
Solving a Weighted Set Covering Problem for
Improving Algorithms for Cutting Stock

Problems with Setup Costs by Solution Merging

Benedikt Klocker, Günther R. Raidl?

Institute of Computer Graphics and Algorithms, TU Wien, Vienna, Austria
{klocker|raidl}@ac.tuwien.ac.at

Abstract. Many practical applications of the cutting stock problem
(CSP) have additional costs for setting up machine configurations. In
this paper we describe a post-processing method which can improve so-
lutions in general, but works especially well if additional setup costs are
considered. We formalize a general cutting stock problem and a solution
merging problem which can be used as a post-processing step. To solve
the solution merging problem we propose an integer linear programming
(ILP) model, a greedy approach, a PILOT method and a beam search.
We apply the approaches to different real-world problems and compare
their results. They show that in up to 50% of the instances the post-
processing could improve the previous best solution.

Keywords: cutting stock problem, discrete optimization, PILOT, beam search,
solution merging

1 Introduction

There are many different kinds of cutting stock problems (CSPs) occurring in
practice and in theory. They have in common that they ask for a set of patterns,
where each pattern is a collection of elements, to satisfy given element demands
while minimizing the total costs of the patterns. The classical CSP only consid-
ers fixed costs for each individual pattern, but in many practical applications
additional setup costs arise whenever the machine has to be set up to cut a
different pattern. In such cases finding a solution involving a small number of
different types of patterns is often crucial.

Assume we already have a method which solves a given CSP and gener-
ates and collects many different patterns during the execution. We formalize the
Cutting Stock Set Cover Problem (CSSCP), an extension of the weighted set cov-
ering problem which exploits all these collected patterns by deriving an optimal

? We thank Lodestar Technology Ges.m.b.H. for the collaboration, the Austrian Re-
search Promotion Agency FFG for funding this project under contract “Innova-
tionsscheck Plus Nr. 855569” and the Vienna Graduate School on Computational
Optimization, financed by the Austrian Science Fund (FWF) under grant W1260.

combination of a subset of them resembling a feasible, possibly new incumbent
solution. Solving this subproblem can be seen as a kind of solution merging. It
can be applied either as a post-processing or as an intermediate step to lead the
pattern construction in a more promising direction.

The methods we investigate here for solving the CSSCP are more specifically
used to improve the solutions found by a previously developed solver for the K-
staged two-dimensional cutting stock problem with variable sheet size [1]. The
solver gets used to solve real-world problems and therefore we have a strong focus
on the practical applicability of the algorithm. There exists a lot of literature on
the broad field of cutting stock problems [2]. The idea of using generated patterns
to combine them to a good solution was already used by Cui et al. [3] who use
an integer linear program (ILP) in a 2-phase-approach for the one-dimensional
problem. A theoretical analysis of a general weighted set covering problem is
done in [4], where no concept like setup costs were considered.

2 Problem Formulation

The goal of this section is to formalize CSSCP in a general manner so that it
can be used in the context of different cutting stock problems, including different
dimensions. Therefore, we first need to formalize a general setting for the cutting
stock problem, which we call the General Cutting Stock Problem (GCSP).

Definition 1 (General Cutting Stock Problem (GCSP)).
Let E = {1, . . . , n} be a set of elements, (di)

n
i=1 ∈ Nn a demand vector and

smax ∈ N∪{∞} the maximal stack size. Further, let T be a set of stock materials
and amax

t ∈ N ∪ {∞} the maximal amount for each stock material t ∈ T .
A solution is represented by a multiset of patterns, where the structure of

patterns is problem-specific. We can associate with each pattern p an element
vector (epi)ni=1 ∈ Nn which describes how often the element i is contained in the
pattern p and a stock material tp ∈ T out of which it gets cut. A pattern p has
associated problem specific production costs cPp and stacking costs cSp . We define
a solution s as a set of feasible patterns P s and an amounts vector (asp)p∈P s ∈
N|P s|. The goal is to find an optimal solution s which satisfies∑

p∈P s

epi · a
s
p ≥ di ∀i = 1, . . . , n (1)

∑
p∈P :tp=t

ap ≤ amax
t ∀t ∈ T (2)

and minimizes the total costs

c(s) :=
∑
p∈P s

cPp · asp +
∑
p∈P s

⌈
asp

smax

⌉
· cSp . (3)

If smax =∞ we define
⌈

as
p

smax

⌉
equals 1 if asp > 0 and 0 if asp = 0.

We further consider the problem variant GCSP’ in which demands must ex-
actly be satisfied, that means we replace condition (1) by∑

p∈P s

epi · a
s
p = di ∀i = 1, . . . , n. (4)

Definition 2 (Cutting Stock Set Cover Problem (CSSCP)).
Let E, (di)

n
i=1, smax, T and amax

t for t ∈ T be given as in Definition 1. Fur-
thermore, let P be a given set of feasible patterns (e.g. collected from different
heuristic solutions to a GCSP). The CSSCP asks for a solution to the underlying
GCSP consisting of patterns in P , i.e. P s ⊆ P which satisfies the conditions (1)
and (2) and minimizes the costs c(s) as defined in (3).

If we replace condition (1) by (4) we call the problem CSSCP’.

In our case the set P for the CSSCP is constructed during a very large
neighborhood search by collecting all patterns occurring during the search.

3 Solution Approaches

In this section we present four different approaches to solve the Cutting Stock
Set Cover Problem, an integer linear programming formulation, which can solve
the problem exactly, a greedy approach, which can find good solutions very fast,
a PILOT-approach and a beam search.

3.1 ILP Formulation

We start by modeling the CSSCP as integer linear program. Theoretically it can
solve the problem exactly, but in practice the approach does not scale well to
large instances. Therefore, if we use a time limit it may produce solutions with
large optimality gaps. We use integer variables ap for the amount of each pattern
p and helper variables sp for the number of stacks of the pattern p.

min
(ap)p∈P ,(sp)p∈P

∑
p∈P

ap · cPp + sp · cSp

s.t.
∑
p∈P

ap · epi ≥ di ∀i ∈ {1, . . . , n} (5)

∑
p∈P :tp=t

ap ≤ amax
t ∀t ∈ T (6)

sp · smax ≥ ap ∀p ∈ P (7)

ap ∈ N, sp ∈ N ∀p ∈ P

If we want to solve CSSCP’ we replace constraint (5) by∑
p∈P

ap · epi = di. (8)

The constraints (5) or (8) ensure that the demands get satisfied and the
inequalities (6) guarantee that the maximal amounts for each stock material get
respected. Furthermore, the constraints (7) couple the sp variables with the ap
variables by ensuring that there are enough stacks, so that the maximal stack
size smax gets not exceeded.

3.2 Greedy Heuristic

The idea of this greedy construction heuristic is to rate each pattern depending
on the current unsatisfied demands and pick the best pattern as the next one in
a greedy manner. It is a fast approach, usually resulting in reasonable solutions.
To also consider stacking costs we allow to add a pattern with a given amount
at once. Thus, we do not only pick a pattern but also an amount for this pattern
in a greedy way. As a rating criteria we use the volume of the elements on the
pattern whose demand is not yet satisfied divided by the cost of the pattern and
the pattern stack.

Formally, we need a volume value vi ∈ R+ for each element i, which represents
the difficulty to put an element i on some pattern. For the one dimensional
cutting stock problem this may be the length of the element and for the two-
dimensional cutting stock problem, as in our specific case, this can be the area
of an element. For a given partial solution s, a pattern p and an amount a we
define the following rating criteria

rs(p, a) :=

∑n
i=1 min(a · epi , rsi) · vi
cPp · a + cSp

⌈
a

smax

⌉
where the remaining demand rsi is defined by

rsi := max

0, di −
∑
p∈P

epi · a
s
p

 .

The complete greedy approach is given by Algorithm 1.

Algorithm 1: Set Cover Greedy Heuristic

(rsi)
n
i=1 ← (di)

n
i=1, (asp)

p∈P ← 0

while ∃i ∈ {1, . . . , n} : rsi > 0 do
(a, pbest)← arg max(a,p)∈N×P :0<a≤tmax

p
rs(p, a)

aspbest ← aspbest + a

ui ← ui − ep
best

i · a ∀i = 1, . . . , n

To determine a pattern p and an amount a with a maximal value it is enough
to check for each pattern p the values a from the following set

A := {smax} ∪
{⌊

rsi
epi

⌋
,

⌈
rsi
epi

⌉
: i = 1, . . . , n

}
∩ {1, . . . , smax}

and search the pair with the maximal value rs(p, a). To do this we iterate for
each pattern p through the set A in a descending order and can stop the iteration
through A when the value rs(p, a) decreases.

If we want to solve the problem CSSCP’ we have to restrict the algorithm
to only use patterns p and amounts a which do not lead to an overproduction.
Note, however, that this restriction leads often to bad solutions or to no feasible
solution at all since there are few or no possible patterns left at some point.
Therefore, we apply a repairing mechanism instead of restricting the patterns,
which is presented in the following section.

3.3 Solution Repairing for CSSCP’

To still be able to produce good results with the greedy heuristic when exact
demands need to be satisfied, we modify the problem CSSCP’ in the following
way. We allow that a solution may contain patterns which are a substructure
of a pattern in P . This means they get constructed by removing some elements
from a pattern p in P . We call this new problem CSSCP”.

If we want to solve this new problem we can allow patterns and amounts
that lead to overproduction and then try to remove the overproduced elements.
This may involve checking some problem specific constraints to verify that the
new pattern is still feasible. If we obtain a new feasible pattern we can use it
and continue with the greedy algorithm.

3.4 PILOT Approach

The main idea of PILOT is to evaluate each potential extension of a current
partial solution by individually completing the extended solution in a greedy
way and using the obtained solution value for the considered extension [5]. The
extension with the best rating is then chosen and the whole process iterates until
a final complete solution is obtained.

In our case we more specifically realize the PILOT approach as follows. For
each p ∈ P compute the best amount a according to the greedy criterion rating
rs(p, a), then filter the best ` patterns p according to the same rating. For each
of these patterns we copy the current solution, add the pattern with the corre-
sponding amount, apply the greedy heuristic to complete the copied solution and
compute the objective value of the completed solution. Then we select a pattern
p that leads to the best complete solution. For solving the problems CSSCP’ and
CSSCP” we can proceed in the same way as in the greedy heuristic.

3.5 Beam Search

The idea of beam search is to perform a branching tree search in a breath-first
manner, but since this would need too much time in general, it limits the number
of considered solutions on each level by some constant k[6]. To get from one level
to the next one all extensions of the current solutions are considered and again

the best k solutions get stored for the next level. Since our extensions strongly
depend on the amount value, we have no clear levels in the search tree. If we
consider each addition of a pattern regardless of the amount as one level, we
would end up with current solutions of completely different sizes. This is bad
since solutions closer to the finished solution tend to be harder to extend and
therefore the rating usually decreases. This would mean that smaller partial so-
lutions, still further away from the finished solution, are preferred and eliminate
possibly better larger partial solutions.

A similar phenomenon occurs if patterns have different production costs,
because then patterns with smaller costs could get preferred although maybe
the volume/costs ratio is smaller than for a more expensive pattern. To prevent
this we use levels based on the costs of a pattern.

Let cunit := minp∈P (cPp) be the cost unit for one level. The level of a partial

solution s is defined by l(s) :=
[

c(s)
cunit

]
. For a partial solution we define the rating

r(s) :=

∑n
i=1 max

(
di,
∑

p∈P epi · asp
)
· vi

c(s)
.

The complete beam search is sketched in Algorithm 2. For solving the problems
CSSCP’ and CSSCP” we can proceed in the same way as in the greedy heuristic.

Algorithm 2: Set Cover Beam Search Approach

Add empty solution to storage of level 0, l← 0, F ← ∅
while |F | < k and partial solution for a level larger or equal l exists do

for s in storage of level l do
compute best amount a for pattern p according to rs(p, a); create
copy s′ of s and add p with amount a to s′

if r(s′) is one of the best k ratings in level l(s′) then
add s′ to storage of level l(s′)

increase l
return best solution in F

4 Computational Results

In this section we present results for our algorithms tested with real-world in-
stances for the K-staged two-dimensional cutting stock problem with variable
sheet size. For generating the patterns we use the VLNS described in [1].

The algorithms are implemented in C++ and compiled with g++ 4.8.4. For
solving the integer linear program we use Gurobi 7.0 [7]. All tests were performed
on a single core of an Intel Xeon E5540 processor with 2.53 GHz and 10 GB RAM.

The input instances consist of real-world instances for the K-staged two-
dimensional cutting stock problem with variable sheet size together with a col-
lection of feasible patterns found by the VLNS within five minutes runtime for
each instance. If more than 5000 patterns were found in this time only the best

Table 1: Results for 10 instances for the CSSCP.

VLNS ILP Greedy PILOT Beam Search

nr demands obj. num patterns total patterns obj. time obj. time obj. time obj. time

1 118 10.98 12 5000 11.50 3600 13.99 1.58 11.50 21.89 13.00 19.34
2 648 15.00 21 5000 16.00 3600 18.50 2.15 18.00 24.32 16.00 24.07
3 100 19.51 31 120 18.84 74.06 19.35 0.01 19.01 0.17 19.01 2.23
4 522 29.00 65 5000 30.25 3600 31.85 0.22 29.20 261.05 29.10 133.27
5 153 30.00 43 5000 30.00 3600 32.00 2.21 31.00 43.21 30.50 38.70
6 79 44.88 61 219 44.89 0.14 44.93 0.05 44.89 2.84 44.93 1.90
7 350 48.53 85 5000 48.04 3600 48.89 2.23 48.37 35.19 48.12 89.14
8 2000 117.00 190 5000 114.00 3600 130.48 0.29 117.00 18.71 119.00 129.91
9 4830 157.00 252 5000 164.50 3600 184.50 2.91 178.00 2145.45 176.50 438.10

10 1600 193.50 320 1554 193.00 0.24 211.00 0.07 200.50 6.35 194.00 63.92

5000 patterns were taken. The instances are all real-world instances we got from
different users, who are already using the system. It is a broad set of 192 in-
stances of different sizes and different configurations. The parameter ` for the
PILOT approach and the parameter k for the beam search are both set to 30.
We selected 10 representative instances to compare the proposed algorithms.

The results for the CSSCP are shown in Table 1. The demands-column shows
the total sum of all demands di for each instance. The num patterns-column
shows the number of patterns of the best solution found during the VLNS and
the total patterns-column shows the total amount of collected patterns |P | during
the VLNS. The columns obj. contain the objective values and the columns time
contain the used time in seconds for each algorithm and each instance. As the
ILP approach uses much more time its values can be seen as reference values,
although for some large instances the heuristics perform better, since the ILP
approach has a large remaining optimality gap. The best value of the three
heuristic approaches is printed bold for each instance.

The PILOT approach and the beam search outperform the greedy approach
but they need much more time compared to the greedy heuristic. The beam
search needs in general more time than the PILOT approach although there are
some exceptions like in case of instance 9.

Since in practice all users of our algorithm use it to solve the CSSCP” we
also want to investigate the results for this problem. Because ILP approach can
only solve the CSSCP’ and cannot make use of the relaxed conditions of the
CSSCP” we omit it from these tests. Table 2 shows the results for the CSSCP”
for the same instances as in Table 1. The best values for each instance for the
three heuristics VLNS excluded are printed bold.

Also for the CSSCP” the PILOT approach and the beam search outperform
the greedy heuristic, although they need much more time. We also see that it is
quite hard to improve upon the VLNS, but especially the PILOT approach and
the beam search are able to do so in quite a few instances.

If we compare the three heuristics with the solutions from the VLNS over the
whole set of 192 instances the greedy heuristic can improve the found solution
for 6% of the instances, the PILOT approach can improve 21% of the found
solutions and the beam search can improve 32% of the solutions. If we only

Table 2: Results for 10 instances for the CSSCP”.

VLNS Greedy PILOT Beam Search

nr demands obj. patterns coll. patterns obj. time obj. time obj. time

1 118 10.98 12 5000 14.90 1.64 12.94 25.19 12.94 50.98
2 648 15.00 21 5000 19.43 2.28 15.99 20.01 16.97 38.53
3 100 19.51 31 120 19.54 0.01 19.01 0.18 19.01 2.89
4 522 29.00 65 5000 33.10 1.82 32.10 275.36 31.00 181.39
5 153 30.00 43 5000 32.48 0.79 31.98 44.19 30.98 47.61
6 79 44.88 61 219 44.88 0.02 44.88 2.80 44.88 2.61
7 350 48.53 85 5000 48.53 0.28 48.70 32.94 47.96 99.06
8 2000 117.00 190 5000 130.47 0.34 118.00 18.64 119.99 500.66
9 4830 157.00 252 5000 191.94 3.07 182.96 2271.01 182.95 501.86

10 1600 193.50 320 1554 210.98 0.07 200.50 6.27 194.50 120.38

consider large solutions with at least 100 sheets the greedy can improve 15%,
the PILOT approach 54% and the beam search 50% of the solutions.

5 Conclusion and Future Work

In this paper we formulated a variant of the weighted set cover problem, the
CSSCP, which solves a cutting stock problem if a set of feasible patterns is
already given. It can be used as a second phase after constructing patterns to
improve or find a solution for the cutting stock problem as a post processing or as
an intermediate step during the pattern construction. We proposed four solution
approaches, an exact ILP model and three heuristics, to solve the problem.
Furthermore, we compared them with each other by testing them with real-world
instances. The tests have shown that the approaches can be used to improve the
found solutions in many cases. Future work may be to combine the presented
approaches with a construction heuristic that completes a solution when there
are no good patterns anymore in the pattern set.

References

1. Dusberger, F., Raidl, G.R.: A scalable approach for the k-staged two-dimensional
cutting stock problem with variable sheet size. In: Computer Aided Systems Theory
– Eurocast 2015, Springer (2015) 384–392

2. Cheng, C., Feiring, B., Cheng, T.: The cutting stock problem — a survey. Interna-
tional Journal of Production Economics 36(3) (1994) 291–305

3. Cui, Y., Zhong, C., Yao, Y.: Pattern-set generation algorithm for the one-
dimensional cutting stock problem with setup cost. EJOR 243(2) (2015) 540–546

4. Yang, J., Leung, J.Y.T.: A generalization of the weighted set covering problem.
Naval Research Logistics 52(2) (2005) 142–149

5. Duin, C., Voß, S.: The Pilot method: A strategy for heuristic repetition with appli-
cation to the Steiner problem in graphs. Networks 34(3) (1999) 181–191

6. Lowerre, B.T.: The HARPY speech recognition system. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, USA (1976)

7. Gurobi Optimization, I.: Gurobi optimizer reference manual, version 7.0.1 (2016)

	Solving a Weighted Set Covering Problem for Improving Algorithms for Cutting Stock Problems with Setup Costs by Solution Merging

