
Combining a Memetic Algorithm with Integer
Programming to Solve the Prize-Collecting

Steiner Tree Problem ?

Gunnar W. Klau1, Ivana Ljubić1, Andreas Moser1, Petra Mutzel1,
Philipp Neuner1, Ulrich Pferschy2, Günther Raidl1, and René Weiskircher1

1 Institute of Computer Graphics and Algorithms, Vienna University of Technology,
Favoritenstraße 9–11/186, 1040 Vienna, Austria

{klau|ljubic|moser|mutzel|neuner|raidl|weiskircher}@ads.tuwien.ac.at
2 Department of Statistics and Operations Research

University of Graz, Austria
pferschy@uni-graz.at

Abstract. The prize-collecting Steiner tree problem on a graph with
edge costs and vertex profits asks for a subtree minimizing the sum of
the total cost of all edges in the subtree plus the total profit of all vertices
not contained in the subtree. For this well-known problem we develop a
new algorithmic framework consisting of three main parts:

(1) An extensive preprocessing phase reduces the given graph without
changing the structure of the optimal solution. (2) The central part of
our approach is a memetic algorithm (MA) based on a steady-state evo-
lutionary algorithm and an exact subroutine for the problem on trees. (3)
The solution population of the memetic algorithm provides an excellent
starting point for post-optimization by solving a relaxation of an integer
linear programming (ILP) model constructed from a model for finding
the minimum Steiner arborescence in a directed graph.

Extensive experiments on benchmark instances from the literature show
that our combination of an MA with ILP-based post-optimization com-
pares favorably with previously published results. While our solution
values are almost always the same (not surprisingly, since an extension
of our ILP approach shows the optimality of these values), we obtain a
significant reduction of running time for medium and large instances.

1 Introduction

We consider the prize-collecting Steiner tree problem, an extension of the well-
known Steiner problem, where the input is a graph whose vertices are associated
with profits and edges with costs. Our goal is to find a connected subgraph
that minimizes the sum of the profits of the vertices that are not contained in
the subgraph plus the costs of the edges in the subgraph. The problem finds

? Partly supported by the Doctoral Scholarship Program of the Austrian Academy of
Sciences (DOC) and by the Austrian Science Fund (FWF), grant P16263-N04.

its application in the design of networks for communication or distribution of
utilities such as district heating or water.

Let G = (V, E, c, p) be an undirected connected graph with p : V → R≥0 a
profit function on the vertices and c : E → R≥0 a cost function on the edges. The
prize-collecting Steiner tree problem (PCSTP) is to find a connected subgraph
T = (VT , ET) of G, that minimizes

c(T) =
∑

v 6∈VT

pv +
∑

e∈ET

ce. (1)

Note that if the goal is to find a subgraph T that maximizes the sum of the
profits of the vertices in T minus the cost of the edges in T , every optimal solution
is an optimal solution for our minimization problem and vice versa. Furthermore,
it is easy to see that every optimal solution T is a tree. Throughout this paper we
will distinguish between positive vertices, defined as R = {v ∈ V | pv > 0}, and
non-positive vertices. An example of a PCSTP instance and its feasible solution
are shown in Figure 1(a) and 1(b), respectively.

10

150

20

200

10

10

1

1
10

100

10
10

10

1

1

100

100

10

(a)

10

150

20

200

10

10

1

1

100

10

(b)

r

1

−9

10 10

10−90

−90

−190
10 −190

100

80

100
80

−199

1

100

10

−140

−140
10

−1991
−199

1

−100

−20

−200

−150

−10

(c)

Fig. 1. Example of a PCSTP instance. Each connection has fixed costs, hollow circles
and filled circles represent positive and non-positive vertices, respectively (Fig. 1(a)).
Figure 1(b) shows a feasible solution and Figure 1(c) the transformation into the Steiner
arborescence problem.

Previous Work The PCSTP has been introduced by Bienstock et al. [1], where
a factor 3 approximation algorithm has been proposed. Several other approxi-
mation algorithms have been developed (see [7, 8]). Segev [16] defined the node
weighted Steiner tree problem (NWSTP) – another extension of the Steiner prob-
lem in graphs, where, in contrast to PCSTP, some vertices must be contained
in every solution. Polyhedral studies of this problem can be found in [5, 6]. En-
gevall et al. [4] proposed a Lagrangean relaxation approach based on the shortest
spanning tree integer linear programming (ILP) formulation for NWSTP.

Lucena and Resende [11] presented a cutting plane algorithm for solving
PCSTP based on generalized subtour elimination constraints. The algorithm

no

yes

no

yesLP solution fractional,
or LP did not terminate?

Postprocessing
Return T ′, E ′

first and E ′
last .

Preprocessing

Least-cost test.

Degree-l test. l = 3, . . . , 8.

Minimum adjacency test.

Map solution T ′ back into T from G.

T ′ = TLP .

Solve LP-relaxation on GLP .

Any tests applied?

Apply MA on G′ = (V ′, E ′, c′, p′).

Degree-two test. Generate GLP = G′[E ′
first ∪ E ′

last].

Degree-one test.

Fig. 2. Three main phases of the proposed approach for PCSTP: (1) Preprocessing
reduces the given input graph G = (V, E, c, p) into G′ = (V ′, E′, c′, p′) without changing
the structure of the optimal solution. (2) A memetic algorithm (MA). (3) A collection
of solutions of the MA provides an excellent starting point for post-optimization by
solving a relaxation of an ILP model constructed from a model for finding the minimum
Steiner arborescence in a directed graph.

also contains basic reduction steps similar to those already proposed by Duin
and Volgenant [3] for NWSTP.

Canuto et al. [2] developed a multi-start local-search-based algorithm with
perturbations for PCSTP. It comprises Goemans-Williamson’s algorithm, 1-flip
neighborhood search and path relinking. A variable neighborhood search method
is applied as a post-optimization procedure. The algorithm found optimal solu-
tions on nearly all instances from [11] for which the optima were known.

Our Contribution A new algorithmic framework is developed as outlined
in Figure 2. The computational results given in Section 3 show that our new
approach is significantly faster than the previous approach by Canuto et al. [2]
while the solutions have the same quality. For a number of instances we manage
to find new best solutions, while on the majority of instances our solution values
are identical, which is not surprising: Extending our ILP approach shows that
these values are indeed optimal. The progress we obtain with respect to running
time gives rise to the possibility of solving much larger instances in the future.

2 Combining the Memetic Algorithm with an ILP Model

Within this section, we propose basic ideas of our new algorithmic framework
for the PCSTP whose outline is given in Fig. 2. After the input graph G has

been reduced into a graph G′ = (V ′, E′, c′, p′), we apply a memetic algorithm
that uses problem-dependent operators and strongly interacts with an exact
subroutine for the PCSTP problem on trees.

Our ILP-based post-optimization procedure utilizes the combined context of
the MA-solutions to produce a final tree that is superior to any single one in
the population. Furthermore, the post-optimization algorithm benefits from the
fact that solving the PCSTP restricted to a sparse edge set can be much simpler
than solving the original problem.

As input for the ILP algorithm, we take a subgraph GLP of G′ induced by
ELP = E′

first ∪ E′
last , the sets of edges that appear in any single solution of

the first, respectively, last population. Note that taking the edges from the first
generation enables us to escape local optima found by MA.

The best-found subtree T of the original graph G is finally determined by
mapping back the solution T ′ found by the ILP-relaxation.

2.1 Preprocessing

In this section, we briefly describe reduction techniques adopted from the work
of Duin and Volgenant [3] for the NWSTP, which have been partially used
also in [11]. From the implementation point of view, we transform the graph
G = (V,E, c, p) into a reduced graph G′ = (V ′, E′, c′, p′) by applying the steps
described below and maintain a backmapping function to transform each feasible
solution T ′ of G′ into a feasible solution T of G.

Least-Cost Test Let dij represent the shortest path length between any two
vertices i and j from V (considering only edge-costs). If ∃e = (i, j) such that
dij < cij then edge e can simply be discarded from G. The procedure’s time
complexity is dominated by the computation of all-pair shortest paths, which is
O(|E||V |+ |V |2 log |V |) in the worst case.

Degree-l Test Consider a vertex v 6∈ R of degree l ≥ 3, connected to vertices
from Adj (v) = {v1, v2, . . . , vl}. For any subset K ⊂ V , denote with MSTd(K),
the minimum spanning tree of K with distances dij . If

MSTd(K) ≤
∑

w∈K

cvw, ∀K ⊆ Adj (v), |K| ≥ 3, (2)

then v’s degree in an optimal solution must be zero or two. Hence, we can remove
v from G by replacing each pair (vi, v), (v, vj) with (vi, vj) either by adding a
new edge e = (vi, vj) of cost ce = cviv + cvvj − pv or in case e already exists, by
defining ce = min{ce, cviv + cvvj − pv}.

The procedure’s worst case running time is dominated by the computation
of all-pair shortest paths, which is O(|E||V |+ |V |2 log |V |). It is straightforward
to apply a simplified version of this test to all vertices v ∈ V with l = 1 and
l = 2.

Minimum Adjacency Test This test is also known as V \ K reduction test
from [3]. If there are adjacent vertices i, j ∈ R such that:

min{pi, pj} − cij > 0 and cij = min
it∈E

cit,

then i and j can be fused into one vertex of weight pi + pj − cij .

Summary of the Preprocessing Procedure We apply the steps described
above iteratively, as long as any of them changes the input graph (see Fig. 2).
The total number of iterations is bounded by the number of edges in G. Each
iteration is dominated by the time complexity of the least-cost test. Thus, the
preprocessing procedure requires O(|E|2|V |+ |E||V |2 log |V |) time in the worst
case, in which the input graph would be reduced to a single vertex. However, in
practice, the running time is much lower, as documented in Section 3. The space
complexity of preprocessing does not exceed O(|E|2).

2.2 A Memetic Algorithm for the PCSTP

For many hard combinatorial optimization problems, combinations of evolu-
tionary algorithms and problem-dependent heuristics, approximation algorithms
or local improvement techniques have been applied with great success. In a
memetic algorithm (MA), candidate solutions created by an evolutionary algo-
rithm framework are fine-tuned by some of these procedures [13].

We propose an MA based on a straight-forward steady-state evolutionary
algorithm combined with an exact algorithm for solving the PCSTP on trees. In
each iteration, we apply k-ary tournament selection with replacement in order
to select two parental solutions for mating. A new candidate solution is always
created by recombining these parents, mutating it with probability pmut ∈ [0, 1],
and pruning the obtained tree to optimality. Such a solution replaces always the
worst solution in the population with one exception: To guarantee a minimum
diversity, a new candidate whose set of edges ET ′ is identical to that of a solution
already contained in the population is discarded [14].

Each randomly created initial solution and each solution derived by recom-
bination and possibly mutation is optimally pruned with respect to its subtrees,
using the local improvement algorithm described below.

Local Improvement The algorithm we use here solves tree instances of the
PCSTP to optimality and runs in O(|V ′|) time (see also [8, 10]).

Given a tree instance T ′ = (VT ′ , ET ′ , p
′, c′) created by an MA, a subtree

of T ′ is optimal, if there is no subtree of T ′ with costs lower than c(T ′). The
algorithm we use here maximizes the sum of the profits of the vertices in T ′ minus
the sum of the edge-costs in T ′. We label the vertices v ∈ VT ′ and traverse
them in bottom-up order, until we end-up with a single vertex. Finally, the
optimal solution corresponds to the subtree shrunk within the vertex v∗ such
that v∗ = arg maxv∈VT ′ lv. The algorithm is as follows:

1. Set lv = p′v, for all v ∈ VT ′ ;

2. For all leaves u ∈ VT ′ : (a) if c′uv ≤ lu, shrink u and v into one vertex and set
lv = lv + lu − c′uv; (b) Delete u;

3. Goto 2. until a single vertex is left;

Clustering Employing clustering as a grouping procedure within variation op-
erators, we can group the subsets of vertices and insert or delete them at once.
For each positive vertex z ∈ R′, we define a cluster set N(z) [12]:

N(z) := {v ∈ V ′ \R′ | ∀c ∈ R′ : d′vz ≤ d′vc} ∪ {z},
where d′vz denotes the shortest path length between v and z. Hence, each non-
positive vertex v is assigned to the cluster set of its nearest positive vertex
z = base(v). Note that the sets N(z) are analogous to Voronoi regions in the
Euclidean plane.

Mehlhorn [12] proposed an efficient implementation of the clustering algo-
rithm which runs in O(|V ′| log |V ′|+ |E′|) time.

Edge-Set Encoding From spanning tree problems, we know that a direct rep-
resentation of spanning trees as sets of their edges exhibits significant advantages
over indirect encodings [15]. In our approach, the PCSTP solution edges are
stored in hash-tables, requiring only O(|V ′|) space. Thus, insertion and deletion
of edges, as well as checking for existence of an edge, can be done in expected
constant time.

Initialization Given an input graph G′ = (V ′, E′, c′, p′) and its set of posi-
tive vertices R′, the distance network GD(R′, ED, cD) is an undirected complete
graph whose edge costs cD(u, v) are given by the shortest path lengths between
u and v in G′. For generating initial solutions we use the following modification
of the distance network heuristic for the Steiner tree problem [12]:

1. Randomly select a subset V ′
init ⊂ R′ of size dpinit · |R′|e, pinit ∈ (0, 1);

2. Construct the minimum spanning tree (MST) T ′init on the subgraph of GD

induced by V ′
init ;

3. Replace each edge of T ′init by its corresponding shortest path in G′ to obtain
G′r = (V ′

r , E′
r);

4. Find the MST T ′r on the subgraph of G′ induced by V ′
r ;

5. Apply the exact algorithm for trees to solve T ′r to optimality;

Recombination The recombination operator is designed with strong inheri-
tance in mind; we try to adopt the structural properties of two parental solutions.
If the two solutions to be combined share at least one vertex, we just construct
the spanning tree over the union of their edge sets. Due to the deterministic
nature of our local improvement subroutine, we build a random spanning tree
on the union of parental edges to avoid premature convergence.

When the parent solutions are disjoint, we randomly choose a vertex out of
each solution, look up the shortest path between these two vertices and add for
each vertex v along the path all the edges that belong to cluster N(base(v)).
Finally, we build a random spanning tree over all these edges and apply local
improvement.

Mutation The aim of the mutation operator is to make small changes in the
current solution which we achieve by connecting one cluster to the solution. To
find an appropriate cluster to add, the algorithm randomly chooses a border
vertex v which is a vertex adjacent to at least one vertex outside our current
solution. We incorporate the vertices of cluster N(base(v)) into our solution and
search for a neighboring cluster whose base vertex v′ is preferably not yet an
element of the current solution; the vertices of N(base(v′)) will be added to
our solution. Finally we construct a minimum spanning tree and apply local
improvement.

Assuming the complete distance network is determined once in the prepro-
cessing phase and its edges are pre-sorted in non-increasing order, as well as the
edges of E′, the running time complexity of initialization and variation operators
is O(|E′| · α(|E′|, |V ′|)).

2.3 ILP Formulation

Our ILP formulation relies on a transformation of the PCSTP to the problem
of finding a minimum subgraph in a related, directed graph as proposed by
Fischetti [5]. We transform the graph GILP = (VILP, EILP, c′, p′) that results from
the application of the memetic algorithm as described in Section 2.2 into the
directed graph G′ILP = (VILP ∪ {r}, AILP, c′′) (see Figure 1(c) for an example).

In addition to the vertices of the input graph GILP, the vertex set of the
transformed graph contains an artificial root r. The arc set AILP contains two
directed edges (v, w) and (w, v) for each edge (v, w) ∈ EILP plus a set of arcs
from the root r to the positive vertices {v ∈ VILP | pv > 0}. We define the cost
vector c′′ as follows:

c′′vw = c′vw − p′w ∀(v, w) ∈ AILP, v 6= r and c′′rv = −p′v ∀(r, v) ∈ AILP .

A subgraph TILP of G′ILP that forms a directed tree rooted at r is called
a Steiner arborescence. It is easy to see that such a subgraph corresponds to
a solution of the PCSTP if r has degree 1 in G′ILP (feasible arborescence). In
particular, a feasible arborescence with minimal total edge cost corresponds to
an optimal prize-collecting Steiner tree.

We model the problem of finding a minimum Steiner arborescence TILP by
means of an integer linear program. Therefore, we introduce a variable vector
x ∈ {0, 1}|AILP|+|VILP| with the following interpretation:

xvw =

{
1 (v, w) ∈ TILP

0 otherwise
∀(v, w) ∈ AILP, xvv =

{
1 v /∈ TILP

0 otherwise
∀v ∈ VILP\{r}

The ILP is then as follows:

min
∑

a∈AILP

c′′axa (3)

subject to x(δ−({v})) + xvv = 1 ∀v ∈ VILP \ {r} (4)

x(δ−(S)) ≥ 1− xvv v ∈ S, r 6∈ S, ∀S ⊂ VILP (5)
∑

(r,v)∈AILP

xrv ≤ 1 (6)

xvw, xvv ∈ {0, 1} ∀(v, w) ∈ AILP,∀v ∈ VILP, (7)

where δ−(S) = {(u, v) ∈ AILP | u 6∈ S, v ∈ S}.
Constraint (4) states that every vertex that is part of the solution must have

at least one incoming edge while (5) states that for each vertex v in the solution,
there must be a directed path from r to v. Constraint (6) ensures that at most
one of the edges starting at the artificial root is chosen. We use CPLEX as linear
program solver to solve the ILP-relaxation of the problem obtained by replacing
constraints (7) with 0 ≤ xvw, xvv ≤ 1, (v, w) ∈ AILP, v ∈ VILP.

There are exponentially many constraints of type (5), so we do not insert
them at the beginning but rather separate them during the optimization process;
that is, we only add constraints violated by the current solution of the ILP-
relaxation. These violated constraints can be found efficiently using a maximum
flow algorithm on the graph with arc-capacities given by the current solution.
We also use pricing which means that we do not start with all the variables but
rather add them only if needed to prove optimality. A detailed description of
this approach that also includes flow-balance and asymmetry constraints can be
found in [9].

3 Computational Results

We tested our new approach extensively on 114 benchmark instances3 described
in [2, 11]. The instances range in size from 100 vertices and 284 edges to 1000
vertices and 25 000 edges. Because of space limitations, we present detailed re-
sults for the 60 most challenging instances from Steiner series C and D. Graphs
from series C have 500, and graphs from series D 1000 vertices. Table 1 lists the
instance name, its number of edges |E|, the size of the graph after the reductions
described in Section 2.1 (|V ′|, |E′|) and the time spent on preprocessing (tp [s]).

The following setup was used for the memetic algorithm as it proved to be
robust in preliminary tests: Population size |P | = 800; group size for tournament
selection k = 5; parameter for initializing solutions pinit = 0.9; mutation proba-
bility pmut = 0.3. Each run was terminated when no new best solution could be
identified during the last Ω = 10 000 iterations.

Because of its stochastic nature, the MA was performed 30 times on each
instance and the average results are presented in Table 1 which also contains the
3 Benchmark instances are available from http://research.att.com/~mgcr/data/.

average costs c(T)avg and their standard deviation σ(c). Furthermore, we show
the average CPU-time and the average number of evaluated solutions until the
best solution was found (t, respectively evals), and the success rates (sr [%]),
i.e. the percentage of instances for which optimal solutions could be found.

We also list the results of our combined approach, MA+ILP, where one MA
run (with a fixed seed-value) was post-optimized with the ILP method. The value
of the obtained solution and only the post-optimization CPU-time in seconds are
given in columns c(T) and t [s], respectively. Note that the time presented for
MA excludes preprocessing times.

We compared the results of our new approach (MA+ILP) to those of Canuto
et al. (CRR) obtained using multi-start local search with perturbations and
variable neighborhood search [2]. Table 1 provides the solution values of CRR
(c(T)) and the total running time in seconds (t). In most cases our solution
values are identical to CRR. The cases where one of the two is superior are
marked by a box.

Finally, to see if we can obtain provably optimal solutions using the ILP
approach, we continued the optimization: starting from the ILP-solution of the
restricted MA+ILP problem, the rest of variables from G′ was considered within
pricing of the ILP-relaxation. In column OPT , we show the values of the obtained
integer solutions. If we did not obtain an integer solution, or if our ILP-based
algorithm terminated abnormally (because of memory consumption) we show
the values obtained by Lucena & Resende [11], denoting it with +, respectively
∗. Note that all values given in OPT are optimal except for D14-B where the
best-known lower bound is printed [11]. The last column t [s] lists the additional
CPU-time needed to compute a provably optimal solution.

When comparing our running time data (achieved on a Pentium IV with
2.8 GHz, 2 GB RAM, SPECint2000=1204) with the results of Canuto et al. [2]
(Pentium II with 400 MHz, 64 MB RAM), the widely used SPEC c© performance
evaluation (www.spec.org) does not provide a direct scaling factor. However,
taking a comparison to the respective benchmark machines both for SPEC 95
and SPEC 2000 into account, we can argue by a conservative estimate that
dividing the Canuto et al. running times by a factor of 10 gives a very reasonable
basis of comparison to our data.

Table 2 summarizes our results over all benchmark instances used in [2]. The
second and third column show that using sophisticated preprocessing reduces
the number of nodes and edges in the problem graph by 30-45% on average.
We also provide the average quality (%-gap) and the average total running time
for the approach of Canuto et al. (CRR), our memetic algorithm (MA) and
the MA combined with linear programming post-processing (MA+ILP), respec-
tively. The last column gives the average running time for computing a provably
optimal solution with our ILP-based approach or a question mark where we
could not find an optimal solution for all instances.

The summarized results indicate that MA alone is substantially faster than
CRR (by an order of magnitude for the largest group D), but the average solution
quality is slightly worse. Solutions of MA+ILP are not significantly worse than

Table 1. Results obtained by Canuto et al. (CRR), the memetic algorithm (MA)
and the combination of MA with ILP (MA+ILP) on selected instances from Steiner
series C and D. Running times in (CRR) to be divided by 10 for comparison (cf. SPEC
comparison).

Orig. Preprocessing MA MA+ILP CRR OPT-ILP
Instance |E| |V ′| |E′| tp [s] c(T)avg σ(c) t [s] evals sr [%] c(T) t [s] c(T) t [s] OPT t [s]

C11-A 2500 489 2143 9.4 18.0 0.0 6.1 500 100.0 18 0.4 18 128 18 0.2
C11-B 2500 489 2143 9.5 32.0 0.0 9.1 1103 100.0 32 0.4 32 140 32 4.7
C12-A 2500 484 2186 6.8 38.7 0.5 9.0 2456 33.3 38 0.4 38 162 38 0.3
C12-B 2500 484 2186 6.8 46.0 0.0 8.7 590 100.0 46 0.5 46 156 46 0.8

C13-A 2500 472 2113 9.8 237.0 0.2 17.9 5326 0.0 236 0.6 237 1050 236 0.5
C13-B 2500 471 2112 9.8 258.5 0.7 35.9 15455 60.0 258 18.5 258 733 258 52.5
C14-A 2500 466 2081 7.5 293.0 0.0 21.0 3163 100.0 293 1.7 293 829 293 0.4
C14-B 2500 459 2048 7.5 318.6 0.5 29.8 9211 43.3 318 1.0 318 766 318 0.4
C15-A 2500 406 1871 6.5 502.2 0.8 45.4 14727 20.0 501 4.7 501 957 501 0.5
C15-B 2500 370 1753 6.0 551.8 0.9 45.7 15607 46.7 551 0.8 551 837 551 0.4

C16-A 12500 500 4740 2.4 12.0 0.0 10.6 500 0.0 12 1.9 11 1920 11 0.9

C16-B 12500 500 4740 2.4 12.0 0.0 11.5 503 0.0 12 3.5 11 1758 11 13.8

C17-A 12500 498 4694 2.4 19.0 0.0 11.2 620 0.0 19 2.9 18 549 18 1.9
C17-B 12500 498 4694 2.3 18.2 0.4 12.7 1951 76.7 18 2.1 18 434 18 1.4

C18-A 12500 469 4569 2.6 112.4 0.7 24.1 7446 6.7 112 2.1 111 3990 111+ —

C18-B 12500 465 4538 2.9 115.0 0.7 26.2 8361 6.7 116 219.5 113 3262 113+ —
C19-A 12500 430 3982 2.9 146.2 0.4 17.9 5402 80.0 146 2.3 146 3928 146 0.6

C19-B 12500 416 3867 2.8 149.0 0.6 15.8 4035 0.0 147 3.0 146 3390 146 0.6
C20-A 12500 241 1222 6.1 266.0 0.0 7.3 598 100.0 266 0.2 266 4311 266 0.0
C20-B 12500 133 563 5.0 267.0 0.0 5.2 500 100.0 267 0.1 267 3800 267 0.1

D1-A 1250 231 440 4.9 18.0 0.0 3.1 500 100.0 18 0.0 18 6 18 0.0
D1-B 1250 233 443 4.9 106.0 0.0 3.8 1950 100.0 106 0.1 106 257 106 0.0
D2-A 1250 257 481 4.9 50.0 0.0 3.5 500 100.0 50 0.1 50 7 50 0.0

D2-B 1250 264 488 4.9 218.3 1.0 7.3 4157 93.3 218 0.1 228 486 218 0.0
D3-A 1250 301 529 5.5 807.0 0.0 7.4 500 100.0 807 0.1 807 734 807 0.1

D3-B 1250 372 606 6.3 1516.2 1.3 51.0 15976 0.0 1509 0.6 1510 2184 1509 0.3
D4-A 1250 311 541 5.6 1203.8 0.4 10.4 974 16.7 1203 0.3 1203 1263 1203 0.3
D4-B 1250 387 621 7.2 1885.2 2.0 49.6 9671 0.0 1881 11.0 1881 2233 1881 1.3
D5-A 1250 348 588 7.6 2157.0 0.0 29.1 1963 100.0 2157 3.1 2157 3352 2157 8.8
D5-B 1250 411 649 11.5 3137.7 0.9 65.1 7316 0.0 3135 2.2 3135 2555 3135 0.4
D6-A 2000 740 1707 14.4 18.0 0.0 7.7 500 100.0 18 0.3 18 20 18 0.1

D6-B 2000 741 1708 14.7 72.6 0.8 10.5 1192 0.0 71 0.5 70 702 67 0.9
D7-A 2000 734 1705 11.3 50.0 0.0 8.2 500 100.0 50 0.3 50 195 50 0.1
D7-B 2000 736 1707 11.4 105.0 0.0 9.5 520 0.0 105 0.3 105 711 103 0.1
D8-A 2000 764 1738 11.7 755.5 0.5 19.1 2788 50.0 755 15.6 755 1727 755 41.8

D8-B 2000 778 1757 12.3 1045.7 3.9 123.8 36313 0.0 1037 1013.4 1038 3175 1036 2.8

D9-A 2000 752 1716 17.9 1074.7 1.0 52.1 13718 0.0 1075 354.5 1072 4109 1070+ —
D9-B 2000 761 1724 20.9 1436.4 3.0 151.2 31361 0.0 1420 1769.6 1420 2754 1420 4539.6
D10-A 2000 694 1661 14.6 1674.4 1.4 122.2 21289 0.0 1671 9.0 1671 4193 1671 2.2
D10-B 2000 629 1586 18.5 2089.8 2.1 107.3 14598 0.0 2079 44.1 2079 2644 2079 4.1

D11-A 5000 986 4658 27.7 18.0 0.0 15.4 500 100.0 18 1.8 18 540 18 0.5

D11-B 5000 986 4658 23.6 29.0 0.0 17.4 814 100.0 29 2.0 30 1280 29 4.7
D12-A 5000 991 4639 23.1 42.0 0.0 13.9 500 100.0 42 2.3 42 844 42 13.2
D12-B 5000 991 4639 22.3 42.0 0.0 15.1 620 100.0 42 2.3 42 687 42 0.4
D13-A 5000 966 4572 27.7 446.7 0.5 58.7 14308 0.0 445 1126.4 445 5047 445 5643.4
D13-B 5000 961 4566 28.0 491.7 1.9 97.2 22843 0.0 486 15.9 486 4288 486 2.6
D14-A 5000 946 4500 35.5 605.6 1.2 102.3 21486 0.0 602 34.2 602 6388 602∗ —
D14-B 5000 931 4469 37.2 674.2 1.4 102.8 17746 0.0 665 3409.5 665 6178 664∗ —
D15-A 5000 832 4175 47.1 1048.7 1.3 145.7 18343 0.0 1042 185.8 1042 7840 1042 12.8
D15-B 5000 747 3896 49.2 1114.7 0.8 95.6 11026 0.0 1108 117.0 1108 5220 1108 4.8

D16-A 25000 1000 10595 10.8 14.0 0.0 23.1 500 0.0 14 8.9 13 1397 13 24.8
D16-B 25000 1000 10595 10.8 13.3 0.4 26.4 1313 73.3 13 9.3 13 1043 13 42.0
D17-A 25000 999 10534 10.8 23.0 0.0 24.8 1983 100.0 23 9.5 23 3506 23 167.1
D17-B 25000 999 10534 10.7 23.0 0.0 23.7 948 100.0 23 10.2 23 2089 23 60.1
D18-A 25000 944 9949 11.7 220.8 0.7 81.4 19864 0.0 218 197.0 218 30044 218+ —
D18-B 25000 929 9816 12.0 230.2 1.3 98.7 25585 0.0 224 25.2 224 36643 223 34.9
D19-A 25000 897 9532 12.4 317.7 2.7 87.6 18480 0.0 308 151.9 308 40955 306 1446.5
D19-B 25000 862 9131 13.1 317.8 2.2 81.9 17912 0.0 311 13.6 311 38600 310 62.8
D20-A 25000 488 2511 37.3 537.0 0.0 18.4 1036 0.0 536 1.0 536 28139 536 0.5
D20-B 25000 307 1383 32.9 537.0 0.0 12.7 1587 100.0 537 0.5 537 22104 537 0.1

CRR solutions, but MA+ILP is much faster than CRR, even when we take the
difference in hardware into account.

Table 3 further illustrates the importance of using both, recombination and
mutation, and that it is necessary to apply local improvement immediately after
each variation operator. Shown are average results of 30 runs for the following
three variants of the MA: In C+LI, new candidate solutions are created only by
recombination followed by local improvement. M+LI applies always only muta-
tion followed by local improvement. In C+M+LI, recombination and mutation
are used, and local improvement is performed before a solution is inserted into
the population. All strategy parameters were set identical as in the previous
experiments with the only exception that in M+LI, the probability of applying
mutation was pmut = 1. The performance values of these variants can therefore
directly be compared to those of the original MA in Table 2.

C+M+LI converged fastest, but the obtained solutions were in nearly all
cases substantially poorer (1.7% of average gap over all instances) than those
of the original MA (0.6% of average gap). This points out the particular im-
portance of applying local improvement after both variation operators. C+LI,
on the other side, generally needed much more evaluations and also more time
to converge. Although its total running time hardly deviates form our original
MA, the average gap obtained over all instances was 1.2 %. Finally, the worst
results were obtained by running M+LI, with 2% of average gap, which clearly
indicates the crossover’s importance.

4 Conclusions and Future Research

Our results show that exact algorithms used as local improvement or post-
optimization procedures can improve the performance of memetic algorithms.
We conjecture that combining linear programming or integer linear program-
ming methods with evolutionary algorithms as described in this paper can yield
high quality solutions in short computation time also for other hard optimization
problems.

In our future research, we want to combine memetic algorithms with a
Branch & Cut approach for solving integer linear programs to obtain even bet-
ter solutions. Since almost all the currently available benchmark instances are
now solved to optimality within a rather short time, the frontier of tractable
instances can be pushed further. Based on a real-world utility network design
problem we plan to establish new sets of difficult benchmark instances to give
new challenges to the community.

Table 2. Summarized results. Running times from Canuto et al. should be divided by
10 for comparison (cf. SPEC comparison). %-gap = (c(T)−OPT)/OPT · 100%.

Preprocessing MA MA+ILP CRR ILP

Group |V ′|/|V | [%] |E′|/|E| [%] tprep [s] %-gap t [s] %-gap t [s] %-gap t [s] tOPT [s]

K 42.8 46.4 1.6 0.17 4.4 0.13 5.5 0.03 74.5 139.3
P 80.9 74.7 1.0 0.06 12.0 0.01 12.3 0.00 215.1 12.6
C 69.7 59.9 3.8 1.01 20.0 0.70 27.3 0.04 956.2 ?
D 70.5 62.9 16.9 0.98 62.7 0.44 232.2 0.41 6834.6 ?

Table 3. Average performance over 30 runs of different MA-variants, for K, P, C and
D groups of PCSTP instances.

C+LI M+LI C+M+LI
Grp.

%-gap σ t [s] evals sr [%] %-gap σ t [s] evals sr [%] %-gap σ t [s] evals sr [%]

K 0.2 < 0.1 4.2 592 69.1 0.2 < 0.1 4.3 907 70.1 0.3 < 0.1 3.7 727 70.3
P 0.3 < 0.1 10.1 5076 46.1 0.3 0.1 11.6 7478 27.3 0.6 0.1 5.8 3040 19.1
C 2.2 0.1 17.4 6222 41.7 3.9 0.2 18.4 4264 24.6 2.4 0.2 11.0 1313 28.8
D 1.9 0.3 60.5 11582 27.4 3.7 0.9 64.7 9479 20.2 3.5 0.2 37.2 1697 18.2

References

1. D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. Williamson. A note on the
prize collecting traveling salesman problem. Math. Prog., 59:413–420, 1993.

2. S. A. Canuto, M. G. C. Resende, and C. C. Ribeiro. Local search with perturbations
for the prize-collecting Steiner tree problem in graphs. Networks, 38:50–58, 2001.

3. C. W. Duin and A. Volgenant. Some generalizations of the Steiner problem in
graphs. Networks, 17(2):353–364, 1987.

4. S. Engevall, M. Göthe-Lundgren, and P. Värbrand. A strong lower bound for the
node weighted Steiner tree problem. Networks, 31(1):11–17, 1998.

5. M. Fischetti. Facets of two Steiner arborescence polyhedra. Mathematical Pro-
gramming, 51:401–419, 1991.

6. M. X. Goemans. The Steiner tree polytope and related polyhedra. Mathematical
Programming, 63:157–182, 1994.

7. M. X. Goemans and D. P. Williamson. The primal-dual method for approximation
algorithms and its application to network design problems. In D. S. Hochbaum,
editor, Approximation algorithms for NP-hard problems, pages 144–191. P. W. S.
Publishing Co., 1996.

8. D. S. Johnson, M. Minkoff, and S. Phillips. The prize-collecting Steiner tree prob-
lem: Theory and practice. In Proceedings of 11th ACM-SIAM Symposium on Dis-
crete Algorithms, pages 760–769, San Francisco, CA, 2000.

9. G. Klau, I. Ljubić, A. Moser, P. Mutzel, P. Neuner, U. Pferschy, and R. Weiskircher.
A new lower bounding procedure for the prize-collecting Steiner tree problem.
Technical Report TR-186-1-04-01, Vienna University of Technology, 2004.

10. G. Klau, I. Ljubić, P. Mutzel, U. Pferschy, and R. Weiskircher. The fractional
prize-collecting Steiner tree problem on trees. In G. D. Battista and U. Zwick,
editors, ESA 2003, volume 2832 of LNCS, pages 691–702. Springer-Verlag, 2003.

11. A. Lucena and M. Resende. Strong lower bounds for the prize-collecting Steiner
problem in graphs. Technical Report 00.3.1, AT&T Labs Research, 2000.

12. K. Mehlhorn. A faster approximation for the Steiner problem in graphs. Informa-
tion Processing Letters, 27:125–128, 1988.

13. P. Moscato. Memetic algorithms: A short introduction. In D. Corne and et al.,
editors, New Ideas in Optimization, pages 219–234. McGraw Hill, England, 1999.

14. G. R. Raidl and J. Gottlieb. On the importance of phenotypic duplicate elimination
in decoder-based evolutionary algorithms. In S. Brave and A. S. Wu, editors, Late
Breaking Papers at the 1999 Genetic and Evolutionary Computation Conference,
pages 204–211, Orlando, FL, 1999.

15. G. R. Raidl and B. A. Julstrom. Edge-sets: An effective evolutionary coding of
spanning trees. IEEE Trans. on Evolutionary Computation, 7(3):225–239, 2003.

16. A. Segev. The node-weighted Steiner tree problem. Networks, 17:1–17, 1987.

