
Finding Smooth Graphs with Small
Independence Numbers?

Benedikt Klocker, Herbert Fleischner, Günther R. Raidl

Institute of Computer Graphics and Algorithms, TU Wien,
Favoritenstraße 9–11/186-1, 1040 Vienna, Austria
{klocker,fleischner,raidl}@ac.tuwien.ac.at

Abstract. In this paper we formulate an algorithm for finding smooth
graphs with small independence numbers. To this end we formalize a
family of satisfaction problems and propose a branch-and-bound-based
approach for solving them. Strong bounds are obtained by exploiting
graph-theoretic aspects including new results obtained in cooperation
with leading graph theorists. Based on a partial solution we derive a
lower bound by computing an independent set on a partial graph and
finding a lower bound on the size of possible extensions.
The algorithm is used to test conjectured lower bounds on the indepen-
dence numbers of smooth graphs and some subclasses of smooth graphs.
In particular for the whole class of smooth graphs we test the lower
bound of 2n/7 for all smooth graphs with at least n ≥ 12 vertices and
can proof the correctness for all 12 ≤ n ≤ 24. Furthermore, we apply the
algorithm on different subclasses, such as all triangle free smooth graphs.

Keywords: branch and bound, smooth graphs, combinatorial optimization

1 Introduction

In graph theory independent sets are well studied objects and the independence
number of a graph is a central characteristic which is strongly related to many
important properties. One natural research subject is to find lower and upper
bounds for the independence number for general graphs, see for example [6], or
for specific subclasses of graphs, see for example [12].

In this paper we focus on the independence number of smooth graphs, a
subclass of 4-regular Hamiltonian graphs. For a complete definition of smooth
graphs see Section 2. This work is motivated by the works of Fleischner, Sabidussi
and Sarvanov [2,3], three renowned graph theorists, who already studied smooth
graphs and their independence number in depth from a graph-theoretic perspec-
tive.

We are interested in lower bounds on the independence number of smooth
graphs. Sarvanov conjectured that every smooth graph G with n > 11 vertices

? This work is supported by the Austrian Science Fund (FWF) under grant P27615
and the Vienna Graduate School on Computational Optimization, grant W1260

has independence number α(G) ≥ 2
7n [11]. The main goal of this work is to

design an algorithm which can check lower bounds on the independence number
for smooth graphs and either prove them for all graphs with a given number
of vertices or disprove them by finding a graph with a smaller independence
number.

By using Brooks’ Theorem [1] we get a lower bound on the independence
number for all 4-regular graphs. It states that every 4-regular graph with n
vertices that is not the K5 can be colored with 4 colors which implies that it has
an independent set of size at least n/4. This property, together with the fact that
we only consider graphs containing a Hamiltonian cycle and therefore having an
independence number of at most n/2, give us an interval of interesting possible
lower bounds.

We will describe a branch-and-bound algorithm which heavily depends on the
graph-theoretic results and bounds to search through the space of possible graphs
in an efficient way [10]. The main idea is to use a heuristic to compute a large
independent set together with the graph-theoretic bounds to detect infeasible
subproblems as early as possible. For complete solutions we use an integer linear
programming (ILP) model to compute their independence number and to check
if they are feasible.

In the next section we will formally define smooth graphs and state the
problem framework. In Section 4 we will infer some useful bounds and properties
using already existing graph-theoretic results, and in Section 5 we will describe
how to use those bounds and properties to compute a usually very tight bound
on the independence number of a partial solution in order to detect infeasibility
as early as possible. In Section 6 we will present some computational results
for four different problem variants. Finally, we will conclude with Section 7 and
propose promising further work.

2 Problem Formulation

In the context of this paper we only consider loopless undirected graphs, which
may contain multiple edges, and just write graph for this type of graphs. A graph
is called r-regular if every vertex has degree r. We are interested in 4-regular
Hamiltonian graphs G = (V,E), in which a Hamiltonian cycle H ⊆ E exists. If
we consider the graph G\H after removing the cycle H we get a 2-regular graph
which consists of a set of cycles. We call the cycles of G \H the inner cycles of
G. Such a graph is called smooth if the inner cycles are “non-selfcrossing” in the
sense that the cyclic order of its vertices agrees with their cyclic order of H. An
example for a smooth graph is given in Figure 1.

The independence number of a graph is the size of its largest independent set.
Based on Sarvanov’s conjecture [11] we formulate the following problem. Given
n ∈ N as input, does there exist a smooth graph with n vertices and independence
number smaller than 2

7n? This problem can be generalized to the following family
of problems. Given n ∈ N as input, does there exist a smooth graph with n
vertices that satisfies some properties P and has independence number smaller

Fig. 1: Smooth graph with twelve vertices and three inner cycles in different colors

than qn for some given factor q ∈
(
1
4 ,

1
2

]
? We call this problem Existence of

Smooth Graphs with Small Independence Number or short ESSI(q,P).

3 Algorithmic Approach

In this section we present a branch-and-bound approach that solves ESSI(q,P),
i.e. it checks for a given n ∈ N if there exists a smooth graph with n vertices
and independence number smaller than qn that satisfies the conditions P. The
conditions of P can get added to the branch-and-bound approach in a problem-
specific manner.

3.1 Solution Representation

If we assume that the Hamiltonian cycle and therefore the order of the vertices
in the Hamiltonian cycle is given, every inner cycle of a smooth graph is al-
ready uniquely determined if we only know the set of its vertices. W.l.o.g. we
assume the vertex set V = {1, . . . , n} to be ordered so that the Hamiltonian
cycle {{1, 2}, {2, 3}, . . . , {1, n}} is fixed. Therefore, we only have to partition the
vertex set {1, . . . , n} into sets of size at least three and the result represents a
smooth graph. For the rest of the algorithmic description section we will use a
partitioning of the ordered vertex set {1, . . . , n} into sets of size at least three
as a solution representation.

3.2 Core Algorithm

The core algorithm is based on the branch-and-bound principle. The branching is
done by assigning the next not yet assigned vertex in the order of the Hamiltonian
cycle to an already existing partition or to a new partition. The start solution is
the solution where no vertex is assigned. After assigning a vertex to a partition
we check if the resulting partial solution satisfies all bounds and if there is
a theoretical possibility to complete it to a solution that satisfies the wanted

conditions. We call a partial solution that fails this check an infeasible partial
solution. If the current partial solution is infeasible, we can cut off this branch
and continue with the next partial solution. The infeasibility check of partial
solutions is described in more detail in Section 5.

Whenever the branching reaches a complete solution, where all vertices are
assigned to partitions, we compute its independence number and check the con-
ditions P. Note that computing the independence number is NP-hard for the
class of smooth graphs [2]. We compute it by solving the integer linear program

max

{∑
v∈V

xv

∣∣∣∣xv ∈ {0, 1} ∀v ∈ V ∧ xv + xw ≤ 1 ∀{v, w} ∈ E

}
.

As search strategy we use depth first search. Although for searching through
the whole tree in order to obtain all feasible graphs, the search strategy is irrele-
vant since we are not reusing information of found solutions, it may be relevant
for finding a feasible solution as fast as possible.

4 Bounds and Other Useful Properties

To reduce the search space for our problem we first derive some bounds and other
properties for smooth graphs that may have an independence number smaller
than qn. We will mainly use the results of Fleischner, Sabidussi and Sarvanov to
infer bounds and other properties [2,3]. Those will then be useful for checking
infeasibility and recognizing infeasible partial solutions as early as possible.

We consider the problem ESSI(q,P) and we assume that the satisfaction
properties P and the factor q are fixed. For the rest of this section we will
assume that G∗ is a smooth graph with n vertices that satisfies the properties P
and has independence number α(G∗) < qn, i.e. G∗ is a solution to the problem
ESSI(q,P). Let r∗ be the number of inner cycles of G∗.

Fleischner and Sarvanov proved in [3] the following theorem.

Theorem 1. Let G be a smooth graph with n vertices and r the number of inner
cycles. Then the following holds.

α(G) ≥ n− r
3

(1)

We use this theorem to compute a lower bound of r∗.

Corollary 1. For G∗ and r∗ the following holds.

r∗ ≥ n− 3dqne+ 3 (2)

Proof. Since the independence number α(G∗) is integral we get from (1) that

α(G∗) ≥
⌈
n−r∗

3

⌉
.

α(G∗) < qn⇒
⌈
n− r∗

3

⌉
< qn⇔

⌈
n− r∗

3

⌉
≤ dqne − 1

⇔ n− r∗

3
≤ dqne − 1⇔ r∗ ≥ n− 3dqne+ 3

Inequality (1) can be strengthened if we exclude one special graph, which we
call G(2). G(2) is defined for even n and is the unique simple smooth graph with
only two inner cycles. G(2) is unique since the only possibility to being simple
and having only two inner cycles is if all even vertices are in one inner cycle
and all odd vertices are in another inner cycle. By excluding G(2) Fleischner and
Sarvanov [3] proved the following stronger inequality.

Theorem 2. Let G be a smooth graph with n vertices that is not isomorphic to
G(2) and let r be the number of inner cycles. Then the following holds.

α ≥ n− r + 1

3
(3)

Fleischner and Sarvanov stated this theorem with another equivalent condition.
They proved Theorem 2 first for multigraphs and then showed that it also holds
for simple graphs that have three consecutive vertices in different inner cycles.
Putting this two conditions together we get that two consecutive vertices lie in
different cycles, since the graph must be simple. Therefore, if three consecutive
vertices never lie in three different inner cycles it must hold that vertex k and
vertex k + 2 always lie in the same inner cycle. This further implies that all
even vertices form one inner cycle and so do all odd vertices. Therefore, the only
graph that does not satisfy both conditions is G(2).

As before we can use this theorem to compute a stronger lower bound for r∗.

Corollary 2. If G∗ is not isomorphic to G(2) the following holds.

r∗ ≥ n− 3dqne+ 4 (4)

Proof. The proof is analogous to the proof of Corollary 1 by replacing (1)
with (3).

Another useful theorem is the following from [4].

Theorem 3 (Cycle-Plus-Triangles Theorem). Let G be a smooth graph
where all inner cycles are triangles, i.e. have length three. Then G is 3-colorable.

In [3] the following corollary of the cycle-plus-triangle theorem is stated.

Corollary 3. Let G be a smooth graph with n vertices where all inner cycles
have length smaller than or equal to four. Let r be the number of inner cycles
and r3 be the number of inner cycles of length three. Then the following holds.

α(G) ≥ n− (r − r3)

3
(5)

Let for the following corollary r∗3 be the number of inner cycles of length three
of G∗.

Corollary 4. G∗ has either an inner cycle with length greater than four or the
following holds.

r∗ ≥ n− 3dqne+ 3 + r∗3 (6)

Proof. The proof is analogue to the proof of Corollary 1 by replacing (1) with (5).

Until now, we only provided lower bounds for r∗, but by using Theorem 3 we
can also compute the following upper bound.

Corollary 5. Let G∗ and r∗ be as described at the beginning of the section.
Then r∗ < qn holds.

Proof. We remove vertices for each inner cycle with length greater than three
until every inner cycle has length three. For each removed vertex we connect the
two neighbors in the inner cycle and the two neighbors in the Hamiltonian cycle.
The result is a smooth graph G′ with n′ = 3r∗ where all inner cycles are triangles.
Removing vertices and adding edges can only decrease the independence number
since every independent set in the transformed graph is also an independent set
in the original graph. Therefore, we know α(G′) ≤ α(G∗) and we can conclude
the proof using Theorem 3 as follows.

qn > α(G) ≥ α(G′) =
n′

3
= r∗

5 Checking Infeasibility

To check if a given partial solution is infeasible, we use the bounds and properties
from Section 4, and compute an as tight lower bound for the independence
number of any completion of the partial solution as possible. Let S be a partial
solution, i.e. S is a partitioning of a subset of the vertices of G.

To be able to use the lower bound from Corollary 2 for r, we need to exclude
the graph G(2). To do this we check the conditions P for the unique graph G(2)

and compute the independence number of it before we execute the branch and
bound algorithm. Let rLB be the lower bound for the number of inner cycles r
which we get from (4). Furthermore, let rUB = bqnc be the upper bound for the
number of inner cycles r which we get from Corollary 5.

If |S| > rUB the given partial solution is infeasible. Let k =
∑

P∈S |P | be the
number of fixed vertices in S and

` :=
∑

P∈S:|P |<3

3− |P |

the number of vertices that are at least needed to complete all partitions of S.
Furthermore, let Ri := |{P ∈ S : |P | ≥ i}| be the number of partitions in S with
at least i vertices. Now we can show the following theorem.

Theorem 4. Let S be a partial solution and rUB, rLB, k, ` and (Ri)i≥3 be as
described above. Furthermore, let

c := max(3, b1/qc+ 1,min{n ∈ N : q(n− c) /∈ N, 2− qc ≥ dqne − qn}).

With that we can define the following value.

m := max

[
0,min

(
5−max

(
3,max

P∈S
|P |
)
, n− 3dqne+ 3−R4

)]
.

If there exists a feasible completion of S the following holds.

k + `+m+ 3 max(0, rLB − |S|) ≤ n (7)

Proof. First of all every completion of S must complete all partitions P ∈ S with
|P | < 3, which implies that at least ` vertices must be added to the k existing
ones. If |S| < rLB we know that a completion of S with the desired properties
must have at least rLB different partitions and therefore 3(rLB − |S|) additional
vertices must be added.

By Corollary 4 either the completion must contain a partition of size at least
five or (6) must hold. To get a partition of size five we can add max(0, 5 −
max(3,maxP∈S |P |)) additional vertices to the largest partition. Otherwise, to
satisfy (6) we need to have n−3dqne+3 many partitions of size at least four. We
have at the moment R4 many inner cycles with length at least four and therefore
we need max(0, n−3dqne+3−R4) many additional vertices to get enough inner
cycles of length four.

Plugging everything together and considering that in total we have n vertices
we get (7).

If (7) is violated we know that S is infeasible.
We covered now the cases where we can determine that S is infeasible without

even computing an independent set. Now we compute an independent set on the
partial graph of S, which is the graph induced by all fixed vertices VS =

⋃
P∈S P .

By the branching rules we know that VS = {1, . . . , k} for some k ≤ n.
The partial graph GS = (VS , ES) consists of the fixed vertices and all possible

edges between those vertices. Since we do not know if a partition P ∈ S with
|P | ≥ 3 is already complete or not, we also do not know if the vertices min(P)
and max(P) are connected or not. We want that every independent set in GS is
also an independent set in G and therefore we have to add those edges to ES .

ES := {{a, b} ∈ EG : a, b ∈ VS} ∪ {{min(P),max(P)} : P ∈ S, |P | ≥ 3}

To compute an independent set on GS we use the minimum-degree greedy al-
gorithm [8]. In each iteration this algorithm adds a vertex with the minimum
degree to the independent set and removes the vertex and all its neighbors from
the graph. Besides good approximation ratios the greedy algorithm is also fast,
it can be implemented in O(n) time.

Let I be the independent set found by the minimum-degree greedy on the
graph GS . Our goal is now to find a good lower bound on how many additional
vertices can be added to I in each completion of S.

Theorem 5. Let S be a partial solution and I an independent set on the graph
GS. Furthermore, let k, `, m and rUB be as described above and let

V max
I := |I ∩ 1, k|+ |I ∩ {minP : P ∈ S}|+ |I ∩ {maxP : P ∈ S}|.

Then there exists for every completion G of S an independent set IG with

|IG| ≥ |I|+
[
n− k − V max

I −min
(
rUB − |S|, n−k−`−m3

)]
3

. (8)

Proof. Let G be an arbitrary completion of S. First of all we upper bound the
number of inner cycles r of G. Clearly we know r ≤ rUB. Furthermore, by using
the same reduction as in the proof of Theorem 4 we get

k + `+m+ 3 max(0, r − |S|) ≤ n⇒ r ≤ n− k − `−m
3

+ |S|. (9)

Now we can compute a lower bound on the independence number of G. Let
VI ⊆ VG \ VS be the set of all vertices in G that are not in VS and are adjacent
to one of the vertices in I. The vertices of VI are either connected to I via the
Hamiltonian cycle, which is only possible if the vertex 1 or the vertex k is in
I, or via an inner cycle, which is only possible for the end vertices minP and
maxP of an inner cycle P ∈ S. Therefore we can bound the size of VI by

|VI | ≤ |I ∩ {1, k}|+ |I ∩ ({minP : P ∈ S}|+ |I ∩ {maxP : P ∈ S})| = V max
I .

We consider now the residual graph Grem after removing the vertices VS and VI
from G, which is a graph with n−k−|VI | vertices. We complete the independent
set I by an algorithm that is similar to the minimum-degree greedy algorithm.
Instead of always taking a vertex with the minimum degree we take the minimum
remaining vertex, i.e. the first vertex in the order of the Hamiltonian cycle that
is not adjacent to any vertex in the independent set so far.

Let I0 = I be the start set and Ii the set after iteration i and let vi be the
vertex added in iteration i. Furthermore, let Pi be the partition in G of the vertex
vi and Gi be the remaining graph in iteration i, G0 = Grem. We distinguish two
cases, the case if vi = min(Pi) is the first vertex in Pi or not. Since we selected vi
as the first vertex in the order of the Hamiltonian cycle which is still in Gi−1 we
know that the preceding neighbor of vi in the Hamiltonian cycle is not in Gi−1
and therefore we obtain that the degree dGi−1(vi) of vi in Gi−1 is smaller than or
equal to three. If vi 6= min(Pi) we also know that one neighbor in the inner cycle
containing vi is a predecessor of vi in the Hamiltonian cycle and therefore it is
also not in Gi−1, which gives us dGi−1

(vi) ≤ 2. Summing up over all iterations
we get

n− k − |VI | =
x∑

i=1

dGi−1
(vi) + 1 ≤ x+ 3(r − |S|) + 2(x− r + |S|)

⇒x ≥ n− k − |VI | − r + |S|
3

≥
n− k − |VI | −min

(
rUB − |S|, n−k−`−m3

)
3

.

In total, we constructed a new independent set IG with |I| + x elements and
therefore (8) holds.

If P is not empty we can calculate problem specific bounds for those con-
straints and check them. To summarize this section Algorithm 1 describes the
whole procedure for checking infeasibility.

Algorithm 1 Checking Infeasibility

INPUT: n, q, P and a partial solution S
Compute rLB, rUB, k, `, m
if |S| > rUB then

return infeasible
end if
if (7) is not satisfied then

return infeasible
end if
Construct GS and apply minimum-degree greedy to get independent set I
Compute V max

I

if |I|+ [n−k−V max
I −min(rUB−|S|,n−k−`−m

3)]
3

≥ qn then
return infeasible

end if
if Problem specific bound check for P fails then

return infeasible
end if
return possibly feasible

5.1 Symmetry Breaking

Until now the branch and bound procedure will consider many isomorphic graphs,
such as all rotations alongside the Hamiltonian cycle and their reversals. In this
section we will describe how we break those symmetries.

To this end we define the gap sequence of a complete solution. Let S be
a complete solution, i.e., a partitioning of the vertex set V = {1, . . . , n}. Let
Pi ∈ S be the partition of vertex i and let gi be the gap between vertex i and its
successor j in the partition Pi, i.e., let j = min{j ∈ Pi : j > i} if this set is not
empty or j = min{j ∈ Pi : j < i} otherwise and gi = j − i if j > i or j + n − i
otherwise. We call the sequence (gi)

n
i=1 the gap sequence of S.

If two S have the same gap sequence they are not only isomorphic but also
exactly the same according to the vertex labeling. We break those symmetries
by ensuring that the gap sequence is minimal according to the lexicographical
order under all rotations alongside the Hamiltonian cycle and their reversals. Be
aware that rotating alongside the Hamiltonian cycle simply means shifting the
gap sequence, but reversing the Hamiltonian cycle is a non-trivial change in the
gap sequence.

We can compute the gap sequence not only for complete solutions but also
for partial solutions. In some cases the next gap is not yet known and instead
of calculating a gap we can calculate a lower bound and an upper bound for
the gap. With the lower and upper bounds we can check if there is a rotation
that always leads to a smaller gap sequence. We can also compute lower and
upper bounds for the reversed gap sequence and also check if reversing leads to
a smaller gap sequence.

If we found a rotation or a reversed rotation that always leads to a smaller
gap sequence, we can fathom the current branch and continue with the next one.
The motivations behind the choices of P are explained subsequently.

6 Computational Results

In this section we will present computational results for instances to four different
problems. Our algorithm is implemented in C++ and compiled with g++ 4.8.4. To
solve the ILP model for finding a maximum independent set we used Gurobi 7.0.1
[7]. All tests were performed on a single core of an Intel Xeon E5540 processor
with 2.53 GHz and 2 GB RAM.

We consider four different variants of the problem. The first and original
variant is with q1 = 2

7 and with an empty constraint set P1 = ∅. The second
problem is also with q2 = 2

7 but with the additional constraint that all inner
cycles have length at most four, i.e. P2 = {(R5 = 0)}. The third problem is with
q3 = 5

16 and P3 = {(all inner cycles have length 4)}. The fourth problem is with
q4 = 0.334 and P4 = {(G contains no triangles)}.

6.1 Problem 1

We tested the implementation for n ∈ {6, . . . , 29}. The algorithm found for n = 8
one feasible solution and n = 11 two feasible solutions. For all larger n it could
not find any feasible solutions. Furthermore, the algorithm was able to finish the
branch-and-bound search for all n ≤ 24, which proves that for n = 8 and n = 11
the found feasible solutions are the only ones and for all other n ≤ 24 there does
not exist any feasible solution. For n > 24 it could not finish the search within
5,000,000 seconds.

The interesting values of n are the ones where 2n/7 is only a little bit larger
than b2n/7c, since then it may be easier to find a graph with independence num-
ber b2n/7c. Therefore, we are especially interested in the values n ≡ 1 (mod 7)
and n ≡ 4 (mod 7). Table 1 summarizes the results and running times for those
values and compares them with the results of Problem 2. Column t[s] shows the

Problem 1 Problem 2

n∗∗ t[s] candidates t[s] candidates

8 0 1 0 1
11 0 3 0 1
15 0.5 5 0.2 0
18 94.2 2,298 32.8 259
22 25,443 5,795 5,047 145
25 > 5,000,000 > 330,000 4,868,324 160,556
29 > 5,000,000 > 1,463 > 5,000,000 > 60,713

Table 1: Results for selected values of n for Problem 1 and Problem 2

run time in seconds and column candidates the number of complete solutions
that got checked by the ILP solver.

6.2 Problem 2

Problem 2 is a more restricted variant of Problem 1 and was tested to check if the
restriction helps speeding up the search. Especially the bound corresponding to
the value m can be improved through this restriction. We tested again all inputs
n ∈ {6, . . . , 29}. For n = 8 and n = 11 the algorithms found one solution, the
second solution of n = 11 contains an inner cycle of length five. For all larger n
it also could not find any feasible solution.

Through the speedup compared to Problem 1 the algorithm was able to finish
the search for all n ≤ 28 and therefore proves for all 11 < n ≤ 28 that there
does not exist a feasible solution. For n = 29 it could not finish the search
within 5,000,000 seconds. Table 1 summarizes the results and running times and
compares them with Problem 1.

6.3 Problem 3

Fleischner conjectured that smooth graphs only containing inner cycles of length
four with at least 12 vertices have independence number at least 5n/16 [5]. This
was the motivation to consider this problem with q3 = 5

16 . Our algorithm was
able to disprove the conjecture by finding 36 smooth graphs with 20 vertices and
independence number 6 < qn = 20 · 5/16 containing only inner cycles of length
four. Furthermore, it could find feasible graphs with 24 vertices and independence
number 7 < qn = 24 · 5/16.

Clearly we only have to consider values for n with n ≡ 0 (mod 4). For n = 8
we found the same graph as in Problem 1 and 2, for n = 12 and n = 16 the
algorithm could prove that there are no feasible graphs. For n = 20 it could
finish the search and prove that the found 36 feasible graphs are the only ones
but for n = 24 the search did not finish in under 5,000,000 seconds.

The run time for n = 20 was 11 minutes and for n = 24 it was 11 hours. For
n = 28 the algorithm could not finish in reasonable time and also did not find a
feasible solution in the first 5,000,000 seconds run time.

6.4 Problem 4

For triangle-free smooth graphs it is proven that 4n/13 is a valid lower bound for
the independence number [9]. This raises the question if it is possible to reach
this lower bound or if there exists a stronger lower bound. We use q = 0.334 since
we want to check if there exist triangle-free smooth graphs with independence
number smaller than or equal to n/3 and therefore we could use for q any value
1/3 + ε with a small ε > 0. The algorithm was not able to find a graph with
independence number smaller than n/3 but it was able to find graphs with
independence number n/3. It could solve the instances up to n = 26 in under
5,000,000 seconds.

7 Conclusion and Further Work

In this paper we formalized a family of problems for finding smooth graphs with
small independence numbers. We proposed an algorithm for solving problems
of this family which is based on branch and bound. To increase the efficiency
of the algorithm by computing good bounds, we used graph-theoretic results
to obtain properties and bounds for the number of inner cycles and their sizes.
Using those results we proposed a procedure for computing a strong lower bound
on the independence number of partial solutions to detect infeasibility as early
as possible. We applied our algorithm to four different problems and reported
the results and the running times for different graph sizes. Doing this we could
disprove one conjecture and find more support for other conjectures for small
graphs.

Further work may be to compare different heuristics for computing inde-
pendent sets for partial solutions. Furthermore, one idea could be to search
for a minimal feasible graph, which may enable some reduction properties and
therefore some stronger bounds. Additionally, it would be interesting to use a
metaheuristic to solve our problems, which would allow to search larger smooth
graphs with small independence numbers heuristically.

References

1. R. L. Brooks. On colouring the nodes of a network. In Mathematical Proceedings
of the Cambridge Philosophical Society, volume 37, pages 194–197, 1941.

2. H. Fleischner, G. Sabidussi, and V. I. Sarvanov. Maximum independent sets in
3-and 4-regular Hamiltonian graphs. Discrete Math., 310(20):2742–2749, 2010.

3. H. Fleischner and V. I. Sarvanov. Small maximum independent sets in Hamilto-
nian four-regular graphs. Reports of the National Academy of Sciences of Belarus,
57(1):10, 2013.

4. H. Fleischner and M. Stiebitz. A solution to a colouring problem of P. Erdős.
Discrete Mathematics, 101(1–3):39–48, 1992.

5. H. Fleischner. Institute of Computer Graphics and Algorithms, TU Wien. Personal
communication, 2016.

6. J. R. Griggs. Lower bounds on the independence number in terms of the degrees.
Journal of Combinatorial Theory, Series B, 34(1):22–39, 1983.

7. Inc. Gurobi Optimization. Gurobi optimizer reference manual, version 7.0.1, 2016.
8. M. Halldórsson and J. Radhakrishnan. Greed is good: Approximating independent

sets in sparse and bounded-degree graphs. Algorithmica, 18(1):145–163, 1997.
9. K. F. Jones. Independence in graphs with maximum degree four. Journal of

Combinatorial Theory, Series B, 37(3):254–269, 1984.
10. E. L. Lawler and D. E. Wood. Branch-and-Bound Methods: A Survey. Operations

Research, 14(4):699–719, 1966.
11. V. I. Sarvanov. Institute of Mathematics at the National Academy of Sciences of

Belarus. Personal communication, 2016.
12. J. B. Shearer. A note on the independence number of triangle-free graphs. Discrete

Mathematics, 46(1):83–87, 1983.

