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Abstract. In graph theory, a prominent conjecture of Bondy and
Jackson states that every uniquely hamiltonian planar graph must have
a vertex of degree two. In this work we try to find uniquely hamiltonian
graphs with minimum degree three and a small crossing number by min-
imizing the number of crossings in an embedding and the number of
degree-two vertices. We formalize an optimization problem for this pur-
pose and propose a general variable neighborhood search (GVNS) for
solving it heuristically. The several different types of used neighbor-
hoods also include an exponentially large neighborhood that is effec-
tively searched by means of branch and bound. To check feasibility of
neighbors we need to solve hamiltonian cycle problems, which is done
in a delayed manner to minimize the computation effort. We compare
three different configurations of the GVNS. Although our implementa-
tion could not find a uniquely hamiltonian planar graph with minimum
degree three disproving Bondy and Jackson’s conjecture, we were able to
find uniquely hamiltonian graphs of minimum degree three with crossing
number four for all number of vertices from 10 to 100.

Keywords: Variable neighborhood search - Uniquely Hamiltonian
graphs - Combinatorial optimization

1 Introduction

A lot of research in graph theory focuses on hamiltonian cycles. The problem
of finding hamiltonian cycles is well studied in theoretical aspects [12] and in
practical aspects as a special case of the traveling salesman problem [2]. An
interesting topic in graph theory is the question of how many hamiltonian cycles
a given graph has. A simpler version of this question only asks if there is exactly
one hamiltonian cycle in a given graph.

In this paper we will only be concerned with undirected simple graphs and
just write graph for this type of graphs. A graph G = (V, E) is uniquely hamil-
tonian if and only if it contains exactly one hamiltonian cycle, i.e., a cycle visiting
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each node exactly once. A graph G is planar if and only if it has a planar embed-
ding, i.e., it can be drawn in the Euclidean plane without any crossing edges. The
crossing number cr(G) of a graph G is the smallest possible number of crossings
in an embedding of GG into the plane. Last but not least, a graph G has minimum
degree 6(G) = k if each node has at least k incident edges.

One type of problem in the area of uniquely hamiltonian graphs is to deter-
mine for a given class of graphs if it contains a uniquely hamiltonian graph.
Bondy and Jackson [4] showed that every uniquely hamiltonian graph with n
vertices has a vertex with degree at most clog(8n) + 3 for a small constant c.
This limits the minimum degree of a uniquely hamiltonian graph (note that
a better lower bound for §(G) has been established in [1]). Bondy and Jackson
proved in the same paper also a simpler statement: Every planar uniquely hamil-
tonian graph contains at least two vertices of degree two or three. Furthermore,
they stated an interesting still unsolved conjecture that every planar uniquely
hamiltonian graph contains a vertex of degree two.

In the case of non-planar graphs a question by Sheehan [21] asks whether
or not a uniquely hamiltonian 4-regular graph exists. Note that a graph which
only contains vertices with odd degree cannot be uniquely hamiltonian [22].
Fleischner [9] showed that in the case of multigraphs there exist 4-regular uniquely
hamiltonian graphs. In more recent work Fleischner [10] constructed an infinite
family of uniquely hamiltonian (simple) graphs with minimum degree four. This
surprising result leads to the guess that there may also be a uniquely hamiltonian
planar graph with minimum degree three which would disprove the conjecture of
Bondy and Jackson. Entringer and Swart [8] constructed already in 1980 uniquely
hamiltonian graphs with minimal degree three, but they are not planar.

In this paper we transform the problem of finding a uniquely hamiltonian
planar graph with minimum degree three into a bi-objective optimization prob-
lem which minimizes the crossing number and the number of vertices with degree
two. To solve this problem nearly optimal we propose a general variable neigh-
borhood search (GVNS) heuristic [14]. The GVNS framework was already suc-
cessfully applied to other graph theoretical problems, see, e.g., [5].

As the search space increases exponentially with increasing number of vertices
a heuristic could be beneficial compared to an exact approach. In fact, before we
implemented the general variable neighborhood search, we tried to apply an exact
approach, which enumerates graphs of a given vertex degree in a clever way and
tests if they are uniquely hamiltonian [19]. With that approach we were able to
check that no uniquely hamiltonian planar graph with minimum degree three and
with 22 or less vertices exists. Unfortunately, for graphs with more than 22 vertices
the running time explodes because of the vast number of graphs to check.

One of our proposed neighborhood structures is exponentially large and we
use a branch-and-bound procedure to find the best neighbor in its neighbor-
hoods. This embeds the idea of a large neighborhood search [20] in our GVNS.
We will see that the bottleneck in our algorithm, which consumes most of the
running time, are the expensive unique hamiltonicity checks. To reduce the
number of such checks we keep infeasible, not uniquely hamiltonian, solutions
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formally in our neighborhood. Only after finding the best neighbor we apply a
Lin-Kerninghan heuristic [16] and in a later step we use Concorde [7] to check
for feasibility.

In the next section we describe some transformations of the problem and
formally state the resulting optimization problem. In Sect.3 we describe our
GVNS framework and the neighborhood structures in detail. The comparison
of three different configurations and the experimental results are presented in
Sect. 4. Finally, we conclude with Sect.5 and propose some further work ideas.

2 Problem Description

In graph theory an important and challenging open question is whether or
not a uniquely hamiltonian planar graph with minimum degree three (UHPG3)
exists [4]. Bondy and Jackson [4] conjectured that every planar uniquely hamil-
tonian graph contains a vertex of degree two, i.e., that no UHPG3 exists. So
far, however, neither could a UHPG3 be found nor could it be proven that none
exists.

To disprove Bondy and Jackson’s conjecture, it would be enough to find a
planar graph with minimum degree three that contains an arbitrarily selected
fixed edge e € E and exactly one hamiltonian cycle containing this edge e. This
means the graph may contain also other hamiltonian cycles which do not contain
the edge e. From such a graph we can remove the edge e = (v, w), duplicate the
remaining graph and connect the two copies by adding edges (v,v’) and (w,w’),
where v’ and w’ are the duplicates of nodes v and w, respectively. The resulting
graph is then uniquely hamiltonian and still planar with minimum degree three.
We call a uniquely hamiltonian graph whose Hamiltonian cycle contains the
known edge e fized edge uniquely hamiltonian graph (FEUHG).

In this work we concentrate on the optimization problem variant of finding a
graph G with a given number of nodes n = |V| that as far as possible corresponds
to a UHPGS3. To this end, we relax the conditions that the graph must be planar
and must have minimum degree three and instead minimize the deviations from
these properties.

To our knowledge, the problem of finding graphs that as far as possible
correspond to a UHPGS3 has so far not been considered in a more systematical,
and in particular computational way.

More specifically, we consider the bi-objective optimization problem to find
a FEUHG G together with an embedding into the plane and minimize

— the number of edge crossings and
— the number of vertices with degree two.

To obtain a single-objective optimization problem we linearly combine these two
objectives with corresponding weights o and .

Since the problem of computing the crossing number of a graph is NP-hard
(see [11]), it makes sense to approximate this value. We do this by allowing only
crossings between edges which are not part of the uniquely hamiltonian cycle
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Fig. 1. Example solution with two crossings and no nodes of degree two. Edges of the
hamiltonian cycles are bold and chords are colored red and blue. (Color figure online)

of the graph. This relaxation allows us to fix a hamiltonian cycle in advance
and then only concentrate on the problem of adding additional edges (chords)
between vertices that are no neighbors on the cycle. Since the added chords are
not allowed to cross with an edge of the hamiltonian cycle, there are only two
possibilities how to draw a chord: either outside the cycle or inside the cycle. We
encode this two states, inside or outside, of a chord by two colors.

Let us assume without loss of generality that V' = {1,...,n} and our pre-
defined cycle C' visits the nodes in the natural order from 1 to n before getting
back to 1. If we fix the chords and their colors it is easy to derive the minimal
number of crossings. To see this, we draw the nodes from 1 to n on one line,
such that the hamiltonian cycle consists of this line together with a half cycle
connecting the vertices n and 1. We draw now every chord as a half cycle, either
above the line or below the line depending on the color of the chord. Figurel
illustrates this construction with an example. For this construction we get that
two chords (¢,7) and (k,¢) with 1 <i< j<nand1l <k < ¢<mn cross if and
only if their corresponding half cycles cross. This is the case if and only if the
two chords have the same color and

i<k<j<lork<i<il<j (1)

holds. Notice that in any drawing of a graph, two chords, which are on the same
side of the graph and satisfy (1), cross at least once. This implies the optimality
of our construction.

All together we get the following optimization problem. Given the cycle C'
over nodes V = {1,...,n}, let

H={(5)]i=1...,n—2 j=i+2,....0}\{(L,n)}

be the set of all possible chords. A candidate solution is represented by (H,c),
where H C 'H is the subset of selected chords and ¢ : H — {0,1} specifies their
coloring by assigning either 0 or 1.
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minimize - > Hk0) € He:cliyj) =k, 0),i <k < j <}
c:H—{0,1} (i,7)€eH
(2)
+ 8- |n—| U {i.d}
(4,j)€EH
subject to: there is no hamiltonian cycle in C' U H containing

3)

edge (1,2) and at least one chord.

In this formulation, there is always the same edge, namely the edge (1,2), fixed.
This eliminates some symmetries. Be aware that a vertex has degree three or
more if and only if it is incident to at least one used chord. Therefore, the union
in the second part of the objective expression (2) contains exactly all vertices of
degree three or more. In the following we refer to constraint (3) also simply as
unique hamiltonicity.

The problem of checking if a given (planar) graph contains a hamiltonian
cycle is NP-complete. Therefore, the problem of checking if a given (planar)
graph contains no hamiltonian cycle is in coNP. If coNP # NP this would also
imply that the latter problem is not in NP. Thus, checking only feasibility in our
model is already a hard problem.

3 General Variable Neighborhood Search with Delayed
Feasibility Checking

In this section we will present our algorithmic approach to tackle the optimiza-
tion problem described in Sect.2. As mentioned checking only feasibility of an
instance in our model is already a hard problem. Therefore, the use of heuris-
tics, instead of an exact algorithm, appears appropriate. We propose a general
variable neighborhood search (GVNS) as framework to solve the problem heuris-
tically [13,14] and combine it with Concorde [7] for checking feasibility w.r.t.
unique hamiltonicity. Remember that a solution is represented by the set of
chords H and the associated coloring c¢ for each chord in H. We start with the
empty initial solution H = (, i.e., just the cycle C' without any chords, as this
is always a feasible solution.

The GVNS contains a wvariable neighborhood descent (VND) for locally
improving candidate solutions in systematic ways according to five different types
of neighborhood structures, and a parameterized shaking neighborhood struc-
ture for diversifying the search. In the following we describe these neighborhood
structures and the corresponding search algorithms.

3.1 VND Neighborhoods

The following types of neighborhoods and respective algorithms to search them
are considered within the VND. Different specific configurations will be consid-
ered, which will be described in Sect. 3.2. In general, if an improved solution
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is achieved within one neighborhood, the VND restarts with its first neighbor-
hood structure; otherwise it continues with the next as long as one is available.
When the VND terminates, a solution is obtained that is locally optimal w.r.t.
all used neighborhood structures. All these neighborhoods are searched in a
best-improvement fashion, and ties are broken randomly.

Changing Color of k Chords [cchol(k)]. This neighborhood consists of all
solutions where the colors of k chords are flipped for some parameter k > 1. The
size of the neighborhood is therefore m* where m is the number of chords in
the current solution. We apply this neighborhood structure for k = 1 and k = 2
since the neighborhood is relatively small and easy to search. Since only the
colors of chords are changed, the structure of the solution graph stays the same,
and therefore the unique hamiltonicity is still valid for each neighbor of a feasible
incumbent solution. To calculate the objective gain of a neighbor incrementally
we simply count the number of crossings with the old color and with the new
color and take the difference.

Removing k Chords and Adding ¢ New Chords [remadd(k,£)]. This
neighborhood consists of all solutions where exactly k£ chords are removed from
the current solution and ¢ new chords are added. The size of the neighborhood is
therefore m*(M — m)e where m is the number of chords in the current solution
and M is the number of possible chords (M = (n—2)(n—1)/2—1). For £ > 0 the
neighborhood may contain solutions which are infeasible as they are not uniquely
hamiltonian. Instead of checking feasibility immediately for each neighbor, which
can be very time-expensive, we first evaluate all neighboring solutions according
to our objective function, filter out any solutions that are not better than our
incumbent, and sort all better solutions according to their objective function
gain. Only then we consider the these solutions according to decreasing gain,
check the feasibility of each w.r.t. unique hamiltonicity, and immediately return
with the first, and thus best, feasible solution. To calculate the objective gain of
a neighbor incrementally we count the crossings of the removed edges and the
crossings of the added edges and take the difference. Additionally we have to
check all vertices incident to removed and added edges if their degree decreased
to two or increased to three or higher. In case there are multiple, i.e., equally
good, best neighbors, all of these are checked for feasibility and one is chosen at
random. This random tie breaking turned out to be crucial for the performance.
The procedure of checking unique hamiltonicity will be described in Sect. 3.4. In
case of £ = 0 we do not need this check as a solution obtained from a feasible
solution by just removing chords cannot become infeasible. The values used for
k and ¢ will be described later.

Computing Optimal Crossings [compcross]. This is an exponentially large
neighborhood consisting of all solutions that have the same underlying graph as
the current solution but different colors on the chords. The size of this neighbor-
hood is thus 2™ — 1, where m is the number of chords in the current solution.
Instead of a naive enumeration we search this neighborhood in an efficient way by
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a branch-and-bound procedure to obtain a best possible coloring of the chords.
The crossings of the current solution can be used as a good initial upper bound,
which is in many cases already tight. In every level of the search tree we assign
one color to one chord. The sequence of chords is predefined randomly and used
to determine which chord is colored next. As a branching strategy we use depth-
first search. To compute a local lower bound we use the crossings of the currently
assigned chords and add for every not assigned chord the minimum of crossings
to the assigned chords for the two colors. As already mentioned finding the opti-
mal crossings is an NP-hard problem, but with the described branch-and-bound
procedure it can be computed relatively fast compared to the effort which is
needed to check for unique hamiltonicity.

Split Crossings [splitcross]. This neighborhood is a special subset of the
neighborhood remadd(2,2) which tries to resolve a crossing by splitting. More
precisely for every crossing pair of chords (i,7) and (k,¢) with i < k < j < ¢
we construct a new solution by removing these two edges and adding the chords
(i,£) and (k,7) instead. There are two exceptions: if j = k 4 1 the edge (k,j)
would be no chord and therefore this case is skipped. Similarly, case ¢ = 1
and ¢ = n is excluded since these two vertices are already connected in the
original hamiltonian cycle. If the chords (i, ) or (k, j) already exist in the current
solution, this neighbor is skipped. If the newly added edges do not generate
other crossings and the new graph is still uniquely hamiltonian we get a solution
with one crossing less. The size of this neighborhood is equal to the number
of crossings in the current solution and is therefore typically a small subset of
remadd(2, 2).

Merge Crossings [mergecross]. This neighborhood is a special subset of
the neighborhood remadd(1, 2) which tries to resolve a crossing by merging the
crossing point into one of the neighboring vertices. We generate up to four new
solutions for every pair of crossing chords (7, ) and (k,¢) with ¢ < k < j < £ by
applying the following operations:

1. Remove (4, ) and add (i, k) and (k, j).
2. Remove (i,7) and add (i,¢) and (4, ¢).
3. Remove (k,£) and add (i, k) and (i, £).
4. Remove (k,¢) and add (k,j) and (7, £).

Cases where the edges to be added do not correspond to valid chords or
where they already exist in the solution are skipped again.

3.2 VND Neighborhood Selection

In our experiments in Sect.4, we will consider three different configurations of
VND neighborhood, which are shown in Table 1. The VND considers the stated
specific neighborhoods in the listed order.
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Table 1. Three different neighborhood structure sets used to compare with each other

Slim set Medium set Thick set

1. cchol(1) 1. cchol(1) 1. cchol(1)
2. cchol(2) 2. cchol(2) 2. cchol(2)
3. remadd(1,0) | 3. remadd(1,0) | 3. remadd(1,0)
4. remadd(0,1) | 4. remadd(0,1) | 4. remadd(0, 1)
5. splitcross 5. splitcross
6 6

7 7

8 8

9 9

. ImMergecross . Imergecross

. COMPCross . COMPCross

. remadd(1,1)
. remadd(2, 1)

. remadd(1,1)
. remadd(2,1)
10. remadd(2, 2)

It is important to notice that all neighborhoods choose the candidates ran-
domly if their improvements are the same. This implies that the slim neigh-
borhood set is still capable of reaching all feasible solutions. The neighborhoods
which do not require rechecking unique hamiltonicity are listed before the expen-
sive neighborhoods which require rechecking. The only exception of this rule is
the compcross neighborhood which may also need significant time for larger
graphs as it solves an NP-problem by branch-and-bound.

3.3 Shaking

To diversify the search, the GVNS applies the following shaking operation para-
meterized by k € {3, cee Lg]} Considering the chords in an order of non-
increasing number of crossings, k chords are deleted from the current solution.
If there are less than k chords in the current solution we delete them all. Be
aware that there are in general multiple chords with the same number of cross-
ings (most of them will have no crossings in a good solution), and they are then
considered in a random order. Thus, there also is a significant randomization
involved. Since we do not know in advance how many chords a solution will
have, it is so far not guaranteed that in principle our GVNS can reach every
possible solution from an incumbent solution. Therefore, we add as last shaking
operation the removal of all chords. In other words this last shaking operation
corresponds to a complete restart of the GVNS, and we trust on the VND to
add chords again.

Thus, our shaking neighborhoods do not contain the complete solution space
but rather a cone of all solutions we can get by removing chords from the current
solution. Just removing chords in the shaking has the advantage that we will
never violate unique hamiltonicity, and thus we always get a feasible solution
efficiently. It would be difficult to generate a random solution in the complete
feasible solution space since we would have to check for unique hamiltonicity
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until we find a solution satisfying it. This would cost a lot of time which is not
our intention behind shaking. However, our overall approach guarantees that
every feasible solution can in principle be found by descending from one of the
solutions generated by shaking. This can easily be seen by the fact that every
solution can be constructed by adding chords from the empty solution.

3.4 Checking Unique Hamiltonicity

In this section we describe the procedure we apply to check if a given solution
is uniquely hamiltonian, i.e., satisfies (3). The running time of this procedure is
crucial for the success of the algorithm since it is the bottleneck of the GVNS
as we will see in the experimental results in Sect. 4.

As we only check unique hamiltonicity for neighbors which would improve
the current solution we can descend to the neighbor whenever the condition is
satisfied. This means that the number of procedure calls where the condition
is satisfied corresponds to the number of local improvements. However, it is
possible that any number of neighbors get checked before one is found which
satisfies condition (3). Therefore, we do not have a better bound on the number
of negative procedure calls than the current neighborhood size.

Since the hamiltonian cycle problem is a special case of the well studied
travelling salesman problem, there already exist a lot of practically efficient algo-
rithms to approach the hamiltonian cycle problem. To model the hamiltonian
cycle problem as a traveling salesman problem one simply assigns all pairs of
nodes corresponding to edges in the graph, i.e., E, unit costs and all other pairs
of nodes larger costs. The question whether or not a hamiltonian cycle exists is
then equivalent to the question whether or not a tour with costs |V| exists. If
we want to fix a subset of edges £/ C FE, then we can give them zero costs. The
question if a hamiltonian cycle containing all edges in E’ exists is then equivalent
to the question if a tour with costs |V| — | E’| exists. Thus, we can also model a
fixed edge hamiltonian cycle problem.

To check condition (3), more specifically we need to check if a hamiltonian
cycle containing edge (1,2) and edge e for any chord e € H exists. This means,
we have to solve |H| traveling salesman problems before we know for sure that
condition (3) is satisfied. If at some point we find a hamiltonian cycle we can
stop and know that the condition is not satisfied.

Clearly, solving |H| traveling salesman problems would be very time-
expensive. Fortunately, we can apply an improvement in our case that takes into
account that the considered candidate solution graph is a neighbor of our cur-
rent solution for which we already know that it satisfies condition (3). Remember
that the only situation where we have to recheck the condition is for neighbors
where we removed k chords and added ¢ > 0 new chords. In this situation it is
sufficient to check if there exists a hamiltonian cycle containing the edge (1,2)
and at least one of the newly added chords. Therefore, we only have to solve /¢
traveling salesman problems to perform this check.

As we already mentioned there may be many more negative procedure
calls than positive ones and therefore we need a solver which is able to
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find hamiltonian cycles fast. Thus, we decided to use a heuristic to find
hamiltonian cycles. We use Helsgaun’s version of the Lin-Kerninghan heuris-
tic, which is faster than exact approaches but can still solve many problems to
optimality [16]. If one run of the LKH heuristic does not find a hamiltonian
cycle we apply ten further runs of the heuristic. If it still does not find a hamil-
tonian cycle we assume that the graph does not contain anyone. To avoid that
the algorithm returns an infeasible solution as an optimal solution at the end
we use Concorde [7] to check for hamiltonian cycles. As Concorde needs much
more time than the Lin-Kerninghan heuristic, we only call Concorde whenever
a neighbor would lead to a new best solution and the Lin-Kerninghan heuristic
did not find a cycle in any run.

This means it may happen that an infeasible neighbor gets visited if it is no
new best solution. In this case Lin-Kerninghan calls, where we assume that the
current solution is feasible, are not correct anymore. This is no problem since
as soon as the search visits a neighbor which would be a new best solution,
Concorde gets applied and shows that the neighbor is infeasible. As we will see
in Sect. 4 this situation will almost never happen for small vertex degrees.

Further Improvements. To further improve the running time of checking
unique hamiltonicity we exploit the fact that only small parts of the graph
change when doing local improvements. Obviously the same hamiltonian cycles
may frequently appear in the investigated graphs having only small differences.
The idea is now to store found hamiltonian cycles in an appropriate data struc-
ture which allows us to check for a new graph if it contains a cycle from the
data structure efficiently. If searching through this data structure can be done
reasonably fast, this will improve the overall runtime. We can represent a cycle
or a whole graph by the set of its edges. Thus, we need a data structure which
stores sets and can compute subset queries quickly. This problem is known as the
containment query problem [6]. It is the complementary problem of the better
known subset query problem, which furthermore corresponds to the well known
partial match problem [18].

For our purposes we used a trie data structure presented in [3]. Note that
we only store the set of chords used in the hamiltonian cycle. Checking if a
subset exists in such a data structure needs exponential time in the worst case.
Nevertheless, it is still much faster to search in this data structure than searching
a hamiltonian cycle in practice, as we will see in Sect.4. There would also be
more sophisticated data structures for storing sets (see for example [15]). In
our case we do not need such complex data structures since our practical tests
indicated that the simple data structure’s time consumption is almost neglectable
in comparison to the effort for finding hamiltonian cycles in the remaining cases.

4 Computational Results

Our VNS-approach is implemented in C++ and compiled with g++ 4.8.4. We
used the LKH-heuristic implementation provided in [17]. The Concorde imple-
mentation from [7] uses CPLEX 12.6.2 for solving. All tests were performed on
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a single core of an Intel Xeon E5540 processor with 2.53 GHz and 10 GB RAM.
The input of our algorithm is simply the number of vertices n € N. For all tests
we used the weights oo = 0.25 and § =1 (see (2)). This implies that all solution
graphs with an objective value smaller than 1 have minimum degree three.

As the instances we used different n values between 10 and 100. We ran all
three configurations (see Table 1) for every instance 20 times with different seed
values and a maximal execution time of 3600 seconds per run. In Table 2 we see
the results for the three different configurations for different instances n. The
columns best contain the best value found in all 20 runs for one configuration.
The columns avg. contain the averages of the results over the 20 runs and the
columns t[s] med. contain the medians of the times until the best solution was
found in each run in seconds. For every instance and every of the three column
types we marked the best value of the three configurations by displaying it bold.

Table 2. Results for the three different configurations

Slim set Medium set Thick set

n | best| avg. | t[s] med. | best| avg. | t[s] med. | best| avg.| t[s] med.
10/ 0.5| 0.5 56.83/ 0.5| 0.5 37771 0.5| 0.5 21.33
15, 0.5| 0.5 545/ 0.5| 0.5 4.92 0.5| 0.5 15.77
20/ 0.5] 0.5 13.23] 0.5| 0.5 12.29| 0.5| 0.5 21.71
25/ 0.5] 0.5 50.25|/ 0.5| 0.5 48.92 | 0.5| 0.5 82.42
30/ 0.5| 0.5 234.6| 0.5 0.5 75.03 | 0.5| 0.5 301.92
35/ 0.5 0.5| 139.81| 0.5/ 0.5 209.68| 0.5| 0.5 442.44
40| 0.5| 0.5 369.86| 0.5| 0.5| 277.22|0.5| 0.6 426.32
45| 0.5/0.55| 1,020.1| 0.5|0.53 714.29| 0.5| 0.7] 1,510.86
50| 0.5]0.74 144.21 0.5/0.56 | 1,007.63| 0.5|0.81 321.41
60| 0.5]0.93 19.52 | 0.5/ 0.83 43.22] 0.5 0.94 99.78
70| 0.5]0.98 35.76| 0.5|0.76 238.53| 0.5 1 306.56
80| 0.5]0.96 71.46| 0.5 0.9 68.08 1] 1.2 564.71
90/ 0.75|1.04 128.52] 0.5 0.95 130.56 1/1.46 | 1,260.15

100 1 1 183.33 | 0.5 0.96 173.95| 0.5 | 1.66 570.27

As we can see, on average, the medium set found better solutions than the
other two configurations. Note that the running times until the best solution
was found are only comparable if the corresponding solutions are equally good.
Therefore, it makes no sense to compare the time medians for the instances with
n > 45. To verify that the medium solution performs better than the other two
solutions we applied a Wilcoxon signed-rank test. We use a p-value of 5% for
the significance value. As a result we get that the medium set computed for
the instances n = 50, 60, 70 significantly better results than the slim set and for
all instances with n > 40 significantly better results than the thick set. For all
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other instances the difference was not significant. We also compared the slim
set with the thick set and interestingly the slim set computed for the instances
n = 40,45, 80, 90, 100 significantly better solutions than the thick set.

To compare the running times until the best solution was found we also
applied the test for the running times, but only for the instances with n < 40.
If we compare the medium set and the slim set there is only for the instance
n = 30 a significant difference, where the medium set is significantly faster than
the slim set. If we compare the slim or the medium set with the thick set, we
get that both are for the instances with 15 < n < 35 significantly faster than
the thick set. For n = 10 the thick set is the fastest on average and compared to
the slim set it is also significantly faster.

From these tests we get the intuition that the neighborhood remadd(2,2)
is too large and not beneficial for graphs of medium size or larger sizes. Only
for graphs with size around n = 10 the neighborhood is small enough to be
beneficial. We need, however, more neighborhoods than only adding and remov-
ing chords, as in the slim set, to find good solutions for larger instances. It is
also interesting that the slim set has no significant speed gain compared to the
medium set. From the best column of the medium set we see that we found a
solution with an objective of 0.5 for all given instances. This means that these
solution graphs have minimum degree three and exactly two crossings in the pla-
nar embedding. We also applied some test runs for all other n values between 10
and 100 and found a solution with an objective of 0.5 for every n € {10,...,100}.

Note that the solutions of our problem, as we stated it, are not uniquely
hamiltonian, they are FEUHG. That means to get a uniquely hamiltonian graph
we need to duplicate it as described in Sect.2, but then the crossings get also
duplicated. Therefore, all our solutions with an objective of 0.5 induce uniquely
hamiltonian graphs with minimum degree three which have embeddings with
four crossings. Therefore, our results impose the following question:

Does there exist a uniquely hamiltonian graph with minimal degree three
and a crossing number smaller than four?

Table 3 contains the number of performed local search improvements for each
neighborhood and each instance with the medium set configuration. The num-
bers are averaged over all 20 runs with 20 different seeds. The column name
ra(x,y) stands for remadd(x,y), splitcr for splitcrossing, mergecr for merge-
crossing and comper for compcrossing.

Since the shake operations only remove chords, the neighborhood
remadd(0, 1) which only adds one chord is applied after shaking several times.
This explains why this neighborhood is used much more often than the other
neighborhoods.

To find out which part of the algorithm consumes the most time we can
identify three subroutines which have an exponential worst case running time.
The first one is Concorde, which gets applied whenever the search finds a new
best solution for which the LKH-heuristic did not find a second hamiltonian
cycle. The second one is the solver of the containment query problem, which uses
a trie data structure to check if a cycle which was already found is contained
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Table 3. Number of improvements found in the different neighborhood structures for
the medium set configuration

n | cchol(1) | echol(2) | ra(1,0) | 1a(0,1) | splitcr | mergecr | comper | ra(1,1) | ra(2,1)
10 2,667 60 0]314,452 677 197 0] 3,898 4
15 6,551 3,872 19 279,279 522 856 | 3,126 3,202 204
20 3,904 1,887 191202,046 | 1,599 1,371 1,732 2,211 128
25 2,676 1,179 26 | 133,997 | 1,293 1,287 1,311| 1,675 86
30 1,828 646 34| 92,814 1,201 1,152 895 1,334 63
35 1,257 501 23| 63,717 1,013 958 550 | 1,054 44
40 999 375 24| 48,623 844 828 482 869 39
45 756 248 32| 36,387 769 771 284 794 30
50 595 193 20| 28,707 661 640 232 656 26
60 365 107 25| 18,612 553 564 99 559 17
70 264 75 15| 12,953 398 410 7 390 13
80 201 53 17 9,573 330 336 50 328

90 147 37 17 7,184 258 283 39 263
100 123 29 10 5,891 221 229 27 212

in the current candidate. The third one is the branch and bound procedure to
calculate the optimal colors of the chords such that they have a minimal number
of crossings.

Table 4 lists running time information and additional information for these
three subroutines and the LKH subroutines with the medium set configuration.
The column HC-Checks contains the number of graphs for which we had to test
the unique hamiltonicity constraint and the UHGs column contains the number
of graphs which satisfied the unique hamiltonicity constraint. The column calls
contains the number of Concorde calls and the column rate contains the number
of graphs which got discarded by a containment query relative to the overall
number of discarded graphs. The columuns ¢[s] contain the overall time used for
all corresponding calls in seconds. The time columns represent median values
and the other columns represent average values over all different seeds. As we
can see the three mentioned subroutines are in total extremely fast compared to
the LKH subroutines which have to get applied very often. Therefore, the LKH
subroutines are clearly the bottleneck of the whole VNS. Another interesting
fact is that Concorde never found a hamiltonian cycle in any of the runs. This
means that whenever LKH did not find a second hamiltonian cycle the graph
was in fact uniquely hamiltonian.

The fact that the rates of the containment queries increase with increasing n
can be explained as follows. First of all, for two solutions which are very similar
it is more likely that they both contain the same hamiltonian cycle than for
solutions which are completely different. This implies that as long as the search
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Table 4. Hard subproblem statistics for the medium set configuration

LKH Concorde | Containment | B&B
Queries

n | HC-Checks| UHGs| t[s]|calls| t[s]| rate| t[s]| ¢[s]
10| 1,467,893 | 255,790 | 1,356 7 0] 48% 3 0
15| 1,607,901 258,962 2,480, 10| 0| 5.5% 4 0
20| 1,456,778 200,372|3,230| 14| 0| 7.5% 7 0
25| 1,151,036 | 137,859 3421 17 0 10.1% 8 0
30 929,409 | 99,379 3,491 21 1123% 9 0
35 761,117 | 70,547 (3,512 24, 1 145% 10 0
40 653,680 | 55,017 | 3,518 26 117.2% 11 0
45 570,683 | 42,607 (3,521 30, 1/193% 12 0
50 493,993 | 34,275|3,523| 33| 2/21.3% 13 0
60 425,704 | 23,800 | 3,523 | 40 31285% 14 0
70 323,338 | 16,864 (3,528 | 46, 5 30.6% 14 1
80 277,038 | 12,984 (3,525 52| 9 34.2% 13 1
90 246,591 | 10,072 (3,515 60, 11 /39.1% 17 2
100 204,408 | 8,324 (3,510 65, 14 41.3% 21 4

is concentrated in a local area the containment queries will be very effective.
Only the shaking methods guide the search out of such a local area. The simple
fact that for larger n the search in the local neighborhoods needs longer implies
that it can do less shaking than for smaller n. Therefore, the containment queries
are more effective for larger n.

We want to mention that we tested the algorithm also for n > 100. For these
instances the running times of the subproblems exploded and the VNS could do
only few iterations in reasonable time which lead to poor quality solutions.

5 Conclusions and Future Work

In this paper we presented a new optimization problem for finding uniquely
hamiltonian graphs of minimum degree three with small crossing numbers. We
proposed a general variable neighborhood search framework to solve the problem
heuristically. We proposed different neighborhood structures including one large
neighborhood and different configurations which we compared in experimental
tests. The bottleneck of the proposed algorithm is checking unique hamiltonicity
for every neighbor, to stay in the feasible area. With an implementation of this
framework we were able to find uniquely hamiltonian graphs of minimum degree
three with only four crossings for many different instances, which naturally gives
rise to the question if we can do better.

Future work may be to develop an exact algorithm for the proposed prob-
lem and compare the two algorithms for small instances. One problem of the
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proposed heuristic is that the constraint of unique hamiltonicity is completely
independent from the objective function. If we could measure how promising a
graph is according to the unique hamiltonicity constraint we could better guide
the search. Furthermore, it would be interesting to test if other heuristics than
LKH or other variants of LKH for checking unique hamiltonicity perform better.
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