Efficient Consideration of Soft Time Windows in
a Large Neighborhood Search for the Districting
and Routing Problem for Security Control*

Bong-Min Kim'2, Christian Kloimiillner!, and Giinther R. Raidl!

! Institute of Computer Graphics and Algorithms, TU Wien
Favoritenstrale 9-11/1861, 1040 Vienna, Austria
{kloimuellner|raidl}@ac.tuwien.ac.at
2 Research Industrial Systems Engineering
Concorde Business Park F| 2320 Schwechat, Austria
bong-min.kim@rise-world.com

Abstract. For many companies it is important to protect their physical
and intellectual property in an efficient and economically viable man-
ner. Thus, specialized security companies are delegated to guard private
and public property. These companies have to control a typically large
number of buildings, which is usually done by teams of security guards
patrolling different sets of buildings. Each building has to be visited sev-
eral times within given time windows and tours to patrol these buildings
are planned over a certain number of periods (days). This problem is
regarded as the Districting and Routing Problem for Security Control.
Investigations have shown that small time window violations do not re-
ally matter much in practice but can drastically improve solution quality.
When softening time windows of the original problem, a new subprob-
lem arises where the minimum time window penalty for a given set of
districts has to be found for each considered candidate route: What are
optimal times for the individual visits of objects that minimize the overall
penalty for time window violations? We call this Optimal Arrival Time
Problem. In this paper, we investigate this subproblem in particular and
first give an exact solution approach based on linear programming. As this
method is quite time-consuming we further propose a heuristic approach
based on greedy methods in combination with dynamic programming.
The whole mechanism is embedded in a large neighborhood search (LNS)
to seek for solutions having minimum time window violations. Results
show that using the proposed heuristic method for determining almost
optimal starting times is much faster, allowing substantially more LNS
iterations yielding in the end better overall solutions.

Keywords: Districting and Routing Problem for Security Control - Ve-
hicle Routing Problem - Soft Time Windows - Dynamic Programming -
Linear Programming

* We thank Giinter Kiechle and Fritz Payr from CAPLAS GmbH for the collaboration
on this topic. This work is supported by the Austrian Research Promotion Agency
(FFQG) under contracts 856215 and 849028.

1 Introduction

Theft and vandalism are a big and growing problem for many private and public
companies. Thus, companies need to surveil their property, although permanent
surveillance typically is not possible due to limited financial resources. Security
companies, which are specialized experts, are therefore frequently engaged with
observing the properties of these companies.

To minimize financial expenditures, objects are irregularly visited multiple
times per day by security guards instead of dedicating a single security guard
to a single object. Security guards have the duty of observing a particular set of
objects. The number and times when these objects have to be visited may differ
in each considered period. The problem of planning the districting and individual
routes for performing the visits has been introduced by Prischink et al. [8] and
is called Districting and Routing Problem for Security Control (DRPSC).

The previously proposed approach considers time windows in a strict sense.
In practice, however, small time window violations typically do not matter much,
and a larger flexibility in respect to them often allows substantially better solu-
tions. In this paper, we consider the Districting and Routing Problem for Security
Control with Soft Time Windows (DRPSC-STW). Soft time windows may be vi-
olated to some degree, and their violation is considered in the objective function
by penalty terms. In this context, the subproblem of determining optimal vis-
iting times for a given candidate tour so that the total time window penalty is
minimized arises. We call this problem Optimal Arrival Time Problem (OATP).

To classify the DRPSC-STW in context of the vehicle routing literature, one
can see it as a periodic vehicle routing problem with soft time windows with
additional constraints concerning separation time and maximum tour duration,
where objects may have to be visited multiple times in each period. Separation-
time constraints are a minimum time difference between two consecutive visits
of the same object in a tour. Moreover, each tour for every district and period
must not exceed a given maximum tour duration.

In this work, we primarily focus on the OATP and how it can be effectively
solved. To this end we propose an approach based on linear programming (LP)
and a faster heuristic approach using greedy techniques and dynamic program-
ming. These mechanisms are embedded in a large neighborhood search (LNS) [6].

The paper is structured as follows. Related work is given in Section 2 and
the formal problem definition is stated in Section 3. Subsequently, we describe
the OATP in Section 4 where we also introduce the LP approach. Then, in
Section 5, the efficient hybrid heuristic for solving the OATP is introduced and in
Section 6 the LNS metaheuristic for approaching the DRPSC-STW is proposed.
Experiments are performed in Section 7 and, finally, a conclusion as well as an
outlook for future work is given in Section 8.

2 Related Work

Prischink et al. [8] introduce the DRPSC and propose two construction heuristics
as well as a sophisticated district elimination algorithm for the districting part

of the problem. In the district elimination algorithm they iteratively eliminate
a district, put the objects of these districts in a so called ejection pool and then
try to insert the objects of this ejection pool again into the set of available
districts. We adopt this idea/mechanism for developing a destroy and recreate
neighborhood inside our LNS. We, thus, remove the objects of two, uniformly at
random selected, districts and put them into a so called ejection pool but do not
delete the districts from which we removed the objects. Then, we execute a single
run/step of the proposed district elimination algorithm which tries to reassign
the objects in the ejection pool to the available districts, and let the algorithm
terminate if the ejection pool is empty at the end of this single iteration.

As the focus of our current work lies on the extension to soft time windows, we
also put our attention here on previous work dealing with them. Although much
more work is done on problem types with hard time windows, there already exists
a significant number of works which introduce efficient methods to effectively
handle soft time window constraints.

Ibaraki et al. [4] proposed a dynamic programming (DP) based approach to
determine optimal starting times in conjunction with soft time windows which
is applicable to a wider range of routing and scheduling applications. The to-
tal penalty incurred by time window violations is minimized. Compared to our
approach they consider more general piecewise-linear penalty functions. Unfor-
tunately, their approach is not directly applicable in our context as we have
to additionally consider minimum separation times between visits of the same
objects (i.e., objects can only be visited again if a minimum separation time
between two consecutive visits is considered) and a maximum tour length. How-
ever, we will show later how this efficient DP method can nevertheless be utilized
to some degree in our case.

Hashimoto et al. [3] extended the work of Ibaraki et al. to also consider flexible
traveling times, which are also penalized if violated. They show, however, that
the problem becomes NP-hard in case.

Taillard et al. [9] solve the vehicle routing problem with soft time windows by
using tabu search. They do not consider any penalties for arriving too early but
introduce a “lateness penalty” into the objective function. This penalty value is
weighted by a given factor and the problem can be transformed into the vehicle
routing problem with hard time windows by setting the weight factor to oo.

Another work which shows the efficiency of applying DP for solving problems
with soft time windows is by Ioachim et al. [5]. They solve the shortest path
problem with time windows and linear node costs, where the linear node costs
correspond to the modeling of soft time windows.

Fagerholt [2] published an approach for ship scheduling with soft time win-
dows. He argues that by considering soft time windows, solution quality can be
drastically improved and in practice small time window violations do not really
matter. As in our work, a maximum allowed time window violation is used and
earlier and later service is penalized. The approach can handle also non-convex
penalty functions whereas in the literature most often only convex penalty func-
tions are considered. The proposed solution approach uses a discretized time

network in which nodes are duplicated according to possible start/arrival times.
On the obtained shortest path network problem DP is applied for obtaining
optimal arrival times.

To summarize related work, DP can frequently be an effective tool to deter-
mine optimal arrival/service times when considering soft time windows. Certain
specificities of problems like maximal total tour duration and other constraints,
however, frequently become an obstacle and prohibit the direct application of
an efficient DP as the subproblem of determining optimal arrival times becomes
NP hard. Nevertheless, DP may still be an important ingredient to deal with
such situations in practice.

3 Problem Definition

In the DRPSC-STW we are given a set of objects I = {1,...,n} and a depot
0, which is the start and end of each route. Travel times among the objects and
the depot are given by t{"#¥' > 0 for i,i’ € I U{0}. We assume the triangle
inequality to hold among these travel times. For every object i« € I we are given
a (small) number of visits S; = {i1,...,4s,|}, and we are given a set of periods
P = {1,...,p}. As not all visits have to take place in every period, subsets
W; ; C S contain the visits of object 7 requested in period j for alli € I, j € P.
The depot is visited two times, namely at the start of the tour and at the end
of the tour. To ease modeling we define 0y to be the departure from the depot
at the beginning and 0; to be the arrival at the depot at the end.

Each visit iy, € S;,1 € I is associated with a visit time t;’IiSit and a particular
szz'lk] in which the whole visit should preferably take
place, already including its visit time. Visits i, € S; of an object i € I have to
be visited in the given order, i.e., visit k has to be performed before visit k' iff
kE<k.

Time windows of the visits are now softened such that an earlier start or later
finishing of the service at an object is allowed. The maximum allowed earliness
and lateness are, however, restricted by A, yielding the hard time windows Tl}i =
[The, T = [TF, — A, T} +A], which must not be violated in any feasible solution.

An additional important requirement in the context of our security applica-
tion is that any two successive visits i, i1 € W ; of the same object ¢ € I
must be separated by a minimum separation time t°°P. Obviously, visiting an
object twice without a significant time inbetween would not make much sense.
The maximum duration of any tour is given by t™&*.

Solutions to the DRPSC-STW are given by a tuple (D,7,a) where D =
{D1,..., Dy} is the partitioning of objects into districts, 7 = (7, j)r=1,....m, jeP
are the routes for each district and period, and a denotes the respective arrival
times. Each tour 7. ; = (750, -+, Trj1,,+1) With [, ; = ZieDr |W,; ;| starts and
ends at the depot, i.e., 7.0 = 0g and 7554, .41 =01, Vr =1,...,m,5 € P, and
performs each visit in the respective ordering of the sequence. Each visit of a
tour 7, ;. has to be associated with a specific arrival time a,. ;. and thus, a =
(@rju)r=1,....m, j=1,...p, u=1,..1, ;+1- An object always is immediately serviced

time window T;, = [T¢

after arrival but waiting is possible before leaving the object. A tour is feasible,
if all visit, travel, and separation times are considered, each visit is performed at
least within its hard time window and the total tour duration does not exceed
tmax.

While in our previous work [7] the primary objective was to minimize the
number of districts (m), we consider this number now as pre-specified. For ex-
ample, it can be obtained in a first optimization round by our previous method
based on the hard time windows only. Now, in the DRPSC-STW, our objective
is to minimize the total penalty incurred by all time window violations, which is

m lrj

minzz Zwm%u (1)
r=1jeP u=1
with
Tz(; — Qrju if Ap g < T;i
Wrju = § Grju + tZV]iSit — Tilk if ar ju + t;’iSit > Tilk (2)
0 otherwise

4 Optimal Arrival Time Problem

When approaching the DRPSC-STW with an LNS in Section 6, we will have
to solve for each tour in each period of each candidate solution the following

subproblem: Given a candidate tour 7, ; = (70, - -, Ty 1, +1) for some district
r=1,...,mand period j = 1,...,p, what are feasible arrival times a,. ; ,, for the
visits u = 1,...,l,; + 1 minimizing ZZ:JI wrj«? Remember that the solution

must obey the minimum separation time ¢*°P between any two successive visits of
the same object and the maximum tour duration t™**. We call this subproblem
Optimal Arrival Time Problem (OATP).

As we consider in the OATP always only one specific tour 7, ;, i.e., r and
j are known and constant, we omit these indices in the following for simplicity
wherever this is unambiguous. In particular, we write 7 for the current tour, [
for the tour’s length, 73, for the h-th visit, ay for the respective arrival time, and
wy, for the respective time window penalty. Moreover, we introduce some further
notations and definitions used in the next sections. Let us more generally define
the time window penalty function py,(t) for visit 75, = i, when arriving at time
t as the following piecewise linear function, see also Figure 1:

00 ift <7y — A
Ty —'t. if Tr — A< t. < Ty
pn(t) =< t+ tZV;S“ — Tilk if Tilk <t+ t;’f“ < Tilk + A
00 if ¢t > Tilk + A
0 otherwise.

Let V = {ix | i € D,, ix, € W; ;} be the set of all object visits in the current

pr(t)

Fig. 1. The time window penalty function pp(¢).

tour. We define the auxiliary function k : V' +— D, mapping visit iy, € V to its
corresponding object i € D,., and function o(h) which finds the nearest successor
index A’ of the visit 77,y with h < &' <1 and k(7,) = k(73,) if such a successive
visit of the same object exists; otherwise o(h) returns —1. Correspondingly,
function o~1(h) returns the nearest predecessor index h’ of the visit 75, with
1 <k < hand k(1) = k(7n) if such a predecessor exists and —1 otherwise.
For convenience, we also define ¢, = ¢y + tffr(?fgl‘,h)7”(7"r',j,h+1) as the sum of
the visiting time of the hth visit and the travel time from the Ath visit to the
(h + 1)st visit.

4.1 Lower and Upper Bounds for Arrival Times

We compute lower and upper bounds for each visit’s arrival time by determining
routes in which we perform each visit as early as possible and as late as possible.
For determining the earliest arrival time at the first visit we have to consider
the maximum of the travel time from the depot to the first visit and the earliest
possible time of the first visit’s hard time window. The earliest possible arrival
time for all other visits h = 1,...,1 can be computed recursively by considering
the dependency on the previous visit h — 1, i.e., the visit time and travel time
to the current visit h, the beginning of the hard time window Ty — A of the
current visit h, and the separation time from a possibly existing previous visit
of the same object o~1(h) in the tour. This yields:

—00 ith<0

ac}slarliest _ T&) ifh=0
earliest visit travel e earliest se :

max {ah_l Ayt pgiravel e A gearliest P} if h>0

When scheduling a latest tour the last visit of the tour has to be scheduled
before arriving at the depot where also the travel time to the depot has to be
considered, but on the other hand we have to also consider the end of the hard

time window 77, + A of the last visit. For all other visits we can compute their
latest possible arrival time by considering the next visit’s arrival time, the travel
time to the next visit, and the visit time at the current visit, the end of the
hard time window of the current visit, i.e., Til + A, and the separation time by
considering a possibly existing successive visit o(h) of the same object where
K(Th) = K(Th) with b < R/

00 ifth<0
alatest — T3 ifth=10+1
min {afpeft — gt el 71 A st g} 0 < B <

If for some h, a§*liest > glatest we immediately terminate as this OATP instance,
i.e., underlying route, cannot have a feasible solution.

4.2 Linear Programming Model

The OATP is not an NP-hard optimization problem. We can solve it exactly by
means of linear programming (LP) as we show in the following.

Variables a;, represent the arrival time of the k-th visit of object 4, variables
p;, are used to compute the penalty when starting the service of visit iy too
early, and variables pik are used for the penalty when finishing the service of
visit 45 too late. The LP is defined as follows:

min Y pf, +), (3)
ireV

5.6 Lmtan,) Fan T U7 ERENS) — a4 <40 (4)
ar, > tyer + Tg, (5)
T 1S < T, (6)
Ury 2 agy U T Vrer, i=2,...,1 (7)
i, > aq,, +)5 4 5P Vi, ip €V, k> k' (8)
TS —A<a;, <T) +A—t]s" Vir eV (9)
Py, 2 T5, = aiy Vi, € V (10)
pik > a;, + t;’isn - Tilk Vi € V (11)
iy, P55 Py, = 0 Vi € V (12)

Objective function (3) minimizes the total penalty incurred by too late or too
early arrival times of visits. Inequality (4) ensures that the makespan of the tour
does not exceed the maximum allowed duration t™#*. Otherwise, the given visit
order would be infeasible. Inequality (5) models the travel time from the depot
to the first visit of the given order, i.e., the first visit can only be started after
traveling from the depot to this visit. Inequality (6) specifies that the tour has

Algorithm 1 Hybrid Heuristic for OATP
: Input: Tour 7
if not Feasible(7) then
return oo
end if
if GreedyHeuristic(7) = 0 then
return 0
end if
return DPBasedHeuristic(7)

to end latest at the end of the time window of the second visit of the depot.
Inequalities (7) ensure that all travel times between consecutive object visits
and visit times are respected. Inequalities (8) guarantee the minimum separation
time between two consecutive visits of the same object. Inequalities (9) ensure
consideration of the hard time windows. The penalty values are computed by
inequalities (10) and (11). If a visit is scheduled too early, then 7y — a;, > 0
and an early penalty is incurred. Obviously, if the earliness penalty pf, > 0,
then a;, +t7"* — T} < 0 and thus, pj, = 0. This holds vice versa if the lateness
penalty pj > 0. If a visit is scheduled within its time window [T¢ T}], then
ps =pi, =0asT7 —a;, < 0anda;, +t75 =T <0andp§ ,pj >0, ViV
according to equations (12).

5 Hybrid Heuristic for the OATP

While the above LP model can be solved in polynomial time, doing this many
thousands of times within a metaheuristic for the DRPSC-STW for evaluating
any new tour in any period of any district in any candidate solution is still a
substantial bottleneck. We therefore consider a typically much faster heuristic
approach in the following, which, as our experiments will show, still yields almost
optimal solutions. We call this approach Hybrid Heuristic (HH) for the OATP
as it is, in fact, a sequential combination of different individual components.

The overall approach is shown in Algorithm 1, and the individual compo-
nents are described in detail in the subsequent sections. First, we show how to
efficiently check the feasibility of a given instance (line 2), then, we apply a fast
greedy heuristic which tries to solve the problem without penalties (line 5) using
an earliest possible start time strategy. Finally, we apply an efficient DP-based
heuristic to obtain a solution for the OATP.

5.1 Feasibility Check

The feasibility of a given tour, i.e., existence of feasible arrival times, can be
efficiently checked by calculating the minimum tour duration and comparing it
to t™2*. The minimum tour duration can be determined by fixing the arrival

time at the depot to aleflhe“ and calculating the latest arrival times recursively

backwards:

. if h <0
a?s _ aiarliest ifh=1 +1
mm{ﬁ$g¢$“—ﬁﬂﬁﬁﬂ%+Aﬂ§b—ﬁW} if0<h<l

The tour is feasible iff ajy’) — agp® < gmex holds.

5.2 Greedy Heuristic

A fast heuristic for solving the OATP is a greedy strategy that starts each visit
as early as possible without violating any soft time window. If this heuristic
is successful, no penalty occurs and the obtained solution is optimal. We can
formulate this approach as follows:

o if h <0

reed e travel e : _
afree® = { max 15, + to,m(n)va} ifh=1

max a%reeldy + tvisit + ttravel Te agreedy + tsep} lf h > 1

- Th—1 Th—1,Th’ = Th’ “oc~1(h)
If for some h, a%reedy > st then the greedy heuristic cannot solve this problem
instance and terminates.

5.3 Efficiently Solving a Relaxation by Dynamic Programming

The greedy strategy is fast, works reasonably well, and frequently yields an opti-
mal solution for easy instances. When the constraints become tighter, however,
it often fails. Therefore, we finally use a second, more sophisticated heuristic
based on the following considerations.

The required minimum separation times for visits of same objects make the
OATP, in contrast to other problems aiming at finding arrival times introducing
a minimum penalty, e.g. [4], inaccessible for an efficient exact DP approach. One
would need to somehow consider also all objects’ last visits when storing and
reusing subproblem solutions in the DP recursion.

However, in a heuristic approach we can exploit an efficient DP for the relaxed
variant of the OATP in which we remove the separation time constraints. We
denote this relaxed OATP by OATP™!. As will be shown in Section 5.4, we will
modify our instance data before applying this DP in order to obtain a heuristic
solution that is feasible for our original OATP.

To solve OATP™ we apply DP inspired by Ibaraki et al. [4]. In contrast to
this former work, however, we consider a maximum tour duration.

Let gn(t,to) be the minimum sum of the penalty values for visits 79, ..., 7y
under the condition that all of them are started no later than at time ¢ and the

depot is left earliest at time o with ¢ —#o < t™**. Here we assume that Tj < {o.
Then, g, (t,to) can be expressed recursively by:

oo ift <ty

go(t, to) = {

gn(t,to) = _ min gh—1(t' — Ch—1,t0) + pu(t') ifh>0
a?;“l'CSt St/ Smin{t,to—‘rtmax}

0 otherwise

Here, we assume the minimum of an empty set or interval to be co. The overall
minimum time penalty of the tour 7 is then minggaricst < <qpatest gi+1 (T4, , to)-

Thus, solving OATP™ corresponds to finding a departure time ¢, from the
depot which minimizes function f* = g;11(T} ,to).

Let to be the value for which f™! = gh(Tél,to) yields a minimum penalty.
Optimal arrival times for the visits and the arrival time back at the depot can
now be expressed by:

ajfly = argmin gi1(t, to)
Tg <t<TY,

rel : : (13)

a’ = argmin gp(t,tp) if0<h<lI

s, <t<ajel, —Cn

Now, let us consider the task of efficiently computing gy, (¢,%p) in more detail.
Recall that our time window penalty function pp () is piecewise linear for all
visits 71, . . ., 7; and they have all the same shape as shown in Figure 1. Therefore,
gn(t, to) is also piecewise linear. We store these piecewise linear functions of each
recursion step of the DP algorithm in linked lists, whose components represent
the intervals and the associated linear functions.

An upper bound for the total number of pieces in the penalty functions for all
the visits 79, . . ., Ti41 s 5l+2 = O(l). The computation of g, 1 (t—Cr—1, to)+pn(¢)
and gy (t,tg) from gn_1(¢,t0) and pp(t) can be achieved in O(h) time, since the
total number of pieces in gn—1(t,to) and pp(t) is O(h). In order to calculate the
function gz+1(Tél,to) for a given tour, we compute gy (t,tg) for all 1 < h <I1+1.
This can be done in O(I?) time.

Now that we know how to efficiently calculate the minimum time window
penalty value for a given departure time from the depot ¢y, we draw our attention
to the problem of finding a best departure time such that the overall penalty
value for a given tour is minimized. Formally, we want to minimize function
g (to) = gi+1(T}, , to) on interval ty € [ag™*t, q{**s"]. Enumerating all possible
to values is obviously not a reasonable way to tackle this problem. Fortunately,
there is a useful property of function ¢’(¢p) which enables us to search more
efficiently for its minimum.

Proposition 1. Farliest optimal arrival times can only be delayed further when
the depot departure time increases. More formally, let a% for h =0,...,0+1
be earliest optimal arrival times calculated by g'(to) for some to and a}L for
h = 0,...,1 +1 be the earliest optimal arrival times calculated by ¢'(t) for
some t}. Then to <ty = a <a}, forh=0,...,1+1.

/)/:(f’)
on(t)

0 1 1 0 0 1 1 0
@1 Wy @ @, W1 Wy ap @
t t

(a) Case 1 (b) Case 2

Fig. 2. Visualization of the two case distinctions used in the proof of Proposition 1.

Proof. We show this with a proof by contradiction. Without loss of generality,
suppose there is a visit & with af) _, < a}_, and aj < a). Let us consider two
relevant cases in detail. Other cases can be refuted using similar arguments.

Case 1: Assume a,ll is scheduled earlier than a?L and a,ll <T¢

© , see Figure 2a. aj,
could only have been scheduled earlier than a falling below T: +, threshold
if and only if one of its subsequent visits 7,41,...,7+1 was forced to start
earlier. This can only happen if the arrival time constraint, where we have
to be back at the depot, is more tightened. But this clearly cannot be the
case here, since to 4 t™** < t(+t™**, In other words, delaying the departure
time at the depot also delays the arrival time constraint, when we have to
be back at the depot.

Case 2: Assume aj is scheduled earlier than af and af, > T}, — V51 see Figure
2b. Since a% *agq > a}l fa}lhl, it is easy to see that a?L can be moved further
to the left without introducing more penalty. Therefore, a% cannot be the
optimal start time for the visit h, since the T}L constraint violation caused
by a9 can be reduced further.

O

Proposition 2. Vi), ty | ¢'(th) < ¢'(t0),t5 <ty = Vto >ty : ¢'(t7) < ¢'(to)-

Proof. Let aiar“e“/ for h =0,...,l+1 be the earliest possible arrival times when
fixing t{, as the departure time from the depot and aiar“esw forh=0,...,1+1
the earliest possible arrival times when fixing ¢ as the departure time from the
depot. Furthermore, we define a} for h =0, ...,l+1 to be earliest optimal arrival
times calculated by ¢’ (t).

We have shown that the earliest optimal arrival times can only be delayed
further when postponing the departure time from the depot. Thus, the only way
the overall penalty value can be increased is when pushing ¢ to the future causes
more T threshold violations than what you can save by reducing T° threshold
violations.

More formally, if we have ¢'(t;) < ¢'(tf) with ¢, < t{/, then there must exist
azarliest” > T7l_k _ t;/';icSit with CL'Ie;arliest' < aiarliest” and azarliest” — CL% for some

Algorithm 2 Calculation of f*!

. earliest latest
Input: ag , ag

1: init: @ < a§®™M° b a5 vy« ™ < ¢'(a)
2: if v1 =0 or v1 = o0 or Vg¢'(t) > 0 then

3: return v

4: end if

5: while b —a > ¢ do
6: t+a+ =2
7.
8

2

v2 < g'(t)
: if va < f* then
9: el vy
10: end if
11: if f*' =0 or vy = vy then
12: break
13: end if
14: if v2 = c0 or V¢'(t) <0 then
15: a <+t
16: else
17: bt
18: end if

19: V1 < Vs
20: end while
21: return f*!

k € {0,...,1 + 1}. In other words, if the overall penalty value increases, then
there are visits whose earliest possible arrival times are pushed furhter to the
future exceeding T" thresholds by ¢j and their optimal arrival times are equal
to earliest possible arrival times.

It is easy to see that once the earliest possible start time a§*lest starts

to increase, it continues to increase strictly monotonically with an increasing
departure time from the depot. Therefore, the overall penalties will increase
strictly monotonically from tj on with an increasing departure time from the
depot until the solution becomes infeasible. a

These properties show that ¢'(tg) is in general a “U-shaped” function when
disregarding all infeasible solutions yielding oo, and we can use a bisection
method to search efficiently for a minimum. The calculation of f*' in this way
is shown in Algorithm 2.

At each iteration step the middle point ¢ of current search interval is sampled
and we calculate an approximate subgradient Vg¢'(t) of ¢’ at t by Vg'(t) =
g’ (t+0) — ¢'(t) where 0 is a small constant value. If the subgradient Vg'(t) > 0,
we know that ¢ is in the strictly monotonically rising piece of ¢’ and we continue
our search in the left half. Otherwise the search continues in the right half. The
bisection method proceeds until the search interval becomes smaller than some
predetermined value ¢.

5.4 DP-Based Heuristic for OATP

Obviously, OATP* corresponds to the original OATP if there are no objects that
are visited multiple times or Z;f:(};)—l ¢ >t for h = 1,...,1 with o(h) # —1.
The main idea of our second heuristic is to increase the (; values as necessary
so that 3771 ¢; > 5P holds for all h =1,...,I with o(h) # —1. Then, when
applying the DP; its solution will obviously fulfill the separation-time constraint.
Let visits 7, and 7,y with k& < kK’ and Zf/:;l (; < t°°P be two visits which
take place at the same object. Then, one or more (; € {(x,..., (-1} must be
extended so that Zf;i (; = t°°P. In order to decide which (; we want to extend,
we first calculate waiting times for all visits with earliest possible arrival times.
The waiting time at the visit 75, is the amount of time we are forced to wait
at the visit 7,1 before we can travel to visit 7;,. Recall that we are forced to wait
at visit 7,1 if ap—1 + (1 < T, . Thus, the waiting times with earliest possible
arrival times can be expressed as w§ et = max {0, ag?liest — ggariiest — ¢, 4 4,
h =1,...,1. Using these waiting times as guidance, we extend the (; value at the
visit 7; with the maximum waiting time wg*est = max {wgartiest | qyparliost
where ties are broken randomly. The rationale behind this idea is that large
wﬁar“e“ values often indicate the visits in an optimal solution, where extra wait-
ing time actually is introduced to satisfy the separation-time constraints.
Utilizing waiting times computed by earliest possible arrival times works well
for the majority of instances but for some instances the (j values are altered un-
favorably so that the instances become infeasible. To counteract this problem,
we propose alternative waiting times which are calculated using arrival times
with minimum tour duration: w;® = max {O, ap® —ap®; — Cho }, Vh=1,...,1l
Visits with waiting times larger than 0 indicate visits in the tour with minimum
tour duration for which additional waiting time had to be introduced in order to

ms

satisfy separation-time constraints. Using w},"® waiting times we can effectively
complement situations where the approach utilizing wﬁar“e“ values yields infea-
sible or low-quality solutions. Therefore, we solve the DP-based heuristic twice,
using both w§liest and wi™s and take the best solution.

Even if the solution of this DP-based heuristic does not guarantee optimal-
ity in general, it works well in practice, producing near optimal solutions in

significantly shorter computation times than the exact LP approach.

6 Large Neighborhood Search for the DRPSC-STW

Our overall approach for solving the DRPSC-STW follows the classical large
neighborhood search metaheuristic [6] with an embedded variable neighborhood
descent (VND) for local improvement.

We define our destroy and repair methods as follows. In order to destroy a
current solution candidate, we select two out of m districts uniformly at random
and remove all objects from these districts. The removed objects are copied to a
so called ejection pool. Then, we apply the repair phase of the district elimination
algorithm proposed by Prischink et al. [8]. The algorithm continues until all

objects in the ejection pool are reassigned to the available districts. Using this
destroy and repair methods, we guarantee that the solution stays feasible with
the same number of districts. At each LNS iteration a VND is applied to locally
improve the incumbent solution.

6.1 Variable Neighborhood Descent

We use three common neighborhood structures from the literature and search in
a best improvement fashion. We apply these neighborhoods in the given order
since we could not identify any significant advantages using different orderings.
Infeasible solutions are discarded.

2-opt: Classical 2-opt neighborhood where all edge exchanges are considered.

swap: Exchanges all pairs of distinct visits within a route.

or-opt: Moves sequences of one to three consecutive visits at another place in
the route.

The proposed VND is performed separately for each route of every district. Our
local improvement component could also be very well parallelized since different
routes can be optimized independently of each other, however this is not in the
scope of this work. Since routes having no penalties are already optimal, they
are excluded from local improvement.

7 Computational Results

For the computational results, we used the instances which have been created
by Prischink et al. [8]. In a first optimization round, we solve the districting part
of the DRPSC-STW by means of the district elimination algorithm proposed by
Prischink et al., based on the hard time windows only, generating input® for the
subsequent time window penalty minimization round with the LNS algorithm. As
global parameters we have chosen t™#* to be 12 hours and the maximum allowed
penalty A = 60 minutes, which represent typical values used in practical settings.
Furthermore, we set HH (Algorithm 1) specific parameters 6 = 1 and ¢ = 30,
which have been determined empirically. For our test instances, they give good
balance between computational speed and accuracy. Every instance was given a
maximum allowed time limit of 900 seconds for the execution of the LNS and we
have performed 20 runs for every instance. All tests have been executed as single
threads on an Intel Xeon E5540 2.53GHz Quad Core processor. The algorithms
have been written in C4++ and have been compiled with gcc-4.8 and for solving
the LP we used Gurobi 7.0.

In Table 1 the results of the LNS-LP and LNS-HH can be found. In the
instance column, we specify the instance parameters. Sequentially, the name of
the used TSPIlib instance (refer to Prischink et al. [8] for a more detailed descrip-
tion), the number of runs performed, the number of objects |I|, the total number

3 https://www.ac.tuwien.ac.at/files/resources/instances/drpsc/evocl7.tgz

Table 1. Results of the LNS with embedded LP and HH as solution evaluation function

Instance ‘ LNS-LP ‘ LNS-HH

name runs |I| |[V| o« B v|#best obj[s] f[s] #eval |#best obj[s] s #eval
berlin52_.1 20 51 133 0.0 0.7 4 13 476.9 640.2 499,624.3 20 29.9 298.0 757,181.5
berlin52.2 20 51 130 0.0 0.7 4 13 235.1 662.5 525,862.1 19 7.9 239.0 586,096.8
berlin52.3 20 51 140 0.0 0.7 4 5 3,230.9 900.0 595,039.3 15 1,169.7 900.0 938,946.7
ch150_1 20 149 360 0.2 0.5 4 4 88,910.1 900.0 663,320.8 16 55,234.8 900.0 1,308,850.8
ch1502 20 149 402 0.2 0.5 4 0 164,399.8 900.0 662,869.3 20 80,989.3 900.0 1,257,789.1
ch150_3 20 149 357 0.2 0.5 4 3 78,979.9 900.0 748,549.8 17 36,370.5 900.0 1,620,281.2
ft70_.1 20 69 167 0.1 0.5 4 2 5,035.8 900.0 993,374.5 18 1,196.9 900.0 2,815,488.6
ft70.2 20 69 180 0.1 0.5 4 1 3,087.0 900.0 975,529.6 20 464.2 878.3 2,719,290.8
ft70_.3 20 69 144 0.1 0.5 4 3 5,602.2 900.0 918,004.6 17 1,509.0 900.0 2,496,826.1
grd8.1 20 47 120 0.2 0.7 4 8 92,669.4 900.0 284,934.1 12 70,082.1 900.0 443,507.7
grd82 20 47 115 0.2 0.7 4 3 9,445.5 900.0 851,306.0 17 4,233.1 900.0 2,296,485.5
grd8.3 20 47 125 0.2 0.7 4 5 28,606.2 900.0 392,935.5 15 24,982.1 900.0 615,803.7
rd100-1 20 99 152 0.1 0.5 2 3 25,824.7 900.0 876,710.0 17 11,050.4 900.0 2,289,110.3
rd100-2 20 99 160 0.1 0.5 2 4 22,367.5 900.0 828,483.6 16 7,618.6 900.0 2,123,393.7
rd100_.3 20 99 152 0.1 0.5 2 4 12,132.5 900.0 826,517.7 17 2,136.9 900.0 2,036,959.2
st70-1 20 69 105 0.1 0.7 2 5 15,052.1 900.0 755,594.8 16 4,380.1 900.0 1,761,210.0
st70.2 20 69 91 0.1 0.7 2 4 18,622.9 900.0 806,985.2 16 8,228.9 900.0 2,126,834.2
st70.3 20 69 106 0.1 0.7 2 3 7,022.6 900.0 696,001.3 20 380.5 673.1 1,140,718.4
tsp225_1 20 224 334 0.2 0.7 2 0 272,118.2 900.0 969,287.0 20 183,974.1 900.0 1,904,494.3
tsp2252 20 224 341 0.2 0.7 2 0 340,426.5 900.0 692,597.6 20 293,867.6 900.0 1,375,567.5
tsp225_3 20 224 332 0.2 0.7 2 0 161,586.6 900.0 710,581.4 20 141,153.5 900.0 1,471,799.2
Average 4.0 64,563.4 884.5 727,338.5| 17.5 44,240.9 828.0 1,623,173.1

of visits |V, the percentage of large time windows («), the percentage of mid-
sized time windows () and the maximum number of allowed visits per object
v is given. For the LNS-LP and LNS-HH the number of times the correspond-
ing approach yields the best result, the average objective value over all runs of
the instance, the average runtime, and the average number of objective function
evaluations are given. Results show clearly that LNS-HH yields better objective
values than LNS-LP since it is able to perform much more iterations within the
given time limit due to fast objective function evaluations. It is also obvious that
by increasing the instance size, the advantage of the efficient HH evaluation func-
tion is getting more pronounced. Moreover, a Wilcoxon signed-rank test shows
that all observed differences on the overall number of best solutions among the
LNS-LP and the LNS-HH are statistically significant with an error level of less
than 1%.

We can conclude that LNS-HH is superior compared to LNS-LP due to sig-
nificant performance advantage in the evaluation function, even though the HH-
based evaluation function is only a heuristic method which in general does not
yield proven optimal solutions although it can be observed that the optimality
gap of HH is in most cases neglectably small.

8 Conclusions and Future Work

In this work we analyze the DRPSC-STW where the already introduced DRPSC
is extended by soft time windows. This problem is of high practical relevance

as it is possible to significantly improve solution quality by introducing only a
negelectable penalty.

As metaheuristic we propose an LNS for approaching the DRPSC-STW. A
critical bottleneck of our LNS is the evaluation of solution candidates where
one has to find the minimum penalty given a particular visit order. We show
that this evaluation function can be efficiently implemented by an LP-based
approach, and furthermore we developed a sophisticated hybrid heuristic which
was able to drastically outperform the LP-based variant.

We have formulated an efficient method to determine optimal arrival times of
a given visit order which can be embedded inside a metaheuristic framework to
solve the penalty minimization part of the DRPSC-STW. On the one hand this
is not only relevant for the DRPSC-STW, as soft time windows play in general
an important role in many practical scenarios.

Future research goals include the extension of the current LNS by incorpo-
rating adaptiveness into the destroy and repair moves. Furthermore, the authors
want to note that it is also possible to extend the VND local search into a VNS by
including a shaking neighborhood like randomized k-swap neighborhood, c.f. [1].
This way, one can combine micro- and macro-diversifications during the search.

References

1. Davidovic, T., Hansen, P., Mladenovic, N.: Variable neighborhood search for mul-
tiprocessor scheduling problem with communication delays. In: Proc. MIC. vol. 4,
pp. 737-741 (2001)

2. Fagerholt, K.: Ship scheduling with soft time windows: An optimisation based ap-
proach. European Journal of Operational Research 131(3), 559-571 (2001)

3. Hashimoto, H., Ibaraki, T., Imahori, S., Yagiura, M.: The vehicle routing prob-
lem with flexible time windows and traveling times. Discrete Applied Mathematics
154(16), 2271-2290 (2006)

4. Ibaraki, T., Imahori, S., Kubo, M., Masuda, T., Uno, T., Yagiura, M.: Effective local
search algorithms for routing and scheduling problems with general time-window
constraints. Transportation Science 39(2), 206-232 (2005)

5. Toachim, I., Gelinas, S., Soumis, F., Desrosiers, J.: A dynamic programming al-
gorithm for the shortest path problem with time windows and linear node costs.
Networks 31(3), 193-204 (1998)

6. Pisinger, D., Ropke, S.: Large neighborhood search. In: Gendreau, M., Potvin, J.Y.
(eds.) Handbook of Metaheuristics, chap. 13, pp. 399-419. Springer (2010)

7. Prischink, M.: Metaheuristics for the Districting and Routing Problem for Security
Control. Master’s thesis, TU Wien, Institute of Computer Graphics and Algorithms
(May 2016), https://www.ac.tuwien.ac.at/files/pub/prischink_16.pdf, super-
vised by G. Raidl, B. Biesinger, and C. Kloimiillner

8. Prischink, M., Kloimiillner, C., Biesinger, B., Raidl, G.R.: Districting and routing for
security control. In: Blesa, M.J., Blum, C., Cangelosi, A., Cutello, V., Nuovo, A.D.,
Pavone, M., Talbi, E.G. (eds.) Hybrid Metaheuristics: 10th International Workshop,
HM 2016. Lecture Notes in Computer Science, vol. 9668, pp. 87-103. Springer (2016)

9. Taillard, E., Badeau, P., Gendreau, M., Guertin, F., Potvin, J.Y.: A tabu search
heuristic for the vehicle routing problem with soft time windows. Transportation
Science 31(2), 170-186 (1997)

