
A Memetic Algorithm for Vertex-Biconnectivity
Augmentation

Sandor Kersting, Günther R. Raidl, and Ivana Ljubić

Institute of Computer Graphics and Algorithms, Vienna University of Technology,
Favoritenstraße 9–11/186, 1040 Vienna, Austria
{kersting|raidl|ljubic}@ads.tuwien.ac.at

Abstract. This paper considers the problem of augmenting a given
graph by a cheapest possible set of additional edges in order to make
the graph vertex-biconnected. A real-world instance of this problem is
the enhancement of an already established computer network to become
robust against single node failures. The presented memetic algorithm
includes an effective preprocessing of problem data and a fast local im-
provement strategy which is applied during initialization, mutation, and
recombination. Only feasible, locally optimal solutions are created as can-
didates. Empirical results indicate the superiority of the new approach
over two previous heuristic and an earlier evolutionary method.

1 Introduction

Robustness against failure is an important issue when designing a commercial
computer network. It is often not acceptable that the failure of a single service
node – be it a computer, router, or other device – leads to a disconnection
of others. Redundant connections need to be established to provide alternative
routes in case of a (temporary) break of any one node. We represent such a
network by an undirected graph. It is said to be vertex-biconnected if at least
two nodes need to be removed together with their incident edges in order to
separate the graph into disconnected components. In a connected graph that
is not vertex-biconnected a critical node whose removal would disconnect the
graph is called cut-point. We say that we cover a cut-point when we add a set
of edges to the graph which ensures that the removal of this vertex no longer
disconnects the graph. Our global aim is to identify a set of edges with minimum
total costs that covers all existing cut-points.

A more formal definition of the vertex-biconnectivity augmentation problem for
graphs (V2AUG): Let G = (V,E) be a vertex-biconnected, undirected graph
with node set V and edge set E representing all possible connections. Each
edge e ∈ E has associated cost(e) > 0. A connected, spanning, but not vertex-
biconnected subgraph G0 = (V, E0) with E0 ⊂ E represents a fixed, existing
network, and Ea = E \E0 is the set of edges that may be used for augmentation.

The objective is to determine a subset of these candidate edges Es ⊆ Ea so that
the augmented graph Gs = (V, E0 ∪ Es) is vertex-biconnected and

cost(Es) =
∑

e∈Es

cost(e) (1)

is minimal.
The next section summarizes former approaches to this problem. Then, a

new memetic algorithm is presented. Section 3 explains its preprocessing, which
creates needed data structures and reduces the size of the problem in general
considerably by fixing or eliminating certain edges in safe ways. Section 4 de-
scribes the main algorithm, including a new local improvement algorithm for
creating locally optimal offsprings only. In Sect. 5 empirical results are pre-
sented and compared to two previous heuristics and a hybrid genetic algorithm.
Conclusions are drawn in Sect. 6.

2 Previous Work

Eswaran and Tarjan [1] originally investigated the V2AUG problem. They
showed it to be NP-hard. An exact polynomial-time algorithm could only be
found for the special case when G is complete and each edge has unit costs [4].

Frederickson and Jàjà [2] provided an approximation algorithm for the gen-
eral case which finds a solution within a factor 2 of the optimum. The algorithm
includes a preprocessing that transforms the fixed graph G0 into a block-cut
tree, see the Sect. 3. Each potential augmentation edge from Ea is superim-
posed on the block-cut tree, and certain redundant edges are identified and
eliminated. In the main part of the algorithm, the block-cut tree is directed
toward an arbitrarily chosen leaf as root node, and each tree-edge is assigned
zero costs. Each cut-point is substituted by star-shaped structures including new
dummy-nodes in order to guarantee that strongly connecting the block-cut tree
implies vertex-biconnectivity of the underlying fixed graph G0. All superimposed
augmentation edges are also directed. A minimum out-branching algorithm as
described by Gabow et al. [3] is then applied to the block-cut tree including
the superimposed augmentation edges to identify the solution’s ede-set Es. The
computational effort of the algorithm is O(|V |2).

An improved variant of this approximation algorithm has been developed
by Khuller and Thurimella [5]. It exhibits a time complexity of only O(|E| +
|V | log |V |), but has the same approximation factor of 2.

An iterative approach based on Khuller and Thurimella’s algorithm has been
proposed by Zhu et al. [10]. In each step, a drop-heuristic measures the gain
of each augmentation edge if it would be included in a final solution. This is
achieved by calling the branching algorithm for each edge once with its cost set
to zero and once with its original cost. The edge with the highest gain is then
fixed, and its cost are permanently set to zero. The process is repeated until
the obtained branching has zero total costs. Furthermore, the whole algorithm
is applied with each leaf of the block-cut tree becoming once the root, and the

2

overall cheapest solution is the final one. Although the theoretical approximation
factor remains 2, practical results are usually significantly better than when
applying Khuller and Thurimella’s algorithm. However, time requirements are
raised significantly.

A straight-forward hybrid genetic algorithm for the V2AUG problem has
been proposed by Ljubić and Kratica [6]. This algorithm is based on a binary
encoding in which each bit corresponds to an edge in Ea. Standard uniform
crossover and bit-flip mutation are applied. Infeasible solutions are repaired by a
greedy algorithm which temporarily removes cut-points one by one and searches
for suitable augmentation edges that reconnect separated components.

Another, “lighter” kind of connectivity property is edge-biconnectivity, which
means that a graph remains connected after the removal of any single edge.
While vertex-biconnectivity implies edge-connectivity, this is not true vice versa.
Similar algorithms as for V2AUG have been applied to the edge-biconnectivity
augmentation problem (E2AUG). From the algorithmic point-of-view, E2AUG
is easier to deal with, since it does not require the special block-cut tree.

Recently, Raidl and Ljubić described in [7, 9] an effective evolutionary algo-
rithm for E2AUG. A compact edge set encoding and special initialization and
variation operators that include a local improvement heuristic are applied. In this
way, the space of locally optimal solutions is searched only. The approach belongs
to the broader class of so-called local-search-based memetic algorithms [8].

Based on this algorithm for E2AUG, the memetic algorithm for V2AUG pre-
sented in this article has been developed. Major differences lie in the underlying
data structures (e.g. the now necessary block-cut tree), the preprocessing, and
the local improvement algorithm. While it is relatively easy to check and even-
tually establish the coverage of a single critical edge in case of E2AUG, this is
significantly harder to achieve for a node in the V2AUG-case, especially in an
efficient way: A fixed edge can always be covered by a single augmentation edge,
and it is obvious which augmentation edges are able to cover the fixed edge.
On the other side, a combination of multiple augmentation edges is in general
necessary to completely cover a cut-point.

3 Preprocessing

During preprocessing, a block-cut tree is derived from the fixed graph G0 accord-
ing to [1], and other supporting data structures are created. They are all needed
for an efficient implementation of the main algorithm. Furthermore, several de-
terministic rules are applied in order to reduce Ea in a safe way. The following
paragraphs describe these mechanisms in detail.

3.1 The Block-Cut Tree

A block-cut tree T = (VT , ET) with node set VT and edge set ET is an undi-
rected tree that represents the connections between already vertex-biconnected
components (called blocks) and cut-points of the underlying fixed graph G0.

3

Fig. 1. The derivation of a block-cut tree: (a) given graph G0, (b) identified blocks
(shaded areas) and cut-points (square nodes), and (c) the block-cut tree.

Two types of nodes form VT : cut-nodes and block-nodes. Each cut-point
in G0 is represented by a corresponding cut-node in VT , each maximal vertex-
biconnected block in G0 by a unique block-node in VT . A block-node is associated
with all nodes of the represented block in G0 that are no cut-points. If the
represented block consists of cut-points only, the block-node is not associated
with any node from V0.

A cut-node and a block-node are connected by an edge in ET iff the corre-
sponding cut-point is part of the block in G0. Thus, cut-nodes and block-nodes
always alternate on any path in T . The resulting structure is always a tree, since
otherwise, the nodes forming a cycle can be shrinked into a single, larger block.
Figure 1 illustrates the derivation of the block-cut tree.

After T has been derived from G0, all potential augmentation edges in Ea

are superimposed on T forming a new edge-set EA: For each edge (u, v) ∈ Ea, a
corresponding edge (u′, v′) is created with u′, v′ ∈ VT being the nodes that are
associated with u, respectively v. The mapping from EA to Ea is stored in order
to be finally able to derive the original edges of an identified solution. Note that
GA = (VT , ET ∪ EA) may be a multi-graph containing self-loops and multiple
edges between two nodes; however, the reductions described in Sect. 3.3 will
make this graph simple.

3.2 When is a Cut-Point Covered?

A block-cut tree’s edge e ∈ ET is said to be covered by an augmentation edge
eA = (u, v) ∈ EA iff e is part of the unique path in T connecting u with v. In
order to completely cover a cut-node vc ∈ VT , all its incident edges need to be
covered, but this is in general not a sufficient condition.

If vc would be removed from T , the tree will fall into k disconnected compo-
nents Cvc

1 , . . . , Cvc

k , where k is the degree of vc; we call them cut-components of
vc. We say an augmentation edge eA = (u, v) ∈ EA contributes in covering the
cut-node vc, iff two edges incident to vc are covered by eA. Such an augmentation
edge is obviously not incident to vc and unites two cut-components Cvc

i and Cvc
j .

To completely cover vc, exactly k − 1 augmentation edges are needed, and they
must unite all components Cvc

1 , . . . , Cvc

k into one.

4

Fig. 2. Examples for preprocessing: (a) Edges that do not contribute in covering a cut-
point are removed. (b) When cost(e6) ≤ cost(e4) and cost(e6) ≤ cost(e5), e4 and e5
are discarded. (c) As e6 is the only edge that connects Cv1

2 to any other cut-component
of v1, it is fixed; (d) the cycle caused by fixing e6 is shrinked into a new block; (e) e10
becomes a self-loop and is finally also discarded.

For any cut-node vc, let A(vc) ⊆ EA be the set of all augmentation edges
that contribute in covering vc by uniting two of its cut-components. Furthermore,
for each eA ∈ EA, let R(eA) be the set of all cut-nodes to whose covering eA

contributes. The proposed memetic algorithm explicitly computes and stores all
sets A(vc) for all cut-nodes and the sets R(eA) for all augmentation edges as
supporting data structures for its main part.

Later, we need to efficiently check if a certain cut-node is covered by a subset
of augmentation edges S ⊂ EA. This check is in general performed in O(|S|)
time with the aid of a union-find data structure. However, in most cases the
degree of the cut-node is less than four, and then it is sufficient to just check
whether each cut-component of the considered cut-node is connected to any
other cut-component.

3.3 Reducing the Search Space

From EA we discard all edges that do not contribute in covering any cut-node
(R(eA) = {}). In particular, edges forming self-loops or edges connecting a cut-
node with an adjacent block-node or with another cut-node adjacent to the same
block-node are removed in this way; see Fig. 2(a). Furthermore, from multiple
edges connecting the same nodes in T , only one with minimum weight is retained.
In this way, GA = (VT , ET ∪ EA) becomes a simple graph.

In addition to these simple reductions, we apply the following more sophis-
ticated steps:

Edge Elimination: If there are two edges eA, e′A ∈ EA, cost(eA) ≤ cost(e′A),
and eA covers all those edges which are covered by e′A (in addition to others), e′A
is obsolete and can be discarded. All such edges can be identified in O(|V |2) time

5

as a byproduct from a dynamic programming algorithm that computes distance
values needed for the algorithm from Frederickson and Jájá [2]; see Fig. 2(b).

Fixing of Edges: An edge eA ∈ EA must be included in any feasible solution
to the V2AUG problem, when it represents the only possibility to connect a
cut-node’s cut-component Cvc

i to any other cut-component of vc. In more detail,
we process for each cut-node vc its set A(vc) and look for such edges, which are
then fixed by moving them from EA to ET ; see Fig. 2(c). The corresponding
original augmentation edges from Ea are permanently marked to be included in
any future solution.

Shrinking: By fixing an edge, a cycle is introduced in T . This cycle forms
a new vertex-biconnected component that can be shrinked into a single block-
node, see Fig. 2(d) and 2(e). After shrinking all cycles, all changes in T are
reflected to the supporting data structures. Due to these changes, more edges
may become available for elimination. Therefore, all reduction steps are repeated
until no further shrinking is possible.

4 The Memetic Algorithm

The main part of the new approach is a steady-state evolutionary algorithm, in
which in each iteration one new candidate solution is always created by select-
ing two parents in k-ary tournaments with replacement, recombining them and
applying mutation. Such a solution replaces the worst solution in the population
with one exception: To maintain a minimum diversity, a new candidate that
resembles a solution already contained in the population is discarded.

A solution is represented by directly storing the set of its augmentation edges
S ⊆ EA in form of a hash-table. In this way, only O(|S|) = O(|V |) space is
needed, since |S| < |V | in any locally optimal solution, and an edge can be
added, deleted or checked for existence in constant time.

Local Improvement: For the creation of initial solutions and the variation oper-
ators that derive new solutions, the following local improvement method plays a
central role. From a feasible solution S, it removes redundant edges until the so-
lution becomes locally optimal in the sense that no further edge can be removed
without including others or making the solution infeasible.

For the cut-components of each cut-node, it is first determined how often
each of them is connected to any other by the edges in S. Edges that provide
the only connection for any cut-component must always be included in a feasible
solution and are therefore not redundant.

The remaining edges in S are then processed one-by-one in decreasing cost-
order. All cut-nodes in whose coverage a certain augmentation edge e ∈ S partic-
ipates (R(e)) are checked if they remain covered when e is removed, see Sect. 3.2.
If this is the case, this edge is actually redundant and removed from S.

In the worst case, the computational effort of this local improvement may be
O(|V |2 log |V |), however, it is much lower on average.

6

Initialization: A member of the initial population is created by randomly se-
lecting edges from EA without replacement and including each in the initially
empty edge-set S if it is not redundant. This process stops when all cut-nodes
are covered.

The selection of edges for inclusion is biased toward cheaper edges by sorting
EA according to costs, and choosing an edge via the following random-rank:

rank = bN (0, s) · |V |c mod |Ea| , (2)

N (0, s) is a normally distributed random variable with zero mean and standard
deviation s, a strategy parameter that determines the strength of biasing.

Recombination: This operator was designed with the aim to provide highest
possible heritability. First, edges common in both parents S1 and S2 are always
adopted: S = S1 ∩ S2. Then, while not all cut-nodes are covered, an edges is
randomly selected from the set of remaining parental edges ((S1∪S2)\(S2∩S1))
and included in the offspring S if it provides a new cover. To emphasize the
inclusion of low-cost edges, they are selected via binary tournaments. As final
step, local improvement is called.

Mutation: Having created a new offspring via recombination, mutation is ap-
plied with a certain probability in order to introduce new edges that were not
available in the parents. From S, one edge is selected randomly and removed.
This makes one or more cut-nodes uncovered. These cut-nodes are identified and
newly covered in random order: For each cut-node vc, the edges from A(vc) that
would actually help in covering vc anew are determined. From this set, edges are
repeatedly chosen at random and included in S until vc is completely covered.
Finally, local improvement is applied again.

The selection of the edge to be removed is biased toward more expensive
edges: A pair of edges is drawn at random and a cost-proportional selection
among them decides which edge is actually removed. This technique is preferred
here over traditional binary tournaments due to its less pressure.

5 Empirical Results

To compare the presented approach with other algorithms we have used test
instances of different size and structure. Since shrinking can always reduce the
problem of augmenting a general connected graph G0 to the problem of aug-
menting a tree, G0 is always a spanning tree in these test instances. Table 1
shows the number of nodes, the number of augmentation edges, and the number
of cut-points (CP) before and after applying the memetic algorithm’s prepro-
cessing.

The first ten instances have been created with Zhu’s generator [10] and were
already used in [6]. The remaining ones are derived from Euclidean instances of
Reinelt’s TSP-library1 in the following way: G is the graph containing all nodes
1 www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95

7

Table 1. Considered problem instances and results of the memetic algorithm’s prepro-
cessing.

instance |V | |Ea| cost(e) ∈ CP(G0) |VT | |EA| CP(T)

B1 60 55 {1, 2, ..., 1770} 34 8 6 4
C3 100 149 {1, 2, ..., 4950} 53 59 67 33
M1 70 290 {0, 10, ..., 1000} 37 70 227 37
M2 80 327 {0, 10, ..., 1000} 41 80 242 41
M3 90 349 {0, 10, ..., 1000} 42 90 262 42
N1 100 1104 {10, 11, ..., 50} 50 100 687 50
N2 110 1161 {10, 11, ..., 50} 56 110 734 56
R1 200 9715 {1, 2, ..., 100} 115 200 3995 115
E1 200 19701 random Eucl. 154 200 4104 154
E2 300 11015 random Eucl. 192 300 4462 192

a280 (50) 280 7654 TSP-lib Eucl. 218 280 1561 218
a280 (100) 280 15769 TSP-lib Eucl. 220 280 3322 220
a280 (∞) 280 38781 TSP-lib Eucl. 217 280 10182 217
pr439 (100) 439 26865 TSP-lib Eucl. 364 439 6095 364
pr439 (200) 439 55111 TSP-lib Eucl. 362 439 11890 362
pr439 (∞) 439 95703 TSP-lib Eucl. 362 439 19574 362
rat575 (∞) 575 164451 TSP-lib Eucl. 436 575 34514 436
pcb1173 (30) 1173 18321 TSP-lib Eucl. 953 1173 4492 953
d2103 (50) 2103 55630 TSP-lib Eucl. 1963 2103 6657 1963

Table 2. Results of the heuristics from Khuller and Thurimella (KT), Zhu et al. (ZKR),
the genetic algorithm from Ljubić and Kratica (LK), and the memetic algorithm (MA).

KT ZKR LK MA

instance C∗ gap gap gap evals gap σ t [s] evals SR [%]

B1 15512.0* 8.6 0.0 0.0 900 0.0 0.0 <1 800 100.0
C3 59129.0* 10.0 1.1 0.0 7300 0.0 0.0 <1 820 100.0
M1 2940.0* 8.2 0.0 0.0 2700 0.0 0.0 8 2144 100.0
M2 4600.0* 5.9 0.0 0.0 8700 0.0 0.0 10 1157 100.0
M3 4980.0* 6.2 0.4 0.0 8100 0.0 0.0 14 1508 100.0
N1 390.0* 31.5 4.1 4.9 27800 0.0 0.0 37 6264 100.0
N2 429.0* 39.2 5.8 2.3 90000 0.0 0.0 68 10980 100.0
R1 121.4* 16.8 – – – 0.5 0.6 818 38547 6.7
E1 2873.8* 21.1 – – – 0.7 0.3 88 44667 3.3
E2 9588.5 33.0 – – – 0.9 0.5 863 41385 3.3

a280 (50) 474.0* 25.1 – – – 0.1 0.1 28 5420 56.7
a280 (100) 473.0* 29.4 – – – 0.1 0.3 62 15487 76.7
a280 (∞) 490.0 21.6 – – – 1.3 0.8 103 24636 6.7
pr439 (100) 27907.0 20.5 – – – 0.5 0.4 246 34450 10.0
pr439 (200) 28518.0 18.1 – – – 0.9 0.5 353 35548 3.3
pr439 (∞) 27940.0 19.9 – – – 1.5 1.1 664 41361 3.3
rat575 (∞) 1558.0 32.3 – – – 1.9 1.1 1926 40331 3.3
pcb1173 (30) 11464.0 28.1 – – – 0.3 0.1 5552 77509 3.3
d2103 (50) 7333.0 9.6 – – – 0.0 0.0 15389 18885 10.0

8

of the TSP-instance and edges for each node to its nearest k neighbors, where k
is the number shown in parentheses in Table 1; k = ∞ represents the complete
graph. Edge costs are always the Euclidean distances rounded to nearest integer
values. From G, a minimum spanning tree is derived and fixed as G0.

Results of preprocessing document that a fixing of edges is only possible
in shallower graphs like B1 and C3, where the number of cut-points could be
dramatically reduced. In case of dense graphs, edge-elimination was highly effec-
tive. On average, the number of augmentation edges could be reduced to about
a quarter.

The following setup was used for the memetic algorithm. Population size:
800; group size for tournament selection: 3; parameter s for biasing initialization
toward cheaper edges: 0.5; mutation probability 0.7. Each run was terminated
when no new best solution could be identified during the last 10, 000 iterations.

We compare the memetic algorithm, called MA, to the heuristics from Khuller
and Thurimella [5] (KT), Zhu et al. [10] (ZKR), and the hybrid genetic algo-
rithm from Ljubić and Kratica [6] (LK). For smaller instances, we were able
to derive optimum solution values by a not yet published branch-and-cut ap-
proach. Table 2 shows in column C∗ these optimum values marked by ’*’ or
otherwise best-known solution values. For the heuristic approaches, the qual-
ities of final solutions are reported as percentage gaps with respect to C∗:
gap = (cost(S)− C∗)/C∗ · 100%.

KT was run once for each leaf-node becoming the root of branching, and the
best obtained gaps are shown. ZKR could only by applied to smaller instances
due to its high computational effort. The same is true for LK, for which the shown
gaps are adopted from [6]; they represent best values obtained from 10 runs per
instance. MA’s gaps are averaged over 30 runs for all instances, and σ shows the
gaps’ standard deviations. t gives the CPU-times on a PentiumIII/800MHz PC
and evals the number of evaluated solutions until the finally best solutions had
been identified. The success rate SR, finally, is the percentage of MA’s runs that
yielded optimum or best-known solutions.

It can be seen that KT performed generally worst. For the smaller instances,
where results of ZKR and LK are available, MA found optimum solutions in
any run. Furthermore, MA scaled well to larger instances. In all our test cases,
it could identify solutions with gaps less than 2% with high reliability, as in
particular also the small standard deviations document. The running times and
needed numbers of evaluations increase only moderately with the problem size.
Figure 3 shows two exemplary solutions.

6 Conclusions

The main features of the proposed memetic algorithm for the vertex-biconnecti-
vity augmentation problem are: The effective deterministic preprocessing which
reduces the search space in many cases dramatically, the local improvement
procedure which guarantees local optimality of any created candidate solution,
and the the strong heritability and locality of the proposed recombination, re-

9

(a) (b)

Fig. 3. Solutions to the Euclidean problem instance a280 (100) found by (a) Khuller
and Thurimella’s heuristic (gap: 29.4%, |S| = 53) and (b) the memetic algorithm
(optimal, |S| = 40). The solutions’ augmentation edges are shown in gray. In (a), the
arrows mark obviously redundant edges.

spectively mutation. Furthermore, the local cost-based heuristics in the edge-
selections of initialization, recombination, and mutation play a significant role.

Empirical tests indicate that the algorithm calculates solutions of high quality
which are optimal in many cases. In particular the approach scales well to large
problem instances due to its relatively low computational effort for the creation
and local improvement of one candidate solution.

References

1. K. P. Eswaran and R. E. Tarjan. Augmentation problems. SIAM Journal on
Computing, 5(4):653–665, 1976.

2. G. N. Frederickson and J. Jájá. Approximation algorithms for several graph aug-
mentation problems. SIAM Journal on Computing, 10(2):270–283, 1981.

3. H. N. Gabow, Z. Galil, T. Spencer, and R. E. Tarjan. Efficient algorithms for
finding minimum spanning trees in undirected and directed graphs. Combinatorica,
6(2):109–122, 1986.

4. T.-S. Hsu and V. Ramachandran. On finding a minimum augmentation to bicon-
nect a graph. SIAM Journal on Computing, pages 889–912, 1993.

5. S. Khuller and R. Thurimella. Approximation algorithms for graph augmentation.
Journal of Algorithms, 14(2):214–225, 1993.

6. I. Ljubić and J. Kratica. A genetic algorithm for the biconnectivity augmentation
problem. In C. Fonseca, J.-H. Kim, and A. Smith, editors, Proceedings of the 2000
IEEE Congress on Evolutionary Computation, pages 89–96. IEEE Press, 2000.

7. I. Ljubić and G. R. Raidl. An evolutionary algorithm with hill-climbing for the
edge-biconnectivity augmentation problem. In E. J. Boers, S. Cagnoni, J. Gottlieb,
E. Hart, P. L. Lanzi, G. R. Raidl, R. E. Smith, and H. Tijink, editors, Applications
of Evolutionary Computation, volume 2037 of LNCS, pages 20–29. Springer, 2001.

8. P. Moscato. Memetic algorithms: A short introduction. In D. Corne et al., editors,
New Ideas in Optimization, pages 219–234. McGraw Hill, 1999.

9. G. R. Raidl and I. Ljubić. Evolutionary local search for the edge-biconnectivity
augmentation problem. to appear in Information Processing Letters, 2001.

10. A. Zhu, S. Khuller, and B. Raghavachari. A uniform framework for approximating
weighted connectivity problems. In Proceedings of the 10th ACM-SIAM Symposium
on Discrete Algorithms, pages 937–938, 1999.

10

