
Optimierungsansätze zur Planung
von Freizeit-Fahrradrouten

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Benedikt Klocker B.Sc.
Matrikelnummer 0926194

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Ao.Univ.-Prof. DI Dr. Günther Raidl
Mitwirkung: Mag. DI Dr. Matthias Prandtstetter

Wien, 22. April 2015
Benedikt Klocker Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Optimization Approaches for
Recreational Bicycle Tour

Planning

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computational Intelligence

by

Benedikt Klocker B.Sc.
Registration Number 0926194

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.-Prof. DI Dr. Günther Raidl
Assistance: Mag. DI Dr. Matthias Prandtstetter

Vienna, 22nd April, 2015
Benedikt Klocker Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Benedikt Klocker B.Sc.
Neustiftgasse 31/27, 1070 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 22. April 2015
Benedikt Klocker

v

Danksagung

Diese Arbeit ist Teil eines Projektes des AIT Austrian Institute of Technology, welchem ich
für diese Möglichkeit danken will. Einen besonderen Dank möchte ich meinen Betreuern
Prof. Günther Raidl und Dr. Matthias Prandstetter für ihre stetige Unterstützung,
ihre professionellen Ratschläge, ihre Geduld und ihre konstruktive Kritik aussprechen.
Weiters möchte ich Alec Hager von der Radlobby Wien dafür danken, dass ich deren
Popularitätsdaten zum Testen verwenden darf.

Des Weiteren möchte ich meinen Eltern dafür danken, dass sie mir die Möglichkeit
gegeben haben zu studieren. Ich danke ihnen und meiner Freundin Stefanie Posch für
ihre durchgängige Unterstützung. Zusätzlich danke ich Johann Klocker, Ruth Crevis und
Adam Tynas dafür, dass sie Teile meiner Arbeit Korrektur gelesen haben.

vii

Acknowledgements

This thesis is based on a project of the AIT Austrian Institute of Technology, which I
want to thank for this opportunity. Especially, I would like to thank my advisors Prof.
Günther Raidl and Dr. Matthias Prandstetter for their constant support and advice,
their patience and their constructive feedback. Moreover I want to thank Alec Hager
from the “Radlobby Wien” for letting me use their popularity data for testing purposes.

Furthermore, I want to thank my parents for giving me the possibility to study and I
also want to thank them and my girlfriend Stefanie Posch for their continuous support.
Additionally I want to thank Johann Klocker, Ruth Crevis and Adam Tynas for proof
reading parts of this thesis.

ix

Kurzfassung

Körperliche Aktivität ist wichtig, um gesund zu bleiben. Deshalb entwickeln wir einen
Algorithmus, um schöne Freizeit-Fahrradrouten zu berechnen, mit dem Ziel, das Fahrrad-
fahren attraktiver zu machen.

Wir formulieren die Aufgabe als ein mathematisches Optimierungsproblem, welches
dem „arc orienteering problem“ (AOP) ähnlich ist. Das Problem ist auf einem gerichteten
Multigraphen definiert und hat als Ziel, die Attraktivität einer Route zu maximieren,
während die Länge der Route beschränkt ist. Die mehrfache Verwendung einer Straße
ist erlaubt, führt aber zu einer Verringerung der Gesamtattraktivität. Das Problem
ist NP-schwer und daher ist die Entwicklung von Algorithmen, die in der Praxis in
akzeptabler Zeit gute Lösungen liefern, besonders wichtig.

Drei gemischt-ganzzahlige lineare Programme werden entwickelt, um das Problem
exakt zu lösen. Das erste Programm verwendet als Subtour-Eliminationsbedingungen eine
klassische Schnittformulierung, das zweite einen Flussansatz und das dritte Programm
die Kombination der ersten beiden Formulierungen.

Das Testen der Implementierungen der drei gemischt-ganzzahligen linearen Programme
unter der Benützung von CPLEX ergibt, dass die Flussformulierung für die meisten
Testinstanzen schneller ist als die anderen zwei Formulierungen. Beim Vergleich unserer
Implementierung der Flussformulierung mit anderen exakten Algorithmen, welche ähnliche
Probleme wie zum Beispiel das AOP behandeln, war unsere Implementierung bis zu 1000
Mal schneller. Verglichen mit heuristischen Lösungsansätzen ähnlicher Probleme erhalten
wir, dass für manche Instanzen unsere Implementierung in kurzer Zeit die optimale
Lösung findet, während die Heuristiken nur suboptimale Lösungen finden. Allerdings
skalieren die Heuristiken besser auf sehr große Instanzen. Unsere Implementierung ist in
ländlichen Gegenden für Routen bis zu 60 km und in städtischen Bereichen für Routen bis
zu 13 km gut anwendbar, was für die meisten praktischen Zwecke ausreichend erscheint.

xi

Abstract

Exercising is important to stay healthy. Therefore, we develop an algorithm for finding nice
recreational bicycle tours with the goal of making exercising by cycling more attractive.

We formulate this challenge as a mathematical optimization problem similar to the
arc orienteering problem (AOP) on a directed multigraph. The objective is to maximize
the attractiveness of a route under the condition of not exceeding a maximal tour length.
It allows multiple usage of streets, but penalizes it such that the attractiveness or score
of the route decreases. The problem is NP-hard and developing practically effective
algorithms running in reasonable time is therefore crucial.

Three mixed integer linear programs are provided for solving the given problem
exactly. The first program uses a classical cut formulation as sub tour elimination, the
second a flow formulation and the third the combination of the first two.

Testing the implementations of the three mixed integer linear programs using CPLEX
reveals that the flow formulation is for our purposes more efficient than the other two
formulations. Compared to other exact algorithms solving similar problems like the AOP,
our implementation of the flow formulation is faster up to a factor of 1000. If we compare
our implementation with heuristic approaches for similar problems, we get the result
that for some instances our implementation finds the optimal solution in short time and
the heuristic approaches do not find the optimal solution. However, the heuristics scale
better for large instances. On the countryside the algorithm is applicable for routes up
to 60 km and in urban areas for routes up to 13 km, which seems to be enough for our
intended practical purposes.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

List of Figures xvi

List of Tables xvii

1 Introduction 1
1.1 Methodological Approach . 3
1.2 Structure of the Work . 3

2 Recreational Tour Planning Problem 5
2.1 Towards a Problem Formulation . 5
2.2 First Problem Formulation . 8
2.3 Problem Transformations . 10
2.4 Further Problem Transformations . 26

3 Complexity 39
3.1 Complexity Theory for Optimization Problems 39
3.2 Complexity of RTPP1 . 40

4 Related Work 45
4.1 The Traveling Salesman Problem . 45
4.2 Traveling Salesman Problems with Profits 45
4.3 Arc routing problems with profits . 47

5 Mixed Integer Programming Approach for RTPP3 51
5.1 Preprocessing . 51
5.2 From a Usage Vector to a Walk . 52
5.3 Mixed Integer Linear Program . 59
5.4 Flow Approach for Eliminating Subtours 63

xv

6 Implementation 71
6.1 General . 71
6.2 Parsing and Preprocessing . 72
6.3 Solving . 73

7 Evaluation 75
7.1 Test Instances . 75
7.2 Parameter Tuning . 78
7.3 Comparison of the Three Implementations 81
7.4 AOP and CTPP Benchmarks . 89
7.5 Real World Applicability . 94

8 Conclusion 101
8.1 Summary . 101
8.2 Limitations . 102
8.3 Further Work . 102

Bibliography 103

List of Figures

1.1 Small suitable recreational bicycle route between 2 km and 3 km length starting
and ending at the town hall of Vienna . 2

2.1 Street system where the only way to use the attractive green road and come
back to the start point would be to use the red street two times. 6

2.2 Street system where the only way to use all attractive green roads R1 to Rn
is to use the red road n+ 1 times. 7

2.3 Reasonable realistic street system where the triangle inequality does not hold
for street lengths . 9

2.4 Problem transformation from RTPP1 to RTPP2 by inserting a new end node. 11
2.5 Problem transformation from RTPP2 to RTPP1 by inserting a new node,

which is the new start and end node at the same time. 14
2.6 Problem transformation from RTPP2 to RTPP3 for an example graph by

copying each arc. 17
2.7 Problem transformations. 27
2.8 Transformation of Theorem 2.4.1 for a small graph G to G′. 29
2.9 Transformation of Theorem 2.4.3 for a part of the graph G′. 33

xvi

5.1 Graph where the set of feasible solutions of the relaxation of MIP1 and the
set of feasible solutions of the relaxation of MIP2 is incomparable 69

7.1 A tour of 8 km length, starting and ending at the town hall of Vienna 97
7.2 All streets of the instance Josefstadt colored according to their attractiveness

values . 98
7.3 Tour starting and ending at a Rehabilitation Center in Kittsee with 20 km

length . 99
7.4 Tour starting and ending at a Rehabilitation Center in Kittsee with 20 km

length only consisting of nodes with distance smaller or equal 2 km to the
Rehabilitation Center . 100

List of Tables

7.1 Parameter τ testing for the cut implementation applied to the instances
Josefstadt, Kittsee and test graph. 80

7.2 Parameter τ testing for the cut implementation applied to the benchmark
instances where the profits equal the costs. 81

7.3 Parameter τ testing for the cut implementation applied to the benchmark
instances with random profits. 82

7.4 Parameter τ testing for the cut implementation applied to the Josefstadt
instances with realistic profits. 82

7.5 Implementation comparison with the Josefstadt, Kittsee and test graph instances. 84
7.6 Implementation comparison with the benchmark instances with random profits. 86
7.7 Implementation comparison with the benchmark instances with profits equal

the costs. 87
7.8 Implementation comparison with the Josefstadt instance with real profits . . 88
7.9 Benchmark tests with the benchmark instances where the profits equal the

costs for Cmax = 20000, Cmax = 40000 and Cmax = 60000 90
7.10 Benchmark tests with the benchmark instances where the profits equal the

costs for Cmax = 80000 and Cmax = 100000 91
7.11 Benchmark tests with benchmark instances with random profits. 93
7.12 Route calculations starting and ending in a Rehabilitation Center in Kittsee. 96

xvii

CHAPTER 1
Introduction

It is commonly known that exercising is important to stay healthy and fit. Especially for
people in rehabilitation exercising is important since they have to rebuild their muscles.

This work has been done as part of the project Fit2Trike of the AIT Austrian Institute
of Technology. The German title of the project is “ Machbarkeitsstudie zur Entwicklung
eines altersgerechten E-Tricycles, Routings und Sharing-Systems für Wohneinrichtungen”
and it is funded by the Austrian Research Promotion Agency (FFG) with the project
number 835903. Its goal is to support people with special needs to do more exercising by
cycling. With people with special needs we mean here a very diverse population group of
old people, people in rehabilitation or people with chronic diseases like multiple sclerosis.
One part of this project is to find suitable recreational bicycle routes for those people.
The main goal of this thesis is to find computational approaches to solve this problem
fulfilling the practical needs.

We characterize the suitability of a route by the following properties:

• The route starts and ends at a user defined point.

• The length of the route has to be within a custom interval.

• No street is used more than two times in the same direction.

• The route stays within a given radius around the starting point.

• The route should be as attractive as possible which is influenced in a positive way
by the following properties:

– Streets are not used more than once.
– Cycleways are used instead of heavily trafficked roads.
– The route leads through nice areas.
– It includes some points of interest.

1

Figure 1.1: Small suitable recreational bicycle route with between 2 km and 3 km length
starting and ending at the town hall of Vienna (green star). (c©OpenStreetMap contrib-
utors)

Figure 1.1 illustrates such a suitable recreational bicycle route with length between
2 km and 3 km, starting and ending at the town hall of Vienna. There are many reasons
why computing well suited bicycle routes could improve the attractiveness of bicycling
for people with special needs.

• It can give them a safer feeling since they do not have to worry where to drive
anymore.

• The fear of not finding home is taken from them.

• Letting the route stay in a small radius has the benefit that the rider can turn
around and ride home at any point, for example if he or she is not feeling well.
Another positive aspect is that medical help is not far away.

• Avoiding busy roads increases the safety of the route.

• An attractive route can be an additional motivation factor.

2

1.1 Methodological Approach

To formalize the characterizations from above we will define a mathematical optimization
problem, which we will call Recreational Tour Planning Problem(RTPP). It is similar
to the arc orienteering problem (AOP) introduced in [22] and even more similar to an
extension of the AOP, the so called cycle trip planning problem (CTPP), which is defined
in [25]. To model the street system we use a directed multigraph. Every arc has a score,
which represents its attractiveness, and a length. The objective of the optimization
problem is now to maximize the total score of the route with the restriction that the
tour length must be within a given interval. To avoid using a street multiple times we
penalize it by reducing the total score. Our defined problem is NP-hard since there is a
polynomial time reduction from the traveling salesman problem (TSP) to our problem.

To reduce instances we apply a preprocessing phase before solving the RTPP. To
exactly solve the optimization problem we will formulate three mixed integer linear
programs. Three different approaches for subtour elimination will be presented. The
first subtour elimination is a classical cut formulation, the second a flow formulation and
the third the combination of the first two. The relaxation of the first and the second
formulations are not comparable. Therefore the relaxation of the third formulation is
stronger than the relaxations of the first two. To solve the first and the third formulation,
we will use branch-and-cut to dynamically generate violated constraints, since the number
of the constraints is exponential.

To test the three formulations we implemented them in C++ using CPLEX. Comparing
the three implementation for different test instances will show, that the flow formulation
is faster than the other two formulations. To compare our implementation with other
approaches from the literature we will use benchmark instances which were used in
[22] and [25] and compare our flow formulation with their approaches. The approaches
described in [22] and [25] are two mixed integer programs solved with CPLEX, a greedy
randomized adaptive search procedure (GRASP) and an iterated local search procedure
(ILS). For most instances our implementation is with up to a factor 1000 faster than
their mixed integer programs solved with CPLEX. There are also instances where the
heuristics GRASP and ILS do not find the optimal solution and our implementation
does within a short time. However, the two heuristic approaches scale better for large
instances. To test the practical applicability of our implementation we will use test
instances representing parts of Josefstadt in Vienna, Kittsee in Austria and East-Flanders
in Belgium. The results are that on the countryside the implementation is applicable for
tours up to 60 km and in urban areas for tours up to 13 km.

The preparation of map material and attractiveness values is not part of this thesis.
For testing we use map material provided by the AIT Austrian Institute of Technology
and benchmark instances from the literature.

1.2 Structure of the Work

This thesis is structured as follows.

3

• After this introduction we specify the details of the route planning problem and come
up with a mathematical problem formulation. Several problem transformations
will be introduced, yielding new problem variants, to simplify certain aspects and
show relationships.

• In Chapter 3 we will discuss complexity issues of our problem variants.

• Related problems are discussed in Chapter 4.

• Chapter 5 contains the description of the algorithms which we are proposing for
solving the problem. A general preprocessing is discussed and and the three different
MIP-models are introduced.

• Chapter 6 gives an overview on our specific implementation.

• In Chapter 7 we will present some test results for different test instances. Further-
more we will compare one of our algorithms with algorithms for similar problems
and we will test the practical applicability of this algorithm.

• Finally, in Chapter 8, we will draw conclusions and outline possible future interesting
work.

4

CHAPTER 2
Recreational Tour Planning

Problem

In this chapter, we will specify our problem in mathematical terms. After defining a
basic version of the problem we will use some transformations to get a more general
formulation which will be then used throughout the whole document.

2.1 Towards a Problem Formulation

In this part we will discuss some requirements for attractive routes and how we can
mathematically define them.

To model a street system we will be represented by a directed graph where each
intersection corresponds to a node and each part of a street between intersections
corresponds to an arc. Since there are street systems where two distinct street parts start
and end at the same intersections, we will formally need a multigraph.

We already talked about a few benefits of well suited bicycle routes for people with
special needs in Chapter 1. It is clear that our definition of an attractive route should
support these benefits.

When referring to bicycle routes we are referring to a closed tour, where a closed tour
refers to a route which ends at the same point from which it started.

One of the benefits of well suited bicycle routes is that the user can decide how long
a route should be or how long it should last. Since we cannot always find a route of
an exact length or duration we will model this by a minimal/maximal route length or
duration and then search for routes with lengths or durations in between this interval.

Another benefit is that the user can specify that the route should not lead too far
away from the start point. For this we need the restriction that the distance of every
point of the route to the start point should not be larger than some given maximal
distance. Since we can ensure this property by removing all streets which are farther

5

start

very attractive road

Figure 2.1: Street system where the only way to use the attractive green road and come
back to the start point would be to use the red street two times.

away from the start point than the maximal distance, we will not consider this restriction
in the problem formulation. This removal can be done in a pre-processing step and is
therefore not relevant for our solution methods.

The next benefit of well planned bicycle routes is that we can prepare nice and
attractive bicycle routes. So, first we have to think about what “nice” and “attractive”
means for a route. Clearly, it is not attractive to drive one street multiple times and
therefore it would be nice to forbid this. But the problem is that in some street systems,
especially in street systems with many one-way streets, it will be necessary to drive one
street multiple times, even in the same direction. Figure 2.1 shows an example of a street
system where we need to use a street two times in the same direction to be able to use
a very attractive street. The dashed lines represent a tour from the start over the very
attractive road back to the start. The blue part is the part of the tour before we reach
the attractive road and we can see that it uses the red street once. The orange part is
the part from the attractive road back to the start and it also uses the red street once,
therefore all in all the complete tour uses the red street twice.

There are also constructions where you need to use a street more than two times to
get to all nice roads. Figure 2.2 shows a street system where we need to use one street
n+ 1 times in the same direction in order to use all attractive green streets R1 to Rn.
Although we just showed that it is possible such street systems will appear in the real
world only rarely. Also if it would happen in a real street system the question would be if
the usage of the attractive green roads would compensate the fact that driving one street
three times in the same direction is barely interesting. This leads us to the restriction
that we can use one street at most two times in the same direction.

Using the same road more than once is generally less attractive. We penalize multiple
road traversals. Therefore we want to give penalties for traversing one road two times in
the same direction but we also want to give penalties for using one road two times in

6

start

R
1

R
2

. . .

R
n

Figure 2.2: Street system where the only way to use all attractive green roads R1 to Rn
is to use the red road n+ 1 times.

opposite directions, since this could also be a little boring and since we want to get nice
cycle tours at the end and not only a path to some point and then the same way back.
But in complex street systems it could be that a street is split into two parts for each
direction and then it could happen that on the right side is an intersection and on the
left side not. Now it is not clear anymore which parts of the street usages should get
penalized how. How should we penalize it if the route uses the left side and only half of
the right side until the intersection? A solution to this problem is to allow penalizing of
any two street parts on the map. That means in our example that we can independently
penalize the usage of the left side of the street together with the first part of the right
side and the usage of the left side of the street together with the second part of the right
side. In general this means that we can define for any two street parts s1 and s2 that,
if we use the street part s1 and the street part s2 both at least once in our route, the
attractiveness of our route will decrease by some penalty. If s1 = s2 we define that this
penalty is only given if we use the street part two times.

Lastly, it is preferable that busy streets are used only rarely, so as to avoid heavy
traffic. It is also assumed that roads with less traffic are more likely to lie in attractive
regions (e.g. recreational areas).

To get all this we will provide an attractiveness value for every arc (street part). A
high attractiveness value would indicate that the street is maybe a cycle way and that it
lies in a nice area. A low attractiveness, which can also be negative, would indicate that
the road has maybe heavy traffic or does not lie in a nice area. There could be many
more factors which can affect the attractiveness of a street and we will not discuss in
detail how to calculate such attractiveness values, which can also heavily depend on the
preferences of the user. To calculate an attractiveness value of the whole route we will
sum up all attractiveness values of the used arcs and subtract the penalties.

The goal is now to find a closed route with length or duration in the given interval
and with a maximal attractiveness.

7

2.2 First Problem Formulation

We can now formulate the problem introduced in Section 2.1 in a mathematical manner.
Before we do this we need a few mathematical definitions. The graph theoretical notations
are mostly from the book [12] with a view adaptations.

Definition 2.2.1 (Directed Multigraph). Let V be a set of nodes and A be a set of arcs.
Let further be s : A→ V and t : A→ V two functions. Then G = (V,A, s, t) is called a
directed multigraph. For an arc a we call s(a) its source node and t(a) its target node. So
the arc a describes an arc from the node s(a) to the node t(a).

Remark 2.2.1. We did not forbid that s(a) = t(a) for some arc a, that means we also
allow loops in a directed multigraph.

Definition 2.2.2 (Walk). Let G = (V,A, s, t) be a directed multigraph. A walk is a
finite sequence w = (w1, ..., wk) ∈ Ak for some k ∈ N such that t(wi) = s(wi+1) for all
1 ≤ i ≤ k − 1. w is a closed walk if additionally s(w1) = t(wk).

Remark 2.2.2. In [12] a walk is defined as a sequence of arcs and nodes, but since we can
get start and end node of an arc very easily by using the functions s and t we omit the
nodes in the sequence to get an easier notation.

Definition 2.2.3 (Usage Function). Let G = (V,A, s, t) be a directed multigraph. A
usage function is a function u : A→ N where u(a) represents the number of times the
arc a is used. Let w = (w1, ..., wk) be a walk in G, then we define the usage function uw
of w by

uw(a) := |{j : wj = a}|

Definition 2.2.4 (Total Costs). Let G = (V,A, s, t) be a directed multigraph and
c : A → [0,∞) be a cost function (c(a) is the cost of the arc a). Let u : A → N be a
usage function.

We define the total costs of u by

c(u) :=
∑
a∈A

u(a) · c(a).

We define the total costs of a walk w by c(w) = c(uw) where uw is the usage function
of w.

Remark 2.2.3. In our context a cost value c(a) can be interpreted as the length of a or
the duration to drive along the arc a.

Since streets can make curves we cannot assume in general, regardless if c(a) is the
length of a or the duration to drive along a, that the triangular inequality holds for c.
Figure 2.3 is an example of a street system violating the triangle inequality. When the
streets modeled by the arcs a1 and a2 are straight and the street modeled by the arc
a3 is curved it is clear that the street a3 is longer than a1 and a2 together. Also if the

8

v1 v2
a1

v3
a2

a3

Figure 2.3: Reasonable realistic street system where the triangle inequality does not hold
for street lengths

streets are flat the time duration to ride along it will be proportional to the length and
therefore the triangular inequality will also not hold in this case for our situation.

Another situation where the triangular inequality does not hold could be when a
street is bumpy and therefore the duration to drive along it may be longer than driving
along another street even if that would be a detour in terms of length.

That means it can be that there are three arcs a1, a2, a3 with s(a2) = t(a1),
s(a3) = t(a2), s(a1) = t(a3) and c(a1) > c(a2) + c(a3). An easy example is if s(a2) lies
on a line between s(a1) and s(a3), the streets a1 and a2 are straight and the street a3 is
a curved street directly from s(a3) to t(a3) = s(a1).

Definition 2.2.5 (Total Profit). Let G = (V,A, s, t) be a directed multigraph and
p : A → R be a profit function (p(a) is the profit of the arc a). Let further be
P : A×A→ R a symmetric penalty function. Let u : A→ N be a usage function.

We define the total profit of u by

p(u) :=
∑
a∈A

u(a) · p(a)−
∑

a1, a2 ∈ A
a1 6= a2

u(a1) ≥ 1 ∧ u(a2) ≥ 1

P (a1, a2)−
∑
a ∈ A
u(a) ≥ 2

P (a, a).

We define the total profit of a walk w by p(w) = p(uw) where uw is the usage function
of w.

Remark 2.2.4. In our context a profit value p(a) can be interpreted as the attractiveness
of a. P represents the penalties. That means P (a1, a2) is the penalty if we use the arcs
a1 and a2 both at least once. P (a, a) is the penalty if we use the arc a at least twice.

Problem (RTPP1). Let G = (V,A, s, t) be a multigraph and vstart ∈ V be the start node
of the searched route. Let further be [Cmin, Cmax] ⊆ R a cost interval and let p : A→ R
be a profit function and c : A→ [0,∞) be a cost function. Let P : A× A→ R further
be a symmetric penalty function.

9

The problem is now to find a closed walk w = (w1, ...wk) in G with maximal total
profit p(w) satisfying the following conditions:

s(w1) = s(wk) = vstart (2.1)
uw(a) ≤ 2 ∀a ∈ A (2.2)
Cmin ≤ c(w) ≤ Cmax (2.3)

We call the tuple (G, vstart, Cmin, Cmax, p, c, P) an instance of RTPP1.

2.3 Problem Transformations
In this section we will present some problem transformations, and reach our final problem
formulation which will be used for our algorithms.

2.3.1 Adding an end node

For some solution approaches it is easier if the starting and ending point are explicitly
not the same, because it makes it easier to distinguish between the start node or the
end node and the other nodes used in a walk. Therefore the first transformation will
be splitting the start node into two nodes, a start node and an end node such that in
general we have two distinct nodes for starting and ending.

Problem (RTPP2). Let G, Cmin, Cmax, p, c and P as in the problem definition of
RTPP1. Let now be vstart ∈ V and vend ∈ V two distinct nodes, that means vstart 6= vend.

The problem is now to find a walk w = (w1, ..., wk) in G with maximal total profit
p(w) satisfying (2.2) and (2.3) and the following new condition:

s(w1) = vstart, s(wk) = vend (2.4)

We call the tuple (G, vstart, vend, Cmin, Cmax, p, c, P) an instance of RTPP2.

We now present that every instance of RTPP1 can be transformed into an instance
of RTPP2 in linear time and vice versa. The figures 2.4 and 2.5 illustrate these transfor-
mations.

Theorem 2.3.1. Let (G, vstart, Cmin, Cmax, p, c, P) be an instance of RTPP1. Then we
can construct in linear time an instance (G′, vstart, vend, Cmin, Cmax, p

′, c′, P ′) of RTPP2
such that the solution w′ of RTPP2 can be transformed into a solution w of RTPP1 in
constant time.

Proof. We will formalize the transformation illustrated in figure 2.4. Let G = (V,A, s, t)
then we define

V ′ := V ∪ {vend} with vend 6∈ V

A′ := A ∪ {aend} with aend 6∈ A

s′(a) := s(a) ∀a ∈ A and s′(aend) = vstart

10

vstart

...

...

vstart

...

...

vend
aend

Figure 2.4: Problem transformation from RTPP1 to RTPP2 by inserting a new end node.

t′(a) := t(a) ∀a ∈ A and t′(aend) = vend

With that we get a new multigraph G′ = (V ′, A′, s′, t′). We further define

p′(a) = p(a) ∀a ∈ A and p′(aend) = 0

c′(a) = c(a) ∀a ∈ A and c′(aend) = 0

P (a1, a2)′ = P (a1, a2) ∀a1, a2 ∈ A and P (aend, a) = P (a, aend) = 0 ∀a ∈ A′

Let now w′ = (w′1, ..., w′k) be a solution according to the new instance. We know
t(wk) = vend and therefore it follows that wk = aend since aend is the only arc with
t(aend) = vend. For all i < k we know w′i 6= aend since there is no arc a satisfying
s(a) = vend. We define w := (w1, ..., wk−1) where wi := w′i. This is a walk in G and since
s(w1) = vstart and t(wk−1) = s(wk) = s(aend) = vstart it is a closed walk. It satisfies (2.1)
and since uw(a) = uw

′(a) for all a ∈ A also (2.2) is satisfied. We get

c(w′) =
∑
a∈A′

uw
′(a) · c′(a) =

∑
a∈A

uw
′(a) · c′(a) =

m∑
i=1

uw(a) · c(a) = c(w)

for the total cost. Therefore (2.3) is satisfied. Assume now that there exists a closed
walk ŵ = (ŵ1, ...ŵ`) satisfying (2.1)-(2.3) with p(ŵ) > p(w). Then ŵ′ := (ŵ1, ...ŵ`, aend)
is a walk satisfying (2.2)-(2.4) and p(ŵ′) = p(ŵ). But this would mean p(ŵ′) > p(w′)
which is a contradiction.

Therefore p(w) has to be maximal and therefore w is the solution according to the
original instance.

For the other direction the idea is to add a new artificial node which is the new start
and end point. But to avoid that this new artificial node is used more often we have to
forbid using an arc going there twice. To achieve this we will set the penalty for using
this arc so high that it will not be profitable using it twice.

Definition 2.3.1 (‖ · ‖∞). Let f : M → R for some set M . Then the maximum norm
‖f‖∞ is defined by

‖f‖∞ = sup
x∈M
|f(x)|

Definition 2.3.2 (Pmax). Let A be a set of arcs, p : A → R be a cost function and
P : a×A→ R a symmetric penalty function. Then we define Pmax(p, P) by

11

Pmax(p, P) = 4|A|‖p‖∞ + 2|A|2‖P‖∞ + 1

where ‖ · ‖∞ is the maximum norm defined in Definition 2.3.1 and |A| is the number
of arcs in the set A.

Lemma 2.3.2. Let G = (V,A, s, t) be a directed multigraph, p : A→ R a profit function
and P : A × A → R a symmetric penalty function. Then for any usage function
u : A→ {0, 1, 2} we get

|p(u)| < Pmax(p, P)
2

Proof.

2|p(u)| = 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
a∈A

u(a) · p(a)−
∑

{a1, a2} ⊆ A
a1 6= a2

u(a1) ≥ 1, u(a2) ≥ 1

P (a1, a2)−
∑
a ∈ A
u(a) ≥ 2

P (a, a)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ 2

(
|A| · 2‖p‖∞ + |A|2‖P‖∞

)
= 4|A|‖p‖∞ + 2|A|2‖P‖∞ < Pmax(p, P)

Theorem 2.3.3. Let (G, vstart, vend, Cmin, Cmax, p, c, P) be an instance of (RTPP2).
Then we can construct in linear time an instance (G′, v′start, Cmin, Cmax, p

′, c′, P ′) of
(RTPP1) such that the solution w′ of (RTPP1) can be transformed into a solution w of
(RTPP2) in linear time.

Proof. We will formalize the transformation illustrated in figure 2.5. Let G = (V,A, s, t)
then we define

V ′ := V ∪ {v′start} with v′start 6∈ V

A′ := A ∪ {astart, aend} with astart, aend 6∈ A

s′(a) := s(a) ∀a ∈ A and s′(astart) = vstart, s
′(aend) = vend

t′(a) := t(a) ∀a ∈ A and t′(astart) = v′start, t
′(aend) = v′start

With that we get a new multigraph G′ = (V ′, A′, s′, t′). We further define

p(a)′ = p(a) ∀a ∈ A and p′(astart) = p′(eend) = 0

c′(a) = c(a) ∀a ∈ A and c′(astart) = c′(eend) = 0

P ′(a1, a2) = P (a1, a2) ∀a1, a2 ∈ A

12

P ′(astart, a) = P ′(a, astart) = P ′(aend, a) = P ′(a, aend) = 0 ∀a ∈ A ∪ {astart}

P ′(aend, aend) = Pmax(p, P)

Let now w′ = (w′1, ..., w′k) be a solution according to the new instance. We know that
s(w′1) = v′start and therefore w′1 = astart. In the same way we get t(w′k) = v′start and
therefore w′k = aend.

We have now two cases, either aend is used twice or aend is used only once.

1. If aend is used twice we will prove that there exists no solution for the original
instance. Assume that there exists a walk w = (w1, ..., w`) in G satisfying the
conditions (2.2) to (2.4). Then we can construct a walk w′′ = (astart, w1, ..., w`, aend)
in G′. This walk satisfies (2.1) to (2.3) and it holds p(w′′) = p(w). We calculate

p(w′) =
∑
a∈A′

uw
′(a) · p′(a)−

∑
{a1, a2} ⊆ A′
a1 6= a2

uw
′(a1) ≥ 1, uw′(a2) ≥ 1

P ′(a1, a2)

−
∑

a ∈ A′
uw
′(a) ≥ 2

P ′(a, a)

=
∑
a∈A

uw
′(a) · p(a)−

∑
{a1, a2} ⊆ A
a1 6= a2

uw
′(a1) ≥ 1, uw′(a2) ≥ 1

P (a1, a2)

−
∑
a ∈ A

uw
′(a) ≥ 2

P (a, a)− P ′(aend, aend)

<
Pmax(p, P)

2 − Pm+2,m+2

The last inequality follows from Lemma 2.3.2 applied to the usage function uw′ |A
of the graph G. Now we can apply Lemma 2.3.2 again to the usage function uw
and get

p(w′) < Pmax(p, P)
2 − Pm+2,m+2 = −Pmax(p, P)

2 < p(w) = p(w′′)

But this is a contradiction to the fact that the profit of w′ is maximal. Therefore,
the original instance has no solution.

2. If aend is only used once we also know that astart is only used once since if w′i = astart
with i > 1 the previous arc w′i−1 must be aend. Therefore, we can define the walk

13

vend

...

...

vstart

...

...

vend

...

...

vstart

...

...

v′startastart aend

Figure 2.5: Problem transformation from RTPP2 to RTPP1 by inserting a new node,
which is the new start and end node at the same time.

w := (w′2, ..., w′k−1) and this is now a walk in G. It holds p(w) = p(w′) and
c(w) = c(w′) and therefore w satisfies the conditions (2.2) to (2.4). Assume there is
another walk ŵ = (ŵ1, ..., ŵ`) in G satisfying (2.2) to (2.4) and with p(ŵ) > p(w).
Then we could construct the walk ŵ′ = (astart, ŵ1, ..., ŵ`, aend) which would satisfy
the conditions (2.1) to (2.3). It holds

p(ŵ′) = p(ŵ) > p(w) = p(w′)

but this is a contradiction since the total profit of w′ was maximal. Therefore,
the total profit of w has to be maximal too, and we have found a solution of the
original problem.

2.3.2 Duplicating Arcs

As we will see in Chapter 4 there exist already many solution approaches for similar
problems to ours. Many of those similar problems have in common that each arc of the
graph can only be used once. Therefore it would maybe make it easier to find good
solution approaches if we would have a problem formulation where every arc of the graph
can only be used once. Therefore our next goal will be to transform the problem such
that every arc can only be used once. To achieve this we will copy each arc. After copying
every arc we can restrict the usage of an arc to one, but we still have to simulate the
penalty of using an arc twice. We can either lower the attractiveness of the copied arc or
set a penalty between the original arc and its copy. To simplify the penalty matrix we
will reduce the attractiveness of the copied arc.

Another problem is how to define penalties between different arcs after the transfor-
mation. If we keep the penalties between the original arcs and do not penalize any of the
copied arcs it could happen that it is more profitable to use the copied arc instead of the
original arc at some point. To avoid this we introduce dependencies between arcs. We
therefore introduce the concept that one arc depends on another, that means it can only
be used in the solution walk if the other arc is also used.

14

Problem (RTPP3). Let G, Cmin, Cmax, p, c, vstart, vend and P be as in the problem
definition of RTPP2. The penalties P (a, a) will now be unimportant and therefore can
be set to 0.

Let further be D ⊆ A×A a dependency relation.
The problem is now to find a walk w = (w1, ..., wk) in G with maximal total profit

p(w) satisfying (2.3), (2.4) and the following two new conditions:

uw(a) ∈ {0, 1} ∀a ∈ A (2.5)

uw(a1) ≤ uw(a2) ∀a1, a2 ∈ A, a1Da2 (2.6)

We call the tuple (G, vstart, vend, Cmin, Cmax, p, c, P,D) an instance of RTPP3.

If an arc a1 stands in relation with an arc a2 (a1Da2, read “a1 depends on a2”) this
means that a1 can only be used if a2 is used. This is ensured by (2.6) since if a1 is used
that means that uw(a1) = 1 and therefore also uw(a2) = 1 and also a2 is used, this means
that a1 can only be used if a2 is used.

We will now present a transformation of instances of RTPP2 to RTPP3, which is
illustrated in figure 2.6.

Theorem 2.3.4. Let (G, vstart, vend, Cmin, Cmax, p, c, P) be an instance of (RTPP2).
Then we can construct in linear time an instance (G′, vstart, vend, Cmin, Cmax, p

′, c′, P ′, D)
of (RTPP3) such that the solution w′ of (RTPP3) can be transformed into a solution w
of (RTPP2) in linear time.

Proof. We will formalize the transformation illustrated in figure 2.6. Let G = (V,A, s, t)
then we define

A′ = A ∪ {a′ : a ∈ A}

s′(a) := s′(a′) := s(a) ∀a ∈ A

t′(a) := t′(a′) := t(a) ∀a ∈ A

where a′ is a new copy of a. With that we get a new graph G′ := (V,A′, s′, t′). We further
define

p′(a) = p(a) ∀a ∈ A and p′(a′) = p(a)− P (a, a) ∀a ∈ A

c′(a) = c′(a′) = c′(a) ∀a ∈ A

P ′(a1, a2) = P (a1, a2) ∀a1, a2 ∈ A, a1 6= a2 and P ′(a, a) = 0 ∀a ∈ A

P ′(x, a′) = P ′(a′, x) = 0 ∀x ∈ A′, a ∈ A

D = {(a′, a)|a ∈ A}

Let now w′ = (w′1, ..., w′k) be a solution according to the new instance. Then we define a
walk w = (w1, ...wk) in G by

wi =
{
w′i if w′i ∈ A
a if w′i = a′ /∈ A

15

The only difference between w′ and w is that copies a′ of arcs a are replaced by the
originals a. Since s′(a′) = s′(a) = s(a), t′(a′) = t′(a) = t(a) and c′(a′) = c′(a) = c(a) for
all arcs a ∈ A we get that w satisfies (2.3) and (2.4). It is also clear that

uw(a) = uw
′(a) + uw

′(a′) ≤ 1 + 1 = 2

and therefore also (2.2) holds.
The next step will be to prove that p(w′) = p(w). For that we need that uw′(a) +

uw
′(a′) = uw(a) and therefore uw(a) ≥ uw′(a) and that

uw
′(a′) = 1⇔ uw(a) = 2 (2.7)

holds. The direction from right to left of (2.7) is true since 2 = uw(a) = uw
′(a) + uw

′(a′)
implies that uw′(a′) = 1. For the other direction we use that if uw′(a′) = 1 then also
uw
′(a) = 1 since w′ satisfies (2.6), but that means uw(a) = uw

′(a) + uw
′(a′) = 2. From

(2.7) and uw(a) ≥ uw′(a) we get that uw′(a) ≥ 1 if and only if uw(a) ≥ 1.

p(w′) =
∑
a∈A

uw
′(a) · p′(a) + uw

′(a′) · p′(a′)−
∑

{a1, a2} ⊆ A
a1 6= a2

uw
′(a1) ≥ 1, uw′(a2) ≥ 1

P ′(a1, a2)

=
∑
a∈A

(uw′(a) + uw
′(a′)) · p(a)−

∑
a∈A

uw
′(a′) · P (a, a)

−
∑

{a1, a2} ⊆ A
a1 6= a2

uw(a1) ≥ 1, uw(a2) ≥ 1

P (a1, a2)

=
∑
a∈A

uw(a) · p(a)−
∑
a ∈ A

uw
′(a′) = 1

P (a, a)−
∑

{a1, a2} ⊆ A
a1 6= a2

uw(a1) ≥ 1, uw(a2) ≥ 1

P (a1, a2)

=
∑
a∈A

uw(a) · p(a)−
∑
a ∈ A

uw(a) = 2

P (a, a)−
∑

{a1, a2} ⊆ A
a1 6= a2

uw(a1) ≥ 1, uw(a2) ≥ 1

P (a1, a2)

= p(w)

Let us now assume that there exists a closed walk ŵ = (ŵ1, ...ŵ`) in G satisfying
(2.2) to (2.4) with p(ŵ) > p(w). We construct from this closed walk a closed walk
ŵ′ = (ŵ′1, ...ŵ′`) in G′ by defining

ŵ′i =
{
a if ŵi = a and ∀j < i : ŵj 6= a

a′ if ŵi = a and ∃j < i : ŵj = a

16

vstart vend vstart vend

Figure 2.6: Problem transformation from RTPP2 to RTPP3 for an example graph by
copying each arc.

ŵ′ still satisfies (2.3) and (2.4). It also satisfies (2.5) since ŵ satisfies (2.2). By definition
ŵ′ contains only a copied arc a′ if it also contains a and therefore ŵ′ satisfies also (2.6). It
is easy to see that ŵ stands in the same relation with ŵ′ as w does with w′ and therefore
we can use our calculation and get also p(ŵ) = p(ŵ′). Now we have

p(ŵ′) = p(ŵ) > p(w) = p(w′)

which is a contradiction since w′ has maximal profit. Therefore, w has also maximal
profit and is therefore a solution of RTPP2.

In the following chapters we will mainly use problem formulation RTPP3 for further
discussions and algorithms.

2.3.3 Removing Dependencies

In this section we will present a transformation to remove the dependency conditions
from the problem formulation First we will prove that we can assume without loss of
generality that the dependency relation D is transitive.

Definition 2.3.3 (Transitive). Let R ⊆ A×A be a binary relation. R is called transitive
if the following holds

(R(a1, a2) ∧R(a2, a3))→ R(a1, a3) ∀a1, a2, a3 ∈ A. (2.8)

Definition 2.3.4 (Transitive Closure). Let R ⊆ A × A be a binary relation. The
transitive closure R+ of R is the smallest transitive relation on A×A containing R.

Remark 2.3.1. For finite relations like we deal with the transitive closure can be constructed
by finding triples (a1, a2, a3) such that (2.8) is unsatisfied and add the pair (a1, a3) to
the relation until (2.8) is satisfied for all triples. This algorithm stops at the latest when
the relation is the whole A×A which is transitive.

17

Theorem 2.3.5. Let (G, vstart, vend, Cmin, Cmax, p, c, P,D) be an instance of RTPP3 then
the solutions of this instance are exactly the same as the solutions of the instance

(G, vstart, vend, Cmin, Cmax, p, c, P,D
+).

Proof. Since the only difference between the two instances are the dependencies it is
sufficient to show that a walk w satisfies (2.6) for D if and only if it satisfies (2.6) for D+.

Since D+ ⊇ D it is clear that every walk satisfying (2.6) for D+ also satisfies (2.6)
for D.

For the other direction let w be a walk satisfying (2.6) for D. We define the relation

R := {(a1, a2)|uw(a1) ≤ uw(a2)}

on A×A. It is clear that R ⊇ D and the next step is to show that R is transitive. Let
therefore be a1, a2, a3 ∈ A such that a1Ra2 and a2Ra3. That means uw(a1) ≤ uw(a2)
and uw(a2) ≤ uw(a3) which implies uw(a1) ≤ uw(a3) and therefore a1Ra3. So we get
that the transitivity of ≤ implies the transitivity of our relation R. Now we know that R
is transitive and contains D and therefore by definition we know R contains D+. But
this exactly means that w satisfies (2.6) for D+.

The previous theorem shows us that we always can assume that the dependency
relation D is transitive without changing the solutions.

In most cases the penalties will be nonnegative but we did not restrict our problem to
nonnegative penalties and therefore we can use negative penalties to avoid dependencies.
The following theorem removes a dependency of two arcs which have the same start and
end point and the same costs.

Theorem 2.3.6. Let (G, vstart, vend, Cmin, Cmax, p, c, P,D) be an instance of RTPP3 with
a transitive dependency relation D and with G = (V,A, s, t) and let a1 ∈ A, a2 ∈ A with
a1Da2 and a2��Da1, such that s(a1) = s(a2), t(a1) = t(a2) and c(a1) = c(a2).

Let further be Pdiff ∈ R such that

Pdiff > p(a1)− p(a2)−
∑

a ∈ A \ {a1, a2}
P (a, a1)− P (a, a2) < 0

(P (a, a1)− P (a, a2))

and
p′(a1) = p(a1)− Pdiff p′(a) = p(a) ∀a ∈ A \ {a1},

P ′(a1, a2) = P ′(a2, a1) = P (a1, a2)− Pdiff

P ′(a, â) = P (a, â) ∀(a, â) ∈ A×A \ {(a1, a2), (a2, a1)}.

Then the set of solutions S of the instance (G, vstart, vend, Cmin, Cmax, p, c, P,D) is exactly
the same as the set of solutions S′ of the instance

(G, vstart, vend, Cmin, Cmax, p
′, c, P ′, D \ {(a1, a2)}).

18

Proof. First of all we prove that for every w′ ∈ S′ it holds that if a1 is used in w′ also a2
is used.

Let us assume there is an optimal walk w′ which uses a1 but not a2. Then we could
generate another walk ŵ′ by using a2 instead of a1 since the two arcs have the same start
and end point. ŵ′ still satisfies (2.3) to (2.5). for a, a′ ∈ A \ {a1, a2} and aDa′ we get
uŵ
′(a) = uw

′(a) and uŵ′(a′) = uw
′(a′) and therefore also uŵ′(a) ≤ uŵ′(a′).

It remains to check the cases where a = a2 or a′ = a1. If a = a1 or a′ = a2 the
equation uŵ′(a) ≤ uŵ′(a′) trivially holds.

Let now be a = a2, then a′ 6= a1 since a2��Da1. Then a1Da
′ holds since D is transitive.

Since uw′(a1) = 1 it follows that uw′(a′) = 1 and therefore also uŵ′(a′) = 1 and from this
we get again uŵ′(a) ≤ uŵ′(a′).

For the last case, let a′ = a1 and a 6= a2. Then by transitivity of D we get again
aDa2 and therefore uw′(a) = 0. From this we get again uŵ

′(a) = 0 and therefore
uŵ
′(a) ≤ uŵ′(a′).
We proved now that ŵ′ satisfies (2.6) for D and therefore it is a valid walk for problem

RTPP3. We will show that p′(ŵ′) > p′(w′) which is a contradiction to the optimality of
w′.

p′(ŵ′)− p′(w′) = p′(a2)−
∑

a ∈ A \ {a2}
uŵ
′(a) = 1

P ′(a, a2)− p′(a1) +
∑

a ∈ A \ {a1}
uw
′(a) = 1

P ′(a, a1)

= p′(a2)−
∑

a ∈ A \ {a1, a2}
uw
′(a) = 1

P ′(a, a2)− p′(a1)

+
∑

a ∈ A \ {a1, a2}
uw
′(a) = 1

P ′(a, a1)

> p(a2) +
∑

a ∈ A \ {a1, a2}
P (a, a1)− P (a, a2) < 0

(P (a, a1)− P (a, a2))

−p(a1) + Pdiff

> 0

The last inequality holds by definition of Pdiff . Therefore, we get a contradiction and
therefore every solution w′ uses a1 only if it uses a2 and therefore satisfies (2.6) for the
whole D. In the next step we prove that every walk w satisfying (2.6) for the whole D
has the same total profit p(w) = p′(w) regardless which of the two profit and penalty
functions we take. If w does not use the arc a1 this is clear since p and p′ and P and P ′
only differ concerning the arc a1. Let therefore be w a walk satisfying(2.6) for the whole

19

D and using a1. Then it also uses a2. We calculate now p′(w).

p′(w) =
∑
a∈A

uw(a) · p′(a)−
∑

{a, a′} ⊆ A
a 6= a′

uw(a) ≥ 1 and uw(a′) ≥ 1

P ′(a, a′)

=
∑
a∈A

uw(a) · p(a)− Pdiff −
∑

{a, a′} ⊆ A
a 6= a′

uw(a) ≥ 1 and uw(a′) ≥ 1

P (a, a′) + Pdiff

=
∑
a∈A

uw(a) · p(a)−
∑

{a, a′} ⊆ A
a 6= a′

uw(a) ≥ 1 and uw(a′) ≥ 1

P (a, a′)

= p(w)

We proved now that all solution walks in S′ satisfy (2.6) for the whole D and all walks
satisfying (2.6) for the whole D have the same profit regardless of measuring according to
p and P or to p′ and P ′. Since the costs of the walks remain in both instances the same we
get that the optimal walks according to the original instance are also optimal according
to the new instance with one dependency less and vice versa. Therefore, S = S′.

Now we know how to remove one dependency under the given conditions, but if
we want to use this theorem iteratively we need to always generate the transitive
closure of the remaining dependency relation. To ensure that the dependency relation
is really getting smaller we therefore need (D \ (a1, a2))+ (D. This is only the case if
(D \ (a1, a2))+ = D \ (a1, a2) and therefore if D \ (a1, a2) is transitive. To achieve this
we need that there is no a3 ∈ A with a1Da3 and a3Da2. To ensure this we need that D
is acyclic. But first we have to define what that means.

Definition 2.3.5. A binary relation R ⊆ A×A contains a cycle if there exists a1, ..., ak ∈
A with k ≥ 2 and a2 6= a1 such that aiRai+1 for all i = 1, ...k − 1 and akRa1.

If a binary relation contains no cycles we call it acyclic.

Remark 2.3.2. Because loops are not relevant for us we do not call a loop a cycle and
therefore every cycle has to consist of at least two elements. Loops can always be removed
from our dependency relation since they do not change the model.

Lemma 2.3.7. Let R ⊆ A × A be an acyclic binary relation and B ⊆ A a nonempty
finite subset. Then we can find an R-minimal element of B, that means we find an
element b ∈ B such that for all c ∈ B \ {b} it holds c��Rb.

20

Proof. We prove this by contradiction. Let us assume there exists no R-minimal element
in B. We will construct now a cycle. Since B is nonempty there exists a b0 ∈ B. Let us
now assume we already constructed a sequence (b0, ..., bk) such that bi+1Rbi. Since bk is
not B-minimal we can find a bk+1 ∈ B \ {bk} such that bk+1Rbk. If there exists an i < k
such that bi = bk+1 we have found a cycle (bi, ..., bk). Since B is finite this has to happen
at some point and therefore we always get a cycle.

With this lemma we can apply Theorem 2.3.6 iteratively.

Theorem 2.3.8. Let (G, vstart, vend, Cmin, Cmax, p, c, P,D) be an instance of RTPP3
with a transitive, acyclic dependency relation D such that for all (a1, a2) ∈ D it holds
s(a1) = s(a2), t(a1) = t(a2) and c(a1) = c(a2).

Then we can construct in polynomial time an instance

(G, vstart, vend, Cmin, Cmax, p
′, c, P ′, ∅)

with the same solutions as

(G, vstart, vend, Cmin, Cmax, p, c, P,D).

Proof. We prove this by induction on the size n = |D|. If |D| = 1 we can use Theorem 2.3.6
and get a new instance with an empty dependency relation with the same solutions.

Let now be |D| = n+ 1 and (a, b) ∈ D. We apply Lemma 2.3.7 to the subset

B = {c ∈ A|aDc}.

Because b ∈ B we know that B is nonempty and B is finite since A is finite. Therefore,
we get a minimal element b0 ∈ B. We apply now Theorem 2.3.6 to the pair (a, b0) ∈ D.
And we get an instance

(G, vstart, vend, Cmin, Cmax, p
′, c, P ′, D \ {(a, b0)})

with the same solutions as the original instance. We prove now that D \ {(a, b0)} is
transitive. Let a1, a2, a3 ∈ A such that (a1, a2) ∈ D \{(a, b0)} and (a2, a3) ∈ D \{(a, b0)}.
We get a1Da2 and a2Da3 and therefore a1Da3 since D is transitive. If a1 6= a or a3 6= b0
we get (a1, a3) ∈ D \ {(a, b0)}.

Let us assume a1 = a and a3 = b0, then we get a2 6= b0 since (a, a2) ∈ D \ {(a, b0)}.
But b0 was minimal in B and this is a contradiction to a2Db0. Therefore, this case cannot
arise and we proved transitivity of D \ {(a, b0)}. With that we can use the induction
hypothesis and get an instance

(G, vstart, vend, Cmin, Cmax, p
′′, c, P ′′, ∅)

which has the same solutions than the original instance.

21

One problem of Theorem 2.3.8 is that you cannot give upper bounds for the profit
and penalty values occurring in the modified p′ and P ′. Since the value Pdiff from
Theorem 2.3.6 for some dependency aDb strongly depends on the penalty values of a or
b with all other arcs. Therefore, if we remove a dependency aDb we modify the penalty
of (a, b) and if we remove afterwards the dependency bDc the modified penalty (a, b)
will be used in the sum of Pdiff and therefore it can happen a sum up of all such values
Pdiff and at the end Pdiff can be very large. To avoid this we need a more restricted
version of these theorems which still applies to instances which we get when we use a
transformation like in Theorem 2.3.4.

Theorem 2.3.9. Let (G, vstart, vend, Cmin, Cmax, p, c, P,D) be an instance of RTPP3
with a dependency relation D, which has no chains and no forks and such that for all
(a1, a2) ∈ D it holds s(a1) = s(a2), t(a1) = t(a2) and c(a1) = c(a2). D has no chains
means that there are no a1, a2, a3 ∈ A such that a1Da2Da3. D has no forks means that
there are no a1, a2, a3 ∈ A such that

(a1Da2 ∧ a1Da3) ∨ (a1Da3 ∧ a2Da3).

Let further be Pdiff(a1, a2) ∈ R for a1, a2 ∈ A such that

Pdiff(a1, a2) > p(a1)− p(a2)−
∑

a ∈ A \ {a1, a2}
P (a, a1)− P (a, a2) < 0

(P (a, a1)− P (a, a2))

and
p′(a) = p(a)− Pdiff(a, b) ∀a ∈ A, b ∈ B aDb

p′(a) = p(a) ∀a ∈ {a ∈ A : ∀b ∈ B a��Db}

P ′(a1, a2) = P ′(a2, a1) = P (a1, a2)− Pdiff(a1, a2) ∀(a1, a2) ∈ D

P ′(a1, a2) = P (a1, a2)∀(a1, a2) : a1��Da2 ∧ a2��Da1

Then the set of solutions S of the instance (G, vstart, vend, Cmin, Cmax, p, c, P,D) is exactly
the same as the set of solutions S′ of the instance

(G, vstart, vend, Cmin, Cmax, p
′, c, P ′, ∅).

Proof. First of all we mention that D and every subset E of D is transitive since D and
therefore also every subset E of D does not contain any chains.

We construct now iteratively pk, Pk and Dk by applying Theorem 2.3.6 in every step
such that at the end pn = p′, Pn = P ′ and Dn = ∅. Let first be p0 = p and P0 = P .
Let us assume we already constructed pk, Pk and Dk. We want to apply Theorem 2.3.6
for the instance (G, vstart, vend, Cmin, Cmax, pk, c, Pk, Dk). Since in each step we applied

22

2.3.6 we know Dk ⊆ D and therefore that Dk is transitive. If Dk is empty we are done.
Otherwise let (a1, a2) ∈ Dk. We know

Pdiff(a1, a2) > p(a1)− p(a2)−
∑

a ∈ A \ {a1, a2}
P (a, a1)− P (a, a2) < 0

(P (a, a1)− P (a, a2))

= pk(a1)− pk(a2)−
∑

a ∈ A \ {a1, a2}
Pk(a, a1)− Pk(a, a2) < 0

(Pk(a, a1)− Pk(a, a2))

The last inequality holds since D has no chains and no forks and therefore there is no
a ∈ A \ {a1, a2} such that aDa1 or a1Da or aDa2 or a2Da and therefore the profit values
and penalty values occurring in Pdiff(a1, a2) did not change until now. Therefore, we
can again apply Theorem 2.3.6 for the pair (a1, a2) with Pdiff = Pdiff(a1, a2) and get new
values pk+1, Pk+1 and Dk+1.

At some point this procedure stops and Dn = ∅ and it is easy to see that then pn = p′

and Pn = P ′ must hold. Since in every step the new instance has the same solutions
than the old instance we get at the end that the instance with p′, P ′ and D′ = ∅ also has
the same solutions than the original instance.

Until now we always assumed that there are only dependencies between arcs with the
same start and endpoints and the same costs. In the next theorem we will prove how to
remove dependencies which do not satisfy this condition. But for this we need again the
large value Pmax from definition 2.3.2.

Theorem 2.3.10. Let (G, vstart, vend, Cmin, Cmax, p, c, P,D) be an instance of RTPP3
with G = (V,A, s, t).

Let further be

p′(a) = p(a)− Pmax(p, P) · |{a′ ∈ A : aDa′}| ∀a ∈ A

P ′(a1, a2) = P ′(a2, a1) = P (a1, a2)− Pmax(p, P) · |{(a1, a2), (a2, a1)} ∩D′| ∀a1, a2 ∈ A

If the set of solutions S of the instance (G, vstart, vend, Cmin, Cmax, p, c, P,D) is non-empty,
then it is equal to the set S′ of solutions of the instance

(G, vstart, vend, Cmin, Cmax, p
′, c, P ′, ∅).

If S is nonempty, all solutions w in S = S′ satisfy p(w) = p′(w) > −Pmax(p, P)/2 and,
if S is empty, S′ only contains solutions w with p′(w) < −Pmax(p, P)/2.

23

Proof. First we calculate the new profit p′(w) for an arbitrary walk w.

p′(w) =
∑
a∈A

uw(a)p′(a)−
∑

{a1, a2} ⊆ A
a1 6= a2

uw(a1) ≥ 1 ∧ uw(a2) ≥ 1

P ′(a1, a2)

=
∑
a∈A

uw(a)p(a)− Pmax(p, P)
∑
a ∈ A

uw(a) = 1

|{a′ ∈ A : aDa′}|

−
∑

{a1, a2} ⊆ A
a1 6= a2

uw(a1) ≥ 1 ∧ uw(a2) ≥ 1

P (a1, a2)− Pmax(p, P)|{(a1, a2), (a2, a1)} ∩D|

=
∑
a∈A

uw(a)p(a)− Pmax(p, P)|{(a1, a2) ∈ D|uw(a1) = 1}|

−
∑

{a1, a2} ⊆ A
a1 6= a2

uw(a1) ≥ 1 ∧ uw(a2) ≥ 1

P (a1, a2)

+Pmax(p, P)|{(a1, a2) ∈ D|uw(a1) = 1 ∧ uw(a2) = 1}|
= p(w)− Pmax(p, P)|{(a1, a2) ∈ D|uw(a1) = 1 ∧ uw(a2) = 0}|

From this calculation we directly get with Lemma 2.3.2 that if a walk w contains a1 but
not a2 for some (a1, a2) ∈ D it holds

p′(w) ≤ p(w)− Pmax(p, P) < Pmax(p, P)
2 − Pmax(p, P) = −Pmax(p, P)

2 .

If a walk w satisfies (2.6) for D we get also by the above calculation that p(w) = p′(w)
and by Lemma 2.3.2 it holds

p′(w) = p(w) > −Pmax(p, P)
2

Therefore we know that, if there exists a solution w ∈ S it has a higher profit than
all walks which are not satisfying (2.6) for D and therefore is also optimal in the new
instance, that means w ∈ S′. On the other side if a walk w is in S′ and p(w) > −Pmax(p,P)

2
we know that it satisfies (2.6) for D and therefore is also a valid walk for the original
instance. But for all valid walks w of the original instance it holds p(w) = p′(w) and
therefore the walk w has also to be optimal under p, that means w ∈ S. We proved now
that, if S 6= ∅, we get S = S′ and, if S = ∅, either S′ = ∅ or every solution w in S′ does
not satisfy (2.6) for D and therefore p′(w) < −Pmax(p,P)

2 .

24

In the theorems 2.3.8, 2.3.9 and 2.3.10 we saw three possibilities to remove the
dependency relation from the problem formulation. The former two can only be used for
a special dependency relation structure but the last one can be used for all dependency
relations. Therefore, the last one is a general transformation from RTPP3 to the following
problem formulation.

Problem (RTPP4). Let G, Cmin, Cmax, p, c, vstart, vend and P be as in the problem
definition of RTPP3. We now have no dependency relation D.

The problem is now to find a walk w = (w1, ..., wk) in G with maximal total profit
p(w) satisfying the conditions (2.3) - (2.5).

We call the tuple (G, vstart, vend, Cmin, Cmax, p, c, P) an instance of RTPP3.

Until now we have seen transformations from RTPP1 to RTPP2, from RTPP2 to
RTPP1, from RTPP2 to RTPP3 and from RTPP3 to RTPP4. To close the circle we will
now find a transformation from RTPP4 to RTPP2.

Theorem 2.3.11. Let I = (G, vstart, vend, Cmin, Cmax, p, c, P) be an instance of (RTPP4)
with G = (V,A, s, t). Let P ′ be defined by

P ′(a, b) = P ′(b, a) = P (a, b) ∀a, b ∈ A : a 6= b

P ′(a, a) = Pmax(p, P) ∀a ∈ A
Then I ′ := (G, vstart, vend, Cmin, Cmax, p, c, P

′) is an instance of (RTPP2) such that the
following relation between the solution set S1 of I and the solution set S2 of I ′ hold.

• If S2 is empty or the profit of the solutions in S2 is lower −Pmax(p, P)/2, then the
solution set S1 is empty

• If S2 contains solutions with profit higher or equal than −Pmax(p, P)/2 we get
S1 = S2.

Proof. Since in RTPP2 every arc can be used twice and in RTPP4 every arc can only be
used once it is clear that every valid walk in RTPP4 is also a valid walk in RTPP2. By
definition of the new instance we get for a valid walk w in RTPP4

p′(w) =
∑
a∈A

uw(a) · p(a)−
∑

{a1, a2} ⊆ A
a1 6= a2

uw(a1) ≥ 1 and uw(a2) ≥ 1

P ′(a1, a2)

−
∑
a ∈ A

uw(a) ≥ 2

P ′(a, a)

=
∑
a∈A

uw(a) · p(a)−
∑

{a1, a2} ⊆ A
a1 6= a2

uw(a1) ≥ 1 and uw(a2) ≥ 1

P (a1, a2) = p(w)

25

since uw(a) ≤ 1 for all a ∈ A. In the next step we prove that for a walk w with uw(a0) = 2
for some a0 ∈ A it holds p′(w) ≤ −Pmax(p, P). Since the diagonal of P was irrelevant in
the formulation of problem RTPP4 we can assume that P (a, a) = 0 for all a ∈ A. Then
we get

p′(w) =
∑
a∈A

uw(a) · p(a)−
∑

{a1, a2} ⊆ A
a1 6= a2

uw(a1) ≥ 1 and uw(a2) ≥ 1

P ′(a1, a2)

−
∑
a ∈ A

uw(a) ≥ 2

P ′(a, a)

≤ −Pmax(p, P) +
∑
a∈A

uw(a) · p(a)−
∑

{a1, a2} ⊆ A
a1 6= a2

uw(a1) ≥ 1 and uw(a2) ≥ 1

P (a1, a2)

= −Pmax(p, P) + p(w) < −Pmax(p, P) + Pmax(p, P)
2 = −Pmax(p, P)

2 .

Therefore we have two cases

• S2 is empty or the solutions have profit lower than −Pmax(p, P)/2. We already
know that every solution w ∈ S1 is also a valid walk in RTPP2 and therefore we
get since p′(w) = p(w) > −Pmax(p, P)/2 that such a w cannot exist and therefore
that S1 = ∅.

• S2 is not empty and the solutions have profit higher or equal than −Pmax(p, P)/2.
Therefore, we get that uw(a) ≤ 1 for all w ∈ S2 and a ∈ A since otherwise we would
get p′(w) < −Pmax(p, P)/2. But this means that all solutions w ∈ S2 are also valid
walks in RTPP4. Since p(w) = p′(w) for all valid walks in RTPP4 we get S1 = S2.

In Figure 2.7 we can see now all transformations we have formulated until now from
this we get the following corollary.

Corollary 2.3.12. Let P1 and P2 be two distinct problems of the problems RTPP1,
RTPP2, RTPP3 or RTPP4 and let I be an instance of P1. Then we can construct in
linear time an instance I ′ of P2 such that the solution set of I ′ can be transformed into
the solution set of I in linear time.

2.4 Further Problem Transformations
The goal of this section is to transform our problem formulation with some restrictions
into the arc orienteering problem defined in [22]. Although the problem is defined for a

26

RTPP1 RTPP2
2.3.1+2.3.3

RTPP3
2.3.4

RTPP4

2.3.8, 2.3.9 or 2.3.102.3.11

Figure 2.7: Problem transformations.

simple directed graph we will keep the notation of a directed multigraph to stay consistent
with our notation.

Definition 2.4.1 (Path). Let G = (V,A, s, t) be a directed multigraph. A walk w
in G where every node is visited at most once is called a path. That means a walk
w = (w1, ..., wk) is a path if and only if t(wi) 6= t(wj) for all i 6= j and s(w1) 6= t(wk).

A path cannot be closed by definition, but if we drop the condition s(w1) 6= t(wk)
and close the walk, that means add the condition s(w1) = t(wk) we call the walk w a
cycle.

Problem (Arc Orienteering Problem). Let G = (V,A, s, t) be a simple directed graph,
c : A → [0,∞) a cost function and p : A → [0,∞) a profit function. Let further be
Cmax ∈ R, vstart ∈ V a start node and vend ∈ V an end node. The problem is to find a
path w from vstart to vend which has costs c(w) smaller or equal Cmax and maximizes the
profit p(w). We call this problem Arc Orienteering Problem (AOP).

Be aware that profit values are restricted to be non-negative in contrary to our
problem formulations and that walks we search in AOP are not allowed to use one node
twice and therefore a simple directed graph is enough. We also do not have penalties.
In the first step we will transform problem RTPP4 into a problem where we search an
optimal path instead of an optimal walk.

Problem (RTPP5). Let I = (G, vstart, vend, Cmin, Cmax, p, c, P) be an instance of RTPP4.
The problem is now to find instead of a walk a path w = (w1, ...wk) in G with maximal

total profit p(w) satisfying the conditions (2.3) and (2.4).
In this interpretation we call the tuple (G, vstart, vend, Cmin, Cmax, p, c, P) an instance

of RTPP5.

27

Theorem 2.4.1. Let I = (G, vstart, vend, Cmin, Cmax, p, c, P) be an instance of RTPP4.
We can construct an in instance I ′ = (G′, v′start, v

′
end, C

′
min, C

′
max, p

′, c′, P ′) of the problem
RTPP5 such that solutions of the one instance can easily be transformed into solutions
of the other instance. The size |I ′| of I ′ is in O(k|I|) where k is the maximum of the
indegrees and outdegrees of all nodes in G.

Proof. Let G = (V,A, s, t), since every node in the new graph can only be visited once we
have to duplicate a node v for each ingoing and outgoing arc. Then we have to connect
all nodes standing for ingoing arcs a to all nodes standing for outgoing arcs b with new
arcs xv,a,b. Additionally we have to add a new start and end node. The result is the
following

V ′ := {via : v ∈ V, a ∈ A, t(a) = v} ∪ {voa : v ∈ V, a ∈ A, s(a) = v} ∪ {v′start, v
′
end}

A′ := A ∪ {xv,a,b : v ∈ V, a, b ∈ A, t(a) = v, s(b) = v}
∪{xv′start,a

: a ∈ A, s(a) = vstart} ∪ {xv′end,a
: a ∈ A, t(a) = vend}

s′(a) = s(a)oa ∀a ∈ A

s′(xv,a,b) = via ∀v ∈ V, a, b ∈ A, t(a) = v, s(b) = v

s′(xv′start,a
) = v′start ∀a ∈ A, s(a) = vstart s′(xv′end,a

) = viend,a ∀a ∈ A, t(a) = vend

t′(a) = t(a)ia ∀a ∈ A

t′(xv,a,b) = vob ∀v ∈ V, a, b ∈ A, t(a) = v, s(b) = v

t′(xv′start,a
) = vostart,a ∀a ∈ A, s(a) = vstart s′(xv′end,a

) = v′end ∀a ∈ A, t(a) = vend

We define G′ = (V ′, A′, s′, t′). Figure 2.8 illustrates an example transformation for a
small graph. The costs, the profits and the penalties for the new arcs are defined as
follows:

c′(a) = c(a), p′(a) = p(a) ∀a ∈ A

c′(x) = p′(x) = 0 ∀x ∈ A′ \A

P ′(a, b) = P (a, b) ∀a, b ∈ A

P ′(x, a′) = P ′(a′, x) = 0 ∀x ∈ A′ \A, a′ ∈ A′

Let now be w = (w1, ..., wk) a valid walk for the instance I. We define walk w′ in G′
by

w′ = (xv′start,w1 , w1, xt(w1),w1,w2 , w2, xt(w2),w2,w3 , ..., wk−1, xt(wk−1),wk−1,wk
, wk, xv′end,wk

).

It is easy to check that every walk in G′ which uses an arc at most once is a path
since every node v′ in G′ has either deg+(v′) = 1 or deg−(v′) = 1. Therefore, w′ is a

28

e

s

G

G′

s′

e′

Figure 2.8: Transformation of Theorem 2.4.1 for a small graphG toG′. Two corresponding
walks from s to e respectively s′ to e′ are colored green.

29

path. Since c′(w′) = c(w) we know that w′ is a valid path for instance I ′. We also get
p′(w′) = c(w).

Let now on the other hand be w′ = (w′1, ...w′k) a valid path for the instance I ′. All
outgoing arcs of a node via are of the form vob for some arc b ∈ A with the target node
vob . The only outgoing arc for a node voa is the arc a ∈ A which has as target a node
t′(a) = v̂ia for another node v̂. From the last two statements we get that the sequence of
visited nodes through w′ must have the form

(v′start, v
o
start,a1 , v

i
1,a1 , v

o
1,a2 , v

i
2,a2 , v

o
2,a3 , ..., v

i
end,al−1 , v

o
end,al

, v′end)

for some arcs aj ∈ A and nodes vj ∈ V . It is easy to check that t(aj) = s(aj+1) has to
hold by definition. We can now define the walk w = (a1, ...al+1) in A. We get again
c(w) = c′(w′) and p(w) = p′(w′) and therefore that w is a valid walk for the instance I.

We just presented transformations for valid walks in I to valid paths in I ′ and vice
versa such that they have the same profit. That means this transformations also transform
walks with maximal profit in I into paths with maximal profits in I ′ and vice versa.

To measure the size of I ′ we have to measure the size of A′. We can calculate by
using the definition of A′

|A′| = |A|+
∑
v∈V

deg+(v) · deg−(v) + deg−(vstart) + deg+(vend)

≤ 3|A|+ 4|V |k2 ≤ 3|A|+ 8|A|k ≤ 11|I|k

Since we only have to save non zero values for the functions c′, p′ and P ′ their size does
not change. We also get |V ′| ≤ |V | + |A′| since we added at least as many arcs as we
added nodes. All in all we get |I ′| ≤ c|I|k for an appropriate constant c and therefore
|I ′| = O(k|I|).

In the next step we want to get rid of the penalties. First of all we do that for parallel
arcs. We can do this before applying Theorem 2.4.1 and therefore for instances of the
problem RTPP4, but we need additional restrictions. The idea is similar to the one of
Theorem 2.3.6.

Theorem 2.4.2. Let I = (G, vstart, vend, Cmin, Cmax, p, c, P) be an instance of RTPP4
with G = (V,A, s, t) and let a1, a2 ∈ A be two parallel arcs, that means s(a1) = s(a2) and
t(a1) = t(a2) with the same costs c(a1) = c(a2). Let further be P (a1, a2) > 0 and

p(a1)− p(a2) ≥
∑

a ∈ A \ {a1, a2}
P (a1, a)− P (a2, a) > 0

P (a1, a)− P (a2, a) (2.9)

or P (a1, a2) < 0 and

p(a1)− (p(a2)− P (a1, a2)) ≥
∑

a ∈ A \ {a1, a2}
P (a1, a)− P (a2, a) > 0

P (a1, a)− P (a2, a). (2.10)

30

We define a new instance I ′ = (G, vstart, vend, Cmin, Cmax, p
′, c, P ′) of RTPP4 with

p′(a) = p(a) ∀a ∈ A \ {a2}

p′(a2) = p(a2)− P (a1, a2)

P ′(a, b) = P (a, b) ∀(a, b) ∈ A×A \ {(a1, a2), (a2, a1)}

P ′(a1, a2) = P ′(a2, a1) = 0.

Let S be the solution set of I and S′ be the solution set of I ′.
Then in the case P (a1, a2) > 0 we get S ⊇ S′ and if S 6= ∅ also S′ 6= ∅. In the other

case if P (a1, a2) < 0 we get S ⊆ S′ and if S′ 6= ∅ also S 6= ∅.
If the inequality (2.9) respectively (2.10) is strict we get S = S′.

Proof. It is easy to see that for a walk w which does not use a2 or uses a1 and a2 we get
p′(w) = p(w).

The only interesting case is therefore a walk w = (w1, ..., w`, a2, w`+2, ..., wk) which
uses a2 and does not use a1. Let w′ := (w1, ..., w`, a1, w`+2, ..., wk) the same walk but
using a1 instead of a2. We get c(w′) = c(w) and therefore w′ is also a valid walk in both
instances. We have to distinct the following two cases

1. P (a1, a2) > 0. In this case we get p′(w) = p(w) − P (a1, a2) < p(w). We can
calculate

p(w′) = p(w) + p(a1)− p(a2)−
∑

a ∈ A \ {a1, a2}
uw(a) = 1

P (a1, a)− P (a2, a)

≥ p(w) + p(a1)− p(a2)−
∑

a ∈ A \ {a1, a2}
P (a1, a)− P (a2, a) > 0

P (a1, a)− P (a2, a)

(2.9)
≥ p(w).

Therefore if w ∈ S we also have w′ ∈ S since we have p′(w) < p(w) ≤ p(w′) = p′(w′)
we know that w /∈ S′. Since w was an arbitrary walk which uses a2 but not a1 we
get that S′ does not contain any such walks. But from this and the fact that I and
I ′ are the same for other walks we get

S′ = S \ {w : w is a valid walk which uses a2 and not a1}.

If S is nonempty it contains a walk w. If w uses a2 and not a1 we can define again
w′ like above and get p(w′) = p(w) and therefore w′ ∈ S, that means S contains at
least one walk which does not use a2 or uses a1 and a2, but then this walk is also
in S′ and therefore S′ is nonempty.

31

2. P (a1, a2) < 0. In this case we get p′(w) = p(w) − P (a1, a2) > p(w). Now we
calculate

p′(w′) = p′(w) + p(a1)− (p(a2)− P (a1, a2))
−

∑
a ∈ A \ {a1, a2}
uw(a) = 1

P (a1, a)− P (a2, a)

≥ p′(w) + p(a1)− (p(a2)− P (a1, a2))
−

∑
a ∈ A \ {a1, a2}

P (a1, a)− P (a2, a) > 0

P (a1, a)− P (a2, a)

(2.10)
≥ p′(w)

We argue the same way as in case 1 with S and S′ interchanged and get

S = S′ \ {w : w is a valid walk which uses a2 and not a1}.

In an analogue way to case 1 we can again prove that if S′ is nonempty also S is
nonempty.

Remark 2.4.1. Let I = (G, vstart, vend, Cmin, Cmax, p, c, P) with G = (V,A, s, t) be an
instance of RTPP2 and I1 the result after applying the transformation described in
Theorem 2.3.4. By definition of the transformation I1 does not contain any penalties
concerning copied arcs, only for original arcs. Let I2 now be the result after applying the
transformation described in Theorem 2.3.9 where we use Pdiff(a′, a) = 0 if possible for an
arc a ∈ A and its copy a′ to remove their dependencies. Note that the only dependencies
in I1 are of this form. This is possible if and only if

P (a, a′) = p(a)− p(a′) >
∑

x ∈ A \ {a, a′}
P (x, a) > 0

P (x, a). (2.11)

That means in words for the instance I that the penalty of using one arc twice is
bigger than all other (positive) penalties summed up for this arc. This is a natural
condition if we think of why we introduced penalties. We wanted to prevent using arcs
twice if possible or prevent using opposite arcs if possible, but the attractiveness should
decrease more if we use an arc twice in one direction as if we use an arc and its opposite
arc.

If we would allow equality in (2.11) that would mean that if we use Pdiff(a′, a) = 0 in
the transformation that we would maybe generate a new solution where a′ is used and a
not, but this does not matter since in this case another solution would be to exchange

32

vi1,b

vi2,avo1,a
a

xv1,b,a

vo2,b
b

xv2,a,b

vi1,b

vi2,avo1,a

xv1,b,a

vo2,b
b2

xv2,a,b

h1

c2

c1
h2

c3

c4
b1

a′

Figure 2.9: Transformation of Theorem 2.4.3 for a part of the graph G′.

a with a′. Therefore, we can also allow equality in (2.11). If (2.11) or equality holds
for all a ∈ A we can use Pdiff(a′, a) = 0 for all a ∈ A and get that the dependencies got
dropped without changing the penalties and therefore P (a, a′) = 0 for all a ∈ A. That
means we have no penalties between any copied arcs and therefore do not need to apply
Theorem 2.4.2 to them.

The only situation where we would have to apply the theorem is if there are already
in G parallel arcs with penalties. In this the conditions of Theorem 2.4.2 would have to
be checked and therefore restrict the problem.

The next step is to remove penalties between opposite arcs.

Theorem 2.4.3. Let I = (G, vstart, vend, Cmin, Cmax, p, c, P) with G = (V,A, s, t) an
instance of RTPP4 and I ′ = (G′, v′start, v

′
end, C

′
min, C

′
max, p

′, c′, P ′) the instance of RTPP5
which we get after applying the transformation described in 2.4.1 to I. Let a, b be two
opposite arcs in G, that means s(a) = t(b) and t(a) = s(b), with P (a, b) > 0 and no other
penalties. That means P (a, x) = P (b, y) = 0 for all x 6= b and y 6= a.

Then we can transform I ′ into an instance I ′′ such that the number of nonnegative
penalties in I ′′ is smaller than the number of nonnegative penalties in I ′. Solutions from
one instance can easily be transformed into solutions of the other.

Proof. Let v1 = s(a) = t(b) and v2 = t(a) = s(b), let further be G′ the graph of I ′, then
we consider the subgraph H ′ of G′ consisting of the nodes vo1,a, vi1,b, vi2,a, vo2,a and the
arcs a, b, xv1,b,a, xv2,a,b. This part of the graph and the transformation we will be going
to describe are illustrated in Figure 2.9.

33

We formally define G′′ by G′′ = (V ′′, A′′, s′′, t′′) where

V ′′ = V ′ ∪ {h1, h2}

A′′ = A′ \ {a, b} ∪ {a′, b1, b2, c1, c2, c3, c4}

s′′(x) = s′(x) ∧ t′′(x) = t′(x) ∀x ∈ A′ \ {a, b}

s′′(a′) = h1, s
′′(b1) = h2, s

′′(b2) = vo2,b

s′′(c1) = vo1,a, s
′′(c2) = h1, s

′′(c3) = h2, s
′′(c4) = vo2,b

t′′(a′) = h2, t
′′(b1) = h1, t

′′(b2) = vi1,b, t
′′(c1) = h1, t

′′(c2) = vi1,b, t
′′(c3) = vi2,a, t

′′(c4) = h2

We further define for some ε > 0

c′′(a′) = c′(a), c′′(b1) = c′′(b2) = c′(b)

c′′(ci) = 0 ∀1 ≤ i ≤ 4 and c′′(x) = c′(x) ∀x ∈ A′ \ {a, b}

p′′(a′) = p′(a) + 2ε, p′′(b1) = p′(b) + 2ε, p′′(b2) = p′(b)− P (a, b)

p′′(ci) = −ε ∀1 ≤ i ≤ 4 and p′′(x) = p′(x) ∀x ∈ A′ \ {a, b}

P ′′(x, y) = P ′(x, y) ∀x, y ∈ A′ \ {a, b}

P ′′(x, y) = P ′′(y, x) = 0 ∀x ∈ A′′, y ∈ A′′ \ (A′ \ {a, b})

In the next step we will provide transformations of valid paths from the one instance
to the other such that the costs stay the same and the profit stays the same or gets
bigger. Let therefore be w a valid walk in I ′. If w does not use any arcs in H ′ then w is
also a valid walk in I ′′ and has the same costs and profit. If w uses arcs in H ′ it has to
use either a or b since after xv1,b,a only a can follow and after xv2,a,b only b can follow.
We have three cases.

1. w uses a but not b. We can now replace the arc a in w by the sequence c1, a
′, c3

and get a new path w′ ∈ I ′′. It is easy to check that this path has the same costs
and profit as w.

2. w uses b but not a. We can replace the arc b in w by the sequence c4, b1, c2 and get
a new path w′ ∈ I ′′. Again, we get that c′′(w′) = c′(w) and p′′(w′) = c′(w).

3. w uses a and b. This is the interesting case since now the penalty takes effect. Now
we define w′ by replacing a through the sequence c1, a

′, c3 and b through b2. It is
again easy to see that c′′(w′) = c′(w). For the total profit we note that the sequence
c1, a

′, c3 together has the profit c′(a) + 2ε− 2ε = c′(a) and the profit of b2 equals
the profit of b minus the penalty P ′(a, b). Therefore, we have again p′′(w′) = p′(w).

Let no on the other hand be w′ a valid path in I ′′. There are four cases to consider.

34

1. w′ does not use a′, b1 or b2. If w′ uses one of the helping arcs ci with i ∈ {1, .., 4}
we can construct a new path with a higher profit. Assume for example w′ uses
c1 or c2 then the only possibility is that at some point w′ has a subsequence
xv1,α,a, c1, c2, xv1,b,β where α ∈ A is some arc with t(α) = v1 and β ∈ A an arc with
s(β) = v1. We can replace this subsequence by xv1,α,β and get a new path w. Since
all the changed arcs have costs 0 we do not change the costs and we get

p′′(w′)− p′(w) = p′′(xv1,α,a) + p′′(c1) + p′′(c2) + p′′(xv1,b,β)− p′(xv1,α,β)
= p′′(c1) + p′′(c2) = −2ε.

Therefore p′(w) > p′′(w′). This also means that w′ was not optimal in I ′′ since w
is a valid path in I ′ and in I ′′ with the same costs and profit.

2. w′ uses a′ but not b2. Furthermore w′ can also not use b1 since it can visit the
node h2 only once. Therefore, w′ must contain a subsequence c1, a

′, c3 which we
can replace by a and get a new path w for the instance I ′. It has again the same
costs and also the same profit.

3. w′ uses b1 but not b2. Furthermore w′ can also not use a′ since it is a path.
Therefore, w′ must contain a subsequence c4, b1, c2 which we can replace by b and
get a new path w for the instance I ′ which has the same costs and profit.

4. w′ uses b2.
If w′ does not use a′ or b1 we can do the same as in point 1 and get rid of usages of
ci for i = 1, ..., 4. After this we can replace b2 by the sequence c4, b1, c2. The new
path has the same costs, but a better profit. Then we can apply point 2 and get a
path in I ′ with a better profit than the original path.
If on the other hand w′ uses a′ or b1, we can first of all rule out the case that w′
uses b1 because this is impossible since it cannot use c4 since w′ is a path and
therefore it cannot reach the node h2 to use the arc b1. Therefore, in this case
w′ uses a′. Then w′ must have a subsequence c1, a

′, c3. We can replace now this
subsequence by a and replace b2 by b and get a new path w for the instance I ′. By
the same calculations as above, we get c′(w) = c′′(w′) and p′(w) = p′′(w′).

We provided now transformations to transform a valid path in I ′ into a valid path in
I ′′ with the same costs and a greater or equal profit and a transformation to transform a
valid path in I ′′ into a valid path in I ′ with the same costs and a greater or equal profit.
This implies that if a path is optimal in I ′ this transformation constructs an optimal
path in I ′′ and vice versa.

Remark 2.4.2. If we would use ε = 0 instead of ε > 0 in the proof of 2.4.3 we would
generate additional solutions, because we allow routes of the form ..., c1, c2, This is

35

not intended since ci are helper arcs to use the arcs a′ or b1, but it would not change the
profit and therefore also the other optimal solutions are still optimal. That means we
can choose ε = 0 so that we do not have negative profit on the arcs ci.

Theorem 2.4.4. Let I = (G, vstart, Cmin, Cmax, p, c, P) be an instance of RTPP1 with
G = (V,A, s, t). Let I further have the following properties:

1. The following holds for all a ∈ A:

p(a) ≥ P (a, a) ≥
∑

b ∈ A \ {a}
P (a, b) > 0

P (a, b)

2. P (a, b) 6= 0 only if a = b or a and b are parallel arcs with the same costs or a and
b are opposite arcs

3. Every arc a1 has at most one opposite arc a2 with nonzero penalty. If such an arc
a2 exists, it holds

max

p(a1)−
∑

a ∈ A \ {a1, a2}
P (a, a1) > 0

P (a, a1), p(a2)−
∑

a ∈ A \ {a1, a2}
P (a, a2) > 0

P (a, a2)


≥ P (a1, a2) ≥ 0.

4. If b1, b2 are parallel arcs either for a1 = b1, a2 = b2 or for a1 = b2, a2 = b1 it must
hold the following:

• If P (a1, a2) > 0 (2.9) holds.
• If P (a1, a2) < 0 (2.10) holds.
• p(a2) ≥ P (a1, a2)

Then we can transform I into an instance I ′ of AOP, such that every solution of the
instance I ′ can easily be transformed into a solution of I. The size |I ′| of I ′ is in O(k|I|)
where k is the maximum of the indegrees and outdegrees of all nodes in G.

Proof. We will apply a series of transformations. Let I0 = I, I1 be the result of
Theorem 2.3.1 applied to I0, I2 be the result of Theorem 2.3.4 applied to I1, I3 be the
result of Theorem 2.3.9 applied to I2 with Pdiff(a, a′) = 0 for all arcs a and its copy a′,
I4 be the result of Theorem 2.4.2 applied possible multiple times to I3 for all parallel
arcs which have nonzero penalties, I5 be the result of Theorem 2.4.1 applied to I4 and I6
be the result of Theorem 2.4.3 applied possible multiple times to I5 for all opposite arcs
which have nonzero penalties by using ε = 0 as described in Remark 2.4.2.

36

We have to prove now that all these transformations are applicable and that I6 at
the end is an instance of AOP.

First of all it is clear that Theorem 2.3.1 is applicable to I0 = I and that the properties
1-4 also hold for I1. It is also clear that Theorem 2.3.4 is applicable to I1. The properties
2-3 also hold for I2. Property 4 also holds for I2 since P (a, a′) = 0 for all arcs a and its
copy a′. From property 1 we get two new properties holding for I2:

5. p(a) ≥ 0 for all a ∈ A

6. It holds for all arcs a and its copy a′:

p(a)− p(a′) ≥
∑

b ∈ A \ {a, a′}
P (a, b) > 0

P (a, b)

We want now to apply Theorem 2.3.9 to I2 with Pdiff(a1, a2) = 0. This is possible
since property 6 holds for I2. Therefore, Theorem 2.3.9 only removes the dependencies
and does not change anything else. That means properties 2-5 also hold for I3.

Because of property 1 parallel arcs can only have nonzero penalties if they have the
same costs and therefore because of property 4 we can apply Theorem 2.4.2 to all parallel
arcs with nonzero penalties and the new profits are still nonnegative. Therefore, property
5 also holds for I4. The properties 2 and 3 together get transformed into the following
new property which holds for I4.

7. For every arc a1 there exist at most one other arc a2 such that P (a1, a2) 6= 0.
If such an a2 exists, it is an opposite arc of a1 and it holds max(p(a1), p(a2)) ≥
P (a1, a2) ≥ 0.

We can apply now Theorem 2.4.1 to I4 and it is clear that the property 5 also holds
for I5.

Now we apply Theorem 2.4.3 with I = I4 and I ′ = I5 for every pair of opposite arcs
with nonzero penalties and with ε = 0 as in Remark 2.4.2. This is possible since property
7 holds for I4. Since we chose ε = 0 and property 7 holds for I4 and property 5 holds for
I5 we get that property 5 also holds for I6 and that I6 does not have any penalties. The
only difference of I6 and an instance of AOP is now that I6 has a minimal tour cost of
Cmin. But we can solve that easily since if the solution of the AOP gives us a solution
with tour costs under Cmin we know that I6 has no valid solution.

Remark 2.4.3. Theorem 2.4.4 has four conditions which look very restricting but if we
have a closer look, we see that most of them are only needed since AOP has only positive
arcs. Without that we could ignore the restrictions 1. and 3. of Theorem 2.4.4. The
restrictions 2. and 4. are very natural since we introduced penalties in Chapter 2 to
reduce the attractiveness if we use an arc in the same or in the opposite direction twice.
Therefore, 2. is not really a restriction. 4. is only a restriction for parallel arcs in the
original graph with penalties, which was also not the basic idea of penalties.

37

CHAPTER 3
Complexity

In this chapter, we will discuss the theoretical complexity of the RTPP. Since all the
transformations described in Section 2.3 are polynomial time reductions it does not matter
which of the problem formulations RTPP1, RTPP2, RTPP3 or RTPP4 we analyze, since
all of them will be in the same complexity class. We will therefore analyze our original
problem formulation RTPP1.

Since RTPP1 is an optimization problem we will need complexity theory for opti-
mization problems.

3.1 Complexity Theory for Optimization Problems
In this section we present some fundamental definitions and theorems. We will use the
notation of the book [7] and we will also omit proofs of the stated theorems, the interested
reader can read the proofs in [7].

First of all we will present a formal definition of an optimization problem.

Definition 3.1.1. An optimization problem P is characterized by the following quadruple
of objects (IP ,SOLP ,mP , goalP), where:

1. IP is the set of instances of P;

2. SOLP is a function that associates to any input instance x ∈ IP the set of feasible
solutions of x;

3. mP is the measure function, defined for pairs (x, y) such that x ∈ IP and y ∈
SOLP(x). For every such pair (x, y), mP(x, y) provides a positive integer which is
the value of the feasible solution y;

4. goalP ∈ {MIN,MAX} specifies whether P is a maximization or a minimization
problem.

39

Every optimization problem has an associated decision problem which is defined as
follows.

Definition 3.1.2. Let P be an optimization problem. Then we define the decision
problem PD as follows. For an instance x ∈ IP and a positive integer K ∈ Z+, decide
whether there exists a feasible solution y ∈ SOLP(x) with mP(x, y) ≥ K in the case of
goalP = MAX or mP(x, y) ≤ K in the case of goalP = MIN.

In the next step we will define a class of optimization problems called NPO, which is
strongly connected to the class NP.

Definition 3.1.3. NPO is the class of all optimization problems P = (I, S,m, goal) such
that

1. I ∈ P, i.e. we can decide in polynomial time whether a given x is a valid instance,

2. there is a polynomial p such that for all x ∈ I and y ∈ S(x), |y| ≤ p(|x|), and for
all y with |y| ≤ p(|x|), we can decide y ∈ S(x) in time polynomial in |x|.

3. m is computable in polynomial time.

The connection between the class NPO and the class NP can be seen in the following
two theorems.

Theorem 3.1.1. Let P ∈ NPO, then PD ∈ NP.

Theorem 3.1.2. Let P ∈ NPO such that PD is NP-complete. Then P ≤TP PD.

3.2 Complexity of RTPP1
Our goal is to apply Theorem 3.1.1 and 3.1.2. For that we have to formalize the problem
in terms of Definition 3.1.1. It is important to mention that since we speak of our problem
instances as finite objects we can assume that all numeric values appearing in it are in Q.

We define I as the set of all instances (G, vstart, Cmin, Cmax, p, c, P) of RTPP1 with
a finite graph G, Cmin ∈ Q, Cmax ∈ Q, p(a) ∈ Q, c(a) ∈ Q ∩ [0,∞), P (a, b) ∈ Q for all
a, b ∈ A where A is the set of arcs of the graph G.

We further define SOL(x) for some instance x = (G, vstart, Cmin, Cmax, p, c, P) as the
set of all walks in G satisfying (2.4) - (2.3).

Since we defined the profit of a walk y depending on the instance x we will write
px(y) instead of p(y) to notate the dependency to the instance x. The next step is
to define m(x, y) for some instance x and valid walk y, but we have to be careful
since m(x, y) has to be a positive integer and we therefore cannot use px(y). Let
x = (G, vstart, Cmin, Cmax, p, c, P) with G = (V,A, s, t). We can use that the property of
being maximal is invariant under translation and multiplication with positive factors.
Since G is finite also A is finite and therefore also the number of profit values and penalties
is finite. From this we get that there has to exist a positive integer Nx ∈ N \ {0} such

40

that Nx · p(a) ∈ Z and Nx · P (a, b) ∈ Z for all a, b ∈ A. If we assume that all numeric
values in our problem have a finite binary representation, we can define Nx = 2nx where
nx is the largest number of decimal places of all binary representations of p(a) and P (a, b)
for a, b ∈ A. Then we get p(a) · 2nx ∈ Z and P (a, b) · 2nx ∈ Z for all a, b ∈ A.

We define now m(x, y) = (px(y) + Pmax(p, P)) · 2nx for an arbitrary instance x =
(G, vstart, Cmin, Cmax, p, c, P) and a walk y ∈ SOL(x). We know that px(y) > −Pmax(p, P)
and therefore we get m(x, y) > 0. Since we have a maximization problem we define
goal = MAX.

Using the definitions from above we can define the optimization problem Q =
(I, SOL,m, goal). In the next step we want to prove that this optimization problem is in
NPO.

Theorem 3.2.1. Q ∈ NPO.

Proof. We have to prove the three conditions for being in NPO.

1. Checking if x = (G, vstart, Cmin, Cmax, p, c, P) is an instance can be done in polyno-
mial time. We only have to check if G is a directed multigraph, vstart is a node of
G, Cmin ∈ Q, Cmax ∈ Q, p is a function from A to Q where A is the set of arcs of
G, c is a function from A to Q ∩ [0,∞), P is a symmetric function from A×A to
Q. All these steps can be done in linear time on the size of x.

2. Every valid walk y ∈ S(x) contains at most 2|A| arcs where A is the set of arcs
of the graph G of the instance x. Therefore, we get |y| ≤ c|A| ≤ c|x| where c is
a constant depending on how we store a walk and how we measure the size of it.
Therefore, we can use the polynomial p(n) = c · n. For a |y| with |y| ≤ c · |x| it
is also easy to verify if it is a valid walk which satisfies the needed conditions for
being in S(x) in time polynomial in |x|.

3. For a fixed x and y we can compute nx and Pmax(p, P) in time polynomial in |x|
and therefore we can compute m(x, y) = px(y) ·2nx +Pmax(p, P) in time polynomial
in |x| and |y|.

From the above, we get by using Theorem 3.1.1 that QD ∈ NP. It is clear that
QD has the same complexity than the new problem when we replace the measure
m(x, y) = (px(y)+Pmax(p, P)) ·2nx by m(x, y) = px(y). Since the measure of each walk y
only gets transformed and the transformation is fixed for a fixed x and is only translation
and multiplication with a positive factor, the set of walks with the maximal measures is
in both cases the same. Therefore, we also get that the decision problem Q′D which we
get by replacing the measure in QD through px(y) is in NP. The next step will be to
prove that Q′D is NP-complete. Since we already proved that it is in NP it is sufficient
to prove that it is NP-hard. For this we use the fact that the decision problem of the
famous traveling salesman problem is NP-hard. We first formulate the traveling salesman
problem as described in [18].

41

Definition 3.2.1 (Hamiltonian Tour). Let G be an undirected graph with n = |V |
nodes. A Hamiltonian tour in G is a closed walk w = (v0, ..., vn) which visits each node
exactly once and comes back to the start node, that means v0 = vn and vi 6= vj for all
0 < i ≤ j.

Definition 3.2.2 (Kn). For a natural number n the complex undirected graph Kn is
defined as an undirected graph (V,E) with |V | = n and all possible edges E = {uv|u, v ∈
V, u 6= v}.

Problem (TSPD). Given the complete undirected graph Kn with edge weights cuv and
a number b decide if there exists a Hamiltonian tour in Kn with length at most b.

Theorem 3.2.2. The problem TSPD is NP-complete.

The next step will be to find a polynomial time reduction from TSPD to Q′D which
will then imply that Q′D is NP-hard.

Theorem 3.2.3. There is a polynomial time reduction from TSPD to Q′D.

Proof. Let n ∈ N and cuv the weights of the edges of the complex undirected graph
Kn = (V,E) and b a number. We will use the undirected version of Kn as our graph G
that is G = (V,A, s, t) where

A = {(u, v)|u, v ∈ V, u 6= v}

s((u, v)) = u t((u, v)) = v ∀(u, v) ∈ A

Important is here the difference of E and A. In E we used the notation uv for an
undirected edge which is a short form for {u, v} and therefore is the same as vu = {v, u}.
But (u, v) 6= (v, u). Therefore, A has twice as many arcs as E has edges. Furthermore,
we define c((u, v))) = 1 for all arcs (u, v) ∈ A and Cmin = Cmax = n. That means we
only search walks, containing n arcs. Since TSPD is a decision problem corresponding to
a minimization problem and QD is a decision problem corresponding to a maximization
problem we have to inverse the profit and therefore we define

p((u, v)) = −cuv ∀(u, v) ∈ A

Let P0 be the penalty function with no penalties, that means P0((u, v), (u′, v′)) = 0 for
all (u, v), (u′, v′) ∈ A. We want to forbid that one node is used more than once and
therefore we use the large value C := b+ Pmax(p, P0). We define now

P ((u, v), (u, v′)) = C ∀u, v, v′ ∈ V

P ((u, v), (u′, v′)) = 0 ∀u, v, u′, v′ ∈ V, u 6= u′

In the first case we can also have v = v′ and therefore we have P ((u, v), (u, v)) = C
this will be used that no arc is used twice. Since a Hamiltonian path always uses every

42

node of the graph we can set any node as start and end node, let therefore be vstart ∈ V
an arbitrary node in V .

We have now generated an instance x = (G, vstart, Cmin, Cmax, p, c, P) together with
the value −b for the problem Q′D.

We have two cases, let first be the answer of this instance yes, that means that there
exists a valid walk y in G such that px(y) ≥ −b. Assume y would visit a node v ∈ V twice,
that means this walk has to leave this node also twice and therefore we have a w1 and
a w2 such that either w1 6= w2 and uy((v, w1)) ≥ 1 and uy((v, w2)) ≥ 1 or w1 = w2 and
uy((v, w1)) = 2. We prove now that in both cases px(y) < −b which is a contradiction.

In the first case let u be the usage vector of y without (v, w1), that means u((v′, w′)) =
uy((v′, w′)) for all (v′, w′) ∈ A \ {(v, w1)} and u((v, w1)) = 0. Then we get

px(y) = p(uy) ≤ p(u) + p(v, w1)− C <
Pmax(p, P0)

2 + p(v, w1)− b− Pmax(p, P0) ≤ −b

In the second case let u be the usage vector of y which is using (v, w1) only once, that
means u((v′, w′)) = uy((v′, w′)) for all (v′, w′) ∈ A \ {(v, w1)} and u((v, w1)) = 1. Then
we get again exactly the same calculation as above and therefore again px(y) < −b.

Therefore we know that every valid walk in G with px(y) ≥ −b visits each node at
most once. But since c(y) = n we get that the walk has length n and therefore visits
exactly n nodes. Therefore, we can use y = ((u0, v0), ..., (un, vn)) to define a Hamiltonian
tour y′ in the original graph Kn by y′ = (u0v0, ..., un, vn). And since no penalties apply
in this case we get by definition that p(y) equals exactly the −1 times the length of y′
and therefore we get that the length of y′ is lower or equal than b and therefore that the
answer of the original instance is also yes, there exists a Hamiltonian path in Kn with
length lower or equal to b.

Let now be the answer of the generated instance x together with −b of the problem
Q′D no, that means that there exists no valid walk y with px(y) ≥ −b. We want to prove
that then also no Hamiltonian tour exists in Kn with length lower or equal to b. Assume
there would exist a Hamiltonian tour y in Kn with length lower or equal b, then we can
transform this tour in a walk y′ in G which is a valid walk. But since there are again
no penalties for this walk we get that p(y′) is −1 times the length of y and therefore
p(y′) ≥ −b which is a contradiction. Therefore, also the answer of the original instance is
no.

We just provided a polynomial transformation of an instance of TSPD to an instance
of Q′D such that the two instances have the same solutions, that means in this case either
the answer of both instances is yes or the answer of both instances is no. Therefore, we
just provided polynomial-time many-one reduction from TSPD to Q′D.

Corollary 3.2.4. Q′D is NP-complete and therefore also QD is NP-complete.

Now we can apply 3.1.2 and get the following corollary.

Corollary 3.2.5. Q ≤TP QD and therefore also RTPP1 ≤TP QD.

43

Proof. The first statement follows from 3.1.2 and the second statement follows from the
fact, that Q is almost the same as RTPP1 with the only difference, that the profit function
is transformed, which does not change anything for the optimization problem.

We now define the complexity class NP-equivalent, which also contains function
problems and not only decision problems as introduced in [14].

Definition 3.2.3 (NP-hard). A problem P is called NP-hard if there exist an NP-complete
problem P ′ such that P ′ ≤TP P.

Definition 3.2.4 (NP-easy). A problem P is called NP-easy if there exists a problem
P ′ ∈ NP such that P ≤TP P ′.

Definition 3.2.5 (NP-equivalent). A problem P is called NP-equivalent if it is NP-hard
and NP-easy.

Corollary 3.2.6. The problem RTPP1 is NP-equivalent.

Proof. We already proved that Q′D is NP-complete and that Q′D ≤TP RTPP1 ≤TP Q′D,
where the first reduction is trivial. Therefore, we get by definition that RTPP1 is NP-hard
and NP-easy.

44

CHAPTER 4
Related Work

In this chapter, we will discuss related problems to RTPP. We will see that there are
many optimization problems similar to ours, but none of them has a concept of penalties
like we use it.

Since our problem is to find a route we will first start with one of the best known
optimization problems, the traveling salesman problem, which we already introduced in
Chapter 3.

4.1 The Traveling Salesman Problem

The traveling salesman problem is maybe the most popular optimization problem and
therefore a lot of researchers investigated it. Its goal is to find an optimal route visiting
all given cities. For a formal definition of the problem see problem formulation TSPD
in Chapter 3, which is the corresponding decision problem of the original optimization
problem.

As stated in [18] its history starts in the 19th century and since then the approaches
to solve it were improved constantly. In 1954 they solved a problem with 48 cities and
in 1991 they already solved a problem with 4461 cities. In [3] a modern branch-and-cut
algorithm for solving the traveling salesman problem is described. The algorithm solved
a problem with 85,900 cities. For much larger problems the interesting question is how
good the solution can be approximated. In [17] different approximation algorithms are
compared and the best of them could solve an instance with 3 million cities within an
optimality range of 2%.

4.2 Traveling Salesman Problems with Profits

In [10] a class of problems called traveling salesman problems with profits is defined. All
problems in this class search a route, where each node is visited at most once, which is

45

optimal concerning profit of nodes and costs of the route. The main difference of these
problems to our problem is that every node is only visited at most once.

The solution approaches for problems in this class are often adapted solution ap-
proaches from the traveling salesman problem. On the side of exact methods there are
different branch-and-bound and branch-and-cut solution procedures (see for example
[11]). In [10] four main operations, which are used by heuristic approaches to transform
routes and improve their quality, are listed:

• Adding a vertex to the route to improve the profit.

• Deleting a vertex from the route to improve the costs.

• Resequencing the route to improve the costs while having the same profit. This
only works if the profits are associated with nodes and not with arcs.

• Replacing a vertex as a mix of the first two transformations.

There were also many meta heuristics applied to traveling salesman problems with
profits.

4.2.1 The Orienteering Problem

One more specific problem in the class of traveling salesman problems with profits is the
orienteering problem. It was introduced in [23] where it was called score orienteering
event (S.O.E.) instead of the more commonly used name, the orienteering problem (OP).
Its goal is to find a path from a fixed start point to a fixed end point with maximal score
such that the traveling time is smaller than some upper bound Tmax where the score of a
path is the sum of the scores of the visited nodes.

The main differences to our problem are that scores are assigned to nodes and not to
arcs and that it only allows paths, that means walks, where every node is only visited
once. The scores in OP are required to be nonnegative, but there are many extensions of
OP and some of them allow also negative scores.

The OP and many of its extensions are analyzed in [24]. As already mentioned in
Section 4.2 there are a wide variety of solution approaches for the OP.

Some approaches to solve the OP exactly as mentioned in [24] are branch-and-bound
approaches and a branch-and-bound algorithm using a cutting plane method to improve
upper bounds. In [11] a branch-and-cut algorithm is presented which we will use for one
of our solution approaches described in Chapter 5.

There are many different heuristic approaches for the OP. As [24] gives a rather good
list of heuristic approaches, we refer the interested reader to that survey.

One interesting variant of the orienteering problem is the arc orienteering problem
where the profits are on the arcs instead of the nodes, which is already very similar to
our problem, is described in Section 4.3.3.

46

4.3 Arc routing problems with profits

In contrast to the traveling salesman problems with profits arc routing problems with
profits assign profits to arcs and not to nodes. There are many different arc routing
problems with profits and [4] gives a thorough overview of them.

Four interesting problems in this class are the maximum benefit chinese postman
problem, the prize collecting rural postman problem, the arc orienteering problem and
the cycle trip planning problem.

4.3.1 Maximum Benefit Chinese Postman Problem

The maximum benefit chinese postman problem, or short MBCPP, has many similarities
with our problem. It was introduced in [13] and is defined on a directed graph. Every arc
can be used multiple times and for every time the profit and the costs can be different.
There is also a limit for every arc from which on the arc does not give any profit. In
contrast to our problem the goal of the MBCPP is to maximize the difference between
profit and costs of the tour. Another difference is that the MBCPP has no maximal
tour length and minimal tour length. This makes it possible to solve the problem with a
minimum cost flow algorithm with subtour elimination as proposed in [13]. As another
exact algorithm a branch-and-cut algorithm was proposed in [9], which can solve instances
up to 1000 vertices and 3000 edges within one hour. There were also heuristics and
approximation algorithms proposed as in [15] and [16].

4.3.2 The Prize Collecting Rural Postman Problem

The prize collecting rural postman problem, PCRPP, is also called privatized rural
postman problem and was introduced in [6]. It is a special case of the MBCPP and
is very similar to our problem. The PCRPP is defined on a undirected graph and is
restricted such that every edge only gives profit once. This implies that an optimal route
uses each edge at most twice. In [5] a branch-and-cut algorithm is presented to solve the
PCRPP which is based on a formulation introduced in [6].

4.3.3 The Arc Orienteering Problem

The arc orienteering problem, short AOP, was introduced in [22] and we already defined
it in Chapter 2. The main difference to our formulation is that every node can be visited
only once and therefore we have no penalties or something similar. Another difference is
that the profits are restricted to be nonnegative. In Theorem 2.4.4 we proved that under
some restrictions an instance of our problem can be transformed into an instance of the
AOP.

The problem was formulated in [22] also in the context of cycle trip planning. The
goal was to design a web-based tool to plan cycle trip tours in the region of East Flanders.
They designed a greedy randomized adaptive search procedure (GRASP) to solve the
problem. Their procedure is based on routes which can consist of multiple subtours

47

and the interpretation of such a route is the path after connecting the unconnected
parts of the tour in a cheapest possible way. The neighborhood used for the GRASP is
constructed by inserting a new arc into one of the subtours of a route.

The numerical experiments show that the GRASP algorithm compared to a simple
MIP model solved by CPLEX constructs the best solution for small instances much
faster and constructs a good approximations for big instances, where the CPLEX method
fails to solve the instance. The algorithm could solve all but one instance with a tour
length of 20 kilometers and some instances with a tour length of 40 kilometers optimally.
For the other instances up to a tour length of 100 kilometers the algorithm found good
approximations with gaps around 0.04%.

We will apply our algorithm to the benchmark instance used for testing their GRASP
algorithm and compare the results in Chapter 7.

4.3.4 The Cycle Trip Planning Problem

The CTPP was introduced in [25]. The CTPP can be formalized as a variant of the AOP
with the following differences:

• A node can be visited more than once.

• Every arc can only be used once.

• If an arc has an opposite arc, it is not allowed to use both of them.

• There is not only one start node, but rather a set of start nodes from which at
least one has to be visited. The vertex which is used as start vertex cannot be used
during the route, that means it is only allowed to visit the start vertex once.

If we ignore the situation with more than one start node and the fact that the start
node can only be used once we have almost the same situation as in our problem, but
with the restriction that we can only use every arc once and that we have no penalties.
Therefore, this problem is much closer to our problem formulation than the AOP, but
it is still easier to transform our problem into an instance of the AOP as we did in
Theorem 2.4.4 than to transform it into an instance of CTPP. The reason for this is that
the fact that every node can only be visited once can be used to simulate penalties as
described in Figure 2.9.

In [25] they presented a branch-and-cut procedure to exactly solve the problem. For
big instances, the branch-and-cut procedure does not terminate in an acceptable time
and therefore they described an iterated local search (ILS) procedure. The ILS procedure
is based on an insert move sub procedure which inserts between two points a path such
that the gained profit is maximal with the restriction that the new tour still has to be
valid. This sub procedure itself is again a smaller variant of the CTPP.

The computational results presented in [25] show for the benchmark instances of the
AOP from [22] that the ILS finds the best tour in most situations. In their tests the ILS
found the best tour whenever the exact solution was known, that means whenever the

48

branch-and-cut procedure terminated. They also show that the ILS always finds better
or the same solution than the GRASP algorithm presented in [22]. Since the ILS is a
solver for CTPP and not AOP it can happen that it finds a tour where a node is visited
more than once, but this happened only in a few cases.

There are also new benchmark instances created for the CTPP in [25]. We will
apply our algorithm to these benchmark instances and to the original AOP benchmark
instances and compare the results in Chapter 7.

49

CHAPTER 5
Mixed Integer Programming

Approach for RTPP3

In this chapter we will present an exact approach based on mixed integer programming
to solve our problem RTPP3, i.e., the variant where arcs can only be used once and the
start node and the end node are different. Our approach is based on a mixed integer
formulation and to eliminate subtours we will present three different possibilities. Before
defining the MIP models we propose a preprocess phase that may reduce instances
considerably.

5.1 Preprocessing

We already saw in Chapter 3 that our problem is NP-hard and therefore the running
time of every algorithm which exactly solves the problem will heavily depend on the size
of the input graph. Therefore, we try in a preprocessing phase to shrink the graph as
much as possible. That means we want to remove all nodes and arcs where we know that
they will never be included in a valid tour.

Let (G, vstart, vend, Cmin, Cmax, p, c, P,D) be an instance of RTPP3 and let v 6= vstart be
a node which is included in a tour w = (w1, ...wk) that means there exists a j ∈ {1, ..., k}
such that t(wj) = v. Then the walk w1 := (w1, ..., wj) is a walk from vstart to v and the
walk w2 := (wj+1, ..., wk) is a walk from v to wend and we have c(w) = c(w1) + c(w2).
Let c1(v) be the costs of the shortest path from vstart to v and c2(v) the costs of the
shortest path from v to vend. Then we get c(w) = c(w1) + c(w2) ≥ c1(v) + c2(v). That
means we can delete all nodes where c1(v) + c2(v) > Cmax. We cannot remove more
nodes since then we would remove the valid tour consisting of the shortest path from the
start node to the node and the shortest path from the node to the end node.

Obviously, we have to remove all arcs whose source node or target node got deleted.
But we can remove even more arcs. Consider a walk w = (w1, ..., wk) containing an arc wj

51

for some 1 ≤ j ≤ k. Then we can similarly to above define the walk w1 := (w1, ..., wj−1
and the walk w2 := (wj+1, ..., wk). We get

Cmax ≥ c(w) = c(w1) + c(wj) + c(w2) ≤ c1(s(wj)) + c(wj) + c2(t(wj))

and therefore we can additionally remove all arcs where the costs of the arc plus the cost
of the shortest path from the start node to the source node of the arc plus the cost of
the shortest path from the target node of the arc to the end node is bigger than Cmax.
Again we can not do better since otherwise we would remove the tour consisting of the
two shortest paths and the given arc.

Another task for the preprocessing is the following. As already mentioned in Chapter 1
and in Section 2.1, one benefit of well planned bicycle routes for people with special needs
is that they can specify that the route should not lead too far away from the start point,
so that it is possible to get back quickly at any time. Therefore a maximal distance will
be specified, which was not part of our problem formulation since it only concerns the
preprocessing. The preprocessing therefore has to remove all nodes from the graph, from
where the shortest path back to the start node is longer than the given maximal distance.

Algorithm 5.1 is a pseudo code realizing ideas discussed above. As we can easily
check with the observations from above it removes only nodes and arcs which will never
be part of a valid route and on the other hand, for every remaining node or arc there
exists a valid route which contains it. The running time of Algorithm 5.1 is in O(|V |2),
since the running time of the Dijkstra algorithm is in O(|V |2).

5.2 From a Usage Vector to a Walk

Since the mixed integer formulation is based on usage functions and not on paths we will
first analyze how to restrict usage functions such that they correspond to a valid walk
and present an algorithm to generate the walk from the usage vector.

First of all, we introduce a new notation which will help us to formulate the statements
easier.

Definition 5.2.1. Let G = (V,A, s, t) be a directed multigraph as in Definition 2.2.1.
Let S ⊆ V be a set of nodes then we define the arc sets

δin(S) := {a ∈ A : s(a) /∈ S, t(a) ∈ S} ,

E(S) := {a ∈ A : s(a) ∈ S, t(a) ∈ S} .

Let further be v ∈ V then we define the arc sets

Ain(v) = {a ∈ A : t(a) = v},

Aout(v) = {a ∈ A : s(a) = v}.

52

Algorithm 5.1: General Preprocessing
1: INPUT: instance (G = (V,A, s, t), vstart, vend, Cmin, Cmax, p, c, P,D) of RTPP3

and optionally a maximal distance dmax ∈ [0,∞].
2: OUTPUT: A subgraph G′ = (V ′, A′, s′, t′) of G.
3: if dmax is not set then
4: Set dmax :=∞
5: end if
6: Apply Dijkstra with the source node vstart to get the costs c1(v) of the shortest

path from vstart to v for all v ∈ V .
7: Apply Dijkstra on the reversed arcs with the target node vend to get the costs
c2(v) of the shortest path from v to vend for all v ∈ V .

8: Set V ′ := ∅, A′ := ∅
9: for all v ∈ V do

10: if c1(v) + c2(v) ≤ Cmax and c2(v) ≤ dmax then
11: Add v to V ′
12: end if
13: end for
14: for all a ∈ A do
15: if s(a) ∈ V ′, t(a) ∈ V ′ and c1(s(a)) + c(a) + c2(t(a)) ≤ Cmax then
16: Add a to A′, set s′(a) := s(a), t′(a) := t(a)
17: end if
18: end for
19: return G′ = (V ′, A′, s′, t′)

Theorem 5.2.1. Let G = (V,A, s, t) be a directed multigraph and w = (w1, ..., wk) a
walk in G as in Definition 2.2.2 with s(w1) 6= t(wk). Let s = s(w1) be the start node of
the walk and t = t(wk) the end node of the walk. Then, we get the following identities
for the usage function uw.

∑
a∈Ain(v)

uw(a) =
∑

a∈Aout(v)
uw(a), ∀v ∈ V \ {s, t} (5.1)

∑
a∈Aout(s)

uw(a) = 1 +
∑

a∈Ain(s)
uw(a) (5.2)

∑
a∈Ain(t)

uw(a) = 1 +
∑

a∈Aout(t)
uw(a) (5.3)

∑
a∈δin(S)

uw(a) ≥ min(1, uw(b)) ∀S ⊆ V \ {s}, b ∈ E(S) (5.4)

53

Proof. By definition of a walk we have t(wi) = s(wi+1) for all 1 ≤ i ≤ k − 1. Therefore,
we get for all v ∈ V \ {t}∑

a∈Ain(v)
uw(a) = |{i ∈ {1, ..., k} : t(wi) = v}| = |{i ∈ {1, ..., k − 1} : s(wi+1) = v}|.

For v ∈ V \ {s, t} we further have s(w1) 6= v and therefore∑
a∈Ain(v)

uw(a) = {i ∈ {1, ..., k} : s(wi) = v}| =
∑

a∈Aout(v)
uw(a).

For v = s we get s(w1) = v = s and therefore∑
a∈Aout(s)

uw(a) = 1 + |{i ∈ {1, ..., k − 1} : s(wi+1) = v}| = 1 +
∑

a∈Ain(v)
uw(a).

The situation for the node t is similar. Since s 6= t we get s(w1) 6= t and therefore we
have∑

a∈Ain(t)
uw(a) =|{i ∈ {1, ..., k} : t(wi) = t}| = 1 + |{i ∈ {1, ..., k − 1} : s(wi+1) = t}|

=1 + |{i ∈ {1, ..., k} : s(wi) = t}| = 1 +
∑

a∈Aout(t)
uw(a).

Let S ⊆ V \ {s} be an arbitrary set of nodes without the start node and let b ∈ E(S) be
an arc with s(b) ∈ S and t(b) ∈ S.

If uw(b) = 0 that means w does not use b the inequality (5.4) is trivially satisfied.
Let uw(b) ≥ 1. That means there exists at least one i0 ∈ {1, ..., k} such that wi0 = b.

Let furthermore be
i1 := min{i ∈ {1, ..., k} : t(wi) ∈ S}.

This minimum exists since t(wi0) = t(b) ∈ S and therefore we get i1 ≤ i0.
If i1 > 1 we have s(wi1) = t(wi1−1) /∈ S. If i1 = 1 we have s(wi1) = s(w1) = s /∈ S.

That means we always have s(wi1) /∈ S. But that implies wi1 ∈ δin(S) and since
uw(wi1) ≥ 1 we get ∑

a∈δin(S)
uw(a) ≥ uw(wi1) ≥ 1 ≥ min(1, uw(b)).

We will see that the conditions (5.1) - (5.4) are enough to characterize that a usage
function corresponds to one or more walks. We will provide an algorithm which constructs
a walk given a usage function with these three properties, such that the usage function
of the walk equals the given usage function. The algorithm is based on a subprocedure
which extracts a valid walk from some point v0 to some point v1 and returns the walk
and a modified usage function. Algorithm 5.2 is a pseudo code for this subprocedure.

Algorithm 5.3 constructs a walk given a usage function and a start and an end node
such that the conditions (5.1) - (5.4) are satisfied. Its running time is in O(|A|2).

54

Algorithm 5.2: Extract(G,u,v0,v1)
1: INPUT: graph G = (V,A, s, t), usage function u, start node v0, target node v1
2: REQUIRES: The usage function u satisfies the conditions (5.1) - (5.4).
3: OUTPUT: A walk w and the modified usage function umod
4: Set w := () to the empty walk
5: Set v := v0
6: Set umod := u
7: repeat
8: Set a to any arc in Aout(v) with umod(a) ≥ 1
9: Add a to the end of w, set umod(a) := umod(a)− 1, set v := t(a)

10: until v = v1
11: return w and umod

Algorithm 5.3: Construct a Walk
1: INPUT: graph G = (V,A, s, t), usage function u, start node s, target node t
2: OUTPUT: The to u corresponding walk w
3: Set rem := u
4: Call Extract(G,rem,s,t). Set w to the resulting walk and rem to the resulting
umod.

5: while there exists an arc wi ∈ w and an arc a ∈ Aout(t(wi)) with rem(a) ≥ 1 or
an arc a ∈ Aout(s) with rem(a) ≥ 1 do

6: if a ∈ Aout(s) then
7: Call Extract(G,rem,s,s). Insert the resulting walk at the beginning of w

and set rem to the resulting umod.
8: else
9: Call Extract(G,rem,t(wi),t(wi)). Insert the resulting walk into w after the

arc wi and set rem to the resulting umod.
10: end if
11: end while
12: return w

55

Lemma 5.2.2. Let G = (V,A, s, t) be a directed multigraph, u a usage function and
v0, v1 ∈ V such that one of the two condition holds:

1. v0 = v1 and
∑
a∈Ain(v) u(a) =

∑
a∈Aout(v) u(a) for all v ∈ V and

∑
a∈Aout(v0) u

w(a) ≥
1.

2. v0 6= v1 and (5.1), (5.2) and (5.3) hold for s = v0, t = v1, uw = u.

Then Algorithm 5.2 applied to G, u, v0 and v1 terminates and returns a nonempty walk
w from v0 to v1 such that uw(a) ≤ u(a) for all a ∈ A. It further holds uw(a) +umod(a) =
u(a) for all a ∈ A, where umod is the returned usage function.

Proof. Since v gets only set in the repeat loop whenever a new arc a is added to w in
line 9, it is clear that it always holds v = t(a) for a the last arc in w.

When we add a new arc a to w we know that a ∈ Aout(v) with v = t(aend) where
aend is the last arc in w before we add a or v = v0 if w is empty. Therefore, we get that
if w is not empty we have s(a) = t(aend) and therefore w is always a valid walk.

Regardless if condition 1 or condition 2 of this lemma holds we always have∑
a∈Aout(v) u

w(a) ≥ 1. Thus we know that in the first iteration, we will find an arc
a in Aout(v) = Aout(v0) with umod(a) ≥ 1 on line 8.

We will prove now that we always find an arc a ∈ Aout(v) with umod(a) ≥ 1 on line 8,
that means that the algorithm has no errors. We already know that the algorithm finds
such an a if it is the first iteration. Therefore, we can assume that we are in an iteration,
which is not the first and therefore v 6= v1.

We prove by induction that at any iteration step after the first iteration∑
a∈Ain(v′)

umod(a) =
∑

a∈Aout(v′)
umod(a) ∀v′ ∈ V \ {v, v1} (5.5)

and ∑
a∈Aout(v)

umod(a) = 1 +
∑

a∈Ain(v)
umod(a). (5.6)

hold. Directly after the first iteration step we have

∑
a∈Aout(v0)

umod(a) =

 ∑
a∈Aout(v0)

u(a)

− 1,

∑
a∈Ain(v)

umod(a) =

 ∑
a∈Ain(v)

u(a)

− 1,

∑
a∈Aout(v′)

umod(a) =
∑

a∈Aout(v′)
u(a) ∀v′ ∈ V \ {v0}

∑
a∈Ain(v′)

umod(a) =
∑

a∈Ain(v′)
u(a) ∀v′ ∈ V \ {v}.

56

This implies that directly after the first iteration (5.5) and (5.6) hold, regardless which
of the two conditions of the lemma are satisfied.

After adding an arc a′ to w and changing v to t(a′), the value umod(w) gets decreased
by one. That implies that also the sums

∑
a∈Aout(s(a′)) umod(a) and

∑
a∈Ain(t(a′)) umod(a)

get decreased by one. All other sums in (5.5) and (5.6) stay the same. Since s(a′) equaled
v before we added a′, we know (5.6) held for s(a′) before we added a′ to w. The right
side gets decreased by one after adding a′ and therefore (5.5) holds for s(a′) after adding
a′ to w. With the same argumentation we know that before adding a′ to w (5.5) held for
t(a′) and therefore after adding a′ to w (5.6) holds for the new v = t(a′). All in all we
get again that (5.5) and (5.6) hold in any iteration after the first iteration.

From (5.6) it directly follows that after the first iteration, we always have∑
a∈Aout(v)

umod(a) ≥ 1

and therefore that there exists an a ∈ Aout(v) with umod(a) ≥ 1. All in all we get that in
the first iteration and also in all iterations after the first we always find an a ∈ Aout(v)
with umod(a) ≥ 1. That means our algorithm has no errors.

We also know that umod(a) ≥ 0 for all a ∈ A at any iteration since we only decrease
umod(a) by 1 if umod(a) ≥ 1. In every iteration the nonnegative sum∑

a∈A
umod(a) ≥ 0

gets decreased by 1 and since this sum was finite at the beginning of the algorithm our
algorithm has to terminate at some point.

Therefore, we know that the algorithm has no errors, always terminates and returns
a valid walk. Since the repeat loop gets called at least once we get that the resulting
w = (w1, ..., wk) is nonempty, that means k > 0. In the first iteration, we have v = v0
and therefore s(w1) = v = v0. Since the algorithm terminated, we know after the last
iteration v = v1 and therefore v = t(wk) = v1.

Since urem was equal to u at the beginning and afterwards the values of it only get
smaller we get urem(a) ≤ u(a) for all a ∈ A at the end. Since we always reduced urem(a)
if and only if a was added to the walk we get u(a)−urem(a) = uw(a) for all a ∈ A. From
this it also follows uw(a) ≤ u(a) for all a ∈ A since urem(a) ≥ 0 for all a ∈ A.

Theorem 5.2.3. Let G = (V,A, s, t) be a directed multigraph, s, t ∈ V with s 6= t and u
a usage function such that the conditions (5.1) - (5.4) are satisfied. Then, Algorithm 5.3
applied to G, u and s and t always terminates and returns a walk w with uw = u.

Proof. First of all we will prove that all calls of Algorithm 5.2 terminate. For this we
will prove that the conditions of Lemma 5.2.2 are always satisfied.

For the call in line 4 we have v0 = s and v1 = t and v0 = s 6= t = v1. Since rem = u
we have that the conditions (5.1) - (5.4) are also satisfied for rem with s = v0 and t = v1,
therefore condition 2 of the lemma is satisfied. We therefore know that the returned walk

57

w is a valid walk from s to t. We also know rem(a) = u(a) − uw(a) for all a ∈ A. By
Theorem 5.2.1 we get that uw also satisfies the conditions (5.1) - (5.4). Therefore, we get
that ∑

a∈Ain(v)
rem(a) =

∑
a∈Aout(v)

rem(a) (5.7)

holds for all v ∈ V . We will prove by induction that (5.7) holds during the whole
while loop and that every call of Algorithm 5.2 on line 7 or line 9 satisfies the conditions
of Lemma 5.2.2.

Let v = s if we are on line 7 and v = t(wi) if we are on line 9. Then we have
v0 = v1 = v. We know that there exists an arc in Aout(v) with rem(a) ≥ 1. Since by
induction (5.7) holds we have that condition 1 of Lemma 5.2.2 is satisfied.

Therefore, we can apply Lemma 5.2.2 and get that the returned walk is a valid
walk from v to v. Let us call rem the usage function before the call, w the walk before
the call, umod the returned usage function and w′ the returned walk. Then we get
rem = umod + uw

′ . Since w′ is a walk from v to v we get that uw′ also satisfies (5.7) with
uw
′ instead of rem. But that implies that also umod satisfies (5.7) with umod instead of

rem. Since after the call of the algorithm rem gets set to umod we just proved that the
new rem still satisfies (5.7).

With that, we proved that every call of Algorithm 5.2 terminates correctly. That also
implies that w is always a valid walk from s to t after every iteration since we only insert
a walk from t(wi) to t(wi) after wi or a walk from s to s at the beginning of w in every
iteration.

We always have rem(a) = u(a)− uw(a) for all a ∈ A. That implies since rem(a) is
always nonnegative, that the algorithm has to terminate at some point. We proved now
that the algorithm terminates and always returns a valid walk from s to t.

It remains to prove that uw(a) = u(a) for all a ∈ A at the end, which is the same as
saying rem(a) = 0 for all a ∈ A.

We know that at the end since the while loop exited we have rem(a) = 0 for all
a ∈ Aout(t(wi)) for all wi ∈ w and rem(a) = 0 for all a ∈ Aout(s). But since rem satisfies
(5.7) this implies rem(a) = 0 for all a ∈ Ain(t(wi)) for all wi ∈ w and rem(a) = 0 for all
a ∈ Ain(s).

We define now the set

S = V \ ({s} ∪ {t(wi) : wi ∈ w}) ⊆ V \ {s}.

Let b /∈ Aout(t(wi)) ∪ Ain(t(wi)) for all wi ∈ w and b /∈ Aout(s) ∪ Ain(s), that means
exactly s(b) ∈ S and t(b) ∈ S and that means exactly b ∈ E(S). Since u satisfies 5.4 we
get ∑

a∈δin(S)
u(a) ≥ min(1, u(b)).

For a ∈ δin(S) we have t(a) /∈ S and therefore a ∈ Ain(s) or a ∈ Ain(t(wi)) for some
wi ∈ w. But we already proved that then rem(a) = 0 which means u(a) = uw(a). But

58

uw(a) = 0 since s(a) ∈ S and all in all we get u(a) = 0. Therefore, we get

min(1, u(b)) ≤
∑

a∈δin(S)
u(a) = 0.

This implies u(b) = 0. Since rem(b) ≤ u(b) we also have rem(b) = 0.
All in all we proved now rem(a) = 0 for all a ∈ A at the end of the algorithm. But

this implies u(a) = uw(a) for all a ∈ A.

Putting Theorem 5.2.1 and Theorem 5.2.3 together we get the following corollary.

Corollary 5.2.4. Let G be a directed multigraph, u a usage function and s and t two
nodes in G with s 6= t. Then there exists a walk w in G from s to t with uw = u if and
only if the conditions (5.1) - (5.4) are satisfied.

5.3 Mixed Integer Linear Program

In this section we will provide three mixed integer linear programming formulations to
solve RTPP3. Using Corollary 5.2.4 we can reformulate RTPP3 such that instead of
searching a walk with optimal total profit we search a usage vector, satisfying (5.1) -
(5.4), with optimal total profit. Then we solve the MIP and apply Algorithm 5.3 to the
result to get the final walk.

Since a usage function u can have more than only one walk w with uw = u we have
to mention that Algorithm 5.3 only constructs one optimal walk and therefore does only
return one and not all solutions of the problem. We could modify the algorithm such that
it returns all optimal solutions, although the number of optimal solutions corresponding
to a usage function can be exponential in the size of the walks and since it is enough for
our purposes to find one solution we stay with the algorithm as we defined it.

5.3.1 Variables

Let in this section and the following sections be G = (V,A, s, t) the given directed
multigraph with an enumerated arc set A = {a1, ..., am}. We will use in our mixed
integer linear programs the boolean variable vector (xi)mi=1 which will represent the usage
function, that means xi = u(ai). Furthermore, we will need helper variables to define
penalties. We therefore introduce for every pair of arcs (ai, aj) with P (ai, aj) 6= 0 a
boolean helper variable uij which is 1 if ai and aj are both used and 0 otherwise.

59

5.3.2 Integer Linear Programming Formulation

Definition (MIP1). Let (G, vstart, vend, Cmin, Cmax, p, c, P,D) be an instance of RTPP3.
We call the following integer linear program MIP1.

max
xi,uij

m∑
i=1

p(ai)xi −
∑

1 ≤ i < j ≤ m
P (ai, aj) 6= 0

P (ai, aj)uij (5.8)

s.t.
∑

ai∈Ain(v)
xi =

∑
ai∈Aout(v)

xi ∀v ∈ V \ {vstart, vend} (5.9)

∑
ai∈Aout(vstart)

xi = 1 +
∑

ai∈Ain(vstart)
xi (5.10)

∑
ai∈Ain(vend)

xi = 1 +
∑

ai∈Aout(vend)
xi (5.11)

∑
ai∈δin(S)

xi ≥ xj ∀S ⊆ V \ {vstart}, aj ∈ E(S) (5.12)

Cmin ≤
m∑
i=1

c(ai)xi (5.13)

Cmax ≥
m∑
i=1

c(ai)xi (5.14)

xi ≤ xj ∀(ai, aj) ∈ D (5.15)
uij ≤ xi, uij ≤ xj , uij ≥ xi + xj − 1, uij ≥ 0 (5.16)
xi ≤ 1 ∀i = 1, ...,m (5.17)
xi ≥ 0 ∀i = 1, ...,m (5.18)
xi, ujk ∈ Z ∀i = 1, ...,m, 1 ≤ j < k ≤ m,P (aj , ak) 6= 0 (5.19)

The objective function (5.8) is the total profit of the usage function u corresponding
to x with u(ai) = xi. The constraints (5.9) - (5.11) together with the subtour elimination
constraints (5.12) ensure that u corresponds to a walk (see Theorem 5.2.1 and Lemma
5.2.2, since we always have uw(b) ≤ 1 for all b ∈ A it holds min(1, uw(b)) = uw(b)).

The constraints (5.13) and (5.14) ensure that the total cost of u is in the interval
[Cmin, Cmax] and the constraints (5.15) ensure the dependencies between arcs. It is easy
to check that, since xi are boolean variables and can only have the values 0 or 1, the
constraints (5.16) ensure that uij = 1 if and only if xi = 1 and xj = 1. Furthermore
the constraints (5.17) - (5.19) ensure that all occuring variables xi and uij are boolean
variables, that means they can only have the values 0 or 1.

Since the number of subtour elimination constraints (5.12) is exponential in the size
of V it is inefficient to solve the program as defined above with standard procedures like
branch-and-bound or the cutting-plane method. We therefore propose a branch-and-cut
procedure which starts with no subtour elimination constraints and adds them if the
solution of the LP-relaxation violates them.

60

Algorithm 5.4 describes the procedure of finding violated subtour elimination con-
straints in pseudo code. It uses a parameter τ ∈ [0, 1), which regulates how much a
constraint has to be violated in the relaxation to get added to the model. The running
time of the algorithm 5.4 depends on which algorithm is used to compute the maximum
flow between two nodes. The highest label push-relabel algorithm, which we will also
use in our implementation (see Chapter 6), has a running time of O(|V |2|A|1/2) (see [8]).
Therefore we get that the running time of Algorithm 5.4 is in O(|V |3|A|1/2).

Algorithm 5.4: Find Violated Subtour Elimination Constraints
1: INPUT: instance (G, vstart, vend, Cmin, Cmax, p, c, P,D) and a solution vector x

of the LP-relaxation at the current branch-and-bound node.
2: Set G′ = (V ′, A′, s′, t′) to the graph G reduced to all arcs ai ∈ A′ with xi > 0

and with the node set V ′ = {s(ai) : ai ∈ A′} ∪ {t(ai) : ai ∈ A′}.
3: Set V0 = {vstart}.
4: Sort the arcs ai ∈ A′ by xi in decreasing order.
5: while ∃ai ∈ A′ : s(ai) /∈ V0 ∧ t(ai) /∈ V0 do
6: Choose an aj satisfying that the source and the target node are not in V0

with maximal xj .
7: Recursively apply breadth-first-search to add all nodes to V0 which are

accessible by nodes from V0 with a total flow bigger or equal than xj − τ .
8: if Source and target node of aj are still not in V0 then
9: Compute the maximal flow from vstart to s(aj) with the arc values xj

10: if maximal flow is smaller than xj − τ then
11: Add a new constraint like in (5.12) with S is the set of nodes on the sink

side such that the weight of the cut (S, V ′ \ S) equals the maximal flow
between vstart and s(aj) and with aj as we defined above.

12: end if
13: Add s(ai) to V0
14: end if
15: end while

Theorem 5.3.1. Let τ ∈ [0, 1) be a parameter, (G, vstart, vend, Cmin, Cmax, p, c, P,D) an
instance of RTPP3 and x a solution of an LP-relaxation at some branch-and-bound node.

Then, Algorithm 5.4 terminates and all newly added constraints are violated by x.
If x is integral and Algorithm 5.4 does not add any cuts, then all subtour elimination
constraints (5.12) are satisfied by x.

Proof. First of all the algorithm always terminates since in every iteration of the while
loop at least one arc, s(ai) or t(ai), gets added to V0. Since V is finite this means that
the while loop has at most |V | iterations and therefore the algorithm terminates.

Let
∑
ai∈δin(S) xi ≥ xj be a newly added constraint with S ⊆ V \ {vstart} and aj .

First of all we prove that aj ∈ E(S) really holds. It holds s(aj) ∈ S since S is a cut
including the sink node s(aj). Since the weight of the cut (S, V ′ \ S) is smaller than

61

xj we also know that t(aj) ∈ S since otherwise the weight would be at least xj . That
implies aj ∈ E(S).

The weight of the cut (S, V ′ \ S) is exactly
∑
ai∈δin(S) xi and is smaller than xj and

therefore the newly added constraint is violated by x.
Let us now assume that x is integral, that means xi ∈ {0, 1} for all 1 ≤ i ≤ m and

that the algorithm did not add any new constraints. We want to prove now that x
satisfies all constraints (5.12) and therefore is an optimal solution of the integer program
MIP1.

Suppose that there exists a constraint
∑
ai∈δin(S) xi ≥ xj with S ⊆ V \ {vstart} and

aj ∈ E(S) which is violated by x. Since x is integral that means that
∑
ai∈δin(S) xi = 0

and xj = 1. Therefore, the total flow between vstart and any point of S is 0. Since all
arcs in G′ have weight bigger than 0 this implies that there is no path in G′ from vstart
to any point of S and therefore we never add a point of S to V0, since points get only
added through a breadth-first-search algorithm starting from vstart or after adding a new
constraint which we assumed never happens. At some iteration of the while loop the
arc aj will get chosen since s(aj) ∈ S and t(aj) ∈ S will not be added to V0 during the
whole algorithm. The maximal flow between vstart and s(aj) is 0 and is therefore smaller
than xj − τ = 1− τ > 0. But that means that the corresponding constraint to S and aj
would get added which is a contradiction to our assumption.

Algorithm 5.5 describes now the complete algorithm to solve RTPP3 in pseudo code.

Algorithm 5.5: Solving RTPP3 with Branch-and-cut
1: INPUT: instance (G, vstart, vend, Cmin, Cmax, p, c, P,D) of RTPP3
2: OUTPUT: optimal walk w if it exists
3: Solve MIP1 with a branch-and-cut procedure using Algorithm 5.4 to find

violated constraints
4: if there exists a valid solution of MIP1 then
5: Apply Algorithm 5.3 to the usage function u(ai) = xi where x is the solution

vector of the MIP1
6: return the resulting walk
7: else
8: return INFEASIBLE
9: end if

Theorem 5.3.2. Let (G, vstart, vend, Cmin, Cmax, p, c, P,D) be an instance of RTPP3.
Then Algorithm 5.5 applied to this instance terminates and returns a valid solution if

one exists and INFEASIBLE otherwise.

Proof. By Theorem 5.3.1 the branch-and-cut procedure using Algorithm 5.4 to find vio-
lated constraints is correct and returns an optimal solution if there exists one. If there ex-
ists no optimal solution the branch-and-cut procedure will return no solution and therefore
the algorithm will return INFEASIBLE. If it returns an optimal solution x Algorithm 5.3

62

will return a walk w such that uw(ai) = xi. By construction of MIP1 we know that this
optimal walk is an optimal solution of the instance (G, vstart, vend, Cmin, Cmax, p, c, P,D)
of RTPP3.

Remark 5.3.1. Since Algorithm 5.4 is correct for all parameter τ ∈ [0, 1) we can choose
the parameter in a way that the algorithm is fastest. We will consider this parameter
tuning in Chapter 7.

5.4 Flow Approach for Eliminating Subtours
In this section we will present a modification of MIP1 by replacing the subtour elimination
constraints (5.12). The idea of the new subtour elimination constraints is that a walk is
a sequence of arcs and therefore every arc has a fixed time when it is used, if we interpret
the costs as time. For example, if we have a walk w = (w1, ..., wk) then the arc w1 is
used at time 0 and the arc w2 is used at time c(w1) and so on.

Since we also want to prevent subtours where each arc has cost equal to 0 we have to
add a very small value ϕ > 0 to the costs of every arc.

To formalize this idea we use a flow formulation, where each used arc ai can be seen
as a sink and produces c(ai) + ϕ which gets added to the flow. At the end node vend the
amount of flow coming in is between Cmin and Cmax +mϕ.

Definition (MIP2). Let (G, vstart, vend, Cmin, Cmax, p, c, P,D) be an instance of RTPP3.
We define the linear program MIP2 by the following modification of MIP1.

Let furthermore be ϕ > 0.
We add a new variable vector (fi)mi=1 which has not to be integral. Then we replace

constraints (5.12) by the following constraints:

0 ≤ fi ≤ (Cmax +mϕ) · xi ∀1 ≤ i ≤ m (5.20)∑
ai∈Aout(v)

fi =
∑

ai∈Ain(v)
(fi + (c(ai) + ϕ)xi) ∀v ∈ V \ {vend} (5.21)

Cmin+ϕ
m∑
i=1

xi ≤
∑

ai∈Ain(vend)
(fi+(c(ai)+ϕ)xi+)−

∑
ai∈Aout(vend)

fi ≤ Cmax+ϕ
m∑
i=1

xi (5.22)

Algorithm 5.6 is the modification of Algorithm 5.5 if we solve (MIP2) instead of
(MIP1).

The following theorem shows that the two formulations MIP1 and MIP2 are equivalent
and as a corollary we get that Algorithm 5.6 is correct.

Theorem 5.4.1. Let (G, vstart, vend, Cmin, Cmax, p, c, P,D) be an instance of RTPP3 and
ϕ > 0 a parameter. Then, for every feasible solution ((xi)mi=1, (uij)) of MIP1 we can find
a vector (fi)mi=1 such that ((xi)mi=1, (uij), (fi)mi=1) is a feasible solution of MIP2. On the
other hand, if ((xi)mi=1, (uij), (fi)mi=1) is a feasible solution of MIP2 then ((xi)mi=1, (uij)) is
a feasible solution of MIP1.

63

Algorithm 5.6: Solving RTPP3 with Branch-and-bound using a Flow Formulation
1: INPUT: instance (G, vstart, vend, Cmin, Cmax, p, c, P,D) of RTPP3
2: OUTPUT: optimal walk w if it exists
3: Solve MIP2 with a branch-and-bound procedure
4: if there exists a valid solution of MIP2 then
5: Apply Algorithm 5.3 to the usage function u(ai) = xi where x is the solution

vector of the MIP2
6: return the resulting walk
7: else
8: return INFEASIBLE
9: end if

Proof. Let ((xi)mi=1, (uij)) be a feasible solution of MIP1. By Theorem 5.2.3 we can apply
Algorithm 5.3 and get a walk w = (w1, ..., wk) with uw(ai) = xi for all i = 1, ...,m. Since
xi ≤ 1 we know that wj 6= w` if j 6= `. Let ij be the index of the arc wj , that means
wj = aij . Then we can define:

fij =
j−1∑
`=1

(c(w`) + ϕ) ∀j = 1, ..., k

fi = 0 ∀i /∈ {ij : j = 1, ..., k}
We have to prove now that ((xi)mi=1, (uij), (fi)mi=1) is a feasible solution of MIP2. It is

enough to show that the constraints (5.20)-(5.22) are satisfied.
By definition c(a) ≥ 0 for all a ∈ A and therefore we get fi ≥ 0 for all i = 1, ...,m.

On the other hand, we have if xi = 0 then fi = 0 and otherwise for i = ik

fi = fik =
k−1∑
`=1

(c(w`) + ϕ) ≤
m∑
i=1

xi(c(ai) + ϕ) = c(w) + kϕ ≤ Cmax +mϕ

and therefore the constraints (5.20) are satisfied. We furthermore calculate for v ∈
V \ {vstart, vend}:∑

ai∈Aout(v)
fi =

∑
wj∈Aout(v)

fij =
∑

wj∈Aout(v)
(fij−1 + c(wj−1) + ϕ)

First of all w1 ∈ Aout(vstart) and therefore w1 /∈ Aout(v) since v 6= vstart, that implies
that fij−1 and wj−1 are well defined and therefore the calculation above is correct. The
condition wj ∈ Aout(v) is the same as s(wj) = v, but we know s(wj) = t(wj−1) by
definition of a walk. That implies that the condition wj ∈ Aout(v) is equivalent to the
condition wj−1 ∈ Ain(v) and therefore we get∑

ai∈Aout(v)
fi =

∑
wj∈Aout(v)

(fij−1 + c(wj−1) + ϕ) =
∑

wj−1∈Ain(v)
(fij−1 + c(wj−1) + ϕ)

=
∑

w`∈Ain(v)
(fi` + c(w`) + ϕ) =

∑
ai∈Ain(v)

(fi + (c(ai) + ϕ)xi).

64

For v = vstart we get ∑
ai∈Aout(v)

fi =
∑

ai∈Aout(v)\{w1}
fi =

∑
wj∈Aout(v),j>1

fij .

Therefore, we have again j 6= 1 in the last sum and we can use the same calculation as
above and get again ∑

ai∈Aout(v)
fi =

∑
ai∈Ain(v)

(fi + (c(ai) + ϕ)xi)

Thus (5.21) holds.
For vend we can use the same calculation as above to get∑

ai∈Aout(vend)
fi =

∑
wj−1∈Ain(vend),2≤j≤k

(fij−1 + c(wj−1) + ϕ)

but now we have to consider that wk ∈ Ain(vend) is not used in the above sum and
therefore we get∑

ai∈Aout(vend)
fi =

∑
wj∈Ain(vend),1≤j≤k

(fij−1 + c(wj−1) + ϕ)− fik − c(wk)− ϕ

=
∑

wj∈Ain(vend),1≤j≤k
(fij−1 + c(wj−1) + ϕ)−

k∑
j=1

(c(wj) + ϕ)

=
∑

ai∈Ain(vend)
(fi + (c(ai) + ϕ)xi)− c(w)− kϕ

And therefore we get∑
ai∈Ain(vend)

(fi + c(ai)xi)−
∑

ai∈Aout(vend)
fi = c(w) + kϕ

and the constraint (5.22) follows from the constraint Cmin ≤ c(w) ≤ Cmax and the fact
k =

∑m
i=1 xi.

Let now on the other hand be ((xi)mi=1, (uij), (fi)mi=1) a feasible solution of MIP2. We
want to prove that then ((xi)mi=1, (uij) is a feasible solution of MIP1. It is enough to show
that the constraints (5.12) are satisfied.

For the next step we will use the notation δout(S) which is defined analogous to δin(S)
in Definition 5.2.1. That means we define

δout(S) := {a ∈ A : s(a) ∈ S, t(a) /∈ S}

for a set of nodes S ⊆ V .
Suppose now that one of the constraints (5.12) is not satisfied by (xi)mi=1 and let

S ⊆ V \ {vstart} be the corresponding set of nodes and aj ∈ E(S). That means we have∑
ai∈δin(S)

xi < xj .

65

Since all values xi can only be 0 or 1 for all i = 1, ...,m, we get that xj = 1 and xi = 0
for all ai ∈ δin(S).

We know by the constraints (5.9) and (5.11) that∑
ai∈Ain(v)

xi ≥
∑

ai∈Aout(v)
xi ∀v ∈ V \ {vstart}

and therefore also for all v ∈ S.
We calculate:∑

ai∈δin(S)
xi +

∑
ai∈E(S)

xi =
∑

ai:t(ai)∈S
xi =

∑
v∈S

∑
ai∈Ain(S)

xi ≥
∑
v∈S

∑
ai∈Aout(S)

xi

=
∑

ai:s(ai)∈S
=

∑
ai∈δout(S)

xi +
∑

ai∈E(S)
xi

From this we get ∑
ai∈δout(S)

xi ≤
∑

ai∈δin(S)
xi = 0

and therefore also
∑
ai∈δout(S) xi = 0.

Either S or V \ S do not contain vend. Let V0 be S if S does not contain vend and
otherwise V0 = V \ S. Since δout(V \ S) = δin(S) and δin(V \ S) = δout(S) we always
have ∑

ai∈δout(V0)
xi = 0 and

∑
ai∈δin(V0)

xi = 0.

From this we get∑
ai:s(ai)∈V0

fi −
∑

ai:t(ai)∈V0

fi =
∑

ai∈δout(V0)
fi +

∑
ai∈E(S)

fi −
∑

ai∈δin(V0)
fi −

∑
ai∈E(S)

fi = 0

But on the other hand we get by the constraints (5.21) and the fact that V0 ⊆ V \ {vend}:

∑
ai:s(ai)∈V0

fi −
∑

ai:t(ai)∈V0

fi =
∑
v∈V0

 ∑
ai∈Aout(v)

fi −
∑

ai∈Ain(v)
fi


=
∑
v∈V0

(c(ai) + ϕ)xi ≥ (c(aj) + ϕ)xj ≥ ϕ > 0

Therefore, we get a contradiction which implies that the constraints (5.12) are all satisfied
by the instance ((xi)mi=1, (uij) and therefore the instance is a feasible solution of MIP1.

Corollary 5.4.2. Let (G, vstart, vend, Cmin, Cmax, p, c, P,D) be an instance of RTPP3 and
ϕ > 0 a parameter, then Algorithm 5.6 applied to this instance terminates and returns a
walk w which is a solution of the given instance of RTPP3.

66

Remark 5.4.1. The strength of the constraints (5.20)-(5.22) depends on the parameter
ϕ. Since in most applications the size k of the solution walk will be much smaller than
the number m of arcs in the graph we want that ϕ is as small as possible. That would
have the effect that the difference between mϕ and kϕ is small. As we do not know
in previous how big the cost values of our instances are it seems reasonable to let the
parameter ϕ depend on m and on Cmax. Therefore, we define

ϕ := δ
Cmax
m

where m = |A| is the number of arcs in the given graph and δ > 0 a new parameter. In
concrete applications, the value of δ should be chosen as small as possible, but not too
small, such that no numerical issues arise. We will decide how to choose δ in Chapter 7.

In many similar problems the subtour elimination with cuts is stronger than the
subtour elimination with single commodity flows, i.e. the set of feasible solutions in the
relaxation of the formulation with cuts is a subset of the projection of the set of feasible
solutions in the relaxation of the single commodity flow formulation. But in our case we
get the following theorem.

Theorem 5.4.3. The relaxations of the formulation (MIP1) and the formulation (MIP2)
are not comparable, i.e. there exist examples in which the set of feasible solutions of
the relaxation of the first formulation is no subset of the projection of the set of feasible
solutions in the relaxation of the second formulation and vice versa.

Proof. Example 5.4.1 describes an example situation for both directions.

Example 5.4.1. Let G = (V,A, s, t) be the directed multigraph visualized in Figure 5.1.
Let furthermore be c the cost functions according to the values written in parentheses in
Figure 5.1. Let p be any profit function for the graph G and we define

Cmin := 0 and Cmax := 100.

The start node vstart and the end node vend are the nodes with the corresponding labels.
There are no penalties, that means P (a, b) = 0 for all a, b ∈ A, and no dependencies, that
means D := ∅.

Then we consider the instance (G, vstart, vend, Cmin, Cmax, p, c, P,D) of RTPP3. We
will prove that the set of feasible solutions of the relaxation of MIP1 according to the
given instance is not comparable to the set of feasible solutions of the relaxation of MIP2,
regardless how we choose the parameter ϕ. We consider the relaxations at the root node,
that means MIP1 when removing the integrability conditions and the same with MIP2.

We need a small ϕ, so that the relaxation of MIP2 is enough tight. Therefore, we
will use the notation of Remark 5.4.1 and take 0 < δ < 1, that means in our case

ϕ = δ
Cmax
m

= δ
100
10 = 10δ < 10.

67

It is easy to check, that the solution vector x1 with

x1
i :=


1
2 i = 1, 2, 3
1 i = 8
0 otherwise

together with the empty vector u is a feasible solution of the relaxation of MIP1. The
vector u is empty since there are no penalties. But we will prove that there exists no
flow vector f1 such that (x1,u, f1) satisfies (5.20)-(5.22).

To prove this we assume that there is such a flow vector f1. By (5.20) we get that
f1

9 = 0 and f1
5 = 0 and therefore we can conclude using (5.21) that

f1
2 = f1

2 + f1
9 = f1

1 + (c(a1) + ϕ) · x1 + 0 = f1
1 + (90 + ϕ) · 1

2 = f1
1 + 45 + ϕ

2 ≥ 45 + ϕ

2

f1
3 = f1

3 + f1
5 ≥ f1

2 + (c(a2) + ϕ) · x2 + 0 + 0 ≥ 90 + ϕ

holds. But then we get by using (5.20)

90 + ϕ ≤ f1
3 ≤ (Cmax +mϕ)x3 = 100 + 10ϕ

2 = 50 + 5ϕ

which implies ϕ ≥ 1 which is a contradiction to our restriction ϕ < 1. Therefore, there
cannot exist a flow vector f1 such that (x1,u, f1) is a feasible solution of the relaxation
of MIP2.

Consider now on the other hand the solution vector (x2,u, f2) with

x2
i :=


1
2 i = 4, 6, 7
1 i = 5, 8
0 otherwise

f2
i :=


2 + ϕ i = 5
4 + 2ϕ i = 7
5 + 5

2ϕ i = 8
0 otherwise

and the empty vector u. It is easy to check that this solution vector is a feasible solution
of the relaxation of MIP2 regardless what we choose for ϕ, also if ϕ = 0 or ϕ > 10. But
we will see that the solution vector (x2,u) does not satisfy (5.12).

Consider the node set S := {v2, v3} with the arc a5 ∈ E(S). Then we get∑
ai∈δin(S)

xi = x2 + x4 + x8 = 0 + 1
2 + 0 = 1

2 < 1 = x5.

Therefore, the solution vector (x2,u) is not feasible in the relaxation of MIP1.

Remark 5.4.2. In both examples presented in 5.4.1 we did not use the arcs a9 and a10 of
the graph visualized in figure 5.1. But they are still very important. In Section 5.1 we
presented a preprocessing algorithm which removes unnecessary nodes and arcs. If we
would use the same graph without the arcs a9 or a10 some arcs would get removed from our

68

vstart vend
a8(c = 0)

v1

a1(c = 90)

v2

a2(c = 90)

a3(c = 2)
a4(c = 2)

v3

a7(c = 2)

a9(c = 2)

a5(c = 2)

a6(c = 2)

a10(c = 2)

Figure 5.1: Graph where the set of feasible solutions of the relaxation of MIP1 and the
set of feasible solutions of the relaxation of MIP2 is incomparable

graph through preprocessing. Therefore it would not be a good example since the linear
programs MIP1 and MIP2 are only solved after applying the preprocessing. For example,
without the arc a9 the shortest path from v1 to vend would have 92 costs and therefore
the arc a1 would get removed during preprocessing since 90 + 92 = 182 > Cmax = 100.
Without the arc a10 the shortest path from vstart to v1 would have 90 costs and therefore
the arc a2 would get removed during preprocessing since 90 + 90 + 2 = 182 > Cmax = 100.

5.4.1 Mixed Approach for Eliminating Subtours

Theorem 5.4.3 states that the relaxation of MIP1 and the relaxation of MIP2 are not
comparabale. Therefore it would be interesting to merge both formulations to get a
combined formulation whose relaxation is stronger than the relaxations of the single
formulations.

Definition (MIP3). Let (G, vstart, vend, Cmin, Cmax, p, c, P,D) be an instance of RTPP3.
The linear program MIP3 is the union of the programs MIP1 and MIP2, that means we
add the constraints 5.12 to the formulation of MIP2.

Theorem 5.4.4. The relaxation of MIP3 is tighter than the relaxations of MIP1 and
MIP2, that means the set of feasible solutions of the relaxation of MIP3 is a subset of the
set of feasible solutions of the relaxation of MIP1 or MIP2. There are cases where the
relaxations are strictly tighter, that means the set of feasible solution is a proper subset.

Proof. Since MIP3 is the union of all constraints from MIP1 and MIP2 it is clear that
the relaxations are tighter than the relaxations of MIP1 or MIP2. The examples in 5.4.1
show that there are instances where the relaxation of MIP3 is strictly tighter than the
relaxation of a single formulation.

69

Based on MIP3 we can now define Algorithm 5.7.

Algorithm 5.7: Solving RTPP3 with Branch-and-cut and a Flow Formulation
1: INPUT: instance (G, vstart, vend, Cmin, Cmax, p, c, P,D) of RTPP3
2: OUTPUT: optimal walk w if it exists
3: Solve MIP3 with a branch-and-cut procedure using Algorithm 5.4 to find

violated constraints of the form (5.12).
4: if there exists a valid solution of MIP3 then
5: Apply Algorithm 5.3 to the usage function u(ai) = xi where x is the solution

vector of the MIP3
6: return the resulting walk
7: else
8: return INFEASIBLE
9: end if

70

CHAPTER 6
Implementation

In this chapter, we will shortly present our implementation of the algorithms 5.5, 5.6
and 5.7. The code itself is well documented and therefore we will present here only an
overview.

6.1 General

The code is written in C++ and uses the IBM ILOG CPLEX Optimization Studio 12.5 to
solve the mixed integer problems MIP1, MIP2 or MIP3. It got compiled with g++ 4.8.2.

As basic data structure for directed multigraphs we implemented a generic graph
structure, which stores nodes and arcs such that they can be accessed in constant time.
It collects all parallel arcs with the same start and end node together to one so called
single arc. Therefore, the single arcs and the nodes form a directed simple graph with
loops.

For our testing purposes, we implemented different running modes which can be
changed by an input parameter for the main program:

1. --NORMAL solves the given instance.

2. --TESTING solves the given instance, or the given set of instances with different
maximal costs Cmax and maximal distances to the end node. For every solved
instance, it generates a log file in a given directory.

3. --WRITE_TESTING_DATA reads all log files in a given directory and summarizes
the results in a csv file.

4. --PARAMETER_TUNING trys different values for the parameter τ in the interval
(0, 1) to solve the given problem instances and tries to dynamically find a local
minimum where the running times summed up are minimal.

71

5. --PARAMETER_FINDING splits the interval [0, 1) into parts and tries for every
part one value as τ parameter applied to the given instances.

6. --FIND_START_POINTS searches in the given graph a maximal set of starting
points such that two points in this set have distance at least the given parameter
maximal distance.

Additional to this modes the following parameter specify the input instances and
some behavior:

1. -ix or -i path where x can be 0,1,2,3 or 4 for the five used test graphs described
in Chapter 7 or path a path to the graph data file or directory.

2. -px where x can be 0 or 1. It specifies the used parser, 0 means it tries to parse
the given file as an input file and 1 means it tries to parse the given directory as an
AOP benchmark input directory.

3. -0, -1 or -2 specifies the used solver. -0 is the implementation of Algorithm 5.5,
-1 is the implementation of Algorithm 5.6 and -2 is the implementation of Algo-
rithm 5.7.

4. -s nodeID specifies the id of the start node.

5. -d value specifies the maximal distance of a used node to the end node.

6. -l value specifies the minimal cost Cmin.

7. -u value specifies the maximal cost Cmax.

8. -t value specifies the maximal computation time in seconds.

6.2 Parsing and Preprocessing
For our tests we used two different sets of instances, which will be described in detail in
Chapter 7. We implemented for both types of instances a parser which parses the input
files describing the street network and constructs the corresponding graph. Both parsers
are based on an abstract parser which provides functionality like parsing a line or parsing
only the next block until a given delimiter and manages a buffer for the input file.

Since the instances are mostly given in form of problem RTPP1 we implemented
the transformations described in 2.3.1 and 2.3.4. There also no penalties given for
the instances and therefore we define in a preprocessing step penalties for parallel and
opposite arcs. We assume that an arc which has a profit value larger than its cost is
considered as a more attractive arc compared to the average and an arc which has a
profit value lower than its cost is considered not so attractive. If a graph does not satisfy
this assumption, we would have to scale the profits appropriately. With this assumption
it makes sense to use the costs of an arc for the penalty. Therefore the implementation

72

defines the penalty of two opposite arcs as the sum of their costs and the penalty of two
parallel arcs as 1.5 times the sum of their costs. This functionality together with the
preprocessing described in Algorithm 5.1 is defined in a preprocess namespace which is
used before solving an instance.

6.3 Solving
Since the models MIP1, MIP2 and MIP3 only differ in the subtour elimination constraints,
we use a base class for all three implementations, which initializes the model and all
constraints except the subtour elimination constraint.

In the implementation of Algorithm 5.5 we also initialize a user cut callback and
a lazy constraint callback (see [1]). The user cut callback gets called after solving a
relaxation and is used to find unsatisfied constraints of the form (5.12). The user cut
callback implements Algorithm 5.4. For finding a maximal flow from the start node
to a given node as it is used in the algorithm on line 9 we used the max-flow min-cut
algorithm of Shekhovtsov and Hlavac, see [19], [20] and [21].

If the solution of a relaxation satisfies all integral constraints the user cut callback
will not be called and therefore we also need a lazy constraint callback which is called
whenever an integral solution got found. Here we do not need a max-flow algorithm to
identify unsatisfied constraints. We do simply breadth-first search on the graph of all
used arcs to identify all weakly connected components. Then every component other
than the one containing the start node is a cut.

In the implementation of Algorithm 5.6 we do not need any user cut callbacks or
lazy constraint callbacks, we only have to add the constraints (5.20)-(5.22) to our model.
And in the implementation of Algorithm 5.7 we add the constraints (5.20)-(5.22) to the
model and additionally add the user cut callback to the model. We do not need the lazy
constraint callback since the constraints (5.20)-(5.22) already ensure that the solution
has no subtours.

73

CHAPTER 7
Evaluation

In this chapter we will evaluate our implementations of the Algorithms 5.5, 5.6 and 5.7.
Throughout this chapter we will simply call the implementation of the Algorithm 5.5 as
cut implementation, the implementation of Algorithm 5.6 as flow implementation and
the implementation of Algorithm 5.7 as mixed implementation.

We will use different graphs and different start nodes to test the running times of all
three algorithms. Since the algorithms presented in [22] and [25] are made for very similar
problems, we will also try to compare our test results with the test results presented in
those two papers.

All tests were run on a single core of an Intel Xeon X5650 processor with 2.6 GHz
and 8 GB RAM available. The code was compiled with g++ 4.8.2. The general purpose
solver IBM ILOG CPLEX Optimization Studio 12.5 was used.

7.1 Test Instances
There are two different types of test instances which we will use for our tests. The unit
for lengths of arcs and for distances are for all test instances meters.

7.1.1 Instances Provided by the AIT Austrian Institute of
Technology with Artificial Profits

The first type of test instances is based on four graphs provided by the AIT Austrian
Institute of Technology.

Test Graph Instance

The first graph is an artificial test graph with 157 nodes and 417 arcs. The profits of the
arcs are set equally to the artificial costs of the arcs. Since the graph is not very big we
only use one fixed start node for our tests.

75

Because of the artificial nature of the graph we will see that the running times of
solving this instance may behave differently to the running times of other instances
although they have the same parameters and almost the same number of nodes and arcs.

Josefstadt Instance

The second graph provided by the AIT represents a street network of a part of Vienna
around the district Josefstadt. Every node in this graph is associated with a longitude
and a latitude representing a point on the map. The origin of the street data is the
OpenStreetMap project (see [2]).

The whole graph has 2216 nodes and 5056 arcs. The costs of the arcs are the lengths
of the streets in meters and the profits are artificial values directly proportional to the
costs. Therefore the profits have nothing to do with the real world attractiveness of the
streets.

This street network is very dense compared to other street networks examined in
this thesis. Although the graph has many nodes and arcs the distances between the
nodes are relatively small. Hence, we use this graph only with one fixed start point, since
testing with multiple start points in such a small area would lead to similar results and
correlated running times.

Josefstadt Instance with Profits Determined by Real Masures

The third graph provided by the AIT is similar to the graph of the Josefstadt instance
described in the previous section as it represents the same street system around the
district Josefstadt in Vienna. But the Josefstadt instance in the previous section has
artificial arc profits. Therefore, a solution of this instance may not be attractive in reality
at all. Hence, we want to find profits which somehow really measure the attractiveness
of an arc to get a more realistic testing scenario.

To achieve this goal we use popularity data provided by the cycle to work campaign
“Österreich radelt zur Arbeit” by the Austrian bicycle advocacy group “Radlobby Öster-
reich”. In this project they measured the popularity of an arc by how many participants
are using this arc riding to their work place.

As a second attractiveness indicator we use a value measuring the suitability of a
street for bicycles. That means cycleways will have a very high value and main roads
will have lower values.

The profit is now a mix of this two measures such that each measure contributes one
half and the resulting profit values are proportional to the corresponding costs. With
those profits we hope to get an useful measure of attractiveness, but since attractiveness
of a street is always subjective it is very hard to verify that.

The graph itself is a little different to the graph of the Josefstadt instance described
in the previous section. It has 2767 nodes and 5833 arcs.

76

Kittsee Instances

The fourth graph provided by the AIT represents a street network in the area of Kittsee
in Burgenland in Austria. As before every node is associated with a longitude and a
latitude and the origin of the data is the OpenStreetMap project. The costs of an arc
are again equal to the length of the corresponding street part and the profits of an arc
are artificial values proportional to the costs.

The area around Kittsee was chosen by the AIT because a project partner, a reha-
bilitation center, is located in Kittsee. Therefore, it makes sense to test the algorithm
applied to the street network around this rehabilitation center.

The graph has 6175 nodes and 15664 arcs. Hence, it is a very big graph compared to
the others and also represents a street system covering a very wide area. Thus it makes
sense trying to find more than one start point to gain many test instances. To find some
start points we used a randomized algorithm which randomly iterates over all points
in the graph and selects the points as long as their distance to all previously selected
points is above some threshold. As distance we used the geometrical distance between
the points, which we can calculate with the latitudes and the longitudes of the points.

With that implementation we found 10 possible start points such that every two of
them are at least 8 kilometers apart from each other. Therefore we get 10 test instances
from this graph and we will call them Kittsee 1 instance up to Kittsee 10 instance.

7.1.2 Benchmark Instances

The second type of test instances are basically benchmark instances for the problems
AOP and CTPP (see Section 4.3.3). They are based on a graph which was used as AOP
instance for testing purposes in [22]. The graph corresponds to the street network of
East-Flanders in Belgium and contains 989 vertices and 2961 arcs, with a total track
length of 3585 km. The costs of an arc is given again as the length of the street part in
meters. In [22] they used the costs of an arc as profit of the arc.

In [25] they used the same graph as CTPP instance and added random arc profits.
This has the effect that the solution is not always the one with maximal costs. However,
they also tested their algorithm with the old profits which were equal to the costs of an
arc. We will also use both variants, one time with profits equals costs and one time with
this random arc profits to be able to compare the results with both tests.

The graph together with its random arc profits and testing results is available at
https://www.mech.kuleuven.be/en/cib/op/ (last downloaded 2015-04-14).

As we want to compare our implementation with the results in [22] and [25] we will
use the same start points as they did. Therefore we get the ten instances with the start
node ids 2, 6, 10, 14, 18, 22, 26, 30, 34 and 38. For every of this ten instances we have
two versions, one where the profits equal the costs and one where the profits equal the
random values constructed in [25].

Since CTPP has the restriction that every arc can only be used once, we skip the
preprocessing step where we duplicate every arc for all these benchmark instances. Then
we straight forwardly get an instance of RTPP3 with no duplicated arcs and thus every

77

https://www.mech.kuleuven.be/en/cib/op/

original arc can only be used once. To simulate the restriction of CTPP, that opposite
arcs cannot be used together, we will apply a fixed penalty for using opposite arcs. In
all our tests we used as penalty 400000 which was much bigger than all possible profits
of solution walks. Therefore, if our algorithm returns a solution with negative profit we
know that the instance corresponds to an unsolvable instance in CTPP. On the other
hand, if our implementation returns a solution with positive profit we know that no
two opposite arcs are used together and therefore the solution is also a valid solution of
CTPP.

Another difference of CTPP to RTPP3 is that CTPP can have multiple possible start
nodes, but in [25] they also tested all instances with one fixed start node and therefore
we can directly compare our results with those results.

7.2 Parameter Tuning

Before we can test our instances and compare the results we want to find good parameter
values τ ∈ [0, 1) (see Algorithm 5.4) and δ > 0 (see the definition of MIP2 and Remark
5.4.1).

Since we do not have any 0-cost cycles with positive profits in our test instances it
would be possible to use the parameter δ = 0. Although, we want to use a parameter
δ > 0 to also get meaningful test results for the case that there would be a 0-cost cycle
with positive profits.

We do not really need a parameter tuning for δ. We only have to consider that we
chose δ as small as possible such that there are still no numerical issues. Since all real
values are represented with double precision we are numerically on the save side if we use
δ = 10−8 which is small enough that it does not change the strength of the formulation
very much. One numerical issue which we have still to consider is the CPLEX feasibility
tolerance. We do not want that a 0-cost subtour is feasible because of the feasibility
tolerance. Therefore we redefine ϕ to be 1.1 times the feasibility tolerance of CPLEX
(which is by default 10−6) if ϕ would be smaller than the feasibility tolerance.

What remains is to find a good value for the parameter τ ∈ [0, 1). We will do this by
testing different τ values for our instances.

7.2.1 Parameter τ Test for Josefstadt, Kittsee and the Test Graph
Instance

Table 7.1 lists the running times of the cut implementation with different parameters τ
applied to the instances Josefstadt, Kittsee 1 – Kittsee 10 and test graph with Cmax = 2000,
Cmax = 3000 and Cmax = 4000. In all tests Cmin is set to 1/2 · Cmax.

We can see that for Cmax = 2000 the best value of the tested values for τ in terms of
computation time would be 0.9, but if Cmax = 3000 this would be the worst choice. Also
for Cmax = 4000 it is not the best choice. This shows us that none of the tested values
minimizes the computation time for all given instances.

78

Another interesting case is the instance Kittsee 3 with Cmax = 4000. There we see
that for τ smaller or equal to 0.4 the running time is more than an hour and with a
value bigger or equal to 0.5 the running time is under 20 seconds. Thus small changes in
the parameter can drastically change the running times. Another example of this is the
Josefstadt instance with Cmax = 4000 where the running time with parameter 0.5 is 2.4
hours and the running time with parameter 0.6 is 16 hours.

What we can see is that at least for these twelve test instances the value 0.5 is a very
good choice for τ . For Cmax = 2000 it has the second best running time of all tested
values and for Cmax = 3000 and Cmax = 4000 it has the best running time of all tested
values. But to be sure that this value is really a good choice we need more tests on other
instances.

7.2.2 Parameter τ Test for the Benchmark Instances

In Table 7.2 the running times of the same test applied to the benchmark instances
where the profits equal the costs are shown. Since almost all instances could get solved
under a second for Cmax = 20000 we omitted these data since it would not be very
interesting. The interesting cases are Cmax = 30000 and Cmax = 40000. Like before we
used Cmin = 1/2 · Cmax in the tests. The second column of the table contains the start
node IDs of the different start nodes. Again we can observe that 0.5 is among the best
tested values for τ , but this time the bigger values from 0.6 up to 0.9 are slightly faster.

Table 7.3 shows the running times of the cut implementation applied to the benchmark
instances with random profits. Compared to the instances where profits equal costs those
instances are much faster. Therefore we omit the test results for Cmax = 20000 and
Cmax = 30000. To get a better overview we add a new test with Cmax = 50000. Again
Cmin is always set to 1/2 · Cmax. For Cmax = 40000 we see that the value 0.5 is again a
good choice but the values 0.6, 0.7 and 0.9 are slightly better. For Cmax = 50000 the
value 0.5 is the best choice of all tested values in terms of the sum of the computation
times.

7.2.3 Parameter τ Test for Josefstadt Instance with Realistic Profits

In this section we want to check if the value 0.5 is also a good choice for τ in a
realistic scenario with realistic profits. Therefore we apply our cut implementation to
the Josefstadt instance with realistic profits. Table 7.4 shows the running times for
Cmax = 1000, Cmax = 2000 and Cmax = 3000. As we can see the value 0.5 is again a
good choice. For Cmax = 1000 0.8 and 0.9 are better but for Cmax = 2000 it has the best
running time of all tested values. For Cmax = 3000 we see that 0.6 would have a much
better running time and 0.2 would also have a better running time.

7.2.4 Conclusion

We tested all instances with the ten parameters 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
and 0.9. We saw that 0.5 is always among those values which have the best running

79

Table 7.1: Parameter τ testing for the cut implementation applied to the instances
Josefstadt, Kittsee and test graph.

Times (in sec. unless otherwise specified) for various values for τ
Cmax Instance 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2000

Josefstadt 17 10 16 10 13 9 5 7 9 4
Kittsee 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Kittsee 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Kittsee 3 74 51 183 99 33 26 41 51 29 26
Kittsee 4 1 1 1 1 1 1 1 1 1 1
Kittsee 5 3 1 1 1 1 1 1 1 1 1
Kittsee 6 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Kittsee 7 1 1 <1 <1 <1 <1 <1 <1 <1 <1
Kittsee 8 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Kittsee 9 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Kittsee 10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
test graph <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Sum 95 64 202 111 48 37 48 60 40 32

3000

Josefstadt 426 290 165 265 389 104 184 660 383 1639
Kittsee 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Kittsee 2 <1 <1 <1 <1 <1 1 <1 <1 <1 <1
Kittsee 3 174 22 27 49 39 15 8 10 9 64
Kittsee 4 23 15 13 10 9 3 3 5 5 6
Kittsee 5 5 3 5 4 3 2 1 1 1 2
Kittsee 6 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Kittsee 7 26 19 110 19 17 38 30 15 14 22
Kittsee 8 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Kittsee 9 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Kittsee 10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
test graph 205 50 28 21 22 12 10 7 5 10
Sum 858 401 349 368 478 174 237 699 418 1745

4000

Josefstadt 12h 4.8h 5.9h 2.9h 6.4h 2.4h 16h 8.7h 12h 6.9h
Kittsee 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Kittsee 2 1h 2.5h 2.2h 1.6h 2.5h 19 7 16 15 12
Kittsee 3 687 477 1039 612 312 33 95 128 99 90
Kittsee 4 83 24 28 20 14 5 9 9 16 7
Kittsee 5 17 10 11 8 9 3 3 4 4 2
Kittsee 6 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Kittsee 7 71 99 63 80 68 13 17 27 19 12
Kittsee 8 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Kittsee 9 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Kittsee 10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
test graph 258 403 126 116 75 78 31 48 48 59
Sum 13h 7.6h 8.5h 4.8h 9.1h 2.4h 16h 8.8h 12h 7h

80

Table 7.2: Parameter τ testing for the cut implementation applied to the benchmark
instances where the profits equal the costs.

Times (in seconds unless otherwise specified) for various values for τ
Cmax Start 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

30000

2 13 7 7 6 6 5 3 2 3 6
6 6 9 3 5 2 2 1 1 1 1
10 11 8 5 9 9 1 1 1 1 1
14 31 21 9 8 9 4 5 4 4 3
18 3 2 2 2 1 1 1 1 1 1
22 3 1 1 1 1 1 1 1 1 1
26 11 5 2 2 2 1 1 1 1 1
30 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
34 371 66 34 19 16 10 8 10 10 11
38 432 55 34 20 16 11 8 9 10 10

Sum 883 174 97 72 62 35 28 30 33 35

40000

2 >10h 4.3h 389 2992 773 3912 1306 17 1758 1655
6 >10h >10h 411 218 388 753 221 105 98 752
10 >10h 2502 2564 2015 750 518 1342 667 640 1662
14 >10h >10h 4.7h 1.6h 1.9h 1.2h 3465 1.1h 1.1h 2186
18 >10h 2618 1692 1401 419 515 342 251 227 234
22 >10h >10h 1.4h 2782 1429 1254 759 706 458 397
26 >10h 4.8h 481 2830 1564 1919 32 250 247 1101
30 46 10 25 11 7 7 5 8 6 5
34 7h 102 6 247 86 688 14 158 12 5
38 >10h >10h 5h 2.5h 1.8h 1.1h 1.7h 2148 3024 3192

Sum >87h >50h 13h 7.5h 5.2h 5h 3.8h 2.3h 3h 3.1h

times. There are instances where the higher parameters like 0.6 or even higher have
better running times but there are also instances where the opposite is true.

As the mix implementation is very similar to the cut implementation we use the same
parameter value.

7.3 Comparison of the Three Implementations
In this section, we will compare our three implementations, the flow implementation,
the cut implementation and the mixed implementation. As pointed out in Section 7.2
we will use the value 0.5 for the parameter τ in the cut implementation and the mixed
implementation. Also as described in Table 7.2 we will use the value 10−8 for the
parameter δ in the flow and the mixed implementation, but if the resulting ϕ is smaller
than 10−6 we redefine ϕ to be 1.1 · 10−6.

For all tests in this section the computation time for one instance is always limited to
one hour. If an implementation needs longer than one hour its current solution after one

81

Table 7.3: Parameter τ testing for the cut implementation applied to the benchmark
instances with random profits.

Times (in seconds) for various values for τ
Cmax Start 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

40000

2 96 51 71 64 39 17 17 16 19 14
6 653 46 27 19 15 11 7 11 15 11

10 4 3 3 1 3 2 2 1 1 1
14 3 1 2 1 1 1 1 1 1 1
18 65 18 7 5 4 3 2 3 2 2
22 55 29 22 17 13 4 6 5 6 5
26 238 21 27 11 6 3 3 3 10 4
30 6 5 4 2 2 1 1 1 1 1
34 22 6 3 2 3 2 2 2 2 1
38 149 3 10 7 3 3 2 2 3 2

Sum 1290 185 177 130 90 46 43 45 62 39

50000

2 2368 1342 842 649 322 190 227 266 520 126
6 1980 247 102 248 95 86 265 283 240 128

10 6 2 2 1 1 1 1 1 1 1
14 553 48 40 33 26 20 21 26 50 78
18 10 3 2 3 3 2 2 6 5 6
22 3139 292 359 183 84 136 71 92 105 258
26 1075 104 48 53 28 15 42 71 53 49
30 43 30 15 9 7 7 5 4 4 5
34 285 313 115 86 93 89 152 68 46 55
38 5190 788 327 240 118 123 104 62 202 124

Sum 14649 3169 1852 1504 777 668 890 878 1227 830

Table 7.4: Parameter τ testing for the cut implementation applied to the Josefstadt
instances with realistic profits.

Times (in seconds) for various values for τ
Cmax 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1000 12 7 4 3 5 3 4 3 2 2
2000 314 55 98 81 75 36 72 109 81 108
3000 1557 1369 965 2663 2312 1033 202 1215 23468 3652

82

hour is taken which may not be optimal. In this cases the solution value and the CPU
time are written in italic. Please note, that in some cases it was even not possible to find
a feasible solution within the given time interval.

7.3.1 Comparison Test for Josefstadt, Kittsee and the Test Graph
Instance

Our first comparison will be for the instances Josefstadt, Kittsee 1 – Kittsee 10 and
test graph. In Table 7.5 the running times of three test runs are documented. The first
column dmax of the table is the maximal distance a node, used in the solution walk, can
have to the start/end node. This value mainly restricts the set of possible nodes and
therefore also the set of possible arcs to use. The second column contains the model value
Cmax and the third column the name of the instance. The fourth column contains the
number of possible arcs, that means the cardinality of the set of possible arcs including
the artificial arc from the start node to the artificial end node counting duplicated arcs
only once. As already mentioned this value mainly depends on dmax and is relevant for
the size of the corresponding model. The fifth, seventh and ninth column, labeled with
sol. contain the solution value returned by the corresponding implementation and the
sixth, seventh and tenth column, labeled by time(s), contain the CPU time in seconds
used by the corresponding implementation.

If one of the implementation needs less than 3600 seconds to solve an instance it
clearly returns an optimal solution, but if the computation got aborted after one hour it
can be the case that the returned solution is not optimal. For those cases the solution
value and the CPU time are written in italic. If an implementation does not find a
solution within one hour the solution column contains a hyphen. If the problem is
infeasible the solution column contains inf.

To cover different situations the table contains three very different test runs. The first
test run has relatively small dmax = 1200 and Cmax = 2400 and therefore all instances
can get solved within a few seconds. The second test has dmax = 2700 and Cmax = 10800.
This means the second test has Cmax = 4dmax in contrast to the other two tests which
have Cmax = 2dmax. That means the searched tour has at most 10800 meter length and
is only allowed to use nodes which have a distance to the start node with at most 2700
meters. In this test run some instances can still be solved very fast but some instances
already need more than one hour. The third test has very large values dmax = 9300 and
Cmax = 18600 and solving the instances needs for most of the instances longer than one
hour. This has the effect that some of the solutions may not be optimal and we can
compare which implementation found the better solution within one hour.

For the first test run with dmax = 1200 and Cmax = 2400 the flow implementation can
solve every instance in about 1 second and some of them even much faster. We can see
that the cut implementation is slower compared to the flow implementation as it needs
in 5 instances more than 1 second and for the Josefstadt instance it even needs half a
minute. The running times of the mixed implementation are almost equal to the running
times of the flow implementation.

83

Table 7.5: Implementation comparison with the Josefstadt, Kittsee and test graph
instances.

Flow Cut Mix
dmax Cmax Instance #arcs sol. time(s) sol. time(s) sol. time(s)

1200 2400

Josefstadt 423 3034 1 3034 30 3034 2
Kittsee 1 14 0 <1 0 <1 0 <1
Kittsee 2 36 1664 <1 1664 <1 1664 <1
Kittsee 3 233 2766 1 2766 10 2766 1
Kittsee 4 184 2628 1 2628 5 2628 1
Kittsee 5 191 2760 1 2760 4 2760 1
Kittsee 6 30 1321 <1 1321 <1 1321 <1
Kittsee 7 148 975 <1 975 4 975 <1
Kittsee 8 24 0 <1 0 <1 0 <1
Kittsee 9 19 0 <1 0 <1 0 <1
Kittsee 10 1 inf <1 inf <1 inf <1
test graph 178 3068 <1 3068 <1 3068 <1
Sum 4 55 7

2700 10800

Josefstadt 2288 14632 71 12340 3600 14632 44
Kittsee 1 36 1029 <1 1029 <1 1029 <1
Kittsee 2 196 10819 4 10819 262 10819 18
Kittsee 3 674 13111 32 8036 3600 13111 29
Kittsee 4 355 13564 1 13564 27 13564 1
Kittsee 5 358 13738 8 13738 931 13738 10
Kittsee 6 158 9721 1 9721 8 9721 2
Kittsee 7 240 8075 <1 8075 <1 8075 <1
Kittsee 8 36 0 <1 0 <1 0 <1
Kittsee 9 207 8942 3 8942 56 8942 3
Kittsee 10 22 2878 <1 2878 <1 2878 <1
test graph 418 12147 3600 12147 3600 12059 3600
Sum 3719 11154 3706

9300 18600

Josefstadt 5057 27013 414 - 3600 27013 52
Kittsee 1 1916 14972 449 - 3600 - 3600
Kittsee 2 4524 21313 3600 9654 3600 14314 3600
Kittsee 3 4777 23892 3600 15420 3600 17432 3600
Kittsee 4 3002 24930 2397 16689 3600 23485 3600
Kittsee 5 2652 24149 3600 16312 3600 22255 3600
Kittsee 6 2358 23547 703 17656 3600 23547 3600
Kittsee 7 2614 20104 3600 0 3600 - 3600
Kittsee 8 737 19113 111 13485 3600 19113 1776
Kittsee 9 2872 21647 3600 14123 3600 21647 3600
Kittsee 10 880 17404 465 10135 3600 17404 1879
test graph 418 17862 90 17862 50 17862 135
Sum 22629 39650 32642

84

The test run with dmax = 2700 and Cmax = 10800 is already more interesting. The
test graph instance cannot be solved by any implementation within one hour. The
Flow and the cut implementation both find a solution with value 12147, but the mixed
implementation does only find a solution with value 12059. For the other instances
the flow implementation is clearly the fastest. Only for instance Kittsee 3 the mixed
implementation needs 3 seconds less than the flow implementation which is a minimal
difference. The cut implementation cannot solve the instances Josefstadt and Kittsee 3
and finds in both cases not the optimal solution which was computed by the other two
implementations.

In the third test run with dmax = 9300 and Cmax = 18600 we see again, that the flow
implementation is clearly the fastest and if it cannot solve an instance within 1 hour it
computes the best feasible solution compared to the other two implementations. Only for
the instance Josefstadt the mixed implementation is faster than the flow implementation
and for the instance test graph the Cut formulation is faster than the flow formulation.
Interesting is also that the test graph instance could not get solved within one hour in
the second test run with smaller dmax and Cmax and in this test run it can get solved by
all three implementations within a few minutes.

In summary, we can say that the flow implementation is clearly the fastest of the
three implementation for these test instances. The mixed implementation is in general
faster than the cut implementation for these instances.

7.3.2 Implementation Comparison with the Benchmark Instances

We will compare the three implementations on the one hand with the benchmark instances
with random profits and on the other hand with the benchmark instances where the
profits equal the costs.

Table 7.6 contains the test results for the benchmark instances with random profits.
The table structure is the same as for 7.5, which was described in detail in 7.3.1 with the
difference that there is no dmax column anymore since we fix for this test dmax = Cmax/2.

We can see that the flow implementation can solve the instances with Cmax = 40000
within a few seconds and is slightly faster than the mixed implementation. The cut
implementation is for some instances, for example start node 34 and 38, faster than
the other two, but in total it is the slowest since it needs almost half a minute for the
instance with start node 2.

Also for Cmax = 60000 the flow implementation is in total the fastest, but for half
the instances the mixed implementation is slightly faster than the flow implementation.
The cut implementation was not able to solve each instance within one hour and also for
most of the other instances it was slower than the flow implementation and the mixed
implementation. For the two instances which it could not solve in one hour it did not
find the optimal solution.

Table 7.7 contains the test results for the benchmark instance where the profits equals
the costs and it has the same structure as table 7.6. We can see that compared to the
tests in table 7.6 most instances need more CPU time in the case where the profits equal
the costs.

85

Table 7.6: Implementation comparison with the benchmark instances with random profits.

Flow Cut Mix
Cmax Start #arcs sol. time(s) sol. time(s) sol. time(s)

40000

2 345 146 3 146 28 146 4
6 381 139 6 139 8 139 10
10 297 188 1 188 1 188 1
14 359 151 4 151 2 151 4
18 345 110 1 110 1 110 3
22 343 118 2 118 8 118 4
26 428 139 3 139 6 139 8
30 197 94 <1 94 2 94 1
34 289 151 3 151 1 151 2
38 389 138 2 138 1 138 4

Sum 27 56 41

60000

2 703 238 34 238 1316 238 38
6 1053 246 152 238 3600 246 138
10 609 289 21 289 20 289 7
14 794 230 118 230 3577 230 175
18 784 186 62 186 122 186 30
22 735 186 55 186 809 186 47
26 1089 246 77 218 3600 246 69
30 483 163 12 163 145 163 21
34 561 230 50 230 308 230 78
38 811 213 21 213 39 213 49

Sum 602 13536 652

Also in 7.7 we see that the flow implementation is in most situations the fastest.
For Cmax = 40000 it is for all instances the fastest implementation except the instance
with start node 6, where the mixed implementation is faster and the instance with start
node 30, where the cut implementation is slightly faster. For Cmax = 60000 the mixed
implementation is faster for the instances with the start nodes 2, 26, 30 and 38, but in
total the flow implementation is again the fastest.

For some instances in 7.7 we can observe that two implementations return different
solution values although both terminated within one hour and should return an optimal
value. This behavior is caused by the relative gap tolerance of CPLEX. With this
tolerance the MIP solver returns a feasible solution if the relative difference between its
value and the global upper bound during branch-and-bound is smaller than the relative
gap tolerance parameter. The default value for this parameter is 10−4. In our case that
means that the algorithm could return a solution which is not optimal but the relative
difference to the optimal value is smaller than 10−4. If we consider Cmax = 40000 the
optimal solution will be close to 40000 and therefore every feasible solution gets accepted
as optimal if it has a value bigger than o− 40000 · 10−4 = o− 4, where o is the optimal

86

Table 7.7: Implementation comparison with the benchmark instances with profits equal
the costs.

Flow Cut Mix
Cmax Start #arcs sol. time(s) sol. time(s) sol. time(s)

40000

2 345 39998 51 39998 1752 39998 388
6 381 39996 39 39996 1223 39996 13

10 297 39976 51 39976 665 39976 180
14 359 39994 201 39994 2791 39994 420
18 345 39993 45 39993 248 39993 61
22 343 39983 114 39983 1452 39983 273
26 428 39996 126 39996 1040 39996 170
30 197 39992 4 39992 3 39992 5
34 289 39997 51 39998 264 39997 227
38 389 39995 213 39995 3600 39995 282

Sum 893 13038 2019

60000

2 703 60000 192 59983 3600 60000 105
6 1053 59999 260 59974 3600 59994 2602

10 609 59999 64 59970 3600 59998 509
14 794 59997 95 59933 3600 59998 394
18 784 59998 300 59995 1945 59998 3411
22 735 59994 3 59994 3600 59995 2844
26 1089 59997 448 59779 3600 59999 375
30 483 59999 106 59999 229 59998 54
34 561 59994 140 59998 1172 60000 146
38 811 59997 612 59979 3600 59995 45

Sum 2220 28546 10485

solution value. We get that the absolute difference between a solution value and the
real optimal solution value could be up to 4. We see this in the test instance with Start
node 34, where the Flow and the mixed implementation return a solution value of 39997
and the cut implementation returns a solution value of 39998. For Cmax = 60000 the
difference can even be 6 and we can observe that for all instances with Cmax = 60000 the
solution values between at least two implementations differ, although both terminated in
under one hour.

For the real world applications this issue will not be so important, since two routes
where the total profit only differs by less than 0.01% can be considered to have the same
attractiveness since attractiveness values can never be so exact. If we still want to avoid
such problems we can lower the relative gap tolerance but then the algorithms will need
much more computation time. We will consider this situation in section 7.4.1.

Summarizing we can say that also for the benchmark instances the flow implementation
is the fastest and the mixed implementation is the second fastest.

87

Table 7.8: Implementation comparison with the Josefstadt instance with real profits

Flow Cut Mix
dmax Cmax #arcs sol. time(s) sol. time(s) sol. time(s)
200 400 72 319 <1 319 <1 319 <1
200 800 113 586 <1 586 <1 586 <1
300 600 119 533 <1 533 1 533 <1
300 1200 144 846 <1 846 <1 846 <1
500 1000 216 783 <1 783 3 783 <1
500 2000 237 1217 <1 1217 1 1217 1
800 1600 424 1406 1 1406 13 1406 1
800 3200 459 2382 3 2382 21 2382 4

1200 2400 665 2159 1 2159 54 2159 6
1200 4800 716 3449 26 3449 2508 3449 78
1800 3600 1408 3331 27 -1707 3600 3331 86
1800 7200 1505 6199 109 - 3600 6199 28
2700 5400 3033 5213 1184 2547 3600 4041 3600
2700 10800 3167 9766 3600 1642 3600 9638 3600
4100 8200 5535 8105 2389 -23 3600 8105 1247
4100 16400 5575 - 3600 - 3600 - 3600
6200 12400 5834 11315 3600 2428 3600 11301 3600
6200 24800 5834 - 3600 - 3600 - 3600

Sum 18141 31402 19452

7.3.3 Implementation Comparison with the Josefstadt Instance with
Real Profits

To compare the three implementations also for a realistic instance, we apply all three
implementations to the Josefstadt instance with real profits for different values dmax
and Cmax. Table 7.8 contains the resulting solutions and CPU times. It has the same
structure as Table 7.5 which was described in detail in section 7.3.1 except that we only
deal with the Josefstadt instance with real profits now.

As we can see in total the flow implementation is again the fastest. But there are two
situations where the mixed implementation is much faster, the situation dmax = 1800
and Cmax = 720 and the situation dmax = 4100 and Cmax = 8200. As we can see for
dmax = 6200 the graph contains all 5834 arcs, that is the complete graph of the instance
Josefstadt. We see that for dmax = 4100 and Cmax = 16400 and for dmax = 6200 and
Cmax = 24800 all three implementations do not find any feasible solution within one hour.
In the cases where the three implementation do not terminate within one hour we can
see that the flow implementation always finds a good solution which is at most as good
as the solutions the other two implementations find.

88

7.3.4 Conclusion

In all tests presented in the last three sections we saw that in total the flow implementation
is the fastest and also returns the best feasible solutions if it is not able to solve it in one
hour. Because of that we will further investigate the flow implementation in the following
sections.

7.4 AOP and CTPP Benchmarks
In this section we will compare our flow implementation with the implementations
presented in [22] and [25].

As we already saw in Section 7.3.2 it can happen that the flow implementation does
not find the best solution if its value is very close to the value of the best solution. This
is only a problem for the benchmark instances where the profits equal the costs since
these instances have profits which are not integral and relatively big compared to the
instances with random profits. To get better results for this instances we would have
to set the relative gap tolerance parameter to a smaller value. Therefore we will use for
the tests two kinds of flow implementations and call them Flow1 and Flow2. Flow1 is
the flow implementation with the default relative gap tolerance of 10−4 and Flow2 is the
flow implementation when we set the default relative gap tolerance to 10−5.

7.4.1 Benchmark Instances where the Profits equal the Costs

Table 7.9 contains the test results of the benchmark instances where the profits equal
the costs for Cmax = 20000, Cmax = 40000 and Cmax = 60000. It compares our
implementations Flow1 and Flow2 with the CPLEX implementation of [22] which is called
CPLEX1 in the table, the GRASP implementation of [22], the CPLEX implementation
of [25] which is called CPLEX2 in the table and the ILS implementation of [25] (see
Section 4.3.3 and Section 4.3.4). For the results it is important to know that CPLEX1
has also an one hour time limit like our implementations and CPLEX2 has no time limit.

Since CPLEX1 and GRASP are implementations for the AOP and not for the CTPP
it can happen, that our implementations, CPLEX2 or ILS find solutions which are
not feasible in AOP because they use a vertex more than once. Thus the solution
values of CPLEX1 and GRASP may be smaller than the solution values of the other
implementations although they are optimal. There are some cases where CPLEX1 returns
different optimal solutions than the other implementations. The authors of [25] supposed
that this may be because the implementations of [22] assume a symmetric graph structure
and therefore work on a slightly different graph.

Since GRASP and ILS both only need about one second for each instance we do not
list their CPU times in 7.9. As always the CPU times in 7.9 are in seconds.

We can observe that the running times of our implementations Flow1 and Flow2 are
comparable with the running times of CPLEX1 and much faster than the running times
of CPLEX2. CPLEX2 was not even able to solve the test instances with Cmax = 60000.
For Cmax = 40000 and Cmax = 60000 we see that Flow1 returns sometimes a non-optimal

89

Table 7.9: Benchmark tests with the benchmark instances where the profits equal the
costs for Cmax2 = 0000, Cmax = 40000 and Cmax = 60000. The CPU times are given in
seconds if not other specified.

Flow1 Flow2 CPLEX1 GRASP CPLEX2 ILS
Cmax start sol. CPU sol. CPU sol. CPU sol. sol. CPU sol.

20000

2 19497 <1 19497 <1 19495 1 19495 19497 22 19497
6 18778 <1 18778 <1 17405 2 15874 18778 109 18778
10 19711 <1 19711 <1 19712 1 19712 19711 127 19711
14 19918 <1 19918 <1 19918 1 19918 19918 178 19918
18 19602 <1 19602 <1 19602 1 19602 19602 190 19602
22 19564 <1 19564 <1 19565 1 19565 19564 221 19564
26 19919 <1 19919 <1 19871 1 19871 19919 251 19919
30 inf <1 inf <1 inf 1 inf inf - inf
34 19944 <1 19944 <1 19943 1 19943 19944 326 19944
38 19132 <1 19132 <1 19131 28 19131 19132 374 19132

40000

2 39998 51 39998 355 40000 100 39948 39998 420 39998
6 39996 39 39996 79 39997 205 39930 39996 537 39996
10 39976 51 39976 57 39976 43 39941 39976 4.2h 39976
14 39994 201 39994 212 39987 210 39970 39994 21h 39994
18 39993 45 39993 50 39706 29 39706 39993 26h 39993
22 39983 114 39983 121 39982 100 39978 39982 37h 39982
26 39996 126 39996 215 39997 226 39997 39996 37h 39996
30 39992 4 39992 5 39992 13 39571 39992 38h 39992
34 39997 51 39999 248 39998 65 39932 39999 38h 39999
38 39995 213 39995 237 39994 2725 39967 39995 48h 39995

60000

2 60000 192 60000 209 59997 3600 59980 - - 60000
6 59999 260 59999 3600 59984 3600 59982 - - 60000
10 59999 64 59999 3600 59999 3600 59989 - - 60000
14 59997 95 59999 3600 59997 3600 59997 - - 60000
18 59998 300 60000 2782 59992 3600 59973 - - 60000
22 59994 3 60000 130 59999 3600 59913 - - 60000
26 59997 448 59997 3600 59990 3600 59988 - - 60000
30 59999 106 59999 1515 59991 3600 59799 - - 59999
34 59994 140 60000 1670 60000 215 59993 - - 60000
38 59997 612 59999 3600 59962 3600 59992 - - 60000

90

Table 7.10: Benchmark tests with the benchmark instances where the profits equal the
costs for Cmax = 80000 and Cmax = 100000. The CPU times are given in seconds if not
other specified.

Flow1 Flow2 CPLEX1 GRASP ILS
Cmax start sol. CPU sol. CPU sol. CPU sol. sol.

80000

2 79993 37 79999 1257 79998 3600 79974 80000
6 79998 275 79998 3600 79650 3600 79977 80000
10 79994 45 79999 1719 79992 3600 79997 80000
14 80000 306 80000 330 79804 3600 79989 80000
18 79996 437 79999 3600 79654 3600 79943 80000
22 79996 127 80000 2927 79991 3600 79969 80000
26 79998 1332 79998 3600 79908 3600 79983 80000
30 79993 108 80000 2428 79984 3600 79977 80000
34 79999 17 79999 3600 79998 3600 79977 80000
38 79992 1096 79995 3600 79481 3600 79882 80000

100000

2 99996 68 100000 210 99893 3600 99992 100000
6 99994 527 99999 1401 99872 3600 99989 100000
10 99994 202 100000 1539 99891 3600 99952 100000
14 99994 333 100000 2108 99766 3600 99965 100000
18 99998 50 99999 546 99798 3600 99998 100000
22 99991 265 100000 913 99908 3600 99997 100000
26 99996 712 99999 3600 11355 3600 99917 100000
30 99992 692 99998 3600 99968 3600 99884 100000
34 99995 105 99995 3600 74576 3600 99998 100000
38 99995 1081 99998 3600 58225 3600 99912 100000

solution and Flow2 does find a better solution but needs more time. This is caused again
by the fact, that the relative difference betweeen the optimal solution and the solution of
Flow1 is smaller than the default relative gap tolerance of CPLEX, which is 10−4.

Compared to the solutions of GRASP we see that our implementations already find
better solutions for Cmax = 40000 and Cmax = 60000. ILS always finds the optimal
solution for almost all values of Cmax and therefore it returns slightly better solutions for
Cmax = 60000 than our implementations.

Table 7.10 contains the same tests as table 7.9 for Cmax = 80000 and Cmax = 100000.
Since CPLEX2 did not solve any of these instances we omit this columns.

We can see in 7.10 that Flow1 is much faster than Flow2 and CPLEX1 but returns
not always optimal solutions. Flow2 is for some cases faster than CPLEX1 which is
not able to solve any instance under one hour. Also all returned solutions of Flow2 are
always better than the solutions of CPLEX1. ILS can solve all instances optimally and
therefore for the most cases better than our implementations.

For Cmax = 80000 and start node 2 or start node 10 we see that Flow2 terminates in
under one hour and returns solutions with values about 79999, which are not optimal.

91

This is because 10−5 relative gap tolerance can lead to absolute differences of almost 1.
The same happens for Cmax = 100000 and start node 6 or start node 18. To avoid this
we would have to use an even smaller relative gap tolerance which would increase the
running times again.

7.4.2 Benchmark Instances with Random Profits

Table 7.11 contains the test results for the benchmark instances with random profits.
Since the profits are here integral and relatively small we do not need a lower relative gap
tolerance and therefore we omit the results for Flow2. Since these instances with random
profits were introduced in [25] we also have no test results with the implementations
of [22]. The table has new columns gap for Flow1 and CPLEX2, which contain the
gaps calculated by CPLEX and a new column diff which contains the relative difference
between the solution of ILS and the solution computed by our implementation. Since the
results of Cmax = 20000 are not very interesting (our implementation solves all instances
in under one second) we omit them in this table.

The CPLEX implementation of [22] could not solve the instances for Cmax = 80000
and Cmax = 100000. For these instances we can see that our flow implementation is very
fast. It could solve all instances except one instance to optimality in under one hour.
The instance with Cmax = 100000 and start node 26 could not be solved in one hour
but a solution was found which is better than the computed solution by ILS and has a
worst case gap of 5%. If we apply our implementation with no time limit, then it solves
the instance with Cmax = 100000 and start node 26 in two hours with an optimal value
of 414. Therefore the real gap between the found solution and the optimal solution is
only 1%.

Especially for Cmax = 100000 our flow implementation could find much better solutions
than the ILS implementation with up to 25% difference. Also the running times for
Cmax = 40000 and Cmax = 60000 of our flow implementation is much better than the
running times of CPLEX2.

7.4.3 Conclusion

It is difficult to really compare our implementations with the implementations from [22]
and [25] since we used different hardware for our tests. But besides that we saw that our
flow implementation can easily hold up with the CPLEX implementations provided by
[22] and [25].

For most instances our implementation computed also better solutions than the
GRASP implementation from [22], although we have to mention that the GRASP
implementation used only around 1 second per instance and our implementation used up
to 1 hour which is a factor of 3600.

If we compare our implementation with the ILS we see that in the case where the
profits equal the costs the ILS is very efficient and computes in a second almost an at
least as good solution as our implementation computed in one hour. In the case where
the profits are random the situation changes. The ILS is not able anymore to compute

92

Table 7.11: Benchmark tests with benchmark instances with random profits. The CPU
times are given in seconds if not other specified.

Flow1 CPLEX2 ILS
Cmax start sol. gap CPU sol. gap CPU sol. diff

40000

2 146 0% 3 146 0% 231 146 0%
6 139 0% 6 139 0% 1.2h 139 0%

10 188 0% 1 188 0% 1.2h 188 0%
14 151 0% 4 151 0% 1.4h 151 0%
18 110 0% 1 110 0% 2362 110 0%
22 118 0% 2 118 0% 1.1h 118 0%
26 139 0% 3 139 0% 1.2h 139 0%
30 94 0% <1 94 0% 1.4h 94 0%
34 151 0% 3 151 0% 1.7h 151 0%
38 138 0% 2 138 0% 1.9h 138 0%

60000

2 238 0% 34 238 0% 577 238 0%
6 246 0% 152 246 0% 1.4h 246 0%

10 289 0% 21 289 0% 1.5h 289 0%
14 230 0% 118 230 0% 3.2h 229 0.4%
18 186 0% 62 186 0% 61h 186 0%
22 186 0% 55 186 0% 103h 184 1.1%
26 246 0% 77 246 0% 103h 228 7.3%
30 163 0% 12 163 0% 116h 163 0%
34 230 0% 50 230 0% 124h 230 0%
38 213 0% 21 213 0% 170h 213 0%

80000

2 337 0% 102 - - - 305 9.5%
6 329 0% 1413 - - - 307 6.7%

10 396 0% 41 - - - 331 16.4%
14 341 0% 150 - - - 275 19.4%
18 257 0% 349 - - - 238 7.4%
22 271 0% 65 - - - 252 7%
26 329 0% 536 - - - 308 6.4%
30 241 0% 132 - - - 241 0%
34 339 0% 62 - - - 324 4.4%
38 310 0% 230 - - - 310 0%

100000

2 437 0% 178 - - - 347 20.6%
6 430 0% 1232 - - - 368 14.4%

10 480 0% 201 - - - 393 18.1%
14 439 0% 597 - - - 328 25.3%
18 342 0% 1419 - - - 312 8.8%
22 346 0% 192 - - - 326 5.8%
26 410 5% 3600 - - - 379 7.6%
30 353 0% 104 - - - 338 4.2%
34 445 0% 138 - - - 364 18.2%
38 397 0% 2814 - - - 385 3.0%

93

the optimal solutions and our implementation can compute the optimal solution almost
for all instances. Although we have to mention again that ILS only uses one second per
instance and our implementation uses up to one hour.

7.5 Real World Applicability

In this chapter we want to evaluate if our flow implementation is applicable in realistic
situations as we motivated them in Chapter 1. That means we want to check if it is
possible to compute useful recreational bicycle tours. By visualizing the tours we get a
feeling how a solution looks like and if it is really an attractive tour.

As we already saw in the previous sections the maximal distance of the nodes in the
route to the end node and the maximal tour length are crucial for the calculation speed
and, if we set a time limit, also for the solution quality after this time limit.

Another factor for the computation time is the area we are searching for the tour. If
we are on the countryside like for example in Kittsee it is clear that there are less streets
than in a city and therefore we will be able to compute, in the same time, larger routes
than in a city.

Clearly the length, a route should have, strongly depends on the person who wants
to use it. People with special needs may not need as long tours as a professional racing
cyclist would do. For some people routes around 5 km to 10 km will be enough for a
recreational tour, on the other hand a racing cyclist would need tours up to 100 km or
more.

7.5.1 Tour Planning in Josefstadt with Realistic Profits

Since we have realistic attractiveness values for the map around Josefstadt, it makes
sense to further investigate the routes for this instance.

We already saw in table 7.8 the computation times of the flow implementation for
different tour lengths. As we can see tours up to 10 km were computed exactly within
one hour. For tours larger than 10 km it was not able to solve them exactly in one
hour, but in some cases an approximation value got computed. For the instance where
dmax = 2700 and Cmax = 10800 the solution gap calculated by CPLEX was 1.67% and
for the instance where dmax = 6200 and Cmax = 12400 the solution gap calculated by
CPLEX was 4.68%. That means in both cases the implementation computed a solution
within 5% of the optimal solution. To summarize we can say that for routes up to 13 km
the implementation returns a good solution within one hour and therefore is suitable for
smaller routes up to 13 km, which could be enough for people with special needs, but
definitely not for racing cyclists.

In Figure 7.1 we can see a route of 8 km length, starting and ending at the town hall
of Vienna. We can see that most of the time the streets are only used once. Only three
very small street parts got used twice. In the left upper corner we see the part of the
route, which is marked by a green rectangle, with a higher degree of enlargement. There
we can see a very small street part, colored red, which is used twice. Since this and also

94

the other two twice used parts are only parts of an intersection this does not really lower
the attractiveness of the tour. We can also see on the bottom that a part of the Ring
Road (“Ringstraße”) is used in both directions. This is because in the card material
this two parts were not opposite arcs and therefore the usage of both directions got not
penalized. But since this are both cycleways on the left and on the right side, this does
not really lower the attractiveness of the tour. If we would want to avoid something like
this we would have to increase the penalties between the corresponding arcs.

To check if this tour is now really attractive in the sense of our given attractiveness-
measurement Figure 7.2 shows the same tour together with all streets of the instance
Josefstadt. The color of every street represents its attractiveness value and the thick
lines represent the tour. As we can see the tour itself only uses green roads and avoids
red roads.

7.5.2 Tour Planning in Kittsee

In this section we want to test the applicability of our implementation to route planning
for patients of a Rehabilitation Center in Kittsee. Therefore we use as starting and
ending point always the Rehabilitation Center.

Table 7.12 contains the computation times of the Kittsee instance with the Rehabili-
tation Center as start and end node for various tour lengths and maximal distances. As
we can see all tours up to a length of 25 km could get solved optimally within one hour.
Longer tours were either solved within a 5% gap or no solution was found at all. But at
least for all instances up to 60 km tour length the implementation found a solution with
at most 5% gap.

If we assume that almost no patient in a Rehabilitation Center needs a bicycle tour
with length longer than 60 km we can precalculate routes for every patients needs within
a short time. If we want to get the optimal solutions for the longer tours around 40 km,
we would need more than one hour calculation time.

In figure 7.3 a tour with 20 km length is shown. We can see that there are nodes
which are used twice, but no arcs. Since the profits of the arcs in the Kittsee instance
are artificial and have nothing to do with the reality, this route is only for visualization
and may not be attractive in reality at all.

As discussed in chapter 1 there may be patients who want a route such that they can
stop the route at any point and return to the start point within a short time. To test
the applicability of our implementation to this situation we searched a route starting
and ending at the Rehabilitation Center with a length of again 20 km, but now every
node in the route should have a maximal distance of 2 km to the Rehabilitation Center.
Compared to the tour in 7.3 this tour does not look anymore like a round trip. It uses
some nodes twice but it still does not use arcs twice, except some very small arcs.

7.5.3 Conclusion

We saw in the last two sections that applicability in terms of computation time strongly
depends on the map. In a city like Vienna the implementation may be only applicable for

95

Table 7.12: Route calculations starting and ending in a Rehabilitation Center in Kittsee.

dmax Cmax #arcs solution time(s) gap
200 400 37 420 <1 0%
200 800 37 569 <1 0%
300 600 59 533 <1 0%
300 1200 63 1189 <1 0%
500 1000 135 1065 <1 0%
500 2000 135 2141 2 0%
800 1600 251 1739 1 0%
800 3200 253 3497 2 0%

1200 2400 507 2718 5 0%
1200 4800 511 5390 17 0%
1800 3600 625 4232 12 0%
1800 7200 625 8185 60 0%
2700 5400 761 6640 10 0%
2700 10800 771 12979 13 0%
4100 8200 1188 10162 184 0%
4100 16400 1190 20385 76 0%
6200 12400 1892 17306 99 0%
6200 24800 1899 33595 446 0%
9300 18600 3026 25521 1017 0%
9300 37200 3030 48895 1406 0%
14000 28000 5186 37363 3600 3.53%
14000 56000 5192 74145 3600 1.71%
21000 42000 8939 59692 3600 4.29%
21000 84000 8951 118481 3600 2.58%
31500 63000 15516 - 3600 -
31500 126000 15518 - 3600 -
47300 94600 15665 135131 3600 2.99%

routes up to 10 km or 15 km and on the countryside like in Kittsee it may be applicable
for routes up to 60 km or even more. For the purpose of a Rehabilitation Center this
could be enough, but for a professional racing cyclist it may not be applicable.

96

Figure 7.1: A tour of 8 km length, starting and ending at the town hall of Vienna.
(c©OpenStreetMap contributors)

97

Figure 7.2: All streets of the instance Josefstadt colored according to their attractiveness
values. The thick lines represent the 8 km tour from Figure 7.1. (c©OpenStreetMap
contributors)

98

Figure 7.3: Tour starting and ending at a Rehabilitation Center in Kittsee with 20 km
length. (c©OpenStreetMap contributors)

99

Figure 7.4: Tour starting and ending at a Rehabilitation Center in Kittsee with 20 km
length only consisting of nodes with distance smaller or equal 2 km to the Rehabilitation
Center. (c©OpenStreetMap contributors)

100

CHAPTER 8
Conclusion

8.1 Summary

At the beginning of the thesis we formulated a mathematical problem for the task to find
an attractive cycle route starting and ending at some fixed point. The formulation is a
maximization problem on a directed multigraph, where the attractiveness gets represented
by profits of the arcs and the length gets represented by the costs of the arcs. The goal
is to maximize the attractiveness under the restriction to not exceed the maximal tour
length. We allow to use streets in the same direction twice but penalize it by decreasing
the profit.

Through transformations we can bring our problem into an easier to handle problem,
where every arc can only be used once and the start and the end node are different. To
simplify the transformations we introduce a new dependency relation which can be used
to state that one arc can only be used in a tour if another arc is also used, that means
one arc depends on another arc. All various versions of the problem formulation are
NP-equivalent, or in other words, their decision problems are NP-complete.

To exactly solve the problem, we propose three different mixed integer linear pro-
gramming formulations. The three programs only differ in their sub tour elimination
constraints. The first one is based on a classical cut formulation, which can then be
solved with branch-and-cut. The second one is based on a flow formulation and the third
one uses both sub tour eliminations together and can be solved with branch-and-cut.
The relaxations of the first and the second formulation are not comparable and therefore
the relaxation of the third formulation is stronger than the relaxations of the first and
the second formulations.

To test the algorithms we implemented the three solution approaches with C++, using
the CPLEX technology. We used four different graphs as testing instances. The first
graph is just a test graph with no real meaning, the second graph represents an area
around Josefstadt in Vienna, the third graph an area around Kittsee in Austria and the

101

fourth graph an area around East-Flanders in Belgium. The latter was already used by
other papers to test algorithms for similar problems.

After testing some parameters for the mixed integer program formulations, we compare
the three programs by their running times on all four test graphs. The result is that in
most cases the flow formulation is the fastest and therefore we use this formulation for
further testing. By applying our implementation to a similar problem, we compare it with
algorithms from other papers. At least for the tested instances our implementation is
faster than their exact approaches and in some situations it also produces within a short
time better solutions than their approximation approaches. We also test the applicability
of our implementation for real world situations. The applicability strongly depends on
where we search a route and how long the route should be. The test results show that on
the countryside our algorithm is applicable for routes up to 60 km and in a big city it is
applicable for routes up to 13 km.

8.2 Limitations
Since the proposed algorithms in this thesis are all exact algorithms of an NP-hard
problem, one main limitation is, that the computation time will exponentially blow up
for big graphs. We see that in our test results when we try to compute larger routes.
Then the implementations do not find routes at all or only find approximations within a
reasonable time.

8.3 Further Work
To use the algorithms proposed in this thesis in praxis, we need map material with
realistic attractiveness values. Since this work does not cover the preprocessing of map
material this could be done in a future work. Furthermore, not only attractiveness values
should be provided, but also realistic penalties, such that the resulting solutions really
correspond to the most attractive routes. Since attractiveness is always subjective, this
may be hard to verify and will need statistical analysis tools.

To further improve the solving speed and solution quality one could combine the
proposed exact algorithms from this thesis with heuristics. The heuristics proposed in
[22] and [25] could be a good starting point for that.

102

Bibliography

[1] IBM Knowledge Center - What are user cuts and lazy constraints?
http://www-01.ibm.com/support/knowledgecenter/SSSA5P_12.5.
1/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_adv/usr_
cut_lazy_constr/02_defn.html. Accessed: 2015-04-21.

[2] OpenStreetMap. https://www.openstreetmap.org/about. Accessed: 2015-
04-21.

[3] David L. Applegate. The Traveling Salesman Problem: A Computational Study.
Princeton University Press, 2006.

[4] C. Archetti and M. G. Speranza. Arc routing problems with profits. Technical
report, Working paper, Department of Economics and Management, University of
Brescia, Italy, 2013.

[5] Julián Aráoz, Elena Fernández, and Oscar Meza. Solving the prize-collecting rural
postman problem. European Journal of Operational Research, 196(3):886–896, 2009.

[6] Julián Aráoz, Elena Fernández, and Cristina Zoltan. Privatized rural postman
problems. Computers & Operations Research, 33(12):3432–3449, 2006.

[7] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto
Marchetti-Spaccamela, and Marco Protasi. Complexity and Approximation: Com-
binatorial Optimization Problems and Their Approximability Properties. Springer,
2013.

[8] Boris V. Cherkassky and Andrew V. Goldberg. On implementing push-relabel
method for the maximum flow problem. In Egon Balas and Jens Clausen, editors,
Integer Programming and Combinatorial Optimization, number 920 in Lecture Notes
in Computer Science, pages 157–171. Springer Berlin Heidelberg, 1995.

[9] Ángel Corberán, Isaac Plana, Antonio M. Rodríguez-Chía, and José M. Sanchis.
A branch-and-cut algorithm for the maximum benefit Chinese postman problem.
Mathematical Programming, 141(1-2):21–48, 2013.

[10] Dominique Feillet, Pierre Dejax, and Michel Gendreau. Traveling Salesman Problems
with Profits. Transportation Science, 39(2):188–205, May 2005.

103

http://www-01.ibm.com/support/knowledgecenter/SSSA5P_12.5.1/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_adv/usr_cut_lazy_constr/02_defn.html
http://www-01.ibm.com/support/knowledgecenter/SSSA5P_12.5.1/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_adv/usr_cut_lazy_constr/02_defn.html
http://www-01.ibm.com/support/knowledgecenter/SSSA5P_12.5.1/ilog.odms.cplex.help/CPLEX/UsrMan/topics/progr_adv/usr_cut_lazy_constr/02_defn.html
https://www.openstreetmap.org/about

[11] Matteo Fischetti, Juan Jose Salazar Gonzalez, and Paolo Toth. Solving the ori-
enteering problem through branch-and-cut. INFORMS Journal on Computing,
10(2):133–148, 1998.

[12] Jonathan L. Gross, Jay Yellen, and Ping Zhang, editors. Handbook of Graph Theory,
Second Edition. Chapman and Hall/CRC, Boca Raton, 2 edition edition, 2013.

[13] Chryssi Malandraki and Mark S. Daskin. The maximum benefit Chinese postman
problem and the maximum benefit traveling salesman problem. European Journal
of Operational Research, 65(2):218–234, 1993.

[14] R. Garey Michael and S. Johnson David. Computers and intractability: a guide to
the theory of NP-completeness. WH Freeman & Co., San Francisco, 1979.

[15] W. L. Pearn and K. H. Wang. On the maximum benefit Chinese postman problem.
Omega, 31(4):269–273, 2003.

[16] Wen-Lea Pearn and W. C. Chiu. Approximate solutions for the maximum benefit
Chinese postman problem. International journal of systems science, 36(13):815–822,
2005.

[17] César Rego, Dorabela Gamboa, Fred Glover, and Colin Osterman. Traveling
salesman problem heuristics: Leading methods, implementations and latest advances.
European Journal of Operational Research, 211(3):427–441, June 2011.

[18] Gerhard Reinelt. The traveling salesman: computational solutions for TSP applica-
tions. Springer-Verlag, 1994.

[19] Alexander Shekhovtsov and Vaclav Hlavac. A Distributed Mincut/Maxflow Algo-
rithm Combining Path Augmentation and Push-Relabel. In Proceedings of the 8th
International Conference on Energy Minimization Methods in Computer Vision and
Pattern Recognition (EMMCVPR), Lecture Notes in Computer Science. Springer,
2011.

[20] Alexander Shekhovtsov and Vaclav Hlavac. A Distributed Mincut/Maxflow Al-
gorithm Combining Path Augmentation and Push-Relabel. Research Report
K333–43/11, CTU–CMP–2011–03, Department of Cybernetics, Faculty of Elec-
trical Engineering Czech Technical University, Prague, Czech Republic, June 2011.

[21] Alexander Shekhovtsov and Vaclav Hlavac. A Distributed Mincut/Maxflow Algo-
rithm Combining Path Augmentation and Push-Relabel. International Journal of
Computer Vision, 104(3):315–342, 2013.

[22] Wouter Souffriau, Pieter Vansteenwegen, Greet Vanden Berghe, and Dirk Van Oud-
heusden. The planning of cycle trips in the province of East Flanders. Omega,
39(2):209–213, April 2011.

104

[23] T. Tsiligirides. Heuristic Methods Applied to Orienteering. The Journal of the
Operational Research Society, 35(9):797, September 1984.

[24] Pieter Vansteenwegen, Wouter Souffriau, and Dirk Van Oudheusden. The orienteering
problem: A survey. European Journal of Operational Research, 209(1):1–10, 2011.

[25] C. Verbeeck, P. Vansteenwegen, and E. H. Aghezzaf. An extension of the arc
orienteering problem and its application to cycle trip planning. Transportation
Research Part E: Logistics and Transportation Review, 68:64–78, 2014.

105

	Kurzfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Methodological Approach
	Structure of the Work

	Recreational Tour Planning Problem
	Towards a Problem Formulation
	First Problem Formulation
	Problem Transformations
	Further Problem Transformations

	Complexity
	Complexity Theory for Optimization Problems
	Complexity of RTPP1

	Related Work
	The Traveling Salesman Problem
	Traveling Salesman Problems with Profits
	Arc routing problems with profits

	Mixed Integer Programming Approach for RTPP3
	Preprocessing
	From a Usage Vector to a Walk
	Mixed Integer Linear Program
	Flow Approach for Eliminating Subtours

	Implementation
	General
	Parsing and Preprocessing
	Solving

	Evaluation
	Test Instances
	Parameter Tuning
	Comparison of the Three Implementations
	AOP and CTPP Benchmarks
	Real World Applicability

	Conclusion
	Summary
	Limitations
	Further Work

	Bibliography

