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Abstract. The cycle double cover conjecture is a famous longstanding
unsolved conjecture in graph theory. It is related and can be reduced to
the compatible circuit decomposition problem. Recently Fleischner et al.
(2018) provided a sufficient condition for a compatible circuit decomposi-
tion, which is called SUD-K5s-minor freeness. In a previous work we devel-
oped an abstract mathematical model for finding SUD-K5-minors and
based on the model a mixed integer linear program (MIP). In this work
we propose a respective boolean satisfiability (SAT) model and compare
it with the MIP model in computational tests. Non-trivial symmetry
breaking constraints are proposed, which improve the solving times of
both models considerably. Compared to the MIP model the SAT app-
roach performs significantly better. We use the faster algorithm to fur-
ther test graphs of graph theoretic interest and were able to get new
insights. Among other results we found snarks with 30 and 32 vertices
that do not contain a perfect pseudo-matching, that is a spanning sub-
graph consisting of K> and K 3 components, whose contraction leads to
a SUD-Kjs-minor free graph.

Keywords: Transition minor - Cycle double cover - Compatible
circuit decomposition + SAT

1 Introduction

The famous cycle double cover (CDC) conjecture states that every bridgeless
graph has a cycle double cover, which is a collection of cycles such that every edge
of the graph is part of exactly two cycles. It was originally posed by Szekeres [13]
and Seymour [11] over 40years ago and is still unsolved. As Jaeger shows in
[5], the CDC conjecture can be reduced to the consideration of a special class
of graphs called snarks by considering a minimum counter example. There are
multiple similar definitions of snarks, we will use the one from Jaeger [5]: A snark
is a simple cyclically 4-edge-connected cubic graph with chromatic index four. A
cyclically 4-edge-connected graph is a graph that has no 4-edge cut after whose
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removal at least two components contain a cycle. Although snarks are simple,
we consider in general undirected multigraphs without loops.

A problem related to the CDC conjecture is the compatible circuit decompo-
sition (CCD) problem. It is formulated on a transitioned graph (G,7), which is
a graph G together with a set of transitions 7. A transition consists of a vertex
and two incident edges. We write 7 (v) for the set of all transitions at vertex v. A
transition system has to satisfy that the transitions in 7 (v) are edge-disjoint. A
compatible circuit decomposition of a transitioned graph is a collection of circuits
such that each edge of the graph is part of exactly one circuit and each circuit
does not contain any pair of edges of a transition. The CCD problem asks if
a given transitioned graph contains a compatible circuit decomposition. To see
the connection between the CDC conjecture and the CCD problem we consider
a cubic graph C, for example a snark. A perfect pseudo-matching (PPM) of C
is a subgraph spanning C' whose connected components are either two vertices
connected by an edge, i.e. the K5, or one vertex together with its three incident
edges and its three neighbors, i.e. the K7 3 which we also call claw. Given a PPM
of C' we can define now a transitioned graph (G,7T) by contracting all edges of
the PPM. We define a transition in 7 for each pair of adjacent edges in G that
remain after the contraction, see Fig. 1 for an illustration.

<
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Fig. 1. Example contraction of parts of a PPM. The edges of the PPM getting con-
tracted are drawn dashed. The transitions in the resulting graph are represented by a
vee (V) between the two edges of the transition.

Note that the contracted graph may contain loops, but we can ignore them
since they are not relevant in the context of circuit decompositions. If we contract
a PPM of a snark there are no loops since a snark is simple and has no triangles.
As described in [8] if the constructed transitioned graph (G,7) contains a CCD
one can construct a CDC in the original graph C'. Already in 1980 Fleischner [3]
proved that every transitioned graph (G, 7 ) where G is 2-connected and planar
contains a CCD. This result was then improved in 2000 by Fan and Zhang [2]
who showed that if G is 2-connected and Ks-minor free it must contain a CCD.
Those two sufficient conditions for the existence of a CCD are only based on the
structure of G and do not consider the transition system 7. Recently Fleischner
et al. [4] generalized the minor term to transitioned graphs and proved that if
(G,T) is 2-connected and SUD-K5-minor free it must contain a CCD. For the
definition of a SUD-Kj5-minor we refer to [4] or [8].

Because of the complex nature of the definition of a SUD-K5-minor it is non-
trivial to check if a graph contains a SUD-Ks-minor. In a previous work [8] we
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generalized the problem of SUD-Kj5-minor containment by allowing to replace
the K5 by any 4-regular graph H. Formally, given a transitioned graph (G, 7)
and a 4-regular completely transitioned graph (H,S) the decision problem
Ezistence of Sup-Transition-Minors (ESTM) asks if (G,7) has a sup-(H,S)-
transition minor. A graph is completely transitioned if every edge is part of two
transitions. A transitioned graph (G,7) has a sup-(H, S)-transition minor if it
has a H-minor where every vertex w of H corresponds to a subgraph C,, of G
that has a cut vertex v,,. The cut vertex must split C, in at least two compo-
nents such that there is a transition at v,, whose edges are part of one of those
components O and all other edges incident to v, are part of other components.
Furthermore, the transition at v,, must correspond to a transition of H at w
such that the two edges of the transition in H are connected to the component
CL. For a formal definition of a sup-(H,S)-transition minor we refer to [8].

The mathematical model developed in [8] for deciding the ESTM allowed to
derive a mixed integer linear program (MIP) model, which could be solved for
small graphs, yielding interesting graph theoretic results. In this work we present
a more powerful boolean satisfiability (SAT) formulation for the mathematical
model developed in [8], which allows addressing significantly larger graphs. To
improve the solving times of the MIP as well as the SAT model we propose a
non-trivial symmetry breaking based on graph automorphisms of the two input
graphs (G, 7) and (H,S). The idea of breaking symmetries using automorphism
groups has been studied in a general context, see e.g. [1], and in problem-specific
contexts, see e.g. [7]. We extend the definition of automorphisms to transitioned
graphs and propose problem specific symmetry breaking constraints based on a
vertex mapping between the two input graphs (G,7) and (H,S).

Using the new SAT model, which outperforms the MIP model significantly,
together with the symmetry breaking constraints we were able to check for all
snarks with up to 32 vertices if they contain a PPM whose contraction is SUD-
Ks-minor free. Within those tests we were able to find snarks that do not contain
such a PPM. This result answers the previously open question that the notion
of SUD-K5-minor freeness in the context of contractions of PPMs in snarks is
not enough to prove the CDC conjecture.

In the following section we present a SAT model for finding a sup-(H,S)-
transition minor. Then we discuss symmetry breaking constraints, which can be
used in the MIP and in the SAT model, in Sect. 3. Section 4 gives computational
results for the new SAT model in comparison to the MIP model. Also we show
the impact of the symmetry breaking. Finally, we will conclude and propose
some future work in Sect. 5.

1.1 Terminology and Notation

As already mentioned, when referring to a graph we mean here an undirected
multigraph without loops, unless otherwise stated. We denote a graph by G =
(V, E,r) with a vertex set V, an edge set F and a function r that maps an edge
e € E to the set of its two end vertices {vy, va}. If 7(e) = {v1,v2} we also write
e = vivy. Note that e = vivs and €’ = vyvy does not imply e = €’ since we can
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have parallel edges. For a vertex v € V we write E(v) = {e € E | v € r(e)} for
the set of all incident edges and N(v) = {v/ € V | Je € E: e = v’} for the set
of all neighbors.

We represent a transition in a transitioned graph by a pair T = (v, {e1,e2})
where the first element is a vertex and the second element a set of two edges
which are incident to the vertex. Furthermore, we use projections 7 (T) = v and
mo(T) = {e1, e} to denote the vertex and the edge set of a transition.

For a partial function o : A - B and a subset X C A we write a[X] =
{beB:3a€ X :b=ca(a)} for the image of X under a. Furthermore, if ¥ C
B we write a7 ![Y] = {a € A: a(a) € Y} for the preimage of ¥ under a. We
also abbreviate the notation in case of only one element by afa] = a[{a}] and
atb] = a t[{b}] fora € A and b € B.

2 The SAT Model

In this section we present a SAT model for checking if a given transitioned graph
(G, T) contains a sup-(H, S)-transition minor for a given completely transitioned
4-regular graph (H,S). For the formal definition of a sup-(H, S)-transition minor
see [8].

In the following we first repeat the mathematical model developed in [§]
on which the SAT model will be based. The model will use simple trees
C!, with vertices in G for which we will use the following notation: E! :=
{e € E(G) |r(e) € E(CL)}. The model is defined as finding

1. a partial surjective function ¢: V(G) - V(H),

2. a partial injective and surjective function k: E(G) - E(H),

3. a partial injective function §: E(G) - V(H),

4. Yw € V(H) a pair (Ty,Sy) of transitions with T,, € 7 and S, € S(w), and

5. Yw € V(H) two simple trees C} and C2?, with V(C%) C V(G) for i = 1,2,

such that
E(C},) CrglE(G)] vwe V(H),Vie{1,2} (1)
ne) = f = ¢lra(e)] = ru(f) Ve € B(G),Yf € E(H)  (2)
V(CL)UV(CE) = ¢ w] vwe V(H)  (3)
{m1(Tw)} = V(Cy) NV(CE) vwe V(H)  (4)
72 (Tw) C £~ ma(Sw)] U O~ Hw] U EL Yw € V(H) (5)
(5 m2(Sw)] N E(m1(Tw))) U0~ w] C 72 (Tw) Yw € V(H) (6)
e € dom(k) A k(e) € m2(Sw) = ra(e) NV (CL) # 0 Vw € V(H),Ve € E(G) (7)
e € dom(k) A k(e) € E(w) \ m2(Sw) v € V(H),Ve € B(C) (8)

=rgle)NV(Ch) #0
v € V(Co) \ {m1(Tw)} A degcy (v) = 1A

Yw € V(H),Yv € V(G) 9
v ¢ UTG[Hfl[w]] = E() Nk~ ra(Sw)] # 0 ©)
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Ecy (m1(Tw)) € ralme(Tw)] Vw € V(H) (10)

0(e) =w =>rg(e) CV(CL) Ve € E(G),Yw e V(H)  (11)

0(e) = w = rc(e) ¢ E(Cy) Vee E(Q),Ywe V(H)  (12)
holds.

In [8] we proved that the feasibility of this model is equivalent to the existence
of a sup-(H,S)-transition minor in (G,7). Most constraints of this model can
more or less directly be translated into SAT clauses. One critical aspect is how
to model the tree C? for w € V(H) and i € {1,2}. Constraints (3) and (4)
ensure that the subgraph C,, formed by C} and C2 together is a tree and all
trees C,, are disjoint for w € V(H). Combining all trees C,, for w € V(H) we
obtain a forest and for each of the trees C\,, we define a unique root 71(T,,) by
(4). When modeling the forest in a directed fashion, we then only have to take
care to avoid any cycles. There are different techniques in literature to model
acyclicity in SAT models. Some of those techniques are summarized in [6]. We
will use the approach based on a transitive closure for ensuring acyclicity in our
model. Our SAT model uses the following variables:

— z¥ for v € V(G), w € V(H) represents p(v) = w,

— yf for e € E(G), f € E(H) represents x(e) = f,

— 2z for e € E(G), w € V(H) represents 0(e) = w,

— a¥ forw e V(H), T € T represents T =T,

— b§ forw e V(H), S € S(w) represents S = Sy,

— obv for v € V(GQ), w € V(H), i € {1,2} represents v € V(C?),

— piv for a € A(G), w € V(H), i € {1,2} represents a € E(C?),

— by, vy fOr v1,v3 € V(QG) is the transitive closure relation of all ph variables.

The trees C& are modeled as a directed rooted out-trees and the variables p%®
decide which directed arcs are part of the tree. Set A(G) is the set of all directed
arcs of edges in G when eliminating parallel edges. So for every pair of adjacent
vertices in G there are two arcs in opposite direction in A(G). We write A" (v)
for the ingoing arcs at v and A°"*(v) for the outgoing arcs at v. In the following
we list all constraints of our SAT model. For simplicity, we will present the
constraints in the form of propositional logic formulas. To transform them into
clauses we use De Morgan’s law and the distributive property. One alternative
would be to use Tseitin transformations [14], although for the constraints we will
present the number of resulting clauses using the naive transformation is still
small and therefore this is not needed. In the following we will use for a given
veV(GQ), we V(H), and i € {1,2}

oneln (v, i, w) := ( \/ pff”) A /\ (=Pt v way’) -
a€Ain(v) a1,a2€A™ (v)
arF#asz

The basic structures as defined in the mathematical model are expressed by

—(z)t A xl?) Vv € V(G),Ywy,ws € V(H),wy # woy (13)
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Vo
veV(G)
=@yl Ayl)

=(yl, nyl)

\V vl
e€E(G)
(A2
—(ze) N zg))
—(aq, Naf,)

\/ ot

TeT
(et i)
—(bg, N bg,)

Voo

SeS(w)

oy — \/ a Vv oneln(v, i, w)

TeT (v)
Voarodn A
TET (v) acAin(v)
—0 — A

a€Ain(v)UA°ut(v)

_‘(tvuvz A tvmm)

tUl,U’z A tU27113 - t'Uh'UB

Vo

weV (H),ie{1,2}

tUl ;U2

Ve € E(G),Vfl,fg S E(H
V61,62 S E(G),Bl 7£ EQ,Vf S E(H)

le,UJQ c V(H
Yw e V(H

Yw e V(H)

), f1 # fa

VfeE(H)

Ve € E(G),Ywi,ws € V(H), w1 # wa
Vei,es € E(G),e1 # eo,Yw € V(H)
Yw e V(H

),\V/Tl,TQ S T,Tl 7& Ty
Yw e V(H)

),wy # wo, VT € T
),VSl,Sg S S(w),51 7£ Sa

Yw € V(H)

Yo e V(G),w e V(H),i € {1,2}

Yo e V(G),w e V(H),ie {1,2}

Yo e V(G),weV(H),ie{l,2}

Va = (v1,v2) € A(G)
Va = (v1,v2) € A(G),v3 € V(G)

Va = (v1,v2) € A(G).

(25)

(26)

(27)

(28)
(29)

(30)

Constraints (13), (15), (18), (20), and (23) ensure that ¢, &, 0, w — T,
and w — S, are partial functions with the special restriction that S,, € S(w).
Furthermore, constraints (14) and (17) enforce that ¢ and x are surjective. On

the other hand, constraints (16), (19), and (2

2) ensure that «, 6, and w +— Ty,

are injective. Note that the mathematical model does not state directly that
w +— T, should be injective, but it does indirectly by constraints (3) and (4).
Additionally, constraints (21) and (24) guarantee that there exists a T, and a

Sy for each w € V(H).
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Constraints (25)—(27) characterize three types of vertices in G. The root
vertices of the trees C?, which are defined by the vertices of the transitions
T, by (4), do not have any ingoing arcs in C?. Other vertices in C? that are
not roots have exactly one ingoing arc in C! and vertices that are not in C?
have no ingoing or outgoing arc in C?. Last but not least, constraints (28)-
(30) ensure that the trees C% have no cycles by using the transitive closure
variables t,, ., similarly as it is described in [6]. Instead of having just one
variable, which represents if a directed edge is part of the forest, we use in our
case the disjunction VweV(H),ie{l,z,} pi® for an arc a. With this we ensured all
structural properties formulated in the mathematical model. What is left is to
model constraints (1)—(12) which is achieved by

Ve = v1,v2 € E(G),

yl — (@ Aal2)V (2WE Aa?) Vf = wiws € B(H) (31)
ol Vo2V g Yo € V(G),Yw € V(H) (32)
\/ a¥ — ol A o2 Vv € V(G),Yw € V(H) (33)
TeT (v)
ap — by A g)
\/ T \/ ( s \/ Y Ve = viv2 € E(G),
TeT SeS(w) fema(S) (34)
e€ma(T) Yw € V(H)
1,w 1,w
& Vp(vlﬂ)z) Vp(vzﬂ)l)
w A pw \/ ¥ Yw € V(H),VS € S(w), (35)
a. S — T y€
T Femn(S) VT € T,Ve € E(m(T)) \ m2(T)
" vw € VIH) (36
T © VT € T,Ve € E(m (T)) \ m2(T)
bg AN \/ yg — O,ll)’lw Vv O,llj’zw Vw S V(H)9VS S S(’LU), (37)
fema(S) Ve = viv2 € E(G)
(bg A \/ yér) IRV vw € V(H),VS € S(w), (38)
FEE(w)\m2(S) Ve = viv2 € E(G)
bg A oi’w A /\ ﬂpél’}“;,) A /\ —zy
v/ EN(v) c€E(v) vw € V(H),VS € S(w), (39)
. ( Vo v 012}’“’) Vo € V(@)
c€E(v),fEma(S)
) ) vw € V(H),¥T € T, 1)
a¥ — -p "W A —p w
T @ T T em o € N(mi (1) \ Jrelm(T)] (
20— (o},’lw A 011,’2’”) Vw € V(H),Ve = viva € E(G) (41)
2 = (PC 0 A Pl Yw € V(H),Ve = vivz € B(G).  (42)

Constraints (1) are already satisfied implicitly and constraints (2)—(5) are real-
ized by constraints (31)—(34) respectively. Furthermore, constraints (6) are guar-
anteed by (35) and (36). All the other constraints (7)—(12) are modeled via (37)—
(42) respectively.
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By using our SAT model we can develop an algorithm that checks for a given
snark if it contains a PPM whose contraction leads to a planar, a Ks-minor free,
a SUD-K5-minor free, or a CCD-containing graph. The algorithm enumerates
all PPMs iteratively by ordering the vertices of the snark and always trying to
add all possible edges or claws to the pseudo-matching that contain the smallest
not yet visited vertex of the snark. Then it checks for each generated PPM if
its contraction leads to a planar graph. If it does not find such a matching it
checks for Ks-minor free contractions, if this also is not the case it checks for
SUD-K5-minor free contractions and otherwise it checks for CCD-containing
contractions. Using this algorithm one can specify for each snark the type of the
strongest matching found for this snark.

3 Symmetry Breaking

The input graphs G and H, especially H, often have symmetries leading to
symmetric solutions in our model. To avoid those we analyze the structure of
the symmetries in G and H and incorporate symmetry breaking constraints into
our model.

To formalize the concept of symmetries in transitioned graphs we extend
the definition of homomorphisms on graphs to transitioned graphs. We are only
interested in vertex symmetries and therefore a homomorphism between two
multigraphs is for us a vertex mapping which preserves the vertex adjacency
relation with the correct number of edges, e.g. if there are k edges between
two vertices then there must be exactly k edges between the images of those
vertices. If we would want to also eliminate edge symmetries this would lead
to more complex symmetry breaking constraints and would only help in cases
where there are a lot of parallel edges.

We can extend the definition of homomorphisms to transitioned graphs by
enforcing that it also preserves transitions. That means that the homomorphism
f: V(G) — V(H) between (G,T) and (H,S), which is a vertex mapping,
induces a mapping between the edges g : E(G) — E(H) according to the end
vertex relation of f, i.e

flr(e)] =r(g(e)) Ve € E(G)

and transitions are preserved, i.e.

(f(v),{g(e1),g(e2)}) €S VT = (v,{e1,ex}) €T.

By using our extended definition of homomorphisms we can define isomor-
phisms as bijective functions which are a homomorphism in both directions.
Furthermore, we can define automorphisms as isomorphisms of a graph to itself
and can consider the automorphism group of a transitioned graph (G, 7).

Given input graphs (G,7) and (H,S) we can use automorphisms to trans-
form feasible solutions into other feasible solutions. More formally for any feasible
solution and any pair of automorphisms f € Aut(G,7) and g € Aut(H,S) of
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which at least one is not the identity we can construct another feasible solution
by replacing all vertices in G according to f and all vertices in H according to
g. Since f and g preserve all edges and all transitions this is sufficient to get a
new feasible solution.

Next we propose an approach how to eliminate some of those symmetries.
Let S be a feasible solution with vertex mapping ¢ : V(G) - V(H). We assume
that V(G) and V(H) are totally ordered sets. We can define for any pair of auto-
morphisms f € Aut(G,7) and g € Aut(H,S) a sequence o9 := (%) ev(m)
by

aly? == min flp™ [g(w)]]

which is well-defined since ¢ is surjective. The sequence a9 contains the smallest
vertex of each preimage of ¢ after applying the automorphisms f and g to
the solution. The idea is to enforce that o := aldv(e)idvn is lexicographically
minimal compared to all a9 for all pairs of automorphisms f € Aut(G,7) and
g € Aut(H,S), ie.

a <iex P9 Vf € Aut(G,T),Vg € Aut(H,S). (43)

Note that there may be multiple different feasible solutions with the same
sequence « and therefore this only eliminates some symmetries. Such differ-
ent solutions with the same « may differ in the mapped edges or transitions,
or differ in vertices in G that are not mapped by ¢ or are not the smallest
vertices of the preimages of ¢. But if H is simple this restriction eliminates
all symmetries occurring only in H, i.e. if we only apply an automorphism in
Aut(H,8)\ {idv ()} to a feasible solution satisfying (43) the resulting solution
will not satisfy (43). To formalize (43) in such a way that it can be modeled in a
MIP or a SAT formulation we have to expand the definition of a lexicographical
ordering. Condition (43) is equivalent to

Yw € V(H),¥f € Aut(G, T),Yg € Aut(H, S) :

aw < abI VI < w: oy <0¢£’;q

(W0 <yt f(0) ¢ o g()]) VB < w:Vo < ay: f©) ¢ o [gw)]).

This constraint is still complicated and results in a lot of constraints in SAT
or MIP models. To avoid bloating the models we consider only the variant for
the smallest vertex wg := min(V(H)) of H. Then the condition can be simplified
using orbits.

Definition 1. Let f be an automorphism on a transitioned graph (G,T). The
set

orb(v) :={v' € V| 3f € Aut(G,T): f(v) ="}

is called the orbit of v € V. Orbits are the equivalence classes of the equivalence
relation corresponding to Aut(G,T) in which two vertices are equivalent if there
exists an automorphism mapping one vertexr to the other.
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Using the definition of orbits we can simplify our condition for the special case
wo

Fv) & o7 g(wo)] Yo < . Vf € Aut(G,T),Vg € Aut(H, S)
v ¢ o w'] Yo < an,, Yo' € orb(v), V' € orb(wp)
Sp() =w = ay, <vVoeV(G), W' € orb(v), Vu' € orb(wp)
Sp)=w — ' <v:p”)=wy VW' € V(G),Yv € orb(v'), Vw' € orb(wy)
Sp(v) =w — W <minorb(v) : p(v') = wy Vv € V(G),Yw € orb(wyg). (44)
Another specialization of (43) is if we only consider automorphisms on H, i.e.
fix f = idy(g). In this case we simply have o, := ozif,lv(c)’g = min p~g(w)] =
Qg(w), i-e. the o values are simple permutations of each other based on g. There-
fore the symmetry breaking condition holds if and only if

(aw)weV(H) lex (ag(w))wEV(H) vQ € Aut(H, S) (45)

Note that (avw)wev () Siex (Qg(w))wev(a) if and only if for the first vertex
w for which ay, # g, Qw < gy holds. Since all values in «,, are different
we know that v, = agy(, if and only if w = g(w). Therefore, if w is the first
value where they are different this implies that g fixes all v’ < w, i.e. g(w’) = v’
for all w' < w.

Definition 2. Let S C V(QG), then the stabilizer of Aut(H,S) with respect to S
is defined by Autg(H,S) := {g € Auwt(H,S) | Vs € S : g(s) = s}, which is a sub-
group of Aut(H, S). We can again define stabilizer orbits according to the automor-
phisms in the stabilizer, i.e. orbg(v) :={v' € V | 3f € Auts(G,T) : f(v) =v'}.

With this definition we can reformulate (45) in the following way:

Oy < Ag(w) Vuw € V(H)av.g € Aut{w’EV(H):w’<w}(H7 S) : g(’LU) 7é w
oy <y Yw € V(H),Yw" € orbyev (myw <w(w) \ {w} .

The condition a,, < ay,~ can be expressed such that the statement is equivalent
to

Yo e V(G),Yw € V(H),

o) =w" - I <v:pk)= (46)
V’UJ” S Orb{w’EV(H):w’<w}(w) \ {w} .
To model constraints (44) and (46) we use the inequalities
xy < Z x,)” Yo € V(G),Yw € orb(wy) (47)
v/ <min orb(v)
" Vv € V(G),YVw € V(H),

Yo' € OI'b{w/eV(H):w’<w}(w) \ {w}
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for the MIP model and the constraints

xy — \/ z,? Vv € V(G),Vw € orb(wy) (49)

v

v/ <min orb(v)

Yo € V(G),Yw € V(H),
V" € orbiysev (i) <w} (W) \ {w}

"
w w
Ly \/ Loy

v <v

for the SAT model.

L =
(G, T) Auwx(G,T)

Fig. 2. Construction example of the auxiliary graph for a part of a transitioned graph
(G,T). The newly added artificial vertices have color 2, which is drawn white and the
original vertices have color 1, which is drawn black.

3.1 Finding All Automorphisms and Stabilizers

To add constraints (47)—(48) or (49)—(50) to our model we need to compute the
automorphism group Aut(G, 7)), its orbits, the automorphism group Aut(H,S),
its orbits, and the orbits orby,/cv (m).u<w}(w) of the stabilizers for each w €
V(H).

The problem of computing a set of generators of the automorphism group
of a simple graph is well studied. It is closely related to the famous graph iso-
morphism problem. Since no polynomial time algorithm is known for the graph
isomorphism problem, which can be reduced to computing generators of the
automorphism group of the graph, all proposed algorithms in literature require
exponential time in general. Nevertheless, if we restrict the problem to graphs
with bounded degree, like it is the case for the input graph H, which is always 4-
regular, there are polynomial time algorithms, see [9]. On the other hand, there
are efficient algorithms in practice, which can handle graphs with unbounded
degree. See for example McKay and Piperno [10] where they solved the problem
for graphs with several thousand vertices in reasonable time.

The algorithm of McKay and Piperno and also other algorithms in the lit-
erature working similarly get as an input a simple undirected graph G = (V, E)
with a vertex coloring ¢ : V' — {1,...m} and compute a generator of Aut®(G),
which is the subgroup of Aut®(G) which preserves the colors given by ¢, i.e.

Aut®(G) :={f € Aut(G) | c(f(v)) = c(v) Vv e V(G)}.

Since we need to compute automorphism groups of transitioned multigraphs,
we need to transform our graphs in such a way that we can apply McKay’s
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algorithm to it. Let (G,7) be a transitioned graph. We construct an auxiliary
graph Aux(G,7) by inserting in each edge e = v1v3 of G two vertices w?* and
w??. This gives us immediately a simple graph. Furthermore, for each transition
t = (v,e1,e2) € T we add an edge between the vertices wy, and w?,. We also
define a coloring ¢ on the auxiliary graph by coloring all original vertices with
the color 1 and all artificially added vertices with the color 2. See Fig.2 for an
example on how to construct the auxiliary graph for a part of a given transitioned
graph (G, 7).

Theorem 1.
Aut(G,7) {f|V } [f € Aut®(Aux(G, T))]

Proof. By adding the two artificial vertices with a second color between each
edge we can associate with each automorphism in the auxiliary graph a vertex
mapping and an edge mapping in the original graph. The edge mapping is defined
by mapping an edge e; to an edge es if the two artificial vertices on e; get mapped
to the two artificial vertices on es in the auxiliary graph. Furthermore, since
there are edges between two added vertices w¢, and wy, if and only if there is a
transaction (v,{e1,es}) in the original graph we also get that the mappings are
transition-preserving. On the other hand, given a vertex mapping and an edge
mapping as in the definition of an automorphism in a transitioned graph, we
can use those to formulate an edge-preserving vertex mapping on the auxiliary
graph.

Theorem 1 shows us that we can use the auxiliary graph Aux(G,7T) to get
the automorphism group of a transitioned graph (G, 7") by using an algorithm to
compute Aut®(Aux(G,7T)). What remains is how to compute the orbits and the
orbits of the stabilizers which can be done with the Schreier-Sims algorithm [12].
To get the orbits of the stabilizers we may have to reorder our vertices (which in
effect changes the needed stabilizers) according to the result of the Schreier-Sims
algorithm. This is no problem for our model, since the order of the vertices is
only relevant for the symmetry breaking and can therefore be adjusted.

4 Computational Results

To test our SAT model and compare it with the MIP model proposed in [§]
we implemented both in C++ using Glucose 4.1 to solve the SAT model and
Gurobi 8.1 to solve the MIP model. We also tested the impact of the symme-
try breaking constraints for both models. To get the automorphism groups as
described in Sect. 3.1 we used nauty 2.6 [10] and to get a strong generating set we
used the implementation of the Schreier-Sims algorithm contained in the nauty
program. All tests were performed on a single core of an Intel Xeon E5-2640 v4
processor with 2.40 GHz and 8 GB RAM.

We consider the instance sets S1, S2, and G1 from [8] together with a new
instance set G2 of larger random graphs to also test the limits of the SAT
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Table 1. Computation results for instance set S1.

|V<C)‘ ‘I‘ ‘Ifeasl IIinfl MIP MIPsym SAT SATSYm
treas [S] | tinf[s] | [Tt1] | treas[s] | tinfls] | [Tt1] | treas[S]| tinf[s] | treas[s] | tinls]

10 4 4 0 <1 — 0 <1 — 0 <1 - <1 -

18 8 8 0 3 - 0 4 - 0 <1 - <1

20 24 24 0 2 - 0 2 - 0 <1 - <1 -

22 124 |121 3 4 2035 |0 5 727 0 <1 11 <1 1

24 620 | 604 16 8 3600 |15 6 2955 |2 <1 26 <1 2

26 5188|5124 |64 12 3600 |64 9 3600 |58 <1 78 <1 4

28 4000 | 3970 30 19 3600 |30 14 3600 |30 <1 166 <1 7

Table 2. Computation results for instance set S2.

V()| [Ifeas| | {ing| | MIP MIPgym SAT SATsym
treas(s] | ting(s] | [Te1] | treas[s] | ting[s]| Ls1] | treas[s] | tinf(s] | treas[s] | tingls]
18 98 15 83 |2 194 |0 |1 9 0 |0.04 |0.12 |0.04 |0.04
20 1116 416 | 700 |3 468 |6 |2 24 0 |0.05 |0.28 |0.05 |0.06
22 10694 | 4873 | 5821 |4 1173 |892 |3 74 0 0.06 0.78 0.06 0.08

model. Set S1 consists of four random perfect matching contractions of all snarks
with up to 26 vertices plus 1000 snarks with 28 vertices using the UD-Kj5 as
transitioned graph (H,S). The set S2 consists of all PPM contractions of all
snarks with up to 22 vertices. Furthermore, set G1 consists for each combination
of n € {9,...,15} and m € {5,...,7} of ten instances, where each of those
consists of a random 4-regular completely-transitioned graph G with n vertices
and a random 4-regular completely-transitioned graph H with m vertices. The
additional new instance set G2 is constructed the same way as G1 but with
n € {16,...,30} and m € {6,...,10}.

We compare the running times of four algorithms for the given instances,
the original MIP model, the MIP model with the symmetry breaking con-
straints (47)—(48), which will be called MIPgy,, the SAT model, and the SAT
model with the symmetry breaking constraints (49)—(50), which will be called
SATym.

Table 1 lists the computational results for instance set S1 for all four algo-
rithms. The instances are grouped by the number of vertices |V(C)| of the snark
C used for the generation, one column per group. Column |I| contains the num-
bers of instances, |Iteas| the numbers of feasible instances, and |[i,¢| the numbers
of infeasible instances. The time columns tfeas[s] and tin¢[s] list median running
times of all feasible instances respectively the infeasible instances in seconds
rounded to integer. Furthermore, for the MIP models columns [ contain the
numbers of instances that could not be solved within the CPU-time limit of
3600s. The best running times of the groups of feasible instances and infeasible
instances are marked bold.

As we can see the SAT model outperforms the MIP model considerably and
the symmetry breaking constraints improve the running times for the infeasible
instances, especially for the SAT model but also for the MIP model.
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To further compare the four models we applied a Wilcoxon signed-rank test
for each pair of them using a p-value of 5%. The algorithm MIPgy, is significantly
faster than MIP for the instance groups with |V (C)| > 24, for the infeasible but
also for the feasible instances. The two SAT models are significantly faster than
both MIP models for all instance groups except for |V(C)| = 18 and the infeasible
instances of |V (C')| = 22 since those are too few to get a significant result. In fact
the SAT models are faster on almost all instances except a few feasible instances.
For the SAT model the variant without the symmetry breaking constraints is
significantly faster on all feasible instance groups with |V(C)| > 22 although
the difference in the values is only within hundredth of seconds. On the other
hand for the infeasible instance groups with |V(C)| > 24 the model with the
symmetry breaking constraints is significantly faster.

Table 2 shows the computational results for instance set S2. The columns
are the same as in Table 1. The results are similar as for instance set S1, but
this time MIPgy;, can solve all instances within the time limit. Applying the
Wilcoxon signed-rank test we get that MIPgy,, is significantly faster than MIP
except for the infeasible instance group with |V(C')| = 18. Both SAT models
are significantly faster than the MIP models for all instance groups. This time
SAT is not significantly faster than SAT., on the feasible instance groups,
SAT.ym is even significantly faster than SAT for the feasible instance group
with |V (C)| = 22. For the infeasible instances SATy, is significantly faster.

Table 3. Computation results for instance set G1.

W@ 1VE 111 1 Ereas] | Ting| | MIP MIPyym | SAT|SAT.ym
tls] | [Tnl| tls] |17al | ¢[s] |¢[s]
09 5 30|15 15 106 |0 91 0 <1l |<1
09 6 30 |4 26 440 |1 409 |0 1 <1
09 7 301|0 30 205911 273514 <1l|<1
10 5 30|19 11 90 1 87 1 <1l|<1
10 6 30 |4 26 1939 |12 1862 | 10 1 1
10 7 30 1|0 30 3600 | 16 3600 | 16 2 1
11 5 30 |25 5 42 1 19 0 <1l |<1
11 6 3019 21 277714 3600 | 16 3 2
11 7 301 29 3600 | 22 3600 |20 3 3
12 5 30 |28 2 50 1 17 0 <1l|<1
12 6 30 |21 9 220413 212411 3 2
12 7 301 29 3600 | 30 3600 | 30 8 T
13 5 30 |28 2 23 2 26 2 <1l |<1
13 6 30 |20 10 3600 17 2055 |13 4 4
13 7 30 |7 23 3600 | 30 3600 |27 14 13
14 5 30 |30 0 24 0 30 0 <1l|<1
14 6 30 |28 2 562 |7 823 |8 2 2
14 7 30 |8 22 3600 | 29 3600 | 27 27 28
15 5 30 |30 0 30 0 24 0 <1l |<1
15 6 30 |29 1 670 |2 1475 |11 3 2
15 7 30|18 12 3600 | 26 3600 |27 27 30
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Table 3 shows the computation results for the instance set G1. We group the
instances by the number of vertices of the input graphs G and H. We do not
distinguish between feasible and infeasible instance groups in this table, since the
running time characteristics are similar for both types of instances. Columns ¢[s]
show the median running time for all instances of the instance group. Again both
SAT models could solve all instances within one hour and outperform the MIP
models. This time the differences between the models with symmetry breaking
constraints and without are smaller, since the probability that a random graph
has symmetries is small. Now the SAT models are on all instances faster than the
MIP models. Between the MIP models there are only few instance groups where
there is a significant difference in the running times in favor of both models.
The situation between the two SAT models is similar although there are slightly
more instance groups where SATgyy, is significantly faster.

w —— |H|=6
- 10° 4

g |H|=7
5 107 4 = |H|=8
£ 10 4 - |H|=9
£ o0 /\(___,(_X/x\x—x———x——x\x/x——x/)\( — H[=10

16 18 20 22 24 26 28 30
IGI

Fig. 3. Median running times of SATgy, for instance set G2.

All instances in all three instance sets S1, S2, and G1 could be solved within
the time limit of one hour by both SAT models. To also analyze the limits of our
SAT models we also tested instance set G2. Figure 3 shows the median running
times of the SATyy, model for different sizes of |G| and |H|. As we can see the
running time heavily depends on the size of H and not so strongly on the size
of G. For |H| =10 and |G| > 20 we run into the time limit of one hour in most
of the instances. Similarly, as for instance set G1 also in G2 the running times
for SAT sy, and SAT are similar.

Using SATgy,, we also implemented the framework described at the end of
Sect. 2. We use Boost’s implementation of the Boyer-Myrvold planarity test to
check for planar graphs. Furthermore, we use a simple SAT model for check-
ing if a graph contains a Ks-minor and another SAT model for checking if it
has a CCD. Since the bottleneck of this framework are the solving times for
checking SUD-K5-minor freeness, the running time improvements by the SAT
model were crucial to check for all snarks with up to 32 vertices if they con-
tain a planar contraction, a Ks-minor free contraction, a SUD-K5-minor free
contraction, or a CCD-containing contraction of a PPM. From the 1918812
tested snarks we found 25248 snarks that do not contain a planar contraction
of a PPM, 19130 snarks that do not contain a Ks-minor free contraction of a
PPM, and 1095 snarks that do not contain a SUD-K5-minor free contraction of
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a PPM. The found snarks can be downloaded from https://www.ac.tuwien.ac.
at /klocker-snark-collections/.

Up until now it was not known if there exist snarks that do not have a PPM
whose contraction leads to planar/Ks-minor free/SUD-Kj-minor free graphs.
With our implementation we could find many examples of snarks that have those
properties. Nevertheless, all tested snarks always had a PPM whose contraction
leads to a graph which has a CCD. Therefore, it remains an open question if
there exists a snark that does not have a PPM whose contraction leads to a
CCD-containing graph.

5 Conclusion and Future Work

In this work we proposed a SAT model for checking if a given transitioned graph
(G,T) has a Sup-(H,S)-transition minor. The model is based on the mathe-
matical model developed in a previous work [8]. To improve the performance of
the SAT model, but also of the MIP model we developed symmetry breaking
constraints that are based on the automorphism groups of both input graphs
restricted by the additional structure given through the transition systems. In
our computational study we could verify that the SAT model outperforms the
MIP model significantly and the symmetry breaking constraints could improve
the running times especially for proving infeasibility. Using the SAT model in
a framework we were able to find many snarks that do not have PPM whose
contraction leads to SUD-Kj5-minor free graphs.

In future work it may be interesting to consider a CP model for our problem
to be able to use non-binary variables in the model for representing the mappings
between the two input graphs. Furthermore, the framework for finding snarks
that do not contain a SUD-K5-minor free contraction of a PPM may be improved
by adding symmetry breaking during the enumeration of the PPMs.
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