
The Fractional Prize-Collecting Steiner Tree
Problem on Trees�

Extended Abstract
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Abstract. We consider the fractional prize-collecting Steiner tree prob-
lem on trees. This problem asks for a subtree T containing the root
of a given tree G = (V, E) maximizing the ratio of the vertex profits∑

v∈V (T ) p(v) and the edge costs
∑

e∈E(T ) c(e) plus a fixed cost c0 and
arises in energy supply management. We experimentally compare three
algorithms based on parametric search: the binary search method, New-
ton’s method, and a new algorithm based on Megiddo’s parametric search
method. We show improved bounds on the running time for the latter
two algorithms. The best theoretical worst case running time, namely
O(|V | log |V |), is achieved by our new algorithm. A surprising result of
our experiments is the fact that the simple Newton method is the clear
winner of the tested algorithms.

1 Introduction

We consider a variant of the well-studied Steiner tree problem in graphs, namely
the prize-collecting Steiner tree problem. This problem, where we want to find
a subtree of a graph that maximizes an objective function that depends on
the profits of the vertices and the costs of the edges, arrises in the design of
supply networks like district heating systems. It was first mentioned by Segev
[14] where it appears as a special case of the node-weighted Steiner tree prob-
lem and is called the Single Point Weighted Steiner Tree problem. The author
proves NP-hardness of the problem, presents integer linear programming formu-
lations, and uses Lagrangean relaxation and heuristics to compute lower and
upper bounds for these formulations, respectively. In [4], Duin and Volgenant
relate the node-weighted (and thus also the prize-collecting) variant to the clas-
sical Steiner tree problem. They adapt reduction techniques and show how the
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rooted prize-collecting Steiner tree problem can be transformed into the directed
version of the classical Steiner tree problem.

In [6], Fischetti studies the facial structure of a generalization of the prob-
lem, the so called Steiner arborescence problem. Goemans studies the polyhedral
structure of the node-weighted Steiner tree problem [7] and shows that his char-
acterization is complete in case the input graph is series-parallel.

Approximation results are given by Bienstock et al. [1] and by Goemans
and Williamson [8]; the latter present a purely combinatorial O(n2 log n)-time
primal-dual (2− 1

n−1 )-approximation algorithm, where n denotes the number of
vertices in the graph and the objective is to minimize the edge costs plus the
prizes of the nodes not spanned. For the more realistic objective to maximize
the sum of the profits minus the costs, Feigenbaum et al. [5] prove that it is
NP-hard to approximate the problem to a constant factor.

In this paper, we look at the special case where the potential network is a
tree and instead of the linear objective function, we look at the fractional version
of the problem which maximizes the ratio of the sum of the profits and the sum
of the (fixed and variable) costs.

Section 2 contains some preliminaries including the description of a linear
time algorithm for optimizing the linear objective function. In Section 3, we
present three different algorithms that use the parametric formulation: a binary
search algorithm, Newton’s method and our new variant based on Megiddo’s
method for parametric search. We show a worst case running time of Newton’s
method of O(|V |2), and of our new algorithm of O(|V | log |V |). In Section 4, we
report on extensive computational experiments. Surprisingly for us, our experi-
ments show that Newton’s method, although having worst case running time of
O(|V |2), outperforms the two other methods on our benchmark set. Finally, in
Section 5 we summarize the results.

2 Preliminaries

In this section, we provide some basic definitions and describe a linear time al-
gorithm for solving the linear version of the prize-collecting Steiner tree problem
(PCST problem). A closely related dynamic programming algorithm can also be
found in [15] (where trees with only node-weights are considered).

Let G = (V, E) be an undirected graph, r ∈ V a root vertex of G,
p : V → R

+ ∪ {0} a profit function on the vertices, and c : E → R
+ ∪ {0}

a cost function on the edges.
The Fractional Prize Collecting Steiner Tree problem (FPCST) consists of find-
ing a connected subgraph T = (V ′, E′) of G with r ∈ V ′ that maximizes the
ratio of the profits and the costs:

profit(T ) =
∑

v∈V ′ p(v)
c0 +

∑
e∈E′ c(e)

,

In the construction of a district heating network, the edges correspond to the
potential pipes and the vertices to customers or forks in the pipe network. The
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costs of the edges are the costs of the pipes, the profits of the vertices the revenue
generated by the customers and the fixed cost c0 the cost for building the heating
plant.

The Linear Prize Collecting Steiner Tree problem (LPCST) consists of find-
ing a connected subgraph T = (V ′, E′) of G with r ∈ V ′ that maximizes the
difference of the profits and the costs:

profit(T ) =
∑

v∈V ′
p(v) −

∑

e∈E′
c(e) .

Note that fixed costs are irrelevant if we optimize a linear objective function.
If T = (V, E) is a tree with root r, then the function parent(v) assigns every

vertex v ∈ V \ {r} a unique vertex u which is the vertex following v on the path
from v to r. The subtree rooted at v consists of all vertices and edges reachable
from v without passing the vertex parent(v). The set C(v) of children of v is the
set that contains all vertices u with parent(u) = v. A subtree of T is optimal, if
there is no other subtree of T with a higher profit. We recursively define a value
l(v) and a subtree T (v) for each vertex v ∈ V as

l(v) = p(v) +
∑

u∈C(v)

max{0, l(u) − c(u, v)} . (1)

The subtree T (v) = (V (v), E(v)) with profit l(v) is defined in the following
way:

V (v) = {v} ∪
⋃

u∈C(v)

{V (u) | l(u) − c(u, v) ≥ 0}

E(v) =
⋃

u∈C(v)

{(u, v) ∪ E(u) | l(u) − c(u, v) ≥ 0} .

If c(u, v) > l(u) for a vertex u with parent(u) = v it does not pay off to include
the subtree rooted at u via edge (u, v) (the only possible connection towards r),
and we decide to cut off the edge (u, v) together with the corresponding subtree.
This decision can be made locally, as soon as the value l(u) is known. It is not
hard to construct an algorithm for LPCST that uses these facts and runs in
linear time (see [10] for details). The optimal subtree rooted at v is T (v) with
l(v) as its profit (the correctness of this algorithm follows easily by induction).

When solving FPCST on trees, in contrast to the linear case, we cannot make
local decisions anymore without looking at the whole problem. The following
section presents the parametric formulation of the problem that allows us to
decide in linear time if a given value t is smaller, equal, or greater than the value
of an optimal solution of FPCST.

3 Algorithms Based on Parametric Formulation

To solve FPCST, we first formulate LPCST with an additional parameter. Then
we show how this enables us to solve FPCST using our algorithm for LPCST.
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The connection between a parametric formulation and the fractional version of
the same problem has already been established by Dinkelbach [3].

Let T be the set of all connected subgraphs T = (V ′, E′) of G that contain
the root. We are looking for a graph in T that maximizes the expression

∑
v∈V ′ p(v)

c0 +
∑

e∈E′ c(e)
.

Now consider the following function o(t):

o : R
+ → R, o(t) = max

T=(V ′,E′)∈T

∑

v∈V ′
p(v) − t(c0 +

∑

e∈E′
c(e)).

Let t∗ be the value of the optimal solution of FPCST on G and t ∈ R. Then
we have:

o(t) = 0 ⇔ t = t∗, o(t) < 0 ⇔ t > t∗, o(t) > 0 ⇔ t < t∗ .

Using the algorithm for LPCST, we can test for any t in linear time if it is
smaller, equal, or greater than the optimal solution for FPCST. This fact can
be used to construct different search algorithms that solve the problem.

There is also a geometric interpretation of our problem. Let T be again the
set of all non-empty subtrees of G. Each T = (VT , ET ) ∈ T defines a linear
function fT : R

+ → R in the following way:

fT (t) =
∑

v∈VT

p(v) − t(c0 +
∑

e∈ET

c(e)) .

Since all vertex profits and edge costs are non-negative, and c0 is positive, all
these linear functions have negative slope. In this geometric interpretation, the
function o defined above is the maximum of these functions. Hence it is a piece-
wise linear, convex, monotonously decreasing function. What we are looking for
is the point where o crosses the x-axis. The functions fT that contain this point
correspond to optimal subtrees for the given profits and costs.

3.1 Binary Search

An easy way of building an algorithm for the FPCST problem that uses the
parametric formulation of the previous section is binary search. We start with
an interval (tl, th) that contains t∗. Then we test the mid point t of this interval
using the algorithm for the linear problem. This will give us either a proof that
t equals t∗ or a new upper or lower bound and will halve the size of the interval.

It is important to choose the right terminating conditions to achieve good
performance. In our case, these conditions rely on the fact that o(t) is the max-
imum of linear functions (see [10] for details). Since the running time of the
algorithm depends to a great degree on the values for the profits and costs, a
meaningful upper bound for the worst case running time that depends only on
the size of the input graph cannot be given.
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3.2 Newton’s Method

We use the adaptation of Newton’s iterative method described for example by
Radzik [12]. Let T be the set of all subtrees of G that contain the root. We start
with t0 = 0. In iteration i, we compute

o(ti) = max
T=(V ′,E′)∈T

∑

v∈V ′
p(v) − ti(c0 +

∑

e∈E′
c(e))

together with the optimal tree Ti = (Vi, Ei) for parameter ti using the linear
algorithm from Section 2. As long as o(ti) is greater than 0, we compute ti+1 as
the fractional objective value of Ti. So we have:

ti+1 =

∑
v∈Vi

p(v)
c0 +

∑
e∈Ei

c(e)
.

In the course of this algorithm, ti increases monotonically until t∗ is reached.
Let l be the index with tl = t∗. Radzik shows in [13] for general fractional
optimization problems where all weights are non-negative that l = O(p2 log2 p)
where p is the size of the problem (in our case the number of vertices of the
problem graph G).

For our specific problem, we can prove a stronger bound for l:

Theorem 1. Newton’s method applied to the fractional prize-collecting Steiner
tree problem with fixed costs takes at most n+2 iterations where n is the number
of vertices of the input tree T .

To proof the theorem, we show that for each iteration of Newtons’s method
on our problem, there is an edge that was contained in the previous solution
but is not contained in the current solution. This implies that the number of
iterations is linear (see [10] for a detailed proof).

Since we can solve the problem for the linear objective function in linear time
using the algorithm from Section 2, Newton’s Method has a worst case running
time of O(|V |2) for our problem.

. . .
n n(n − 1)

1 n n(n − 1)
n(n − 1)(n − 2)0
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Fig. 1. Worst case example for Newton’s Method. The edge costs and vertex profits
are above the path while the names of the vertices and edges are below

Figure 1 shows an example where this worst case running time is reached.
If we define the fixed costs c0 = 1, we can show by a coarse estimation of
the objective function value for each path starting at r that the solution of
Newton’s method shrinks only by one vertex in every iteration and that the
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optimal solution is the root together with vertex vn−1. Therefore, the algorithm
executes n − 1 iterations and since each iteration has linear running time, the
total running time of Newton’s method on this example is Θ(n2).

3.3 A New Algorithm Based on Megiddo’s Parametric Search

In this section, we present our new algorithm for the FPCST problem which
is a variant of parametric search introduced by Megiddo [11]. Furthermore, we
suggest an improvement that guarantees a worst case running time of O(n log n)
for any tree G with n vertices.

The idea of the basic algorithm is to simulate the execution of the algorithm
A for LPCST on the unknown edge cost parameter t∗ (the objective value of
an optimal solution). During the simulation, we keep an interval (tl, th) that
contains t∗ and that is initialized to (0, ∞). Whenever A has to decide if a certain
edge (u, v) is included in the solution, this decision is based on the evaluation of
the maximum in (1) and depends on the root rd of a linear function in t given
by l(u) − t · c(u, v).

The decision is clear if rd is outside (tl, th). Otherwise, we multiply all edge
costs of the tree with rd and execute A on the resulting problem. The sign of the
linear objective function value o(rd) determines the decision (which enables us
to continue the simulation of A) and rd either becomes the new upper or lower
bound of (tl, th).

There are two possibilities for the algorithm to terminate. The first is that
one of the roots we test is t∗. In this case, we can stop without completing the
simulation of A. If we have to simulate A completely, we end up with an interval
for t∗. In this case, we perform depth first search on the edges that we have not
cut during the simulation to obtain an optimal subtree.

Just as in the algorithm for the linear problem, our algorithm assigns labels
to the vertices, but these labels are now linear functions that depend on the
parameter t. The algorithm uses a copy G′ of the problem tree G. In each phase,
all leaves of G′ are deleted after the necessary information has been propagated
to the parents of the leaves. When the algorithm starts, the label of every vertex
is set to the constant function equal to its profit. In the course of the algorithm,
these labels change and will correspond to linear functions over the parameter t.

When we look at a certain leaf v with label fv(t) during a phase we compute
the linear function f̄v(t) = fv(t) − t · c(ev) where ev is the edge incident to v. Let
rv be the root of f̄v(t). For all current leaves, we collect the values rv, sort them
and perform binary search on the roots using the linear algorithm to decide if
the value t∗ is smaller, greater, or equal than a certain root. Note that we do
not have to include the roots in the binary search that are outside the current
interval for t∗. If there are roots that are inside the current interval, we either
find t∗ or we end up with a smaller interval.

After the binary search, we know for each leaf v if its root rv is smaller
or greater than t∗ (if it is equal, we have already found the solution and the
algorithm has stopped). We delete all leaves whose root is smaller than t∗ from
G′. For all other leaves v, we add the function f̄v(t) to the label of its parent
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and delete v, too. Now the next phase of the algorithm starts with the vertices
that have become leaves because of the deletion of the current leaves (see [10]
for a pseudo code.

The correctness of the algorithm follows from the general principle of Meg-
gido’s method [11]. The running time of the algorithm is dominated by the calls
to the linear algorithm. The binary search is performed by solving O(log(|B|))
instances of LPCST with profits and costs determined by the parameter t. The
set B is the set of leafs of the current working graph G′. Since it may happen
that the graph contains only one leaf in every iteration (G may be a path) the
number of iterations can be n. The worst case example for Newton’s method
in Section 3.2 is also a worst case example for this algorithm. Thus the overall
running time of the algorithm is O(|V |2).

Improvement Through Path Contraction. If there is no vertex in G with
degree two, our algorithm already has a running time of O(n log n) for a tree
with n vertices: In this case we delete at least half the vertices of the graph in
every iteration by deleting all leaves. It will follow from the proof of Theorem 2
that this property is sufficient for the improved running time.

We will remove the remaining obstacles in the graph, namely vertices of
degree two, by performing a reduction of all paths in the tree. This must be
done in every iteration since the removal of all leaves at the end of the previous
iteration may generate new paths. The idea of the reduction is based on the fact
that the subtree situated at the end of a path can only contribute to the optimal
solution if the complete path is also included. Otherwise, only a connected subset
of the path can be in the optimal solution.

More formally, a subset of V is a path denoted by P := {v0, v1, . . . , vm, vm+1}
if v0 has degree greater two or is the root, vm+1 does not have degree two and
all other vertices are of degree two. To fix the orientation we assume that v0 is
included in the path from v1 to r. Since we want to contract the m vertices of
the path to a single vertex, trivial cases can be excluded by assuming m ≥ 2.
In an optimal solution either there exists a vertex vq ∈ P such hat v1, . . . , vq

are the only vertices of P in the solution, or P is completely contained in the
solution and connects a possible subtree rooted at vm+1 to r.

The procedure ContractPath (see Algorithm 1) determines the best pos-
sible candidate for vq and contracts the path by adding an artificial edge from v0
to vq with cost equal to the value of the complete subpath including v1, . . . , vq−1,
and a second artificial edge from vq to vm+1 that models the cost of traversing
the vertices vq+1, . . . , vm. The path contraction is invoked at the beginning of
every iteration in our algorithm for FPCST.

The main theoretical result of this paper is stated in the following theorem:

Theorem 2. The running time of Algorithm the algorithm with Contract-
Path is in O(n log n).

Proof. (Sketch) To find vq, we need to compute the maximum of m linear func-
tions, which can be done in time O(m log m) (see [2] for a proof). The resulting
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Data : A labeled tree T = (V, E) with fixed root r;
a path in T v0, v1, . . . , vm, vm+1, m > 2

Result : A labeled tree T = (V, E) with fixed root r

end[1] = 0;
for j = 1 to m do

end[j] := end[j − 1] + l(vj) + c(vj−1, vj);
end
f(t) = maxm

j=1 end[j];
B = {t ∈ (tl, th) | t is breakpoint of f(t)} ∪ {tl, th};
Perform binary search on B using the modified linear algorithm and update tl

and th;
choose q s.t. end[q] = f(t) for t ∈ (tl, th);
c(v0, vq) :=

∑q−1
k=1(l(vk) + c(vk−1, vk)) + c(vq−1, vq);

c(vq, vm+1) =
∑m

k=q+1(l(vk) + c(vk−1, vk)) + c(vm, vm+1);
Remove vertices v1, . . . , vq−1, vq+1, . . . , vm from T ;

Algorithm 1: Algorithm ContractPath to remove all nontrivial paths from a
tree

piecewise linear function has at most m breakpoints. In every iteration there
is a number of breakpoints from ContractPath and a number of leaves with
corresponding root values to be considered. We use binary search in each itera-
tion to find a new interval (tl, th) including neither breakpoints nor roots thus
resolving the selection of vq and the final decision on all leaves.

If k is the size of the graph at the beginning of an iteration, then the bi-
nary search performs a logarithmic number of calls to the algorithm that solves
LPCST. Therefore, a single iteration takes time O(k log k). It can be shown that
applying the procedure ContractPath to every non trivial path guarantees
that our algorithm together with ContractPath deletes at least one third of
the vertices in each iteration. Since the size of the graph is reduced by a con-
stant fraction after each iteration, the total running time sums up to O(n log n).
See [10] for a detailed proof. ��

4 Computational Experiments

We generated two different test sets of graphs to test the performance of the
algorithms presented in Section 3. The first set consists of randomly generated
trees where every vertex has at most two children while the second set contains
random trees where each vertex can have up to ten children. In both sets, the
cost of each edge and the profit of each vertex is a random integer from the
set {1, 2, . . . , 10, 000}. Both sets contain 100 trees for each number of vertices
from 1,000 to 10,000 in steps of 500 vertices. The fixed costs for all problem
instances has been chosen as 1,000 times the number of vertices in the graph.
This produces solutions containing around 50% of all vertices for the graphs
where each vertex has at most 10 children. For the graphs where each vertex
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has at most two children, the percentage is around 35%. To execute the three
algorithms on the test sets as a documented and repeatable experiment and for
analyzing the results, we used the tool set ExpLab [9].
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Fig. 2. The average number of calls to the linear algorithm executed by the three
algorithms on the benchmark set with maximum degree 2 and maximum degree 10

Figure 2 shows the average number of calls over all trees with the same num-
ber of vertices for the three algorithms and the two benchmark sets. The number
of calls grows very slowly with the size of the graphs for all three algorithms. In
fact, the number of calls barely grows with the number of vertices in the graph
for Newton’s method.

Our variant of Megiddo’s method needs more calls than the other two meth-
ods. For the leaves of the tree, the algorithm behaves just like binary search.
The reason why the number of calls is higher than for binary search is that our
new algorithm not only executes calls at the leaf level but also higher up in the
tree. These are usually very few and not on every level. So on a level where ad-
ditional calls have to be made, there are usually only one or two open decisions.
Therefore, the binary search in our new algorithm can not effectively be used
except at the leaf level. Because of this fact, the pure binary search algorithm
can “jump” over some decisions that parametric search has to make on higher
levels.

The reason why Newton’s method needs fewer calls than the binary search
method is the random nature of our problem instances. Binary search starts with
a provable upper bound for t∗ which in our case is the sum of all vertex profits
divided by the fixed costs. This upper bound is far away from the objective
value of the optimal solution. After the first iteration of Newton’s method, the
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value t is the objective function value of the whole tree. This value is a good
lower bound for the optimal solution because the profits and costs are random
and with the fixed costs we have chosen, the optimal tree contained 35-50% of
all vertices. Therefore, Newton’s method needs only a small number of steps to
reach the optimal solution and the number of calls grows only very slowly with
the size of the graphs.

Figure 3 shows that the number of calls to the linear algorithm determines
the running time: our new algorithm is the slowest and Newton’s method the
fastest. The running times grow slightly faster than linear with the size of the
graphs. Since each call to the algorithm for the linear problem needs linear time,
the fact that the number of calls grows with the size of the graph (albeit very
slowly) is the reason for this behavior. We executed the experiments on a PC
with a 2.8 GHz Intel Processor with 2GB of memory running Linux. Even for the
graphs with 10,000 vertices, the problems can be solved in less than 1.8 seconds.
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Fig. 3. The average time used by the three algorithms on the two benchmark sets

We also executed an experiment where we used only the 100 graphs of the
test set with maximum degree 10 that have 10,000 vertices. We increased the
fixed costs c0 exponentially and ran all three algorithms on the 100 graphs for
each value of c0. We started with c0 = 100 (where the solution contained only a
few vertices) and multiplied the fixed costs by 10 until we arrived at 1011 (where
the optimal solution consisted almost always of the whole tree).

Figure 4 shows how the time needed by the three algorithms depends on fixed
costs. It is remarkable that for small fixed costs, binary search is faster than
Newton’s method but for fixed costs of more than 10,000, Newton’s method is
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faster. The reason is the same we have already given for the better performance
of Newton’s method in our first experiments. For large fixed costs, the percentage
of the vertices contained in an optimal solution rises and so the value of the first
solution that Newton’s method tests, which is the value of the whole graph,
is already very close to the optimal value. Binary search has to approach the
optimum solution from the provable upper bound for the objective function
value which is far away from the optimal solution when this solution is large and
therefore contains many edges.

Parametric search is not much slower than binary search for high fixed costs.
As the plot shows, the reason is not that parametric search performs signifi-
cantly better for higher fixed costs but that the performance of binary search
deteriorates for the reasons given in the last paragraph.
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Fig. 4. Time used by the three algorithms for growing fixed costs (logarithmic x-axis)

5 Conclusions

In this paper, we have presented three algorithms for solving the fractional prize-
collecting Steiner tree problem (PCST problem) on trees G = (V, E). We have
shown that Newton’s algorithm has a worst case running time of O(|V |2). We
have also presented a variant of parametric search and proved that the worst case
running time of this new algorithm is O(|V | log |V |). Our computational results
show that Newton’s method performs best on randomly generated problems
while a simple binary search approach and our new method are considerably
slower. For all three algorithms, the running time grows slightly faster than
linear with the size of our test instances.
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10. G. Klau, I. Ljubić, P. Mutzel, U. Pferschy, and R. Weiskircher. The fractional
prize-collecting Steiner tree problem on trees. Technical Report TR-186-1-03-01,
Institute of Computer Graphics and Algorithms, Vienna University of Technology,
2003.

11. N. Megiddo. Combinatorial optimization with rational objective functions. Math-
ematics of Operations Research, 4(4):414–424, 1979.

12. T. Radzik. Newton’s method for fractional combinatorial optimization. In Pro-
ceedings of 33rd Annual Symposium on Foundations of Computer Science, pages
659–669, 1992.

13. T. Radzik. Fractional combinatorial optimization. In D. Z. Du and P. Pardalos,
editors, Handbook of Combinatorial Optimization, pages 429–478. Kluwer, 1998.

14. A. Segev. The node-weighted Steiner tree problem. Networks, 17:1–17, 1987.
15. L. A. Wolsey. Integer Programming. John Wiley, New York, 1998.

http://explab.sourceforge.net

	Introduction
	Preliminaries
	Algorithms Based on Parametric Formulation
	Binary Search
	Newton's Method
	A New Algorithm Based on Megiddo's Parametric Search

	Computational Experiments
	Conclusions



