
The Rooted Delay-Constrained
Steiner Tree Problem with

Uncertain Delays
DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Roman Karl
Matrikelnummer 0825704

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Mitwirkung: Dipl.-Ing. Dr.techn. Markus Leitner

Proj.Ass. Dipl.-Ing. Dr.techn. Mario Ruthmair

Wien, 25.11.2013
(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

The Rooted Delay-Constrained
Steiner Tree Problem with

Uncertain Delays
MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computational Intelligence

by

Roman Karl
Registration Number 0825704

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Assistance: Dipl.-Ing. Dr.techn. Markus Leitner

Proj.Ass. Dipl.-Ing. Dr.techn. Mario Ruthmair

Vienna, 25.11.2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Roman Karl
Kimmerlgasse 2, 1110 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Abstract

The rooted delay-constrained Steiner tree (RDCST) problem is a combinatorial optimization
problem. The task is to find a tree in a given weighted graph. The tree should have minimal
weight which is defined as the sum of the edge weights. Furthermore, it should satisfy two
constraints. The first is that the so-called terminal nodes have to be part of the tree. Additionally
to the weight, every edge has also a given delay. The second constraint is that the overall delay
on a path from a given root node to a terminal node stays within a given bound. This problem
sometimes occurs when planning networks. For many services it is important that the delay
between client and server does not get too high. A typical example are network applications
with user interaction.

In optimization algorithms we usually assume that all input values are given precisely. But
in practice these values are often affected by some kind of uncertainty. Inaccuracies occur in-
evitably with many measurements. Another source for uncertainty is data that is not yet present
and therefore has to be predicted. Solutions of optimization problems can become infeasible
because of the variability of input data. In practice this often means that the solution is of no
use. Also the delays in a network are commonly affected by some jitter. We investigate for the
RDCST problem how uncertainties can be incorporated into the optimization process.

We present algorithms based on mixed integer linear programming with which it is possible
to find solutions of realistic instances of the optimization problem. These solutions feature a
specific degree of robustness, which means that they stay feasible if actual values diverge from
the assumed values. This degree can be adjusted accordingly to the respective requirements. The
examined algorithms are exact. Thus, the best solution is found which fulfils the constraints. We
present several ways of including uncertainties into the definition of the RDCST problem and its
solution algorithms.

There are already methods to solve both the deterministic problem and general robust prob-
lems with integer linear programs. We show how both methods can be combined.

iii

Kurzfassung

Das Rooted Delay-Constrained Steiner Tree (RDCST) Problem ist ein kombinatorisches Opti-
mierungsproblem, bei dem ein Baum in einem gegebenen gewichteten Graphen gesucht wird.
Dieser Baum soll ein minimales Gesamtgewicht haben, welches als die Summe der Kantenge-
wichte definiert ist. Für den Baum gelten dabei zwei Nebenbedingungen. Die erste legt fest, dass
die sogenannten Terminal-Knoten im Baum enthalten sein müssen. Zusätzlich zu den Gewich-
ten werden für alle Kanten auch Übertragungszeiten definiert. Die zweite Nebenbedingung ist,
dass die Gesamtübertragungszeit auf jedem Pfad zwischen dem gegebenen Wurzelknoten und
einem Terminal-Knoten unter einer bestimmten Schranke liegen muss. Das Problem findet eine
Anwendung bei der Planung von Netzwerken. Für viele Dienste ist es besonders wichtig, dass
die Übertragungszeiten zwischen Client und Server nicht zu hoch werden. Typisch hierfür sind
Netzwerk-Anwendungen mit Benutzer-Interaktion.

Bei Optimierungsalgorithmen geht man oft davon aus, dass alle Eingabewerte genau be-
stimmt werden können. In der Praxis kommt es allerdings häufig vor, dass diese Werte einer
gewissen Unsicherheit unterliegen. Ungenauigkeiten entstehen zwangsläufig bei vielen Mes-
sungen. Andere Quellen für Unsicherheiten sind Daten, die erst in der Zukunft entstehen und
davor nur geschätzt werden können. Lösungen von klassischen Optimierungsproblemen können
durch die Schwankungsbreite der zugrunde liegenden Daten ungültig und aus diesem Grund
in der Praxis mitunter gar nicht mehr verwendet werden. Auch die Übertragungszeiten in ei-
nem Netzwerk unterliegen häufig einer merkbaren Schwankung. Wir untersuchen anhand des
RDCST Problems, welche Möglichkeiten zur Verfügung stehen, um Unsicherheiten in den Op-
timierungsprozess einzubeziehen.

Wir stellen Algorithmen basierend auf ganzzahliger linearer Programmierung vor, mit denen
es möglich ist, Lösungen zu realistischen Instanzen des Optimierungsproblems zu finden. Diese
Lösungen weisen eine gewissen Grad an Robustheit auf, was bedeutet, dass sie auch bei einer
Schwankung der Werte gültig bleiben. Dieser Grad kann aufgrund der jeweiligen Anforderungen
an die Lösungen variiert werden. Die behandelten Algorithmen sind exakt, finden also die beste
Lösung, die alle Bedingungen erfüllt. Wir stellen einige Alternativen vor, wie die Unsicherhei-
ten in die Definition des RDCST Problems und in die entsprechenden Algorithmen eingebunden
werden können. Sowohl für das deterministische Problem als auch für allgemeine robuste Pro-
bleme stehen bereits Lösungsansätze im Bereich der ganzzahligen linearen Programmierung zur
Verfügung. Wir zeigen, wie beide Ansätze kombiniert werden können.

v

Contents

1 Introduction 1
1.1 Aim of Work . 1
1.2 Optimization with Uncertain Data . 1
1.3 The Rooted Delay-Constrained Steiner Tree Problem 3

1.3.1 Related Work . 5
1.4 Structure of the Work . 5

2 Preliminaries 7
2.1 Feasibility under Uncertain Data . 7
2.2 Robust Optimization . 8

2.2.1 The Approach of Bertsimas and Sim 9
2.2.2 Related Work . 10

2.3 Stochastic Programming . 11
2.3.1 Related Work . 11

2.4 Bi-Objective Optimization . 12

3 The Robust Rooted Delay-Constrained Steiner Tree Problem 15
3.1 Limitations of the Robust Approach . 16
3.2 Formulations . 18

3.2.1 Multi Commodity Flow . 18
3.2.2 Path-Cut . 20

3.2.2.1 Separation Methods . 22
3.2.3 Layered Graph . 22

3.2.3.1 Connection Cuts on the Layered Graph 24
3.2.3.2 Working with Uncertain Delays 24

3.2.4 Path . 27
3.2.4.1 Pricing Subproblem . 27

3.2.5 Miller-Tucker-Zemlin . 28

4 The Stochastic Rooted Delay-Constrained Steiner Tree Problem 31
4.1 Normally Distributed Approach . 31
4.2 The Stochastic Problem . 33
4.3 Formulations . 33

vii

4.3.1 Multi Commodity Flow . 34
4.3.2 Path-Cut . 34
4.3.3 Layered Graph . 34

5 Preprocessing 37
5.1 Comparison with Paths . 37

5.1.1 Computational Issues . 41
5.2 Comparison with Root Arcs . 41
5.3 Infeasible Arcs and Nodes . 44

6 Instance Transformations 45
6.1 Altering the Delay Bound . 45
6.2 Altering Edge Delays . 46
6.3 Limitations of Instance Transformation . 48

7 Results 49
7.1 Instances . 49
7.2 Implementations . 50

7.2.1 Measurement . 50
7.3 Comparison of Solutions . 51
7.4 Performance Test . 55

8 Conclusions 77

Bibliography 79

viii

CHAPTER 1
Introduction

1.1 Aim of Work

The focus of this thesis lies on the rooted delay-constrained Steiner tree (RDCST) problem
which is a well studied combinatorial optimization problem. There are several algorithms to
solve it, which can be useful when planning networks. In practice there are some limitations
when applying these algorithms to problem instances. Often it is not possible to determine all
parts of an instance like it is defined for the problem. The reason for this are uncertainties which
are typically included in real world data. This thesis presents several ways for algorithms to
operate with uncertainties, so that it is possible to find solutions for the considered problem.

1.2 Optimization with Uncertain Data

For an optimization problem it is often assumed that the information on its instances is complete.
Many real world problems, however, do not have this property. If a problem instance contains
measurement data, there is always an error, as it is known from physics. In many cases this
error may be small enough so that it would not affect solutions to an optimization problem.
If the error can be larger, it should no longer be ignored. At first, it is not clear how such
inaccuracies should be considered in algorithms for the optimization problem. There is not only
the risk of obtaining suboptimal solutions, but also the risk of a constraint violation. In many
cases constraint violations cause solutions to be of no practical use. Therefore, an optimization
algorithm sometimes has to be adapted before real world instances can be solved.

Besides imprecise measurements there are also other sources of uncertainty. It can be the
case that information is not known at the time when a decision should be made. Let us consider
the delay of network links. If we want to build a cheap network where some delay constraints
should be satisfied, there is the problem that the delays can only be measured when the connec-
tion is already established. But there are no connections at the time when the network should
be planned. So it is necessary to work with some predicted values. Without such a prediction

1

there is no data which can be used for optimization. But often data from the past can be used, or
experts can come up with reasonable predictions.

A problem with complete information on its instances is usually called deterministic prob-
lem. It is clearly defined what optimal solutions are in its context. When uncertainties arise, it is
not obvious anymore how optimality should be defined. The goal is to redefine the optimization
problem so that a meaningful description of optimality follows. Such a problem is frequently
called robust problem or stochastic problem, depending on the approach taken to handle the
uncertainties, see also Sections 2.2 and 2.3. Such a redefinition includes a model of the uncer-
tainties which in general does not perfectly coincide with the real world. This means that an
optimal solution regarding a robust or stochastic problem is only optimal on this level of ab-
straction, and not necessarily in the real world. This is not surprising as we know that it is not
possible to draw perfect conclusions from incomplete information. So solutions have properties
with respect to the problem, the model and the real world. These properties can be different but
should be similar.

There is a subtle difference between a robust and a stochastic problem. This is because there
are two separate fields which deal with uncertain data in optimization problems which are robust
optimization and stochastic programming. In robust optimization uncertain values are always
assumed to lie within some given interval. Furthermore, it is usually assumed that there is no
detailed information on the probability distribution of these values. Then, in general the worst
case scenario is considered. A solution is called robust when it stays feasible in the model no
matter what the real values of the uncertain data are. So a robust solution can only be infeasible
in real world if the actual worst case is worse than the modelled worst case. Let us consider
uncertain values which can get arbitrarily bad. This is a realistic scenario in many domains. For
example, a problem instance could contain a prediction of the arrival time of a plane. The airline
may state that the arrival time can diverge by at most one hour from the prediction which could
also be a reasonable assumption at some level. This would mean that if earlier arrival times
correspond to better cases, the worst case could be described with the predicted value plus one
hour. But this is already a model, because with a very low probability the arrival can be much
later. The worst case in the real world is that the plane does not reach its destination which can
be defined as an infinite high deviation from the prediction. For robust optimization we have to
define a finite worst case value. Even though very late arrivals occur only with a low probability,
it can be seen that a definition of a worst case can be somewhat artificial. But this does not mean
that robust optimization cannot be applied in such a scenario. Even if there is a discrepancy
between the real world and the model, a robust approach can give good results.

In stochastic programming detailed information of the probability distributions of uncertain
values is assumed to be given. The focus often lies on the expected case, but also other cases
can be considered. The knowledge of properties of the probability distributions allows us to
make stochastically well-founded statements about solutions. Such a statement can be that there
is a probability of 10% that a specific solution is infeasible in the model. This should also be
an accurate statement in real world, otherwise the application of stochastic programming is not
reasonable.

The conversion to a robust or a stochastic problem is in general not problem specific. It
depends more on the used approach of dealing with uncertainties. There is not only one for

2

robust optimization and another one for stochastic programming, but there are even many dif-
ferent approaches within each field. Many of them are presented together with its application on
a general optimization problem. Also aspects of the implementation are often discussed. For a
given robust or stochastic problem there are in general several different algorithms. This thesis
considers only algorithms in the well-studied field of integer linear programming. The robust
and stochastic variants of the problem described next allow some alternative formulations as in-
teger linear program (ILP), which makes them good candidates for analysing the formulations
without being too problem specific.

1.3 The Rooted Delay-Constrained Steiner Tree Problem

The deterministic problem this work builds upon is a more general variant of the Steiner tree
problem. We are given a weighted graph and the task is to find a connected subgraph with
minimal weight. There are two different kind of nodes. Terminal nodes have to be part of the
resulting subgraph, whereas potential Steiner nodes are only used if they reduce the weight. It
can be shown that each optimal subgraph is indeed a tree if all edge weight are greater than zero.
The generalisation to the rooted delay-constrained Steiner tree (RDCST) problem then works in
the following way. Each edge has also an assigned delay and one of the nodes is the root node.
Like a terminal node, the root node has to be part of a solution. Then there is the additional
constraint that the cumulative delay from the root node to every other node has to stay below a
given bound.

This is a typical network problem. Let us view the root node as a server and the other nodes
as clients. The edges can be seen as cables, but they can even describe a whole link which
can consist of cables, wireless connections and network devices. For such networks it is often
important that the delay of transmissions does not get too high. Let us for example consider
user interaction on a web application. Many users get easily frustrated if their computer does
not respond for some time. For simple computations the major part of the delay comes from
the communication over the network links when the server itself is not too busy. It can often be
observed that the delay of the network links varies from time to time. There are many possible
reasons for this like busy network devices or faulty cables. Hence, uncertain data arises very
naturally.

It is worth noting that other parts of the problem instances could be affected by uncertainties,
too. The edge weights can also be seen as costs for establishing this link. Such costs are also
often not fixed at the time when the network is planned. They may be higher as predicted. Even
more variations of the problem are possible if we consider incompleteness of the instance. As
an example, it could be unknown whether a node is a potential Steiner or a terminal node in the
beginning. This knowledge may be given after some links are already established. This induces
a second planning phase but this time with complete information. Such problems are called
two-stage problems. They are well studied in the field of stochastic programming.

This thesis only covers uncertain delays, because it is the most basic scenario. Only the
constraints are affected by the uncertainty, which means that the task is to redefine feasibility
of a solution. From this, a definition of optimality follows directly. Uncertain weights affect
the objective function. So the feasibility of solutions does not change, but optimality has to

3

r

t1

t2 t3

s1 s2

s3 s4 s5

s6

B = 20

8/5

1/2 8/9 4/2

8/4

7/7

6/7

1/9 3/9 8/1 5/7

6/2

1/4

8/8 1/9 4/2

8/1 8/5

2/3

Figure 1.1: An instance of the RDCST problem and an optimal solution with weight 21. We
have S = {si | i ∈ N, 1 ≤ i ≤ 6} and T = {t1, t2, t3}. Each edge e is labelled with we/de and
highlighted if it is part of the solution. The path to t1 in the solution tree has a delay of 11 and
the path to t3 includes the path to t2 and has a delay of 18.

be redefined. Sometimes, both scenarios can be treated similarly, but there are also notable
differences. Two-stage problems diverge even further from the basic scenario.

The definition of the deterministic problem is given in Def. 1.1 and follows [44].

Definition 1.1 (Rooted Delay-Constrained Steiner Tree (RDCST) Problem) We are given a
graphG = (V,E) and a delay boundB ∈ N. The set of vertices V is partitioned into a root node
r, a set of terminal nodes T ⊆ V \ {r} and a set of potential Steiner nodes S = V \ (T ∪ {r}).
Each edge e ∈ E has an assigned weight we ∈ N and a delay de ∈ N.

A feasible solution is a tree G′ = (V ′, E′) with T ∪ {r} ⊆ V ′ ⊆ V and E′ ⊆ E, fulfilling
the delay constraints

dPG′ (r,t)
=

∑
e∈PG′ (r,t)

de ≤ B, ∀t ∈ T, (1.1)

where PG′(r, t) is the edge set of the unique path from r to node t in tree G′. The task is to find
a feasible solution with minimal weight

wG′ =
∑
e∈E′

we. (1.2)

Additionally, we define the set of arcs A = {(u, v) | {u, v} ∈ E, v 6= r}. A feasible solution
can also be represented in a directed fashion as an arborescence G′ = (V ′, A′) with r as its
root and A′ ⊆ A.

As a notational convenience duv and wuv are used instead of d{u,v} and w{u,v}, respectively.

Figure 1.1 shows a problem instance together with an optimal solution. As already men-
tioned, the RDCST problem is more general than the Steiner tree problem. The latter can be seen

4

as a special case of the RDCST problem where B =∞. There are also other interesting special
cases. For the hop-constrained Steiner tree problem [24] the only difference is that de = 1,
∀e ∈ E. A RDCST problem with S = ∅ is often called rooted delay-constrained minimum
spanning tree problem [46]. Also often analysed in literature is the hop-constrained minimum
spanning tree problem [15] which combines these two restrictions on the RDCST problem. Even
for this special case the NP-completeness can be shown. From this, the NP-completeness of
more general problems follows directly.

1.3.1 Related Work

The Steiner tree problem is a very old problem which dates back to the 19th century. It can be
said that the first modern examination was done by Gilbert and Pollak in 1968 [22] where the
relation to graph theory was discussed. Until then, the Steiner tree problem was never defined
in the way, which is common nowadays. Also Gilbert and Pollak talked mainly about points in
the Euclidean plane instead of nodes of a graph. In their definition terminal nodes were points
with fixed coordinates whereas every possible point in the Euclidean plan was a potential Steiner
node. This problem is nowadays referred to as Euclidean Steiner tree problem [18]. The first
study of the Steiner tree problem in its graph theoretical form was done by Dreyfus and Wagner
in 1971 [17].

The RDCST problem was introduced by Kompella et al. [33, 34]. An overview of its ILP
formulations was given by Ruthmair [44]. One of them is a formulation that requires an instance
transformation to a layered graph. A drawback of this approach is that the size of layered graphs
increases with larger values of B. Therefore, Ruthmair and Raidl [45] presented an algorithm
where the layered graph is not constructed completely at the beginning. Afterwards arcs are
added if it is not possible to find an optimal solution with the reduced instance.

For the rooted delay-constrained minimum spanning tree problem there was some work done
by Gouveia et al. [25]. They presented an ILP formulation with exponentially many variables
and discussed how it can be solved effectively. One of their discussed algorithms is based on
column generation. It was considered as ineffective until some improvements were done by
Leitner et al. [36], see also [37]. Gouveia et al. used the term distance instead of delay which
results in an alternative problem name. Also the RDCST problem is sometimes referred to as
the rooted distance-constrained Steiner tree problem.

For the RDCST problem there were also several heuristics presented in the literature. Some
of them are construction heuristics [1,35]. Furthermore, metaheuristics, which include a genetic
algorithm [56] and tabu-search [49], were applied.

1.4 Structure of the Work

In Chapter 2 basic concepts which are used in this work are explained. Chapter 3 then introduces
a robust version of the RDCST problem. Thereby, we will stick to the approach which was
presented by Bertsimas and Sim [6]. This leads to a model and a new problem definition. There
are several ILP formulations presented which could be used to solve this problem. It is discussed
that, from a stochastic point of view, this approach has some limitations. This motivates a

5

stochastic version of the RDCST problem in Chapter 4 which introduces a different model.
It is pointed out that although robust optimization and stochastic programming are separate
fields with different philosophies, they have a lot in common. Intuitively, a smaller instance
should result in faster solving times. Therefore, Chapter 5 deals with reductions of the problem
instances. A different way of dealing with uncertain delays is presented in Chapter 6. There
an analysis whether one can avoid both previously introduced problems is given. The idea is to
reuse algorithms for the deterministic problem and modify the problem instances instead. Some
computational results are presented in Chapter 7 where not only robust and stochastic approach
are compared, but also the algorithms based on the different formulations. Finally, Chapter 8
summarizes the thesis and discusses possible further work on the topic.

6

CHAPTER 2
Preliminaries

This thesis uses many concepts from integer linear programming like LP-based branch-and-
bound, branch-and-cut and duality. For an explanation of these concepts the reader is referred to
introductory literature [47,53]. The discussed optimization problems are mostly single-objective
and a few are bi-objective. For simplicity, all single-objective optimization problems are as-
sumed to be minimization problems.

2.1 Feasibility under Uncertain Data

When considering uncertain data in deterministic minimization problems there are the risks of
suboptimality and infeasibility. In general, feasibility is more important than optimality. But if a
solution should be feasible in every case, the value of the objective function can be very high. So
it might be a good option to take a low risk of infeasibility if it decreases the objective function
notably. Therefore, optimization with uncertain data often considers a specific case for which
the optimization is done. The choice of the case allows control of the risk of infeasibility. The
optimality of a solution is then redefined and depends on the chosen case. We distinguish the
cases:

• Optimization with respect to a good case allows low values of the objective function. The
probability that a constraint is infeasible can exceed 50%. A good case can be near or far
from the expectation. If a solution is only valid for a good case far from the expectation,
there is a high risk of a constraint violation. Optimization with respect to a good case is
not very common.

• The expected case considers an average scenario. Therefore, each constraint has to be
feasible for the expected value. For symmetric probability distributions it holds that if a
solution is feasible for the expected case, every constraint is valid with a probability of at
least 50%.

7

• For symmetric probability distributions it holds that if a solution is feasible for a bad case,
every constraint is valid with a probability of more than 50%. There are a lot of bad cases
including the worst case and cases near the expectation.

• The worst case considers the worst possible scenario. A solution is feasible for the worst
case iff it is feasible for all possible values. Worst case optimization is the most conserva-
tive form of optimization with uncertain data.

2.2 Robust Optimization

In general the goal of robust optimization is to find an optimal solution for a given problem,
taking all possible values for some uncertain data into account. The solution is then called
robust, because it is valid even in the worst case.

Let us now consider a general minimization problem of the following form:

min
∑
j∈J

cjxj (2.1)

s.t.
∑
j∈J

aijxj ≤ bi ∀i ∈ I (2.2)

lj ≤ xj ≤ uj ∀j ∈ J (2.3)

For every j which lies is some set J there is a variable xj . All other values are constants.
Let us assume that aij is only a prediction of a random variable ãij which is the source of
uncertainty. We assume that ãij has an unknown symmetric distribution and can only take
values in the bounded interval [aij − âij , aij + âij]. This model of uncertainty makes it easy to
optimize the worst case. Such a formulation was given by Soyster [50]. From the symmetric
distribution follows, that aij is now the expected value of ãij . Because of the linearity of the
expectation operator, the linear program above gives us also an optimum for the expected case.

So if we wanted to consider only the expected case, there would be no need to extend the
formulation. Therefore this is not a very interesting case in robust optimization. On the other
hand the worst case is indeed something we want to consider, but the probability that it actually
occurs is often very low. Let us call something a bad case if it lies between the expected and the
worst case. The question arises how solutions can be found for at least some of these bad cases.
There are different approaches for this kind of optimization. One of them, which is particularly
interesting from a computational point of view, was introduced by Bertsimas and Sim [6] and is
described in the next section.

By describing the interval for the random variables a model was created which does not
necessarily coincide with the real world. The worst case can then be defined as the case where
the minimal value of the objective function would be maximal for all possible results of the
random variables. There are also other possible models. The scenario-based model was studied
in detail by Mulvey et al. [42]. In this model possible values for a random variable are not
given as an interval, but as a set of values that were observed in the past. An assignment for
all random variables to one of its observed values is then called scenario. If it is assumed that

8

the random variables are not independent, a scenario should only consist of values that were
observed together. It is an advantage over the interval-based model that it can be applied if there
are dependent random variables. For the case of independence the interval-based model is more
suited. One reason for this is that for a scenario-based model the instance can be very large if it
contains a lot of observations.

2.2.1 The Approach of Bertsimas and Sim

For the expected case we have set zero random variables to their worst case value, whereas for
the worst case it were all of them. The idea in this approach is to introduce a parameter Γ to
control the number of random variables which are set to the worst value. The others stay at the
expected case. The following formulation describes the robust problem:

min
∑
j∈J

cjxj (2.4)

s.t.
∑
j∈J

aijxj + max
{Si∪{ti}|Si⊆Ji,
|Si|=bΓic,ti∈Ji\Si}

{
∑
j∈Si

âijyj + (Γi − bΓic)âitiyt} ≤ bi ∀i ∈ I (2.5)

− yj ≤ xj ≤ yj ∀j ∈ J (2.6)

lj ≤ xj ≤ uj ∀j ∈ J (2.7)

yj ≥ 0 ∀j ∈ J (2.8)

If xj can be negative, the variable yj is necessary to get its absolute value. The interesting
new part is the maximum term in constraints (2.5). Note that there can be a different value of Γ
for each inequality and that it is not limited to integral numbers. The elements in Si are those
which take the worst value, because they have the highest âijyj . The element ti is used for the
fractional part of Γi and its random variable is assigned with a bad value.

This approach is well suited for implementations, because it is possible to transform the
formulation above into a linear program. Such a transformation is done in Section 3.2.1.

Note that there is an alternative perspective for this approach. In this thesis different values
of Γ are viewed as differently bad cases. That means that there is still a chance that a robust
solution is not feasible for results of the random variables. Alternatively, it could be stated that
it is only possible that at most Γ random variables take their worst value while the others take
the expected value. Then we would have to speak just of the worst case but for different models.
This perspective fits better to the philosophy of robust optimization. However, it is unrealistic
that such a model coincides with the real world. It is hard to imagine an example, where a set
of random variables behaves like that. So, if we abandon the idea of analysing the worst case,
there has to be the risk that a robust solution is infeasible. But then also the question arises how
likely this is. There cannot be a precise probability of feasibility, but Sim [48] provided some
probabilistic bounds.

9

2.2.2 Related Work

Another robust approach for the interval-based model was introduced by Ben-Tal and
Nemirovski [3, 4] and independently by El Ghaoui et al. [19, 20]. Even though this approach
belongs to robust optimization, it has an interesting stochastic foundation, which is discussed in
Section 4.1.

Often it is easier to investigate and discuss properties of a robust approach when focusing
on a concrete problem instead of working with a generic optimization problem only. This al-
lows also more practice-oriented statements concerning the performance and the applicability
of robust approaches. One problem that was already considered very often is the spanning tree
problem. It was studied with an interval-based model by Yaman et al. [54]. In their work the
uncertainty affects the edge weights. This means that the uncertainty has to be handled together
with the objective function. For the RRDCST problem the uncertainties occur in the inequalities.
This is sometimes referred to as uncertainty associated with hard constraints. Both variants can
often be treated similarly, but for some problems it happens that one of them is a lot easier to
solve. Because robust optimization got most of its input quite recently, their study, published in
2001, can already be counted to old work.

The approach of Bertsimas and Sim was applied to the prize-collecting Steiner tree problem
by Álvarez-Miranda et al. [2]. This is a variant of the Steiner tree problem where every node has
some given profit and every edge has some given cost. There are no terminal nodes anymore
which have to be part of a solution. Nodes are only part of an optimal solution if they help
increasing the profit. Álvarez-Miranda et al. defined a robust counterpart of the problem where
both profits and costs are assumed to be uncertain. An algorithm based on branch-and-cut was
developed to solve it.

Robust variants are also investigated for other problems. The robust travelling salesman
problem was studied by Montemanni et al. [41] who also worked with an interval-based model.
A robust variant of the shortest path problem was introduced by Yu and Yang [55]. A robust
knapsack problem was introduced by Bertsimas and Sim [6] as a demonstration of their ap-
proach. They assumed the weights to be uncertain and that, analogously as for the α-RRDCST
problem from Chapter 3, a constant factor α exists which characterises the maximal variation
of all item weights. The more general variant without the factor α was studied by Monaci et
al. [40]. They used dynamic programming as it is often done to solve the deterministic knapsack
problem.

Another problem, which is studied in several recent publications, is the robust capacitated
vehicle routing problem. For this, the importance of considering uncertainties can be seen from
practical examples. Gounaris et al. [23] defined the customer demands as random variables.
The routes may be planned for a longer period whereas the demands of some costumer prob-
ably change several times. By only solving the deterministic problem, an expensive rebuild
of the routes can be the consequence when a demand changes. Their work also discusses the
relationship to a stochastic variant of the problem.

The approach of Bertsimas and Sim had a great influence in the field of robust optimization.
But it has also some limitations. The assumption of a symmetric probability distribution, for
example, does often not hold in real world. There are several studies on similar but more flexible
approaches. One of this approaches considers an extended model of the uncertainties. The

10

so called multi-band uncertainty allows to incorporate different probability distributions. On
overview on this topic was given by Büsing and D’Andreagiovanni [9]. Such approaches can
also be categorized to stochastic programming.

2.3 Stochastic Programming

The main idea of stochastic programming is the same as in robust optimization. There is some
source of randomness we have to consider in the optimization. But instead of focusing on the
worst case, the target is to find solutions which are optimal for some case where we know im-
portant probabilistic properties. Because of computational difficulties many stochastic problems
just consider the expected case. An expected case analysis for a RDCST problem with uncertain
delays is very easy if expected edge delays are given. It is more difficult for the other cases.
Each case has some dedicated probability p. If an optimization is done with respect to a given
case, each constraint is not violated with a probability of at least p. It is necessary to have de-
tailed information of the probability distribution of the random variables to achieve this goal,
especially expected value and standard deviation.

2.3.1 Related Work

One of the first studies to stochastic programming was done by Dantzig in 1955 [16]. Since
then it evolved to a wide field which is also the topic of several books. Introductions to the topic
are given amongst others by Birge and Louveaux [7] and by Kall and Wallace [31]. Stochastic
programming splits up into expected case analyses and chance-constrained programming.

The expected case analyses are often used in combination with two-stage problems. In the
context of Steiner tree problems such an analysis was done by Gupta and Pál [27]. In the first
stage they assumed that the set of terminal nodes is unknown, and only a probability of being a
terminal node is given for each node. The second stage then reveals the set of terminal nodes.
The problem of finding a solution with minimal cost gets hard when the prices increase in the
second stage. It can be a good strategy to include edges to the solution in the first stage even if
there is the risk that they might not be needed. The problem was also studied by Ljubić et al. [8].
Their main concern was to create a faster algorithm.

Two-stage problems usually tackle the expected case only, because working with quantiles
instead of expected values can be much more complicated for such complex problems. More
different cases are often analysed if it is possible to calculate quantiles effectively. These calcu-
lations can then be included into the constraints of the problem formulation which is also done
in Chapter 4. Such constraints are called chance constraints. They were introduced by Charnes
and Cooper [12]. Ishii et al. [30] applied these concepts to the spanning tree problem. It was also
applied to a variant of the problem by Ishii et al. [29] where the task is to minimize the maximal
weight of one edge. Interestingly both problems are equivalent for their deterministic versions
which does not hold for the stochastic problems. This also indicates that a lot of variations of a
problem are possible in stochastic programming.

Robust problems are often easier to solve but stochastic problems often provide a better
definition of optimality. This inspired the idea of developing robust algorithms that provide a

11

good approximation to stochastic problems with chance constraints. Similar approaches for this
were presented by different authors [10, 13, 21, 43]. The concept was applied to the knapsack
problem by Klopfenstein and Nace [32].

Another class of problems was defined by Thiele [51] under the name robust stochastic
programming. In robust optimization all probability distributions are assumed to be unknown
whereas in stochastic programming there is complete knowledge of them. The assumption in ro-
bust stochastic programming lies somewhere in between. Probability distributions are assumed
to be given, but they are uncertain. This means that the uncertainty occurs on two levels. First, a
value itself is uncertain. The degree of uncertainty is slightly decreased by a probability distribu-
tion, which also is affected by uncertainty. Liu [38] stated that probability distributions are often
not known in practice. Instead, experts come up with some guesses. Such guessed probability
distributions often have a higher variance than the unknown real probability distributions. Liu
coined the term uncertain programming which is founded in a comprehensive new theory.

2.4 Bi-Objective Optimization

Most optimization problems have exactly one objective function which should be minimized or
maximized. In practice it is often not desirable to express the value of a solution with only one
function. In multi-objective optimization there can be several objectives where each objective
function should either be minimized or maximized. If the objectives are conflicting, there may
be not only one optimal solution for a problem instance, but there can be a lot of solutions
where it is not obvious how to rank them. A very common classification of solutions is Pareto
optimality.

Definition 2.1 A solution w = (w1, w2, ..., wn) of a multi-objective minimization problem is
Pareto optimal if there is no other solution w′ = (w′1, w

′
2, ..., w

′
n) with

∀i, 1 ≤ i ≤ n : w′i ≤ wi ∧ ∃i, 1 ≤ i ≤ n : w′i < wi.

This thesis only considers optimization problems with at most two objectives. An opti-
mization problem with two criteria is called bi-objective optimization problem. A solution of
a bi-objective optimization problem is Pareto optimal if there is no other solution where one
criterion is better and the other one is at least equally good. A solution is in the Pareto front if
there is no other solution where both criteria are better. The Pareto front therefore contains all
Pareto optimal solutions.

One method of finding all Pareto optimal solutions of a bi-objective problem instance is
the epsilon-constraint method. A detailed explanation was given by Chankong and Haimes [11].
Let us consider a bi-objective minimization problem of the following form:

min (f1(x), f2(x)) (2.9)

s.t.Ax ≤ b (2.10)

12

One solution of the Pareto front can be found by solving the following optimization problem.

min f1(x) (2.11)

s.t.Ax ≤ b (2.12)

f2(x) ≤ c (2.13)

Every choice for the constant c can result in a different solution of the Pareto front. All Pareto
optimal solutions can then be iteratively found with the following steps.

1. c is initialized with∞

2. The single-objective problem is solved. Its result is either a new solution x′ of the Pareto
front or no solution if no one exists.

3. If solution x′ exists, f2(x′)−ε is assigned to c, where ε is a sufficiently small value greater
than zero, and it is continued with 2.

13

CHAPTER 3
The Robust Rooted Delay-Constrained

Steiner Tree Problem

In Section 1.3 the RDCST problem was defined. But in the context of uncertain delays the
definition of optimality has to be changed. A solution which has an undesired high probability
of being infeasible should not be referred to as optimal anymore. This means that there has to
be a new problem definition. We will stick to the approach of Bertsimas and Sim which was
discussed together with basic concepts of robust optimization in Section 2.2.

Definition 3.1 For a set of edges P , where each edge has a delay variation d̂e ∈ Q+, and a
parameter Γ ∈ Q+ we define the delay variation d̂Γ

P ∈ Q+ as:

d̂Γ
P =

{
max{

∑
e∈F d̂e + (Γ− bΓc)d̂f | F ⊂ P, |F | = bΓc, f ∈ P \ F} if |P | > Γ∑

e∈P d̂e otherwise
(3.1)

Definition 3.2 (Robust Rooted Delay-Constrained Steiner Tree (RRDCST) Problem) We
are given a graph G = (V,E), a delay bound B ∈ N and a parameter Γ ∈ Q+. The set
of vertices V is partitioned into a root node r, a set of terminal nodes T ⊆ V \ {r} and a set of
potential Steiner nodes S = V \ (T ∪ {r}). Each edge e ∈ E has an assigned weight we ∈ N,
an expected delay de ∈ N and a maximal delay variation d̂e ∈ Q with 0 ≤ d̂e < de.

A feasible solution is a tree G′ = (V ′, E′) with T ∪ {r} ⊆ V ′ ⊆ V and E′ ⊆ E, fulfilling
the delay constraints

dΓ
PG′ (r,t)

=
∑

e∈PG′ (r,t)

de + d̂Γ
PG′ (r,t)

≤ B, ∀t ∈ T, (3.2)

where PG′(r, t) is the edge set of the unique path from r to node t in tree G′.
The task is to find a feasible solution with minimal weight

wG′ =
∑
e∈E′

we. (3.3)

15

r

t1

t2 t3

s1 s2

s3 s4 s5

s6

B = 20
Γ = 1

8/5

1/2 8/9 4/2

8/4

7/7

6/7

1/9 3/9 8/1 5/7

6/2

1/4

8/8 1/9 4/2

8/1 8/5

2/3

Figure 3.1: An instance of the 0.5-RRDCST problem and an optimal solution with weight 27.
We have S = {si | i ∈ N, 1 ≤ i ≤ 6} and T = {t1, t2, t3}. Each edge e is labelled with we/de
and highlighted if it is part of the solution. A path Pi is the path from r to ti in the solution tree.
Then we have dΓ

P1
= 13.5, dΓ

P2
= 15.5 and dΓ

P3
= 18.5.

If the links of a network use the same techniques, their delays may have similar deviations.
In this case an intuitive assumption is that the maximal delay variation of an edge is proportional
to its expected delay. This leads to the following definition:

Definition 3.3 The α-RRDCST problem is a special case of the RRDCST problem where a
constant α ∈ Q, 0 < α < 1, exists such that d̂e = α · de, ∀e ∈ E.

Figure 3.1 shows a problem instance together with an optimal solution. This can be com-
pared to Fig. 1.1 which presents a solution for the deterministic problem. It can easily be seen
that the RDCST problem is equivalent to the RRDCST problem with Γ = 0. When Γ is in-
creased to 1, the paths to t1 and t2 stay the same, while the connection to t3 changes. The old
path Po would have a total delay dΓ

Po
of 18 + 4.5 = 22.5 and would therefore exceed the delay

limit.
It is worth noting that it would be a different problem if we defined a solution not as a tree,

but as a connected graph, as it is often done for the Steiner tree problem. In Fig. 3.2 there is
a solution to an instance which is not feasible, because it violates the tree property. With an
alternative definition the solution could be feasible, since only two edges can take their worst
value de + d̂e. For all possible cases there remains one path to t which satisfies the delay
constraint. If we accepted the solution as feasible, it would also be optimal. But the definition
which is used in this thesis implies that edge {r, t} is the only feasible and therefore optimal
solution to the instance from Fig. 3.2a.

3.1 Limitations of the Robust Approach

With the approach of Bertsimas and Sim detailed information of the random variables is not
needed which is useful if there is not much information of the probability distributions available.

16

r

s1 s2

t

B = 5
Γ = 2

1/2 1/2

5/2

1/2 1/2

(a)

r

s1 s2

t

1/2 1/2

1/2 1/2

(b)

Figure 3.2: (a) An instance of the 0.5-RRDCST problem and an optimal solution with weight 5.
Each edge e is labelled with we/de. We have S = {s1, s2} and T = {t}. (b) An infeasible
solution that has lower weight but violates the tree property.

r

s1 s2

t

B = 20
Γ = 1

1/8 2/12

1/8 1/2

Figure 3.3: An instance of the 0.5-RRDCST problem and an optimal solution with weight 2.
The promising solution with edges {{r, s2}, {s2, t}} is deemed as suboptimal for every value of
Γ ≤ 1. We have S = {s1, s2} and T = {t}. Each edge e is labelled with we/de.

17

This means that the goal is to find good results for arbitrary probability distributions. However,
the optimal solutions may be not satisfying for some instances.

Let us consider Fig. 3.3 as an example. There we have only two possible feasible solutions
which consists of paths P1 = {{r, s1}, {s1, t}} and P2 = {{r, s2}, {s2, t}}, respectively. Try-
ing all values of Γ will give us either no solution (for Γ > 1) or the solution consisting only of P1

(for Γ ≤ 1), because it has minimal weight. For the RRDCST problem both paths are deemed
to be equally robust, because for both the maximal value of Γ for which they are feasible is 1.
It can be shown that the path P2 has a higher probability of staying below the delay limit than
P1 for many common probability distributions. This means that it would be desirable that P2 is
therefore deemed to be more robust.

As an example, let us consider the discrete uniform distribution for all edge delays. For P1

we get 9 possible values from 4 to 12 for both delays. The path would exceed B = 20 in 4 cases
if the first edge takes value 12. For values smaller than 12 there are 6 more cases. As a result we
get a probability of

1− 4 + 3 + 2 + 1

9 · 9
= 88%

that the delay of P1 does not exceed B. But for P2 there is the higher probability of

1− 1

13 · 3
= 97%.

We would get similar results for many other probability distributions. So the solution consisting
of P2 has not the lowest weight, but the highest probability

Pr[
∑
e∈P

d̃e ≤ B]

for all paths P to t, where d̃e is the random variable for the delay of edge e. It may be a
loss that this solution to the instance is never classified as optimal for the RRDCST problem.
Such undesirable effects are caused by the weak correlation of Γ and the quantiles of possible
probability distributions. In Chapter 4 an approach is introduced which aims to evaluate paths
more precisely.

3.2 Formulations

In this section several ILP formulations of the RRDCST problem are presented. Throughout the
section the variable xij is used for an arc (i, j) ∈ A. If xij = 1 the arc (i, j) is part of the solution
and if xij = 0 it is not. The formulations are directed, because directed formulations are in many
cases stronger then undirected ones. Solutions will thus be represented as arborescences.

3.2.1 Multi Commodity Flow

The multi commodity flow (MCF) formulation is a compact formulation that uses only a polyno-
mially bounded number of variables and constraints. A variable fkij is used for the flow on arc
(i, j) ∈ A for terminal node k ∈ T .

18

To ensure connectivity, a flow from r to every terminal node is integrated into the formu-
lation. First, we define a subproblem βk(f

k,Γ), which is the part for handling the uncertain
delays.

βk(f
k,Γ) = max

{F∪{(u,v)}|F⊆A,
|F |=bΓc,(u,v)∈A\F}

{
∑

(i,j)∈F

d̂ijf
k
ij + (Γ− bΓc)d̂uvfkuv} (3.4)

The set F is the set of arcs for which the highest delay variation is assumed. For a fractional
part of Γ, also the delay of arc (v1, v2) is increased. The MCF formulation below is a non-linear
program which includes the subproblem βk(f

k,Γ).

min
∑

(i,j)∈A

wijxij (3.5)

s.t.
∑

(i,j)∈A

dijf
k
ij + βk(f

k,Γ) ≤ B ∀k ∈ T (3.6)

∑
(r,i)∈A

fkri = 1 ∀k ∈ T (3.7)

∑
(i,j)∈A

fkij −
∑

(j,i)∈A

fkji = 0 ∀j ∈ V \ {r, k},∀k ∈ T (3.8)

∑
(i,k)∈A

fkik = 1 ∀k ∈ T (3.9)

∑
(i,k)∈A

xik = 1 ∀k ∈ T (3.10)

∑
(i,k)∈A

xik ≤ 1 ∀k ∈ S (3.11)

0 ≤ fkij ≤ xij ∀(i, j) ∈ A,∀k ∈ T (3.12)

xij ∈ {0, 1} ∀(i, j) ∈ A (3.13)

The inequalities (3.7), (3.8) and (3.9) are classical flow conservation constraints. Inequali-
ties (3.12) links the flow variables to the arc variables. The delay constraints are described with
inequalities (3.6). Differently as for the deterministic problem, there has to be taken more care
that only tree like solutions are allowed. This can be done with constraints (3.10) and (3.11)
which describe the in-degree of terminal and potential Steiner nodes. Alternatively, all flow
variables could have been restricted explicitly to be integer to avoid partial flows on different
paths. Next, we apply the transformation given in [6] to our model (3.5)–(3.13) to get an ILP
formulation.

Let us consider βk(fk,Γ) again. Since fk are constants for βk(fk,Γ) we can construct an
equivalent linear program.

19

βk(f
k,Γ) = max

∑
(i,j)∈A

d̂ijf
k
ijz

k
ij (3.14)

s.t.
∑

(i,j)∈A

zkij ≤ Γ (qk) (3.15)

0 ≤ zkij ≤ 1 (pkij) ∀(i, j) ∈ A (3.16)

In an optimal solution every newly introduced variable zkij will be 1 if (i, j) ∈ F , between 0
and 1 if (i, j) = (u, v) and 0 otherwise. Note that there is no need to handle the fractional part
of Γ separately like it was done before.

Using strong duality we can construct an equivalent minimization problem. This is nec-
essary, because βk(fk,Γ) appears on the left side of inequalities (3.6) which implies that the
function is automatically minimized. The variables qk correspond to inequality (3.15) and the
variables pkij correspond to the definition of the possible interval (3.16).

min qkΓ +
∑

(i,j)∈A

pkij (3.17)

s.t. qk + pkij ≥ d̂ijfkij ∀(i, j) ∈ A (3.18)

qk ≥ 0 (3.19)

pkij ≥ 0 ∀(i, j) ∈ A (3.20)

The final step is to integrate the subproblem again into the MCF formulation. So (3.6) has
to be substituted with the constraints (3.21)–(3.24). There are no quadratic terms, although fk

cannot be viewed as constant like it was done before.

∑
(i,j)∈A

dijf
k
ij + qkΓ +

∑
(i,j)∈A

pkij ≤ B ∀k ∈ T (3.21)

qk + pkij ≥ d̂ijfkij ∀(i, j) ∈ A,∀k ∈ T (3.22)

qk ≥ 0 ∀k ∈ T (3.23)

pkij ≥ 0 ∀(i, j) ∈ A,∀k ∈ T (3.24)

3.2.2 Path-Cut

It is often the case that there is a more intuitive formulation of a problem where an exponential
number of constraints is needed. The following formulation was already given by Ruthmair [44]
and can be used to solve the RDCST problem as well as RRDCST problem. Note that contrary
to the huge amount of constraints the number of different types of inequalities is very low. There
are also no further variables needed than the arc variables x.

Let P = {{ui, ui + 1} | i = 1, 2, . . . , l − 1} be the edge set which corresponds to a node
sequence U = (ui)

l
i=1 that represents a directed path in graph G. Then the set Pinf contains a

20

node sequence U if dΓ
P > B. Thus, Pinf contains only node sequences of paths that cannot be

part of a feasible solution.

min
∑

(i,j)∈A

wijxij (3.25)

s.t.
∑

(i,j)∈A,i∈C,j∈V \C

xij ≥ 1 ∀C ⊂ V, r ∈ C, (V \ C) ∩ T 6= ∅ (3.26)

l−1∑
i=1

xuiui+1 ≤ l − 2 ∀(ui)li=1 ∈ Pinf (3.27)

xij ∈ {0, 1} ∀(i, j) ∈ A (3.28)

The inequalities (3.26) are often called connection cut inequalities. They ensure that there
is a connection between the root node and all terminal nodes. Constraints (3.27) forbid all
infeasible paths. A separate method could define which paths are feasible and which are not.
Therefore the formulation is flexible and able to describe different problems.

A common way to solve an ILP with an exponential number of constraints is branch-and-
cut. Then constraints have to be added to the model only if needed. There are some other
inequalities which are not necessary but could be inserted a priori to increase performance.
Here, the constraints (3.10) and (3.11) can be used as such.∑

(r,j)∈A

xrj ≥ 1 (3.29)

∑
(i,k)∈A

xik ≤
∑

(k,j)∈A

xkj ∀k ∈ S (3.30)

∑
(i,k)∈A,i 6=j

xik ≥ xkj ∀(k, j) ∈ A, k ∈ S (3.31)

Inequality (3.29) is one special case of (3.26) and it is very likely that it would be added during
the branch-and-cut procedure anyway. It can easily be seen that a potential Steiner node cannot
be a leaf in an optimal solution which is formalized with constraints (3.30). Inequalities (3.31)
also state that there can only be an outgoing arc from a potential Steiner node if there is an
incoming arc.

There is also a stronger variant of constraints (3.27) which was given in [44]. Using the
strengthened constraints (3.32) instead of (3.27) results in a much better performance of the
branch-and-cut algorithm.

l−1∑
i=1

xuiui+1 +

l−1∑
i=2

∑
v∈V i

U

xvui +

l−1∑
i=2

xui+1ui ≤ l − 2 ∀(ui)li=1 ∈ Pinf (3.32)

The node set V i
U = {v | (v, ui) ∈ A, v 6= ui−1, v 6= ui+1, (v, ui, . . . , ul) ∈ Pinf} is used to

forbid additional paths without additional inequalities.

21

3.2.2.1 Separation Methods

In the implementation there are two different separation methods, one for the connection
cuts (3.26) and one for the infeasible paths (3.27) or (3.32). Sometimes it is beneficial if the LP
solutions are strengthened at each node. Therefore both methods can identify violated inequali-
ties given a fractional solution. For each LP or ILP solution, the search for violated constraints
is done with both separation methods and not aborted when an inequality is added to the model.
This could have been done also otherwise, and it is not easy to predict how many constraints
should be added for one solution, in order to achieve the best performance with current ILP
solvers for a specific set of instances. In the following, let x′ be the vector of the current LP
solution.

Connection Cuts The connection cut inequalities are checked with a maximum-flow algo-
rithm [14]. For each terminal node t the maximum flow from r with arc capacities x′ is calcu-
lated. If there is a path between r and t, the flow has to be at least one. If the flow is below
one, at least one connection cut inequality is violated. The max-flow min-cut theorem says that
the value of the flow is equal to the minimal cut. Some minimal cuts can also be found with the
maximum-flow algorithm. One such cut corresponds to a violated inequality if it is below one.
There is often a huge amount of them, therefore, to keep the model small, only the closest cut to
source r and the closest cut to the terminal node are added.

Path Cuts The part where the uncertainty has to be handled is the second separation method.
A directed path P on graph G is viewed as part of an LP solution if∑

(i,j)∈P

x′ij > |P | − 1, (3.33)

which means that no whole arc can be missing. Such a path will violate an inequality (3.27) if
P ∈ Pinf .

First, such paths have to be located. This can be done with a shortest path algorithm where
the weight of each arc (i, j) is set to 1 − x′ij . For each terminal node the shortest path from r
is determined. If a shortest path is smaller than one, a feasibility check is done. Note that this
way, no violated inequality will be found on an LP solution, if there is a shorter path for every
terminal node which is not contained in the set Pinf . This means that this method is a heuristic
on LP solutions, but exact on ILP solutions.

The feasibility check of a path P from r to terminal node t works as follows. It is easy to
verify if P violates a delay constraint (3.2). It is beneficial to search for shorter paths to reduce
the number of path cuts. Therefore, if P ∈ Pinf , the infeasible subpath with the least edges
ending at t is used to construct a new path cut.

3.2.3 Layered Graph

The procedure which is used here transforms the instance graph to a much larger graph which is
called layered graph and contains no cycles. Furthermore it contains no infeasible paths in the

22

case of certain delays and a relatively small number of infeasible paths in the case of uncertain
delays. If the layered graph gets not too large, hop and delay-constrained tree problems can
often be solved efficiently with this procedure. Therefore, layered graph transformations also
gained popularity in recent work. Let us first consider only the RDCST problem, for which the
following layered graph approach was presented in [44].

The layered graph hasB+1 layers which will be called as layer 0 up to layerB. The number
stands for the delay which it takes to get from r to one node in this layer. So layer 0 consists
only of the root node itself. All other nodes have exactly one copy of themselves in each of the
layers 1 to B. The nodes of the layered graph are defined by the set

VL = {r} ∪ {vb | v ∈ V \ {r}, 1 ≤ b ≤ B}.

The number of nodes of the layered graph is then B · (|V | − 1) + 1. Each arc (u, v) ∈ A with
delay d gets also several copies (ub, vd+b). More formally, the arc set of the layered graph is
defined as AL = ArL ∪A

g
L where

ArL = {(r, vdrv) | (r, v) ∈ A} and

AgL = {(ub, vb+duv) | (u, v) ∈ A, u 6= r, 1 ≤ b ≤ B − duv}.

A layered graph transformation for the hop-constrained spanning tree problem was intro-
duced by Gouveia et al. [26]. They added also further arcs with weight 0 from each node to
the copy of the node on the highest layer. This way the problem can be solved as a Steiner
arborescence problem on the layered graph. To show the validity of the transformation, it was
discussed why each feasible solution on the layered graph has an equivalent counterpart on the
original graph and the other way round. If these additional arcs are added to the set AL, also the
RDCST problem can be solved as a Steiner arborescence problem.

A crucial factor for the efficiency of the optimization process is the size of the layered graph.
The number of arcs can be reduced by recursively applying the following rules:

• If a node has no incoming arcs, all outgoing arcs can be deleted.

• If a potential Steiner node has no outgoing arcs, all incoming arcs can be deleted.

For an arc (ib, jc) of the layered graph the variable xbij is introduced. An arc is part of the
solution if xbij = 1, and it is not if xbij = 0. Then the deterministic problem can be formulated
as follows:

23

min
∑

(i,j)∈A

wijxij (3.34)

s.t.
∑

(ib,kc)∈AL

xbik = 1 ∀k ∈ T (3.35)

∑
(ib,kc)∈AL,i 6=j

xbik ≥ xckj ∀(kc, jd) ∈ AgL (3.36)

∑
(ib,jc)∈AL

xbij = xij ∀(i, j) ∈ A (3.37)

xbij ≥ 0 ∀(ib, jc) ∈ AL (3.38)

xij ∈ {0, 1} ∀(i, j) ∈ A (3.39)

The inequalities (3.35) allow exactly one incoming arc for all copies of one terminal node.
For every outgoing arc of a node different to r, there has to be a supporting incoming arc, which
is described with (3.36). Since the original arc variables are used in the objective function, the
linking constraints (3.37) are necessary. This way we get not only the solution on the layered
graph, but also the solution for the original problem immediately.

3.2.3.1 Connection Cuts on the Layered Graph

In order to strengthen the formulation connection cuts can be added. The constraints (3.26) on
the original graph are of course valid inequalities. But there is also an even larger amount of
connection cuts on the layered graph. The corresponding inequalities were introduced in [26]
and can be described with constraints (3.40).

∑
(ib,jc)∈AL,ib∈C,jc∈VL\C

xbij ≥ 1
∀C ⊂ VL, r ∈ C,

C ∩ {kb | 1 ≤ b ≤ B} = ∅, k ∈ T
(3.40)

3.2.3.2 Working with Uncertain Delays

Unfortunately, it is not so easy to construct a layered graph without infeasible paths if delays are
uncertain. One possibility to extend the layered graph approach to the RRDCST problem is to
add the path constraints (3.27) or (3.32) to the model. Like in Section 3.2.2, they are best added
dynamically in a cutting plane algorithm. The layered graph is built according to the expected
edge delays.

As defined in Section 3.2, it has to hold for a feasible path P that

dP =
∑
e∈P

de ≤ B − d̂Γ
P .

We are now looking for an upper bound for dP for an arbitrary path. For every edge e, there
is a βe, 0 < βe < 1, with d̂e = βe · de. We define βmin as the minimal factor for all edges.

24

The edge set Es is used to calculate a lower bound for the delay variation of a path with a
high total delay and constructed the following way:

1. Es is empty.

2. The edge e with the smallest delay variation d̂e is taken from E \ Es. Its expected delay
is increased to d̂e

βmin
.

3. If dΓ
Es∪{e} ≤ B, e is added to Es and it is continued with 2.

Every feasible path contains edges which cannot have smaller delay variations than those en-
countered in Es, because they are already the smallest. There are feasible paths with less
edges, but these cannot have high expected delays. This follows from the calculation with βmin

which creates an upper bound on dP for every d̂Γ
P . Therefore, there is no feasible path P with

dP > B − d̂Γ
Es

.
We get an upper bound

L = bB − d̂Γ
Es
c (3.41)

for the last layer in the layered graph that has to be considered. Note that L < B. This means
that B is also an upper bound, but the smaller bound L reduces the layered graph and increases
the performance of the optimization process.

Theorem 3.1 L is an upper bound for dP of every feasible path P of a given instance of the
RRDCST problem.

Proof. Let us assume to the contrary that a feasible path P with dP > L exists. Since dP has to
be integer, it has to hold that dP > B − d̂Γ

Es
. It follows directly that d̂Γ

P < d̂Γ
Es

.
We distinguish two cases:

1. P contains less than dΓe edges. Then, an upper bound on dP follows directly from the
definition of dΓ

P . Together with d̂Γ
P < d̂Γ

Es
we get a contradiction.

dP ≤
∑
e∈P

d̂e
βmin

≤ B − d̂Γ
Es

2. P contains at least dΓe edges. This contradicts with d̂Γ
P < d̂Γ

Es
, because d̂Γ

Es
contains the

dΓe lowest delay variations.

So there is no feasible path P with dP > L. �

As an example, let us consider the graph given in Fig. 3.4. The calculation of the number of
layers does not respect the structure of the graph, but it uses the edge delays and delay variations.
Table 3.1 summarises this information. Additionally, the factor βe = d̂e/de is calculated for
every edge e.

25

r t1

s1

s2 t2

9 ± 3

3 ± 1

8 ± 4

5 ± 2

2 ± 1

5 ± 3 2 ± 1

9 ± 5

Figure 3.4: Graph and edge delays of an instance of the RRDCST problem. We have S =
{s1, s2} and T = {t1, t2}. Each edge e is labelled with de ± d̂e.

Table 3.1: Edge delays and delay variations of Fig. 3.4.

e1 e2 e3 e4 e5 e6 e7 e8

d̂ 1 1 1 2 3 3 4 5
d 2 2 3 5 5 9 8 9
β 0.5 0.5 0.33 0.4 0.6 0.33 0.5 0.56

Table 3.2: Increased edge delays.

e1 e2 e3 e4 e5 e6 e7 e8

d̂ 1 1 1 2 3 3 4 5
d 3 3 3 6 9 9 12 15

We get βmin = 1
3 . All delays are increased to d̂e · 3 for the following calculation steps. So

we work with the values given in Table 3.2.
Let us assume that the instance also specifies that B = 20 and Γ = 2. In the first three

iterations the edges e1, e2 and e3 are added to the set Es without exceeding the delay bound.
The next edge is e4. We get

dΓ
Es∪{e4} = 6 + 3 + 3 + 3 + 2 + 1 = 18.

The calculated value stays below the bound, therefore e4 is added to Es. For e5 the delay of the
edge set

dΓ
Es∪{e5} = 9 + 6 + 3 + 3 + 3 + 3 + 2 = 29 > B.

The edge e5 is not added to Es. As a result, the number of layers can be set to

B − d̂Γ
Es

= 20− 2− 1 = 17.

26

3.2.4 Path

Also ILP formulations with polynomially many constraints but exponentially many variables are
often used. These problems are then usually solved with a branch-and-price algorithm. Such a
formulation was introduced by Gouveia et al. [25] for the spanning tree variant of the RDCST
problem. This could be seen as a special case with S = ∅. An adaption to the RDCST problem
was already given by Leitner et al. [36]. The formulation can be used without any change when
working with uncertain delays. The only part that is different for the RRDCST problem is the
set of variables which affects the pricing subproblem.

Here we are looking for the set of feasible paths in contrast to the set of infeasible paths in
Section 3.2.2. It is sufficient to consider only feasible directed paths that go from the root node
to a terminal node. For every node t ∈ T we define the set Pt which contains the arc set of every
path P from r to t with dΓ

P ≤ B. The whole set of paths is defined as P =
⋃
t∈T Pt. For each

path P ∈ P there is a variable λP which is 1 if P is part of the solution and 0 otherwise. The
formulation is given the following way:

min
∑

(i,j)∈A

wijxij (3.42)

s.t.
∑
P∈Pk

λP = 1 ∀k ∈ T (3.43)

∑
P∈Pk,(i,j)∈P

λP ≤ xij ∀(i, j) ∈ A,∀k ∈ T (3.44)

∑
(i,v)∈A

xiv ≤ 1 ∀v ∈ V \ {r} (3.45)

λP ≥ 0 ∀P ∈ P (3.46)

xij ∈ {0, 1} ∀(i, j) ∈ A (3.47)

The inequalities (3.43) ensure that there is one path from r to every terminal node. There
are also linking constraints between arc and path variables needed which can be described
with (3.44). The constraints (3.45) were similarly used before and limit the number of incoming
arcs for every node.

3.2.4.1 Pricing Subproblem

As described in [25] the pricing problem can be stated as follows:
Let us define γkij as the non-negative dual variables of constraints (3.44) in the form

xij −
∑

P∈Pk,(i,j)∈P

λP ≥ 0

and βk as the dual variables of constraints (3.43). If there is a path P ∈ Pk for some k ∈ T in

27

the instance graph with ∑
(i,j)∈P

γkij < βk (3.48)

and a satisfied delay constraint, then there is a corresponding path variable with negative reduced
cost which should be added to the restricted model. Note that this is a feasibility problem
which is an optimization problem without an objective function. Although the solution with
the minimum reduced cost may be the most promising candidate for a new path variable. For
the RDCST problem this can be determined with a constrained shortest path problem for each
terminal node. This problem can be solved in polynomial time with respect to the size of the
instance and B.

For the RRDCST problem it might be beneficial to minimize the delay instead. This results
in a robust constrained shortest path problem for each terminal node k where the weights and the
delays are swapped. The weight of an edge e is then defined with expectation de and its maximal
variation d̂e. The delay of an arc (i, j) is then given by γkij and constraint (3.48) has to hold. This
problem still can be solved in polynomial time by solving multiple deterministic problems. This
can be concluded from [5], where it was proven that a reduction to a deterministic counterpart
is possible for a large class of robust problems.

3.2.5 Miller-Tucker-Zemlin

The idea of the formulation of Miller, Tucker and Zemlin [39] is to assign a number to every
node. This way some constraints can easily be checked. One example is the RDCST problem,
see Fig. 3.5a, where both the delay constraints and the connectedness can be verified together.
But the concept relies on the fact that it is possible to determine the number from local informa-
tion which are incident edges and adjacent nodes. Figure 3.5b illustrates, that global information
is necessary in the RRDCST problem. For the first node de + d̂e = 4 + 2 = 6 is counted for the
incoming edge e. For the left node only the expected delay of the incident edge is added because
of Γ = 1. For the right node it is not possible to reach 13 as a result only with local information.

28

r

4

6 10

4

2 6

(a)

r

6

8 13

Γ = 1

4 ± 2

2 ± 1 6 ± 3

(b)

Figure 3.5: (a) A solution of a deterministic problem instance and (b) a solution of an instance of
the RRDCST problem. Each edge e is labelled with de and de± d̂e, respectively. The calculated
delay, dP for (a) and dΓ

P for (b), of the path P from r is written to each node.

29

CHAPTER 4
The Stochastic Rooted

Delay-Constrained Steiner Tree
Problem

The expected case of the RRDCST problem is equivalent to the deterministic problem, and as
we will see, the same holds for the stochastic problem variant defined in Section 4.2. For bad
cases we have not yet defined how bad they exactly are, because it was not possible with the
robust approach. Let us assume we are given a probability p and want to find solutions where
each path is feasible with probability ≥ p. In this chapter p characterises the case for which
the optimal solution should be found. Good cases are equal to 0 < p < 0.5, the expected case
to p = 0.5 and good cases to 0.5 < p < 1. The probability p = 1 would describe the worst
case, but it will be assumed that there are no worst case solutions for instances of the stochastic
problem.

4.1 Normally Distributed Approach

This section analyses chance constraints which are not problem specific, but based on a concrete
model with the assumptions:

1. The random variables ã are independent.

2. Every ãj is normally distributed.

The first assumption of the model is crucial as it was for the interval-based model. The second
assumption allows precise calculations, but if it is violated, it should still lead to good approxi-
mations of the quantiles.

Let us first consider the random variable X which is the sum of random variables ã.

X =
∑
j∈J

ãj

31

The goal is to find the p-quantile of X which is denoted as QX(p). The deterministic con-
straints (4.1) can then be substituted by inequalities (4.2).∑

j∈J
aj ≤ b (4.1)

QX(p) ≤ b (4.2)

The central limit theorem [52] states that the sum of a large number of independent random
variables is approximately normally distributed. This means that for a large set J the quantile
can be calculated approximately with (4.3) where the expected value of a random variable X
is denoted with E[X] and its standard deviation with stdev(X). The quantile of the normal
distribution with zero as its mean and with variance equal to one is denoted with up. For a given
p the quantile up is constant and because of the symmetry of the normal distribution it holds that
u0.5 = 0. Furthermore, it follows that up < 0 for good cases and up > 0 for bad cases. Because
of the independence of the random variables ã, (4.3) is equal to (4.4).

QX(p) ≈ E[
∑
j∈J

ãj] + up · stdev(
∑
j∈J

ãj) (4.3)

=
∑
j∈J

E[ãj] + up ·
√∑

j∈J
stdev(ãj)2 (4.4)

This allows us to work precisely with approximately normally distributed values which we
naturally get for large sums of random variables. If all random variables are normally distributed
from the beginning, this precision is extended to all inequalities. And even if they are not,
the error may be very small. Besides this, many random variables are indeed approximately
normally distributed in practice.

The model which is used here is different to the one that was introduced for the robust ap-
proach. In theory there is no need that models in robust optimization must be different to models
in stochastic programming. The difference is caused by computational aspects. It would be
much more complicated to calculate quantiles if the model included worst cases. The differ-
ences in the model make it a bit harder to compare the robust and the stochastic approach. On
the other hand there is the advantage that there is more flexibility for a real world problem. It
could be determined if there are worst cases, and the approach can be chosen accordingly.

There was a similar approach introduced by Ben-Tal and Nemirovski [4] but in a robust
fashion. Instead of the standard deviation they used worst case values and basically the same
assumptions as in Section 2.2.1. The worst case value is taken for a variable if the quantile of the
normal distribution would be even higher. Because of this, the approach cannot be categorized
to stochastic programming anymore. No matter what assumptions are made for the probability
distribution, the stochastic precision is lost. An exception are bad cases near the expectation.
For those the approach of Ben-Tal and Nemirovski is equivalent to the one described in this
chapter. Their approach can be modelled as a second order cone program. Though this class
of problems is often described as tractable, second order cone programs are not as attractive as
linear programs from a computational point of view. This holds especially for their integer and
mixed integer counterparts.

32

4.2 The Stochastic Problem

The stochastic problem that follows the normally distributed approach is defined as follows:

Definition 4.1 (Stochastic Rooted Delay-Constrained Steiner Tree (SRDCST) Problem)
We are given a graph G = (V,E), a delay bound B ∈ N and a quantile up ∈ Q. The set
of vertices V is partitioned into a root node r, a set of terminal nodes T ⊆ V \ {r} and a set of
potential Steiner nodes S = V \ (T ∪ {r}). Each edge e ∈ E has an assigned weight we ∈ N,
an expected delay de ∈ N and a standard deviation ďe ∈ Q with 0 ≤ ďe < de.

A feasible solution is a tree G′ = (V ′, E′) with T ∪ {r} ⊆ V ′ ⊆ V and E′ ⊆ E, fulfilling
the delay constraints

dpPG′ (r,t)
=

∑
e∈PG′ (r,t)

de + up ·
√ ∑
e∈PG′ (r,t)

ď2
e ≤ B, ∀t ∈ T, (4.5)

where PG′(r, t) is the edge set of the unique path from r to node t in tree G′. As it was described
in Section 4.1, dpPG′ (r,t)

is the p-quantile of this path. The task is to find a feasible solution with
minimal weight

wG′ =
∑
e∈E′

we. (4.6)

Definition 4.2 The α-SRDCST problem is a special case of the SRDCST problem, where a
constant α ∈ Q, 0 < α < 1, exists such that ďe = α · de, ∀e ∈ E.

Figure 3.1 does not only fit to the 0.5-RRDCST problem, but it shows also an instance of the
0.5-SRDCST and an optimal solution to it with up = 1. The calculated delays of the three paths
are then slightly different. For a path Pi to ti we get the following values:

dpP1
= 11 +

√
2.52 + 22 + 12 = 14.35

dpP2
= 11 +

√
4.52 + 12 = 15.61

dpP3
= 16 +

√
2.52 + 22 + 12 + 1.52 + 12 = 19.81

It is not a rare case that the RRDCST and the SRDCST problem have the same optimal solutions
for an instance with ďe = d̂e,∀e ∈ E, a fixed value of Γ and some up ≤ Γ. But that does not
mean that the two problems are interchangeable which will be demonstrated in Section 7.3.

4.3 Formulations

This section is about ILP formulations of the SRDCST problem. Surprisingly, the differences in
the formulations between the robust and the stochastic RDCST are except for Section 4.3.1 only
marginal.

33

4.3.1 Multi Commodity Flow

For the SRDCST problem a MCF formulation with quadratic constraints can be given with (4.7),
(4.8) and the previously introduced constraints (3.7)–(3.13).

min
∑

(i,j)∈A

wijxij (4.7)

s.t.
∑

(i,j)∈A

dijf
k
ij + up ·

√ ∑
(i,j)∈A

ď2
ijf

k
ij ≤ B ∀k ∈ T (4.8)

However, such a formulation is clearly not as attractive as the MCF formulation from Sec-
tion 3.2.1, because current solvers can’t solve it as efficiently as a linear program.

4.3.2 Path-Cut

For the SRDCST problem there are only small differences to Section 3.2.2. The setPinf contains
a node sequence if dpP > B for the corresponding edge set P . This affects only the path cuts
of the branch-and-cut algorithm. The feasibility check has to verify if a path violates a delay
constraint (4.5). This has no further effect on the separation method for both LP and ILP results.

4.3.3 Layered Graph

As in the path-cut formulation Pinf describes a different set as in Section 3.2.3. This affects not
only the path cuts, but also the number of layers.

For the SRDCST problem it may not be enough to stop at layer B, because the parameter up
is allowed to take negative values. It is defined in Section 4.1 that for a feasible path P it has to
hold that

dP =
∑
e∈P

de ≤ B − up ·
√∑
e∈P

ď2
e.

We are now looking for an upper bound for dP for an arbitrary path. For every edge e there
is a βe, 0 < βe < 1, with ďe = βe · de. We define βmin as the minimal and βmax as the maximal
factor for all edges.

The edge sets Eh and Es are used to calculate a lower bound for the delay variation of a path
with a high total delay. The set Eh is used for good cases and constructed the following way

1. Eh is empty.

2. The edge e with the highest standard deviation ďe is taken from E \Eh. Its expected delay
is decreased to ďe

βmax
and it is added to Eh.

3. If dpEh
< B, it is continued with 2.

The set Es is used for bad cases and constructed with the following steps:

1. Es is empty.

34

2. The edge e with the smallest standard deviation ďe is taken from E \ Es. Its expected
delay is increased to ďe

βmin
.

3. If dpEs∪{e} ≤ B, e is added to Es and it is continued with 2.

Then we distinguish two cases. Like for the RRDCST problem the two sets can be used to
describe the upper bounds. For up < 0 we get

L1 = bB − up ·
√∑
e∈Eh

ď2
ec (4.9)

for the last layer in the layered graph that has to be considered. Similarly we get the bound

L2 = bB − up ·
√∑
e∈Es

ď2
ec (4.10)

for the case up ≥ 0. Note that L1 ≥ B and L2 < B. Taking L2 instead of B in the latter case is
not necessary but increases the performance.

Theorem 4.1 For a given instance of the SRDCST problem we have:

1. L1 is an upper bound for dP of every feasible path P if up < 0

2. L2 is an upper bound for dP of every feasible path P if up ≥ 0

Due to the comparison with the robust approach this thesis focuses more on bad cases and
therefore we will prove only the second part of Theorem 4.1.

Proof. Let us assume to the contrary that a feasible path P with dP > L2 exists. Since dP
has to be integer, it has to hold that dP > B − up ·

√∑
e∈Es

ď2
e. It follows directly that∑

e∈P ď
2
e <

∑
e∈Es

ď2
e.

Let f be the edge with the highest standard deviation in Es. We can subtract all common
terms from both sum of squares which excludes the edges from P ∩Es. This leaves only edges
with a standard deviation of at least ďf in the sum of squares of P .∑

e∈P
ď2
e <

∑
e∈Es

ď2
e ⇒

∑
e∈P,ďe≥ďf

ď2
e <

∑
e∈Es\P

ď2
e

If the sum of squares of the larger values is smaller, then this has also to hold for the sum of the
values. ∑

e∈P,ďe≥ďf

ďe <
∑

e∈Es\P

ďe

Then, an upper bound of dP can be determined which contradicts the assumption.

dP ≤
∑
e∈P

ďe
βmin

<
∑
e∈Es

ďe
βmin

≤ B − up ·
√∑
e∈Es

ď2
e

So there is no feasible path P with dP > L2. �

35

CHAPTER 5
Preprocessing

In complexity theory the runtime of an algorithm is always determined with respect to the size
of the instance. The size is usually defined as the length in bits which is needed to encode the
instance. More fine-grained runtime analyses on graphs often define the size of a graph as the
number of its nodes or edges. This is mainly done if it is a goal to determine differences between
sparse and dense graphs in the runtime complexity. We know that the higher the complexity, the
higher the difference in the runtime for two similar instance sizes. This already motivates a
preprocessing step. If it is possible to reduce the number of edges of the instance without a
high computational effort, the worst-case runtime will be reduced even to a higher extent which
should also decrease the actual runtime. But it should also be noted that the actual runtime
of a program also depends on the structure of the whole instance. A good example for this
dependence is the quicksort algorithm [28]. There are two different terms for the complexity,
one for the average and one for the worst case. The actual runtime then depends not only on the
instance size, but also on the value of the pivot elements. This means that if an element of the list
is deleted, the choice of the pivot elements may be worse for the shorter list. The impact on the
runtime can be hard to predict, though a drastic increase is rather unlikely. Similarly it could be
argued for the RDCST problem that a preprocessing may only delete edges which would have a
very small impact on the actual runtime of a program. So it can be said that a fast preprocessing
should either decrease the overall runtime, maybe even drastically, or have no great impact on it.

It depends largely on the instance how many parts of the graph are not needed to find at
least one optimal solution. Especially properties like density of the graph, the number of valid
triangle inequalities and the delay bound have a great influence. The preprocessing for the
RDCST problem was already discussed in [44].

5.1 Comparison with Paths

If there is an edge {u, v} and a path P (u, v) ⊆ E \ {{u, v}} with smaller or equal weight and
for all cases also smaller or equal delay, the edge can be safely deleted. Then there is no reason

37

to prefer the edge over the path, and thus it will be still possible to find an optimal solution. The
rule will be applicable more often if the triangle inequality does not hold for the weights and
edge delays of the instance. But even otherwise it may be possible to delete edges with this rule.
Let us consider the simpler case where the triangle inequality holds only for the weights. This
means that wuv ≤ wP (u,v), so it is still possible that both are equal.

wuv ≥
∑

e∈P (u,v)

we ∧ duv ≥
∑

e∈P (u,v)

de (5.1)

For the deterministic problem there is only condition (5.1) to verify before deleting an edge.
This preprocessing step is more difficult for the RRDCST and the SRDCST problem and there
are again some differences between them.

RRDCST Let us assume that there is a path P in a solution of the RRDCST problem. This
path contains a subpath Pru from r to u and a subpath Pvt from v to a terminal node t. The
remaining part from u to v either consists of the edge {u, v} or the path P (u, v). Let us further
assume that for both possibilities the highest dΓe values of the delay variations lie in Pru ∪ Pvt.
Then the part between u and v would not influence the additional delay d̂Γ

P . This gives us the
result that we still have to check the expected delays with condition (5.1).

Let us consider another scenario next where the path P only consists of either {u, v} or
P (u, v), because u = r and v is a terminal node. This means that condition (5.2) would have to
be checked.

duv + min(1,Γ) · d̂uv ≥
∑

e∈P (u,v)

de + d̂Γ
P (u,v) (5.2)

These are only two possible scenarios, but it is sufficient to check only conditions (5.1)
and (5.2).

Theorem 5.1 An edge {u, v} cannot be part of every optimal solution of a given instance of the
RRDCST problem if (5.1) and (5.2) holds.

Proof. Let us consider an arbitrary path P2 from r to a terminal node t which contains P (u, v).
We define the edge set F = P2 \ P (u, v) and path P1 = F ∪ {{u, v}}. We have

dΓ
P1

=
∑
e∈F

de + duv + d̂Γ
P1

and

dΓ
P2

=
∑
e∈F

de +
∑

e∈P (u,v)

de + d̂Γ
P2
.

We assume that conditions (5.1) and (5.2) hold. We have to show that dΓ
P1
≥ dΓ

P2
follows.

By subtracting the common term we get

38

duv + d̂Γ
P1
≥

∑
e∈P (u,v)

de + d̂Γ
P2
. (5.3)

We distinguish three cases:

1. d̂uv influences d̂Γ
P1

and Γ ≤ 1. This implies that d̂uv is bigger than d̂e, ∀e ∈ F . Because
of Γ ≤ 1 only a delay variation of one edge e can influence d̂Γ

P2
. We distinguish:

• e ∈ P (u, v). Then (5.2) directly implies (5.3).

• e ∈ F . Then (5.1) directly implies (5.3).

2. d̂uv influences d̂Γ
P1

and Γ > 1. If there is no delay variation d̂e, e ∈ F , that influences only
d̂Γ
P2

, but not d̂Γ
P1

, (5.2) implies (5.3). So we assume that such a delay variation d̂e exists.
Since the highest dΓe − 1 delay variations from F influence d̂Γ

P1
, there can be at most one

such edge. As a consequence, no delay variation from P (u, v) can influence d̂Γ
P2

. But d̂e
has to be less than or equal to d̂uv. So (5.1) implies (5.3).

3. d̂uv has no influence on d̂Γ
P1

. If there is no delay variation d̂e, e ∈ F , that influences only
d̂Γ
P1

, but not d̂Γ
P2

, (5.1) implies (5.3). So we assume that such a delay variation d̂e exists.
But d̂e has to be greater than or equal to d̂uv. So (5.2) implies (5.3).

Thus, (5.1) ∧ (5.2) implies (5.3). �

It can be observed, that for the α-RRDCST problem condition (5.1) implies condition (5.2).
This can be shown the following way:

duv ≥
∑

e∈P (u,v)

de ⇒ d̂uv ≥
∑

e∈P (u,v)

d̂e ⇒

min(1,Γ) · d̂uv ≥ d̂Γ
P (u,v)

The first implication follows directly from the definition of the factor α. For the second
implication there are two different cases. For Γ < 1 there can only be one edge where the delay
variation is counted. But the delay variation of one edge in the path cannot be larger than d̂uv.
For Γ ≥ 1 we would already consider the worst case for the path only consisting of edge {u, v}.
This cannot be smaller than the worst case for P (u, v) which corresponds to Γ ≥ |P (u, v)|.
Thus only (5.1) has to be checked for the α-RRDCST problem.

SRDCST We will again consider the two extreme cases but now for the SRDCST problem.
Let us assume that there occurs a path P in a solution. This path contains a subpath Pru from
r to u and a subpath Pvt from v to a terminal node t. The remaining part from u to v either
consists of the edge {u, v} or the path P (u, v). Let us further assume that there is an edge in
Pru∪Pvt with a much higher standard deviation than all edges in {u, v}∪P (u, v). The standard

39

deviations of the part between u and v could have an arbitrarily small impact on dpP . This gives
us the result that we still have to check the expected delays with condition (5.1).

In the other scenario the path P only consists of either {u, v} or P (u, v), because u = r and
v is a terminal node. This means that condition (5.4) would have to be checked.

duv + up · ďuv ≥ dP (u,v) + up ·
√ ∑
e∈P (u,v)

ď2
e (5.4)

Similarly as for the RRDCST problem it can be shown that it is sufficient to check these two
conditions.

Theorem 5.2 An edge {u, v} cannot be part of every optimal solution of a given instance of the
SRDCST problem if (5.1) and (5.4) holds.

Proof. Let us consider an arbitrary path P2 from r to a terminal node t which contains P (u, v).
We define the edge set F = P2 \ P (u, v) and path P1 = F ∪ {{u, v}}. We have

dpP1
= dF + duv + up ·

√∑
e∈P1

ď2
e and

dpP2
= dF + dP (u,v) + up ·

√∑
e∈P2

ď2
e.

We assume that conditions (5.1) and (5.4) hold. We have to show that dpP1
≥ dpP2

follows.
By subtracting the common term we get (5.5).

duv + up ·
√∑
e∈P1

ď2
e ≥ dP (u,v) + up ·

√∑
e∈P2

ď2
e. (5.5)

This can also we written as

duv + up ·
√
ď2
uv +

∑
e∈F

ď2
e ≥ dP (u,v) + up ·

√ ∑
e∈P (u,v)

ď2
e +

∑
e∈F

ď2
e.

Let c = duv − dP (u,v) and c′ =
∑

e∈F ď
2
e.

c+ up ·
√
ď2
uv + c′ ≥ up ·

√ ∑
e∈P (u,v)

ď2
e + c′ (5.6)

Similarly, (5.4) results in (5.7).

c+ up · ďuv ≥ up ·
√ ∑
e∈P (u,v)

ď2
e (5.7)

40

Since c′ ≥ 0, the difference of the standard deviations can only decrease for the longer paths.∣∣∣∣∣∣ďrv −
√∑
e∈Prv

ď2
e

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
√
ď2
rv + c′ −

√∑
e∈Prv

ď2
e + c′

∣∣∣∣∣∣
But this means that inequality (5.7) implies (5.6), since c ≥ 0.

Thus, (5.1) ∧ (5.4) implies (5.5). �

Furthermore, it can be observed, that for the α-SRDCST problem with up ≥ 0 condi-
tion (5.1) implies condition (5.4). So for this special case of the problem, only (5.1) has to
be checked.

5.1.1 Computational Issues

The paths which are used in the comparison can be found by solving a resource constrained
shortest path problem. But this is known to be NP-hard already for the deterministic case.
There are pseudo-polynomial algorithms which could be used to find paths for the RDCST and
the RRDCST problem, but for the SRDCST problem there may be no such algorithm.

The preprocessing should not be very time consuming. It is desirable that the sum of pre-
processing and optimization time is smaller than the time needed for optimization, if the pre-
processing phase is skipped. The comparison can be accelerated by only considering paths of
length two. This could be done in polynomial time by iterating over all triangles in the graph.

5.2 Comparison with Root Arcs

An arc (u, v) can also be deleted, in case that taking the root arc (r, v) instead will always be
at least equally good. Only if (u, v) and (v, u) are not needed to find an optimal solution, the
edge {u, v} can be deleted. This indicates that the preprocessing may be more successful if the
reduction operates on the set A instead of E.

wrv ≤ wuv (5.8)

drv ≤ dmin
u + duv (5.9)

In the deterministic case the conditions (5.8) and (5.9) describe the precondition. The vari-
able dmin

u stands for the shortest (expected) delay of all paths from r to u and is defined as

dmin
u = min

P (r,u)
dP (r,u). (5.10)

RRDCST For the same reason as in Section 5.1 we have to check both (5.8) and (5.9) for the
RRDCST problem. A bit more interesting is the scenario where the path P in a solution has a
subpath Pvt from v to a terminal node t. The part between r and v consists of either {r, v} or a
path Prv = P (r, u) ∪ {u, v}. Let us assume the edge with the highest delay variation is {r, v}

41

for the first possible path and lies in Prv for the other one. All other edges which influence d̂Γ
P

lie in Pvt. Then we would have to determine if

drv + min(1,Γ) · d̂rv ≤ dPrv + min(1,Γ) · max
e∈Prv

{d̂e}

holds. Since it has to be verified that there is no path for which the arc (u, v) could be of use,
this has to hold for all possible paths Prv. But it is enough to check not all paths, but only the
path Pmin

rv with the smallest delay dΓ′
Prv

calculated with Γ′ = min(1,Γ).

drv + min(1,Γ) · d̂rv ≤ dPmin
rv

+ min(1,Γ) · max
e∈Pmin

rv

{d̂e} (5.11)

The problem of finding such a path is equivalent to the robust shortest path problem with uncer-
tain weights. For this problem it was shown by Bertsimas and Sim [5] that it is still solvable in
polynomial time. It is sufficient to verify (5.11) as third condition.

Theorem 5.3 An arc (u, v) cannot be part of every optimal solution of a given instance of the
RRDCST problem if (5.8), (5.9) and (5.11) holds.

Proof. Let us assume to the contrary that a directed path P ⊂ A, (u, v) ∈ P , from r to a terminal
node t exists that is part of an optimal solution and using (r, v) instead of (u, v) increases the
total weight or violates a delay constraint. But the total weight will not be higher because
of (5.8). Let Prv ⊂ P be the subpath of P from r to v, Pvt ⊂ P the subpath from v to t and
Pr = (r, v) ∪ Pvt. It follows from the assumptions that Pr would violate a delay constraint
which means that dΓ

Pr
> dΓ

P .
We distinguish two cases:

1. d̂rv has no influence on d̂Γ
Pr

. Adding all common delay variations to both sides of (5.9)
leads to a contradiction.

dΓ
Pr

= dPr + d̂Γ
Pvt
≤ dP + d̂Γ

Pvt
≤ dΓ

P

2. d̂rv influences d̂Γ
Pr

as a whole. Now we can add all common parts to both sides of in-
equality (5.11). Since dPmin

rv
has the minimal delay for Γ = 1, taking Prv instead cannot

decrease the delay. This leads to a lower bound for dΓ
P which contradicts the assumption.

dΓ
Pr

= dΓ−1
Pvt

+drv + d̂rv ≤ dΓ−1
Pvt

+dPmin
rv

+ max
e∈Pmin

rv

{d̂e} ≤ dΓ−1
Pvt

+dPrv + max
e∈Prv

{d̂e} ≤ dΓ
P

3. d̂rv influences d̂Γ
Pr

fractionally. Therefore, we build an upper bound for drv as it was done
in case 1.

drv ≤ dPrv

Next, we build an upper bound for drv + d̂rv analogous to case 2.

drv + d̂rv ≤ dPrv + max
e∈Prv

{d̂e}

42

Then we use a linear combination of these two inequalities which leads again to a contra-
diction.

dΓ
Pr

= d
bΓc
Pvt

+ drv + (Γ− bΓc) · d̂rv ≤ dbΓcPvt
+ dPrv + (Γ− bΓc) · max

e∈Prv

{d̂e} ≤ dΓ
P

So the path Pr is part of an optimal solution without arc (u, v). �

SRDCST It holds also for the SRDCST problem, that constraints (5.8) and (5.9) have to be
checked. Furthermore, the inequality

drv + up · ďrv ≤ dPrv + up ·
√∑
e∈Prv

ď2
e

has to be true ∀Prv = P (r, u) ∪ {u, v}. It would be enough if it holds for the path Pmin
rv with

the minimal delay dpPrv
.

drv + up · ďrv ≤ dPmin
rv

+ up ·
√ ∑
e∈Pmin

rv

ď2
e (5.12)

Theorem 5.4 An arc (u, v) cannot be part of every optimal solution of a given instance of the
SRDCST problem if (5.8), (5.9) and (5.12) holds.

Proof. Let us assume to the contrary that a directed path P ⊂ A, (u, v) ∈ P , from r to a terminal
node t exists that is part of an optimal solution and using (r, v) instead of (u, v) increases the
total weight or violates a delay constraint. But the total weight will not be higher because
of (5.8). Let Prv ⊂ P be the subpath of P from r to v, Pvt ⊂ P the subpath from v to t and
Pr = (r, v) ∪ Pvt.

We derive from (5.9) that drv ≤ dPrv . Let c be the difference dPrv − drv. Then we derive
from (5.12) that

drv + up · ďrv ≤ dPrv + up ·
√∑
e∈Prv

ď2
e.

Subtracting drv results in inequality (5.13)

up · ďrv ≤ c+ up ·
√∑
e∈Prv

ď2
e (5.13)

We denote the difference between the standard deviations as ∆ď = |ďrv −
√∑

e∈Prv
ď2
e|. It

follows from the assumptions that Pr would violate a delay constraint which means that dpPr
>

dpP . This can also be stated as

dPvt + up ·
√
ď2
rv +

∑
e∈Pvt

ď2
e > dPvt + c+ up ·

√∑
e∈Prv

ď2
e +

∑
e∈Pvt

ď2
e.

43

We subtract dPvt and use c′ =
∑

e∈Pvt
ď2
e.

up ·
√
ď2
rv + c′ > c+ up ·

√∑
e∈Prv

ď2
e + c′ (5.14)

Since c′ ≥ 0, the new difference of the standard deviations can only decrease.

∆ď ≥ |
√
ď2
rv + c′ −

√∑
e∈Prv

ď2
e + c′|

But this means that inequality (5.13) contradicts with (5.14), since c ≥ 0.
So the path Pr is part of an optimal solution without arc (u, v). �

It is very likely that the problem of finding the minimal path Pmin
rv is not solvable in polyno-

mial time anymore. Only for up ≥ 0 there is the possibility for a faster comparison by a more
restrictive condition (5.15). With this approximation it is not possible to find all dispensable arcs
for every instance.

drv + up · ďrv ≤ dmin
u + duv + up · ďuv (5.15)

The α-SRDCST problem is an interesting special case for this comparison. For the case
up ≥ 0 we get the result that (5.15) implies (5.9). The case up ≤ 0 leads even to the fact
that (5.9) implies (5.12) which allows a very efficient comparison.

5.3 Infeasible Arcs and Nodes

Sometimes it is impossible that an arc (u, v) ∈ A appears in a feasible solution, because there is
no path P that contains (u, v) and fulfils the delay constraints. The computation that is neces-
sary to decide if this holds is analogous to Section 5.2. Because of the high complexity it might
be beneficial to apply this test in a heuristic form. For the RRDCST problem this can be done
by checking inequality (5.16) and for the SRDCST problem with up ≥ 0 by checking inequal-
ity (5.17). For the SRDCST problem with up < 0 even effective heuristics are hard to find. The
delay dmin

u is again defined with the term (5.10). The terms on the left sides of the inequalities
are lower bounds of the delay dΓ

P and dpP , respectively, of every path P from r to v that contains
(u, v). Thus, (u, v) cannot be part of any feasible solution.

dmin
u + duv + min(1,Γ) · d̂uv > B (5.16)

dmin
u + duv + up · ďuv > B (5.17)

Similarly, a potential Steiner node cannot be part of an optimal solution if it is only possible
as a leaf or cannot be used in a feasible solution at all. Infeasible arcs and nodes do not appear
regularly, but only if B is very small in comparison to the edge delays or if the graph is very
sparse.

44

CHAPTER 6
Instance Transformations

For the robust and the stochastic problem there is a well-founded concept for dealing with uncer-
tain delays. But there is still the question if we really need to extend the deterministic problem.
Instead, the problem instances could be altered by either changing the edge delays or the delay
bound to achieve similar effects. Observe, that the factor α of α-RRDCST and α-SRDCST
problem reduces the amount of information which has to be included in the instance. Without
this factor there is also information of the delay variations or standard deviations needed. Since
instances of the deterministic problem contain less data of edge delays, most instances of the
RRDCST and the SRDCST problem cannot be transformed to a deterministic instance without
loss. However, a small loss may still lead to an adequate solution. For the worst case in the
RRDCST problem there is a lossless transformation, where all delays are set to the worst case
already at the instance, i.e., d′e = de + d̂e, ∀e ∈ E. We will further discuss transformations for
bad cases that are in general not lossless.

6.1 Altering the Delay Bound

Inequality (6.1) is a simplified version of the delay constraints of the RRDCST and the SRDCST
problem. ∑

e∈PG′ (r,t)

de + cPG′ (r,t)
≤ B ∀t ∈ T (6.1)

We can observe for bad cases that some term cPG′ (r,t)
> 0 is added to the expected value. For the

decision whether a path is feasible or not, paths with a delay dΓ
P for the RRDCST problem and dpP

for the SRDCST problem close to B are most likely to get misclassified. Such paths will often
consist of edges with similar delay variations or standard deviations, respectively, because the
probability that one path contains only high values and another one only low values is very low, at
least for randomly generated instances. Therefore, the terms cPG′ (r,t)

may lie in a similar range.
So considering this term as constant for the whole instance may be a good approximation. But

45

100 200 300 400 500

50

100

150

expected edge delay de

ca
lc

ul
at

ed
ad

di
tio

na
ld

el
ay
d

+ e

Figure 6.1: A possible non-linear function that would prefer short delays and thus long paths.

then we could subtract cPG′ (r,t)
fromB and solve the corresponding deterministic problem. This

transformation leads to more solutions that would be suboptimal or infeasible for the RRDCST
or the SRDCST problem, the more paths with a delay dΓ

P or dpP close to B vary in the number
of edges.

6.2 Altering Edge Delays

The delay bound is just one number. Changing the edge delays would give us much more
flexibility for an instance transformation. Let us first observe another effect of the two problems.

Let us assume there is a path P1 with few edges and a path P2 with a lot of edges. Further-
more, all edges in the same path have equal delays d1 and d2, respectively. For the α-RRDCST
problem we would get delay constraints of the form (6.2).

|Pi| · di + α ·min(|Pi|,Γ) · di ≤ B i ∈ {1, 2} (6.2)

We consider the case where both paths have the same expected delay, i.e., |P1| · d1 = |P2| · d2.
It follows directly that

min(|P1|,Γ) · d1 ≥ min(|P2|,Γ) · d2.

The case Γ = 0 which is equivalent to the deterministic problem would either classify both
paths as feasible or both as infeasible. But with Γ > 0, P2 is more likely to be feasible than
P1. In general it could be said that paths with more edges are preferred over shorter ones. This
effect occurs also in the α-SRDCST problem. Since long paths are only possible with short edge
delays, we could transform the instance such that high delays are handled more pessimistic. This
could be done with a function like in Fig. 6.1.

46

With this approach we could use an existing implementation of the deterministic problem if
it allows delay values to be in Q+. Then it would only be necessary to transform the instance
with a suitable function. However, such a transformation cannot be used to solve the α-RRDCST
or the α-SRDCST problem exactly. The problem that is actually solved differs from both and its
description is not very intuitive. Nevertheless, the quality of the results can be good and depends
highly on the used function. The following part will demonstrate how such a function could be
found.

One possibility is to approximate the normally distributed approach. This results in the task

of converting the term
√∑

e ď
2
e into a term of the form

∑
e ke · ďe. This cannot be done without

a small error. But let us assume all edge delays in the same path are equal. Letm be the maximal
number of edges such that the path is feasible. Then the following formula would hold:

B −m · de = up ·
√
m · ď2

e

After solving the quadratic equation we get two solutions.

m1 =
u2
p · ď2

e + 2 ·B · de −
√
u4
p · ď4

e + 4 ·B · de · u2
p · ď2

e

2d2
e

m2 =
u2
p · ď2

e + 2 ·B · de +
√
u4
p · ď4

e + 4 ·B · de · u2
p · ď2

e

2d2
e

It holds that m = m1 if up ≥ 0 and m = m2 if up < 0. The last step is to split the standard
deviation of the whole path into equal parts. As a final result we get the additional delay

d+
e = up ·

√
m · ď2

e

m
,∀e ∈ E

for the function we were looking for. Unfortunately, the result tends to be too low for paths with
different edge delays. This can be seen in the following example.

We have an instance of the 0.5-SRDCST problem with up = 1 and B = 600 and we want
to determine if path P is feasible. Table 6.1 contains information of all edges of P . There are
160 edges with an expected delay of 2 and one edge with an expected delay of 200. With this
information we can verify if the delay constraints hold.

Table 6.1: Edge information of path P .

d d̂
∑
d m d+

∑
d+

160 2 1 320 291.5 0.059 9.4
1 200 100 200 2.25 66.7 66.7

520 76

dpP = dP + up ·
√

160 · 12 + 1002 = 520 + 100.8 = 620.8

47

dP +
∑
e∈P

d+
e = 520 + 76 = 596

Since dpP > B, P is infeasible for the 0.5-SRDCST problem. But for the RDCST problem
with transformed edge delays P is feasible. This is an example where a path is misclassified.
Since this function leads usually to a very good approximation of dpP , optimal solutions will be
equivalent to the α-SRDCST problem for many instances.

6.3 Limitations of Instance Transformation

As we have seen in this chapter, existing algorithms for the RDCST problem can be reused
to solve new problem variants by transforming the instances. Since instances of the RDCST
problem can usually be solved faster, the question arises what is gained with algorithms for the
RRDCST or the SRDCST problem. Instance transformations are easier to implement, but they
also have some drawbacks.

• Instance transformations can be used to solve the RRDCST or the SRDCST problem
approximately, where some solution are wrongly classified as feasible or infeasible. How-
ever, this approach is not generally applicable, because for some problems it isn’t prede-
termined which result of a random variable is the worst value. One can think of a variation
of the RDCST problem, where there are additional to the upper delay bound constraints
for a lower delay bound. Then, for a single edge it cannot be said anymore whether a short
or a long delay is beneficial.

• Especially the transformation of the edge delays is a good approximation of the delay
constraints of the α-SRDCST problem. But the quality of the approximation of both
presented instance transformations can be much worse if we want to solve instances of
the RRDCST or the SRDCST problem without the constant α.

• Even if the solutions seem to be good for a set of instances, it will be hard to make precise
statements about their quality. There is a well-founded and simple concept of optimality
for the SRDCST problem. Also for the RRDCST problem the definition of optimality
is easy understandable. With instance transformations the concept of optimality is a bit
more artificial and it may be hard to derive important probabilistic results from an optimal
solution.

48

CHAPTER 7
Results

7.1 Instances

For almost all tests the problem instances from Gouveia et al. [25] are used. They define com-
plete undirected graphs either with 21 or 41 nodes including root r with edge weights and delays.
The bound B is separately added as a parameter in the implementation to provide a higher flex-
ibility. Originally, the instances were not intended for Steiner tree problems. Therefore another
parameter is introduced to define the number of terminal nodes. The first |T | non-root nodes in
the instance define set T .

The uncertainties are included with factor α, and depending on the problem either with Γ or
up. This way, only the special problems α-RRDCST and α-SRDCST are solved which seem to
be the more realistic cases in real world.

The instances have the following naming scheme:

〈type〉〈|V \ {r}|〉 − 〈i〉 − wa〈dmax〉

There are three types of instances for which the edge weights were generated differently. The
weights are always numbers between 1 and 100. The delays are random numbers within the
range 1 to dmax. For the type tr the weights are also generated randomly. For the other two
types the weights follow from node positions in a two-dimensional space. So they are Euclidean.
The tc-instances have their root node centred in the space whereas the root node is placed in a
corner for te-instances. The number of the instance i goes from 1 to 5. So there are always five
instances which were generated upon the same rules.

Instances with more nodes were generated by Ruthmair [44]. These instances contain com-
plete graphs with uniformly distributed edge weights and delays, both in the interval from 1
to 99.

49

7.2 Implementations

All implementations are written in C++ and use IBM ILOG CPLEX 12.5 as optimizer. For the
performance tests Intel Xeon processors E5540 with 2.53 GHz and eight cores in combination
with 24 GB RAM and also processors of the type E5649 with 2.53 GHz, twelve cores and 60
GB RAM were used. All implementations use only one thread and thus only one core is utilized.

There are some different implementations where M can only solve the RRDCST problem,
whereas the others can solve both the RRDCST and the SRDCST problem.

• M: a branch-and-bound algorithm based on the MCF formulation

• PC: a branch-and-cut algorithm based on the path-cut formulation where cuts are added
only on integral solutions

• PC2: a branch-and-cut algorithm based on the path-cut formulation where cuts are added
on fractional and integral solutions

• LG: a branch-and-cut algorithm based on the layered graph formulation where cuts are
added on fractional and integral solutions

• LGCC: LG with connection cuts (3.40). Their separation is based on [44].

7.2.1 Measurement

When comparing the different implementations, the five numbered instances are always viewed
together. Each instance has a time limit of 10,000 seconds and a memory limit of 3 GB. The
different properties of the processes are then evaluated as explained below.

Time The solving time is measured in seconds. If the program is aborted because of the time
or the memory limit, the solving time will be assumed to be an unknown number greater than
10,000. Here, always the median is given which corresponds to the third lowest running time.
If less than three instances are solved to proven optimality, the median cannot be computed. All
values are rounded to whole seconds. A median of 0.4 is therefore given as 0.

Solved Instances An instance counts as solved if an optimal solution is found and its optimal-
ity is proven within time and memory limits. The number of solved instances is given which
can take values from 0 up to the total number of instances, which is 5 for the instances from
Gouveia and 30 for the instances from Ruthmair. Additionally, for the RRDCST problem an
optimal solution could also be feasible in the worst case. The number of the instances for which
an optimal worst case solution was found is given in parentheses or omitted if equal to zero. It
is always less than or equal to the number of solved instances.

50

Gap If it cannot be proven that the best solution which was found is optimal, it may be inter-
esting how close this solution is to the optimum. Unfortunately, the optimum is in general not
known. But if a lower bound for the optimum is known, a gap can be calculated as

1− lower bound
value of the best known solution

.

If no feasible solution is found the gap is defined as 1 which is the worst possible value. A gap
of 0 means that the optimality was proven. The gap is given in percent as an average over the
five instances.

Branch-and-Bound Nodes The number of nodes is counted after the termination of the pro-
cess. There are three possible reasons for termination which are a solution with proven optimal-
ity and exceeded time or memory limits. The number of nodes is given as an average over the
five instances. A higher average is usually worse, but the other three criteria are assumed to be
more important. The lowest value is therefore not highlighted in the tables. In some cases there
is no need to construct a branch-and-bound tree at all and thus the number of nodes is 0.

7.3 Comparison of Solutions

There are difficulties in comparing the different methods of dealing with uncertain delays. In
the robust approach there is the assumption of a known worst case, whereas in the stochastic
approach in theory delays can get arbitrarily high. Moreover, the robust approach makes no
assumptions about the probability distributions, except that it is symmetric and values lie within
a bounded interval, but for each of them the results have a different quality. Nearly the same
holds for the stochastic method. The difference is that the knowledge of the standard deviations
and approximately normally distributed delays lead to a very natural concept of optimality in the
context of uncertainty. A detailed comparison of the two approaches is best made for a given
probability distribution. The goal of this comparison is not to find the approach which is better
than the other, but to show differences and similarities of optimal solutions to instances of the
different problems.

Here, we consider the following scenario. For the α-RRDCST problem we use the factor
α = 0.5. The edge delays are normally distributed which violates the assumption of the robust
approach that there is a finite worst case. Clearly, a common scenario has to violate at least one
assumption, because the assumption of a normal distribution contradicts with the assumption of a
bounded interval. The factor α of the α-SRDCST is set to 0.5

u0.95
= 0.304. The constant u0.95 =

1.6449 is the 0.95-quantile of the normal distribution and should not be confused with the p-
quantile which is part of an instance of the SRDCST problem. As it can be seen in Figure 7.1,
this gives us a probability of 5% that the delay which is assumed to be the worst case could
be exceeded. This scenario gives us values of p which are also meaningful for solutions of the
robust problem. Because good cases are not treated in robust problems, they are omitted in the
comparison of the solutions of the two problems.

One might think that the choice of u0.95 affects the whole computation, but it can be shown
that it has no effect except a scaling of up. To check whether a delay constraint is fulfilled, the

51

0

0.1

0.2

0.3

0.4

de de + ďe de + d̂e

5%pr
ob

ab
ili

ty

Figure 7.1: Probability distribution of the delay of an edge e. The delay is normally distributed
with mean de and standard deviation ďe. Furthermore, d̂e = u0.95 · ďe. As a consequence, there
is a probability of 5% that the defined worst case de + d̂e is exceeded.

result of term (7.1) has to be calculated.

dpP = dP + up ·
√∑
e∈P

(α · de)2 (7.1)

= dP + up ·
√

(2 · α)2 ·
∑
e∈P

(0.5 · de)2 = dP + 2 · α · up ·
√∑
e∈P

(0.5 · de)2 (7.2)

An arbitrary factor can be moved outside the square root. This means that every α-SRDCST
problem can be transformed into an equivalent 0.5-SRDCST problem by using u′p = 2 · α · up
as quantile of the transformed instance.

Here, the parameters Γ or up are not included in a problem instance. The goal is to solve
both problems in a bi-objective manner instead. Basic concepts of bi-objective optimization are
described in Section 2.4. The Pareto optimal solutions are determined with an epsilon-constraint
method. The first problem which is solved is the expected case with Γ = 0 and up = 0,
respectively. For all paths in the solution there is an associated maximal value of the parameter.
The minimum of those values is the maximal value of Γ or up for which the solution is still
feasible. We can then find the next solution by adding a small number ε > 0 to the parameter
and solving the next optimization problem.

This technique gives us a set including all Pareto optimal solutions. Figure 7.2 shows such a
Pareto front for one instance. Note that the illustrated function has to be monotonically increas-
ing. Sometimes solutions with equal weight are found with the epsilon-constraint method, but
clearly only one of them can be Pareto optimal. It can be seen that a higher probability p has its
price, which is usually referred to as the price of robustness. This term was coined by Sim [48].

It is possible to extract different properties from all solutions. Obviously we have the cor-
responding weight. The knowledge of the worst edge delays gives us also the maximal Γ under
which a solution is still feasible. This can also be done for solutions of the SRDCST problem.
Analogously, the maximal value of up and the corresponding probability p can be calculated.

52

60 70 80 90 100

110

120

130

140

probability (in %)

w
ei

gh
t

Figure 7.2: Pareto optimal solutions of the α-SRDCST problem for instance tr20-1-wa100 with
|T|=10 and B=200 with respect to up and weight of the solution. Every value up corresponds
directly to a value of the probability p.

A further interesting property is the expected delay of the solution which corresponds to the
smallest possible value of B in the deterministic problem.

In Table 7.1 these properties are shown for different solutions of three exemplary problem
instances. Every solution was found by at least one of the following three implementations. The
used algorithms are based on the path-cut formulation from Section 3.2.2 and Section 4.3.2.

• S: an algorithm that solves the bi-objective variant of the α-SRDCST problem where up
is not given explicitly in an instance and should be maximized.

• R: an algorithm that solves the bi-objective variant of the α-RRDCST problem where Γ is
not given explicitly in an instance and should be maximized.

• D: an algorithm that solves the bi-objective variant of the RDCST problem where an upper
bound for B is given and B should be minimized. In the context of uncertain delays with
a symmetric probability distribution D finds all Pareto optimal solutions with respect to
weight and expected delay.

For R all Pareto optimal solutions are found and there are also some which are not Pareto optimal
but part of the Pareto front. For S and D there are also Pareto optimal solutions with very low or
very high total weight which are not given in the table. Note, that basically the same instance can
be given to S, R and D without any transformation. Surprisingly, the solutions of the instances
of the three problems are very similar. In this setting solutions of the SRDCST problem are the
most promising ones, because the edge delays are normally distributed.

The first Pareto optimal solution that is found with each algorithm is an optimal solution of
the expected case. We know that for such a solution each constraint has to be valid with at least

53

Table 7.1: A list of found solutions for three different instances. S is an implementation of the α-
SRDCST problem, R an implementation of the α-RRDCST problem and D an implementation
of the RDCST problem where B is iteratively decreased.

instance weight max. Γ max. up p (in %) expected delay S R D

tr
20

-1
-w

a1
00

|T
|=

10
,B

=2
00

110 0.165 0.194 57.7 192 x x x
121 0.887 1.240 89.3 157 x x x
122 0.884 1.274 89.9 158 x
123 1.137 1.561 94.1 148 x x x
130 2.565 2.462 99.3 143 x x x
138 3.917 2.873 99.8 136 x x x
139 ∞ 2.873 99.8 114 x x
140 ∞ 3.180 99.9 123 x

tc
20

-2
-w

a1
00

0
|T

|=
15

,B
=1

50
0

345 0.192 0.223 58.8 1449 x x x
351 0.258 0.386 65 1402 x x x
354 0.367 0.542 70.6 1363 x x x
356 0.344 0.532 70.3 1345 x
358 0.357 0.559 71.2 1339 x x
359 0.690 1.108 86.6 1196 x x x
361 0.690 1.108 86.6 1189 x
365 1.254 1.519 93.6 1196 x x
366 0.906 1.435 92.4 1156 x
370 1.781 1.751 96 1178 x x
372 2.842 1.840 96.7 1029 x x
372 2.842 2.488 99.4 1029 x x
379 ∞ 2.535 99.4 914 x x x

tr
40

-4
-w

a1
00

|T
|=

20
,B

=2
40

52 0.625 0.875 80.9 210 x x x
53 0.646 0.903 81.7 209 x x x
55 0.864 1.130 87.1 205 x x x
56 1 1.414 92.1 192 x x x
57 1.261 1.581 94.3 192 x x
59 1.261 1.581 94.3 188 x
67 1.25 1.593 94.4 192 x
67 1.75 1.787 96.3 192 x x
68 1.769 1.787 96.3 192 x
68 1.846 1.794 96.4 190 x x
69 1.25 1.593 94.4 187 x
69 1.75 1.895 97.1 186 x
69 1.75 1.895 97.1 182 x
70 2.306 2.138 98.4 186 x x
70 3.571 2.524 99.4 164 x x x
71 ∞ 2.719 99.7 159 x x x

54

50%. It can be seen in Table 7.1 that for a given solution this probability is often higher. For the
third expected case solution there is even a chance of 80.9% for each constraint to be valid. It
should also be observed that a higher value of Γ can correspond to a lower value of up and thus
a lower probability p, which is in fact the reason that the Pareto fronts of S and R differ. For the
three instances there are only small differences between the three Pareto fronts. The table shows
also a small contradiction which is caused by the assumption that there is no finite worst case.
Then, a worst case solution of the α-RRDCST problem has a corresponding p which is slightly
smaller than 100%. The impact of this contradiction on the quality of the results of R is only
small.

The transformation presented in Section 6.2 would result in nearly the same set of Pareto
optimal solutions as implementation S. The drawback is that the complex mathematical terms
used in this transformation complicate bi-objective implementations.

7.4 Performance Test

For NP -hard problems there is usually the question, how fast they can be solved in practice
and for which size the instance is still solvable within a reasonable amount of time. Most of
the smaller instances with 21 nodes can by solved within a few seconds. The instances with
41 nodes are already hard to solve. This holds for both the α-RRDCST and the α-SRDCST
problem. But there are huge differences for the different formulations described in Section 3.2
and 4.3.

With CPLEX there are two possibilities of adding new constraints during the optimization
process. Lazy constraints can only be added if an integral solution is found for the smaller model.
This way it is possible to add only a few constraints at the beginning and others only in case of
violations. With user cuts violated constraints can also be added on fractional solutions of the
corresponding linear program. This gives us two possibilities for a branch-and-cut algorithm:

• Use only lazy constraints.

• Use lazy constraints and user cuts.

Table 7.2 compares these two strategies for the path-cut formulation. The additional user cuts
don’t seem to improve the performance as it can be seen in Fig. 7.3a. One possible explanation
for this is that because of the weakness of the formulation a massive branching is necessary for
many instances but delayed by the user cuts. Table 7.3 shows the results for the te-instances
where no implementation outperforms the other. For the instances with |T | = 5 the user cuts
increase the performance. An important difference between the two strategies is that additional
user cuts often reduce the number of branch-and-bound nodes and also the needed memory. If
only 1 GB was available, more instances could not be solved if only lazy constraints are used.

There are also different strategies for the layered graph approach. The performance of the
implementations LG and LGCC is compared for instances with B ≤ 240 in Tables 7.4–7.7.
Overall LGCC performs slightly better which can be seen in Fig. 7.3b. The disadvantage is that
if no optimal solution is found, the best feasible solution will have a large gap to optimality and
in many cases no feasible solution will be found at all. The additional connection cuts lead to

55

a very strong formulation which can be observed in the very low number of branch-and-bound
nodes.

Table 7.8 compares the three different formulations on the same set of instances. Only the
path-cut implementation with lazy constraints (PC) is used for the comparison from now on.
The layered graph implementation (LG) on the other hand makes use of the user cuts. The
impact of the user cuts on this implementation is only small, because there are in general not
as many constraint violations. Let us first analyse the performance of the implementation that
uses an MCF formulation (M). There is a strong correlation between the number of terminal
nodes |T | and the running time, see also Fig. 7.5b for the whole set of instances. For a smaller
value of |T | there are less flows to be constructed which causes the set of variables to be smaller.
Furthermore, a small correlation with Γ can be seen in the table and similarly in Fig. 7.5a. The
case Γ = 0 renders the constraints (3.22) trivial, because every variable qk is then allowed to
be arbitrarily high. As a consequence, all variables pkij can be set to 0. The implementation LG
shares this correlation, see Fig. 7.9a, but the reason is a different one. If Γ = 0, there are no
path-cuts that can be violated. A higher value of Γ means that more infeasible paths are in the
layered graph. But this effect is compensated by the reduction of layers. It can be seen on the
instances with Γ = 4.5 that this reduction is very important, because they are often solved faster
than the instances with Γ = 3. There is always a point where increasing Γ has no effect on the
optimal solution, because it is already feasible in the worst case. In Table 7.8 this can be seen
for the instances with |T | = 5 and Γ = 3. All found solutions for these instances are already
feasible in the worst case.

In Tables 7.9 and 7.10 the value of dmax is changed from 10 to 100 and 1000, respectively.
There are different results for all three implementations. For M and PC there is no direct cor-
relation of the running time and dmax which can be seen in Fig. 7.6a and 7.8a. The differences
are just caused by the specific delays, because they were created separately. For LG such a cor-
relation exists which is shown in Fig. 7.10a. The number of layers increases with higher values
of B. A further consequence is a larger layered graph with more nodes and more arcs. While
LG is often the best option for solving instances with B = 12 it performs definitely worse on
B ≥ 120.

Tables 7.11, 7.12 and 7.13 summarize the performance for te-instances. These are harder
to solve than tr-instances which is already indicated in Chapter 5. Only for B = 12, LG is the
most successful implementation, while PC dominates for larger values. However, most of the
difficult instances with |T | = 35 and B = 2.4 · dmax cannot be solved to proven optimality
within 10000 seconds. The characteristic differences of the running times on the whole instance
set are visualized in the Figures 7.4–7.10 with cumulative frequency diagrams. The correlation
between |T | and the running time can not only be observed for M, but also for PC and LG in
Fig 7.7b and Fig 7.9b. So instances with less terminal nodes are usually easier to solve. More
interesting is the correlation between the value of B

dmax
and the running time. There we have

the group of instances where B is relatively low to dmax which is easier to solve for PC, see
Fig. 7.8b. Figure 7.10b shows a more extreme result for LG, but this is mainly caused by the
smaller values of B. In Fig. 7.6b we see that this group of instances is harder to solve for M.

Table 7.14 shows results for the 0.5-SRDCST problem. As already mentioned, the imple-
mentation M is not suited to solve the problem, because constraints (4.8) of the problem formu-

56

lation are not linear. For PC and LG both problems are solved analogously and the performance
is also very similar. This similarity is no coincidence, since the main algorithms are the same for
both problems. One difference is the feasibility check of a path, which is called as a subroutine
in the separation method. It holds for the RRDCST and the SRDCST problem that the feasibility
check has a relatively low complexity in comparison to the whole algorithm. The similarity of
the results be seen in a comparison with Table 7.11. For LG there is also the difference in the
reduction of layers which may be the reason that more instances with |T | ≥ 20 and B = 24 are
solved for the 0.5-SRDCST as for the 0.5-RRDCST problem. But this is also a minor difference,
since both reductions follow the same concept. Because of the similarity of the results for bad
cases, the performance test is omitted for the rest of the instance set. Good cases are not the
focus of this thesis, but they are listed in Table 7.14 for the sake of completeness. With up = −1
there is a probability of at least 16% for every constraint to be valid. For PC there are only
minor differences when working with up < 0. For LG there have to be additional layers and the
number of infeasible paths in the layered graph increases. It can be observed that the instances
with up = −1 are much harder to solve than the instances with up ≥ 0.

All instances considered so far contain complete graphs which are still dense after deleting
some edges in the preprocessing. The instance files from Ruthmair with 100 nodes were used in
order to examine also graphs which are rather sparse. The delay boundB is set clearly below the
maximal edge delay dmax = 100. This way, a lot of edges can be deleted in the preprocessing.
With B = 20 and Γ > 0 there are already instances without any feasible solution, therefore
the performance test is done for B = 25 and B = 40. Table 7.15 summarizes the results on
these instances for the 0.5-RRDCST problem. Basically, the differences in the running times are
similar to the tests with dense graphs. Differently to the dense graphs, M performs better for the
smaller value of B. This is because B has the side effect of controlling the density of the graph.
Therefore the instances with B = 25 are definitely easier to solve than those with B = 40. A bit
surprising are the relatively bad results of LGCC in comparison to LG for instances with Γ > 0
if we compare them with Fig. 7.3b. Unfortunately, if a combination of path cuts and connection
cuts is used, it gets very difficult to find explanations for such unexpected effects.

57

Table 7.2: Results for instance files tr40-i-wa10, i ∈ {1, 2, 3, 4, 5} of the 0.5-RRDCST problem. The implementation PC adds only
lazy constraints with the separation methods. The alternative implementation PC2 adds additionally violated constraints as user cuts.
An explanation of the table entries is given in Section 7.2.

instances median time (in seconds) solved (worst case) average gap (in %) average number of B&B-nodes
|T | B Γ PC PC2 PC PC2 PC PC2 PC PC2

5 12

0 1 1 5 5 0 0 850 883
1.5 1 1 5 (2) 5 (2) 0 0 442 350
3 1 1 5 (5) 5 (5) 0 0 1222 579

4.5 1 1 5 (5) 5 (5) 0 0 1262 602

5 24

0 1 1 5 (1) 5 (1) 0 0 17 23
1.5 1 1 5 (3) 5 (3) 0 0 568 1792
3 1 1 5 (5) 5 (5) 0 0 920 1148

4.5 1 3 5 (5) 5 (5) 0 0 1033 1291

20 12

0 3 2 5 5 0 0 1231 922
1.5 1 2 5 5 0 0 1304 626
3 1 3 5 (5) 5 (5) 0 0 1577 745

4.5 1 4 5 (5) 5 (5) 0 0 1499 692

20 24

0 2 7 5 5 0 0 1436 718
1.5 3 18 5 5 0 0 1823 2312
3 5 29 5 (4) 5 (4) 0 0 5708 3325

4.5 3 11 5 (5) 4 (4) 0 3.4 3986 5286

35 12

0 2 6 5 5 0 0 1195 2076
1.5 1 10 5 5 0 0 364 438
3 2 2 5 (2) 5 (2) 0 0 435 248

4.5 1 5 5 (5) 5 (5) 0 0 800 218

35 24

0 5 20 5 5 0 0 2124 1215
1.5 4 13 5 5 0 0 2117 1396
3 4 61 5 5 0 0 2166 3938

4.5 8 97 5 (5) 5 (5) 0 0 4528 3049

58

Table 7.3: Results for instance files te40-i-wa10, i ∈ {1, 2, 3, 4, 5} of the 0.5-RRDCST problem. The implementation PC adds only
lazy constraints with the separation methods. The alternative implementation PC2 adds additionally violated constraints as user cuts.
An explanation of the table entries is given in Section 7.2.

instances median time (in seconds) solved (worst case) average gap (in %) average number of B&B-nodes
|T | B Γ PC PC2 PC PC2 PC PC2 PC PC2

5 12

0 8 2 5 5 0 0 2184 203
1.5 3 1 5 (4) 5 (4) 0 0 720 23
3 2 1 5 (5) 5 (5) 0 0 1114 29

4.5 2 1 5 (5) 5 (5) 0 0 562 29

5 24

0 3 1 5 5 0 0 1943 0
1.5 3 1 5 5 0 0 1085 56
3 6 1 5 (4) 5 (4) 0 0 1531 40

4.5 8 2 5 (5) 5 (5) 0 0 1908 65

20 12

0 93 102 5 5 0 0 14398 3533
1.5 6 14 5 5 0 0 2676 1645
3 7 20 5 (5) 5 (5) 0 0 3997 2356

4.5 9 16 5 (5) 5 (5) 0 0 3728 2968

20 24

0 35 59 5 5 0 0 18540 6150
1.5 433 327 5 5 0 0 53165 23395
3 363 634 4 (1) 5 (1) 0.7 0 53050 23836

4.5 565 1037 5 (3) 5 (3) 0 0 88920 25399

35 12

0 83 298 4 5 0.7 0 29023 11667
1.5 8 20 5 5 0 0 1826 757
3 10 17 5 (3) 5 (2) 0 0 1488 734

4.5 13 24 5 (5) 5 (5) 0 0 2557 873

35 24

0 - - 0 0 5.2 5.2 116764 105125
1.5 - - 1 1 4.5 6.4 88511 66234
3 - - 1 1 5.5 3.9 109205 96803

4.5 - - 0 0 5.1 5.3 118491 9678959

Table 7.4: Results for instance files tr40-i-wa10, i ∈ {1, 2, 3, 4, 5} of the 0.5-RRDCST problem. The implementations LG and LGCC
are based on the layered graph formulation where LGCC uses connection cuts. An explanation of the table entries is given in Section 7.2.

instances median time (in seconds) solved (worst case) average gap (in %) average number of B&B-nodes
|T | B Γ LG LGCC LG LGCC LG LGCC LG LGCC

5 12

0 1 1 5 5 0 0 0 0
1.5 1 1 5 (2) 5 (2) 0 0 0 0
3 1 1 5 (5) 5 (5) 0 0 19 6

4.5 1 1 5 (5) 5 (5) 0 0 0 1

5 24

0 2 2 5 (2) 5 (2) 0 0 0 0
1.5 4 5 5 (3) 5 (3) 0 0 191 13
3 5 3 5 (5) 4 (4) 0 14.9 137 11

4.5 3 3 5 (5) 5 (5) 0 0 51 43

20 12

0 1 1 5 5 0 0 0 0
1.5 4 4 5 5 0 0 45 20
3 2 1 5 (5) 5 (5) 0 0 98 31

4.5 1 1 5 (5) 5 (5) 0 0 8 2

20 24

0 3 3 5 5 0 0 0 0
1.5 8 27 5 4 0 20 238 35
3 165 145 5 (2) 4 (3) 0 17.3 569 159

4.5 115 78 5 (5) 5 (5) 0 0 252 76

35 12

0 1 1 5 5 0 0 0 0
1.5 13 13 5 5 0 0 107 58
3 16 25 5 (2) 5 (2) 0 0 156 58

4.5 3 3 5 (5) 5 (5) 0 0 24 21

35 24

0 4 4 5 5 0 0 0 0
1.5 185 54 5 5 0 0 407 141
3 152 4672 5 (1) 3 0 4.4 1523 261

4.5 330 2140 5 (5) 4 (4) 0 0.7 878 335

60

Table 7.5: Results for instance files tr40-i-wa100, i ∈ {1, 2, 3, 4, 5} of the 0.5-RRDCST problem. The implementations LG and LGCC
are based on the layered graph formulation where LGCC uses connection cuts. An explanation of the table entries is given in Section 7.2.

instances median time (in seconds) solved (worst case) average gap (in %) average number of B&B-nodes
|T | B Γ LG LGCC LG LGCC LG LGCC LG LGCC

5 120

0 12 16 5 5 0 0 0 0
1.5 36 43 5 (1) 5 (1) 0 0 28 4
3 178 40 5 (3) 5 (3) 0 0 81 5

4.5 28 23 5 (4) 5 (4) 0 0 264 35

5 240

0 62 53 5 5 0 0 0 0
1.5 213 177 5 (1) 5 (1) 0 0 11 1
3 261 516 5 (4) 5 (4) 0 0 364 35

4.5 259 251 5 (5) 5 (5) 0 0 189 61

20 120

0 18 18 5 5 0 0 44 0
1.5 1740 4667 4 4 4.8 14.6 928 84
3 4166 - 4 (1) 2 (1) 8.1 60 953 36

4.5 1983 1353 4 (3) 3 (2) 3.3 40 1592 53

20 240

0 85 96 5 5 0 0 2 0
1.5 5329 6737 3 3 27.1 34.8 37 1
3 - 5799 1 3 (1) 65.8 23.1 24 13

4.5 - - 1 (1) 1 (1) 67 75.9 10 9

35 120

0 31 28 5 5 0 0 198 1
1.5 9162 - 3 2 11.4 60 418 18
3 - - 2 1 30.3 68 715 25

4.5 - - 2 (2) 1 (1) 47.2 80 388 14

35 240

0 164 157 5 5 0 0 1 0
1.5 - - 1 1 77.6 78.3 9 2
3 - - 1 1 78.3 80 6 11

4.5 - - 1 (1) 0 78.2 100 61 261

Table 7.6: Results for instance files te40-i-wa10, i ∈ {1, 2, 3, 4, 5} of the 0.5-RRDCST problem. The implementations LG and LGCC
are based on the layered graph formulation where LGCC uses connection cuts. An explanation of the table entries is given in Section 7.2.

instances median time (in seconds) solved (worst case) average gap (in %) average number of B&B-nodes
|T | B Γ LG LGCC LG LGCC LG LGCC LG LGCC

5 12

0 7 2 5 (1) 5 (1) 0 0 308 1
1.5 10 2 5 (4) 5 (4) 0 0 176 1
3 4 2 5 (5) 5 (5) 0 0 91 2

4.5 1 1 5 (5) 5 (5) 0 0 4 0

5 24

0 6157 33 3 5 6.9 0 16415 2
1.5 5316 86 3 5 3.2 0 34504 7
3 1546 57 3 (2) 5 (4) 3.6 0 34627 6

4.5 1893 46 4 (4) 5 (5) 2.2 0 26764 22

20 12

0 7 4 5 5 0 0 95 3
1.5 30 39 5 5 0 0 418 32
3 29 15 5 (5) 4 (4) 0 2.5 344 42

4.5 4 2 5 (5) 5 (5) 0 0 64 13

20 24

0 1378 76 5 5 0 0 12120 2
1.5 - - 2 2 3.6 14.6 31844 13
3 - - 0 0 10.5 51.8 24460 25

4.5 - - 1 (1) 0 8.3 47.9 27934 47

35 12

0 6 4 5 5 0 0 227 3
1.5 33 33 5 4 0 1.5 463 48
3 47 60 5 (3) 5 (2) 0 0 472 88

4.5 7 4 5 (5) 5 (5) 0 0 157 48

35 24

0 2744 488 3 5 2.3 0 16306 2
1.5 - - 1 0 6.2 68.9 25157 7
3 - - 0 0 9 85.9 22650 6

4.5 - - 0 0 6.7 72.6 26847 2

62

Table 7.7: Results for instance files te40-i-wa100, i ∈ {1, 2, 3, 4, 5} of the 0.5-RRDCST problem. The implementations LG and LGCC
are based on the layered graph formulation where LGCC uses connection cuts. An explanation of the table entries is given in Section 7.2.

instances median time (in seconds) solved (worst case) average gap (in %) average number of B&B-nodes
|T | B Γ LG LGCC LG LGCC LG LGCC LG LGCC

5 120

0 2512 93 4 5 2.9 0 2722 2
1.5 4529 118 4 (2) 5 (3) 0.9 0 2586 6
3 4828 91 3 (3) 5 (5) 6.8 0 2914 29

4.5 1765 85 5 (5) 5 (5) 0 0 4368 8

5 240

0 - 9963 0 3 (1) 40.7 20.5 4 1
1.5 - - 0 1 (1) 40.3 48 24 1
3 - 5229 0 3 (2) 38.9 23.9 15 8

4.5 - 2902 0 3 (3) 40.6 26.3 5 17

20 120

0 - 605 2 4 3.4 1.7 1800 3
1.5 - - 0 1 19.8 59.3 1176 3
3 - - 0 1 (1) 19.8 65.2 932 1

4.5 - - 0 1 (1) 56.9 80 1250 3

20 240

0 - - 0 0 46 72.5 2 0
1.5 - - 0 0 58.5 94 2 0
3 - - 0 0 73.3 100 2 0

4.5 - - 0 0 62.5 91 3 0

35 120

0 2148 667 5 5 0 0 1669 2
1.5 - - 0 0 48.2 100 711 0
3 - - 0 0 57 100 352 1

4.5 - - 0 0 38 94.2 594 1

35 240

0 - - 0 0 67.6 92.4 2 0
1.5 - - 0 0 69.5 100 2 0
3 - - 0 0 71.7 100 3 0

4.5 - - 0 0 91.3 100 3 063

0 50 100 150

70

80

90

running time (in minutes)

in
st

an
ce

s
so

lv
ed

(i
n

%
)

PC
PC2

(a)

0 50 100 150

40

50

60

70

running time (in minutes)

LG
LGCC

(b)

Figure 7.3: Number of solved instances with implementations (a) PC and PC2 and (b) LG and
LGCC after a given time. The set of instances contains the instances from the Tables 7.4–7.7.

0 50 100 150
20

40

60

80

running time (in minutes)

in
st

an
ce

s
so

lv
ed

(i
n

%
)

M
PC
LG

Figure 7.4: Number of solved instances with implementations M, PC and LG after a given time.
The set of instances contains the instances from the Tables 7.8–7.13.

64

Table 7.8: Results for instance files tr40-i-wa10, i ∈ {1, 2, 3, 4, 5} of the 0.5-RRDCST problem. M is based on the MCF formulation,
PC on the path-cut formulation and LG on the layered graph formulation. An explanation of the table entries is given in Section 7.2.

instances median time (in seconds) solved (worst case) average gap (in %) average number of B&B-nodes
|T | B Γ M PC LG M PC LG M PC LG M PC LG

5 12

0 2 1 1 5 5 5 0 0 0 0 850 0
1.5 4 1 1 5 (2) 5 (2) 5 (2) 0 0 0 32 442 0
3 5 1 1 5 (5) 5 (5) 5 (5) 0 0 0 98 1222 19

4.5 4 1 1 5 (5) 5 (5) 5 (5) 0 0 0 63 1262 0

5 24

0 1 1 2 5 (2) 5 (1) 5 (2) 0 0 0 0 17 0
1.5 3 1 4 5 (3) 5 (3) 5 (3) 0 0 0 26 568 191
3 4 1 5 5 (5) 5 (5) 5 (5) 0 0 0 22 920 137

4.5 3 1 3 5 (5) 5 (5) 5 (5) 0 0 0 29 1033 51

20 12

0 54 3 1 5 5 5 0 0 0 655 1231 0
1.5 1798 1 4 4 5 5 2.7 0 0 2441 1304 45
3 5438 1 2 3 (3) 5 (5) 5 (5) 5.6 0 0 2500 1577 98

4.5 5222 1 1 4 (4) 5 (5) 5 (5) 3.3 0 0 2791 1499 8

20 24

0 24 2 3 5 5 5 0 0 0 176 1436 0
1.5 757 3 8 5 5 5 0 0 0 983 1823 238
3 575 5 165 5 (4) 5 (4) 5 (2) 0 0 0 1216 5708 569

4.5 2152 3 115 5 (5) 5 (5) 5 (5) 0 0 0 1165 3986 252

35 12

0 3691 2 1 4 5 5 2.9 0 0 4716 1195 0
1.5 - 1 13 0 5 5 21 0 0 1261 364 107
3 - 2 16 0 5 (2) 5 (2) 19.8 0 0 1655 435 156

4.5 - 1 3 0 5 (5) 5 (5) 19.5 0 0 2029 800 24

35 24

0 464 5 4 4 5 5 0.8 0 0 1401 2124 0
1.5 4782 4 185 3 5 5 18.4 0 0 943 2117 407
3 - 4 152 0 5 5 (1) 35.3 0 0 1126 2166 1523

4.5 - 8 330 0 5 (5) 5 (5) 40.9 0 0 952 4528 87865

Table 7.9: Results for instance files tr40-i-wa100, i ∈ {1, 2, 3, 4, 5} of the 0.5-RRDCST problem. M is based on the MCF formulation,
PC on the path-cut formulation and LG on the layered graph formulation. An explanation of the table entries is given in Section 7.2.

instances median time (in seconds) solved (worst case) average gap (in %) average number of B&B-nodes
|T | B Γ M PC LG M PC LG M PC LG M PC LG

5 120

0 2 1 12 5 5 5 0 0 0 4 702 0
1.5 12 5 36 5 (1) 5 (1) 5 (1) 0 0 0 413 1871 28
3 8 2 178 5 (3) 5 (3) 5 (3) 0 0 0 72 1273 81

4.5 10 3 28 5 (4) 5 (4) 5 (4) 0 0 0 53 2077 264

5 240

0 1 0 62 5 5 5 0 0 0 0 5 0
1.5 4 1 213 5 (1) 5 (1) 5 (1) 0 0 0 6 54 11
3 6 1 261 5 (4) 5 (4) 5 (4) 0 0 0 235 388 364

4.5 8 1 259 5 (5) 5 (5) 5 (5) 0 0 0 21 867 189

20 120

0 73 4 18 4 4 5 2.2 6.5 0 1122 33523 44
1.5 6584 5 1740 4 4 4 3 4.4 4.8 3860 40659 928
3 5890 4 4166 4 (2) 4 (1) 4 (1) 3.3 2.6 8.1 3712 42899 953

4.5 5976 11 1983 3 (2) 4 (3) 4 (3) 3.3 2.6 3.3 3839 44270 1592

20 240

0 16 2 85 5 5 5 0 0 0 108 1674 2
1.5 268 2 5329 5 5 3 0 0 27.1 656 4260 37
3 242 4 - 4 (1) 5 (1) 1 5 0 65.8 1216 38431 24

4.5 2820 5 - 4 (4) 4 (4) 1 (1) 3.8 1.3 67 2076 42890 10

35 120

0 2372 3 31 4 4 5 4.7 5.3 0 1348 31702 198
1.5 - 5 9162 0 5 3 24 0 11.4 1273 40685 418
3 - 8 - 0 5 (1) 2 21.5 0 30.3 918 24451 715

4.5 - 19 - 0 5 (3) 2 (2) 29.6 0 47.2 913 7613 388

35 240

0 53 2 164 5 5 5 0 0 0 1728 5459 1
1.5 - 6 - 1 5 1 80 0 77.6 709 37770 9
3 - 2 - 1 4 (1) 1 32.2 1.6 78.3 708 33795 6

4.5 - 5 - 1 (1) 4 (4) 1 (1) 47.5 9.4 78.2 1106 8269 61

66

Table 7.10: Results for instance files tr40-i-wa1000, i ∈ {1, 2, 3, 4, 5} of the 0.5-RRDCST problem. M is based on the MCF for-
mulation, PC on the path-cut formulation and LG on the layered graph formulation. An explanation of the table entries is given in
Section 7.2.

instances median time (in seconds) solved (worst case) average gap (in %) average number of B&B-nodes
|T | B Γ M PC LG M PC LG M PC LG M PC LG

5 1200

0 2 2 1100 5 5 5 0 0 0 7 2862 0
1.5 15 2 7535 5 (2) 5 (2) 3 (1) 0 0 22.8 154 3360 82
3 11 4 7406 5 (5) 5 (5) 3 (3) 0 0 19.7 72 6655 167

4.5 8 4 3152 5 (5) 5 (5) 3 (3) 0 0 17.8 27 5951 88

5 2400

0 1 1 - 5 5 0 0 0 100 0 1 0
1.5 7 2 - 5 (2) 5 (2) 0 0 0 100 43 879 0
3 7 2 - 5 (5) 5 (4) 0 0 0 100 16 657 0

4.5 7 2 - 5 (5) 5 (5) 0 0 0 100 7 804 0

20 1200

0 1765 39 1334 5 4 4 0 1.2 20 2092 53185 0
1.5 - 5 - 2 5 1 5.9 0 35.5 3110 9166 50
3 - 19 - 1 (1) 5 (2) 0 10.3 0 97.2 4047 6011 31

4.5 - 16 - 1 (1) 5 (4) 0 11.8 0 87.8 3832 17845 54

20 2400

0 37 8 - 5 5 0 0 0 100 95 1416 0
1.5 399 14 - 5 (1) 5 (1) 0 0 0 100 1284 6951 0
3 609 40 - 3 (1) 5 (3) 0 3.9 0 100 1572 9834 0

4.5 6054 28 - 3 (3) 5 (5) 0 5.8 0 100 2200 10153 0

35 1200

0 - 11 - 1 5 1 9.4 0 80 2074 39262 0
1.5 - 9 - 1 5 1 16.3 0 50.1 873 2264 34
3 - 8 - 0 5 0 46.5 0 100 487 2835 25

4.5 - 8 - 0 5 (1) 0 69.5 0 81.6 473 5854 29

35 2400

0 903 21 - 5 5 0 0 0 100 1507 3232 0
1.5 - 34 - 1 5 0 42.4 0 100 740 6122 0
3 - 82 - 1 (1) 5 (1) 0 41.5 0 100 704 17845 0

4.5 - 280 - 1 (1) 5 (4) 0 45.9 0 100 653 41982 067

Table 7.11: Results for instance files te40-i-wa10, i ∈ {1, 2, 3, 4, 5} of the 0.5-RRDCST problem. M is based on the MCF formulation,
PC on the path-cut formulation and LG on the layered graph formulation. An explanation of the table entries is given in Section 7.2.

instances median time (in seconds) solved (worst case) average gap (in %) average number of B&B-nodes
|T | B Γ M PC LG M PC LG M PC LG M PC LG

5 12

0 3 8 7 5 (1) 5 5 (1) 0 0 0 0 2184 308
1.5 3 3 10 5 (4) 5 (4) 5 (4) 0 0 0 9 720 176
3 4 2 4 5 (5) 5 (5) 5 (5) 0 0 0 11 1114 91

4.5 6 2 1 5 (5) 5 (5) 5 (5) 0 0 0 8 562 4

5 24

0 2 3 6157 5 5 3 0 0 6.9 0 1943 16415
1.5 5 3 5316 5 (1) 5 3 0 0 3.2 9 1085 34504
3 6 6 1546 5 (4) 5 (4) 3 (2) 0 0 3.6 1 1531 34627

4.5 6 8 1893 5 (5) 5 (5) 4 (4) 0 0 2.2 14 1908 26764

20 12

0 1589 93 7 5 5 5 0 0 0 715 14398 95
1.5 - 6 30 2 5 5 6.6 0 0 1033 2676 418
3 - 7 29 0 5 (5) 5 (5) 12.6 0 0 1234 3997 344

4.5 - 9 4 2 (2) 5 (5) 5 (5) 8.8 0 0 1445 3728 64

20 24

0 75 35 1378 5 5 5 0 0 0 25 18540 12120
1.5 4211 433 - 4 5 2 1.9 0 3.6 399 53165 31844
3 - 363 - 2 (1) 4 (1) 0 22.7 0.7 10.5 599 53050 24460

4.5 - 565 - 1 (1) 5 (3) 1 (1) 6.7 0 8.3 556 88920 27934

35 12

0 - 83 6 0 4 5 6 0.7 0 1112 29023 227
1.5 - 8 33 0 5 5 65.7 0 0 290 1826 463
3 - 10 47 0 5 (3) 5 (3) 51.5 0 0 373 1488 472

4.5 - 13 7 0 5 (5) 5 (5) 33.8 0 0 303 2557 157

35 24

0 - - 2744 2 0 3 1.2 5.2 2.3 891 116764 16306
1.5 - - - 0 1 1 45.9 4.5 6.2 76 88511 25157
3 - - - 0 1 0 65.8 5.5 9 47 109205 22650

4.5 - - - 0 0 0 83.5 5.1 6.7 57 118491 26847

68

Table 7.12: Results for instance files te40-i-wa100, i ∈ {1, 2, 3, 4, 5} of the 0.5-RRDCST problem. M is based on the MCF formulation,
PC on the path-cut formulation and LG on the layered graph formulation. An explanation of the table entries is given in Section 7.2.

instances median time (in seconds) solved (worst case) average gap (in %) average number of B&B-nodes
|T | B Γ M PC LG M PC LG M PC LG M PC LG

5 120

0 3 6 2512 5 5 4 0 0 2.9 0 2019 2722
1.5 8 4 4529 5 (3) 5 (3) 4 (2) 0 0 0.9 4 1200 2586
3 7 6 4828 5 (5) 5 (5) 3 (3) 0 0 6.8 3 1259 2914

4.5 6 4 1765 5 (5) 5 (5) 5 (5) 0 0 0 1 1260 4368

5 240

0 2 3 - 5 (2) 5 (1) 0 0 0 40.7 0 1905 4
1.5 4 2 - 5 (3) 5 (3) 0 0 0 40.3 0 1998 24
3 4 4 - 5 (3) 5 (3) 0 0 0 38.9 4 1756 15

4.5 10 4 - 5 (5) 5 (5) 0 0 0 40.6 12 1552 5

20 120

0 3561 455 - 4 3 2 0.8 2 3.4 1105 58234 1800
1.5 - 103 - 1 5 0 7.3 0 19.8 756 20832 1176
3 - 218 - 1 (1) 5 (3) 0 14.6 0 19.8 774 41037 932

4.5 - 350 - 1 (1) 4 (4) 0 13.8 0.8 56.9 549 58877 1250

20 240

0 92 54 - 5 5 0 0 0 46 237 43793 2
1.5 1035 187 - 5 4 0 0 0.5 58.5 359 42991 2
3 - 216 - 2 4 0 13.6 0.7 73.3 362 40141 2

4.5 - 434 - 2 (1) 4 (3) 0 41.1 0.3 62.5 404 57739 3

35 120

0 - 1269 2148 0 3 5 6.3 1.9 0 750 78031 1669
1.5 - 190 - 0 4 0 100 1.1 48.2 123 47198 711
3 - 46 - 0 5 (2) 0 83 0 57 91 35528 352

4.5 - 130 - 0 4 (3) 0 82.3 2.1 38 122 46149 594

35 240

0 4323 - - 4 0 0 0.3 3.4 67.6 517 116320 2
1.5 - - - 0 1 0 44.3 4.4 69.5 110 89423 2
3 - - - 0 2 0 80.4 2.7 71.7 75 112980 3

4.5 - - - 0 1 0 80.6 3.3 91.3 45 110857 369

Table 7.13: Results for instance files te40-i-wa1000, i ∈ {1, 2, 3, 4, 5} of the 0.5-RRDCST problem. M is based on the MCF for-
mulation, PC on the path-cut formulation and LG on the layered graph formulation. An explanation of the table entries is given in
Section 7.2.

instances median time (in seconds) solved (worst case) average gap (in %) average number of B&B-nodes
|T | B Γ M PC LG M PC LG M PC LG M PC LG

5 1200

0 3 12 - 5 5 1 0 0 40.4 3 2775 83
1.5 8 3 - 5 (2) 5 (2) 0 0 0 44.3 47 891 95
3 9 8 - 5 (5) 5 (5) 0 0 0 35.9 129 2313 158

4.5 7 6 - 5 (5) 5 (5) 0 0 0 36.8 161 2682 197

5 2400

0 2 3 - 5 (1) 5 0 0 0 100 0 1760 0
1.5 5 3 - 5 (2) 5 (2) 0 0 0 100 0 1658 0
3 5 3 - 5 (4) 5 (4) 0 0 0 100 2 1878 0

4.5 5 7 - 5 (5) 5 (5) 0 0 0 100 2 1782 0

20 1200

0 3414 548 - 4 4 1 0.5 0.5 55.8 1380 56514 13
1.5 - 130 - 1 5 0 24.8 0 100 924 24306 4
3 - 72 - 0 5 (1) 0 15.1 0 84.7 1014 37500 12

4.5 - 258 - 0 5 (4) 0 11.8 0 83.2 888 49975 19

20 2400

0 151 61 - 5 5 0 0 0 100 209 25164 0
1.5 - 241 - 2 5 0 22.1 0 100 583 44397 0
3 7063 113 - 3 4 0 4.4 0.7 100 793 48761 0

4.5 - 69 - 1 3 (1) 0 5.9 1.4 100 729 59805 0

35 1200

0 - - - 0 2 0 8.6 3.7 100 956 80796 0
1.5 - 111 - 0 5 0 63.5 0 100 150 52912 0
3 - 1176 - 0 4 0 100 0.8 100 125 63376 0

4.5 - 391 - 0 4 0 100 0.9 100 158 61995 0

35 2400

0 570 - - 3 2 0 0.8 3.2 100 362 83029 0
1.5 - 593 - 1 3 0 26.4 2.7 100 187 67617 0
3 - 608 - 1 3 0 43.8 4.1 100 255 54458 0

4.5 - - - 1 2 0 62.5 5.6 100 191 58204 0

70

0 50 100 150

40

60

80

running time (in minutes)

in
st

an
ce

s
so

lv
ed

(i
n

%
) 0

1.5
3

4.5

(a)

0 50 100 150

0

50

100

running time (in minutes)

5
20
35

(b)

Figure 7.5: Number of solved instances with implementation M after a given time. The set
of instances contains the instances from the Tables 7.8–7.13. The different values of Γ are
compared in (a) and the different values of |T | are compared in (b).

0 50 100 150

40

50

60

running time (in minutes)

in
st

an
ce

s
so

lv
ed

(i
n

%
)

10
100
1000

(a)

0 50 100 150
30

40

50

60

70

running time (in minutes)

1.2
2.4

(b)

Figure 7.6: Number of solved instances with implementation M after a given time. The set
of instances contains the instances from the Tables 7.8–7.13. The different values of dmax are
compared in (a) and the different values of B

dmax
are compared in (b).

71

0 50 100 150

70

80

90

running time (in minutes)

in
st

an
ce

s
so

lv
ed

(i
n

%
)

0
1.5
3

4.5

(a)

0 50 100 150

60

80

100

running time (in minutes)

5
20
35

(b)

Figure 7.7: Number of solved instances with implementation PC after a given time. The set
of instances contains the instances from the Tables 7.8–7.13. The different values of Γ are
compared in (a) and the different values of |T | are compared in (b).

0 50 100 150

70

80

90

running time (in minutes)

in
st

an
ce

s
so

lv
ed

(i
n

%
)

10
100
1000

(a)

0 50 100 150

70

80

90

running time (in minutes)

1.2
2.4

(b)

Figure 7.8: Number of solved instances with implementation PC after a given time. The set
of instances contains the instances from the Tables 7.8–7.13. The different values of dmax are
compared in (a) and the different values of B

dmax
are compared in (b).

72

0 50 100 150

20

40

60

running time (in minutes)

in
st

an
ce

s
so

lv
ed

(i
n

%
)

0
1.5
3

4.5

(a)

0 50 100 150

20

40

60

running time (in minutes)

5
20
35

(b)

Figure 7.9: Number of solved instances with implementation LG after a given time. The set
of instances contains the instances from the Tables 7.8–7.13. The different values of Γ are
compared in (a) and the different values of |T | are compared in (b).

0 50 100 150

0

20

40

60

80

running time (in minutes)

in
st

an
ce

s
so

lv
ed

(i
n

%
)

10
100
1000

(a)

0 50 100 150

20

40

60

running time (in minutes)

1.2
2.4

(b)

Figure 7.10: Number of solved instances with implementation LG after a given time. The set
of instances contains the instances from the Tables 7.8–7.13. The different values of dmax are
compared in (a) and the different values of B

dmax
are compared in (b).

73

Table 7.14: Results for instance files te40-i-wa10, i ∈ {1, 2, 3, 4, 5} of the 0.5-SRDCST problem. PC is based on the path-cut formula-
tion and LG on the layered graph formulation. An explanation of the table entries is given in Section 7.2.

instances median time (in seconds) solved instances average gap (in %) average number of B&B-nodes
|T | B up PC LG PC LG PC LG PC LG

5 12

-1 9 510 5 5 0 0 1972 16894
0 8 7 5 5 0 0 2184 308
1 4 3 5 5 0 0 534 27
2 1 2 5 5 0 0 216 18

5 24

-1 3 - 5 1 0 19.5 1310 21414
0 3 5138 5 3 0 6.9 1943 16142
1 4 2001 5 4 0 2.9 1192 19768
2 7 1728 5 5 0 0 3189 23092

20 12

-1 878 6375 4 4 0.8 0.3 74595 41660
0 92 7 5 5 0 0 14398 95
1 4 7 5 5 0 0 2191 58
2 6 13 5 5 0 0 1078 162

20 24

-1 33 - 5 0 0 9.1 7899 15012
0 34 1617 5 5 0 0 18540 12120
1 610 4948 4 5 0.7 0 69962 34310
2 170 5418 5 4 0 0.8 43277 35846

35 12

-1 - - 0 1 5.2 3.7 110343 32130
0 74 5 4 5 0.7 0 29025 227
1 4 15 5 5 0 0 2229 170
2 2 10 5 5 0 0 497 72

35 24

-1 - - 0 0 5.6 10.7 108614 11365
0 - 2875 0 3 5.2 2.3 116779 16186
1 - - 1 2 5.5 2.8 107613 29432
2 - - 2 2 2.7 2.7 80794 33002

74

Table 7.15: Results for instance files of the 0.5-RRDCST problem from [44] with |V | = 100. M is based on the MCF formulation, PC
on the path-cut formulation, LG on the layered graph formulation and LGCC on the layered graph formulation with connection cuts.
An explanation of the table entries is given in Section 7.2.

instances median time (in seconds) solved (worst case) average gap (in %)
|T | B Γ M PC LG LGCC M PC LG LGCC M PC LG LGCC

15 25

0 1595 51 12 10 28 29 30 30 0.3 1.6 0 0
1.5 - 16 24 40 12 30 30 26 8.3 0 0 5
3 - 24 49 150 7 (1) 30 (2) 30 (2) 26 (1) 13 0 0 7.6

4.5 - 42 51 156 6 (3) 28 (16) 30 (16) 26 (14) 19.8 1.1 0 10.5

15 40

0 - 511 19 18 15 16 30 30 4.8 20.8 0 0
1.5 - 113 531 - 1 22 29 15 39.5 6.7 0.4 45.8
3 - 177 1039 - 1 20 (3) 26 (2) 8 (1) 44 9.2 2.4 65.9

4.5 - 390 1383 - 1 (1) 20 (13) 26 (15) 10 (5) 46.3 11.3 1 60.9

50 25

0 - 147 11 11 0 25 30 30 80.9 1.9 0 0
1.5 - 14 216 646 0 30 30 26 100 0 0 10.2
3 - 35 550 - 0 27 28 13 100 0.8 0.2 16.3

4.5 - 130 1419 - 0 21 (2) 26 (2) 10 (1) 100 4.6 1 27.6

50 40

0 - - 25 25 0 12 30 30 89.5 17 0 0
1.5 - 421 - - 0 19 14 5 100 5.7 6.3 68.8
3 - - - - 0 13 5 0 100 11 33.3 94.4

4.5 - - - - 0 8 2 0 100 22.5 40.2 94.6

85 25

0 - 44 12 12 0 29 30 30 100 0.2 0 0
1.5 - 14 203 486 0 30 30 24 100 0 0 1.1
3 - 30 600 - 0 29 27 12 100 0.2 0.3 16.3

4.5 - 90 1900 - 0 24 (2) 24 (2) 5 (1) 100 0.9 1.1 28.8

85 40

0 - - 29 31 0 14 30 30 100 7.2 0 0
1.5 - 226 - - 0 22 8 1 100 1.8 12.9 81.3
3 - 927 - - 0 18 2 1 100 3.5 36.2 91

4.5 - - - - 0 7 2 0 100 8.3 44.7 10075

CHAPTER 8
Conclusions

This thesis is about robust optimization and stochastic programming and their application to
the rooted delay-constrained Steiner tree problem with uncertain delays. For each of them,
one approach is chosen which results in a robust and a stochastic version of the problem. The
stochastic version has the advantage that it is built upon a solid stochastic foundation such that
the definition of optimality is based on important probabilistic properties. This ensures a high
quality of the solutions. Some formulations as integer linear program are presented. The multi
commodity flow formulation uses only polynomially many variables and constraints. One of its
limitations is that it cannot be applied to different robust or stochastic approaches analogously,
because it depends on the problem specific delay constraints. In our case the delay constraints of
the robust approach are suited for this formulation after a linearisation. The path-cut formulation
uses exponentially many constraints but can be applied to different approaches more easily, since
the delay constraints are not encountered explicitly. Feasible paths can be determined separately
in a subroutine. In comparison with the other developed algorithms, the implementation based
on this formulation has the best performance for most instances. Quite recently, layered graph
formulations gained popularity in algorithms for a specific class of tree problems. Extending this
concept to the robust and the stochastic version of the problem proves to be difficult. Moreover,
the implementation based on the layered graph formulation has an increased running time for
uncertain delays. But there is still a set of instances where this implementation outperforms
the others. An efficient algorithm based on the path formulation may be able to solve many
instances of the robust and the stochastic problem even faster as with the other formulations, but
its construction could be a bit more difficult.

Some different strategies are presented to reduce the size of the problem instances. This can
be achieved by deleting selected edges of the instance graph. Sometimes instance transforma-
tions can be used as an alternative way of introducing robustness. This leads to fast algorithms,
but the quality of the solutions can be rather poor because of an undesired definition of optimal-
ity.

With the improvements on ILP solvers it will be possible to solve the robust and the stochas-
tic problem faster in future. Certainly, there are also ways to improve the performance without

77

changing the solver. However, all discussed problems are NP-hard which means that there is
always an instance of moderate size too hard to solve to optimality. As today’s networks grow
larger and larger, it may be a too strong limitation if there are no solutions for such instances.
There are a lot of heuristic approaches to solve the deterministic problem. It may be fruitful to
study heuristic algorithms also in combination with the concept of uncertainty.

78

Bibliography

[1] M. Aissa and A. B. Mnaouer. A new delay-constrained algorithm for multicast routing tree
construction. International Journal of Communication Systems, 17(10):985–1000, 2004.

[2] E. Álvarez Miranda, I. Ljubić, and P. Toth. Exact approaches for solving robust prize-
collecting Steiner tree problems. European Journal of Operational Research, 229(3):599
– 612, 2013.

[3] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs. Operations
Research Letters, 25(1):1–13, 1999.

[4] A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming problems contam-
inated with uncertain data. Mathematical Programming, 88(3):411–424, 2000.

[5] D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Mathematical
Programming, 98(1-3):49–71, 2003.

[6] D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35–53,
2004.

[7] J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer, 1997.

[8] I. Bomze, M. Chimani, M. Jünger, I. Ljubić, P. Mutzel, and B. Zey. Solving two-stage
stochastic Steiner tree problems by two-stage branch-and-cut. In O. Cheong, K.-Y. Chwa,
and K. Park, editors, Algorithms and Computation, volume 6506 of Lecture Notes in Com-
puter Science, pages 427–439. Springer Berlin Heidelberg, 2010.

[9] C. Büsing and F. D’Andreagiovanni. New results about multi-band uncertainty in robust
optimization. In Proceedings of the 11th International Conference on Experimental Algo-
rithms, SEA’12, pages 63–74. Springer Berlin Heidelberg, 2012.

[10] G. Calafiore and M.C. Campi. Uncertain convex programs: randomized solutions and
confidence levels. Mathematical Programming, 102(1):25–46, 2005.

[11] V. Chankong and Y. Y. Haimes. Multiobjective decision making : theory and methodology.
New York : North Holland, 1983.

[12] A. Charnes and W. W. Cooper. Chance-constrained programming. Management Science,
6(1):73–79, 1959.

79

[13] X. Chen, M. Sim, and P. Sun. A robust optimization perspective on stochastic program-
ming. Operations Research, 55(6):1058–1071, 2007.

[14] B. V. Cherkassky and A. V. Goldberg. On implementing the push-relabel method for the
maximum flow problem. Algorithmica, 19(4):390–410, 1997.

[15] G. Dahl, L. Gouveia, and C. Requejo. On formulations and methods for the hop-
constrained minimum spanning tree problem. In M.G.C. Resende and P.M. Pardalos,
editors, Handbook of Optimization in Telecommunications, pages 493–515. Springer US,
2006.

[16] G. B. Dantzig. Linear programming under uncertainty. Management Science, 1(3-4):197–
206, 1955.

[17] S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks, 1(3):195–207,
1971.

[18] D.-Z. Du, Y. Zhang, and Q. Feng. On better heuristic for Euclidean Steiner minimum trees.
In Proceedings of the 32nd Annual Symposium on Foundations of Computer Science, pages
431–439, 1991.

[19] L. El Ghaoui and H. Lebret. Robust solutions to least-squares problems with uncertain
data. SIAM Journal on Matrix Analysis and Applications, 18(4):1035–1064, 1997.

[20] L. El Ghaoui, F. Oustry, and H. Lebret. Robust solutions to uncertain semidefinite pro-
grams. SIAM Journal on Optimization, 9(1):33–52, 1998.

[21] E. Erdoğan and G. Iyengar. Ambiguous chance constrained problems and robust optimiza-
tion. Mathematical Programming, 107(1):37–61, 2004.

[22] E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal on Applied Mathe-
matics, 16(1):1–29, 1968.

[23] C. E. Gounaris, W. Wiesemann, and C. A. Floudas. The robust capacitated vehicle routing
problem under demand uncertainty. Operations Research, 61(3):677–693, 2013.

[24] L. Gouveia. Using variable redefinition for computing lower bounds for minimum span-
ning and Steiner trees with hop constraints. INFORMS Journal on Computing, 10(2):180–
188, 1998.

[25] L. Gouveia, A. Paias, and D. Sharma. Modeling and solving the rooted distance-
constrained minimum spanning tree problem. Computers & Operations Research,
35(2):600–613, 2008.

[26] L. Gouveia, L. Simonetti, and E. Uchoa. Modeling hop-constrained and diameter-
constrained minimum spanning tree problems as Steiner tree problems over layered graphs.
Mathematical Programming, 128(1-2):123–148, 2011.

80

[27] A. Gupta and M. Pál. Stochastic Steiner trees without a root. In Proceedings of the 32nd
International Conference on Automata, Languages and Programming, ICALP’05, pages
1051–1063. Springer-Verlag, 2005.

[28] C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10–16, 1962.

[29] H. Ishii and T. Nishida. Stochastic bottleneck spanning tree problem. Networks, 13(3):443–
449, 1983.

[30] H. Ishii, S. Shiode, T. Nishida, and Y. Namasuya. Stochastic spanning tree problem. Dis-
crete Applied Mathematics, 3(4):263 – 273, 1981.

[31] P. Kall and S. W. Wallace. Stochastic programming. Operations Research, 4(1):1–2, 2003.

[32] O. Klopfenstein and D. Nace. A robust approach to the chance-constrained knapsack prob-
lem. Operations Research Letters, 36(5):628 – 632, 2008.

[33] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Multicasting for multimedia appli-
cations. In Proceedings of the 11th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOMM), volume 3, pages 2078–2085. IEEE, 1992.

[34] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Multicast routing for multimedia com-
munication. IEEE/ACM Transactions on Networking, 1(3):286–292, 1993.

[35] V. Leggieri, M. Haouari, and C. Triki. The Steiner tree problem with delays: A compact
formulation and reduction procedures. Discrete Applied Mathematics, 2011.

[36] M. Leitner, M. Ruthmair, and G. R. Raidl. Stabilized branch-and-price for the rooted
delay-constrained Steiner tree problem. In J. Pahl, T. Reiners, and S. Voß, editors, Net-
work Optimization, volume 6701 of Lecture Notes in Computer Science, pages 124–138.
Springer Berlin Heidelberg, 2011.

[37] M. Leitner, M. Ruthmair, and G. R. Raidl. Stabilizing branch-and-price for constrained
tree problems. Networks, 61(2):150–170, 2013.

[38] B. Liu. Uncertainty theory. In Uncertainty Theory, volume 154 of Studies in Fuzziness
and Soft Computing, pages 205–234. Springer Berlin Heidelberg, 2007.

[39] C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming formulation of travel-
ing salesman problems. Journal of the ACM, 7(4):326–329, 1960.

[40] M. Monaci, U. Pferschy, and P. Serafini. Exact solution of the robust knapsack problem.
Computers & Operations Research, 40(11):2625 – 2631, 2013.

[41] R. Montemanni, J. Barta, M. Mastrolilli, and L. M. Gambardella. The robust traveling
salesman problem with interval data. Transportation Science, 41(3):366–381, 2007.

[42] J. M. Mulvey, R. J. Vanderbei, and S. A. Zenios. Robust optimization of large-scale sys-
tems. Operations Research, 43(2):264–281, 1995.

81

[43] A. Nemirovski and A. Shapiro. Convex approximations of chance constrained programs.
SIAM Journal on Optimization, 17(4):969–996, 2007.

[44] M. Ruthmair. On Solving Constrained Tree Problems and an Adaptive Layers Framework.
PhD thesis, Vienna University of Technology, 2012.

[45] M. Ruthmair and G. R. Raidl. A layered graph model and an adaptive layers framework to
solve delay-constrained minimum tree problems. In O. Günlük and G. Woeginger, editors,
Integer Programming and Combinatoral Optimization, volume 6655 of Lecture Notes in
Computer Science, pages 376–388. Springer Berlin Heidelberg, 2011.

[46] H.F. Salama, D.S. Reeves, and Y. Viniotis. The delay-constrained minimum spanning tree
problem. In Proceedings of the 2nd IEEE Symposium on Computers and Communications,
pages 699–703. IEEE Computer Society, 1997.

[47] A. Schrijver. Theory of linear and integer programming. Wiley, 1998.

[48] M. Sim. Robust Optimization. PhD thesis, Massachusetts Institute of Technology, 2004.

[49] N. Skorin-Kapov and M. Kos. The application of Steiner trees to delay constrained multi-
cast routing: a tabu search approach. In Proceedings of the 7th International Conference
on Telecommunications, volume 2, pages 443–448, 2003.

[50] A. L. Soyster. Convex programming with set-inclusive constraints and applications to
inexact linear programming. Operations Research, 21(5):1154–1157, 1973.

[51] A. Thiele. Robust stochastic programming with uncertain probabilities. IMA Journal of
Management Mathematics, 19(3):289–321, 2007.

[52] R. Viertl. Einführung in die Stochastik - mit Elementen der Bayes-Statistik und der Analyse
unscharfer Information. Springer Wien New York, 2003.

[53] L. A. Wolsey. Integer programming. Wiley, 1998.

[54] H. Yaman, O. E. Karaşan, and M. Ç. Pinar. The robust spanning tree problem with interval
data. Operations Research Letters, 29(1):31 – 40, 2001.

[55] G. Yu and J. Yang. On the robust shortest path problem. Computers and Operations
Research, 25(6):457–468, 1998.

[56] Q. Zhang and Y.-W. Leung. An orthogonal genetic algorithm for multimedia multicast
routing. IEEE Transactions on Evolutionary Computation, 3(1):53–62, 1999.

82

	Introduction
	Aim of Work
	Optimization with Uncertain Data
	The Rooted Delay-Constrained Steiner Tree Problem
	Related Work

	Structure of the Work

	Preliminaries
	Feasibility under Uncertain Data
	Robust Optimization
	The Approach of Bertsimas and Sim
	Related Work

	Stochastic Programming
	Related Work

	Bi-Objective Optimization

	The Robust Rooted Delay-Constrained Steiner Tree Problem
	Limitations of the Robust Approach
	Formulations
	Multi Commodity Flow
	Path-Cut
	Separation Methods

	Layered Graph
	Connection Cuts on the Layered Graph
	Working with Uncertain Delays

	Path
	Pricing Subproblem

	Miller-Tucker-Zemlin

	The Stochastic Rooted Delay-Constrained Steiner Tree Problem
	Normally Distributed Approach
	The Stochastic Problem
	Formulations
	Multi Commodity Flow
	Path-Cut
	Layered Graph

	Preprocessing
	Comparison with Paths
	Computational Issues

	Comparison with Root Arcs
	Infeasible Arcs and Nodes

	Instance Transformations
	Altering the Delay Bound
	Altering Edge Delays
	Limitations of Instance Transformation

	Results
	Instances
	Implementations
	Measurement

	Comparison of Solutions
	Performance Test

	Conclusions
	Bibliography

