the automorphism groups of the
two input graphs. Comparing the two approaches showed that the SAT approach outper-
forms the MILP approach and the symmetry breaking constraints further improve the
running times especially for graphs with many symmetries such as the K5. Finally, using
the faster SAT approach embedded into a framework, we were able to classify all snarks
with up to 32 vertices with respect to the existence of perfect pseudo-matchings (PPMs)
whose contraction lead to planar/K5-minor-free/SUD-K5-minor-free/CCD-containing
graphs. Within this classification we found snarks that have no PPM whose contraction
leads to a SUD-K5-minor-free graph, whose existence was an open question. Moreover, we
could prove that all snarks with up to 32 vertices contain a PPM whose contraction leads
to a graph containing a CCD. Furthermore, we found graphs that have a PPM whose
contraction is SUD-K5-minor-free but have no PPM whose contraction is K5-minor-free,
which shows that the concept of SUD-K5-minor-free graphs is stronger than the concept
of K5-minor-free graphs. To improve the performance of our approaches it would be
interesting for future work to include the search for a PPM into the model so that we
can avoid enumerating all PPMs of a snark. Another approach would be to design a
practically efficient polynomial algorithm that checks for SUD-K5-minors, which can then
be compared to the performance of our SAT approach. Furthermore, the computational
results show that the contraction of many PPMs lead to graphs that contain a CCD
but are not SUD-K5-minor-free. This gap might motivate to search for a more general
sufficient condition for the existence of CCDs.

All in all we showed in this thesis that combinatorial optimization techniques are appro-
priate tools for addressing challenging graph construction problems from graph theory.
Although there are practical limits, and we cannot prove the nonexistence of certain
graphs with algorithmic approaches, algorithms can still be useful for getting more in-
sights and providing counterexamples. Furthermore, we saw that graph theoretic results
can help to decrease the size of the search space drastically and therefore are important

149



6. Conclusions

to incorporate for well performing practical search algorithms.
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α(G), 12
adjacent, 8
articulation point, 10
Aut(G, T ), 135
Aut(G), 13
automorphism, 13, 135
AutS(H,S), 137

bad-cut-vertex, 102
basic variable neighborhood search, 37
basic-sup-(H,S), 107
basic-sup-(H,S)-reduced-minor-free, 108
best improvment, 35
bipartite graph, 8
boolean satisfiability problem, 21
branch-and-bound, 22
branch-and-cut, 30
bridge, 10
bridgeless, 10
BVNS, 37

CDC, 97
CDC conjecture, 97
certificate, 19
certificate-checking algorithm, 19
chords, 45
chromatic index, 12
chromatic number, 12
circuit, 9
clause, 21
claw, 13
closed walk, 9
CNF, 21
co-NP, 20

combinatorial optimization problem, 18
complement of decision problems, 20
complete bipartite graph, 8
complete graph, 8
completely transitioned graph, 101
conditioning, 31
conjunctive normal form, 21
connected graph, 10
connectivity, 10
COP, 18
cost function, 25
crossing, 13
crossing number, 14
cubic graph, 8
curve, 13
cut, 30
cut vertex, 10
cutting plane method, 30
cycle, 9
cycle double cover, 97
cycle vertex, 65
cyclical edge cut, 10
cyclically k-edge connected, 10

∆(G), 8
δ(G), 8
Davis–Putnam–Logemann–Loveland, 31
decision problem, 16
degree, 8
diversification, 33
dominating cycle, 11
dominating FE-cycle, 57
DPLL, 31
drawing, 13
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dual bound, 29
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E(v), 8
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EBSRTM, 108
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edge cut, 10
edge deletion, 9
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enumeration, 22
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ESSI(q,P), 85
ESTM, 104
eulerian graph, 11
eulerian tour, 11
even, 11
exhaustive search, 22
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minors, 108
existence of sup-transition minors, 104
extreme point, 26

F (G), 14
face, 14
factor, 11
FE-cycle, 42
feasible region, 25
feasible solution, 25
FEUHG, 42
first improvement, 35
fixed edge cycle, 42
fixed edge uniquely hamiltonian graph,

42
fixed large vertex, 65
formulation, 29

G[Y ], 9
gap sequence, 92
general variable neighborhood search, 38
globally optimal solution, 18

graph, 7
greedy construction heuristic, 34
GVNS, 38

hamiltonian cycle, 11
hamiltonian cycle problem, 17
hamiltonian graph, 11
homomorphism, 12, 135
hybrid metaheuristic, 39

ILP, 27
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independence number, 12
independent set, 12
induced subgraph, 9
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instance of an optimization problem, 17
integer linear program, 27
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k-connected, 10
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k-opt neighborhood structure, 35
k-regular, 8
k-vertex-coloring, 12
k-vertex-connected, 10
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large neighborhood search, 38
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lazy constraints, 30
length of walk, 9
line graph, 98
linear program, 24
linear programming relaxation, 28
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LNS, 38
local optimum, 26, 36, 37
local search, 35
LP, 24

many-one reduction, 20
matching, 13
maximal FE-cycle, 57
maximization problem, 18
maximum degree, 8
maximum pseudo-matching, 67
metaheuristic, 33
MILP, 27
minimization problem, 18
minimum degree, 8
minor, 102
mixed integer linear program, 27
move, 35
multiple edges, 8

ν(G), 14
N(v), 8
nearest neighbor heuristic, 34
neighborhood, 35
neighborhood structure, 35
NP, 19
NP-complete, 20
NP-hard, 20
number of faces, 15

objective function, 25
optimization problem, 17
orb(v), 136
orbit, 136
orbS(v), 137
order, 8
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outer vertex, 65

P, 18
P2(X), 7
path, 9
perfect pseudo-matching, 13
planar embedding, 14

planar graph, 14
plane graph, 14
polyhedron, 25
polynomial reduction, 20
polynomial transformation, 20
PPM, 13
pseudo-matching, 13

random improvement, 35
really large vertex, 65
reduced linear program (LP), 25
reduced transition minor, 102
reduced variable neighborhood search, 37
region, 14
relaxation, 28
resolvent, 31
resolving, 31
RVNS, 37

SAT, 21
satisfiable, 21
satisfied clause, 21
search problem, 17
search strategy, 23
separating subgraphs, 101
separation problem, 30
separator, 101
SFE-cycle, 57
SFE-graph, 57
shaking, 37
simple graph, 8
Simplex method, 25
small vertex, 65
smooth graph, 84
snark, 97
spanning, 11
stabilizer, 137
stabilizer orbits, 137
stable cycle, 78
stable fixed edge cycle, 57
stable fixed edge graph, 57
standard form, 26
subgraph, 9
SUD-K5, 103
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SUD-K5-minor-free graph, 103
sup-(H,S), 103
sup-(H,S)-minor-free, 103
sup-undecomposable K5, 103
symmetry breaking, 22

t-separator, 101
total enumeration, 22
tour, 11
trail, 9
transition minor, 102
transition system, 101
transitioned graph, 101
transitions, 101
traveling salesperson problem, 18
truth assignment, 21
TSP, 18

UD-K5, 103
UHPG3, 44
undecomposable K5, 103
uniquely hamiltonian, 41
uniquely hamiltonian fixed edge cycle, 42
uniquely hamiltonian planar graph with

minimum degree three, 44
unit resolution, 31

valid inequality, 30
variable neighborhood descent, 36
vertex cut, 10
vertex deletion, 9
vertex-connectivity, 10
very large scale neighborhood search, 38
very small vertex, 67
VLSN, 38
VND, 36

walk, 9

χ(G), 12
χ′(G), 12
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Acronyms

BVNS basic variable neighborhood search.

CCD compatible circuit decomposition.

CDC cycle double cover.

CDCL conflict driven clause learning.

CNF conjunctive normal form.

COP combinatorial optimization problem.

CP constraint programming.

DP dynamic programming.

DPLL Davis–Putnam–Logemann–Loveland.

EBSRTM existence of basic sup-reduced-transition minors.

ESTM existence of sup-transition minors.

FE-cycle fixed edge cycle.

FEUHG fixed edge uniquely hamiltonian graph.

GVNS general variable neighborhood search.

ILP integer linear program.

LKH Lin-Kerninghan Heuristic.

LNS large neighborhood search.

LP linear program.
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MAX-SAT maximum satisfiability problem.

MILP mixed integer linear program.

MTZ Miller-Tucker-Zemlin.

PPM perfect pseudo-matching.

RVNS reduced variable neighborhood search.

SAT boolean satisfiability problem.

SFE-cycle stable fixed edge cycle.

SFE-graph stable fixed edge graph.

SUD-K5 sup-undecomposable K5.

TSP traveling salesperson problem.

UD-K5 undecomposable K5.

UHPG3 uniquely hamiltonian planar graph with minimum degree three.

VLSN very large scale neighborhood search.

VND variable neighborhood descent.
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